drm/i915: put the right cpu_transcoder into pipe_config for hw state readout
[linux-block.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         int     min, max;
50 } intel_range_t;
51
52 typedef struct {
53         int     dot_limit;
54         int     p2_slow, p2_fast;
55 } intel_p2_t;
56
57 #define INTEL_P2_NUM                  2
58 typedef struct intel_limit intel_limit_t;
59 struct intel_limit {
60         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
61         intel_p2_t          p2;
62         /**
63          * find_pll() - Find the best values for the PLL
64          * @limit: limits for the PLL
65          * @crtc: current CRTC
66          * @target: target frequency in kHz
67          * @refclk: reference clock frequency in kHz
68          * @match_clock: if provided, @best_clock P divider must
69          *               match the P divider from @match_clock
70          *               used for LVDS downclocking
71          * @best_clock: best PLL values found
72          *
73          * Returns true on success, false on failure.
74          */
75         bool (*find_pll)(const intel_limit_t *limit,
76                          struct drm_crtc *crtc,
77                          int target, int refclk,
78                          intel_clock_t *match_clock,
79                          intel_clock_t *best_clock);
80 };
81
82 /* FDI */
83 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
84
85 int
86 intel_pch_rawclk(struct drm_device *dev)
87 {
88         struct drm_i915_private *dev_priv = dev->dev_private;
89
90         WARN_ON(!HAS_PCH_SPLIT(dev));
91
92         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
93 }
94
95 static bool
96 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
97                     int target, int refclk, intel_clock_t *match_clock,
98                     intel_clock_t *best_clock);
99 static bool
100 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
101                         int target, int refclk, intel_clock_t *match_clock,
102                         intel_clock_t *best_clock);
103
104 static bool
105 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
106                         int target, int refclk, intel_clock_t *match_clock,
107                         intel_clock_t *best_clock);
108
109 static inline u32 /* units of 100MHz */
110 intel_fdi_link_freq(struct drm_device *dev)
111 {
112         if (IS_GEN5(dev)) {
113                 struct drm_i915_private *dev_priv = dev->dev_private;
114                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
115         } else
116                 return 27;
117 }
118
119 static const intel_limit_t intel_limits_i8xx_dvo = {
120         .dot = { .min = 25000, .max = 350000 },
121         .vco = { .min = 930000, .max = 1400000 },
122         .n = { .min = 3, .max = 16 },
123         .m = { .min = 96, .max = 140 },
124         .m1 = { .min = 18, .max = 26 },
125         .m2 = { .min = 6, .max = 16 },
126         .p = { .min = 4, .max = 128 },
127         .p1 = { .min = 2, .max = 33 },
128         .p2 = { .dot_limit = 165000,
129                 .p2_slow = 4, .p2_fast = 2 },
130         .find_pll = intel_find_best_PLL,
131 };
132
133 static const intel_limit_t intel_limits_i8xx_lvds = {
134         .dot = { .min = 25000, .max = 350000 },
135         .vco = { .min = 930000, .max = 1400000 },
136         .n = { .min = 3, .max = 16 },
137         .m = { .min = 96, .max = 140 },
138         .m1 = { .min = 18, .max = 26 },
139         .m2 = { .min = 6, .max = 16 },
140         .p = { .min = 4, .max = 128 },
141         .p1 = { .min = 1, .max = 6 },
142         .p2 = { .dot_limit = 165000,
143                 .p2_slow = 14, .p2_fast = 7 },
144         .find_pll = intel_find_best_PLL,
145 };
146
147 static const intel_limit_t intel_limits_i9xx_sdvo = {
148         .dot = { .min = 20000, .max = 400000 },
149         .vco = { .min = 1400000, .max = 2800000 },
150         .n = { .min = 1, .max = 6 },
151         .m = { .min = 70, .max = 120 },
152         .m1 = { .min = 8, .max = 18 },
153         .m2 = { .min = 3, .max = 7 },
154         .p = { .min = 5, .max = 80 },
155         .p1 = { .min = 1, .max = 8 },
156         .p2 = { .dot_limit = 200000,
157                 .p2_slow = 10, .p2_fast = 5 },
158         .find_pll = intel_find_best_PLL,
159 };
160
161 static const intel_limit_t intel_limits_i9xx_lvds = {
162         .dot = { .min = 20000, .max = 400000 },
163         .vco = { .min = 1400000, .max = 2800000 },
164         .n = { .min = 1, .max = 6 },
165         .m = { .min = 70, .max = 120 },
166         .m1 = { .min = 8, .max = 18 },
167         .m2 = { .min = 3, .max = 7 },
168         .p = { .min = 7, .max = 98 },
169         .p1 = { .min = 1, .max = 8 },
170         .p2 = { .dot_limit = 112000,
171                 .p2_slow = 14, .p2_fast = 7 },
172         .find_pll = intel_find_best_PLL,
173 };
174
175
176 static const intel_limit_t intel_limits_g4x_sdvo = {
177         .dot = { .min = 25000, .max = 270000 },
178         .vco = { .min = 1750000, .max = 3500000},
179         .n = { .min = 1, .max = 4 },
180         .m = { .min = 104, .max = 138 },
181         .m1 = { .min = 17, .max = 23 },
182         .m2 = { .min = 5, .max = 11 },
183         .p = { .min = 10, .max = 30 },
184         .p1 = { .min = 1, .max = 3},
185         .p2 = { .dot_limit = 270000,
186                 .p2_slow = 10,
187                 .p2_fast = 10
188         },
189         .find_pll = intel_g4x_find_best_PLL,
190 };
191
192 static const intel_limit_t intel_limits_g4x_hdmi = {
193         .dot = { .min = 22000, .max = 400000 },
194         .vco = { .min = 1750000, .max = 3500000},
195         .n = { .min = 1, .max = 4 },
196         .m = { .min = 104, .max = 138 },
197         .m1 = { .min = 16, .max = 23 },
198         .m2 = { .min = 5, .max = 11 },
199         .p = { .min = 5, .max = 80 },
200         .p1 = { .min = 1, .max = 8},
201         .p2 = { .dot_limit = 165000,
202                 .p2_slow = 10, .p2_fast = 5 },
203         .find_pll = intel_g4x_find_best_PLL,
204 };
205
206 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
207         .dot = { .min = 20000, .max = 115000 },
208         .vco = { .min = 1750000, .max = 3500000 },
209         .n = { .min = 1, .max = 3 },
210         .m = { .min = 104, .max = 138 },
211         .m1 = { .min = 17, .max = 23 },
212         .m2 = { .min = 5, .max = 11 },
213         .p = { .min = 28, .max = 112 },
214         .p1 = { .min = 2, .max = 8 },
215         .p2 = { .dot_limit = 0,
216                 .p2_slow = 14, .p2_fast = 14
217         },
218         .find_pll = intel_g4x_find_best_PLL,
219 };
220
221 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
222         .dot = { .min = 80000, .max = 224000 },
223         .vco = { .min = 1750000, .max = 3500000 },
224         .n = { .min = 1, .max = 3 },
225         .m = { .min = 104, .max = 138 },
226         .m1 = { .min = 17, .max = 23 },
227         .m2 = { .min = 5, .max = 11 },
228         .p = { .min = 14, .max = 42 },
229         .p1 = { .min = 2, .max = 6 },
230         .p2 = { .dot_limit = 0,
231                 .p2_slow = 7, .p2_fast = 7
232         },
233         .find_pll = intel_g4x_find_best_PLL,
234 };
235
236 static const intel_limit_t intel_limits_pineview_sdvo = {
237         .dot = { .min = 20000, .max = 400000},
238         .vco = { .min = 1700000, .max = 3500000 },
239         /* Pineview's Ncounter is a ring counter */
240         .n = { .min = 3, .max = 6 },
241         .m = { .min = 2, .max = 256 },
242         /* Pineview only has one combined m divider, which we treat as m2. */
243         .m1 = { .min = 0, .max = 0 },
244         .m2 = { .min = 0, .max = 254 },
245         .p = { .min = 5, .max = 80 },
246         .p1 = { .min = 1, .max = 8 },
247         .p2 = { .dot_limit = 200000,
248                 .p2_slow = 10, .p2_fast = 5 },
249         .find_pll = intel_find_best_PLL,
250 };
251
252 static const intel_limit_t intel_limits_pineview_lvds = {
253         .dot = { .min = 20000, .max = 400000 },
254         .vco = { .min = 1700000, .max = 3500000 },
255         .n = { .min = 3, .max = 6 },
256         .m = { .min = 2, .max = 256 },
257         .m1 = { .min = 0, .max = 0 },
258         .m2 = { .min = 0, .max = 254 },
259         .p = { .min = 7, .max = 112 },
260         .p1 = { .min = 1, .max = 8 },
261         .p2 = { .dot_limit = 112000,
262                 .p2_slow = 14, .p2_fast = 14 },
263         .find_pll = intel_find_best_PLL,
264 };
265
266 /* Ironlake / Sandybridge
267  *
268  * We calculate clock using (register_value + 2) for N/M1/M2, so here
269  * the range value for them is (actual_value - 2).
270  */
271 static const intel_limit_t intel_limits_ironlake_dac = {
272         .dot = { .min = 25000, .max = 350000 },
273         .vco = { .min = 1760000, .max = 3510000 },
274         .n = { .min = 1, .max = 5 },
275         .m = { .min = 79, .max = 127 },
276         .m1 = { .min = 12, .max = 22 },
277         .m2 = { .min = 5, .max = 9 },
278         .p = { .min = 5, .max = 80 },
279         .p1 = { .min = 1, .max = 8 },
280         .p2 = { .dot_limit = 225000,
281                 .p2_slow = 10, .p2_fast = 5 },
282         .find_pll = intel_g4x_find_best_PLL,
283 };
284
285 static const intel_limit_t intel_limits_ironlake_single_lvds = {
286         .dot = { .min = 25000, .max = 350000 },
287         .vco = { .min = 1760000, .max = 3510000 },
288         .n = { .min = 1, .max = 3 },
289         .m = { .min = 79, .max = 118 },
290         .m1 = { .min = 12, .max = 22 },
291         .m2 = { .min = 5, .max = 9 },
292         .p = { .min = 28, .max = 112 },
293         .p1 = { .min = 2, .max = 8 },
294         .p2 = { .dot_limit = 225000,
295                 .p2_slow = 14, .p2_fast = 14 },
296         .find_pll = intel_g4x_find_best_PLL,
297 };
298
299 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
300         .dot = { .min = 25000, .max = 350000 },
301         .vco = { .min = 1760000, .max = 3510000 },
302         .n = { .min = 1, .max = 3 },
303         .m = { .min = 79, .max = 127 },
304         .m1 = { .min = 12, .max = 22 },
305         .m2 = { .min = 5, .max = 9 },
306         .p = { .min = 14, .max = 56 },
307         .p1 = { .min = 2, .max = 8 },
308         .p2 = { .dot_limit = 225000,
309                 .p2_slow = 7, .p2_fast = 7 },
310         .find_pll = intel_g4x_find_best_PLL,
311 };
312
313 /* LVDS 100mhz refclk limits. */
314 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
315         .dot = { .min = 25000, .max = 350000 },
316         .vco = { .min = 1760000, .max = 3510000 },
317         .n = { .min = 1, .max = 2 },
318         .m = { .min = 79, .max = 126 },
319         .m1 = { .min = 12, .max = 22 },
320         .m2 = { .min = 5, .max = 9 },
321         .p = { .min = 28, .max = 112 },
322         .p1 = { .min = 2, .max = 8 },
323         .p2 = { .dot_limit = 225000,
324                 .p2_slow = 14, .p2_fast = 14 },
325         .find_pll = intel_g4x_find_best_PLL,
326 };
327
328 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
329         .dot = { .min = 25000, .max = 350000 },
330         .vco = { .min = 1760000, .max = 3510000 },
331         .n = { .min = 1, .max = 3 },
332         .m = { .min = 79, .max = 126 },
333         .m1 = { .min = 12, .max = 22 },
334         .m2 = { .min = 5, .max = 9 },
335         .p = { .min = 14, .max = 42 },
336         .p1 = { .min = 2, .max = 6 },
337         .p2 = { .dot_limit = 225000,
338                 .p2_slow = 7, .p2_fast = 7 },
339         .find_pll = intel_g4x_find_best_PLL,
340 };
341
342 static const intel_limit_t intel_limits_vlv_dac = {
343         .dot = { .min = 25000, .max = 270000 },
344         .vco = { .min = 4000000, .max = 6000000 },
345         .n = { .min = 1, .max = 7 },
346         .m = { .min = 22, .max = 450 }, /* guess */
347         .m1 = { .min = 2, .max = 3 },
348         .m2 = { .min = 11, .max = 156 },
349         .p = { .min = 10, .max = 30 },
350         .p1 = { .min = 1, .max = 3 },
351         .p2 = { .dot_limit = 270000,
352                 .p2_slow = 2, .p2_fast = 20 },
353         .find_pll = intel_vlv_find_best_pll,
354 };
355
356 static const intel_limit_t intel_limits_vlv_hdmi = {
357         .dot = { .min = 25000, .max = 270000 },
358         .vco = { .min = 4000000, .max = 6000000 },
359         .n = { .min = 1, .max = 7 },
360         .m = { .min = 60, .max = 300 }, /* guess */
361         .m1 = { .min = 2, .max = 3 },
362         .m2 = { .min = 11, .max = 156 },
363         .p = { .min = 10, .max = 30 },
364         .p1 = { .min = 2, .max = 3 },
365         .p2 = { .dot_limit = 270000,
366                 .p2_slow = 2, .p2_fast = 20 },
367         .find_pll = intel_vlv_find_best_pll,
368 };
369
370 static const intel_limit_t intel_limits_vlv_dp = {
371         .dot = { .min = 25000, .max = 270000 },
372         .vco = { .min = 4000000, .max = 6000000 },
373         .n = { .min = 1, .max = 7 },
374         .m = { .min = 22, .max = 450 },
375         .m1 = { .min = 2, .max = 3 },
376         .m2 = { .min = 11, .max = 156 },
377         .p = { .min = 10, .max = 30 },
378         .p1 = { .min = 1, .max = 3 },
379         .p2 = { .dot_limit = 270000,
380                 .p2_slow = 2, .p2_fast = 20 },
381         .find_pll = intel_vlv_find_best_pll,
382 };
383
384 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
385 {
386         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
387
388         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
389                 DRM_ERROR("DPIO idle wait timed out\n");
390                 return 0;
391         }
392
393         I915_WRITE(DPIO_REG, reg);
394         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
395                    DPIO_BYTE);
396         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
397                 DRM_ERROR("DPIO read wait timed out\n");
398                 return 0;
399         }
400
401         return I915_READ(DPIO_DATA);
402 }
403
404 void intel_dpio_write(struct drm_i915_private *dev_priv, int reg, u32 val)
405 {
406         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
407
408         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
409                 DRM_ERROR("DPIO idle wait timed out\n");
410                 return;
411         }
412
413         I915_WRITE(DPIO_DATA, val);
414         I915_WRITE(DPIO_REG, reg);
415         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
416                    DPIO_BYTE);
417         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
418                 DRM_ERROR("DPIO write wait timed out\n");
419 }
420
421 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
422                                                 int refclk)
423 {
424         struct drm_device *dev = crtc->dev;
425         const intel_limit_t *limit;
426
427         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
428                 if (intel_is_dual_link_lvds(dev)) {
429                         if (refclk == 100000)
430                                 limit = &intel_limits_ironlake_dual_lvds_100m;
431                         else
432                                 limit = &intel_limits_ironlake_dual_lvds;
433                 } else {
434                         if (refclk == 100000)
435                                 limit = &intel_limits_ironlake_single_lvds_100m;
436                         else
437                                 limit = &intel_limits_ironlake_single_lvds;
438                 }
439         } else
440                 limit = &intel_limits_ironlake_dac;
441
442         return limit;
443 }
444
445 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
446 {
447         struct drm_device *dev = crtc->dev;
448         const intel_limit_t *limit;
449
450         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
451                 if (intel_is_dual_link_lvds(dev))
452                         limit = &intel_limits_g4x_dual_channel_lvds;
453                 else
454                         limit = &intel_limits_g4x_single_channel_lvds;
455         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
456                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
457                 limit = &intel_limits_g4x_hdmi;
458         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
459                 limit = &intel_limits_g4x_sdvo;
460         } else /* The option is for other outputs */
461                 limit = &intel_limits_i9xx_sdvo;
462
463         return limit;
464 }
465
466 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
467 {
468         struct drm_device *dev = crtc->dev;
469         const intel_limit_t *limit;
470
471         if (HAS_PCH_SPLIT(dev))
472                 limit = intel_ironlake_limit(crtc, refclk);
473         else if (IS_G4X(dev)) {
474                 limit = intel_g4x_limit(crtc);
475         } else if (IS_PINEVIEW(dev)) {
476                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
477                         limit = &intel_limits_pineview_lvds;
478                 else
479                         limit = &intel_limits_pineview_sdvo;
480         } else if (IS_VALLEYVIEW(dev)) {
481                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
482                         limit = &intel_limits_vlv_dac;
483                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
484                         limit = &intel_limits_vlv_hdmi;
485                 else
486                         limit = &intel_limits_vlv_dp;
487         } else if (!IS_GEN2(dev)) {
488                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
489                         limit = &intel_limits_i9xx_lvds;
490                 else
491                         limit = &intel_limits_i9xx_sdvo;
492         } else {
493                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
494                         limit = &intel_limits_i8xx_lvds;
495                 else
496                         limit = &intel_limits_i8xx_dvo;
497         }
498         return limit;
499 }
500
501 /* m1 is reserved as 0 in Pineview, n is a ring counter */
502 static void pineview_clock(int refclk, intel_clock_t *clock)
503 {
504         clock->m = clock->m2 + 2;
505         clock->p = clock->p1 * clock->p2;
506         clock->vco = refclk * clock->m / clock->n;
507         clock->dot = clock->vco / clock->p;
508 }
509
510 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
511 {
512         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
513 }
514
515 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
516 {
517         if (IS_PINEVIEW(dev)) {
518                 pineview_clock(refclk, clock);
519                 return;
520         }
521         clock->m = i9xx_dpll_compute_m(clock);
522         clock->p = clock->p1 * clock->p2;
523         clock->vco = refclk * clock->m / (clock->n + 2);
524         clock->dot = clock->vco / clock->p;
525 }
526
527 /**
528  * Returns whether any output on the specified pipe is of the specified type
529  */
530 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
531 {
532         struct drm_device *dev = crtc->dev;
533         struct intel_encoder *encoder;
534
535         for_each_encoder_on_crtc(dev, crtc, encoder)
536                 if (encoder->type == type)
537                         return true;
538
539         return false;
540 }
541
542 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
543 /**
544  * Returns whether the given set of divisors are valid for a given refclk with
545  * the given connectors.
546  */
547
548 static bool intel_PLL_is_valid(struct drm_device *dev,
549                                const intel_limit_t *limit,
550                                const intel_clock_t *clock)
551 {
552         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
553                 INTELPllInvalid("p1 out of range\n");
554         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
555                 INTELPllInvalid("p out of range\n");
556         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
557                 INTELPllInvalid("m2 out of range\n");
558         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
559                 INTELPllInvalid("m1 out of range\n");
560         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
561                 INTELPllInvalid("m1 <= m2\n");
562         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
563                 INTELPllInvalid("m out of range\n");
564         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
565                 INTELPllInvalid("n out of range\n");
566         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
567                 INTELPllInvalid("vco out of range\n");
568         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
569          * connector, etc., rather than just a single range.
570          */
571         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
572                 INTELPllInvalid("dot out of range\n");
573
574         return true;
575 }
576
577 static bool
578 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
579                     int target, int refclk, intel_clock_t *match_clock,
580                     intel_clock_t *best_clock)
581
582 {
583         struct drm_device *dev = crtc->dev;
584         intel_clock_t clock;
585         int err = target;
586
587         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
588                 /*
589                  * For LVDS just rely on its current settings for dual-channel.
590                  * We haven't figured out how to reliably set up different
591                  * single/dual channel state, if we even can.
592                  */
593                 if (intel_is_dual_link_lvds(dev))
594                         clock.p2 = limit->p2.p2_fast;
595                 else
596                         clock.p2 = limit->p2.p2_slow;
597         } else {
598                 if (target < limit->p2.dot_limit)
599                         clock.p2 = limit->p2.p2_slow;
600                 else
601                         clock.p2 = limit->p2.p2_fast;
602         }
603
604         memset(best_clock, 0, sizeof(*best_clock));
605
606         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
607              clock.m1++) {
608                 for (clock.m2 = limit->m2.min;
609                      clock.m2 <= limit->m2.max; clock.m2++) {
610                         /* m1 is always 0 in Pineview */
611                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
612                                 break;
613                         for (clock.n = limit->n.min;
614                              clock.n <= limit->n.max; clock.n++) {
615                                 for (clock.p1 = limit->p1.min;
616                                         clock.p1 <= limit->p1.max; clock.p1++) {
617                                         int this_err;
618
619                                         intel_clock(dev, refclk, &clock);
620                                         if (!intel_PLL_is_valid(dev, limit,
621                                                                 &clock))
622                                                 continue;
623                                         if (match_clock &&
624                                             clock.p != match_clock->p)
625                                                 continue;
626
627                                         this_err = abs(clock.dot - target);
628                                         if (this_err < err) {
629                                                 *best_clock = clock;
630                                                 err = this_err;
631                                         }
632                                 }
633                         }
634                 }
635         }
636
637         return (err != target);
638 }
639
640 static bool
641 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
642                         int target, int refclk, intel_clock_t *match_clock,
643                         intel_clock_t *best_clock)
644 {
645         struct drm_device *dev = crtc->dev;
646         intel_clock_t clock;
647         int max_n;
648         bool found;
649         /* approximately equals target * 0.00585 */
650         int err_most = (target >> 8) + (target >> 9);
651         found = false;
652
653         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
654                 int lvds_reg;
655
656                 if (HAS_PCH_SPLIT(dev))
657                         lvds_reg = PCH_LVDS;
658                 else
659                         lvds_reg = LVDS;
660                 if (intel_is_dual_link_lvds(dev))
661                         clock.p2 = limit->p2.p2_fast;
662                 else
663                         clock.p2 = limit->p2.p2_slow;
664         } else {
665                 if (target < limit->p2.dot_limit)
666                         clock.p2 = limit->p2.p2_slow;
667                 else
668                         clock.p2 = limit->p2.p2_fast;
669         }
670
671         memset(best_clock, 0, sizeof(*best_clock));
672         max_n = limit->n.max;
673         /* based on hardware requirement, prefer smaller n to precision */
674         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
675                 /* based on hardware requirement, prefere larger m1,m2 */
676                 for (clock.m1 = limit->m1.max;
677                      clock.m1 >= limit->m1.min; clock.m1--) {
678                         for (clock.m2 = limit->m2.max;
679                              clock.m2 >= limit->m2.min; clock.m2--) {
680                                 for (clock.p1 = limit->p1.max;
681                                      clock.p1 >= limit->p1.min; clock.p1--) {
682                                         int this_err;
683
684                                         intel_clock(dev, refclk, &clock);
685                                         if (!intel_PLL_is_valid(dev, limit,
686                                                                 &clock))
687                                                 continue;
688
689                                         this_err = abs(clock.dot - target);
690                                         if (this_err < err_most) {
691                                                 *best_clock = clock;
692                                                 err_most = this_err;
693                                                 max_n = clock.n;
694                                                 found = true;
695                                         }
696                                 }
697                         }
698                 }
699         }
700         return found;
701 }
702
703 static bool
704 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
705                         int target, int refclk, intel_clock_t *match_clock,
706                         intel_clock_t *best_clock)
707 {
708         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
709         u32 m, n, fastclk;
710         u32 updrate, minupdate, fracbits, p;
711         unsigned long bestppm, ppm, absppm;
712         int dotclk, flag;
713
714         flag = 0;
715         dotclk = target * 1000;
716         bestppm = 1000000;
717         ppm = absppm = 0;
718         fastclk = dotclk / (2*100);
719         updrate = 0;
720         minupdate = 19200;
721         fracbits = 1;
722         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
723         bestm1 = bestm2 = bestp1 = bestp2 = 0;
724
725         /* based on hardware requirement, prefer smaller n to precision */
726         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
727                 updrate = refclk / n;
728                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
729                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
730                                 if (p2 > 10)
731                                         p2 = p2 - 1;
732                                 p = p1 * p2;
733                                 /* based on hardware requirement, prefer bigger m1,m2 values */
734                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
735                                         m2 = (((2*(fastclk * p * n / m1 )) +
736                                                refclk) / (2*refclk));
737                                         m = m1 * m2;
738                                         vco = updrate * m;
739                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
740                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
741                                                 absppm = (ppm > 0) ? ppm : (-ppm);
742                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
743                                                         bestppm = 0;
744                                                         flag = 1;
745                                                 }
746                                                 if (absppm < bestppm - 10) {
747                                                         bestppm = absppm;
748                                                         flag = 1;
749                                                 }
750                                                 if (flag) {
751                                                         bestn = n;
752                                                         bestm1 = m1;
753                                                         bestm2 = m2;
754                                                         bestp1 = p1;
755                                                         bestp2 = p2;
756                                                         flag = 0;
757                                                 }
758                                         }
759                                 }
760                         }
761                 }
762         }
763         best_clock->n = bestn;
764         best_clock->m1 = bestm1;
765         best_clock->m2 = bestm2;
766         best_clock->p1 = bestp1;
767         best_clock->p2 = bestp2;
768
769         return true;
770 }
771
772 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
773                                              enum pipe pipe)
774 {
775         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
776         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
777
778         return intel_crtc->config.cpu_transcoder;
779 }
780
781 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
782 {
783         struct drm_i915_private *dev_priv = dev->dev_private;
784         u32 frame, frame_reg = PIPEFRAME(pipe);
785
786         frame = I915_READ(frame_reg);
787
788         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
789                 DRM_DEBUG_KMS("vblank wait timed out\n");
790 }
791
792 /**
793  * intel_wait_for_vblank - wait for vblank on a given pipe
794  * @dev: drm device
795  * @pipe: pipe to wait for
796  *
797  * Wait for vblank to occur on a given pipe.  Needed for various bits of
798  * mode setting code.
799  */
800 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
801 {
802         struct drm_i915_private *dev_priv = dev->dev_private;
803         int pipestat_reg = PIPESTAT(pipe);
804
805         if (INTEL_INFO(dev)->gen >= 5) {
806                 ironlake_wait_for_vblank(dev, pipe);
807                 return;
808         }
809
810         /* Clear existing vblank status. Note this will clear any other
811          * sticky status fields as well.
812          *
813          * This races with i915_driver_irq_handler() with the result
814          * that either function could miss a vblank event.  Here it is not
815          * fatal, as we will either wait upon the next vblank interrupt or
816          * timeout.  Generally speaking intel_wait_for_vblank() is only
817          * called during modeset at which time the GPU should be idle and
818          * should *not* be performing page flips and thus not waiting on
819          * vblanks...
820          * Currently, the result of us stealing a vblank from the irq
821          * handler is that a single frame will be skipped during swapbuffers.
822          */
823         I915_WRITE(pipestat_reg,
824                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
825
826         /* Wait for vblank interrupt bit to set */
827         if (wait_for(I915_READ(pipestat_reg) &
828                      PIPE_VBLANK_INTERRUPT_STATUS,
829                      50))
830                 DRM_DEBUG_KMS("vblank wait timed out\n");
831 }
832
833 /*
834  * intel_wait_for_pipe_off - wait for pipe to turn off
835  * @dev: drm device
836  * @pipe: pipe to wait for
837  *
838  * After disabling a pipe, we can't wait for vblank in the usual way,
839  * spinning on the vblank interrupt status bit, since we won't actually
840  * see an interrupt when the pipe is disabled.
841  *
842  * On Gen4 and above:
843  *   wait for the pipe register state bit to turn off
844  *
845  * Otherwise:
846  *   wait for the display line value to settle (it usually
847  *   ends up stopping at the start of the next frame).
848  *
849  */
850 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
851 {
852         struct drm_i915_private *dev_priv = dev->dev_private;
853         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
854                                                                       pipe);
855
856         if (INTEL_INFO(dev)->gen >= 4) {
857                 int reg = PIPECONF(cpu_transcoder);
858
859                 /* Wait for the Pipe State to go off */
860                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
861                              100))
862                         WARN(1, "pipe_off wait timed out\n");
863         } else {
864                 u32 last_line, line_mask;
865                 int reg = PIPEDSL(pipe);
866                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
867
868                 if (IS_GEN2(dev))
869                         line_mask = DSL_LINEMASK_GEN2;
870                 else
871                         line_mask = DSL_LINEMASK_GEN3;
872
873                 /* Wait for the display line to settle */
874                 do {
875                         last_line = I915_READ(reg) & line_mask;
876                         mdelay(5);
877                 } while (((I915_READ(reg) & line_mask) != last_line) &&
878                          time_after(timeout, jiffies));
879                 if (time_after(jiffies, timeout))
880                         WARN(1, "pipe_off wait timed out\n");
881         }
882 }
883
884 /*
885  * ibx_digital_port_connected - is the specified port connected?
886  * @dev_priv: i915 private structure
887  * @port: the port to test
888  *
889  * Returns true if @port is connected, false otherwise.
890  */
891 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
892                                 struct intel_digital_port *port)
893 {
894         u32 bit;
895
896         if (HAS_PCH_IBX(dev_priv->dev)) {
897                 switch(port->port) {
898                 case PORT_B:
899                         bit = SDE_PORTB_HOTPLUG;
900                         break;
901                 case PORT_C:
902                         bit = SDE_PORTC_HOTPLUG;
903                         break;
904                 case PORT_D:
905                         bit = SDE_PORTD_HOTPLUG;
906                         break;
907                 default:
908                         return true;
909                 }
910         } else {
911                 switch(port->port) {
912                 case PORT_B:
913                         bit = SDE_PORTB_HOTPLUG_CPT;
914                         break;
915                 case PORT_C:
916                         bit = SDE_PORTC_HOTPLUG_CPT;
917                         break;
918                 case PORT_D:
919                         bit = SDE_PORTD_HOTPLUG_CPT;
920                         break;
921                 default:
922                         return true;
923                 }
924         }
925
926         return I915_READ(SDEISR) & bit;
927 }
928
929 static const char *state_string(bool enabled)
930 {
931         return enabled ? "on" : "off";
932 }
933
934 /* Only for pre-ILK configs */
935 static void assert_pll(struct drm_i915_private *dev_priv,
936                        enum pipe pipe, bool state)
937 {
938         int reg;
939         u32 val;
940         bool cur_state;
941
942         reg = DPLL(pipe);
943         val = I915_READ(reg);
944         cur_state = !!(val & DPLL_VCO_ENABLE);
945         WARN(cur_state != state,
946              "PLL state assertion failure (expected %s, current %s)\n",
947              state_string(state), state_string(cur_state));
948 }
949 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
950 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
951
952 /* For ILK+ */
953 static void assert_pch_pll(struct drm_i915_private *dev_priv,
954                            struct intel_pch_pll *pll,
955                            struct intel_crtc *crtc,
956                            bool state)
957 {
958         u32 val;
959         bool cur_state;
960
961         if (HAS_PCH_LPT(dev_priv->dev)) {
962                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
963                 return;
964         }
965
966         if (WARN (!pll,
967                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
968                 return;
969
970         val = I915_READ(pll->pll_reg);
971         cur_state = !!(val & DPLL_VCO_ENABLE);
972         WARN(cur_state != state,
973              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
974              pll->pll_reg, state_string(state), state_string(cur_state), val);
975
976         /* Make sure the selected PLL is correctly attached to the transcoder */
977         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
978                 u32 pch_dpll;
979
980                 pch_dpll = I915_READ(PCH_DPLL_SEL);
981                 cur_state = pll->pll_reg == _PCH_DPLL_B;
982                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
983                           "PLL[%d] not attached to this transcoder %c: %08x\n",
984                           cur_state, pipe_name(crtc->pipe), pch_dpll)) {
985                         cur_state = !!(val >> (4*crtc->pipe + 3));
986                         WARN(cur_state != state,
987                              "PLL[%d] not %s on this transcoder %c: %08x\n",
988                              pll->pll_reg == _PCH_DPLL_B,
989                              state_string(state),
990                              pipe_name(crtc->pipe),
991                              val);
992                 }
993         }
994 }
995 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
996 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
997
998 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
999                           enum pipe pipe, bool state)
1000 {
1001         int reg;
1002         u32 val;
1003         bool cur_state;
1004         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1005                                                                       pipe);
1006
1007         if (HAS_DDI(dev_priv->dev)) {
1008                 /* DDI does not have a specific FDI_TX register */
1009                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1010                 val = I915_READ(reg);
1011                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1012         } else {
1013                 reg = FDI_TX_CTL(pipe);
1014                 val = I915_READ(reg);
1015                 cur_state = !!(val & FDI_TX_ENABLE);
1016         }
1017         WARN(cur_state != state,
1018              "FDI TX state assertion failure (expected %s, current %s)\n",
1019              state_string(state), state_string(cur_state));
1020 }
1021 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1022 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1023
1024 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1025                           enum pipe pipe, bool state)
1026 {
1027         int reg;
1028         u32 val;
1029         bool cur_state;
1030
1031         reg = FDI_RX_CTL(pipe);
1032         val = I915_READ(reg);
1033         cur_state = !!(val & FDI_RX_ENABLE);
1034         WARN(cur_state != state,
1035              "FDI RX state assertion failure (expected %s, current %s)\n",
1036              state_string(state), state_string(cur_state));
1037 }
1038 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1039 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1040
1041 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1042                                       enum pipe pipe)
1043 {
1044         int reg;
1045         u32 val;
1046
1047         /* ILK FDI PLL is always enabled */
1048         if (dev_priv->info->gen == 5)
1049                 return;
1050
1051         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1052         if (HAS_DDI(dev_priv->dev))
1053                 return;
1054
1055         reg = FDI_TX_CTL(pipe);
1056         val = I915_READ(reg);
1057         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1058 }
1059
1060 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1061                                       enum pipe pipe)
1062 {
1063         int reg;
1064         u32 val;
1065
1066         reg = FDI_RX_CTL(pipe);
1067         val = I915_READ(reg);
1068         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1069 }
1070
1071 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1072                                   enum pipe pipe)
1073 {
1074         int pp_reg, lvds_reg;
1075         u32 val;
1076         enum pipe panel_pipe = PIPE_A;
1077         bool locked = true;
1078
1079         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1080                 pp_reg = PCH_PP_CONTROL;
1081                 lvds_reg = PCH_LVDS;
1082         } else {
1083                 pp_reg = PP_CONTROL;
1084                 lvds_reg = LVDS;
1085         }
1086
1087         val = I915_READ(pp_reg);
1088         if (!(val & PANEL_POWER_ON) ||
1089             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1090                 locked = false;
1091
1092         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1093                 panel_pipe = PIPE_B;
1094
1095         WARN(panel_pipe == pipe && locked,
1096              "panel assertion failure, pipe %c regs locked\n",
1097              pipe_name(pipe));
1098 }
1099
1100 void assert_pipe(struct drm_i915_private *dev_priv,
1101                  enum pipe pipe, bool state)
1102 {
1103         int reg;
1104         u32 val;
1105         bool cur_state;
1106         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1107                                                                       pipe);
1108
1109         /* if we need the pipe A quirk it must be always on */
1110         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1111                 state = true;
1112
1113         if (!intel_using_power_well(dev_priv->dev) &&
1114             cpu_transcoder != TRANSCODER_EDP) {
1115                 cur_state = false;
1116         } else {
1117                 reg = PIPECONF(cpu_transcoder);
1118                 val = I915_READ(reg);
1119                 cur_state = !!(val & PIPECONF_ENABLE);
1120         }
1121
1122         WARN(cur_state != state,
1123              "pipe %c assertion failure (expected %s, current %s)\n",
1124              pipe_name(pipe), state_string(state), state_string(cur_state));
1125 }
1126
1127 static void assert_plane(struct drm_i915_private *dev_priv,
1128                          enum plane plane, bool state)
1129 {
1130         int reg;
1131         u32 val;
1132         bool cur_state;
1133
1134         reg = DSPCNTR(plane);
1135         val = I915_READ(reg);
1136         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1137         WARN(cur_state != state,
1138              "plane %c assertion failure (expected %s, current %s)\n",
1139              plane_name(plane), state_string(state), state_string(cur_state));
1140 }
1141
1142 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1143 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1144
1145 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1146                                    enum pipe pipe)
1147 {
1148         int reg, i;
1149         u32 val;
1150         int cur_pipe;
1151
1152         /* Planes are fixed to pipes on ILK+ */
1153         if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
1154                 reg = DSPCNTR(pipe);
1155                 val = I915_READ(reg);
1156                 WARN((val & DISPLAY_PLANE_ENABLE),
1157                      "plane %c assertion failure, should be disabled but not\n",
1158                      plane_name(pipe));
1159                 return;
1160         }
1161
1162         /* Need to check both planes against the pipe */
1163         for (i = 0; i < 2; i++) {
1164                 reg = DSPCNTR(i);
1165                 val = I915_READ(reg);
1166                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1167                         DISPPLANE_SEL_PIPE_SHIFT;
1168                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1169                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1170                      plane_name(i), pipe_name(pipe));
1171         }
1172 }
1173
1174 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1175                                     enum pipe pipe)
1176 {
1177         int reg, i;
1178         u32 val;
1179
1180         if (!IS_VALLEYVIEW(dev_priv->dev))
1181                 return;
1182
1183         /* Need to check both planes against the pipe */
1184         for (i = 0; i < dev_priv->num_plane; i++) {
1185                 reg = SPCNTR(pipe, i);
1186                 val = I915_READ(reg);
1187                 WARN((val & SP_ENABLE),
1188                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1189                      sprite_name(pipe, i), pipe_name(pipe));
1190         }
1191 }
1192
1193 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1194 {
1195         u32 val;
1196         bool enabled;
1197
1198         if (HAS_PCH_LPT(dev_priv->dev)) {
1199                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1200                 return;
1201         }
1202
1203         val = I915_READ(PCH_DREF_CONTROL);
1204         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1205                             DREF_SUPERSPREAD_SOURCE_MASK));
1206         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1207 }
1208
1209 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1210                                        enum pipe pipe)
1211 {
1212         int reg;
1213         u32 val;
1214         bool enabled;
1215
1216         reg = TRANSCONF(pipe);
1217         val = I915_READ(reg);
1218         enabled = !!(val & TRANS_ENABLE);
1219         WARN(enabled,
1220              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1221              pipe_name(pipe));
1222 }
1223
1224 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1225                             enum pipe pipe, u32 port_sel, u32 val)
1226 {
1227         if ((val & DP_PORT_EN) == 0)
1228                 return false;
1229
1230         if (HAS_PCH_CPT(dev_priv->dev)) {
1231                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1232                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1233                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1234                         return false;
1235         } else {
1236                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1237                         return false;
1238         }
1239         return true;
1240 }
1241
1242 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1243                               enum pipe pipe, u32 val)
1244 {
1245         if ((val & SDVO_ENABLE) == 0)
1246                 return false;
1247
1248         if (HAS_PCH_CPT(dev_priv->dev)) {
1249                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1250                         return false;
1251         } else {
1252                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1253                         return false;
1254         }
1255         return true;
1256 }
1257
1258 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1259                               enum pipe pipe, u32 val)
1260 {
1261         if ((val & LVDS_PORT_EN) == 0)
1262                 return false;
1263
1264         if (HAS_PCH_CPT(dev_priv->dev)) {
1265                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1266                         return false;
1267         } else {
1268                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1269                         return false;
1270         }
1271         return true;
1272 }
1273
1274 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1275                               enum pipe pipe, u32 val)
1276 {
1277         if ((val & ADPA_DAC_ENABLE) == 0)
1278                 return false;
1279         if (HAS_PCH_CPT(dev_priv->dev)) {
1280                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1281                         return false;
1282         } else {
1283                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1284                         return false;
1285         }
1286         return true;
1287 }
1288
1289 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1290                                    enum pipe pipe, int reg, u32 port_sel)
1291 {
1292         u32 val = I915_READ(reg);
1293         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1294              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1295              reg, pipe_name(pipe));
1296
1297         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1298              && (val & DP_PIPEB_SELECT),
1299              "IBX PCH dp port still using transcoder B\n");
1300 }
1301
1302 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1303                                      enum pipe pipe, int reg)
1304 {
1305         u32 val = I915_READ(reg);
1306         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1307              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1308              reg, pipe_name(pipe));
1309
1310         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1311              && (val & SDVO_PIPE_B_SELECT),
1312              "IBX PCH hdmi port still using transcoder B\n");
1313 }
1314
1315 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1316                                       enum pipe pipe)
1317 {
1318         int reg;
1319         u32 val;
1320
1321         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1322         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1323         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1324
1325         reg = PCH_ADPA;
1326         val = I915_READ(reg);
1327         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1328              "PCH VGA enabled on transcoder %c, should be disabled\n",
1329              pipe_name(pipe));
1330
1331         reg = PCH_LVDS;
1332         val = I915_READ(reg);
1333         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1334              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1335              pipe_name(pipe));
1336
1337         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1338         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1339         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1340 }
1341
1342 /**
1343  * intel_enable_pll - enable a PLL
1344  * @dev_priv: i915 private structure
1345  * @pipe: pipe PLL to enable
1346  *
1347  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1348  * make sure the PLL reg is writable first though, since the panel write
1349  * protect mechanism may be enabled.
1350  *
1351  * Note!  This is for pre-ILK only.
1352  *
1353  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1354  */
1355 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1356 {
1357         int reg;
1358         u32 val;
1359
1360         assert_pipe_disabled(dev_priv, pipe);
1361
1362         /* No really, not for ILK+ */
1363         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1364
1365         /* PLL is protected by panel, make sure we can write it */
1366         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1367                 assert_panel_unlocked(dev_priv, pipe);
1368
1369         reg = DPLL(pipe);
1370         val = I915_READ(reg);
1371         val |= DPLL_VCO_ENABLE;
1372
1373         /* We do this three times for luck */
1374         I915_WRITE(reg, val);
1375         POSTING_READ(reg);
1376         udelay(150); /* wait for warmup */
1377         I915_WRITE(reg, val);
1378         POSTING_READ(reg);
1379         udelay(150); /* wait for warmup */
1380         I915_WRITE(reg, val);
1381         POSTING_READ(reg);
1382         udelay(150); /* wait for warmup */
1383 }
1384
1385 /**
1386  * intel_disable_pll - disable a PLL
1387  * @dev_priv: i915 private structure
1388  * @pipe: pipe PLL to disable
1389  *
1390  * Disable the PLL for @pipe, making sure the pipe is off first.
1391  *
1392  * Note!  This is for pre-ILK only.
1393  */
1394 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1395 {
1396         int reg;
1397         u32 val;
1398
1399         /* Don't disable pipe A or pipe A PLLs if needed */
1400         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1401                 return;
1402
1403         /* Make sure the pipe isn't still relying on us */
1404         assert_pipe_disabled(dev_priv, pipe);
1405
1406         reg = DPLL(pipe);
1407         val = I915_READ(reg);
1408         val &= ~DPLL_VCO_ENABLE;
1409         I915_WRITE(reg, val);
1410         POSTING_READ(reg);
1411 }
1412
1413 /* SBI access */
1414 static void
1415 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1416                 enum intel_sbi_destination destination)
1417 {
1418         u32 tmp;
1419
1420         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1421
1422         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1423                                 100)) {
1424                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1425                 return;
1426         }
1427
1428         I915_WRITE(SBI_ADDR, (reg << 16));
1429         I915_WRITE(SBI_DATA, value);
1430
1431         if (destination == SBI_ICLK)
1432                 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1433         else
1434                 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1435         I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1436
1437         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1438                                 100)) {
1439                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1440                 return;
1441         }
1442 }
1443
1444 static u32
1445 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1446                enum intel_sbi_destination destination)
1447 {
1448         u32 value = 0;
1449         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1450
1451         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1452                                 100)) {
1453                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1454                 return 0;
1455         }
1456
1457         I915_WRITE(SBI_ADDR, (reg << 16));
1458
1459         if (destination == SBI_ICLK)
1460                 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1461         else
1462                 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1463         I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1464
1465         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1466                                 100)) {
1467                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1468                 return 0;
1469         }
1470
1471         return I915_READ(SBI_DATA);
1472 }
1473
1474 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1475 {
1476         u32 port_mask;
1477
1478         if (!port)
1479                 port_mask = DPLL_PORTB_READY_MASK;
1480         else
1481                 port_mask = DPLL_PORTC_READY_MASK;
1482
1483         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1484                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1485                      'B' + port, I915_READ(DPLL(0)));
1486 }
1487
1488 /**
1489  * ironlake_enable_pch_pll - enable PCH PLL
1490  * @dev_priv: i915 private structure
1491  * @pipe: pipe PLL to enable
1492  *
1493  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1494  * drives the transcoder clock.
1495  */
1496 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1497 {
1498         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1499         struct intel_pch_pll *pll;
1500         int reg;
1501         u32 val;
1502
1503         /* PCH PLLs only available on ILK, SNB and IVB */
1504         BUG_ON(dev_priv->info->gen < 5);
1505         pll = intel_crtc->pch_pll;
1506         if (pll == NULL)
1507                 return;
1508
1509         if (WARN_ON(pll->refcount == 0))
1510                 return;
1511
1512         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1513                       pll->pll_reg, pll->active, pll->on,
1514                       intel_crtc->base.base.id);
1515
1516         /* PCH refclock must be enabled first */
1517         assert_pch_refclk_enabled(dev_priv);
1518
1519         if (pll->active++ && pll->on) {
1520                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1521                 return;
1522         }
1523
1524         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1525
1526         reg = pll->pll_reg;
1527         val = I915_READ(reg);
1528         val |= DPLL_VCO_ENABLE;
1529         I915_WRITE(reg, val);
1530         POSTING_READ(reg);
1531         udelay(200);
1532
1533         pll->on = true;
1534 }
1535
1536 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1537 {
1538         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1539         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1540         int reg;
1541         u32 val;
1542
1543         /* PCH only available on ILK+ */
1544         BUG_ON(dev_priv->info->gen < 5);
1545         if (pll == NULL)
1546                return;
1547
1548         if (WARN_ON(pll->refcount == 0))
1549                 return;
1550
1551         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1552                       pll->pll_reg, pll->active, pll->on,
1553                       intel_crtc->base.base.id);
1554
1555         if (WARN_ON(pll->active == 0)) {
1556                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1557                 return;
1558         }
1559
1560         if (--pll->active) {
1561                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1562                 return;
1563         }
1564
1565         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1566
1567         /* Make sure transcoder isn't still depending on us */
1568         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1569
1570         reg = pll->pll_reg;
1571         val = I915_READ(reg);
1572         val &= ~DPLL_VCO_ENABLE;
1573         I915_WRITE(reg, val);
1574         POSTING_READ(reg);
1575         udelay(200);
1576
1577         pll->on = false;
1578 }
1579
1580 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1581                                            enum pipe pipe)
1582 {
1583         struct drm_device *dev = dev_priv->dev;
1584         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1585         uint32_t reg, val, pipeconf_val;
1586
1587         /* PCH only available on ILK+ */
1588         BUG_ON(dev_priv->info->gen < 5);
1589
1590         /* Make sure PCH DPLL is enabled */
1591         assert_pch_pll_enabled(dev_priv,
1592                                to_intel_crtc(crtc)->pch_pll,
1593                                to_intel_crtc(crtc));
1594
1595         /* FDI must be feeding us bits for PCH ports */
1596         assert_fdi_tx_enabled(dev_priv, pipe);
1597         assert_fdi_rx_enabled(dev_priv, pipe);
1598
1599         if (HAS_PCH_CPT(dev)) {
1600                 /* Workaround: Set the timing override bit before enabling the
1601                  * pch transcoder. */
1602                 reg = TRANS_CHICKEN2(pipe);
1603                 val = I915_READ(reg);
1604                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1605                 I915_WRITE(reg, val);
1606         }
1607
1608         reg = TRANSCONF(pipe);
1609         val = I915_READ(reg);
1610         pipeconf_val = I915_READ(PIPECONF(pipe));
1611
1612         if (HAS_PCH_IBX(dev_priv->dev)) {
1613                 /*
1614                  * make the BPC in transcoder be consistent with
1615                  * that in pipeconf reg.
1616                  */
1617                 val &= ~PIPECONF_BPC_MASK;
1618                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1619         }
1620
1621         val &= ~TRANS_INTERLACE_MASK;
1622         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1623                 if (HAS_PCH_IBX(dev_priv->dev) &&
1624                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1625                         val |= TRANS_LEGACY_INTERLACED_ILK;
1626                 else
1627                         val |= TRANS_INTERLACED;
1628         else
1629                 val |= TRANS_PROGRESSIVE;
1630
1631         I915_WRITE(reg, val | TRANS_ENABLE);
1632         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1633                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1634 }
1635
1636 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1637                                       enum transcoder cpu_transcoder)
1638 {
1639         u32 val, pipeconf_val;
1640
1641         /* PCH only available on ILK+ */
1642         BUG_ON(dev_priv->info->gen < 5);
1643
1644         /* FDI must be feeding us bits for PCH ports */
1645         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1646         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1647
1648         /* Workaround: set timing override bit. */
1649         val = I915_READ(_TRANSA_CHICKEN2);
1650         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1651         I915_WRITE(_TRANSA_CHICKEN2, val);
1652
1653         val = TRANS_ENABLE;
1654         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1655
1656         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1657             PIPECONF_INTERLACED_ILK)
1658                 val |= TRANS_INTERLACED;
1659         else
1660                 val |= TRANS_PROGRESSIVE;
1661
1662         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1663         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1664                 DRM_ERROR("Failed to enable PCH transcoder\n");
1665 }
1666
1667 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1668                                             enum pipe pipe)
1669 {
1670         struct drm_device *dev = dev_priv->dev;
1671         uint32_t reg, val;
1672
1673         /* FDI relies on the transcoder */
1674         assert_fdi_tx_disabled(dev_priv, pipe);
1675         assert_fdi_rx_disabled(dev_priv, pipe);
1676
1677         /* Ports must be off as well */
1678         assert_pch_ports_disabled(dev_priv, pipe);
1679
1680         reg = TRANSCONF(pipe);
1681         val = I915_READ(reg);
1682         val &= ~TRANS_ENABLE;
1683         I915_WRITE(reg, val);
1684         /* wait for PCH transcoder off, transcoder state */
1685         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1686                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1687
1688         if (!HAS_PCH_IBX(dev)) {
1689                 /* Workaround: Clear the timing override chicken bit again. */
1690                 reg = TRANS_CHICKEN2(pipe);
1691                 val = I915_READ(reg);
1692                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1693                 I915_WRITE(reg, val);
1694         }
1695 }
1696
1697 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1698 {
1699         u32 val;
1700
1701         val = I915_READ(_TRANSACONF);
1702         val &= ~TRANS_ENABLE;
1703         I915_WRITE(_TRANSACONF, val);
1704         /* wait for PCH transcoder off, transcoder state */
1705         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1706                 DRM_ERROR("Failed to disable PCH transcoder\n");
1707
1708         /* Workaround: clear timing override bit. */
1709         val = I915_READ(_TRANSA_CHICKEN2);
1710         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1711         I915_WRITE(_TRANSA_CHICKEN2, val);
1712 }
1713
1714 /**
1715  * intel_enable_pipe - enable a pipe, asserting requirements
1716  * @dev_priv: i915 private structure
1717  * @pipe: pipe to enable
1718  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1719  *
1720  * Enable @pipe, making sure that various hardware specific requirements
1721  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1722  *
1723  * @pipe should be %PIPE_A or %PIPE_B.
1724  *
1725  * Will wait until the pipe is actually running (i.e. first vblank) before
1726  * returning.
1727  */
1728 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1729                               bool pch_port)
1730 {
1731         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1732                                                                       pipe);
1733         enum pipe pch_transcoder;
1734         int reg;
1735         u32 val;
1736
1737         assert_planes_disabled(dev_priv, pipe);
1738         assert_sprites_disabled(dev_priv, pipe);
1739
1740         if (HAS_PCH_LPT(dev_priv->dev))
1741                 pch_transcoder = TRANSCODER_A;
1742         else
1743                 pch_transcoder = pipe;
1744
1745         /*
1746          * A pipe without a PLL won't actually be able to drive bits from
1747          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1748          * need the check.
1749          */
1750         if (!HAS_PCH_SPLIT(dev_priv->dev))
1751                 assert_pll_enabled(dev_priv, pipe);
1752         else {
1753                 if (pch_port) {
1754                         /* if driving the PCH, we need FDI enabled */
1755                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1756                         assert_fdi_tx_pll_enabled(dev_priv,
1757                                                   (enum pipe) cpu_transcoder);
1758                 }
1759                 /* FIXME: assert CPU port conditions for SNB+ */
1760         }
1761
1762         reg = PIPECONF(cpu_transcoder);
1763         val = I915_READ(reg);
1764         if (val & PIPECONF_ENABLE)
1765                 return;
1766
1767         I915_WRITE(reg, val | PIPECONF_ENABLE);
1768         intel_wait_for_vblank(dev_priv->dev, pipe);
1769 }
1770
1771 /**
1772  * intel_disable_pipe - disable a pipe, asserting requirements
1773  * @dev_priv: i915 private structure
1774  * @pipe: pipe to disable
1775  *
1776  * Disable @pipe, making sure that various hardware specific requirements
1777  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1778  *
1779  * @pipe should be %PIPE_A or %PIPE_B.
1780  *
1781  * Will wait until the pipe has shut down before returning.
1782  */
1783 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1784                                enum pipe pipe)
1785 {
1786         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1787                                                                       pipe);
1788         int reg;
1789         u32 val;
1790
1791         /*
1792          * Make sure planes won't keep trying to pump pixels to us,
1793          * or we might hang the display.
1794          */
1795         assert_planes_disabled(dev_priv, pipe);
1796         assert_sprites_disabled(dev_priv, pipe);
1797
1798         /* Don't disable pipe A or pipe A PLLs if needed */
1799         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1800                 return;
1801
1802         reg = PIPECONF(cpu_transcoder);
1803         val = I915_READ(reg);
1804         if ((val & PIPECONF_ENABLE) == 0)
1805                 return;
1806
1807         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1808         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1809 }
1810
1811 /*
1812  * Plane regs are double buffered, going from enabled->disabled needs a
1813  * trigger in order to latch.  The display address reg provides this.
1814  */
1815 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1816                                       enum plane plane)
1817 {
1818         if (dev_priv->info->gen >= 4)
1819                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1820         else
1821                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1822 }
1823
1824 /**
1825  * intel_enable_plane - enable a display plane on a given pipe
1826  * @dev_priv: i915 private structure
1827  * @plane: plane to enable
1828  * @pipe: pipe being fed
1829  *
1830  * Enable @plane on @pipe, making sure that @pipe is running first.
1831  */
1832 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1833                                enum plane plane, enum pipe pipe)
1834 {
1835         int reg;
1836         u32 val;
1837
1838         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1839         assert_pipe_enabled(dev_priv, pipe);
1840
1841         reg = DSPCNTR(plane);
1842         val = I915_READ(reg);
1843         if (val & DISPLAY_PLANE_ENABLE)
1844                 return;
1845
1846         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1847         intel_flush_display_plane(dev_priv, plane);
1848         intel_wait_for_vblank(dev_priv->dev, pipe);
1849 }
1850
1851 /**
1852  * intel_disable_plane - disable a display plane
1853  * @dev_priv: i915 private structure
1854  * @plane: plane to disable
1855  * @pipe: pipe consuming the data
1856  *
1857  * Disable @plane; should be an independent operation.
1858  */
1859 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1860                                 enum plane plane, enum pipe pipe)
1861 {
1862         int reg;
1863         u32 val;
1864
1865         reg = DSPCNTR(plane);
1866         val = I915_READ(reg);
1867         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1868                 return;
1869
1870         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1871         intel_flush_display_plane(dev_priv, plane);
1872         intel_wait_for_vblank(dev_priv->dev, pipe);
1873 }
1874
1875 static bool need_vtd_wa(struct drm_device *dev)
1876 {
1877 #ifdef CONFIG_INTEL_IOMMU
1878         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1879                 return true;
1880 #endif
1881         return false;
1882 }
1883
1884 int
1885 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1886                            struct drm_i915_gem_object *obj,
1887                            struct intel_ring_buffer *pipelined)
1888 {
1889         struct drm_i915_private *dev_priv = dev->dev_private;
1890         u32 alignment;
1891         int ret;
1892
1893         switch (obj->tiling_mode) {
1894         case I915_TILING_NONE:
1895                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1896                         alignment = 128 * 1024;
1897                 else if (INTEL_INFO(dev)->gen >= 4)
1898                         alignment = 4 * 1024;
1899                 else
1900                         alignment = 64 * 1024;
1901                 break;
1902         case I915_TILING_X:
1903                 /* pin() will align the object as required by fence */
1904                 alignment = 0;
1905                 break;
1906         case I915_TILING_Y:
1907                 /* Despite that we check this in framebuffer_init userspace can
1908                  * screw us over and change the tiling after the fact. Only
1909                  * pinned buffers can't change their tiling. */
1910                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1911                 return -EINVAL;
1912         default:
1913                 BUG();
1914         }
1915
1916         /* Note that the w/a also requires 64 PTE of padding following the
1917          * bo. We currently fill all unused PTE with the shadow page and so
1918          * we should always have valid PTE following the scanout preventing
1919          * the VT-d warning.
1920          */
1921         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1922                 alignment = 256 * 1024;
1923
1924         dev_priv->mm.interruptible = false;
1925         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1926         if (ret)
1927                 goto err_interruptible;
1928
1929         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1930          * fence, whereas 965+ only requires a fence if using
1931          * framebuffer compression.  For simplicity, we always install
1932          * a fence as the cost is not that onerous.
1933          */
1934         ret = i915_gem_object_get_fence(obj);
1935         if (ret)
1936                 goto err_unpin;
1937
1938         i915_gem_object_pin_fence(obj);
1939
1940         dev_priv->mm.interruptible = true;
1941         return 0;
1942
1943 err_unpin:
1944         i915_gem_object_unpin(obj);
1945 err_interruptible:
1946         dev_priv->mm.interruptible = true;
1947         return ret;
1948 }
1949
1950 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1951 {
1952         i915_gem_object_unpin_fence(obj);
1953         i915_gem_object_unpin(obj);
1954 }
1955
1956 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1957  * is assumed to be a power-of-two. */
1958 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1959                                              unsigned int tiling_mode,
1960                                              unsigned int cpp,
1961                                              unsigned int pitch)
1962 {
1963         if (tiling_mode != I915_TILING_NONE) {
1964                 unsigned int tile_rows, tiles;
1965
1966                 tile_rows = *y / 8;
1967                 *y %= 8;
1968
1969                 tiles = *x / (512/cpp);
1970                 *x %= 512/cpp;
1971
1972                 return tile_rows * pitch * 8 + tiles * 4096;
1973         } else {
1974                 unsigned int offset;
1975
1976                 offset = *y * pitch + *x * cpp;
1977                 *y = 0;
1978                 *x = (offset & 4095) / cpp;
1979                 return offset & -4096;
1980         }
1981 }
1982
1983 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1984                              int x, int y)
1985 {
1986         struct drm_device *dev = crtc->dev;
1987         struct drm_i915_private *dev_priv = dev->dev_private;
1988         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1989         struct intel_framebuffer *intel_fb;
1990         struct drm_i915_gem_object *obj;
1991         int plane = intel_crtc->plane;
1992         unsigned long linear_offset;
1993         u32 dspcntr;
1994         u32 reg;
1995
1996         switch (plane) {
1997         case 0:
1998         case 1:
1999                 break;
2000         default:
2001                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2002                 return -EINVAL;
2003         }
2004
2005         intel_fb = to_intel_framebuffer(fb);
2006         obj = intel_fb->obj;
2007
2008         reg = DSPCNTR(plane);
2009         dspcntr = I915_READ(reg);
2010         /* Mask out pixel format bits in case we change it */
2011         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2012         switch (fb->pixel_format) {
2013         case DRM_FORMAT_C8:
2014                 dspcntr |= DISPPLANE_8BPP;
2015                 break;
2016         case DRM_FORMAT_XRGB1555:
2017         case DRM_FORMAT_ARGB1555:
2018                 dspcntr |= DISPPLANE_BGRX555;
2019                 break;
2020         case DRM_FORMAT_RGB565:
2021                 dspcntr |= DISPPLANE_BGRX565;
2022                 break;
2023         case DRM_FORMAT_XRGB8888:
2024         case DRM_FORMAT_ARGB8888:
2025                 dspcntr |= DISPPLANE_BGRX888;
2026                 break;
2027         case DRM_FORMAT_XBGR8888:
2028         case DRM_FORMAT_ABGR8888:
2029                 dspcntr |= DISPPLANE_RGBX888;
2030                 break;
2031         case DRM_FORMAT_XRGB2101010:
2032         case DRM_FORMAT_ARGB2101010:
2033                 dspcntr |= DISPPLANE_BGRX101010;
2034                 break;
2035         case DRM_FORMAT_XBGR2101010:
2036         case DRM_FORMAT_ABGR2101010:
2037                 dspcntr |= DISPPLANE_RGBX101010;
2038                 break;
2039         default:
2040                 BUG();
2041         }
2042
2043         if (INTEL_INFO(dev)->gen >= 4) {
2044                 if (obj->tiling_mode != I915_TILING_NONE)
2045                         dspcntr |= DISPPLANE_TILED;
2046                 else
2047                         dspcntr &= ~DISPPLANE_TILED;
2048         }
2049
2050         I915_WRITE(reg, dspcntr);
2051
2052         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2053
2054         if (INTEL_INFO(dev)->gen >= 4) {
2055                 intel_crtc->dspaddr_offset =
2056                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2057                                                        fb->bits_per_pixel / 8,
2058                                                        fb->pitches[0]);
2059                 linear_offset -= intel_crtc->dspaddr_offset;
2060         } else {
2061                 intel_crtc->dspaddr_offset = linear_offset;
2062         }
2063
2064         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2065                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2066         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2067         if (INTEL_INFO(dev)->gen >= 4) {
2068                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2069                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2070                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2071                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2072         } else
2073                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2074         POSTING_READ(reg);
2075
2076         return 0;
2077 }
2078
2079 static int ironlake_update_plane(struct drm_crtc *crtc,
2080                                  struct drm_framebuffer *fb, int x, int y)
2081 {
2082         struct drm_device *dev = crtc->dev;
2083         struct drm_i915_private *dev_priv = dev->dev_private;
2084         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2085         struct intel_framebuffer *intel_fb;
2086         struct drm_i915_gem_object *obj;
2087         int plane = intel_crtc->plane;
2088         unsigned long linear_offset;
2089         u32 dspcntr;
2090         u32 reg;
2091
2092         switch (plane) {
2093         case 0:
2094         case 1:
2095         case 2:
2096                 break;
2097         default:
2098                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2099                 return -EINVAL;
2100         }
2101
2102         intel_fb = to_intel_framebuffer(fb);
2103         obj = intel_fb->obj;
2104
2105         reg = DSPCNTR(plane);
2106         dspcntr = I915_READ(reg);
2107         /* Mask out pixel format bits in case we change it */
2108         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2109         switch (fb->pixel_format) {
2110         case DRM_FORMAT_C8:
2111                 dspcntr |= DISPPLANE_8BPP;
2112                 break;
2113         case DRM_FORMAT_RGB565:
2114                 dspcntr |= DISPPLANE_BGRX565;
2115                 break;
2116         case DRM_FORMAT_XRGB8888:
2117         case DRM_FORMAT_ARGB8888:
2118                 dspcntr |= DISPPLANE_BGRX888;
2119                 break;
2120         case DRM_FORMAT_XBGR8888:
2121         case DRM_FORMAT_ABGR8888:
2122                 dspcntr |= DISPPLANE_RGBX888;
2123                 break;
2124         case DRM_FORMAT_XRGB2101010:
2125         case DRM_FORMAT_ARGB2101010:
2126                 dspcntr |= DISPPLANE_BGRX101010;
2127                 break;
2128         case DRM_FORMAT_XBGR2101010:
2129         case DRM_FORMAT_ABGR2101010:
2130                 dspcntr |= DISPPLANE_RGBX101010;
2131                 break;
2132         default:
2133                 BUG();
2134         }
2135
2136         if (obj->tiling_mode != I915_TILING_NONE)
2137                 dspcntr |= DISPPLANE_TILED;
2138         else
2139                 dspcntr &= ~DISPPLANE_TILED;
2140
2141         /* must disable */
2142         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2143
2144         I915_WRITE(reg, dspcntr);
2145
2146         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2147         intel_crtc->dspaddr_offset =
2148                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2149                                                fb->bits_per_pixel / 8,
2150                                                fb->pitches[0]);
2151         linear_offset -= intel_crtc->dspaddr_offset;
2152
2153         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2154                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2155         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2156         I915_MODIFY_DISPBASE(DSPSURF(plane),
2157                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2158         if (IS_HASWELL(dev)) {
2159                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2160         } else {
2161                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2162                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2163         }
2164         POSTING_READ(reg);
2165
2166         return 0;
2167 }
2168
2169 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2170 static int
2171 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2172                            int x, int y, enum mode_set_atomic state)
2173 {
2174         struct drm_device *dev = crtc->dev;
2175         struct drm_i915_private *dev_priv = dev->dev_private;
2176
2177         if (dev_priv->display.disable_fbc)
2178                 dev_priv->display.disable_fbc(dev);
2179         intel_increase_pllclock(crtc);
2180
2181         return dev_priv->display.update_plane(crtc, fb, x, y);
2182 }
2183
2184 void intel_display_handle_reset(struct drm_device *dev)
2185 {
2186         struct drm_i915_private *dev_priv = dev->dev_private;
2187         struct drm_crtc *crtc;
2188
2189         /*
2190          * Flips in the rings have been nuked by the reset,
2191          * so complete all pending flips so that user space
2192          * will get its events and not get stuck.
2193          *
2194          * Also update the base address of all primary
2195          * planes to the the last fb to make sure we're
2196          * showing the correct fb after a reset.
2197          *
2198          * Need to make two loops over the crtcs so that we
2199          * don't try to grab a crtc mutex before the
2200          * pending_flip_queue really got woken up.
2201          */
2202
2203         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2204                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2205                 enum plane plane = intel_crtc->plane;
2206
2207                 intel_prepare_page_flip(dev, plane);
2208                 intel_finish_page_flip_plane(dev, plane);
2209         }
2210
2211         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2212                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2213
2214                 mutex_lock(&crtc->mutex);
2215                 if (intel_crtc->active)
2216                         dev_priv->display.update_plane(crtc, crtc->fb,
2217                                                        crtc->x, crtc->y);
2218                 mutex_unlock(&crtc->mutex);
2219         }
2220 }
2221
2222 static int
2223 intel_finish_fb(struct drm_framebuffer *old_fb)
2224 {
2225         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2226         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2227         bool was_interruptible = dev_priv->mm.interruptible;
2228         int ret;
2229
2230         /* Big Hammer, we also need to ensure that any pending
2231          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2232          * current scanout is retired before unpinning the old
2233          * framebuffer.
2234          *
2235          * This should only fail upon a hung GPU, in which case we
2236          * can safely continue.
2237          */
2238         dev_priv->mm.interruptible = false;
2239         ret = i915_gem_object_finish_gpu(obj);
2240         dev_priv->mm.interruptible = was_interruptible;
2241
2242         return ret;
2243 }
2244
2245 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2246 {
2247         struct drm_device *dev = crtc->dev;
2248         struct drm_i915_master_private *master_priv;
2249         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2250
2251         if (!dev->primary->master)
2252                 return;
2253
2254         master_priv = dev->primary->master->driver_priv;
2255         if (!master_priv->sarea_priv)
2256                 return;
2257
2258         switch (intel_crtc->pipe) {
2259         case 0:
2260                 master_priv->sarea_priv->pipeA_x = x;
2261                 master_priv->sarea_priv->pipeA_y = y;
2262                 break;
2263         case 1:
2264                 master_priv->sarea_priv->pipeB_x = x;
2265                 master_priv->sarea_priv->pipeB_y = y;
2266                 break;
2267         default:
2268                 break;
2269         }
2270 }
2271
2272 static int
2273 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2274                     struct drm_framebuffer *fb)
2275 {
2276         struct drm_device *dev = crtc->dev;
2277         struct drm_i915_private *dev_priv = dev->dev_private;
2278         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2279         struct drm_framebuffer *old_fb;
2280         int ret;
2281
2282         /* no fb bound */
2283         if (!fb) {
2284                 DRM_ERROR("No FB bound\n");
2285                 return 0;
2286         }
2287
2288         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2289                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2290                           plane_name(intel_crtc->plane),
2291                           INTEL_INFO(dev)->num_pipes);
2292                 return -EINVAL;
2293         }
2294
2295         mutex_lock(&dev->struct_mutex);
2296         ret = intel_pin_and_fence_fb_obj(dev,
2297                                          to_intel_framebuffer(fb)->obj,
2298                                          NULL);
2299         if (ret != 0) {
2300                 mutex_unlock(&dev->struct_mutex);
2301                 DRM_ERROR("pin & fence failed\n");
2302                 return ret;
2303         }
2304
2305         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2306         if (ret) {
2307                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2308                 mutex_unlock(&dev->struct_mutex);
2309                 DRM_ERROR("failed to update base address\n");
2310                 return ret;
2311         }
2312
2313         old_fb = crtc->fb;
2314         crtc->fb = fb;
2315         crtc->x = x;
2316         crtc->y = y;
2317
2318         if (old_fb) {
2319                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2320                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2321         }
2322
2323         intel_update_fbc(dev);
2324         mutex_unlock(&dev->struct_mutex);
2325
2326         intel_crtc_update_sarea_pos(crtc, x, y);
2327
2328         return 0;
2329 }
2330
2331 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2332 {
2333         struct drm_device *dev = crtc->dev;
2334         struct drm_i915_private *dev_priv = dev->dev_private;
2335         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2336         int pipe = intel_crtc->pipe;
2337         u32 reg, temp;
2338
2339         /* enable normal train */
2340         reg = FDI_TX_CTL(pipe);
2341         temp = I915_READ(reg);
2342         if (IS_IVYBRIDGE(dev)) {
2343                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2344                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2345         } else {
2346                 temp &= ~FDI_LINK_TRAIN_NONE;
2347                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2348         }
2349         I915_WRITE(reg, temp);
2350
2351         reg = FDI_RX_CTL(pipe);
2352         temp = I915_READ(reg);
2353         if (HAS_PCH_CPT(dev)) {
2354                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2355                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2356         } else {
2357                 temp &= ~FDI_LINK_TRAIN_NONE;
2358                 temp |= FDI_LINK_TRAIN_NONE;
2359         }
2360         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2361
2362         /* wait one idle pattern time */
2363         POSTING_READ(reg);
2364         udelay(1000);
2365
2366         /* IVB wants error correction enabled */
2367         if (IS_IVYBRIDGE(dev))
2368                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2369                            FDI_FE_ERRC_ENABLE);
2370 }
2371
2372 static void ivb_modeset_global_resources(struct drm_device *dev)
2373 {
2374         struct drm_i915_private *dev_priv = dev->dev_private;
2375         struct intel_crtc *pipe_B_crtc =
2376                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2377         struct intel_crtc *pipe_C_crtc =
2378                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2379         uint32_t temp;
2380
2381         /* When everything is off disable fdi C so that we could enable fdi B
2382          * with all lanes. XXX: This misses the case where a pipe is not using
2383          * any pch resources and so doesn't need any fdi lanes. */
2384         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2385                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2386                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2387
2388                 temp = I915_READ(SOUTH_CHICKEN1);
2389                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2390                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2391                 I915_WRITE(SOUTH_CHICKEN1, temp);
2392         }
2393 }
2394
2395 /* The FDI link training functions for ILK/Ibexpeak. */
2396 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2397 {
2398         struct drm_device *dev = crtc->dev;
2399         struct drm_i915_private *dev_priv = dev->dev_private;
2400         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2401         int pipe = intel_crtc->pipe;
2402         int plane = intel_crtc->plane;
2403         u32 reg, temp, tries;
2404
2405         /* FDI needs bits from pipe & plane first */
2406         assert_pipe_enabled(dev_priv, pipe);
2407         assert_plane_enabled(dev_priv, plane);
2408
2409         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2410            for train result */
2411         reg = FDI_RX_IMR(pipe);
2412         temp = I915_READ(reg);
2413         temp &= ~FDI_RX_SYMBOL_LOCK;
2414         temp &= ~FDI_RX_BIT_LOCK;
2415         I915_WRITE(reg, temp);
2416         I915_READ(reg);
2417         udelay(150);
2418
2419         /* enable CPU FDI TX and PCH FDI RX */
2420         reg = FDI_TX_CTL(pipe);
2421         temp = I915_READ(reg);
2422         temp &= ~(7 << 19);
2423         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2424         temp &= ~FDI_LINK_TRAIN_NONE;
2425         temp |= FDI_LINK_TRAIN_PATTERN_1;
2426         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2427
2428         reg = FDI_RX_CTL(pipe);
2429         temp = I915_READ(reg);
2430         temp &= ~FDI_LINK_TRAIN_NONE;
2431         temp |= FDI_LINK_TRAIN_PATTERN_1;
2432         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2433
2434         POSTING_READ(reg);
2435         udelay(150);
2436
2437         /* Ironlake workaround, enable clock pointer after FDI enable*/
2438         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2439         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2440                    FDI_RX_PHASE_SYNC_POINTER_EN);
2441
2442         reg = FDI_RX_IIR(pipe);
2443         for (tries = 0; tries < 5; tries++) {
2444                 temp = I915_READ(reg);
2445                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2446
2447                 if ((temp & FDI_RX_BIT_LOCK)) {
2448                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2449                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2450                         break;
2451                 }
2452         }
2453         if (tries == 5)
2454                 DRM_ERROR("FDI train 1 fail!\n");
2455
2456         /* Train 2 */
2457         reg = FDI_TX_CTL(pipe);
2458         temp = I915_READ(reg);
2459         temp &= ~FDI_LINK_TRAIN_NONE;
2460         temp |= FDI_LINK_TRAIN_PATTERN_2;
2461         I915_WRITE(reg, temp);
2462
2463         reg = FDI_RX_CTL(pipe);
2464         temp = I915_READ(reg);
2465         temp &= ~FDI_LINK_TRAIN_NONE;
2466         temp |= FDI_LINK_TRAIN_PATTERN_2;
2467         I915_WRITE(reg, temp);
2468
2469         POSTING_READ(reg);
2470         udelay(150);
2471
2472         reg = FDI_RX_IIR(pipe);
2473         for (tries = 0; tries < 5; tries++) {
2474                 temp = I915_READ(reg);
2475                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2476
2477                 if (temp & FDI_RX_SYMBOL_LOCK) {
2478                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2479                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2480                         break;
2481                 }
2482         }
2483         if (tries == 5)
2484                 DRM_ERROR("FDI train 2 fail!\n");
2485
2486         DRM_DEBUG_KMS("FDI train done\n");
2487
2488 }
2489
2490 static const int snb_b_fdi_train_param[] = {
2491         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2492         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2493         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2494         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2495 };
2496
2497 /* The FDI link training functions for SNB/Cougarpoint. */
2498 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2499 {
2500         struct drm_device *dev = crtc->dev;
2501         struct drm_i915_private *dev_priv = dev->dev_private;
2502         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2503         int pipe = intel_crtc->pipe;
2504         u32 reg, temp, i, retry;
2505
2506         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2507            for train result */
2508         reg = FDI_RX_IMR(pipe);
2509         temp = I915_READ(reg);
2510         temp &= ~FDI_RX_SYMBOL_LOCK;
2511         temp &= ~FDI_RX_BIT_LOCK;
2512         I915_WRITE(reg, temp);
2513
2514         POSTING_READ(reg);
2515         udelay(150);
2516
2517         /* enable CPU FDI TX and PCH FDI RX */
2518         reg = FDI_TX_CTL(pipe);
2519         temp = I915_READ(reg);
2520         temp &= ~(7 << 19);
2521         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2522         temp &= ~FDI_LINK_TRAIN_NONE;
2523         temp |= FDI_LINK_TRAIN_PATTERN_1;
2524         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2525         /* SNB-B */
2526         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2527         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2528
2529         I915_WRITE(FDI_RX_MISC(pipe),
2530                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2531
2532         reg = FDI_RX_CTL(pipe);
2533         temp = I915_READ(reg);
2534         if (HAS_PCH_CPT(dev)) {
2535                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2536                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2537         } else {
2538                 temp &= ~FDI_LINK_TRAIN_NONE;
2539                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2540         }
2541         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2542
2543         POSTING_READ(reg);
2544         udelay(150);
2545
2546         for (i = 0; i < 4; i++) {
2547                 reg = FDI_TX_CTL(pipe);
2548                 temp = I915_READ(reg);
2549                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2550                 temp |= snb_b_fdi_train_param[i];
2551                 I915_WRITE(reg, temp);
2552
2553                 POSTING_READ(reg);
2554                 udelay(500);
2555
2556                 for (retry = 0; retry < 5; retry++) {
2557                         reg = FDI_RX_IIR(pipe);
2558                         temp = I915_READ(reg);
2559                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2560                         if (temp & FDI_RX_BIT_LOCK) {
2561                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2562                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2563                                 break;
2564                         }
2565                         udelay(50);
2566                 }
2567                 if (retry < 5)
2568                         break;
2569         }
2570         if (i == 4)
2571                 DRM_ERROR("FDI train 1 fail!\n");
2572
2573         /* Train 2 */
2574         reg = FDI_TX_CTL(pipe);
2575         temp = I915_READ(reg);
2576         temp &= ~FDI_LINK_TRAIN_NONE;
2577         temp |= FDI_LINK_TRAIN_PATTERN_2;
2578         if (IS_GEN6(dev)) {
2579                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2580                 /* SNB-B */
2581                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2582         }
2583         I915_WRITE(reg, temp);
2584
2585         reg = FDI_RX_CTL(pipe);
2586         temp = I915_READ(reg);
2587         if (HAS_PCH_CPT(dev)) {
2588                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2589                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2590         } else {
2591                 temp &= ~FDI_LINK_TRAIN_NONE;
2592                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2593         }
2594         I915_WRITE(reg, temp);
2595
2596         POSTING_READ(reg);
2597         udelay(150);
2598
2599         for (i = 0; i < 4; i++) {
2600                 reg = FDI_TX_CTL(pipe);
2601                 temp = I915_READ(reg);
2602                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2603                 temp |= snb_b_fdi_train_param[i];
2604                 I915_WRITE(reg, temp);
2605
2606                 POSTING_READ(reg);
2607                 udelay(500);
2608
2609                 for (retry = 0; retry < 5; retry++) {
2610                         reg = FDI_RX_IIR(pipe);
2611                         temp = I915_READ(reg);
2612                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2613                         if (temp & FDI_RX_SYMBOL_LOCK) {
2614                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2615                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2616                                 break;
2617                         }
2618                         udelay(50);
2619                 }
2620                 if (retry < 5)
2621                         break;
2622         }
2623         if (i == 4)
2624                 DRM_ERROR("FDI train 2 fail!\n");
2625
2626         DRM_DEBUG_KMS("FDI train done.\n");
2627 }
2628
2629 /* Manual link training for Ivy Bridge A0 parts */
2630 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2631 {
2632         struct drm_device *dev = crtc->dev;
2633         struct drm_i915_private *dev_priv = dev->dev_private;
2634         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2635         int pipe = intel_crtc->pipe;
2636         u32 reg, temp, i;
2637
2638         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2639            for train result */
2640         reg = FDI_RX_IMR(pipe);
2641         temp = I915_READ(reg);
2642         temp &= ~FDI_RX_SYMBOL_LOCK;
2643         temp &= ~FDI_RX_BIT_LOCK;
2644         I915_WRITE(reg, temp);
2645
2646         POSTING_READ(reg);
2647         udelay(150);
2648
2649         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2650                       I915_READ(FDI_RX_IIR(pipe)));
2651
2652         /* enable CPU FDI TX and PCH FDI RX */
2653         reg = FDI_TX_CTL(pipe);
2654         temp = I915_READ(reg);
2655         temp &= ~(7 << 19);
2656         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2657         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2658         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2659         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2660         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2661         temp |= FDI_COMPOSITE_SYNC;
2662         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2663
2664         I915_WRITE(FDI_RX_MISC(pipe),
2665                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2666
2667         reg = FDI_RX_CTL(pipe);
2668         temp = I915_READ(reg);
2669         temp &= ~FDI_LINK_TRAIN_AUTO;
2670         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2671         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2672         temp |= FDI_COMPOSITE_SYNC;
2673         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2674
2675         POSTING_READ(reg);
2676         udelay(150);
2677
2678         for (i = 0; i < 4; i++) {
2679                 reg = FDI_TX_CTL(pipe);
2680                 temp = I915_READ(reg);
2681                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2682                 temp |= snb_b_fdi_train_param[i];
2683                 I915_WRITE(reg, temp);
2684
2685                 POSTING_READ(reg);
2686                 udelay(500);
2687
2688                 reg = FDI_RX_IIR(pipe);
2689                 temp = I915_READ(reg);
2690                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2691
2692                 if (temp & FDI_RX_BIT_LOCK ||
2693                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2694                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2695                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2696                         break;
2697                 }
2698         }
2699         if (i == 4)
2700                 DRM_ERROR("FDI train 1 fail!\n");
2701
2702         /* Train 2 */
2703         reg = FDI_TX_CTL(pipe);
2704         temp = I915_READ(reg);
2705         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2706         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2707         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2708         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2709         I915_WRITE(reg, temp);
2710
2711         reg = FDI_RX_CTL(pipe);
2712         temp = I915_READ(reg);
2713         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2714         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2715         I915_WRITE(reg, temp);
2716
2717         POSTING_READ(reg);
2718         udelay(150);
2719
2720         for (i = 0; i < 4; i++) {
2721                 reg = FDI_TX_CTL(pipe);
2722                 temp = I915_READ(reg);
2723                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2724                 temp |= snb_b_fdi_train_param[i];
2725                 I915_WRITE(reg, temp);
2726
2727                 POSTING_READ(reg);
2728                 udelay(500);
2729
2730                 reg = FDI_RX_IIR(pipe);
2731                 temp = I915_READ(reg);
2732                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2733
2734                 if (temp & FDI_RX_SYMBOL_LOCK) {
2735                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2736                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2737                         break;
2738                 }
2739         }
2740         if (i == 4)
2741                 DRM_ERROR("FDI train 2 fail!\n");
2742
2743         DRM_DEBUG_KMS("FDI train done.\n");
2744 }
2745
2746 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2747 {
2748         struct drm_device *dev = intel_crtc->base.dev;
2749         struct drm_i915_private *dev_priv = dev->dev_private;
2750         int pipe = intel_crtc->pipe;
2751         u32 reg, temp;
2752
2753
2754         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2755         reg = FDI_RX_CTL(pipe);
2756         temp = I915_READ(reg);
2757         temp &= ~((0x7 << 19) | (0x7 << 16));
2758         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2759         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2760         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2761
2762         POSTING_READ(reg);
2763         udelay(200);
2764
2765         /* Switch from Rawclk to PCDclk */
2766         temp = I915_READ(reg);
2767         I915_WRITE(reg, temp | FDI_PCDCLK);
2768
2769         POSTING_READ(reg);
2770         udelay(200);
2771
2772         /* Enable CPU FDI TX PLL, always on for Ironlake */
2773         reg = FDI_TX_CTL(pipe);
2774         temp = I915_READ(reg);
2775         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2776                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2777
2778                 POSTING_READ(reg);
2779                 udelay(100);
2780         }
2781 }
2782
2783 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2784 {
2785         struct drm_device *dev = intel_crtc->base.dev;
2786         struct drm_i915_private *dev_priv = dev->dev_private;
2787         int pipe = intel_crtc->pipe;
2788         u32 reg, temp;
2789
2790         /* Switch from PCDclk to Rawclk */
2791         reg = FDI_RX_CTL(pipe);
2792         temp = I915_READ(reg);
2793         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2794
2795         /* Disable CPU FDI TX PLL */
2796         reg = FDI_TX_CTL(pipe);
2797         temp = I915_READ(reg);
2798         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2799
2800         POSTING_READ(reg);
2801         udelay(100);
2802
2803         reg = FDI_RX_CTL(pipe);
2804         temp = I915_READ(reg);
2805         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2806
2807         /* Wait for the clocks to turn off. */
2808         POSTING_READ(reg);
2809         udelay(100);
2810 }
2811
2812 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2813 {
2814         struct drm_device *dev = crtc->dev;
2815         struct drm_i915_private *dev_priv = dev->dev_private;
2816         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2817         int pipe = intel_crtc->pipe;
2818         u32 reg, temp;
2819
2820         /* disable CPU FDI tx and PCH FDI rx */
2821         reg = FDI_TX_CTL(pipe);
2822         temp = I915_READ(reg);
2823         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2824         POSTING_READ(reg);
2825
2826         reg = FDI_RX_CTL(pipe);
2827         temp = I915_READ(reg);
2828         temp &= ~(0x7 << 16);
2829         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2830         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2831
2832         POSTING_READ(reg);
2833         udelay(100);
2834
2835         /* Ironlake workaround, disable clock pointer after downing FDI */
2836         if (HAS_PCH_IBX(dev)) {
2837                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2838         }
2839
2840         /* still set train pattern 1 */
2841         reg = FDI_TX_CTL(pipe);
2842         temp = I915_READ(reg);
2843         temp &= ~FDI_LINK_TRAIN_NONE;
2844         temp |= FDI_LINK_TRAIN_PATTERN_1;
2845         I915_WRITE(reg, temp);
2846
2847         reg = FDI_RX_CTL(pipe);
2848         temp = I915_READ(reg);
2849         if (HAS_PCH_CPT(dev)) {
2850                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2851                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2852         } else {
2853                 temp &= ~FDI_LINK_TRAIN_NONE;
2854                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2855         }
2856         /* BPC in FDI rx is consistent with that in PIPECONF */
2857         temp &= ~(0x07 << 16);
2858         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2859         I915_WRITE(reg, temp);
2860
2861         POSTING_READ(reg);
2862         udelay(100);
2863 }
2864
2865 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2866 {
2867         struct drm_device *dev = crtc->dev;
2868         struct drm_i915_private *dev_priv = dev->dev_private;
2869         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2870         unsigned long flags;
2871         bool pending;
2872
2873         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2874             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2875                 return false;
2876
2877         spin_lock_irqsave(&dev->event_lock, flags);
2878         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2879         spin_unlock_irqrestore(&dev->event_lock, flags);
2880
2881         return pending;
2882 }
2883
2884 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2885 {
2886         struct drm_device *dev = crtc->dev;
2887         struct drm_i915_private *dev_priv = dev->dev_private;
2888
2889         if (crtc->fb == NULL)
2890                 return;
2891
2892         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2893
2894         wait_event(dev_priv->pending_flip_queue,
2895                    !intel_crtc_has_pending_flip(crtc));
2896
2897         mutex_lock(&dev->struct_mutex);
2898         intel_finish_fb(crtc->fb);
2899         mutex_unlock(&dev->struct_mutex);
2900 }
2901
2902 /* Program iCLKIP clock to the desired frequency */
2903 static void lpt_program_iclkip(struct drm_crtc *crtc)
2904 {
2905         struct drm_device *dev = crtc->dev;
2906         struct drm_i915_private *dev_priv = dev->dev_private;
2907         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2908         u32 temp;
2909
2910         mutex_lock(&dev_priv->dpio_lock);
2911
2912         /* It is necessary to ungate the pixclk gate prior to programming
2913          * the divisors, and gate it back when it is done.
2914          */
2915         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2916
2917         /* Disable SSCCTL */
2918         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2919                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2920                                 SBI_SSCCTL_DISABLE,
2921                         SBI_ICLK);
2922
2923         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2924         if (crtc->mode.clock == 20000) {
2925                 auxdiv = 1;
2926                 divsel = 0x41;
2927                 phaseinc = 0x20;
2928         } else {
2929                 /* The iCLK virtual clock root frequency is in MHz,
2930                  * but the crtc->mode.clock in in KHz. To get the divisors,
2931                  * it is necessary to divide one by another, so we
2932                  * convert the virtual clock precision to KHz here for higher
2933                  * precision.
2934                  */
2935                 u32 iclk_virtual_root_freq = 172800 * 1000;
2936                 u32 iclk_pi_range = 64;
2937                 u32 desired_divisor, msb_divisor_value, pi_value;
2938
2939                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2940                 msb_divisor_value = desired_divisor / iclk_pi_range;
2941                 pi_value = desired_divisor % iclk_pi_range;
2942
2943                 auxdiv = 0;
2944                 divsel = msb_divisor_value - 2;
2945                 phaseinc = pi_value;
2946         }
2947
2948         /* This should not happen with any sane values */
2949         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2950                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2951         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2952                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2953
2954         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2955                         crtc->mode.clock,
2956                         auxdiv,
2957                         divsel,
2958                         phasedir,
2959                         phaseinc);
2960
2961         /* Program SSCDIVINTPHASE6 */
2962         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2963         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2964         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2965         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2966         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2967         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2968         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2969         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2970
2971         /* Program SSCAUXDIV */
2972         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2973         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2974         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2975         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2976
2977         /* Enable modulator and associated divider */
2978         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2979         temp &= ~SBI_SSCCTL_DISABLE;
2980         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2981
2982         /* Wait for initialization time */
2983         udelay(24);
2984
2985         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2986
2987         mutex_unlock(&dev_priv->dpio_lock);
2988 }
2989
2990 /*
2991  * Enable PCH resources required for PCH ports:
2992  *   - PCH PLLs
2993  *   - FDI training & RX/TX
2994  *   - update transcoder timings
2995  *   - DP transcoding bits
2996  *   - transcoder
2997  */
2998 static void ironlake_pch_enable(struct drm_crtc *crtc)
2999 {
3000         struct drm_device *dev = crtc->dev;
3001         struct drm_i915_private *dev_priv = dev->dev_private;
3002         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3003         int pipe = intel_crtc->pipe;
3004         u32 reg, temp;
3005
3006         assert_transcoder_disabled(dev_priv, pipe);
3007
3008         /* Write the TU size bits before fdi link training, so that error
3009          * detection works. */
3010         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3011                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3012
3013         /* For PCH output, training FDI link */
3014         dev_priv->display.fdi_link_train(crtc);
3015
3016         /* XXX: pch pll's can be enabled any time before we enable the PCH
3017          * transcoder, and we actually should do this to not upset any PCH
3018          * transcoder that already use the clock when we share it.
3019          *
3020          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3021          * unconditionally resets the pll - we need that to have the right LVDS
3022          * enable sequence. */
3023         ironlake_enable_pch_pll(intel_crtc);
3024
3025         if (HAS_PCH_CPT(dev)) {
3026                 u32 sel;
3027
3028                 temp = I915_READ(PCH_DPLL_SEL);
3029                 switch (pipe) {
3030                 default:
3031                 case 0:
3032                         temp |= TRANSA_DPLL_ENABLE;
3033                         sel = TRANSA_DPLLB_SEL;
3034                         break;
3035                 case 1:
3036                         temp |= TRANSB_DPLL_ENABLE;
3037                         sel = TRANSB_DPLLB_SEL;
3038                         break;
3039                 case 2:
3040                         temp |= TRANSC_DPLL_ENABLE;
3041                         sel = TRANSC_DPLLB_SEL;
3042                         break;
3043                 }
3044                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3045                         temp |= sel;
3046                 else
3047                         temp &= ~sel;
3048                 I915_WRITE(PCH_DPLL_SEL, temp);
3049         }
3050
3051         /* set transcoder timing, panel must allow it */
3052         assert_panel_unlocked(dev_priv, pipe);
3053         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3054         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3055         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3056
3057         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3058         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3059         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3060         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3061
3062         intel_fdi_normal_train(crtc);
3063
3064         /* For PCH DP, enable TRANS_DP_CTL */
3065         if (HAS_PCH_CPT(dev) &&
3066             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3067              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3068                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3069                 reg = TRANS_DP_CTL(pipe);
3070                 temp = I915_READ(reg);
3071                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3072                           TRANS_DP_SYNC_MASK |
3073                           TRANS_DP_BPC_MASK);
3074                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3075                          TRANS_DP_ENH_FRAMING);
3076                 temp |= bpc << 9; /* same format but at 11:9 */
3077
3078                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3079                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3080                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3081                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3082
3083                 switch (intel_trans_dp_port_sel(crtc)) {
3084                 case PCH_DP_B:
3085                         temp |= TRANS_DP_PORT_SEL_B;
3086                         break;
3087                 case PCH_DP_C:
3088                         temp |= TRANS_DP_PORT_SEL_C;
3089                         break;
3090                 case PCH_DP_D:
3091                         temp |= TRANS_DP_PORT_SEL_D;
3092                         break;
3093                 default:
3094                         BUG();
3095                 }
3096
3097                 I915_WRITE(reg, temp);
3098         }
3099
3100         ironlake_enable_pch_transcoder(dev_priv, pipe);
3101 }
3102
3103 static void lpt_pch_enable(struct drm_crtc *crtc)
3104 {
3105         struct drm_device *dev = crtc->dev;
3106         struct drm_i915_private *dev_priv = dev->dev_private;
3107         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3108         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3109
3110         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3111
3112         lpt_program_iclkip(crtc);
3113
3114         /* Set transcoder timing. */
3115         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3116         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3117         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3118
3119         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3120         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3121         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3122         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3123
3124         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3125 }
3126
3127 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3128 {
3129         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3130
3131         if (pll == NULL)
3132                 return;
3133
3134         if (pll->refcount == 0) {
3135                 WARN(1, "bad PCH PLL refcount\n");
3136                 return;
3137         }
3138
3139         --pll->refcount;
3140         intel_crtc->pch_pll = NULL;
3141 }
3142
3143 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3144 {
3145         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3146         struct intel_pch_pll *pll;
3147         int i;
3148
3149         pll = intel_crtc->pch_pll;
3150         if (pll) {
3151                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3152                               intel_crtc->base.base.id, pll->pll_reg);
3153                 goto prepare;
3154         }
3155
3156         if (HAS_PCH_IBX(dev_priv->dev)) {
3157                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3158                 i = intel_crtc->pipe;
3159                 pll = &dev_priv->pch_plls[i];
3160
3161                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3162                               intel_crtc->base.base.id, pll->pll_reg);
3163
3164                 goto found;
3165         }
3166
3167         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3168                 pll = &dev_priv->pch_plls[i];
3169
3170                 /* Only want to check enabled timings first */
3171                 if (pll->refcount == 0)
3172                         continue;
3173
3174                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3175                     fp == I915_READ(pll->fp0_reg)) {
3176                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3177                                       intel_crtc->base.base.id,
3178                                       pll->pll_reg, pll->refcount, pll->active);
3179
3180                         goto found;
3181                 }
3182         }
3183
3184         /* Ok no matching timings, maybe there's a free one? */
3185         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3186                 pll = &dev_priv->pch_plls[i];
3187                 if (pll->refcount == 0) {
3188                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3189                                       intel_crtc->base.base.id, pll->pll_reg);
3190                         goto found;
3191                 }
3192         }
3193
3194         return NULL;
3195
3196 found:
3197         intel_crtc->pch_pll = pll;
3198         pll->refcount++;
3199         DRM_DEBUG_DRIVER("using pll %d for pipe %c\n", i, pipe_name(intel_crtc->pipe));
3200 prepare: /* separate function? */
3201         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3202
3203         /* Wait for the clocks to stabilize before rewriting the regs */
3204         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3205         POSTING_READ(pll->pll_reg);
3206         udelay(150);
3207
3208         I915_WRITE(pll->fp0_reg, fp);
3209         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3210         pll->on = false;
3211         return pll;
3212 }
3213
3214 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3215 {
3216         struct drm_i915_private *dev_priv = dev->dev_private;
3217         int dslreg = PIPEDSL(pipe);
3218         u32 temp;
3219
3220         temp = I915_READ(dslreg);
3221         udelay(500);
3222         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3223                 if (wait_for(I915_READ(dslreg) != temp, 5))
3224                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3225         }
3226 }
3227
3228 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3229 {
3230         struct drm_device *dev = crtc->base.dev;
3231         struct drm_i915_private *dev_priv = dev->dev_private;
3232         int pipe = crtc->pipe;
3233
3234         if (crtc->config.pch_pfit.size &&
3235             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP)) {
3236                 /* Force use of hard-coded filter coefficients
3237                  * as some pre-programmed values are broken,
3238                  * e.g. x201.
3239                  */
3240                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3241                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3242                                                  PF_PIPE_SEL_IVB(pipe));
3243                 else
3244                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3245                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3246                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3247         }
3248 }
3249
3250 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3251 {
3252         struct drm_device *dev = crtc->dev;
3253         struct drm_i915_private *dev_priv = dev->dev_private;
3254         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3255         struct intel_encoder *encoder;
3256         int pipe = intel_crtc->pipe;
3257         int plane = intel_crtc->plane;
3258         u32 temp;
3259
3260         WARN_ON(!crtc->enabled);
3261
3262         if (intel_crtc->active)
3263                 return;
3264
3265         intel_crtc->active = true;
3266
3267         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3268         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3269
3270         intel_update_watermarks(dev);
3271
3272         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3273                 temp = I915_READ(PCH_LVDS);
3274                 if ((temp & LVDS_PORT_EN) == 0)
3275                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3276         }
3277
3278
3279         if (intel_crtc->config.has_pch_encoder) {
3280                 /* Note: FDI PLL enabling _must_ be done before we enable the
3281                  * cpu pipes, hence this is separate from all the other fdi/pch
3282                  * enabling. */
3283                 ironlake_fdi_pll_enable(intel_crtc);
3284         } else {
3285                 assert_fdi_tx_disabled(dev_priv, pipe);
3286                 assert_fdi_rx_disabled(dev_priv, pipe);
3287         }
3288
3289         for_each_encoder_on_crtc(dev, crtc, encoder)
3290                 if (encoder->pre_enable)
3291                         encoder->pre_enable(encoder);
3292
3293         /* Enable panel fitting for LVDS */
3294         ironlake_pfit_enable(intel_crtc);
3295
3296         /*
3297          * On ILK+ LUT must be loaded before the pipe is running but with
3298          * clocks enabled
3299          */
3300         intel_crtc_load_lut(crtc);
3301
3302         intel_enable_pipe(dev_priv, pipe,
3303                           intel_crtc->config.has_pch_encoder);
3304         intel_enable_plane(dev_priv, plane, pipe);
3305
3306         if (intel_crtc->config.has_pch_encoder)
3307                 ironlake_pch_enable(crtc);
3308
3309         mutex_lock(&dev->struct_mutex);
3310         intel_update_fbc(dev);
3311         mutex_unlock(&dev->struct_mutex);
3312
3313         intel_crtc_update_cursor(crtc, true);
3314
3315         for_each_encoder_on_crtc(dev, crtc, encoder)
3316                 encoder->enable(encoder);
3317
3318         if (HAS_PCH_CPT(dev))
3319                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3320
3321         /*
3322          * There seems to be a race in PCH platform hw (at least on some
3323          * outputs) where an enabled pipe still completes any pageflip right
3324          * away (as if the pipe is off) instead of waiting for vblank. As soon
3325          * as the first vblank happend, everything works as expected. Hence just
3326          * wait for one vblank before returning to avoid strange things
3327          * happening.
3328          */
3329         intel_wait_for_vblank(dev, intel_crtc->pipe);
3330 }
3331
3332 static void haswell_crtc_enable(struct drm_crtc *crtc)
3333 {
3334         struct drm_device *dev = crtc->dev;
3335         struct drm_i915_private *dev_priv = dev->dev_private;
3336         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3337         struct intel_encoder *encoder;
3338         int pipe = intel_crtc->pipe;
3339         int plane = intel_crtc->plane;
3340
3341         WARN_ON(!crtc->enabled);
3342
3343         if (intel_crtc->active)
3344                 return;
3345
3346         intel_crtc->active = true;
3347
3348         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3349         if (intel_crtc->config.has_pch_encoder)
3350                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3351
3352         intel_update_watermarks(dev);
3353
3354         if (intel_crtc->config.has_pch_encoder)
3355                 dev_priv->display.fdi_link_train(crtc);
3356
3357         for_each_encoder_on_crtc(dev, crtc, encoder)
3358                 if (encoder->pre_enable)
3359                         encoder->pre_enable(encoder);
3360
3361         intel_ddi_enable_pipe_clock(intel_crtc);
3362
3363         /* Enable panel fitting for eDP */
3364         ironlake_pfit_enable(intel_crtc);
3365
3366         /*
3367          * On ILK+ LUT must be loaded before the pipe is running but with
3368          * clocks enabled
3369          */
3370         intel_crtc_load_lut(crtc);
3371
3372         intel_ddi_set_pipe_settings(crtc);
3373         intel_ddi_enable_transcoder_func(crtc);
3374
3375         intel_enable_pipe(dev_priv, pipe,
3376                           intel_crtc->config.has_pch_encoder);
3377         intel_enable_plane(dev_priv, plane, pipe);
3378
3379         if (intel_crtc->config.has_pch_encoder)
3380                 lpt_pch_enable(crtc);
3381
3382         mutex_lock(&dev->struct_mutex);
3383         intel_update_fbc(dev);
3384         mutex_unlock(&dev->struct_mutex);
3385
3386         intel_crtc_update_cursor(crtc, true);
3387
3388         for_each_encoder_on_crtc(dev, crtc, encoder)
3389                 encoder->enable(encoder);
3390
3391         /*
3392          * There seems to be a race in PCH platform hw (at least on some
3393          * outputs) where an enabled pipe still completes any pageflip right
3394          * away (as if the pipe is off) instead of waiting for vblank. As soon
3395          * as the first vblank happend, everything works as expected. Hence just
3396          * wait for one vblank before returning to avoid strange things
3397          * happening.
3398          */
3399         intel_wait_for_vblank(dev, intel_crtc->pipe);
3400 }
3401
3402 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3403 {
3404         struct drm_device *dev = crtc->dev;
3405         struct drm_i915_private *dev_priv = dev->dev_private;
3406         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3407         struct intel_encoder *encoder;
3408         int pipe = intel_crtc->pipe;
3409         int plane = intel_crtc->plane;
3410         u32 reg, temp;
3411
3412
3413         if (!intel_crtc->active)
3414                 return;
3415
3416         for_each_encoder_on_crtc(dev, crtc, encoder)
3417                 encoder->disable(encoder);
3418
3419         intel_crtc_wait_for_pending_flips(crtc);
3420         drm_vblank_off(dev, pipe);
3421         intel_crtc_update_cursor(crtc, false);
3422
3423         intel_disable_plane(dev_priv, plane, pipe);
3424
3425         if (dev_priv->cfb_plane == plane)
3426                 intel_disable_fbc(dev);
3427
3428         intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3429         intel_disable_pipe(dev_priv, pipe);
3430
3431         /* Disable PF */
3432         I915_WRITE(PF_CTL(pipe), 0);
3433         I915_WRITE(PF_WIN_SZ(pipe), 0);
3434
3435         for_each_encoder_on_crtc(dev, crtc, encoder)
3436                 if (encoder->post_disable)
3437                         encoder->post_disable(encoder);
3438
3439         ironlake_fdi_disable(crtc);
3440
3441         ironlake_disable_pch_transcoder(dev_priv, pipe);
3442         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3443
3444         if (HAS_PCH_CPT(dev)) {
3445                 /* disable TRANS_DP_CTL */
3446                 reg = TRANS_DP_CTL(pipe);
3447                 temp = I915_READ(reg);
3448                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3449                 temp |= TRANS_DP_PORT_SEL_NONE;
3450                 I915_WRITE(reg, temp);
3451
3452                 /* disable DPLL_SEL */
3453                 temp = I915_READ(PCH_DPLL_SEL);
3454                 switch (pipe) {
3455                 case 0:
3456                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3457                         break;
3458                 case 1:
3459                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3460                         break;
3461                 case 2:
3462                         /* C shares PLL A or B */
3463                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3464                         break;
3465                 default:
3466                         BUG(); /* wtf */
3467                 }
3468                 I915_WRITE(PCH_DPLL_SEL, temp);
3469         }
3470
3471         /* disable PCH DPLL */
3472         intel_disable_pch_pll(intel_crtc);
3473
3474         ironlake_fdi_pll_disable(intel_crtc);
3475
3476         intel_crtc->active = false;
3477         intel_update_watermarks(dev);
3478
3479         mutex_lock(&dev->struct_mutex);
3480         intel_update_fbc(dev);
3481         mutex_unlock(&dev->struct_mutex);
3482 }
3483
3484 static void haswell_crtc_disable(struct drm_crtc *crtc)
3485 {
3486         struct drm_device *dev = crtc->dev;
3487         struct drm_i915_private *dev_priv = dev->dev_private;
3488         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3489         struct intel_encoder *encoder;
3490         int pipe = intel_crtc->pipe;
3491         int plane = intel_crtc->plane;
3492         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3493
3494         if (!intel_crtc->active)
3495                 return;
3496
3497         for_each_encoder_on_crtc(dev, crtc, encoder)
3498                 encoder->disable(encoder);
3499
3500         intel_crtc_wait_for_pending_flips(crtc);
3501         drm_vblank_off(dev, pipe);
3502         intel_crtc_update_cursor(crtc, false);
3503
3504         intel_disable_plane(dev_priv, plane, pipe);
3505
3506         if (dev_priv->cfb_plane == plane)
3507                 intel_disable_fbc(dev);
3508
3509         if (intel_crtc->config.has_pch_encoder)
3510                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3511         intel_disable_pipe(dev_priv, pipe);
3512
3513         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3514
3515         /* XXX: Once we have proper panel fitter state tracking implemented with
3516          * hardware state read/check support we should switch to only disable
3517          * the panel fitter when we know it's used. */
3518         if (intel_using_power_well(dev)) {
3519                 I915_WRITE(PF_CTL(pipe), 0);
3520                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3521         }
3522
3523         intel_ddi_disable_pipe_clock(intel_crtc);
3524
3525         for_each_encoder_on_crtc(dev, crtc, encoder)
3526                 if (encoder->post_disable)
3527                         encoder->post_disable(encoder);
3528
3529         if (intel_crtc->config.has_pch_encoder) {
3530                 lpt_disable_pch_transcoder(dev_priv);
3531                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3532                 intel_ddi_fdi_disable(crtc);
3533         }
3534
3535         intel_crtc->active = false;
3536         intel_update_watermarks(dev);
3537
3538         mutex_lock(&dev->struct_mutex);
3539         intel_update_fbc(dev);
3540         mutex_unlock(&dev->struct_mutex);
3541 }
3542
3543 static void ironlake_crtc_off(struct drm_crtc *crtc)
3544 {
3545         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3546         intel_put_pch_pll(intel_crtc);
3547 }
3548
3549 static void haswell_crtc_off(struct drm_crtc *crtc)
3550 {
3551         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3552
3553         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3554          * start using it. */
3555         intel_crtc->config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
3556
3557         intel_ddi_put_crtc_pll(crtc);
3558 }
3559
3560 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3561 {
3562         if (!enable && intel_crtc->overlay) {
3563                 struct drm_device *dev = intel_crtc->base.dev;
3564                 struct drm_i915_private *dev_priv = dev->dev_private;
3565
3566                 mutex_lock(&dev->struct_mutex);
3567                 dev_priv->mm.interruptible = false;
3568                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3569                 dev_priv->mm.interruptible = true;
3570                 mutex_unlock(&dev->struct_mutex);
3571         }
3572
3573         /* Let userspace switch the overlay on again. In most cases userspace
3574          * has to recompute where to put it anyway.
3575          */
3576 }
3577
3578 /**
3579  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3580  * cursor plane briefly if not already running after enabling the display
3581  * plane.
3582  * This workaround avoids occasional blank screens when self refresh is
3583  * enabled.
3584  */
3585 static void
3586 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3587 {
3588         u32 cntl = I915_READ(CURCNTR(pipe));
3589
3590         if ((cntl & CURSOR_MODE) == 0) {
3591                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3592
3593                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3594                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3595                 intel_wait_for_vblank(dev_priv->dev, pipe);
3596                 I915_WRITE(CURCNTR(pipe), cntl);
3597                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3598                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3599         }
3600 }
3601
3602 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3603 {
3604         struct drm_device *dev = crtc->base.dev;
3605         struct drm_i915_private *dev_priv = dev->dev_private;
3606         struct intel_crtc_config *pipe_config = &crtc->config;
3607
3608         if (!(intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
3609               intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)))
3610                 return;
3611
3612         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3613         assert_pipe_disabled(dev_priv, crtc->pipe);
3614
3615         /*
3616          * Enable automatic panel scaling so that non-native modes
3617          * fill the screen.  The panel fitter should only be
3618          * adjusted whilst the pipe is disabled, according to
3619          * register description and PRM.
3620          */
3621         DRM_DEBUG_KMS("applying panel-fitter: %x, %x\n",
3622                       pipe_config->gmch_pfit.control,
3623                       pipe_config->gmch_pfit.pgm_ratios);
3624
3625         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3626         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3627 }
3628
3629 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3630 {
3631         struct drm_device *dev = crtc->dev;
3632         struct drm_i915_private *dev_priv = dev->dev_private;
3633         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3634         struct intel_encoder *encoder;
3635         int pipe = intel_crtc->pipe;
3636         int plane = intel_crtc->plane;
3637
3638         WARN_ON(!crtc->enabled);
3639
3640         if (intel_crtc->active)
3641                 return;
3642
3643         intel_crtc->active = true;
3644         intel_update_watermarks(dev);
3645
3646         mutex_lock(&dev_priv->dpio_lock);
3647
3648         for_each_encoder_on_crtc(dev, crtc, encoder)
3649                 if (encoder->pre_pll_enable)
3650                         encoder->pre_pll_enable(encoder);
3651
3652         intel_enable_pll(dev_priv, pipe);
3653
3654         for_each_encoder_on_crtc(dev, crtc, encoder)
3655                 if (encoder->pre_enable)
3656                         encoder->pre_enable(encoder);
3657
3658         /* VLV wants encoder enabling _before_ the pipe is up. */
3659         for_each_encoder_on_crtc(dev, crtc, encoder)
3660                 encoder->enable(encoder);
3661
3662         /* Enable panel fitting for eDP */
3663         i9xx_pfit_enable(intel_crtc);
3664
3665         intel_enable_pipe(dev_priv, pipe, false);
3666         intel_enable_plane(dev_priv, plane, pipe);
3667
3668         intel_crtc_load_lut(crtc);
3669         intel_update_fbc(dev);
3670
3671         /* Give the overlay scaler a chance to enable if it's on this pipe */
3672         intel_crtc_dpms_overlay(intel_crtc, true);
3673         intel_crtc_update_cursor(crtc, true);
3674
3675         mutex_unlock(&dev_priv->dpio_lock);
3676 }
3677
3678 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3679 {
3680         struct drm_device *dev = crtc->dev;
3681         struct drm_i915_private *dev_priv = dev->dev_private;
3682         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3683         struct intel_encoder *encoder;
3684         int pipe = intel_crtc->pipe;
3685         int plane = intel_crtc->plane;
3686
3687         WARN_ON(!crtc->enabled);
3688
3689         if (intel_crtc->active)
3690                 return;
3691
3692         intel_crtc->active = true;
3693         intel_update_watermarks(dev);
3694
3695         intel_enable_pll(dev_priv, pipe);
3696
3697         for_each_encoder_on_crtc(dev, crtc, encoder)
3698                 if (encoder->pre_enable)
3699                         encoder->pre_enable(encoder);
3700
3701         /* Enable panel fitting for LVDS */
3702         i9xx_pfit_enable(intel_crtc);
3703
3704         intel_enable_pipe(dev_priv, pipe, false);
3705         intel_enable_plane(dev_priv, plane, pipe);
3706         if (IS_G4X(dev))
3707                 g4x_fixup_plane(dev_priv, pipe);
3708
3709         intel_crtc_load_lut(crtc);
3710         intel_update_fbc(dev);
3711
3712         /* Give the overlay scaler a chance to enable if it's on this pipe */
3713         intel_crtc_dpms_overlay(intel_crtc, true);
3714         intel_crtc_update_cursor(crtc, true);
3715
3716         for_each_encoder_on_crtc(dev, crtc, encoder)
3717                 encoder->enable(encoder);
3718 }
3719
3720 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3721 {
3722         struct drm_device *dev = crtc->base.dev;
3723         struct drm_i915_private *dev_priv = dev->dev_private;
3724         enum pipe pipe;
3725         uint32_t pctl = I915_READ(PFIT_CONTROL);
3726
3727         assert_pipe_disabled(dev_priv, crtc->pipe);
3728
3729         if (INTEL_INFO(dev)->gen >= 4)
3730                 pipe = (pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT;
3731         else
3732                 pipe = PIPE_B;
3733
3734         if (pipe == crtc->pipe) {
3735                 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n", pctl);
3736                 I915_WRITE(PFIT_CONTROL, 0);
3737         }
3738 }
3739
3740 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3741 {
3742         struct drm_device *dev = crtc->dev;
3743         struct drm_i915_private *dev_priv = dev->dev_private;
3744         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3745         struct intel_encoder *encoder;
3746         int pipe = intel_crtc->pipe;
3747         int plane = intel_crtc->plane;
3748
3749         if (!intel_crtc->active)
3750                 return;
3751
3752         for_each_encoder_on_crtc(dev, crtc, encoder)
3753                 encoder->disable(encoder);
3754
3755         /* Give the overlay scaler a chance to disable if it's on this pipe */
3756         intel_crtc_wait_for_pending_flips(crtc);
3757         drm_vblank_off(dev, pipe);
3758         intel_crtc_dpms_overlay(intel_crtc, false);
3759         intel_crtc_update_cursor(crtc, false);
3760
3761         if (dev_priv->cfb_plane == plane)
3762                 intel_disable_fbc(dev);
3763
3764         intel_disable_plane(dev_priv, plane, pipe);
3765         intel_disable_pipe(dev_priv, pipe);
3766
3767         i9xx_pfit_disable(intel_crtc);
3768
3769         for_each_encoder_on_crtc(dev, crtc, encoder)
3770                 if (encoder->post_disable)
3771                         encoder->post_disable(encoder);
3772
3773         intel_disable_pll(dev_priv, pipe);
3774
3775         intel_crtc->active = false;
3776         intel_update_fbc(dev);
3777         intel_update_watermarks(dev);
3778 }
3779
3780 static void i9xx_crtc_off(struct drm_crtc *crtc)
3781 {
3782 }
3783
3784 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3785                                     bool enabled)
3786 {
3787         struct drm_device *dev = crtc->dev;
3788         struct drm_i915_master_private *master_priv;
3789         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3790         int pipe = intel_crtc->pipe;
3791
3792         if (!dev->primary->master)
3793                 return;
3794
3795         master_priv = dev->primary->master->driver_priv;
3796         if (!master_priv->sarea_priv)
3797                 return;
3798
3799         switch (pipe) {
3800         case 0:
3801                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3802                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3803                 break;
3804         case 1:
3805                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3806                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3807                 break;
3808         default:
3809                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3810                 break;
3811         }
3812 }
3813
3814 /**
3815  * Sets the power management mode of the pipe and plane.
3816  */
3817 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3818 {
3819         struct drm_device *dev = crtc->dev;
3820         struct drm_i915_private *dev_priv = dev->dev_private;
3821         struct intel_encoder *intel_encoder;
3822         bool enable = false;
3823
3824         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3825                 enable |= intel_encoder->connectors_active;
3826
3827         if (enable)
3828                 dev_priv->display.crtc_enable(crtc);
3829         else
3830                 dev_priv->display.crtc_disable(crtc);
3831
3832         intel_crtc_update_sarea(crtc, enable);
3833 }
3834
3835 static void intel_crtc_disable(struct drm_crtc *crtc)
3836 {
3837         struct drm_device *dev = crtc->dev;
3838         struct drm_connector *connector;
3839         struct drm_i915_private *dev_priv = dev->dev_private;
3840         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3841
3842         /* crtc should still be enabled when we disable it. */
3843         WARN_ON(!crtc->enabled);
3844
3845         intel_crtc->eld_vld = false;
3846         dev_priv->display.crtc_disable(crtc);
3847         intel_crtc_update_sarea(crtc, false);
3848         dev_priv->display.off(crtc);
3849
3850         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3851         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3852
3853         if (crtc->fb) {
3854                 mutex_lock(&dev->struct_mutex);
3855                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3856                 mutex_unlock(&dev->struct_mutex);
3857                 crtc->fb = NULL;
3858         }
3859
3860         /* Update computed state. */
3861         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3862                 if (!connector->encoder || !connector->encoder->crtc)
3863                         continue;
3864
3865                 if (connector->encoder->crtc != crtc)
3866                         continue;
3867
3868                 connector->dpms = DRM_MODE_DPMS_OFF;
3869                 to_intel_encoder(connector->encoder)->connectors_active = false;
3870         }
3871 }
3872
3873 void intel_modeset_disable(struct drm_device *dev)
3874 {
3875         struct drm_crtc *crtc;
3876
3877         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3878                 if (crtc->enabled)
3879                         intel_crtc_disable(crtc);
3880         }
3881 }
3882
3883 void intel_encoder_destroy(struct drm_encoder *encoder)
3884 {
3885         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3886
3887         drm_encoder_cleanup(encoder);
3888         kfree(intel_encoder);
3889 }
3890
3891 /* Simple dpms helper for encodres with just one connector, no cloning and only
3892  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3893  * state of the entire output pipe. */
3894 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3895 {
3896         if (mode == DRM_MODE_DPMS_ON) {
3897                 encoder->connectors_active = true;
3898
3899                 intel_crtc_update_dpms(encoder->base.crtc);
3900         } else {
3901                 encoder->connectors_active = false;
3902
3903                 intel_crtc_update_dpms(encoder->base.crtc);
3904         }
3905 }
3906
3907 /* Cross check the actual hw state with our own modeset state tracking (and it's
3908  * internal consistency). */
3909 static void intel_connector_check_state(struct intel_connector *connector)
3910 {
3911         if (connector->get_hw_state(connector)) {
3912                 struct intel_encoder *encoder = connector->encoder;
3913                 struct drm_crtc *crtc;
3914                 bool encoder_enabled;
3915                 enum pipe pipe;
3916
3917                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3918                               connector->base.base.id,
3919                               drm_get_connector_name(&connector->base));
3920
3921                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3922                      "wrong connector dpms state\n");
3923                 WARN(connector->base.encoder != &encoder->base,
3924                      "active connector not linked to encoder\n");
3925                 WARN(!encoder->connectors_active,
3926                      "encoder->connectors_active not set\n");
3927
3928                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3929                 WARN(!encoder_enabled, "encoder not enabled\n");
3930                 if (WARN_ON(!encoder->base.crtc))
3931                         return;
3932
3933                 crtc = encoder->base.crtc;
3934
3935                 WARN(!crtc->enabled, "crtc not enabled\n");
3936                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3937                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3938                      "encoder active on the wrong pipe\n");
3939         }
3940 }
3941
3942 /* Even simpler default implementation, if there's really no special case to
3943  * consider. */
3944 void intel_connector_dpms(struct drm_connector *connector, int mode)
3945 {
3946         struct intel_encoder *encoder = intel_attached_encoder(connector);
3947
3948         /* All the simple cases only support two dpms states. */
3949         if (mode != DRM_MODE_DPMS_ON)
3950                 mode = DRM_MODE_DPMS_OFF;
3951
3952         if (mode == connector->dpms)
3953                 return;
3954
3955         connector->dpms = mode;
3956
3957         /* Only need to change hw state when actually enabled */
3958         if (encoder->base.crtc)
3959                 intel_encoder_dpms(encoder, mode);
3960         else
3961                 WARN_ON(encoder->connectors_active != false);
3962
3963         intel_modeset_check_state(connector->dev);
3964 }
3965
3966 /* Simple connector->get_hw_state implementation for encoders that support only
3967  * one connector and no cloning and hence the encoder state determines the state
3968  * of the connector. */
3969 bool intel_connector_get_hw_state(struct intel_connector *connector)
3970 {
3971         enum pipe pipe = 0;
3972         struct intel_encoder *encoder = connector->encoder;
3973
3974         return encoder->get_hw_state(encoder, &pipe);
3975 }
3976
3977 static bool intel_crtc_compute_config(struct drm_crtc *crtc,
3978                                       struct intel_crtc_config *pipe_config)
3979 {
3980         struct drm_device *dev = crtc->dev;
3981         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
3982
3983         if (HAS_PCH_SPLIT(dev)) {
3984                 /* FDI link clock is fixed at 2.7G */
3985                 if (pipe_config->requested_mode.clock * 3
3986                     > IRONLAKE_FDI_FREQ * 4)
3987                         return false;
3988         }
3989
3990         /* All interlaced capable intel hw wants timings in frames. Note though
3991          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3992          * timings, so we need to be careful not to clobber these.*/
3993         if (!pipe_config->timings_set)
3994                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3995
3996         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3997          * with a hsync front porch of 0.
3998          */
3999         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4000                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4001                 return false;
4002
4003         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4004                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4005         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4006                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4007                  * for lvds. */
4008                 pipe_config->pipe_bpp = 8*3;
4009         }
4010
4011         return true;
4012 }
4013
4014 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4015 {
4016         return 400000; /* FIXME */
4017 }
4018
4019 static int i945_get_display_clock_speed(struct drm_device *dev)
4020 {
4021         return 400000;
4022 }
4023
4024 static int i915_get_display_clock_speed(struct drm_device *dev)
4025 {
4026         return 333000;
4027 }
4028
4029 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4030 {
4031         return 200000;
4032 }
4033
4034 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4035 {
4036         u16 gcfgc = 0;
4037
4038         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4039
4040         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4041                 return 133000;
4042         else {
4043                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4044                 case GC_DISPLAY_CLOCK_333_MHZ:
4045                         return 333000;
4046                 default:
4047                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4048                         return 190000;
4049                 }
4050         }
4051 }
4052
4053 static int i865_get_display_clock_speed(struct drm_device *dev)
4054 {
4055         return 266000;
4056 }
4057
4058 static int i855_get_display_clock_speed(struct drm_device *dev)
4059 {
4060         u16 hpllcc = 0;
4061         /* Assume that the hardware is in the high speed state.  This
4062          * should be the default.
4063          */
4064         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4065         case GC_CLOCK_133_200:
4066         case GC_CLOCK_100_200:
4067                 return 200000;
4068         case GC_CLOCK_166_250:
4069                 return 250000;
4070         case GC_CLOCK_100_133:
4071                 return 133000;
4072         }
4073
4074         /* Shouldn't happen */
4075         return 0;
4076 }
4077
4078 static int i830_get_display_clock_speed(struct drm_device *dev)
4079 {
4080         return 133000;
4081 }
4082
4083 static void
4084 intel_reduce_ratio(uint32_t *num, uint32_t *den)
4085 {
4086         while (*num > 0xffffff || *den > 0xffffff) {
4087                 *num >>= 1;
4088                 *den >>= 1;
4089         }
4090 }
4091
4092 void
4093 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4094                        int pixel_clock, int link_clock,
4095                        struct intel_link_m_n *m_n)
4096 {
4097         m_n->tu = 64;
4098         m_n->gmch_m = bits_per_pixel * pixel_clock;
4099         m_n->gmch_n = link_clock * nlanes * 8;
4100         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4101         m_n->link_m = pixel_clock;
4102         m_n->link_n = link_clock;
4103         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
4104 }
4105
4106 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4107 {
4108         if (i915_panel_use_ssc >= 0)
4109                 return i915_panel_use_ssc != 0;
4110         return dev_priv->lvds_use_ssc
4111                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4112 }
4113
4114 static int vlv_get_refclk(struct drm_crtc *crtc)
4115 {
4116         struct drm_device *dev = crtc->dev;
4117         struct drm_i915_private *dev_priv = dev->dev_private;
4118         int refclk = 27000; /* for DP & HDMI */
4119
4120         return 100000; /* only one validated so far */
4121
4122         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4123                 refclk = 96000;
4124         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4125                 if (intel_panel_use_ssc(dev_priv))
4126                         refclk = 100000;
4127                 else
4128                         refclk = 96000;
4129         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4130                 refclk = 100000;
4131         }
4132
4133         return refclk;
4134 }
4135
4136 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4137 {
4138         struct drm_device *dev = crtc->dev;
4139         struct drm_i915_private *dev_priv = dev->dev_private;
4140         int refclk;
4141
4142         if (IS_VALLEYVIEW(dev)) {
4143                 refclk = vlv_get_refclk(crtc);
4144         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4145             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4146                 refclk = dev_priv->lvds_ssc_freq * 1000;
4147                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4148                               refclk / 1000);
4149         } else if (!IS_GEN2(dev)) {
4150                 refclk = 96000;
4151         } else {
4152                 refclk = 48000;
4153         }
4154
4155         return refclk;
4156 }
4157
4158 static void i9xx_adjust_sdvo_tv_clock(struct intel_crtc *crtc)
4159 {
4160         unsigned dotclock = crtc->config.adjusted_mode.clock;
4161         struct dpll *clock = &crtc->config.dpll;
4162
4163         /* SDVO TV has fixed PLL values depend on its clock range,
4164            this mirrors vbios setting. */
4165         if (dotclock >= 100000 && dotclock < 140500) {
4166                 clock->p1 = 2;
4167                 clock->p2 = 10;
4168                 clock->n = 3;
4169                 clock->m1 = 16;
4170                 clock->m2 = 8;
4171         } else if (dotclock >= 140500 && dotclock <= 200000) {
4172                 clock->p1 = 1;
4173                 clock->p2 = 10;
4174                 clock->n = 6;
4175                 clock->m1 = 12;
4176                 clock->m2 = 8;
4177         }
4178
4179         crtc->config.clock_set = true;
4180 }
4181
4182 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4183 {
4184         return (1 << dpll->n) << 16 | dpll->m1 << 8 | dpll->m2;
4185 }
4186
4187 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4188 {
4189         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4190 }
4191
4192 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4193                                      intel_clock_t *reduced_clock)
4194 {
4195         struct drm_device *dev = crtc->base.dev;
4196         struct drm_i915_private *dev_priv = dev->dev_private;
4197         int pipe = crtc->pipe;
4198         u32 fp, fp2 = 0;
4199
4200         if (IS_PINEVIEW(dev)) {
4201                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4202                 if (reduced_clock)
4203                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4204         } else {
4205                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4206                 if (reduced_clock)
4207                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4208         }
4209
4210         I915_WRITE(FP0(pipe), fp);
4211
4212         crtc->lowfreq_avail = false;
4213         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4214             reduced_clock && i915_powersave) {
4215                 I915_WRITE(FP1(pipe), fp2);
4216                 crtc->lowfreq_avail = true;
4217         } else {
4218                 I915_WRITE(FP1(pipe), fp);
4219         }
4220 }
4221
4222 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4223 {
4224         u32 reg_val;
4225
4226         /*
4227          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4228          * and set it to a reasonable value instead.
4229          */
4230         reg_val = intel_dpio_read(dev_priv, DPIO_IREF(1));
4231         reg_val &= 0xffffff00;
4232         reg_val |= 0x00000030;
4233         intel_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4234
4235         reg_val = intel_dpio_read(dev_priv, DPIO_CALIBRATION);
4236         reg_val &= 0x8cffffff;
4237         reg_val = 0x8c000000;
4238         intel_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4239
4240         reg_val = intel_dpio_read(dev_priv, DPIO_IREF(1));
4241         reg_val &= 0xffffff00;
4242         intel_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4243
4244         reg_val = intel_dpio_read(dev_priv, DPIO_CALIBRATION);
4245         reg_val &= 0x00ffffff;
4246         reg_val |= 0xb0000000;
4247         intel_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4248 }
4249
4250 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4251 {
4252         if (crtc->config.has_pch_encoder)
4253                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4254         else
4255                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4256 }
4257
4258 static void vlv_update_pll(struct intel_crtc *crtc)
4259 {
4260         struct drm_device *dev = crtc->base.dev;
4261         struct drm_i915_private *dev_priv = dev->dev_private;
4262         struct drm_display_mode *adjusted_mode =
4263                 &crtc->config.adjusted_mode;
4264         struct intel_encoder *encoder;
4265         int pipe = crtc->pipe;
4266         u32 dpll, mdiv;
4267         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4268         bool is_hdmi;
4269         u32 coreclk, reg_val, dpll_md;
4270
4271         mutex_lock(&dev_priv->dpio_lock);
4272
4273         is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4274
4275         bestn = crtc->config.dpll.n;
4276         bestm1 = crtc->config.dpll.m1;
4277         bestm2 = crtc->config.dpll.m2;
4278         bestp1 = crtc->config.dpll.p1;
4279         bestp2 = crtc->config.dpll.p2;
4280
4281         /* See eDP HDMI DPIO driver vbios notes doc */
4282
4283         /* PLL B needs special handling */
4284         if (pipe)
4285                 vlv_pllb_recal_opamp(dev_priv);
4286
4287         /* Set up Tx target for periodic Rcomp update */
4288         intel_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4289
4290         /* Disable target IRef on PLL */
4291         reg_val = intel_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4292         reg_val &= 0x00ffffff;
4293         intel_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4294
4295         /* Disable fast lock */
4296         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4297
4298         /* Set idtafcrecal before PLL is enabled */
4299         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4300         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4301         mdiv |= ((bestn << DPIO_N_SHIFT));
4302         mdiv |= (1 << DPIO_K_SHIFT);
4303         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI) ||
4304             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4305             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4306                 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4307         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4308
4309         mdiv |= DPIO_ENABLE_CALIBRATION;
4310         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4311
4312         /* Set HBR and RBR LPF coefficients */
4313         if (adjusted_mode->clock == 162000 ||
4314             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4315                 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
4316                                  0x005f0021);
4317         else
4318                 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
4319                                  0x00d0000f);
4320
4321         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4322             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4323                 /* Use SSC source */
4324                 if (!pipe)
4325                         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4326                                          0x0df40000);
4327                 else
4328                         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4329                                          0x0df70000);
4330         } else { /* HDMI or VGA */
4331                 /* Use bend source */
4332                 if (!pipe)
4333                         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4334                                          0x0df70000);
4335                 else
4336                         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4337                                          0x0df40000);
4338         }
4339
4340         coreclk = intel_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4341         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4342         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4343             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4344                 coreclk |= 0x01000000;
4345         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4346
4347         intel_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4348
4349         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4350                 if (encoder->pre_pll_enable)
4351                         encoder->pre_pll_enable(encoder);
4352
4353         /* Enable DPIO clock input */
4354         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4355                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4356         if (pipe)
4357                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4358
4359         dpll |= DPLL_VCO_ENABLE;
4360         I915_WRITE(DPLL(pipe), dpll);
4361         POSTING_READ(DPLL(pipe));
4362         udelay(150);
4363
4364         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4365                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4366
4367         dpll_md = 0;
4368         if (crtc->config.pixel_multiplier > 1) {
4369                 dpll_md = (crtc->config.pixel_multiplier - 1)
4370                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4371         }
4372         I915_WRITE(DPLL_MD(pipe), dpll_md);
4373         POSTING_READ(DPLL_MD(pipe));
4374
4375         if (crtc->config.has_dp_encoder)
4376                 intel_dp_set_m_n(crtc);
4377
4378         mutex_unlock(&dev_priv->dpio_lock);
4379 }
4380
4381 static void i9xx_update_pll(struct intel_crtc *crtc,
4382                             intel_clock_t *reduced_clock,
4383                             int num_connectors)
4384 {
4385         struct drm_device *dev = crtc->base.dev;
4386         struct drm_i915_private *dev_priv = dev->dev_private;
4387         struct intel_encoder *encoder;
4388         int pipe = crtc->pipe;
4389         u32 dpll;
4390         bool is_sdvo;
4391         struct dpll *clock = &crtc->config.dpll;
4392
4393         i9xx_update_pll_dividers(crtc, reduced_clock);
4394
4395         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4396                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4397
4398         dpll = DPLL_VGA_MODE_DIS;
4399
4400         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4401                 dpll |= DPLLB_MODE_LVDS;
4402         else
4403                 dpll |= DPLLB_MODE_DAC_SERIAL;
4404
4405         if ((crtc->config.pixel_multiplier > 1) &&
4406             (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
4407                 dpll |= (crtc->config.pixel_multiplier - 1)
4408                         << SDVO_MULTIPLIER_SHIFT_HIRES;
4409         }
4410
4411         if (is_sdvo)
4412                 dpll |= DPLL_DVO_HIGH_SPEED;
4413
4414         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4415                 dpll |= DPLL_DVO_HIGH_SPEED;
4416
4417         /* compute bitmask from p1 value */
4418         if (IS_PINEVIEW(dev))
4419                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4420         else {
4421                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4422                 if (IS_G4X(dev) && reduced_clock)
4423                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4424         }
4425         switch (clock->p2) {
4426         case 5:
4427                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4428                 break;
4429         case 7:
4430                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4431                 break;
4432         case 10:
4433                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4434                 break;
4435         case 14:
4436                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4437                 break;
4438         }
4439         if (INTEL_INFO(dev)->gen >= 4)
4440                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4441
4442         if (is_sdvo && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
4443                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4444         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
4445                 /* XXX: just matching BIOS for now */
4446                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4447                 dpll |= 3;
4448         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4449                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4450                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4451         else
4452                 dpll |= PLL_REF_INPUT_DREFCLK;
4453
4454         dpll |= DPLL_VCO_ENABLE;
4455         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4456         POSTING_READ(DPLL(pipe));
4457         udelay(150);
4458
4459         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4460                 if (encoder->pre_pll_enable)
4461                         encoder->pre_pll_enable(encoder);
4462
4463         if (crtc->config.has_dp_encoder)
4464                 intel_dp_set_m_n(crtc);
4465
4466         I915_WRITE(DPLL(pipe), dpll);
4467
4468         /* Wait for the clocks to stabilize. */
4469         POSTING_READ(DPLL(pipe));
4470         udelay(150);
4471
4472         if (INTEL_INFO(dev)->gen >= 4) {
4473                 u32 dpll_md = 0;
4474                 if (crtc->config.pixel_multiplier > 1) {
4475                         dpll_md = (crtc->config.pixel_multiplier - 1)
4476                                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4477                 }
4478                 I915_WRITE(DPLL_MD(pipe), dpll_md);
4479         } else {
4480                 /* The pixel multiplier can only be updated once the
4481                  * DPLL is enabled and the clocks are stable.
4482                  *
4483                  * So write it again.
4484                  */
4485                 I915_WRITE(DPLL(pipe), dpll);
4486         }
4487 }
4488
4489 static void i8xx_update_pll(struct intel_crtc *crtc,
4490                             struct drm_display_mode *adjusted_mode,
4491                             intel_clock_t *reduced_clock,
4492                             int num_connectors)
4493 {
4494         struct drm_device *dev = crtc->base.dev;
4495         struct drm_i915_private *dev_priv = dev->dev_private;
4496         struct intel_encoder *encoder;
4497         int pipe = crtc->pipe;
4498         u32 dpll;
4499         struct dpll *clock = &crtc->config.dpll;
4500
4501         i9xx_update_pll_dividers(crtc, reduced_clock);
4502
4503         dpll = DPLL_VGA_MODE_DIS;
4504
4505         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4506                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4507         } else {
4508                 if (clock->p1 == 2)
4509                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4510                 else
4511                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4512                 if (clock->p2 == 4)
4513                         dpll |= PLL_P2_DIVIDE_BY_4;
4514         }
4515
4516         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4517                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4518                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4519         else
4520                 dpll |= PLL_REF_INPUT_DREFCLK;
4521
4522         dpll |= DPLL_VCO_ENABLE;
4523         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4524         POSTING_READ(DPLL(pipe));
4525         udelay(150);
4526
4527         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4528                 if (encoder->pre_pll_enable)
4529                         encoder->pre_pll_enable(encoder);
4530
4531         I915_WRITE(DPLL(pipe), dpll);
4532
4533         /* Wait for the clocks to stabilize. */
4534         POSTING_READ(DPLL(pipe));
4535         udelay(150);
4536
4537         /* The pixel multiplier can only be updated once the
4538          * DPLL is enabled and the clocks are stable.
4539          *
4540          * So write it again.
4541          */
4542         I915_WRITE(DPLL(pipe), dpll);
4543 }
4544
4545 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4546                                    struct drm_display_mode *mode,
4547                                    struct drm_display_mode *adjusted_mode)
4548 {
4549         struct drm_device *dev = intel_crtc->base.dev;
4550         struct drm_i915_private *dev_priv = dev->dev_private;
4551         enum pipe pipe = intel_crtc->pipe;
4552         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4553         uint32_t vsyncshift;
4554
4555         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4556                 /* the chip adds 2 halflines automatically */
4557                 adjusted_mode->crtc_vtotal -= 1;
4558                 adjusted_mode->crtc_vblank_end -= 1;
4559                 vsyncshift = adjusted_mode->crtc_hsync_start
4560                              - adjusted_mode->crtc_htotal / 2;
4561         } else {
4562                 vsyncshift = 0;
4563         }
4564
4565         if (INTEL_INFO(dev)->gen > 3)
4566                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4567
4568         I915_WRITE(HTOTAL(cpu_transcoder),
4569                    (adjusted_mode->crtc_hdisplay - 1) |
4570                    ((adjusted_mode->crtc_htotal - 1) << 16));
4571         I915_WRITE(HBLANK(cpu_transcoder),
4572                    (adjusted_mode->crtc_hblank_start - 1) |
4573                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4574         I915_WRITE(HSYNC(cpu_transcoder),
4575                    (adjusted_mode->crtc_hsync_start - 1) |
4576                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4577
4578         I915_WRITE(VTOTAL(cpu_transcoder),
4579                    (adjusted_mode->crtc_vdisplay - 1) |
4580                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4581         I915_WRITE(VBLANK(cpu_transcoder),
4582                    (adjusted_mode->crtc_vblank_start - 1) |
4583                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4584         I915_WRITE(VSYNC(cpu_transcoder),
4585                    (adjusted_mode->crtc_vsync_start - 1) |
4586                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4587
4588         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4589          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4590          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4591          * bits. */
4592         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4593             (pipe == PIPE_B || pipe == PIPE_C))
4594                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4595
4596         /* pipesrc controls the size that is scaled from, which should
4597          * always be the user's requested size.
4598          */
4599         I915_WRITE(PIPESRC(pipe),
4600                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4601 }
4602
4603 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4604 {
4605         struct drm_device *dev = intel_crtc->base.dev;
4606         struct drm_i915_private *dev_priv = dev->dev_private;
4607         uint32_t pipeconf;
4608
4609         pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
4610
4611         if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4612                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4613                  * core speed.
4614                  *
4615                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4616                  * pipe == 0 check?
4617                  */
4618                 if (intel_crtc->config.requested_mode.clock >
4619                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4620                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4621                 else
4622                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4623         }
4624
4625         /* default to 8bpc */
4626         pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN);
4627         if (intel_crtc->config.has_dp_encoder) {
4628                 if (intel_crtc->config.dither) {
4629                         pipeconf |= PIPECONF_6BPC |
4630                                     PIPECONF_DITHER_EN |
4631                                     PIPECONF_DITHER_TYPE_SP;
4632                 }
4633         }
4634
4635         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(&intel_crtc->base,
4636                                                       INTEL_OUTPUT_EDP)) {
4637                 if (intel_crtc->config.dither) {
4638                         pipeconf |= PIPECONF_6BPC |
4639                                         PIPECONF_ENABLE |
4640                                         I965_PIPECONF_ACTIVE;
4641                 }
4642         }
4643
4644         if (HAS_PIPE_CXSR(dev)) {
4645                 if (intel_crtc->lowfreq_avail) {
4646                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4647                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4648                 } else {
4649                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4650                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4651                 }
4652         }
4653
4654         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4655         if (!IS_GEN2(dev) &&
4656             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4657                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4658         else
4659                 pipeconf |= PIPECONF_PROGRESSIVE;
4660
4661         if (IS_VALLEYVIEW(dev)) {
4662                 if (intel_crtc->config.limited_color_range)
4663                         pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4664                 else
4665                         pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
4666         }
4667
4668         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4669         POSTING_READ(PIPECONF(intel_crtc->pipe));
4670 }
4671
4672 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4673                               int x, int y,
4674                               struct drm_framebuffer *fb)
4675 {
4676         struct drm_device *dev = crtc->dev;
4677         struct drm_i915_private *dev_priv = dev->dev_private;
4678         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4679         struct drm_display_mode *adjusted_mode =
4680                 &intel_crtc->config.adjusted_mode;
4681         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4682         int pipe = intel_crtc->pipe;
4683         int plane = intel_crtc->plane;
4684         int refclk, num_connectors = 0;
4685         intel_clock_t clock, reduced_clock;
4686         u32 dspcntr;
4687         bool ok, has_reduced_clock = false, is_sdvo = false;
4688         bool is_lvds = false, is_tv = false;
4689         struct intel_encoder *encoder;
4690         const intel_limit_t *limit;
4691         int ret;
4692
4693         for_each_encoder_on_crtc(dev, crtc, encoder) {
4694                 switch (encoder->type) {
4695                 case INTEL_OUTPUT_LVDS:
4696                         is_lvds = true;
4697                         break;
4698                 case INTEL_OUTPUT_SDVO:
4699                 case INTEL_OUTPUT_HDMI:
4700                         is_sdvo = true;
4701                         if (encoder->needs_tv_clock)
4702                                 is_tv = true;
4703                         break;
4704                 case INTEL_OUTPUT_TVOUT:
4705                         is_tv = true;
4706                         break;
4707                 }
4708
4709                 num_connectors++;
4710         }
4711
4712         refclk = i9xx_get_refclk(crtc, num_connectors);
4713
4714         /*
4715          * Returns a set of divisors for the desired target clock with the given
4716          * refclk, or FALSE.  The returned values represent the clock equation:
4717          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4718          */
4719         limit = intel_limit(crtc, refclk);
4720         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4721                              &clock);
4722         if (!ok) {
4723                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4724                 return -EINVAL;
4725         }
4726
4727         /* Ensure that the cursor is valid for the new mode before changing... */
4728         intel_crtc_update_cursor(crtc, true);
4729
4730         if (is_lvds && dev_priv->lvds_downclock_avail) {
4731                 /*
4732                  * Ensure we match the reduced clock's P to the target clock.
4733                  * If the clocks don't match, we can't switch the display clock
4734                  * by using the FP0/FP1. In such case we will disable the LVDS
4735                  * downclock feature.
4736                 */
4737                 has_reduced_clock = limit->find_pll(limit, crtc,
4738                                                     dev_priv->lvds_downclock,
4739                                                     refclk,
4740                                                     &clock,
4741                                                     &reduced_clock);
4742         }
4743         /* Compat-code for transition, will disappear. */
4744         if (!intel_crtc->config.clock_set) {
4745                 intel_crtc->config.dpll.n = clock.n;
4746                 intel_crtc->config.dpll.m1 = clock.m1;
4747                 intel_crtc->config.dpll.m2 = clock.m2;
4748                 intel_crtc->config.dpll.p1 = clock.p1;
4749                 intel_crtc->config.dpll.p2 = clock.p2;
4750         }
4751
4752         if (is_sdvo && is_tv)
4753                 i9xx_adjust_sdvo_tv_clock(intel_crtc);
4754
4755         if (IS_GEN2(dev))
4756                 i8xx_update_pll(intel_crtc, adjusted_mode,
4757                                 has_reduced_clock ? &reduced_clock : NULL,
4758                                 num_connectors);
4759         else if (IS_VALLEYVIEW(dev))
4760                 vlv_update_pll(intel_crtc);
4761         else
4762                 i9xx_update_pll(intel_crtc,
4763                                 has_reduced_clock ? &reduced_clock : NULL,
4764                                 num_connectors);
4765
4766         /* Set up the display plane register */
4767         dspcntr = DISPPLANE_GAMMA_ENABLE;
4768
4769         if (!IS_VALLEYVIEW(dev)) {
4770                 if (pipe == 0)
4771                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4772                 else
4773                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4774         }
4775
4776         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
4777         drm_mode_debug_printmodeline(mode);
4778
4779         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4780
4781         /* pipesrc and dspsize control the size that is scaled from,
4782          * which should always be the user's requested size.
4783          */
4784         I915_WRITE(DSPSIZE(plane),
4785                    ((mode->vdisplay - 1) << 16) |
4786                    (mode->hdisplay - 1));
4787         I915_WRITE(DSPPOS(plane), 0);
4788
4789         i9xx_set_pipeconf(intel_crtc);
4790
4791         I915_WRITE(DSPCNTR(plane), dspcntr);
4792         POSTING_READ(DSPCNTR(plane));
4793
4794         ret = intel_pipe_set_base(crtc, x, y, fb);
4795
4796         intel_update_watermarks(dev);
4797
4798         return ret;
4799 }
4800
4801 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4802                                  struct intel_crtc_config *pipe_config)
4803 {
4804         struct drm_device *dev = crtc->base.dev;
4805         struct drm_i915_private *dev_priv = dev->dev_private;
4806         uint32_t tmp;
4807
4808         tmp = I915_READ(PIPECONF(crtc->pipe));
4809         if (!(tmp & PIPECONF_ENABLE))
4810                 return false;
4811
4812         return true;
4813 }
4814
4815 static void ironlake_init_pch_refclk(struct drm_device *dev)
4816 {
4817         struct drm_i915_private *dev_priv = dev->dev_private;
4818         struct drm_mode_config *mode_config = &dev->mode_config;
4819         struct intel_encoder *encoder;
4820         u32 val, final;
4821         bool has_lvds = false;
4822         bool has_cpu_edp = false;
4823         bool has_pch_edp = false;
4824         bool has_panel = false;
4825         bool has_ck505 = false;
4826         bool can_ssc = false;
4827
4828         /* We need to take the global config into account */
4829         list_for_each_entry(encoder, &mode_config->encoder_list,
4830                             base.head) {
4831                 switch (encoder->type) {
4832                 case INTEL_OUTPUT_LVDS:
4833                         has_panel = true;
4834                         has_lvds = true;
4835                         break;
4836                 case INTEL_OUTPUT_EDP:
4837                         has_panel = true;
4838                         if (intel_encoder_is_pch_edp(&encoder->base))
4839                                 has_pch_edp = true;
4840                         else
4841                                 has_cpu_edp = true;
4842                         break;
4843                 }
4844         }
4845
4846         if (HAS_PCH_IBX(dev)) {
4847                 has_ck505 = dev_priv->display_clock_mode;
4848                 can_ssc = has_ck505;
4849         } else {
4850                 has_ck505 = false;
4851                 can_ssc = true;
4852         }
4853
4854         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4855                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4856                       has_ck505);
4857
4858         /* Ironlake: try to setup display ref clock before DPLL
4859          * enabling. This is only under driver's control after
4860          * PCH B stepping, previous chipset stepping should be
4861          * ignoring this setting.
4862          */
4863         val = I915_READ(PCH_DREF_CONTROL);
4864
4865         /* As we must carefully and slowly disable/enable each source in turn,
4866          * compute the final state we want first and check if we need to
4867          * make any changes at all.
4868          */
4869         final = val;
4870         final &= ~DREF_NONSPREAD_SOURCE_MASK;
4871         if (has_ck505)
4872                 final |= DREF_NONSPREAD_CK505_ENABLE;
4873         else
4874                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
4875
4876         final &= ~DREF_SSC_SOURCE_MASK;
4877         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4878         final &= ~DREF_SSC1_ENABLE;
4879
4880         if (has_panel) {
4881                 final |= DREF_SSC_SOURCE_ENABLE;
4882
4883                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
4884                         final |= DREF_SSC1_ENABLE;
4885
4886                 if (has_cpu_edp) {
4887                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
4888                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4889                         else
4890                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4891                 } else
4892                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4893         } else {
4894                 final |= DREF_SSC_SOURCE_DISABLE;
4895                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4896         }
4897
4898         if (final == val)
4899                 return;
4900
4901         /* Always enable nonspread source */
4902         val &= ~DREF_NONSPREAD_SOURCE_MASK;
4903
4904         if (has_ck505)
4905                 val |= DREF_NONSPREAD_CK505_ENABLE;
4906         else
4907                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
4908
4909         if (has_panel) {
4910                 val &= ~DREF_SSC_SOURCE_MASK;
4911                 val |= DREF_SSC_SOURCE_ENABLE;
4912
4913                 /* SSC must be turned on before enabling the CPU output  */
4914                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4915                         DRM_DEBUG_KMS("Using SSC on panel\n");
4916                         val |= DREF_SSC1_ENABLE;
4917                 } else
4918                         val &= ~DREF_SSC1_ENABLE;
4919
4920                 /* Get SSC going before enabling the outputs */
4921                 I915_WRITE(PCH_DREF_CONTROL, val);
4922                 POSTING_READ(PCH_DREF_CONTROL);
4923                 udelay(200);
4924
4925                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4926
4927                 /* Enable CPU source on CPU attached eDP */
4928                 if (has_cpu_edp) {
4929                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4930                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4931                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4932                         }
4933                         else
4934                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4935                 } else
4936                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4937
4938                 I915_WRITE(PCH_DREF_CONTROL, val);
4939                 POSTING_READ(PCH_DREF_CONTROL);
4940                 udelay(200);
4941         } else {
4942                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4943
4944                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4945
4946                 /* Turn off CPU output */
4947                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4948
4949                 I915_WRITE(PCH_DREF_CONTROL, val);
4950                 POSTING_READ(PCH_DREF_CONTROL);
4951                 udelay(200);
4952
4953                 /* Turn off the SSC source */
4954                 val &= ~DREF_SSC_SOURCE_MASK;
4955                 val |= DREF_SSC_SOURCE_DISABLE;
4956
4957                 /* Turn off SSC1 */
4958                 val &= ~DREF_SSC1_ENABLE;
4959
4960                 I915_WRITE(PCH_DREF_CONTROL, val);
4961                 POSTING_READ(PCH_DREF_CONTROL);
4962                 udelay(200);
4963         }
4964
4965         BUG_ON(val != final);
4966 }
4967
4968 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
4969 static void lpt_init_pch_refclk(struct drm_device *dev)
4970 {
4971         struct drm_i915_private *dev_priv = dev->dev_private;
4972         struct drm_mode_config *mode_config = &dev->mode_config;
4973         struct intel_encoder *encoder;
4974         bool has_vga = false;
4975         bool is_sdv = false;
4976         u32 tmp;
4977
4978         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4979                 switch (encoder->type) {
4980                 case INTEL_OUTPUT_ANALOG:
4981                         has_vga = true;
4982                         break;
4983                 }
4984         }
4985
4986         if (!has_vga)
4987                 return;
4988
4989         mutex_lock(&dev_priv->dpio_lock);
4990
4991         /* XXX: Rip out SDV support once Haswell ships for real. */
4992         if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
4993                 is_sdv = true;
4994
4995         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4996         tmp &= ~SBI_SSCCTL_DISABLE;
4997         tmp |= SBI_SSCCTL_PATHALT;
4998         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4999
5000         udelay(24);
5001
5002         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5003         tmp &= ~SBI_SSCCTL_PATHALT;
5004         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5005
5006         if (!is_sdv) {
5007                 tmp = I915_READ(SOUTH_CHICKEN2);
5008                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5009                 I915_WRITE(SOUTH_CHICKEN2, tmp);
5010
5011                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5012                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5013                         DRM_ERROR("FDI mPHY reset assert timeout\n");
5014
5015                 tmp = I915_READ(SOUTH_CHICKEN2);
5016                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5017                 I915_WRITE(SOUTH_CHICKEN2, tmp);
5018
5019                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5020                                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
5021                                        100))
5022                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5023         }
5024
5025         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5026         tmp &= ~(0xFF << 24);
5027         tmp |= (0x12 << 24);
5028         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5029
5030         if (is_sdv) {
5031                 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
5032                 tmp |= 0x7FFF;
5033                 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
5034         }
5035
5036         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5037         tmp |= (1 << 11);
5038         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5039
5040         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5041         tmp |= (1 << 11);
5042         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5043
5044         if (is_sdv) {
5045                 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
5046                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5047                 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
5048
5049                 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
5050                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5051                 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
5052
5053                 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
5054                 tmp |= (0x3F << 8);
5055                 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5056
5057                 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5058                 tmp |= (0x3F << 8);
5059                 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5060         }
5061
5062         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5063         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5064         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5065
5066         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5067         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5068         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5069
5070         if (!is_sdv) {
5071                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5072                 tmp &= ~(7 << 13);
5073                 tmp |= (5 << 13);
5074                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5075
5076                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5077                 tmp &= ~(7 << 13);
5078                 tmp |= (5 << 13);
5079                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5080         }
5081
5082         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5083         tmp &= ~0xFF;
5084         tmp |= 0x1C;
5085         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5086
5087         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5088         tmp &= ~0xFF;
5089         tmp |= 0x1C;
5090         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5091
5092         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5093         tmp &= ~(0xFF << 16);
5094         tmp |= (0x1C << 16);
5095         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5096
5097         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5098         tmp &= ~(0xFF << 16);
5099         tmp |= (0x1C << 16);
5100         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5101
5102         if (!is_sdv) {
5103                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5104                 tmp |= (1 << 27);
5105                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5106
5107                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5108                 tmp |= (1 << 27);
5109                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5110
5111                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5112                 tmp &= ~(0xF << 28);
5113                 tmp |= (4 << 28);
5114                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5115
5116                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5117                 tmp &= ~(0xF << 28);
5118                 tmp |= (4 << 28);
5119                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5120         }
5121
5122         /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5123         tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5124         tmp |= SBI_DBUFF0_ENABLE;
5125         intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5126
5127         mutex_unlock(&dev_priv->dpio_lock);
5128 }
5129
5130 /*
5131  * Initialize reference clocks when the driver loads
5132  */
5133 void intel_init_pch_refclk(struct drm_device *dev)
5134 {
5135         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5136                 ironlake_init_pch_refclk(dev);
5137         else if (HAS_PCH_LPT(dev))
5138                 lpt_init_pch_refclk(dev);
5139 }
5140
5141 static int ironlake_get_refclk(struct drm_crtc *crtc)
5142 {
5143         struct drm_device *dev = crtc->dev;
5144         struct drm_i915_private *dev_priv = dev->dev_private;
5145         struct intel_encoder *encoder;
5146         struct intel_encoder *edp_encoder = NULL;
5147         int num_connectors = 0;
5148         bool is_lvds = false;
5149
5150         for_each_encoder_on_crtc(dev, crtc, encoder) {
5151                 switch (encoder->type) {
5152                 case INTEL_OUTPUT_LVDS:
5153                         is_lvds = true;
5154                         break;
5155                 case INTEL_OUTPUT_EDP:
5156                         edp_encoder = encoder;
5157                         break;
5158                 }
5159                 num_connectors++;
5160         }
5161
5162         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5163                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5164                               dev_priv->lvds_ssc_freq);
5165                 return dev_priv->lvds_ssc_freq * 1000;
5166         }
5167
5168         return 120000;
5169 }
5170
5171 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5172                                   struct drm_display_mode *adjusted_mode)
5173 {
5174         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5175         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5176         int pipe = intel_crtc->pipe;
5177         uint32_t val;
5178
5179         val = I915_READ(PIPECONF(pipe));
5180
5181         val &= ~PIPECONF_BPC_MASK;
5182         switch (intel_crtc->config.pipe_bpp) {
5183         case 18:
5184                 val |= PIPECONF_6BPC;
5185                 break;
5186         case 24:
5187                 val |= PIPECONF_8BPC;
5188                 break;
5189         case 30:
5190                 val |= PIPECONF_10BPC;
5191                 break;
5192         case 36:
5193                 val |= PIPECONF_12BPC;
5194                 break;
5195         default:
5196                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5197                 BUG();
5198         }
5199
5200         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5201         if (intel_crtc->config.dither)
5202                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5203
5204         val &= ~PIPECONF_INTERLACE_MASK;
5205         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5206                 val |= PIPECONF_INTERLACED_ILK;
5207         else
5208                 val |= PIPECONF_PROGRESSIVE;
5209
5210         if (intel_crtc->config.limited_color_range)
5211                 val |= PIPECONF_COLOR_RANGE_SELECT;
5212         else
5213                 val &= ~PIPECONF_COLOR_RANGE_SELECT;
5214
5215         I915_WRITE(PIPECONF(pipe), val);
5216         POSTING_READ(PIPECONF(pipe));
5217 }
5218
5219 /*
5220  * Set up the pipe CSC unit.
5221  *
5222  * Currently only full range RGB to limited range RGB conversion
5223  * is supported, but eventually this should handle various
5224  * RGB<->YCbCr scenarios as well.
5225  */
5226 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5227 {
5228         struct drm_device *dev = crtc->dev;
5229         struct drm_i915_private *dev_priv = dev->dev_private;
5230         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5231         int pipe = intel_crtc->pipe;
5232         uint16_t coeff = 0x7800; /* 1.0 */
5233
5234         /*
5235          * TODO: Check what kind of values actually come out of the pipe
5236          * with these coeff/postoff values and adjust to get the best
5237          * accuracy. Perhaps we even need to take the bpc value into
5238          * consideration.
5239          */
5240
5241         if (intel_crtc->config.limited_color_range)
5242                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5243
5244         /*
5245          * GY/GU and RY/RU should be the other way around according
5246          * to BSpec, but reality doesn't agree. Just set them up in
5247          * a way that results in the correct picture.
5248          */
5249         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5250         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5251
5252         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5253         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5254
5255         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5256         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5257
5258         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5259         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5260         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5261
5262         if (INTEL_INFO(dev)->gen > 6) {
5263                 uint16_t postoff = 0;
5264
5265                 if (intel_crtc->config.limited_color_range)
5266                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5267
5268                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5269                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5270                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5271
5272                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5273         } else {
5274                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5275
5276                 if (intel_crtc->config.limited_color_range)
5277                         mode |= CSC_BLACK_SCREEN_OFFSET;
5278
5279                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5280         }
5281 }
5282
5283 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5284                                  struct drm_display_mode *adjusted_mode)
5285 {
5286         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5287         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5288         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5289         uint32_t val;
5290
5291         val = I915_READ(PIPECONF(cpu_transcoder));
5292
5293         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5294         if (intel_crtc->config.dither)
5295                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5296
5297         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5298         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5299                 val |= PIPECONF_INTERLACED_ILK;
5300         else
5301                 val |= PIPECONF_PROGRESSIVE;
5302
5303         I915_WRITE(PIPECONF(cpu_transcoder), val);
5304         POSTING_READ(PIPECONF(cpu_transcoder));
5305 }
5306
5307 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5308                                     struct drm_display_mode *adjusted_mode,
5309                                     intel_clock_t *clock,
5310                                     bool *has_reduced_clock,
5311                                     intel_clock_t *reduced_clock)
5312 {
5313         struct drm_device *dev = crtc->dev;
5314         struct drm_i915_private *dev_priv = dev->dev_private;
5315         struct intel_encoder *intel_encoder;
5316         int refclk;
5317         const intel_limit_t *limit;
5318         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5319
5320         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5321                 switch (intel_encoder->type) {
5322                 case INTEL_OUTPUT_LVDS:
5323                         is_lvds = true;
5324                         break;
5325                 case INTEL_OUTPUT_SDVO:
5326                 case INTEL_OUTPUT_HDMI:
5327                         is_sdvo = true;
5328                         if (intel_encoder->needs_tv_clock)
5329                                 is_tv = true;
5330                         break;
5331                 case INTEL_OUTPUT_TVOUT:
5332                         is_tv = true;
5333                         break;
5334                 }
5335         }
5336
5337         refclk = ironlake_get_refclk(crtc);
5338
5339         /*
5340          * Returns a set of divisors for the desired target clock with the given
5341          * refclk, or FALSE.  The returned values represent the clock equation:
5342          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5343          */
5344         limit = intel_limit(crtc, refclk);
5345         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5346                               clock);
5347         if (!ret)
5348                 return false;
5349
5350         if (is_lvds && dev_priv->lvds_downclock_avail) {
5351                 /*
5352                  * Ensure we match the reduced clock's P to the target clock.
5353                  * If the clocks don't match, we can't switch the display clock
5354                  * by using the FP0/FP1. In such case we will disable the LVDS
5355                  * downclock feature.
5356                 */
5357                 *has_reduced_clock = limit->find_pll(limit, crtc,
5358                                                      dev_priv->lvds_downclock,
5359                                                      refclk,
5360                                                      clock,
5361                                                      reduced_clock);
5362         }
5363
5364         if (is_sdvo && is_tv)
5365                 i9xx_adjust_sdvo_tv_clock(to_intel_crtc(crtc));
5366
5367         return true;
5368 }
5369
5370 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5371 {
5372         struct drm_i915_private *dev_priv = dev->dev_private;
5373         uint32_t temp;
5374
5375         temp = I915_READ(SOUTH_CHICKEN1);
5376         if (temp & FDI_BC_BIFURCATION_SELECT)
5377                 return;
5378
5379         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5380         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5381
5382         temp |= FDI_BC_BIFURCATION_SELECT;
5383         DRM_DEBUG_KMS("enabling fdi C rx\n");
5384         I915_WRITE(SOUTH_CHICKEN1, temp);
5385         POSTING_READ(SOUTH_CHICKEN1);
5386 }
5387
5388 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5389 {
5390         struct drm_device *dev = intel_crtc->base.dev;
5391         struct drm_i915_private *dev_priv = dev->dev_private;
5392         struct intel_crtc *pipe_B_crtc =
5393                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5394
5395         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5396                       pipe_name(intel_crtc->pipe), intel_crtc->fdi_lanes);
5397         if (intel_crtc->fdi_lanes > 4) {
5398                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5399                               pipe_name(intel_crtc->pipe), intel_crtc->fdi_lanes);
5400                 /* Clamp lanes to avoid programming the hw with bogus values. */
5401                 intel_crtc->fdi_lanes = 4;
5402
5403                 return false;
5404         }
5405
5406         if (INTEL_INFO(dev)->num_pipes == 2)
5407                 return true;
5408
5409         switch (intel_crtc->pipe) {
5410         case PIPE_A:
5411                 return true;
5412         case PIPE_B:
5413                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5414                     intel_crtc->fdi_lanes > 2) {
5415                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5416                                       pipe_name(intel_crtc->pipe), intel_crtc->fdi_lanes);
5417                         /* Clamp lanes to avoid programming the hw with bogus values. */
5418                         intel_crtc->fdi_lanes = 2;
5419
5420                         return false;
5421                 }
5422
5423                 if (intel_crtc->fdi_lanes > 2)
5424                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5425                 else
5426                         cpt_enable_fdi_bc_bifurcation(dev);
5427
5428                 return true;
5429         case PIPE_C:
5430                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5431                         if (intel_crtc->fdi_lanes > 2) {
5432                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5433                                               pipe_name(intel_crtc->pipe), intel_crtc->fdi_lanes);
5434                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5435                                 intel_crtc->fdi_lanes = 2;
5436
5437                                 return false;
5438                         }
5439                 } else {
5440                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5441                         return false;
5442                 }
5443
5444                 cpt_enable_fdi_bc_bifurcation(dev);
5445
5446                 return true;
5447         default:
5448                 BUG();
5449         }
5450 }
5451
5452 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5453 {
5454         /*
5455          * Account for spread spectrum to avoid
5456          * oversubscribing the link. Max center spread
5457          * is 2.5%; use 5% for safety's sake.
5458          */
5459         u32 bps = target_clock * bpp * 21 / 20;
5460         return bps / (link_bw * 8) + 1;
5461 }
5462
5463 void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5464                                   struct intel_link_m_n *m_n)
5465 {
5466         struct drm_device *dev = crtc->base.dev;
5467         struct drm_i915_private *dev_priv = dev->dev_private;
5468         int pipe = crtc->pipe;
5469
5470         I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5471         I915_WRITE(TRANSDATA_N1(pipe), m_n->gmch_n);
5472         I915_WRITE(TRANSDPLINK_M1(pipe), m_n->link_m);
5473         I915_WRITE(TRANSDPLINK_N1(pipe), m_n->link_n);
5474 }
5475
5476 void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5477                                   struct intel_link_m_n *m_n)
5478 {
5479         struct drm_device *dev = crtc->base.dev;
5480         struct drm_i915_private *dev_priv = dev->dev_private;
5481         int pipe = crtc->pipe;
5482         enum transcoder transcoder = crtc->config.cpu_transcoder;
5483
5484         if (INTEL_INFO(dev)->gen >= 5) {
5485                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5486                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5487                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5488                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5489         } else {
5490                 I915_WRITE(PIPE_GMCH_DATA_M(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5491                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n->gmch_n);
5492                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n->link_m);
5493                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n->link_n);
5494         }
5495 }
5496
5497 static void ironlake_fdi_set_m_n(struct drm_crtc *crtc)
5498 {
5499         struct drm_device *dev = crtc->dev;
5500         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5501         struct drm_display_mode *adjusted_mode =
5502                 &intel_crtc->config.adjusted_mode;
5503         struct intel_link_m_n m_n = {0};
5504         int target_clock, lane, link_bw;
5505
5506         /* FDI is a binary signal running at ~2.7GHz, encoding
5507          * each output octet as 10 bits. The actual frequency
5508          * is stored as a divider into a 100MHz clock, and the
5509          * mode pixel clock is stored in units of 1KHz.
5510          * Hence the bw of each lane in terms of the mode signal
5511          * is:
5512          */
5513         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5514
5515         if (intel_crtc->config.pixel_target_clock)
5516                 target_clock = intel_crtc->config.pixel_target_clock;
5517         else
5518                 target_clock = adjusted_mode->clock;
5519
5520         lane = ironlake_get_lanes_required(target_clock, link_bw,
5521                                            intel_crtc->config.pipe_bpp);
5522
5523         intel_crtc->fdi_lanes = lane;
5524
5525         if (intel_crtc->config.pixel_multiplier > 1)
5526                 link_bw *= intel_crtc->config.pixel_multiplier;
5527         intel_link_compute_m_n(intel_crtc->config.pipe_bpp, lane, target_clock,
5528                                link_bw, &m_n);
5529
5530         intel_cpu_transcoder_set_m_n(intel_crtc, &m_n);
5531 }
5532
5533 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5534 {
5535         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5536 }
5537
5538 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5539                                       u32 *fp,
5540                                       intel_clock_t *reduced_clock, u32 *fp2)
5541 {
5542         struct drm_crtc *crtc = &intel_crtc->base;
5543         struct drm_device *dev = crtc->dev;
5544         struct drm_i915_private *dev_priv = dev->dev_private;
5545         struct intel_encoder *intel_encoder;
5546         uint32_t dpll;
5547         int factor, num_connectors = 0;
5548         bool is_lvds = false, is_sdvo = false, is_tv = false;
5549
5550         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5551                 switch (intel_encoder->type) {
5552                 case INTEL_OUTPUT_LVDS:
5553                         is_lvds = true;
5554                         break;
5555                 case INTEL_OUTPUT_SDVO:
5556                 case INTEL_OUTPUT_HDMI:
5557                         is_sdvo = true;
5558                         if (intel_encoder->needs_tv_clock)
5559                                 is_tv = true;
5560                         break;
5561                 case INTEL_OUTPUT_TVOUT:
5562                         is_tv = true;
5563                         break;
5564                 }
5565
5566                 num_connectors++;
5567         }
5568
5569         /* Enable autotuning of the PLL clock (if permissible) */
5570         factor = 21;
5571         if (is_lvds) {
5572                 if ((intel_panel_use_ssc(dev_priv) &&
5573                      dev_priv->lvds_ssc_freq == 100) ||
5574                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5575                         factor = 25;
5576         } else if (is_sdvo && is_tv)
5577                 factor = 20;
5578
5579         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5580                 *fp |= FP_CB_TUNE;
5581
5582         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5583                 *fp2 |= FP_CB_TUNE;
5584
5585         dpll = 0;
5586
5587         if (is_lvds)
5588                 dpll |= DPLLB_MODE_LVDS;
5589         else
5590                 dpll |= DPLLB_MODE_DAC_SERIAL;
5591
5592         if (intel_crtc->config.pixel_multiplier > 1) {
5593                 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5594                         << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5595         }
5596
5597         if (is_sdvo)
5598                 dpll |= DPLL_DVO_HIGH_SPEED;
5599         if (intel_crtc->config.has_dp_encoder)
5600                 dpll |= DPLL_DVO_HIGH_SPEED;
5601
5602         /* compute bitmask from p1 value */
5603         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5604         /* also FPA1 */
5605         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5606
5607         switch (intel_crtc->config.dpll.p2) {
5608         case 5:
5609                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5610                 break;
5611         case 7:
5612                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5613                 break;
5614         case 10:
5615                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5616                 break;
5617         case 14:
5618                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5619                 break;
5620         }
5621
5622         if (is_sdvo && is_tv)
5623                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5624         else if (is_tv)
5625                 /* XXX: just matching BIOS for now */
5626                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5627                 dpll |= 3;
5628         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5629                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5630         else
5631                 dpll |= PLL_REF_INPUT_DREFCLK;
5632
5633         return dpll;
5634 }
5635
5636 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5637                                   int x, int y,
5638                                   struct drm_framebuffer *fb)
5639 {
5640         struct drm_device *dev = crtc->dev;
5641         struct drm_i915_private *dev_priv = dev->dev_private;
5642         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5643         struct drm_display_mode *adjusted_mode =
5644                 &intel_crtc->config.adjusted_mode;
5645         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5646         int pipe = intel_crtc->pipe;
5647         int plane = intel_crtc->plane;
5648         int num_connectors = 0;
5649         intel_clock_t clock, reduced_clock;
5650         u32 dpll = 0, fp = 0, fp2 = 0;
5651         bool ok, has_reduced_clock = false;
5652         bool is_lvds = false;
5653         struct intel_encoder *encoder;
5654         int ret;
5655         bool fdi_config_ok;
5656
5657         for_each_encoder_on_crtc(dev, crtc, encoder) {
5658                 switch (encoder->type) {
5659                 case INTEL_OUTPUT_LVDS:
5660                         is_lvds = true;
5661                         break;
5662                 }
5663
5664                 num_connectors++;
5665         }
5666
5667         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5668              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5669
5670         intel_crtc->config.cpu_transcoder = pipe;
5671
5672         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5673                                      &has_reduced_clock, &reduced_clock);
5674         if (!ok) {
5675                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5676                 return -EINVAL;
5677         }
5678         /* Compat-code for transition, will disappear. */
5679         if (!intel_crtc->config.clock_set) {
5680                 intel_crtc->config.dpll.n = clock.n;
5681                 intel_crtc->config.dpll.m1 = clock.m1;
5682                 intel_crtc->config.dpll.m2 = clock.m2;
5683                 intel_crtc->config.dpll.p1 = clock.p1;
5684                 intel_crtc->config.dpll.p2 = clock.p2;
5685         }
5686
5687         /* Ensure that the cursor is valid for the new mode before changing... */
5688         intel_crtc_update_cursor(crtc, true);
5689
5690         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
5691         drm_mode_debug_printmodeline(mode);
5692
5693         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5694         if (intel_crtc->config.has_pch_encoder) {
5695                 struct intel_pch_pll *pll;
5696
5697                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5698                 if (has_reduced_clock)
5699                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5700
5701                 dpll = ironlake_compute_dpll(intel_crtc,
5702                                              &fp, &reduced_clock,
5703                                              has_reduced_clock ? &fp2 : NULL);
5704
5705                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5706                 if (pll == NULL) {
5707                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5708                                          pipe_name(pipe));
5709                         return -EINVAL;
5710                 }
5711         } else
5712                 intel_put_pch_pll(intel_crtc);
5713
5714         if (intel_crtc->config.has_dp_encoder)
5715                 intel_dp_set_m_n(intel_crtc);
5716
5717         for_each_encoder_on_crtc(dev, crtc, encoder)
5718                 if (encoder->pre_pll_enable)
5719                         encoder->pre_pll_enable(encoder);
5720
5721         if (intel_crtc->pch_pll) {
5722                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5723
5724                 /* Wait for the clocks to stabilize. */
5725                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5726                 udelay(150);
5727
5728                 /* The pixel multiplier can only be updated once the
5729                  * DPLL is enabled and the clocks are stable.
5730                  *
5731                  * So write it again.
5732                  */
5733                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5734         }
5735
5736         intel_crtc->lowfreq_avail = false;
5737         if (intel_crtc->pch_pll) {
5738                 if (is_lvds && has_reduced_clock && i915_powersave) {
5739                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5740                         intel_crtc->lowfreq_avail = true;
5741                 } else {
5742                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5743                 }
5744         }
5745
5746         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5747
5748         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5749          * ironlake_check_fdi_lanes. */
5750         intel_crtc->fdi_lanes = 0;
5751         if (intel_crtc->config.has_pch_encoder)
5752                 ironlake_fdi_set_m_n(crtc);
5753
5754         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5755
5756         ironlake_set_pipeconf(crtc, adjusted_mode);
5757
5758         /* Set up the display plane register */
5759         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5760         POSTING_READ(DSPCNTR(plane));
5761
5762         ret = intel_pipe_set_base(crtc, x, y, fb);
5763
5764         intel_update_watermarks(dev);
5765
5766         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5767
5768         return fdi_config_ok ? ret : -EINVAL;
5769 }
5770
5771 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5772                                      struct intel_crtc_config *pipe_config)
5773 {
5774         struct drm_device *dev = crtc->base.dev;
5775         struct drm_i915_private *dev_priv = dev->dev_private;
5776         uint32_t tmp;
5777
5778         tmp = I915_READ(PIPECONF(crtc->pipe));
5779         if (!(tmp & PIPECONF_ENABLE))
5780                 return false;
5781
5782         if (I915_READ(TRANSCONF(crtc->pipe)) & TRANS_ENABLE)
5783                 pipe_config->has_pch_encoder = true;
5784
5785         return true;
5786 }
5787
5788 static void haswell_modeset_global_resources(struct drm_device *dev)
5789 {
5790         struct drm_i915_private *dev_priv = dev->dev_private;
5791         bool enable = false;
5792         struct intel_crtc *crtc;
5793         struct intel_encoder *encoder;
5794
5795         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5796                 if (crtc->pipe != PIPE_A && crtc->base.enabled)
5797                         enable = true;
5798                 /* XXX: Should check for edp transcoder here, but thanks to init
5799                  * sequence that's not yet available. Just in case desktop eDP
5800                  * on PORT D is possible on haswell, too. */
5801                 /* Even the eDP panel fitter is outside the always-on well. */
5802                 if (I915_READ(PF_WIN_SZ(crtc->pipe)))
5803                         enable = true;
5804         }
5805
5806         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
5807                             base.head) {
5808                 if (encoder->type != INTEL_OUTPUT_EDP &&
5809                     encoder->connectors_active)
5810                         enable = true;
5811         }
5812
5813         intel_set_power_well(dev, enable);
5814 }
5815
5816 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5817                                  int x, int y,
5818                                  struct drm_framebuffer *fb)
5819 {
5820         struct drm_device *dev = crtc->dev;
5821         struct drm_i915_private *dev_priv = dev->dev_private;
5822         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5823         struct drm_display_mode *adjusted_mode =
5824                 &intel_crtc->config.adjusted_mode;
5825         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5826         int pipe = intel_crtc->pipe;
5827         int plane = intel_crtc->plane;
5828         int num_connectors = 0;
5829         bool is_cpu_edp = false;
5830         struct intel_encoder *encoder;
5831         int ret;
5832
5833         for_each_encoder_on_crtc(dev, crtc, encoder) {
5834                 switch (encoder->type) {
5835                 case INTEL_OUTPUT_EDP:
5836                         if (!intel_encoder_is_pch_edp(&encoder->base))
5837                                 is_cpu_edp = true;
5838                         break;
5839                 }
5840
5841                 num_connectors++;
5842         }
5843
5844         if (is_cpu_edp)
5845                 intel_crtc->config.cpu_transcoder = TRANSCODER_EDP;
5846         else
5847                 intel_crtc->config.cpu_transcoder = pipe;
5848
5849         /* We are not sure yet this won't happen. */
5850         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5851              INTEL_PCH_TYPE(dev));
5852
5853         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5854              num_connectors, pipe_name(pipe));
5855
5856         WARN_ON(I915_READ(PIPECONF(intel_crtc->config.cpu_transcoder)) &
5857                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5858
5859         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5860
5861         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5862                 return -EINVAL;
5863
5864         /* Ensure that the cursor is valid for the new mode before changing... */
5865         intel_crtc_update_cursor(crtc, true);
5866
5867         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
5868         drm_mode_debug_printmodeline(mode);
5869
5870         if (intel_crtc->config.has_dp_encoder)
5871                 intel_dp_set_m_n(intel_crtc);
5872
5873         intel_crtc->lowfreq_avail = false;
5874
5875         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5876
5877         if (intel_crtc->config.has_pch_encoder)
5878                 ironlake_fdi_set_m_n(crtc);
5879
5880         haswell_set_pipeconf(crtc, adjusted_mode);
5881
5882         intel_set_pipe_csc(crtc);
5883
5884         /* Set up the display plane register */
5885         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5886         POSTING_READ(DSPCNTR(plane));
5887
5888         ret = intel_pipe_set_base(crtc, x, y, fb);
5889
5890         intel_update_watermarks(dev);
5891
5892         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5893
5894         return ret;
5895 }
5896
5897 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5898                                     struct intel_crtc_config *pipe_config)
5899 {
5900         struct drm_device *dev = crtc->base.dev;
5901         struct drm_i915_private *dev_priv = dev->dev_private;
5902         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
5903         uint32_t tmp;
5904
5905         if (!intel_using_power_well(dev_priv->dev) &&
5906             cpu_transcoder != TRANSCODER_EDP)
5907                 return false;
5908
5909         tmp = I915_READ(PIPECONF(cpu_transcoder));
5910         if (!(tmp & PIPECONF_ENABLE))
5911                 return false;
5912
5913         /*
5914          * Haswell has only FDI/PCH transcoder A. It is which is connected to
5915          * DDI E. So just check whether this pipe is wired to DDI E and whether
5916          * the PCH transcoder is on.
5917          */
5918         tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
5919         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
5920             I915_READ(TRANSCONF(PIPE_A)) & TRANS_ENABLE)
5921                 pipe_config->has_pch_encoder = true;
5922
5923         return true;
5924 }
5925
5926 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5927                                int x, int y,
5928                                struct drm_framebuffer *fb)
5929 {
5930         struct drm_device *dev = crtc->dev;
5931         struct drm_i915_private *dev_priv = dev->dev_private;
5932         struct drm_encoder_helper_funcs *encoder_funcs;
5933         struct intel_encoder *encoder;
5934         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5935         struct drm_display_mode *adjusted_mode =
5936                 &intel_crtc->config.adjusted_mode;
5937         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5938         int pipe = intel_crtc->pipe;
5939         int ret;
5940
5941         drm_vblank_pre_modeset(dev, pipe);
5942
5943         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
5944
5945         drm_vblank_post_modeset(dev, pipe);
5946
5947         if (ret != 0)
5948                 return ret;
5949
5950         for_each_encoder_on_crtc(dev, crtc, encoder) {
5951                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5952                         encoder->base.base.id,
5953                         drm_get_encoder_name(&encoder->base),
5954                         mode->base.id, mode->name);
5955                 if (encoder->mode_set) {
5956                         encoder->mode_set(encoder);
5957                 } else {
5958                         encoder_funcs = encoder->base.helper_private;
5959                         encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5960                 }
5961         }
5962
5963         return 0;
5964 }
5965
5966 static bool intel_eld_uptodate(struct drm_connector *connector,
5967                                int reg_eldv, uint32_t bits_eldv,
5968                                int reg_elda, uint32_t bits_elda,
5969                                int reg_edid)
5970 {
5971         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5972         uint8_t *eld = connector->eld;
5973         uint32_t i;
5974
5975         i = I915_READ(reg_eldv);
5976         i &= bits_eldv;
5977
5978         if (!eld[0])
5979                 return !i;
5980
5981         if (!i)
5982                 return false;
5983
5984         i = I915_READ(reg_elda);
5985         i &= ~bits_elda;
5986         I915_WRITE(reg_elda, i);
5987
5988         for (i = 0; i < eld[2]; i++)
5989                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5990                         return false;
5991
5992         return true;
5993 }
5994
5995 static void g4x_write_eld(struct drm_connector *connector,
5996                           struct drm_crtc *crtc)
5997 {
5998         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5999         uint8_t *eld = connector->eld;
6000         uint32_t eldv;
6001         uint32_t len;
6002         uint32_t i;
6003
6004         i = I915_READ(G4X_AUD_VID_DID);
6005
6006         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6007                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6008         else
6009                 eldv = G4X_ELDV_DEVCTG;
6010
6011         if (intel_eld_uptodate(connector,
6012                                G4X_AUD_CNTL_ST, eldv,
6013                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6014                                G4X_HDMIW_HDMIEDID))
6015                 return;
6016
6017         i = I915_READ(G4X_AUD_CNTL_ST);
6018         i &= ~(eldv | G4X_ELD_ADDR);
6019         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6020         I915_WRITE(G4X_AUD_CNTL_ST, i);
6021
6022         if (!eld[0])
6023                 return;
6024
6025         len = min_t(uint8_t, eld[2], len);
6026         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6027         for (i = 0; i < len; i++)
6028                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6029
6030         i = I915_READ(G4X_AUD_CNTL_ST);
6031         i |= eldv;
6032         I915_WRITE(G4X_AUD_CNTL_ST, i);
6033 }
6034
6035 static void haswell_write_eld(struct drm_connector *connector,
6036                                      struct drm_crtc *crtc)
6037 {
6038         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6039         uint8_t *eld = connector->eld;
6040         struct drm_device *dev = crtc->dev;
6041         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6042         uint32_t eldv;
6043         uint32_t i;
6044         int len;
6045         int pipe = to_intel_crtc(crtc)->pipe;
6046         int tmp;
6047
6048         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6049         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6050         int aud_config = HSW_AUD_CFG(pipe);
6051         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6052
6053
6054         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6055
6056         /* Audio output enable */
6057         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6058         tmp = I915_READ(aud_cntrl_st2);
6059         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6060         I915_WRITE(aud_cntrl_st2, tmp);
6061
6062         /* Wait for 1 vertical blank */
6063         intel_wait_for_vblank(dev, pipe);
6064
6065         /* Set ELD valid state */
6066         tmp = I915_READ(aud_cntrl_st2);
6067         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6068         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6069         I915_WRITE(aud_cntrl_st2, tmp);
6070         tmp = I915_READ(aud_cntrl_st2);
6071         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6072
6073         /* Enable HDMI mode */
6074         tmp = I915_READ(aud_config);
6075         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6076         /* clear N_programing_enable and N_value_index */
6077         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6078         I915_WRITE(aud_config, tmp);
6079
6080         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6081
6082         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6083         intel_crtc->eld_vld = true;
6084
6085         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6086                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6087                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6088                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6089         } else
6090                 I915_WRITE(aud_config, 0);
6091
6092         if (intel_eld_uptodate(connector,
6093                                aud_cntrl_st2, eldv,
6094                                aud_cntl_st, IBX_ELD_ADDRESS,
6095                                hdmiw_hdmiedid))
6096                 return;
6097
6098         i = I915_READ(aud_cntrl_st2);
6099         i &= ~eldv;
6100         I915_WRITE(aud_cntrl_st2, i);
6101
6102         if (!eld[0])
6103                 return;
6104
6105         i = I915_READ(aud_cntl_st);
6106         i &= ~IBX_ELD_ADDRESS;
6107         I915_WRITE(aud_cntl_st, i);
6108         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6109         DRM_DEBUG_DRIVER("port num:%d\n", i);
6110
6111         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6112         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6113         for (i = 0; i < len; i++)
6114                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6115
6116         i = I915_READ(aud_cntrl_st2);
6117         i |= eldv;
6118         I915_WRITE(aud_cntrl_st2, i);
6119
6120 }
6121
6122 static void ironlake_write_eld(struct drm_connector *connector,
6123                                      struct drm_crtc *crtc)
6124 {
6125         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6126         uint8_t *eld = connector->eld;
6127         uint32_t eldv;
6128         uint32_t i;
6129         int len;
6130         int hdmiw_hdmiedid;
6131         int aud_config;
6132         int aud_cntl_st;
6133         int aud_cntrl_st2;
6134         int pipe = to_intel_crtc(crtc)->pipe;
6135
6136         if (HAS_PCH_IBX(connector->dev)) {
6137                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6138                 aud_config = IBX_AUD_CFG(pipe);
6139                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6140                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6141         } else {
6142                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6143                 aud_config = CPT_AUD_CFG(pipe);
6144                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6145                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6146         }
6147
6148         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6149
6150         i = I915_READ(aud_cntl_st);
6151         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6152         if (!i) {
6153                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6154                 /* operate blindly on all ports */
6155                 eldv = IBX_ELD_VALIDB;
6156                 eldv |= IBX_ELD_VALIDB << 4;
6157                 eldv |= IBX_ELD_VALIDB << 8;
6158         } else {
6159                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6160                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6161         }
6162
6163         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6164                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6165                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6166                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6167         } else
6168                 I915_WRITE(aud_config, 0);
6169
6170         if (intel_eld_uptodate(connector,
6171                                aud_cntrl_st2, eldv,
6172                                aud_cntl_st, IBX_ELD_ADDRESS,
6173                                hdmiw_hdmiedid))
6174                 return;
6175
6176         i = I915_READ(aud_cntrl_st2);
6177         i &= ~eldv;
6178         I915_WRITE(aud_cntrl_st2, i);
6179
6180         if (!eld[0])
6181                 return;
6182
6183         i = I915_READ(aud_cntl_st);
6184         i &= ~IBX_ELD_ADDRESS;
6185         I915_WRITE(aud_cntl_st, i);
6186
6187         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6188         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6189         for (i = 0; i < len; i++)
6190                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6191
6192         i = I915_READ(aud_cntrl_st2);
6193         i |= eldv;
6194         I915_WRITE(aud_cntrl_st2, i);
6195 }
6196
6197 void intel_write_eld(struct drm_encoder *encoder,
6198                      struct drm_display_mode *mode)
6199 {
6200         struct drm_crtc *crtc = encoder->crtc;
6201         struct drm_connector *connector;
6202         struct drm_device *dev = encoder->dev;
6203         struct drm_i915_private *dev_priv = dev->dev_private;
6204
6205         connector = drm_select_eld(encoder, mode);
6206         if (!connector)
6207                 return;
6208
6209         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6210                          connector->base.id,
6211                          drm_get_connector_name(connector),
6212                          connector->encoder->base.id,
6213                          drm_get_encoder_name(connector->encoder));
6214
6215         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6216
6217         if (dev_priv->display.write_eld)
6218                 dev_priv->display.write_eld(connector, crtc);
6219 }
6220
6221 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6222 void intel_crtc_load_lut(struct drm_crtc *crtc)
6223 {
6224         struct drm_device *dev = crtc->dev;
6225         struct drm_i915_private *dev_priv = dev->dev_private;
6226         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6227         int palreg = PALETTE(intel_crtc->pipe);
6228         int i;
6229
6230         /* The clocks have to be on to load the palette. */
6231         if (!crtc->enabled || !intel_crtc->active)
6232                 return;
6233
6234         /* use legacy palette for Ironlake */
6235         if (HAS_PCH_SPLIT(dev))
6236                 palreg = LGC_PALETTE(intel_crtc->pipe);
6237
6238         for (i = 0; i < 256; i++) {
6239                 I915_WRITE(palreg + 4 * i,
6240                            (intel_crtc->lut_r[i] << 16) |
6241                            (intel_crtc->lut_g[i] << 8) |
6242                            intel_crtc->lut_b[i]);
6243         }
6244 }
6245
6246 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6247 {
6248         struct drm_device *dev = crtc->dev;
6249         struct drm_i915_private *dev_priv = dev->dev_private;
6250         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6251         bool visible = base != 0;
6252         u32 cntl;
6253
6254         if (intel_crtc->cursor_visible == visible)
6255                 return;
6256
6257         cntl = I915_READ(_CURACNTR);
6258         if (visible) {
6259                 /* On these chipsets we can only modify the base whilst
6260                  * the cursor is disabled.
6261                  */
6262                 I915_WRITE(_CURABASE, base);
6263
6264                 cntl &= ~(CURSOR_FORMAT_MASK);
6265                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6266                 cntl |= CURSOR_ENABLE |
6267                         CURSOR_GAMMA_ENABLE |
6268                         CURSOR_FORMAT_ARGB;
6269         } else
6270                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6271         I915_WRITE(_CURACNTR, cntl);
6272
6273         intel_crtc->cursor_visible = visible;
6274 }
6275
6276 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6277 {
6278         struct drm_device *dev = crtc->dev;
6279         struct drm_i915_private *dev_priv = dev->dev_private;
6280         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6281         int pipe = intel_crtc->pipe;
6282         bool visible = base != 0;
6283
6284         if (intel_crtc->cursor_visible != visible) {
6285                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6286                 if (base) {
6287                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6288                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6289                         cntl |= pipe << 28; /* Connect to correct pipe */
6290                 } else {
6291                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6292                         cntl |= CURSOR_MODE_DISABLE;
6293                 }
6294                 I915_WRITE(CURCNTR(pipe), cntl);
6295
6296                 intel_crtc->cursor_visible = visible;
6297         }
6298         /* and commit changes on next vblank */
6299         I915_WRITE(CURBASE(pipe), base);
6300 }
6301
6302 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6303 {
6304         struct drm_device *dev = crtc->dev;
6305         struct drm_i915_private *dev_priv = dev->dev_private;
6306         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6307         int pipe = intel_crtc->pipe;
6308         bool visible = base != 0;
6309
6310         if (intel_crtc->cursor_visible != visible) {
6311                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6312                 if (base) {
6313                         cntl &= ~CURSOR_MODE;
6314                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6315                 } else {
6316                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6317                         cntl |= CURSOR_MODE_DISABLE;
6318                 }
6319                 if (IS_HASWELL(dev))
6320                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6321                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6322
6323                 intel_crtc->cursor_visible = visible;
6324         }
6325         /* and commit changes on next vblank */
6326         I915_WRITE(CURBASE_IVB(pipe), base);
6327 }
6328
6329 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6330 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6331                                      bool on)
6332 {
6333         struct drm_device *dev = crtc->dev;
6334         struct drm_i915_private *dev_priv = dev->dev_private;
6335         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6336         int pipe = intel_crtc->pipe;
6337         int x = intel_crtc->cursor_x;
6338         int y = intel_crtc->cursor_y;
6339         u32 base, pos;
6340         bool visible;
6341
6342         pos = 0;
6343
6344         if (on && crtc->enabled && crtc->fb) {
6345                 base = intel_crtc->cursor_addr;
6346                 if (x > (int) crtc->fb->width)
6347                         base = 0;
6348
6349                 if (y > (int) crtc->fb->height)
6350                         base = 0;
6351         } else
6352                 base = 0;
6353
6354         if (x < 0) {
6355                 if (x + intel_crtc->cursor_width < 0)
6356                         base = 0;
6357
6358                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6359                 x = -x;
6360         }
6361         pos |= x << CURSOR_X_SHIFT;
6362
6363         if (y < 0) {
6364                 if (y + intel_crtc->cursor_height < 0)
6365                         base = 0;
6366
6367                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6368                 y = -y;
6369         }
6370         pos |= y << CURSOR_Y_SHIFT;
6371
6372         visible = base != 0;
6373         if (!visible && !intel_crtc->cursor_visible)
6374                 return;
6375
6376         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6377                 I915_WRITE(CURPOS_IVB(pipe), pos);
6378                 ivb_update_cursor(crtc, base);
6379         } else {
6380                 I915_WRITE(CURPOS(pipe), pos);
6381                 if (IS_845G(dev) || IS_I865G(dev))
6382                         i845_update_cursor(crtc, base);
6383                 else
6384                         i9xx_update_cursor(crtc, base);
6385         }
6386 }
6387
6388 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6389                                  struct drm_file *file,
6390                                  uint32_t handle,
6391                                  uint32_t width, uint32_t height)
6392 {
6393         struct drm_device *dev = crtc->dev;
6394         struct drm_i915_private *dev_priv = dev->dev_private;
6395         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6396         struct drm_i915_gem_object *obj;
6397         uint32_t addr;
6398         int ret;
6399
6400         /* if we want to turn off the cursor ignore width and height */
6401         if (!handle) {
6402                 DRM_DEBUG_KMS("cursor off\n");
6403                 addr = 0;
6404                 obj = NULL;
6405                 mutex_lock(&dev->struct_mutex);
6406                 goto finish;
6407         }
6408
6409         /* Currently we only support 64x64 cursors */
6410         if (width != 64 || height != 64) {
6411                 DRM_ERROR("we currently only support 64x64 cursors\n");
6412                 return -EINVAL;
6413         }
6414
6415         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6416         if (&obj->base == NULL)
6417                 return -ENOENT;
6418
6419         if (obj->base.size < width * height * 4) {
6420                 DRM_ERROR("buffer is to small\n");
6421                 ret = -ENOMEM;
6422                 goto fail;
6423         }
6424
6425         /* we only need to pin inside GTT if cursor is non-phy */
6426         mutex_lock(&dev->struct_mutex);
6427         if (!dev_priv->info->cursor_needs_physical) {
6428                 unsigned alignment;
6429
6430                 if (obj->tiling_mode) {
6431                         DRM_ERROR("cursor cannot be tiled\n");
6432                         ret = -EINVAL;
6433                         goto fail_locked;
6434                 }
6435
6436                 /* Note that the w/a also requires 2 PTE of padding following
6437                  * the bo. We currently fill all unused PTE with the shadow
6438                  * page and so we should always have valid PTE following the
6439                  * cursor preventing the VT-d warning.
6440                  */
6441                 alignment = 0;
6442                 if (need_vtd_wa(dev))
6443                         alignment = 64*1024;
6444
6445                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6446                 if (ret) {
6447                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6448                         goto fail_locked;
6449                 }
6450
6451                 ret = i915_gem_object_put_fence(obj);
6452                 if (ret) {
6453                         DRM_ERROR("failed to release fence for cursor");
6454                         goto fail_unpin;
6455                 }
6456
6457                 addr = obj->gtt_offset;
6458         } else {
6459                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6460                 ret = i915_gem_attach_phys_object(dev, obj,
6461                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6462                                                   align);
6463                 if (ret) {
6464                         DRM_ERROR("failed to attach phys object\n");
6465                         goto fail_locked;
6466                 }
6467                 addr = obj->phys_obj->handle->busaddr;
6468         }
6469
6470         if (IS_GEN2(dev))
6471                 I915_WRITE(CURSIZE, (height << 12) | width);
6472
6473  finish:
6474         if (intel_crtc->cursor_bo) {
6475                 if (dev_priv->info->cursor_needs_physical) {
6476                         if (intel_crtc->cursor_bo != obj)
6477                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6478                 } else
6479                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6480                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6481         }
6482
6483         mutex_unlock(&dev->struct_mutex);
6484
6485         intel_crtc->cursor_addr = addr;
6486         intel_crtc->cursor_bo = obj;
6487         intel_crtc->cursor_width = width;
6488         intel_crtc->cursor_height = height;
6489
6490         intel_crtc_update_cursor(crtc, true);
6491
6492         return 0;
6493 fail_unpin:
6494         i915_gem_object_unpin(obj);
6495 fail_locked:
6496         mutex_unlock(&dev->struct_mutex);
6497 fail:
6498         drm_gem_object_unreference_unlocked(&obj->base);
6499         return ret;
6500 }
6501
6502 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6503 {
6504         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6505
6506         intel_crtc->cursor_x = x;
6507         intel_crtc->cursor_y = y;
6508
6509         intel_crtc_update_cursor(crtc, true);
6510
6511         return 0;
6512 }
6513
6514 /** Sets the color ramps on behalf of RandR */
6515 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6516                                  u16 blue, int regno)
6517 {
6518         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6519
6520         intel_crtc->lut_r[regno] = red >> 8;
6521         intel_crtc->lut_g[regno] = green >> 8;
6522         intel_crtc->lut_b[regno] = blue >> 8;
6523 }
6524
6525 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6526                              u16 *blue, int regno)
6527 {
6528         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6529
6530         *red = intel_crtc->lut_r[regno] << 8;
6531         *green = intel_crtc->lut_g[regno] << 8;
6532         *blue = intel_crtc->lut_b[regno] << 8;
6533 }
6534
6535 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6536                                  u16 *blue, uint32_t start, uint32_t size)
6537 {
6538         int end = (start + size > 256) ? 256 : start + size, i;
6539         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6540
6541         for (i = start; i < end; i++) {
6542                 intel_crtc->lut_r[i] = red[i] >> 8;
6543                 intel_crtc->lut_g[i] = green[i] >> 8;
6544                 intel_crtc->lut_b[i] = blue[i] >> 8;
6545         }
6546
6547         intel_crtc_load_lut(crtc);
6548 }
6549
6550 /* VESA 640x480x72Hz mode to set on the pipe */
6551 static struct drm_display_mode load_detect_mode = {
6552         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6553                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6554 };
6555
6556 static struct drm_framebuffer *
6557 intel_framebuffer_create(struct drm_device *dev,
6558                          struct drm_mode_fb_cmd2 *mode_cmd,
6559                          struct drm_i915_gem_object *obj)
6560 {
6561         struct intel_framebuffer *intel_fb;
6562         int ret;
6563
6564         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6565         if (!intel_fb) {
6566                 drm_gem_object_unreference_unlocked(&obj->base);
6567                 return ERR_PTR(-ENOMEM);
6568         }
6569
6570         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6571         if (ret) {
6572                 drm_gem_object_unreference_unlocked(&obj->base);
6573                 kfree(intel_fb);
6574                 return ERR_PTR(ret);
6575         }
6576
6577         return &intel_fb->base;
6578 }
6579
6580 static u32
6581 intel_framebuffer_pitch_for_width(int width, int bpp)
6582 {
6583         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6584         return ALIGN(pitch, 64);
6585 }
6586
6587 static u32
6588 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6589 {
6590         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6591         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6592 }
6593
6594 static struct drm_framebuffer *
6595 intel_framebuffer_create_for_mode(struct drm_device *dev,
6596                                   struct drm_display_mode *mode,
6597                                   int depth, int bpp)
6598 {
6599         struct drm_i915_gem_object *obj;
6600         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6601
6602         obj = i915_gem_alloc_object(dev,
6603                                     intel_framebuffer_size_for_mode(mode, bpp));
6604         if (obj == NULL)
6605                 return ERR_PTR(-ENOMEM);
6606
6607         mode_cmd.width = mode->hdisplay;
6608         mode_cmd.height = mode->vdisplay;
6609         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6610                                                                 bpp);
6611         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6612
6613         return intel_framebuffer_create(dev, &mode_cmd, obj);
6614 }
6615
6616 static struct drm_framebuffer *
6617 mode_fits_in_fbdev(struct drm_device *dev,
6618                    struct drm_display_mode *mode)
6619 {
6620         struct drm_i915_private *dev_priv = dev->dev_private;
6621         struct drm_i915_gem_object *obj;
6622         struct drm_framebuffer *fb;
6623
6624         if (dev_priv->fbdev == NULL)
6625                 return NULL;
6626
6627         obj = dev_priv->fbdev->ifb.obj;
6628         if (obj == NULL)
6629                 return NULL;
6630
6631         fb = &dev_priv->fbdev->ifb.base;
6632         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6633                                                                fb->bits_per_pixel))
6634                 return NULL;
6635
6636         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6637                 return NULL;
6638
6639         return fb;
6640 }
6641
6642 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6643                                 struct drm_display_mode *mode,
6644                                 struct intel_load_detect_pipe *old)
6645 {
6646         struct intel_crtc *intel_crtc;
6647         struct intel_encoder *intel_encoder =
6648                 intel_attached_encoder(connector);
6649         struct drm_crtc *possible_crtc;
6650         struct drm_encoder *encoder = &intel_encoder->base;
6651         struct drm_crtc *crtc = NULL;
6652         struct drm_device *dev = encoder->dev;
6653         struct drm_framebuffer *fb;
6654         int i = -1;
6655
6656         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6657                       connector->base.id, drm_get_connector_name(connector),
6658                       encoder->base.id, drm_get_encoder_name(encoder));
6659
6660         /*
6661          * Algorithm gets a little messy:
6662          *
6663          *   - if the connector already has an assigned crtc, use it (but make
6664          *     sure it's on first)
6665          *
6666          *   - try to find the first unused crtc that can drive this connector,
6667          *     and use that if we find one
6668          */
6669
6670         /* See if we already have a CRTC for this connector */
6671         if (encoder->crtc) {
6672                 crtc = encoder->crtc;
6673
6674                 mutex_lock(&crtc->mutex);
6675
6676                 old->dpms_mode = connector->dpms;
6677                 old->load_detect_temp = false;
6678
6679                 /* Make sure the crtc and connector are running */
6680                 if (connector->dpms != DRM_MODE_DPMS_ON)
6681                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6682
6683                 return true;
6684         }
6685
6686         /* Find an unused one (if possible) */
6687         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6688                 i++;
6689                 if (!(encoder->possible_crtcs & (1 << i)))
6690                         continue;
6691                 if (!possible_crtc->enabled) {
6692                         crtc = possible_crtc;
6693                         break;
6694                 }
6695         }
6696
6697         /*
6698          * If we didn't find an unused CRTC, don't use any.
6699          */
6700         if (!crtc) {
6701                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6702                 return false;
6703         }
6704
6705         mutex_lock(&crtc->mutex);
6706         intel_encoder->new_crtc = to_intel_crtc(crtc);
6707         to_intel_connector(connector)->new_encoder = intel_encoder;
6708
6709         intel_crtc = to_intel_crtc(crtc);
6710         old->dpms_mode = connector->dpms;
6711         old->load_detect_temp = true;
6712         old->release_fb = NULL;
6713
6714         if (!mode)
6715                 mode = &load_detect_mode;
6716
6717         /* We need a framebuffer large enough to accommodate all accesses
6718          * that the plane may generate whilst we perform load detection.
6719          * We can not rely on the fbcon either being present (we get called
6720          * during its initialisation to detect all boot displays, or it may
6721          * not even exist) or that it is large enough to satisfy the
6722          * requested mode.
6723          */
6724         fb = mode_fits_in_fbdev(dev, mode);
6725         if (fb == NULL) {
6726                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6727                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6728                 old->release_fb = fb;
6729         } else
6730                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6731         if (IS_ERR(fb)) {
6732                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6733                 mutex_unlock(&crtc->mutex);
6734                 return false;
6735         }
6736
6737         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6738                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6739                 if (old->release_fb)
6740                         old->release_fb->funcs->destroy(old->release_fb);
6741                 mutex_unlock(&crtc->mutex);
6742                 return false;
6743         }
6744
6745         /* let the connector get through one full cycle before testing */
6746         intel_wait_for_vblank(dev, intel_crtc->pipe);
6747         return true;
6748 }
6749
6750 void intel_release_load_detect_pipe(struct drm_connector *connector,
6751                                     struct intel_load_detect_pipe *old)
6752 {
6753         struct intel_encoder *intel_encoder =
6754                 intel_attached_encoder(connector);
6755         struct drm_encoder *encoder = &intel_encoder->base;
6756         struct drm_crtc *crtc = encoder->crtc;
6757
6758         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6759                       connector->base.id, drm_get_connector_name(connector),
6760                       encoder->base.id, drm_get_encoder_name(encoder));
6761
6762         if (old->load_detect_temp) {
6763                 to_intel_connector(connector)->new_encoder = NULL;
6764                 intel_encoder->new_crtc = NULL;
6765                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6766
6767                 if (old->release_fb) {
6768                         drm_framebuffer_unregister_private(old->release_fb);
6769                         drm_framebuffer_unreference(old->release_fb);
6770                 }
6771
6772                 mutex_unlock(&crtc->mutex);
6773                 return;
6774         }
6775
6776         /* Switch crtc and encoder back off if necessary */
6777         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6778                 connector->funcs->dpms(connector, old->dpms_mode);
6779
6780         mutex_unlock(&crtc->mutex);
6781 }
6782
6783 /* Returns the clock of the currently programmed mode of the given pipe. */
6784 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6785 {
6786         struct drm_i915_private *dev_priv = dev->dev_private;
6787         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6788         int pipe = intel_crtc->pipe;
6789         u32 dpll = I915_READ(DPLL(pipe));
6790         u32 fp;
6791         intel_clock_t clock;
6792
6793         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6794                 fp = I915_READ(FP0(pipe));
6795         else
6796                 fp = I915_READ(FP1(pipe));
6797
6798         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6799         if (IS_PINEVIEW(dev)) {
6800                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6801                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6802         } else {
6803                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6804                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6805         }
6806
6807         if (!IS_GEN2(dev)) {
6808                 if (IS_PINEVIEW(dev))
6809                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6810                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6811                 else
6812                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6813                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6814
6815                 switch (dpll & DPLL_MODE_MASK) {
6816                 case DPLLB_MODE_DAC_SERIAL:
6817                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6818                                 5 : 10;
6819                         break;
6820                 case DPLLB_MODE_LVDS:
6821                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6822                                 7 : 14;
6823                         break;
6824                 default:
6825                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6826                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6827                         return 0;
6828                 }
6829
6830                 /* XXX: Handle the 100Mhz refclk */
6831                 intel_clock(dev, 96000, &clock);
6832         } else {
6833                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6834
6835                 if (is_lvds) {
6836                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6837                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6838                         clock.p2 = 14;
6839
6840                         if ((dpll & PLL_REF_INPUT_MASK) ==
6841                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6842                                 /* XXX: might not be 66MHz */
6843                                 intel_clock(dev, 66000, &clock);
6844                         } else
6845                                 intel_clock(dev, 48000, &clock);
6846                 } else {
6847                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6848                                 clock.p1 = 2;
6849                         else {
6850                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6851                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6852                         }
6853                         if (dpll & PLL_P2_DIVIDE_BY_4)
6854                                 clock.p2 = 4;
6855                         else
6856                                 clock.p2 = 2;
6857
6858                         intel_clock(dev, 48000, &clock);
6859                 }
6860         }
6861
6862         /* XXX: It would be nice to validate the clocks, but we can't reuse
6863          * i830PllIsValid() because it relies on the xf86_config connector
6864          * configuration being accurate, which it isn't necessarily.
6865          */
6866
6867         return clock.dot;
6868 }
6869
6870 /** Returns the currently programmed mode of the given pipe. */
6871 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6872                                              struct drm_crtc *crtc)
6873 {
6874         struct drm_i915_private *dev_priv = dev->dev_private;
6875         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6876         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6877         struct drm_display_mode *mode;
6878         int htot = I915_READ(HTOTAL(cpu_transcoder));
6879         int hsync = I915_READ(HSYNC(cpu_transcoder));
6880         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6881         int vsync = I915_READ(VSYNC(cpu_transcoder));
6882
6883         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6884         if (!mode)
6885                 return NULL;
6886
6887         mode->clock = intel_crtc_clock_get(dev, crtc);
6888         mode->hdisplay = (htot & 0xffff) + 1;
6889         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6890         mode->hsync_start = (hsync & 0xffff) + 1;
6891         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6892         mode->vdisplay = (vtot & 0xffff) + 1;
6893         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6894         mode->vsync_start = (vsync & 0xffff) + 1;
6895         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6896
6897         drm_mode_set_name(mode);
6898
6899         return mode;
6900 }
6901
6902 static void intel_increase_pllclock(struct drm_crtc *crtc)
6903 {
6904         struct drm_device *dev = crtc->dev;
6905         drm_i915_private_t *dev_priv = dev->dev_private;
6906         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6907         int pipe = intel_crtc->pipe;
6908         int dpll_reg = DPLL(pipe);
6909         int dpll;
6910
6911         if (HAS_PCH_SPLIT(dev))
6912                 return;
6913
6914         if (!dev_priv->lvds_downclock_avail)
6915                 return;
6916
6917         dpll = I915_READ(dpll_reg);
6918         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6919                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6920
6921                 assert_panel_unlocked(dev_priv, pipe);
6922
6923                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6924                 I915_WRITE(dpll_reg, dpll);
6925                 intel_wait_for_vblank(dev, pipe);
6926
6927                 dpll = I915_READ(dpll_reg);
6928                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6929                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6930         }
6931 }
6932
6933 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6934 {
6935         struct drm_device *dev = crtc->dev;
6936         drm_i915_private_t *dev_priv = dev->dev_private;
6937         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6938
6939         if (HAS_PCH_SPLIT(dev))
6940                 return;
6941
6942         if (!dev_priv->lvds_downclock_avail)
6943                 return;
6944
6945         /*
6946          * Since this is called by a timer, we should never get here in
6947          * the manual case.
6948          */
6949         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6950                 int pipe = intel_crtc->pipe;
6951                 int dpll_reg = DPLL(pipe);
6952                 int dpll;
6953
6954                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6955
6956                 assert_panel_unlocked(dev_priv, pipe);
6957
6958                 dpll = I915_READ(dpll_reg);
6959                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6960                 I915_WRITE(dpll_reg, dpll);
6961                 intel_wait_for_vblank(dev, pipe);
6962                 dpll = I915_READ(dpll_reg);
6963                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6964                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6965         }
6966
6967 }
6968
6969 void intel_mark_busy(struct drm_device *dev)
6970 {
6971         i915_update_gfx_val(dev->dev_private);
6972 }
6973
6974 void intel_mark_idle(struct drm_device *dev)
6975 {
6976         struct drm_crtc *crtc;
6977
6978         if (!i915_powersave)
6979                 return;
6980
6981         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6982                 if (!crtc->fb)
6983                         continue;
6984
6985                 intel_decrease_pllclock(crtc);
6986         }
6987 }
6988
6989 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6990 {
6991         struct drm_device *dev = obj->base.dev;
6992         struct drm_crtc *crtc;
6993
6994         if (!i915_powersave)
6995                 return;
6996
6997         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6998                 if (!crtc->fb)
6999                         continue;
7000
7001                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
7002                         intel_increase_pllclock(crtc);
7003         }
7004 }
7005
7006 static void intel_crtc_destroy(struct drm_crtc *crtc)
7007 {
7008         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7009         struct drm_device *dev = crtc->dev;
7010         struct intel_unpin_work *work;
7011         unsigned long flags;
7012
7013         spin_lock_irqsave(&dev->event_lock, flags);
7014         work = intel_crtc->unpin_work;
7015         intel_crtc->unpin_work = NULL;
7016         spin_unlock_irqrestore(&dev->event_lock, flags);
7017
7018         if (work) {
7019                 cancel_work_sync(&work->work);
7020                 kfree(work);
7021         }
7022
7023         drm_crtc_cleanup(crtc);
7024
7025         kfree(intel_crtc);
7026 }
7027
7028 static void intel_unpin_work_fn(struct work_struct *__work)
7029 {
7030         struct intel_unpin_work *work =
7031                 container_of(__work, struct intel_unpin_work, work);
7032         struct drm_device *dev = work->crtc->dev;
7033
7034         mutex_lock(&dev->struct_mutex);
7035         intel_unpin_fb_obj(work->old_fb_obj);
7036         drm_gem_object_unreference(&work->pending_flip_obj->base);
7037         drm_gem_object_unreference(&work->old_fb_obj->base);
7038
7039         intel_update_fbc(dev);
7040         mutex_unlock(&dev->struct_mutex);
7041
7042         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7043         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7044
7045         kfree(work);
7046 }
7047
7048 static void do_intel_finish_page_flip(struct drm_device *dev,
7049                                       struct drm_crtc *crtc)
7050 {
7051         drm_i915_private_t *dev_priv = dev->dev_private;
7052         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7053         struct intel_unpin_work *work;
7054         unsigned long flags;
7055
7056         /* Ignore early vblank irqs */
7057         if (intel_crtc == NULL)
7058                 return;
7059
7060         spin_lock_irqsave(&dev->event_lock, flags);
7061         work = intel_crtc->unpin_work;
7062
7063         /* Ensure we don't miss a work->pending update ... */
7064         smp_rmb();
7065
7066         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7067                 spin_unlock_irqrestore(&dev->event_lock, flags);
7068                 return;
7069         }
7070
7071         /* and that the unpin work is consistent wrt ->pending. */
7072         smp_rmb();
7073
7074         intel_crtc->unpin_work = NULL;
7075
7076         if (work->event)
7077                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7078
7079         drm_vblank_put(dev, intel_crtc->pipe);
7080
7081         spin_unlock_irqrestore(&dev->event_lock, flags);
7082
7083         wake_up_all(&dev_priv->pending_flip_queue);
7084
7085         queue_work(dev_priv->wq, &work->work);
7086
7087         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7088 }
7089
7090 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7091 {
7092         drm_i915_private_t *dev_priv = dev->dev_private;
7093         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7094
7095         do_intel_finish_page_flip(dev, crtc);
7096 }
7097
7098 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7099 {
7100         drm_i915_private_t *dev_priv = dev->dev_private;
7101         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7102
7103         do_intel_finish_page_flip(dev, crtc);
7104 }
7105
7106 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7107 {
7108         drm_i915_private_t *dev_priv = dev->dev_private;
7109         struct intel_crtc *intel_crtc =
7110                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7111         unsigned long flags;
7112
7113         /* NB: An MMIO update of the plane base pointer will also
7114          * generate a page-flip completion irq, i.e. every modeset
7115          * is also accompanied by a spurious intel_prepare_page_flip().
7116          */
7117         spin_lock_irqsave(&dev->event_lock, flags);
7118         if (intel_crtc->unpin_work)
7119                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7120         spin_unlock_irqrestore(&dev->event_lock, flags);
7121 }
7122
7123 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7124 {
7125         /* Ensure that the work item is consistent when activating it ... */
7126         smp_wmb();
7127         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7128         /* and that it is marked active as soon as the irq could fire. */
7129         smp_wmb();
7130 }
7131
7132 static int intel_gen2_queue_flip(struct drm_device *dev,
7133                                  struct drm_crtc *crtc,
7134                                  struct drm_framebuffer *fb,
7135                                  struct drm_i915_gem_object *obj)
7136 {
7137         struct drm_i915_private *dev_priv = dev->dev_private;
7138         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7139         u32 flip_mask;
7140         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7141         int ret;
7142
7143         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7144         if (ret)
7145                 goto err;
7146
7147         ret = intel_ring_begin(ring, 6);
7148         if (ret)
7149                 goto err_unpin;
7150
7151         /* Can't queue multiple flips, so wait for the previous
7152          * one to finish before executing the next.
7153          */
7154         if (intel_crtc->plane)
7155                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7156         else
7157                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7158         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7159         intel_ring_emit(ring, MI_NOOP);
7160         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7161                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7162         intel_ring_emit(ring, fb->pitches[0]);
7163         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7164         intel_ring_emit(ring, 0); /* aux display base address, unused */
7165
7166         intel_mark_page_flip_active(intel_crtc);
7167         intel_ring_advance(ring);
7168         return 0;
7169
7170 err_unpin:
7171         intel_unpin_fb_obj(obj);
7172 err:
7173         return ret;
7174 }
7175
7176 static int intel_gen3_queue_flip(struct drm_device *dev,
7177                                  struct drm_crtc *crtc,
7178                                  struct drm_framebuffer *fb,
7179                                  struct drm_i915_gem_object *obj)
7180 {
7181         struct drm_i915_private *dev_priv = dev->dev_private;
7182         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7183         u32 flip_mask;
7184         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7185         int ret;
7186
7187         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7188         if (ret)
7189                 goto err;
7190
7191         ret = intel_ring_begin(ring, 6);
7192         if (ret)
7193                 goto err_unpin;
7194
7195         if (intel_crtc->plane)
7196                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7197         else
7198                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7199         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7200         intel_ring_emit(ring, MI_NOOP);
7201         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7202                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7203         intel_ring_emit(ring, fb->pitches[0]);
7204         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7205         intel_ring_emit(ring, MI_NOOP);
7206
7207         intel_mark_page_flip_active(intel_crtc);
7208         intel_ring_advance(ring);
7209         return 0;
7210
7211 err_unpin:
7212         intel_unpin_fb_obj(obj);
7213 err:
7214         return ret;
7215 }
7216
7217 static int intel_gen4_queue_flip(struct drm_device *dev,
7218                                  struct drm_crtc *crtc,
7219                                  struct drm_framebuffer *fb,
7220                                  struct drm_i915_gem_object *obj)
7221 {
7222         struct drm_i915_private *dev_priv = dev->dev_private;
7223         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7224         uint32_t pf, pipesrc;
7225         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7226         int ret;
7227
7228         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7229         if (ret)
7230                 goto err;
7231
7232         ret = intel_ring_begin(ring, 4);
7233         if (ret)
7234                 goto err_unpin;
7235
7236         /* i965+ uses the linear or tiled offsets from the
7237          * Display Registers (which do not change across a page-flip)
7238          * so we need only reprogram the base address.
7239          */
7240         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7241                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7242         intel_ring_emit(ring, fb->pitches[0]);
7243         intel_ring_emit(ring,
7244                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7245                         obj->tiling_mode);
7246
7247         /* XXX Enabling the panel-fitter across page-flip is so far
7248          * untested on non-native modes, so ignore it for now.
7249          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7250          */
7251         pf = 0;
7252         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7253         intel_ring_emit(ring, pf | pipesrc);
7254
7255         intel_mark_page_flip_active(intel_crtc);
7256         intel_ring_advance(ring);
7257         return 0;
7258
7259 err_unpin:
7260         intel_unpin_fb_obj(obj);
7261 err:
7262         return ret;
7263 }
7264
7265 static int intel_gen6_queue_flip(struct drm_device *dev,
7266                                  struct drm_crtc *crtc,
7267                                  struct drm_framebuffer *fb,
7268                                  struct drm_i915_gem_object *obj)
7269 {
7270         struct drm_i915_private *dev_priv = dev->dev_private;
7271         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7272         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7273         uint32_t pf, pipesrc;
7274         int ret;
7275
7276         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7277         if (ret)
7278                 goto err;
7279
7280         ret = intel_ring_begin(ring, 4);
7281         if (ret)
7282                 goto err_unpin;
7283
7284         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7285                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7286         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7287         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7288
7289         /* Contrary to the suggestions in the documentation,
7290          * "Enable Panel Fitter" does not seem to be required when page
7291          * flipping with a non-native mode, and worse causes a normal
7292          * modeset to fail.
7293          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7294          */
7295         pf = 0;
7296         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7297         intel_ring_emit(ring, pf | pipesrc);
7298
7299         intel_mark_page_flip_active(intel_crtc);
7300         intel_ring_advance(ring);
7301         return 0;
7302
7303 err_unpin:
7304         intel_unpin_fb_obj(obj);
7305 err:
7306         return ret;
7307 }
7308
7309 /*
7310  * On gen7 we currently use the blit ring because (in early silicon at least)
7311  * the render ring doesn't give us interrpts for page flip completion, which
7312  * means clients will hang after the first flip is queued.  Fortunately the
7313  * blit ring generates interrupts properly, so use it instead.
7314  */
7315 static int intel_gen7_queue_flip(struct drm_device *dev,
7316                                  struct drm_crtc *crtc,
7317                                  struct drm_framebuffer *fb,
7318                                  struct drm_i915_gem_object *obj)
7319 {
7320         struct drm_i915_private *dev_priv = dev->dev_private;
7321         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7322         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7323         uint32_t plane_bit = 0;
7324         int ret;
7325
7326         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7327         if (ret)
7328                 goto err;
7329
7330         switch(intel_crtc->plane) {
7331         case PLANE_A:
7332                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7333                 break;
7334         case PLANE_B:
7335                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7336                 break;
7337         case PLANE_C:
7338                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7339                 break;
7340         default:
7341                 WARN_ONCE(1, "unknown plane in flip command\n");
7342                 ret = -ENODEV;
7343                 goto err_unpin;
7344         }
7345
7346         ret = intel_ring_begin(ring, 4);
7347         if (ret)
7348                 goto err_unpin;
7349
7350         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7351         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7352         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7353         intel_ring_emit(ring, (MI_NOOP));
7354
7355         intel_mark_page_flip_active(intel_crtc);
7356         intel_ring_advance(ring);
7357         return 0;
7358
7359 err_unpin:
7360         intel_unpin_fb_obj(obj);
7361 err:
7362         return ret;
7363 }
7364
7365 static int intel_default_queue_flip(struct drm_device *dev,
7366                                     struct drm_crtc *crtc,
7367                                     struct drm_framebuffer *fb,
7368                                     struct drm_i915_gem_object *obj)
7369 {
7370         return -ENODEV;
7371 }
7372
7373 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7374                                 struct drm_framebuffer *fb,
7375                                 struct drm_pending_vblank_event *event)
7376 {
7377         struct drm_device *dev = crtc->dev;
7378         struct drm_i915_private *dev_priv = dev->dev_private;
7379         struct drm_framebuffer *old_fb = crtc->fb;
7380         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7381         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7382         struct intel_unpin_work *work;
7383         unsigned long flags;
7384         int ret;
7385
7386         /* Can't change pixel format via MI display flips. */
7387         if (fb->pixel_format != crtc->fb->pixel_format)
7388                 return -EINVAL;
7389
7390         /*
7391          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7392          * Note that pitch changes could also affect these register.
7393          */
7394         if (INTEL_INFO(dev)->gen > 3 &&
7395             (fb->offsets[0] != crtc->fb->offsets[0] ||
7396              fb->pitches[0] != crtc->fb->pitches[0]))
7397                 return -EINVAL;
7398
7399         work = kzalloc(sizeof *work, GFP_KERNEL);
7400         if (work == NULL)
7401                 return -ENOMEM;
7402
7403         work->event = event;
7404         work->crtc = crtc;
7405         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7406         INIT_WORK(&work->work, intel_unpin_work_fn);
7407
7408         ret = drm_vblank_get(dev, intel_crtc->pipe);
7409         if (ret)
7410                 goto free_work;
7411
7412         /* We borrow the event spin lock for protecting unpin_work */
7413         spin_lock_irqsave(&dev->event_lock, flags);
7414         if (intel_crtc->unpin_work) {
7415                 spin_unlock_irqrestore(&dev->event_lock, flags);
7416                 kfree(work);
7417                 drm_vblank_put(dev, intel_crtc->pipe);
7418
7419                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7420                 return -EBUSY;
7421         }
7422         intel_crtc->unpin_work = work;
7423         spin_unlock_irqrestore(&dev->event_lock, flags);
7424
7425         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7426                 flush_workqueue(dev_priv->wq);
7427
7428         ret = i915_mutex_lock_interruptible(dev);
7429         if (ret)
7430                 goto cleanup;
7431
7432         /* Reference the objects for the scheduled work. */
7433         drm_gem_object_reference(&work->old_fb_obj->base);
7434         drm_gem_object_reference(&obj->base);
7435
7436         crtc->fb = fb;
7437
7438         work->pending_flip_obj = obj;
7439
7440         work->enable_stall_check = true;
7441
7442         atomic_inc(&intel_crtc->unpin_work_count);
7443         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7444
7445         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7446         if (ret)
7447                 goto cleanup_pending;
7448
7449         intel_disable_fbc(dev);
7450         intel_mark_fb_busy(obj);
7451         mutex_unlock(&dev->struct_mutex);
7452
7453         trace_i915_flip_request(intel_crtc->plane, obj);
7454
7455         return 0;
7456
7457 cleanup_pending:
7458         atomic_dec(&intel_crtc->unpin_work_count);
7459         crtc->fb = old_fb;
7460         drm_gem_object_unreference(&work->old_fb_obj->base);
7461         drm_gem_object_unreference(&obj->base);
7462         mutex_unlock(&dev->struct_mutex);
7463
7464 cleanup:
7465         spin_lock_irqsave(&dev->event_lock, flags);
7466         intel_crtc->unpin_work = NULL;
7467         spin_unlock_irqrestore(&dev->event_lock, flags);
7468
7469         drm_vblank_put(dev, intel_crtc->pipe);
7470 free_work:
7471         kfree(work);
7472
7473         return ret;
7474 }
7475
7476 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7477         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7478         .load_lut = intel_crtc_load_lut,
7479 };
7480
7481 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7482 {
7483         struct intel_encoder *other_encoder;
7484         struct drm_crtc *crtc = &encoder->new_crtc->base;
7485
7486         if (WARN_ON(!crtc))
7487                 return false;
7488
7489         list_for_each_entry(other_encoder,
7490                             &crtc->dev->mode_config.encoder_list,
7491                             base.head) {
7492
7493                 if (&other_encoder->new_crtc->base != crtc ||
7494                     encoder == other_encoder)
7495                         continue;
7496                 else
7497                         return true;
7498         }
7499
7500         return false;
7501 }
7502
7503 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7504                                   struct drm_crtc *crtc)
7505 {
7506         struct drm_device *dev;
7507         struct drm_crtc *tmp;
7508         int crtc_mask = 1;
7509
7510         WARN(!crtc, "checking null crtc?\n");
7511
7512         dev = crtc->dev;
7513
7514         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7515                 if (tmp == crtc)
7516                         break;
7517                 crtc_mask <<= 1;
7518         }
7519
7520         if (encoder->possible_crtcs & crtc_mask)
7521                 return true;
7522         return false;
7523 }
7524
7525 /**
7526  * intel_modeset_update_staged_output_state
7527  *
7528  * Updates the staged output configuration state, e.g. after we've read out the
7529  * current hw state.
7530  */
7531 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7532 {
7533         struct intel_encoder *encoder;
7534         struct intel_connector *connector;
7535
7536         list_for_each_entry(connector, &dev->mode_config.connector_list,
7537                             base.head) {
7538                 connector->new_encoder =
7539                         to_intel_encoder(connector->base.encoder);
7540         }
7541
7542         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7543                             base.head) {
7544                 encoder->new_crtc =
7545                         to_intel_crtc(encoder->base.crtc);
7546         }
7547 }
7548
7549 /**
7550  * intel_modeset_commit_output_state
7551  *
7552  * This function copies the stage display pipe configuration to the real one.
7553  */
7554 static void intel_modeset_commit_output_state(struct drm_device *dev)
7555 {
7556         struct intel_encoder *encoder;
7557         struct intel_connector *connector;
7558
7559         list_for_each_entry(connector, &dev->mode_config.connector_list,
7560                             base.head) {
7561                 connector->base.encoder = &connector->new_encoder->base;
7562         }
7563
7564         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7565                             base.head) {
7566                 encoder->base.crtc = &encoder->new_crtc->base;
7567         }
7568 }
7569
7570 static int
7571 pipe_config_set_bpp(struct drm_crtc *crtc,
7572                     struct drm_framebuffer *fb,
7573                     struct intel_crtc_config *pipe_config)
7574 {
7575         struct drm_device *dev = crtc->dev;
7576         struct drm_connector *connector;
7577         int bpp;
7578
7579         switch (fb->pixel_format) {
7580         case DRM_FORMAT_C8:
7581                 bpp = 8*3; /* since we go through a colormap */
7582                 break;
7583         case DRM_FORMAT_XRGB1555:
7584         case DRM_FORMAT_ARGB1555:
7585                 /* checked in intel_framebuffer_init already */
7586                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7587                         return -EINVAL;
7588         case DRM_FORMAT_RGB565:
7589                 bpp = 6*3; /* min is 18bpp */
7590                 break;
7591         case DRM_FORMAT_XBGR8888:
7592         case DRM_FORMAT_ABGR8888:
7593                 /* checked in intel_framebuffer_init already */
7594                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7595                         return -EINVAL;
7596         case DRM_FORMAT_XRGB8888:
7597         case DRM_FORMAT_ARGB8888:
7598                 bpp = 8*3;
7599                 break;
7600         case DRM_FORMAT_XRGB2101010:
7601         case DRM_FORMAT_ARGB2101010:
7602         case DRM_FORMAT_XBGR2101010:
7603         case DRM_FORMAT_ABGR2101010:
7604                 /* checked in intel_framebuffer_init already */
7605                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7606                         return -EINVAL;
7607                 bpp = 10*3;
7608                 break;
7609         /* TODO: gen4+ supports 16 bpc floating point, too. */
7610         default:
7611                 DRM_DEBUG_KMS("unsupported depth\n");
7612                 return -EINVAL;
7613         }
7614
7615         pipe_config->pipe_bpp = bpp;
7616
7617         /* Clamp display bpp to EDID value */
7618         list_for_each_entry(connector, &dev->mode_config.connector_list,
7619                             head) {
7620                 if (connector->encoder && connector->encoder->crtc != crtc)
7621                         continue;
7622
7623                 /* Don't use an invalid EDID bpc value */
7624                 if (connector->display_info.bpc &&
7625                     connector->display_info.bpc * 3 < bpp) {
7626                         DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7627                                       bpp, connector->display_info.bpc*3);
7628                         pipe_config->pipe_bpp = connector->display_info.bpc*3;
7629                 }
7630
7631                 /* Clamp bpp to 8 on screens without EDID 1.4 */
7632                 if (connector->display_info.bpc == 0 && bpp > 24) {
7633                         DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
7634                                       bpp);
7635                         pipe_config->pipe_bpp = 24;
7636                 }
7637         }
7638
7639         return bpp;
7640 }
7641
7642 static struct intel_crtc_config *
7643 intel_modeset_pipe_config(struct drm_crtc *crtc,
7644                           struct drm_framebuffer *fb,
7645                           struct drm_display_mode *mode)
7646 {
7647         struct drm_device *dev = crtc->dev;
7648         struct drm_encoder_helper_funcs *encoder_funcs;
7649         struct intel_encoder *encoder;
7650         struct intel_crtc_config *pipe_config;
7651         int plane_bpp;
7652
7653         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7654         if (!pipe_config)
7655                 return ERR_PTR(-ENOMEM);
7656
7657         drm_mode_copy(&pipe_config->adjusted_mode, mode);
7658         drm_mode_copy(&pipe_config->requested_mode, mode);
7659
7660         plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
7661         if (plane_bpp < 0)
7662                 goto fail;
7663
7664         /* Pass our mode to the connectors and the CRTC to give them a chance to
7665          * adjust it according to limitations or connector properties, and also
7666          * a chance to reject the mode entirely.
7667          */
7668         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7669                             base.head) {
7670
7671                 if (&encoder->new_crtc->base != crtc)
7672                         continue;
7673
7674                 if (encoder->compute_config) {
7675                         if (!(encoder->compute_config(encoder, pipe_config))) {
7676                                 DRM_DEBUG_KMS("Encoder config failure\n");
7677                                 goto fail;
7678                         }
7679
7680                         continue;
7681                 }
7682
7683                 encoder_funcs = encoder->base.helper_private;
7684                 if (!(encoder_funcs->mode_fixup(&encoder->base,
7685                                                 &pipe_config->requested_mode,
7686                                                 &pipe_config->adjusted_mode))) {
7687                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7688                         goto fail;
7689                 }
7690         }
7691
7692         if (!(intel_crtc_compute_config(crtc, pipe_config))) {
7693                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7694                 goto fail;
7695         }
7696         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7697
7698         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7699         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7700                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7701
7702         return pipe_config;
7703 fail:
7704         kfree(pipe_config);
7705         return ERR_PTR(-EINVAL);
7706 }
7707
7708 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7709  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7710 static void
7711 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7712                              unsigned *prepare_pipes, unsigned *disable_pipes)
7713 {
7714         struct intel_crtc *intel_crtc;
7715         struct drm_device *dev = crtc->dev;
7716         struct intel_encoder *encoder;
7717         struct intel_connector *connector;
7718         struct drm_crtc *tmp_crtc;
7719
7720         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7721
7722         /* Check which crtcs have changed outputs connected to them, these need
7723          * to be part of the prepare_pipes mask. We don't (yet) support global
7724          * modeset across multiple crtcs, so modeset_pipes will only have one
7725          * bit set at most. */
7726         list_for_each_entry(connector, &dev->mode_config.connector_list,
7727                             base.head) {
7728                 if (connector->base.encoder == &connector->new_encoder->base)
7729                         continue;
7730
7731                 if (connector->base.encoder) {
7732                         tmp_crtc = connector->base.encoder->crtc;
7733
7734                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7735                 }
7736
7737                 if (connector->new_encoder)
7738                         *prepare_pipes |=
7739                                 1 << connector->new_encoder->new_crtc->pipe;
7740         }
7741
7742         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7743                             base.head) {
7744                 if (encoder->base.crtc == &encoder->new_crtc->base)
7745                         continue;
7746
7747                 if (encoder->base.crtc) {
7748                         tmp_crtc = encoder->base.crtc;
7749
7750                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7751                 }
7752
7753                 if (encoder->new_crtc)
7754                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7755         }
7756
7757         /* Check for any pipes that will be fully disabled ... */
7758         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7759                             base.head) {
7760                 bool used = false;
7761
7762                 /* Don't try to disable disabled crtcs. */
7763                 if (!intel_crtc->base.enabled)
7764                         continue;
7765
7766                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7767                                     base.head) {
7768                         if (encoder->new_crtc == intel_crtc)
7769                                 used = true;
7770                 }
7771
7772                 if (!used)
7773                         *disable_pipes |= 1 << intel_crtc->pipe;
7774         }
7775
7776
7777         /* set_mode is also used to update properties on life display pipes. */
7778         intel_crtc = to_intel_crtc(crtc);
7779         if (crtc->enabled)
7780                 *prepare_pipes |= 1 << intel_crtc->pipe;
7781
7782         /*
7783          * For simplicity do a full modeset on any pipe where the output routing
7784          * changed. We could be more clever, but that would require us to be
7785          * more careful with calling the relevant encoder->mode_set functions.
7786          */
7787         if (*prepare_pipes)
7788                 *modeset_pipes = *prepare_pipes;
7789
7790         /* ... and mask these out. */
7791         *modeset_pipes &= ~(*disable_pipes);
7792         *prepare_pipes &= ~(*disable_pipes);
7793
7794         /*
7795          * HACK: We don't (yet) fully support global modesets. intel_set_config
7796          * obies this rule, but the modeset restore mode of
7797          * intel_modeset_setup_hw_state does not.
7798          */
7799         *modeset_pipes &= 1 << intel_crtc->pipe;
7800         *prepare_pipes &= 1 << intel_crtc->pipe;
7801
7802         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7803                       *modeset_pipes, *prepare_pipes, *disable_pipes);
7804 }
7805
7806 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7807 {
7808         struct drm_encoder *encoder;
7809         struct drm_device *dev = crtc->dev;
7810
7811         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7812                 if (encoder->crtc == crtc)
7813                         return true;
7814
7815         return false;
7816 }
7817
7818 static void
7819 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7820 {
7821         struct intel_encoder *intel_encoder;
7822         struct intel_crtc *intel_crtc;
7823         struct drm_connector *connector;
7824
7825         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7826                             base.head) {
7827                 if (!intel_encoder->base.crtc)
7828                         continue;
7829
7830                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7831
7832                 if (prepare_pipes & (1 << intel_crtc->pipe))
7833                         intel_encoder->connectors_active = false;
7834         }
7835
7836         intel_modeset_commit_output_state(dev);
7837
7838         /* Update computed state. */
7839         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7840                             base.head) {
7841                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7842         }
7843
7844         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7845                 if (!connector->encoder || !connector->encoder->crtc)
7846                         continue;
7847
7848                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7849
7850                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7851                         struct drm_property *dpms_property =
7852                                 dev->mode_config.dpms_property;
7853
7854                         connector->dpms = DRM_MODE_DPMS_ON;
7855                         drm_object_property_set_value(&connector->base,
7856                                                          dpms_property,
7857                                                          DRM_MODE_DPMS_ON);
7858
7859                         intel_encoder = to_intel_encoder(connector->encoder);
7860                         intel_encoder->connectors_active = true;
7861                 }
7862         }
7863
7864 }
7865
7866 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7867         list_for_each_entry((intel_crtc), \
7868                             &(dev)->mode_config.crtc_list, \
7869                             base.head) \
7870                 if (mask & (1 <<(intel_crtc)->pipe)) \
7871
7872 static bool
7873 intel_pipe_config_compare(struct intel_crtc_config *current_config,
7874                           struct intel_crtc_config *pipe_config)
7875 {
7876         if (current_config->has_pch_encoder != pipe_config->has_pch_encoder) {
7877                 DRM_ERROR("mismatch in has_pch_encoder "
7878                           "(expected %i, found %i)\n",
7879                           current_config->has_pch_encoder,
7880                           pipe_config->has_pch_encoder);
7881                 return false;
7882         }
7883
7884         return true;
7885 }
7886
7887 void
7888 intel_modeset_check_state(struct drm_device *dev)
7889 {
7890         drm_i915_private_t *dev_priv = dev->dev_private;
7891         struct intel_crtc *crtc;
7892         struct intel_encoder *encoder;
7893         struct intel_connector *connector;
7894         struct intel_crtc_config pipe_config;
7895
7896         list_for_each_entry(connector, &dev->mode_config.connector_list,
7897                             base.head) {
7898                 /* This also checks the encoder/connector hw state with the
7899                  * ->get_hw_state callbacks. */
7900                 intel_connector_check_state(connector);
7901
7902                 WARN(&connector->new_encoder->base != connector->base.encoder,
7903                      "connector's staged encoder doesn't match current encoder\n");
7904         }
7905
7906         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7907                             base.head) {
7908                 bool enabled = false;
7909                 bool active = false;
7910                 enum pipe pipe, tracked_pipe;
7911
7912                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7913                               encoder->base.base.id,
7914                               drm_get_encoder_name(&encoder->base));
7915
7916                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7917                      "encoder's stage crtc doesn't match current crtc\n");
7918                 WARN(encoder->connectors_active && !encoder->base.crtc,
7919                      "encoder's active_connectors set, but no crtc\n");
7920
7921                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7922                                     base.head) {
7923                         if (connector->base.encoder != &encoder->base)
7924                                 continue;
7925                         enabled = true;
7926                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7927                                 active = true;
7928                 }
7929                 WARN(!!encoder->base.crtc != enabled,
7930                      "encoder's enabled state mismatch "
7931                      "(expected %i, found %i)\n",
7932                      !!encoder->base.crtc, enabled);
7933                 WARN(active && !encoder->base.crtc,
7934                      "active encoder with no crtc\n");
7935
7936                 WARN(encoder->connectors_active != active,
7937                      "encoder's computed active state doesn't match tracked active state "
7938                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7939
7940                 active = encoder->get_hw_state(encoder, &pipe);
7941                 WARN(active != encoder->connectors_active,
7942                      "encoder's hw state doesn't match sw tracking "
7943                      "(expected %i, found %i)\n",
7944                      encoder->connectors_active, active);
7945
7946                 if (!encoder->base.crtc)
7947                         continue;
7948
7949                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7950                 WARN(active && pipe != tracked_pipe,
7951                      "active encoder's pipe doesn't match"
7952                      "(expected %i, found %i)\n",
7953                      tracked_pipe, pipe);
7954
7955         }
7956
7957         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7958                             base.head) {
7959                 bool enabled = false;
7960                 bool active = false;
7961
7962                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7963                               crtc->base.base.id);
7964
7965                 WARN(crtc->active && !crtc->base.enabled,
7966                      "active crtc, but not enabled in sw tracking\n");
7967
7968                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7969                                     base.head) {
7970                         if (encoder->base.crtc != &crtc->base)
7971                                 continue;
7972                         enabled = true;
7973                         if (encoder->connectors_active)
7974                                 active = true;
7975                 }
7976                 WARN(active != crtc->active,
7977                      "crtc's computed active state doesn't match tracked active state "
7978                      "(expected %i, found %i)\n", active, crtc->active);
7979                 WARN(enabled != crtc->base.enabled,
7980                      "crtc's computed enabled state doesn't match tracked enabled state "
7981                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7982
7983                 memset(&pipe_config, 0, sizeof(pipe_config));
7984                 pipe_config.cpu_transcoder = crtc->config.cpu_transcoder;
7985                 active = dev_priv->display.get_pipe_config(crtc,
7986                                                            &pipe_config);
7987                 WARN(crtc->active != active,
7988                      "crtc active state doesn't match with hw state "
7989                      "(expected %i, found %i)\n", crtc->active, active);
7990
7991                 WARN(active &&
7992                      !intel_pipe_config_compare(&crtc->config, &pipe_config),
7993                      "pipe state doesn't match!\n");
7994         }
7995 }
7996
7997 static int __intel_set_mode(struct drm_crtc *crtc,
7998                             struct drm_display_mode *mode,
7999                             int x, int y, struct drm_framebuffer *fb)
8000 {
8001         struct drm_device *dev = crtc->dev;
8002         drm_i915_private_t *dev_priv = dev->dev_private;
8003         struct drm_display_mode *saved_mode, *saved_hwmode;
8004         struct intel_crtc_config *pipe_config = NULL;
8005         struct intel_crtc *intel_crtc;
8006         unsigned disable_pipes, prepare_pipes, modeset_pipes;
8007         int ret = 0;
8008
8009         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8010         if (!saved_mode)
8011                 return -ENOMEM;
8012         saved_hwmode = saved_mode + 1;
8013
8014         intel_modeset_affected_pipes(crtc, &modeset_pipes,
8015                                      &prepare_pipes, &disable_pipes);
8016
8017         *saved_hwmode = crtc->hwmode;
8018         *saved_mode = crtc->mode;
8019
8020         /* Hack: Because we don't (yet) support global modeset on multiple
8021          * crtcs, we don't keep track of the new mode for more than one crtc.
8022          * Hence simply check whether any bit is set in modeset_pipes in all the
8023          * pieces of code that are not yet converted to deal with mutliple crtcs
8024          * changing their mode at the same time. */
8025         if (modeset_pipes) {
8026                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8027                 if (IS_ERR(pipe_config)) {
8028                         ret = PTR_ERR(pipe_config);
8029                         pipe_config = NULL;
8030
8031                         goto out;
8032                 }
8033         }
8034
8035         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8036                 intel_crtc_disable(&intel_crtc->base);
8037
8038         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8039                 if (intel_crtc->base.enabled)
8040                         dev_priv->display.crtc_disable(&intel_crtc->base);
8041         }
8042
8043         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8044          * to set it here already despite that we pass it down the callchain.
8045          */
8046         if (modeset_pipes) {
8047                 enum transcoder tmp = to_intel_crtc(crtc)->config.cpu_transcoder;
8048                 crtc->mode = *mode;
8049                 /* mode_set/enable/disable functions rely on a correct pipe
8050                  * config. */
8051                 to_intel_crtc(crtc)->config = *pipe_config;
8052                 to_intel_crtc(crtc)->config.cpu_transcoder = tmp;
8053         }
8054
8055         /* Only after disabling all output pipelines that will be changed can we
8056          * update the the output configuration. */
8057         intel_modeset_update_state(dev, prepare_pipes);
8058
8059         if (dev_priv->display.modeset_global_resources)
8060                 dev_priv->display.modeset_global_resources(dev);
8061
8062         /* Set up the DPLL and any encoders state that needs to adjust or depend
8063          * on the DPLL.
8064          */
8065         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8066                 ret = intel_crtc_mode_set(&intel_crtc->base,
8067                                           x, y, fb);
8068                 if (ret)
8069                         goto done;
8070         }
8071
8072         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8073         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8074                 dev_priv->display.crtc_enable(&intel_crtc->base);
8075
8076         if (modeset_pipes) {
8077                 /* Store real post-adjustment hardware mode. */
8078                 crtc->hwmode = pipe_config->adjusted_mode;
8079
8080                 /* Calculate and store various constants which
8081                  * are later needed by vblank and swap-completion
8082                  * timestamping. They are derived from true hwmode.
8083                  */
8084                 drm_calc_timestamping_constants(crtc);
8085         }
8086
8087         /* FIXME: add subpixel order */
8088 done:
8089         if (ret && crtc->enabled) {
8090                 crtc->hwmode = *saved_hwmode;
8091                 crtc->mode = *saved_mode;
8092         }
8093
8094 out:
8095         kfree(pipe_config);
8096         kfree(saved_mode);
8097         return ret;
8098 }
8099
8100 int intel_set_mode(struct drm_crtc *crtc,
8101                      struct drm_display_mode *mode,
8102                      int x, int y, struct drm_framebuffer *fb)
8103 {
8104         int ret;
8105
8106         ret = __intel_set_mode(crtc, mode, x, y, fb);
8107
8108         if (ret == 0)
8109                 intel_modeset_check_state(crtc->dev);
8110
8111         return ret;
8112 }
8113
8114 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8115 {
8116         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8117 }
8118
8119 #undef for_each_intel_crtc_masked
8120
8121 static void intel_set_config_free(struct intel_set_config *config)
8122 {
8123         if (!config)
8124                 return;
8125
8126         kfree(config->save_connector_encoders);
8127         kfree(config->save_encoder_crtcs);
8128         kfree(config);
8129 }
8130
8131 static int intel_set_config_save_state(struct drm_device *dev,
8132                                        struct intel_set_config *config)
8133 {
8134         struct drm_encoder *encoder;
8135         struct drm_connector *connector;
8136         int count;
8137
8138         config->save_encoder_crtcs =
8139                 kcalloc(dev->mode_config.num_encoder,
8140                         sizeof(struct drm_crtc *), GFP_KERNEL);
8141         if (!config->save_encoder_crtcs)
8142                 return -ENOMEM;
8143
8144         config->save_connector_encoders =
8145                 kcalloc(dev->mode_config.num_connector,
8146                         sizeof(struct drm_encoder *), GFP_KERNEL);
8147         if (!config->save_connector_encoders)
8148                 return -ENOMEM;
8149
8150         /* Copy data. Note that driver private data is not affected.
8151          * Should anything bad happen only the expected state is
8152          * restored, not the drivers personal bookkeeping.
8153          */
8154         count = 0;
8155         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8156                 config->save_encoder_crtcs[count++] = encoder->crtc;
8157         }
8158
8159         count = 0;
8160         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8161                 config->save_connector_encoders[count++] = connector->encoder;
8162         }
8163
8164         return 0;
8165 }
8166
8167 static void intel_set_config_restore_state(struct drm_device *dev,
8168                                            struct intel_set_config *config)
8169 {
8170         struct intel_encoder *encoder;
8171         struct intel_connector *connector;
8172         int count;
8173
8174         count = 0;
8175         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8176                 encoder->new_crtc =
8177                         to_intel_crtc(config->save_encoder_crtcs[count++]);
8178         }
8179
8180         count = 0;
8181         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8182                 connector->new_encoder =
8183                         to_intel_encoder(config->save_connector_encoders[count++]);
8184         }
8185 }
8186
8187 static void
8188 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8189                                       struct intel_set_config *config)
8190 {
8191
8192         /* We should be able to check here if the fb has the same properties
8193          * and then just flip_or_move it */
8194         if (set->crtc->fb != set->fb) {
8195                 /* If we have no fb then treat it as a full mode set */
8196                 if (set->crtc->fb == NULL) {
8197                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8198                         config->mode_changed = true;
8199                 } else if (set->fb == NULL) {
8200                         config->mode_changed = true;
8201                 } else if (set->fb->pixel_format !=
8202                            set->crtc->fb->pixel_format) {
8203                         config->mode_changed = true;
8204                 } else
8205                         config->fb_changed = true;
8206         }
8207
8208         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8209                 config->fb_changed = true;
8210
8211         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8212                 DRM_DEBUG_KMS("modes are different, full mode set\n");
8213                 drm_mode_debug_printmodeline(&set->crtc->mode);
8214                 drm_mode_debug_printmodeline(set->mode);
8215                 config->mode_changed = true;
8216         }
8217 }
8218
8219 static int
8220 intel_modeset_stage_output_state(struct drm_device *dev,
8221                                  struct drm_mode_set *set,
8222                                  struct intel_set_config *config)
8223 {
8224         struct drm_crtc *new_crtc;
8225         struct intel_connector *connector;
8226         struct intel_encoder *encoder;
8227         int count, ro;
8228
8229         /* The upper layers ensure that we either disable a crtc or have a list
8230          * of connectors. For paranoia, double-check this. */
8231         WARN_ON(!set->fb && (set->num_connectors != 0));
8232         WARN_ON(set->fb && (set->num_connectors == 0));
8233
8234         count = 0;
8235         list_for_each_entry(connector, &dev->mode_config.connector_list,
8236                             base.head) {
8237                 /* Otherwise traverse passed in connector list and get encoders
8238                  * for them. */
8239                 for (ro = 0; ro < set->num_connectors; ro++) {
8240                         if (set->connectors[ro] == &connector->base) {
8241                                 connector->new_encoder = connector->encoder;
8242                                 break;
8243                         }
8244                 }
8245
8246                 /* If we disable the crtc, disable all its connectors. Also, if
8247                  * the connector is on the changing crtc but not on the new
8248                  * connector list, disable it. */
8249                 if ((!set->fb || ro == set->num_connectors) &&
8250                     connector->base.encoder &&
8251                     connector->base.encoder->crtc == set->crtc) {
8252                         connector->new_encoder = NULL;
8253
8254                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8255                                 connector->base.base.id,
8256                                 drm_get_connector_name(&connector->base));
8257                 }
8258
8259
8260                 if (&connector->new_encoder->base != connector->base.encoder) {
8261                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8262                         config->mode_changed = true;
8263                 }
8264         }
8265         /* connector->new_encoder is now updated for all connectors. */
8266
8267         /* Update crtc of enabled connectors. */
8268         count = 0;
8269         list_for_each_entry(connector, &dev->mode_config.connector_list,
8270                             base.head) {
8271                 if (!connector->new_encoder)
8272                         continue;
8273
8274                 new_crtc = connector->new_encoder->base.crtc;
8275
8276                 for (ro = 0; ro < set->num_connectors; ro++) {
8277                         if (set->connectors[ro] == &connector->base)
8278                                 new_crtc = set->crtc;
8279                 }
8280
8281                 /* Make sure the new CRTC will work with the encoder */
8282                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8283                                            new_crtc)) {
8284                         return -EINVAL;
8285                 }
8286                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8287
8288                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8289                         connector->base.base.id,
8290                         drm_get_connector_name(&connector->base),
8291                         new_crtc->base.id);
8292         }
8293
8294         /* Check for any encoders that needs to be disabled. */
8295         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8296                             base.head) {
8297                 list_for_each_entry(connector,
8298                                     &dev->mode_config.connector_list,
8299                                     base.head) {
8300                         if (connector->new_encoder == encoder) {
8301                                 WARN_ON(!connector->new_encoder->new_crtc);
8302
8303                                 goto next_encoder;
8304                         }
8305                 }
8306                 encoder->new_crtc = NULL;
8307 next_encoder:
8308                 /* Only now check for crtc changes so we don't miss encoders
8309                  * that will be disabled. */
8310                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8311                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8312                         config->mode_changed = true;
8313                 }
8314         }
8315         /* Now we've also updated encoder->new_crtc for all encoders. */
8316
8317         return 0;
8318 }
8319
8320 static int intel_crtc_set_config(struct drm_mode_set *set)
8321 {
8322         struct drm_device *dev;
8323         struct drm_mode_set save_set;
8324         struct intel_set_config *config;
8325         int ret;
8326
8327         BUG_ON(!set);
8328         BUG_ON(!set->crtc);
8329         BUG_ON(!set->crtc->helper_private);
8330
8331         /* Enforce sane interface api - has been abused by the fb helper. */
8332         BUG_ON(!set->mode && set->fb);
8333         BUG_ON(set->fb && set->num_connectors == 0);
8334
8335         if (set->fb) {
8336                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8337                                 set->crtc->base.id, set->fb->base.id,
8338                                 (int)set->num_connectors, set->x, set->y);
8339         } else {
8340                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8341         }
8342
8343         dev = set->crtc->dev;
8344
8345         ret = -ENOMEM;
8346         config = kzalloc(sizeof(*config), GFP_KERNEL);
8347         if (!config)
8348                 goto out_config;
8349
8350         ret = intel_set_config_save_state(dev, config);
8351         if (ret)
8352                 goto out_config;
8353
8354         save_set.crtc = set->crtc;
8355         save_set.mode = &set->crtc->mode;
8356         save_set.x = set->crtc->x;
8357         save_set.y = set->crtc->y;
8358         save_set.fb = set->crtc->fb;
8359
8360         /* Compute whether we need a full modeset, only an fb base update or no
8361          * change at all. In the future we might also check whether only the
8362          * mode changed, e.g. for LVDS where we only change the panel fitter in
8363          * such cases. */
8364         intel_set_config_compute_mode_changes(set, config);
8365
8366         ret = intel_modeset_stage_output_state(dev, set, config);
8367         if (ret)
8368                 goto fail;
8369
8370         if (config->mode_changed) {
8371                 if (set->mode) {
8372                         DRM_DEBUG_KMS("attempting to set mode from"
8373                                         " userspace\n");
8374                         drm_mode_debug_printmodeline(set->mode);
8375                 }
8376
8377                 ret = intel_set_mode(set->crtc, set->mode,
8378                                      set->x, set->y, set->fb);
8379                 if (ret) {
8380                         DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8381                                   set->crtc->base.id, ret);
8382                         goto fail;
8383                 }
8384         } else if (config->fb_changed) {
8385                 intel_crtc_wait_for_pending_flips(set->crtc);
8386
8387                 ret = intel_pipe_set_base(set->crtc,
8388                                           set->x, set->y, set->fb);
8389         }
8390
8391         intel_set_config_free(config);
8392
8393         return 0;
8394
8395 fail:
8396         intel_set_config_restore_state(dev, config);
8397
8398         /* Try to restore the config */
8399         if (config->mode_changed &&
8400             intel_set_mode(save_set.crtc, save_set.mode,
8401                            save_set.x, save_set.y, save_set.fb))
8402                 DRM_ERROR("failed to restore config after modeset failure\n");
8403
8404 out_config:
8405         intel_set_config_free(config);
8406         return ret;
8407 }
8408
8409 static const struct drm_crtc_funcs intel_crtc_funcs = {
8410         .cursor_set = intel_crtc_cursor_set,
8411         .cursor_move = intel_crtc_cursor_move,
8412         .gamma_set = intel_crtc_gamma_set,
8413         .set_config = intel_crtc_set_config,
8414         .destroy = intel_crtc_destroy,
8415         .page_flip = intel_crtc_page_flip,
8416 };
8417
8418 static void intel_cpu_pll_init(struct drm_device *dev)
8419 {
8420         if (HAS_DDI(dev))
8421                 intel_ddi_pll_init(dev);
8422 }
8423
8424 static void intel_pch_pll_init(struct drm_device *dev)
8425 {
8426         drm_i915_private_t *dev_priv = dev->dev_private;
8427         int i;
8428
8429         if (dev_priv->num_pch_pll == 0) {
8430                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8431                 return;
8432         }
8433
8434         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8435                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8436                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8437                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8438         }
8439 }
8440
8441 static void intel_crtc_init(struct drm_device *dev, int pipe)
8442 {
8443         drm_i915_private_t *dev_priv = dev->dev_private;
8444         struct intel_crtc *intel_crtc;
8445         int i;
8446
8447         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8448         if (intel_crtc == NULL)
8449                 return;
8450
8451         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8452
8453         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8454         for (i = 0; i < 256; i++) {
8455                 intel_crtc->lut_r[i] = i;
8456                 intel_crtc->lut_g[i] = i;
8457                 intel_crtc->lut_b[i] = i;
8458         }
8459
8460         /* Swap pipes & planes for FBC on pre-965 */
8461         intel_crtc->pipe = pipe;
8462         intel_crtc->plane = pipe;
8463         intel_crtc->config.cpu_transcoder = pipe;
8464         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8465                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8466                 intel_crtc->plane = !pipe;
8467         }
8468
8469         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8470                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8471         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8472         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8473
8474         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8475 }
8476
8477 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8478                                 struct drm_file *file)
8479 {
8480         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8481         struct drm_mode_object *drmmode_obj;
8482         struct intel_crtc *crtc;
8483
8484         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8485                 return -ENODEV;
8486
8487         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8488                         DRM_MODE_OBJECT_CRTC);
8489
8490         if (!drmmode_obj) {
8491                 DRM_ERROR("no such CRTC id\n");
8492                 return -EINVAL;
8493         }
8494
8495         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8496         pipe_from_crtc_id->pipe = crtc->pipe;
8497
8498         return 0;
8499 }
8500
8501 static int intel_encoder_clones(struct intel_encoder *encoder)
8502 {
8503         struct drm_device *dev = encoder->base.dev;
8504         struct intel_encoder *source_encoder;
8505         int index_mask = 0;
8506         int entry = 0;
8507
8508         list_for_each_entry(source_encoder,
8509                             &dev->mode_config.encoder_list, base.head) {
8510
8511                 if (encoder == source_encoder)
8512                         index_mask |= (1 << entry);
8513
8514                 /* Intel hw has only one MUX where enocoders could be cloned. */
8515                 if (encoder->cloneable && source_encoder->cloneable)
8516                         index_mask |= (1 << entry);
8517
8518                 entry++;
8519         }
8520
8521         return index_mask;
8522 }
8523
8524 static bool has_edp_a(struct drm_device *dev)
8525 {
8526         struct drm_i915_private *dev_priv = dev->dev_private;
8527
8528         if (!IS_MOBILE(dev))
8529                 return false;
8530
8531         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8532                 return false;
8533
8534         if (IS_GEN5(dev) &&
8535             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8536                 return false;
8537
8538         return true;
8539 }
8540
8541 static void intel_setup_outputs(struct drm_device *dev)
8542 {
8543         struct drm_i915_private *dev_priv = dev->dev_private;
8544         struct intel_encoder *encoder;
8545         bool dpd_is_edp = false;
8546         bool has_lvds;
8547
8548         has_lvds = intel_lvds_init(dev);
8549         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8550                 /* disable the panel fitter on everything but LVDS */
8551                 I915_WRITE(PFIT_CONTROL, 0);
8552         }
8553
8554         if (!IS_ULT(dev))
8555                 intel_crt_init(dev);
8556
8557         if (HAS_DDI(dev)) {
8558                 int found;
8559
8560                 /* Haswell uses DDI functions to detect digital outputs */
8561                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8562                 /* DDI A only supports eDP */
8563                 if (found)
8564                         intel_ddi_init(dev, PORT_A);
8565
8566                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8567                  * register */
8568                 found = I915_READ(SFUSE_STRAP);
8569
8570                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8571                         intel_ddi_init(dev, PORT_B);
8572                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8573                         intel_ddi_init(dev, PORT_C);
8574                 if (found & SFUSE_STRAP_DDID_DETECTED)
8575                         intel_ddi_init(dev, PORT_D);
8576         } else if (HAS_PCH_SPLIT(dev)) {
8577                 int found;
8578                 dpd_is_edp = intel_dpd_is_edp(dev);
8579
8580                 if (has_edp_a(dev))
8581                         intel_dp_init(dev, DP_A, PORT_A);
8582
8583                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
8584                         /* PCH SDVOB multiplex with HDMIB */
8585                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8586                         if (!found)
8587                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
8588                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8589                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8590                 }
8591
8592                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
8593                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
8594
8595                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
8596                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
8597
8598                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8599                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8600
8601                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8602                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8603         } else if (IS_VALLEYVIEW(dev)) {
8604                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8605                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8606                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
8607
8608                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
8609                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
8610                                         PORT_B);
8611                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8612                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
8613                 }
8614         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8615                 bool found = false;
8616
8617                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8618                         DRM_DEBUG_KMS("probing SDVOB\n");
8619                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
8620                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8621                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8622                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
8623                         }
8624
8625                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8626                                 DRM_DEBUG_KMS("probing DP_B\n");
8627                                 intel_dp_init(dev, DP_B, PORT_B);
8628                         }
8629                 }
8630
8631                 /* Before G4X SDVOC doesn't have its own detect register */
8632
8633                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8634                         DRM_DEBUG_KMS("probing SDVOC\n");
8635                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
8636                 }
8637
8638                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
8639
8640                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8641                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8642                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
8643                         }
8644                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8645                                 DRM_DEBUG_KMS("probing DP_C\n");
8646                                 intel_dp_init(dev, DP_C, PORT_C);
8647                         }
8648                 }
8649
8650                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8651                     (I915_READ(DP_D) & DP_DETECTED)) {
8652                         DRM_DEBUG_KMS("probing DP_D\n");
8653                         intel_dp_init(dev, DP_D, PORT_D);
8654                 }
8655         } else if (IS_GEN2(dev))
8656                 intel_dvo_init(dev);
8657
8658         if (SUPPORTS_TV(dev))
8659                 intel_tv_init(dev);
8660
8661         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8662                 encoder->base.possible_crtcs = encoder->crtc_mask;
8663                 encoder->base.possible_clones =
8664                         intel_encoder_clones(encoder);
8665         }
8666
8667         intel_init_pch_refclk(dev);
8668
8669         drm_helper_move_panel_connectors_to_head(dev);
8670 }
8671
8672 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8673 {
8674         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8675
8676         drm_framebuffer_cleanup(fb);
8677         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8678
8679         kfree(intel_fb);
8680 }
8681
8682 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8683                                                 struct drm_file *file,
8684                                                 unsigned int *handle)
8685 {
8686         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8687         struct drm_i915_gem_object *obj = intel_fb->obj;
8688
8689         return drm_gem_handle_create(file, &obj->base, handle);
8690 }
8691
8692 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8693         .destroy = intel_user_framebuffer_destroy,
8694         .create_handle = intel_user_framebuffer_create_handle,
8695 };
8696
8697 int intel_framebuffer_init(struct drm_device *dev,
8698                            struct intel_framebuffer *intel_fb,
8699                            struct drm_mode_fb_cmd2 *mode_cmd,
8700                            struct drm_i915_gem_object *obj)
8701 {
8702         int ret;
8703
8704         if (obj->tiling_mode == I915_TILING_Y) {
8705                 DRM_DEBUG("hardware does not support tiling Y\n");
8706                 return -EINVAL;
8707         }
8708
8709         if (mode_cmd->pitches[0] & 63) {
8710                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8711                           mode_cmd->pitches[0]);
8712                 return -EINVAL;
8713         }
8714
8715         /* FIXME <= Gen4 stride limits are bit unclear */
8716         if (mode_cmd->pitches[0] > 32768) {
8717                 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8718                           mode_cmd->pitches[0]);
8719                 return -EINVAL;
8720         }
8721
8722         if (obj->tiling_mode != I915_TILING_NONE &&
8723             mode_cmd->pitches[0] != obj->stride) {
8724                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8725                           mode_cmd->pitches[0], obj->stride);
8726                 return -EINVAL;
8727         }
8728
8729         /* Reject formats not supported by any plane early. */
8730         switch (mode_cmd->pixel_format) {
8731         case DRM_FORMAT_C8:
8732         case DRM_FORMAT_RGB565:
8733         case DRM_FORMAT_XRGB8888:
8734         case DRM_FORMAT_ARGB8888:
8735                 break;
8736         case DRM_FORMAT_XRGB1555:
8737         case DRM_FORMAT_ARGB1555:
8738                 if (INTEL_INFO(dev)->gen > 3) {
8739                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8740                         return -EINVAL;
8741                 }
8742                 break;
8743         case DRM_FORMAT_XBGR8888:
8744         case DRM_FORMAT_ABGR8888:
8745         case DRM_FORMAT_XRGB2101010:
8746         case DRM_FORMAT_ARGB2101010:
8747         case DRM_FORMAT_XBGR2101010:
8748         case DRM_FORMAT_ABGR2101010:
8749                 if (INTEL_INFO(dev)->gen < 4) {
8750                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8751                         return -EINVAL;
8752                 }
8753                 break;
8754         case DRM_FORMAT_YUYV:
8755         case DRM_FORMAT_UYVY:
8756         case DRM_FORMAT_YVYU:
8757         case DRM_FORMAT_VYUY:
8758                 if (INTEL_INFO(dev)->gen < 5) {
8759                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8760                         return -EINVAL;
8761                 }
8762                 break;
8763         default:
8764                 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8765                 return -EINVAL;
8766         }
8767
8768         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8769         if (mode_cmd->offsets[0] != 0)
8770                 return -EINVAL;
8771
8772         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8773         intel_fb->obj = obj;
8774
8775         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8776         if (ret) {
8777                 DRM_ERROR("framebuffer init failed %d\n", ret);
8778                 return ret;
8779         }
8780
8781         return 0;
8782 }
8783
8784 static struct drm_framebuffer *
8785 intel_user_framebuffer_create(struct drm_device *dev,
8786                               struct drm_file *filp,
8787                               struct drm_mode_fb_cmd2 *mode_cmd)
8788 {
8789         struct drm_i915_gem_object *obj;
8790
8791         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8792                                                 mode_cmd->handles[0]));
8793         if (&obj->base == NULL)
8794                 return ERR_PTR(-ENOENT);
8795
8796         return intel_framebuffer_create(dev, mode_cmd, obj);
8797 }
8798
8799 static const struct drm_mode_config_funcs intel_mode_funcs = {
8800         .fb_create = intel_user_framebuffer_create,
8801         .output_poll_changed = intel_fb_output_poll_changed,
8802 };
8803
8804 /* Set up chip specific display functions */
8805 static void intel_init_display(struct drm_device *dev)
8806 {
8807         struct drm_i915_private *dev_priv = dev->dev_private;
8808
8809         if (HAS_DDI(dev)) {
8810                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
8811                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8812                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8813                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8814                 dev_priv->display.off = haswell_crtc_off;
8815                 dev_priv->display.update_plane = ironlake_update_plane;
8816         } else if (HAS_PCH_SPLIT(dev)) {
8817                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
8818                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8819                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8820                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8821                 dev_priv->display.off = ironlake_crtc_off;
8822                 dev_priv->display.update_plane = ironlake_update_plane;
8823         } else if (IS_VALLEYVIEW(dev)) {
8824                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
8825                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8826                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
8827                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8828                 dev_priv->display.off = i9xx_crtc_off;
8829                 dev_priv->display.update_plane = i9xx_update_plane;
8830         } else {
8831                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
8832                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8833                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8834                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8835                 dev_priv->display.off = i9xx_crtc_off;
8836                 dev_priv->display.update_plane = i9xx_update_plane;
8837         }
8838
8839         /* Returns the core display clock speed */
8840         if (IS_VALLEYVIEW(dev))
8841                 dev_priv->display.get_display_clock_speed =
8842                         valleyview_get_display_clock_speed;
8843         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8844                 dev_priv->display.get_display_clock_speed =
8845                         i945_get_display_clock_speed;
8846         else if (IS_I915G(dev))
8847                 dev_priv->display.get_display_clock_speed =
8848                         i915_get_display_clock_speed;
8849         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8850                 dev_priv->display.get_display_clock_speed =
8851                         i9xx_misc_get_display_clock_speed;
8852         else if (IS_I915GM(dev))
8853                 dev_priv->display.get_display_clock_speed =
8854                         i915gm_get_display_clock_speed;
8855         else if (IS_I865G(dev))
8856                 dev_priv->display.get_display_clock_speed =
8857                         i865_get_display_clock_speed;
8858         else if (IS_I85X(dev))
8859                 dev_priv->display.get_display_clock_speed =
8860                         i855_get_display_clock_speed;
8861         else /* 852, 830 */
8862                 dev_priv->display.get_display_clock_speed =
8863                         i830_get_display_clock_speed;
8864
8865         if (HAS_PCH_SPLIT(dev)) {
8866                 if (IS_GEN5(dev)) {
8867                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8868                         dev_priv->display.write_eld = ironlake_write_eld;
8869                 } else if (IS_GEN6(dev)) {
8870                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8871                         dev_priv->display.write_eld = ironlake_write_eld;
8872                 } else if (IS_IVYBRIDGE(dev)) {
8873                         /* FIXME: detect B0+ stepping and use auto training */
8874                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8875                         dev_priv->display.write_eld = ironlake_write_eld;
8876                         dev_priv->display.modeset_global_resources =
8877                                 ivb_modeset_global_resources;
8878                 } else if (IS_HASWELL(dev)) {
8879                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8880                         dev_priv->display.write_eld = haswell_write_eld;
8881                         dev_priv->display.modeset_global_resources =
8882                                 haswell_modeset_global_resources;
8883                 }
8884         } else if (IS_G4X(dev)) {
8885                 dev_priv->display.write_eld = g4x_write_eld;
8886         }
8887
8888         /* Default just returns -ENODEV to indicate unsupported */
8889         dev_priv->display.queue_flip = intel_default_queue_flip;
8890
8891         switch (INTEL_INFO(dev)->gen) {
8892         case 2:
8893                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8894                 break;
8895
8896         case 3:
8897                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8898                 break;
8899
8900         case 4:
8901         case 5:
8902                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8903                 break;
8904
8905         case 6:
8906                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8907                 break;
8908         case 7:
8909                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8910                 break;
8911         }
8912 }
8913
8914 /*
8915  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8916  * resume, or other times.  This quirk makes sure that's the case for
8917  * affected systems.
8918  */
8919 static void quirk_pipea_force(struct drm_device *dev)
8920 {
8921         struct drm_i915_private *dev_priv = dev->dev_private;
8922
8923         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8924         DRM_INFO("applying pipe a force quirk\n");
8925 }
8926
8927 /*
8928  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8929  */
8930 static void quirk_ssc_force_disable(struct drm_device *dev)
8931 {
8932         struct drm_i915_private *dev_priv = dev->dev_private;
8933         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8934         DRM_INFO("applying lvds SSC disable quirk\n");
8935 }
8936
8937 /*
8938  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8939  * brightness value
8940  */
8941 static void quirk_invert_brightness(struct drm_device *dev)
8942 {
8943         struct drm_i915_private *dev_priv = dev->dev_private;
8944         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8945         DRM_INFO("applying inverted panel brightness quirk\n");
8946 }
8947
8948 struct intel_quirk {
8949         int device;
8950         int subsystem_vendor;
8951         int subsystem_device;
8952         void (*hook)(struct drm_device *dev);
8953 };
8954
8955 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8956 struct intel_dmi_quirk {
8957         void (*hook)(struct drm_device *dev);
8958         const struct dmi_system_id (*dmi_id_list)[];
8959 };
8960
8961 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8962 {
8963         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8964         return 1;
8965 }
8966
8967 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8968         {
8969                 .dmi_id_list = &(const struct dmi_system_id[]) {
8970                         {
8971                                 .callback = intel_dmi_reverse_brightness,
8972                                 .ident = "NCR Corporation",
8973                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8974                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
8975                                 },
8976                         },
8977                         { }  /* terminating entry */
8978                 },
8979                 .hook = quirk_invert_brightness,
8980         },
8981 };
8982
8983 static struct intel_quirk intel_quirks[] = {
8984         /* HP Mini needs pipe A force quirk (LP: #322104) */
8985         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8986
8987         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8988         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8989
8990         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8991         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8992
8993         /* 830/845 need to leave pipe A & dpll A up */
8994         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8995         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8996
8997         /* Lenovo U160 cannot use SSC on LVDS */
8998         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8999
9000         /* Sony Vaio Y cannot use SSC on LVDS */
9001         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9002
9003         /* Acer Aspire 5734Z must invert backlight brightness */
9004         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9005
9006         /* Acer/eMachines G725 */
9007         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9008
9009         /* Acer/eMachines e725 */
9010         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9011
9012         /* Acer/Packard Bell NCL20 */
9013         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
9014
9015         /* Acer Aspire 4736Z */
9016         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
9017 };
9018
9019 static void intel_init_quirks(struct drm_device *dev)
9020 {
9021         struct pci_dev *d = dev->pdev;
9022         int i;
9023
9024         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9025                 struct intel_quirk *q = &intel_quirks[i];
9026
9027                 if (d->device == q->device &&
9028                     (d->subsystem_vendor == q->subsystem_vendor ||
9029                      q->subsystem_vendor == PCI_ANY_ID) &&
9030                     (d->subsystem_device == q->subsystem_device ||
9031                      q->subsystem_device == PCI_ANY_ID))
9032                         q->hook(dev);
9033         }
9034         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9035                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9036                         intel_dmi_quirks[i].hook(dev);
9037         }
9038 }
9039
9040 /* Disable the VGA plane that we never use */
9041 static void i915_disable_vga(struct drm_device *dev)
9042 {
9043         struct drm_i915_private *dev_priv = dev->dev_private;
9044         u8 sr1;
9045         u32 vga_reg = i915_vgacntrl_reg(dev);
9046
9047         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9048         outb(SR01, VGA_SR_INDEX);
9049         sr1 = inb(VGA_SR_DATA);
9050         outb(sr1 | 1<<5, VGA_SR_DATA);
9051         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9052         udelay(300);
9053
9054         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9055         POSTING_READ(vga_reg);
9056 }
9057
9058 void intel_modeset_init_hw(struct drm_device *dev)
9059 {
9060         intel_init_power_well(dev);
9061
9062         intel_prepare_ddi(dev);
9063
9064         intel_init_clock_gating(dev);
9065
9066         mutex_lock(&dev->struct_mutex);
9067         intel_enable_gt_powersave(dev);
9068         mutex_unlock(&dev->struct_mutex);
9069 }
9070
9071 void intel_modeset_init(struct drm_device *dev)
9072 {
9073         struct drm_i915_private *dev_priv = dev->dev_private;
9074         int i, j, ret;
9075
9076         drm_mode_config_init(dev);
9077
9078         dev->mode_config.min_width = 0;
9079         dev->mode_config.min_height = 0;
9080
9081         dev->mode_config.preferred_depth = 24;
9082         dev->mode_config.prefer_shadow = 1;
9083
9084         dev->mode_config.funcs = &intel_mode_funcs;
9085
9086         intel_init_quirks(dev);
9087
9088         intel_init_pm(dev);
9089
9090         if (INTEL_INFO(dev)->num_pipes == 0)
9091                 return;
9092
9093         intel_init_display(dev);
9094
9095         if (IS_GEN2(dev)) {
9096                 dev->mode_config.max_width = 2048;
9097                 dev->mode_config.max_height = 2048;
9098         } else if (IS_GEN3(dev)) {
9099                 dev->mode_config.max_width = 4096;
9100                 dev->mode_config.max_height = 4096;
9101         } else {
9102                 dev->mode_config.max_width = 8192;
9103                 dev->mode_config.max_height = 8192;
9104         }
9105         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9106
9107         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9108                       INTEL_INFO(dev)->num_pipes,
9109                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9110
9111         for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
9112                 intel_crtc_init(dev, i);
9113                 for (j = 0; j < dev_priv->num_plane; j++) {
9114                         ret = intel_plane_init(dev, i, j);
9115                         if (ret)
9116                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
9117                                               pipe_name(i), sprite_name(i, j), ret);
9118                 }
9119         }
9120
9121         intel_cpu_pll_init(dev);
9122         intel_pch_pll_init(dev);
9123
9124         /* Just disable it once at startup */
9125         i915_disable_vga(dev);
9126         intel_setup_outputs(dev);
9127
9128         /* Just in case the BIOS is doing something questionable. */
9129         intel_disable_fbc(dev);
9130 }
9131
9132 static void
9133 intel_connector_break_all_links(struct intel_connector *connector)
9134 {
9135         connector->base.dpms = DRM_MODE_DPMS_OFF;
9136         connector->base.encoder = NULL;
9137         connector->encoder->connectors_active = false;
9138         connector->encoder->base.crtc = NULL;
9139 }
9140
9141 static void intel_enable_pipe_a(struct drm_device *dev)
9142 {
9143         struct intel_connector *connector;
9144         struct drm_connector *crt = NULL;
9145         struct intel_load_detect_pipe load_detect_temp;
9146
9147         /* We can't just switch on the pipe A, we need to set things up with a
9148          * proper mode and output configuration. As a gross hack, enable pipe A
9149          * by enabling the load detect pipe once. */
9150         list_for_each_entry(connector,
9151                             &dev->mode_config.connector_list,
9152                             base.head) {
9153                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9154                         crt = &connector->base;
9155                         break;
9156                 }
9157         }
9158
9159         if (!crt)
9160                 return;
9161
9162         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9163                 intel_release_load_detect_pipe(crt, &load_detect_temp);
9164
9165
9166 }
9167
9168 static bool
9169 intel_check_plane_mapping(struct intel_crtc *crtc)
9170 {
9171         struct drm_device *dev = crtc->base.dev;
9172         struct drm_i915_private *dev_priv = dev->dev_private;
9173         u32 reg, val;
9174
9175         if (INTEL_INFO(dev)->num_pipes == 1)
9176                 return true;
9177
9178         reg = DSPCNTR(!crtc->plane);
9179         val = I915_READ(reg);
9180
9181         if ((val & DISPLAY_PLANE_ENABLE) &&
9182             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9183                 return false;
9184
9185         return true;
9186 }
9187
9188 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9189 {
9190         struct drm_device *dev = crtc->base.dev;
9191         struct drm_i915_private *dev_priv = dev->dev_private;
9192         u32 reg;
9193
9194         /* Clear any frame start delays used for debugging left by the BIOS */
9195         reg = PIPECONF(crtc->config.cpu_transcoder);
9196         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9197
9198         /* We need to sanitize the plane -> pipe mapping first because this will
9199          * disable the crtc (and hence change the state) if it is wrong. Note
9200          * that gen4+ has a fixed plane -> pipe mapping.  */
9201         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9202                 struct intel_connector *connector;
9203                 bool plane;
9204
9205                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9206                               crtc->base.base.id);
9207
9208                 /* Pipe has the wrong plane attached and the plane is active.
9209                  * Temporarily change the plane mapping and disable everything
9210                  * ...  */
9211                 plane = crtc->plane;
9212                 crtc->plane = !plane;
9213                 dev_priv->display.crtc_disable(&crtc->base);
9214                 crtc->plane = plane;
9215
9216                 /* ... and break all links. */
9217                 list_for_each_entry(connector, &dev->mode_config.connector_list,
9218                                     base.head) {
9219                         if (connector->encoder->base.crtc != &crtc->base)
9220                                 continue;
9221
9222                         intel_connector_break_all_links(connector);
9223                 }
9224
9225                 WARN_ON(crtc->active);
9226                 crtc->base.enabled = false;
9227         }
9228
9229         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9230             crtc->pipe == PIPE_A && !crtc->active) {
9231                 /* BIOS forgot to enable pipe A, this mostly happens after
9232                  * resume. Force-enable the pipe to fix this, the update_dpms
9233                  * call below we restore the pipe to the right state, but leave
9234                  * the required bits on. */
9235                 intel_enable_pipe_a(dev);
9236         }
9237
9238         /* Adjust the state of the output pipe according to whether we
9239          * have active connectors/encoders. */
9240         intel_crtc_update_dpms(&crtc->base);
9241
9242         if (crtc->active != crtc->base.enabled) {
9243                 struct intel_encoder *encoder;
9244
9245                 /* This can happen either due to bugs in the get_hw_state
9246                  * functions or because the pipe is force-enabled due to the
9247                  * pipe A quirk. */
9248                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9249                               crtc->base.base.id,
9250                               crtc->base.enabled ? "enabled" : "disabled",
9251                               crtc->active ? "enabled" : "disabled");
9252
9253                 crtc->base.enabled = crtc->active;
9254
9255                 /* Because we only establish the connector -> encoder ->
9256                  * crtc links if something is active, this means the
9257                  * crtc is now deactivated. Break the links. connector
9258                  * -> encoder links are only establish when things are
9259                  *  actually up, hence no need to break them. */
9260                 WARN_ON(crtc->active);
9261
9262                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9263                         WARN_ON(encoder->connectors_active);
9264                         encoder->base.crtc = NULL;
9265                 }
9266         }
9267 }
9268
9269 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9270 {
9271         struct intel_connector *connector;
9272         struct drm_device *dev = encoder->base.dev;
9273
9274         /* We need to check both for a crtc link (meaning that the
9275          * encoder is active and trying to read from a pipe) and the
9276          * pipe itself being active. */
9277         bool has_active_crtc = encoder->base.crtc &&
9278                 to_intel_crtc(encoder->base.crtc)->active;
9279
9280         if (encoder->connectors_active && !has_active_crtc) {
9281                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9282                               encoder->base.base.id,
9283                               drm_get_encoder_name(&encoder->base));
9284
9285                 /* Connector is active, but has no active pipe. This is
9286                  * fallout from our resume register restoring. Disable
9287                  * the encoder manually again. */
9288                 if (encoder->base.crtc) {
9289                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9290                                       encoder->base.base.id,
9291                                       drm_get_encoder_name(&encoder->base));
9292                         encoder->disable(encoder);
9293                 }
9294
9295                 /* Inconsistent output/port/pipe state happens presumably due to
9296                  * a bug in one of the get_hw_state functions. Or someplace else
9297                  * in our code, like the register restore mess on resume. Clamp
9298                  * things to off as a safer default. */
9299                 list_for_each_entry(connector,
9300                                     &dev->mode_config.connector_list,
9301                                     base.head) {
9302                         if (connector->encoder != encoder)
9303                                 continue;
9304
9305                         intel_connector_break_all_links(connector);
9306                 }
9307         }
9308         /* Enabled encoders without active connectors will be fixed in
9309          * the crtc fixup. */
9310 }
9311
9312 void i915_redisable_vga(struct drm_device *dev)
9313 {
9314         struct drm_i915_private *dev_priv = dev->dev_private;
9315         u32 vga_reg = i915_vgacntrl_reg(dev);
9316
9317         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9318                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9319                 i915_disable_vga(dev);
9320         }
9321 }
9322
9323 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9324  * and i915 state tracking structures. */
9325 void intel_modeset_setup_hw_state(struct drm_device *dev,
9326                                   bool force_restore)
9327 {
9328         struct drm_i915_private *dev_priv = dev->dev_private;
9329         enum pipe pipe;
9330         u32 tmp;
9331         struct drm_plane *plane;
9332         struct intel_crtc *crtc;
9333         struct intel_encoder *encoder;
9334         struct intel_connector *connector;
9335
9336         if (HAS_DDI(dev)) {
9337                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9338
9339                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9340                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9341                         case TRANS_DDI_EDP_INPUT_A_ON:
9342                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
9343                                 pipe = PIPE_A;
9344                                 break;
9345                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
9346                                 pipe = PIPE_B;
9347                                 break;
9348                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
9349                                 pipe = PIPE_C;
9350                                 break;
9351                         default:
9352                                 /* A bogus value has been programmed, disable
9353                                  * the transcoder */
9354                                 WARN(1, "Bogus eDP source %08x\n", tmp);
9355                                 intel_ddi_disable_transcoder_func(dev_priv,
9356                                                 TRANSCODER_EDP);
9357                                 goto setup_pipes;
9358                         }
9359
9360                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9361                         crtc->config.cpu_transcoder = TRANSCODER_EDP;
9362
9363                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9364                                       pipe_name(pipe));
9365                 }
9366         }
9367
9368 setup_pipes:
9369         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9370                             base.head) {
9371                 enum transcoder tmp = crtc->config.cpu_transcoder;
9372                 memset(&crtc->config, 0, sizeof(crtc->config));
9373                 crtc->config.cpu_transcoder = tmp;
9374
9375                 crtc->active = dev_priv->display.get_pipe_config(crtc,
9376                                                                  &crtc->config);
9377
9378                 crtc->base.enabled = crtc->active;
9379
9380                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9381                               crtc->base.base.id,
9382                               crtc->active ? "enabled" : "disabled");
9383         }
9384
9385         if (HAS_DDI(dev))
9386                 intel_ddi_setup_hw_pll_state(dev);
9387
9388         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9389                             base.head) {
9390                 pipe = 0;
9391
9392                 if (encoder->get_hw_state(encoder, &pipe)) {
9393                         encoder->base.crtc =
9394                                 dev_priv->pipe_to_crtc_mapping[pipe];
9395                 } else {
9396                         encoder->base.crtc = NULL;
9397                 }
9398
9399                 encoder->connectors_active = false;
9400                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9401                               encoder->base.base.id,
9402                               drm_get_encoder_name(&encoder->base),
9403                               encoder->base.crtc ? "enabled" : "disabled",
9404                               pipe);
9405         }
9406
9407         list_for_each_entry(connector, &dev->mode_config.connector_list,
9408                             base.head) {
9409                 if (connector->get_hw_state(connector)) {
9410                         connector->base.dpms = DRM_MODE_DPMS_ON;
9411                         connector->encoder->connectors_active = true;
9412                         connector->base.encoder = &connector->encoder->base;
9413                 } else {
9414                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9415                         connector->base.encoder = NULL;
9416                 }
9417                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9418                               connector->base.base.id,
9419                               drm_get_connector_name(&connector->base),
9420                               connector->base.encoder ? "enabled" : "disabled");
9421         }
9422
9423         /* HW state is read out, now we need to sanitize this mess. */
9424         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9425                             base.head) {
9426                 intel_sanitize_encoder(encoder);
9427         }
9428
9429         for_each_pipe(pipe) {
9430                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9431                 intel_sanitize_crtc(crtc);
9432         }
9433
9434         if (force_restore) {
9435                 /*
9436                  * We need to use raw interfaces for restoring state to avoid
9437                  * checking (bogus) intermediate states.
9438                  */
9439                 for_each_pipe(pipe) {
9440                         struct drm_crtc *crtc =
9441                                 dev_priv->pipe_to_crtc_mapping[pipe];
9442
9443                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
9444                                          crtc->fb);
9445                 }
9446                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
9447                         intel_plane_restore(plane);
9448
9449                 i915_redisable_vga(dev);
9450         } else {
9451                 intel_modeset_update_staged_output_state(dev);
9452         }
9453
9454         intel_modeset_check_state(dev);
9455
9456         drm_mode_config_reset(dev);
9457 }
9458
9459 void intel_modeset_gem_init(struct drm_device *dev)
9460 {
9461         intel_modeset_init_hw(dev);
9462
9463         intel_setup_overlay(dev);
9464
9465         intel_modeset_setup_hw_state(dev, false);
9466 }
9467
9468 void intel_modeset_cleanup(struct drm_device *dev)
9469 {
9470         struct drm_i915_private *dev_priv = dev->dev_private;
9471         struct drm_crtc *crtc;
9472         struct intel_crtc *intel_crtc;
9473
9474         /*
9475          * Interrupts and polling as the first thing to avoid creating havoc.
9476          * Too much stuff here (turning of rps, connectors, ...) would
9477          * experience fancy races otherwise.
9478          */
9479         drm_irq_uninstall(dev);
9480         cancel_work_sync(&dev_priv->hotplug_work);
9481         /*
9482          * Due to the hpd irq storm handling the hotplug work can re-arm the
9483          * poll handlers. Hence disable polling after hpd handling is shut down.
9484          */
9485         drm_kms_helper_poll_fini(dev);
9486
9487         mutex_lock(&dev->struct_mutex);
9488
9489         intel_unregister_dsm_handler();
9490
9491         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9492                 /* Skip inactive CRTCs */
9493                 if (!crtc->fb)
9494                         continue;
9495
9496                 intel_crtc = to_intel_crtc(crtc);
9497                 intel_increase_pllclock(crtc);
9498         }
9499
9500         intel_disable_fbc(dev);
9501
9502         intel_disable_gt_powersave(dev);
9503
9504         ironlake_teardown_rc6(dev);
9505
9506         mutex_unlock(&dev->struct_mutex);
9507
9508         /* flush any delayed tasks or pending work */
9509         flush_scheduled_work();
9510
9511         /* destroy backlight, if any, before the connectors */
9512         intel_panel_destroy_backlight(dev);
9513
9514         drm_mode_config_cleanup(dev);
9515
9516         intel_cleanup_overlay(dev);
9517 }
9518
9519 /*
9520  * Return which encoder is currently attached for connector.
9521  */
9522 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9523 {
9524         return &intel_attached_encoder(connector)->base;
9525 }
9526
9527 void intel_connector_attach_encoder(struct intel_connector *connector,
9528                                     struct intel_encoder *encoder)
9529 {
9530         connector->encoder = encoder;
9531         drm_mode_connector_attach_encoder(&connector->base,
9532                                           &encoder->base);
9533 }
9534
9535 /*
9536  * set vga decode state - true == enable VGA decode
9537  */
9538 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9539 {
9540         struct drm_i915_private *dev_priv = dev->dev_private;
9541         u16 gmch_ctrl;
9542
9543         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9544         if (state)
9545                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9546         else
9547                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9548         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9549         return 0;
9550 }
9551
9552 #ifdef CONFIG_DEBUG_FS
9553 #include <linux/seq_file.h>
9554
9555 struct intel_display_error_state {
9556         struct intel_cursor_error_state {
9557                 u32 control;
9558                 u32 position;
9559                 u32 base;
9560                 u32 size;
9561         } cursor[I915_MAX_PIPES];
9562
9563         struct intel_pipe_error_state {
9564                 u32 conf;
9565                 u32 source;
9566
9567                 u32 htotal;
9568                 u32 hblank;
9569                 u32 hsync;
9570                 u32 vtotal;
9571                 u32 vblank;
9572                 u32 vsync;
9573         } pipe[I915_MAX_PIPES];
9574
9575         struct intel_plane_error_state {
9576                 u32 control;
9577                 u32 stride;
9578                 u32 size;
9579                 u32 pos;
9580                 u32 addr;
9581                 u32 surface;
9582                 u32 tile_offset;
9583         } plane[I915_MAX_PIPES];
9584 };
9585
9586 struct intel_display_error_state *
9587 intel_display_capture_error_state(struct drm_device *dev)
9588 {
9589         drm_i915_private_t *dev_priv = dev->dev_private;
9590         struct intel_display_error_state *error;
9591         enum transcoder cpu_transcoder;
9592         int i;
9593
9594         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9595         if (error == NULL)
9596                 return NULL;
9597
9598         for_each_pipe(i) {
9599                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9600
9601                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
9602                         error->cursor[i].control = I915_READ(CURCNTR(i));
9603                         error->cursor[i].position = I915_READ(CURPOS(i));
9604                         error->cursor[i].base = I915_READ(CURBASE(i));
9605                 } else {
9606                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
9607                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
9608                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
9609                 }
9610
9611                 error->plane[i].control = I915_READ(DSPCNTR(i));
9612                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9613                 if (INTEL_INFO(dev)->gen <= 3) {
9614                         error->plane[i].size = I915_READ(DSPSIZE(i));
9615                         error->plane[i].pos = I915_READ(DSPPOS(i));
9616                 }
9617                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9618                         error->plane[i].addr = I915_READ(DSPADDR(i));
9619                 if (INTEL_INFO(dev)->gen >= 4) {
9620                         error->plane[i].surface = I915_READ(DSPSURF(i));
9621                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9622                 }
9623
9624                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9625                 error->pipe[i].source = I915_READ(PIPESRC(i));
9626                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9627                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9628                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9629                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9630                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9631                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9632         }
9633
9634         return error;
9635 }
9636
9637 void
9638 intel_display_print_error_state(struct seq_file *m,
9639                                 struct drm_device *dev,
9640                                 struct intel_display_error_state *error)
9641 {
9642         int i;
9643
9644         seq_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
9645         for_each_pipe(i) {
9646                 seq_printf(m, "Pipe [%d]:\n", i);
9647                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9648                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9649                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9650                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9651                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9652                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9653                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9654                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9655
9656                 seq_printf(m, "Plane [%d]:\n", i);
9657                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9658                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9659                 if (INTEL_INFO(dev)->gen <= 3) {
9660                         seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9661                         seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9662                 }
9663                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9664                         seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9665                 if (INTEL_INFO(dev)->gen >= 4) {
9666                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9667                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9668                 }
9669
9670                 seq_printf(m, "Cursor [%d]:\n", i);
9671                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9672                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9673                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9674         }
9675 }
9676 #endif