Merge branch 'for-airlied' of git://people.freedesktop.org/~danvet/drm-intel into...
[linux-2.6-block.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_update_watermarks(struct drm_device *dev);
48 static void intel_increase_pllclock(struct drm_crtc *crtc);
49 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
50
51 typedef struct {
52         /* given values */
53         int n;
54         int m1, m2;
55         int p1, p2;
56         /* derived values */
57         int     dot;
58         int     vco;
59         int     m;
60         int     p;
61 } intel_clock_t;
62
63 typedef struct {
64         int     min, max;
65 } intel_range_t;
66
67 typedef struct {
68         int     dot_limit;
69         int     p2_slow, p2_fast;
70 } intel_p2_t;
71
72 #define INTEL_P2_NUM                  2
73 typedef struct intel_limit intel_limit_t;
74 struct intel_limit {
75         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
76         intel_p2_t          p2;
77         bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
78                         int, int, intel_clock_t *, intel_clock_t *);
79 };
80
81 /* FDI */
82 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
83
84 static bool
85 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
86                     int target, int refclk, intel_clock_t *match_clock,
87                     intel_clock_t *best_clock);
88 static bool
89 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
90                         int target, int refclk, intel_clock_t *match_clock,
91                         intel_clock_t *best_clock);
92
93 static bool
94 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
95                       int target, int refclk, intel_clock_t *match_clock,
96                       intel_clock_t *best_clock);
97 static bool
98 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
99                            int target, int refclk, intel_clock_t *match_clock,
100                            intel_clock_t *best_clock);
101
102 static inline u32 /* units of 100MHz */
103 intel_fdi_link_freq(struct drm_device *dev)
104 {
105         if (IS_GEN5(dev)) {
106                 struct drm_i915_private *dev_priv = dev->dev_private;
107                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
108         } else
109                 return 27;
110 }
111
112 static const intel_limit_t intel_limits_i8xx_dvo = {
113         .dot = { .min = 25000, .max = 350000 },
114         .vco = { .min = 930000, .max = 1400000 },
115         .n = { .min = 3, .max = 16 },
116         .m = { .min = 96, .max = 140 },
117         .m1 = { .min = 18, .max = 26 },
118         .m2 = { .min = 6, .max = 16 },
119         .p = { .min = 4, .max = 128 },
120         .p1 = { .min = 2, .max = 33 },
121         .p2 = { .dot_limit = 165000,
122                 .p2_slow = 4, .p2_fast = 2 },
123         .find_pll = intel_find_best_PLL,
124 };
125
126 static const intel_limit_t intel_limits_i8xx_lvds = {
127         .dot = { .min = 25000, .max = 350000 },
128         .vco = { .min = 930000, .max = 1400000 },
129         .n = { .min = 3, .max = 16 },
130         .m = { .min = 96, .max = 140 },
131         .m1 = { .min = 18, .max = 26 },
132         .m2 = { .min = 6, .max = 16 },
133         .p = { .min = 4, .max = 128 },
134         .p1 = { .min = 1, .max = 6 },
135         .p2 = { .dot_limit = 165000,
136                 .p2_slow = 14, .p2_fast = 7 },
137         .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i9xx_sdvo = {
141         .dot = { .min = 20000, .max = 400000 },
142         .vco = { .min = 1400000, .max = 2800000 },
143         .n = { .min = 1, .max = 6 },
144         .m = { .min = 70, .max = 120 },
145         .m1 = { .min = 10, .max = 22 },
146         .m2 = { .min = 5, .max = 9 },
147         .p = { .min = 5, .max = 80 },
148         .p1 = { .min = 1, .max = 8 },
149         .p2 = { .dot_limit = 200000,
150                 .p2_slow = 10, .p2_fast = 5 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_lvds = {
155         .dot = { .min = 20000, .max = 400000 },
156         .vco = { .min = 1400000, .max = 2800000 },
157         .n = { .min = 1, .max = 6 },
158         .m = { .min = 70, .max = 120 },
159         .m1 = { .min = 10, .max = 22 },
160         .m2 = { .min = 5, .max = 9 },
161         .p = { .min = 7, .max = 98 },
162         .p1 = { .min = 1, .max = 8 },
163         .p2 = { .dot_limit = 112000,
164                 .p2_slow = 14, .p2_fast = 7 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168
169 static const intel_limit_t intel_limits_g4x_sdvo = {
170         .dot = { .min = 25000, .max = 270000 },
171         .vco = { .min = 1750000, .max = 3500000},
172         .n = { .min = 1, .max = 4 },
173         .m = { .min = 104, .max = 138 },
174         .m1 = { .min = 17, .max = 23 },
175         .m2 = { .min = 5, .max = 11 },
176         .p = { .min = 10, .max = 30 },
177         .p1 = { .min = 1, .max = 3},
178         .p2 = { .dot_limit = 270000,
179                 .p2_slow = 10,
180                 .p2_fast = 10
181         },
182         .find_pll = intel_g4x_find_best_PLL,
183 };
184
185 static const intel_limit_t intel_limits_g4x_hdmi = {
186         .dot = { .min = 22000, .max = 400000 },
187         .vco = { .min = 1750000, .max = 3500000},
188         .n = { .min = 1, .max = 4 },
189         .m = { .min = 104, .max = 138 },
190         .m1 = { .min = 16, .max = 23 },
191         .m2 = { .min = 5, .max = 11 },
192         .p = { .min = 5, .max = 80 },
193         .p1 = { .min = 1, .max = 8},
194         .p2 = { .dot_limit = 165000,
195                 .p2_slow = 10, .p2_fast = 5 },
196         .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
200         .dot = { .min = 20000, .max = 115000 },
201         .vco = { .min = 1750000, .max = 3500000 },
202         .n = { .min = 1, .max = 3 },
203         .m = { .min = 104, .max = 138 },
204         .m1 = { .min = 17, .max = 23 },
205         .m2 = { .min = 5, .max = 11 },
206         .p = { .min = 28, .max = 112 },
207         .p1 = { .min = 2, .max = 8 },
208         .p2 = { .dot_limit = 0,
209                 .p2_slow = 14, .p2_fast = 14
210         },
211         .find_pll = intel_g4x_find_best_PLL,
212 };
213
214 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
215         .dot = { .min = 80000, .max = 224000 },
216         .vco = { .min = 1750000, .max = 3500000 },
217         .n = { .min = 1, .max = 3 },
218         .m = { .min = 104, .max = 138 },
219         .m1 = { .min = 17, .max = 23 },
220         .m2 = { .min = 5, .max = 11 },
221         .p = { .min = 14, .max = 42 },
222         .p1 = { .min = 2, .max = 6 },
223         .p2 = { .dot_limit = 0,
224                 .p2_slow = 7, .p2_fast = 7
225         },
226         .find_pll = intel_g4x_find_best_PLL,
227 };
228
229 static const intel_limit_t intel_limits_g4x_display_port = {
230         .dot = { .min = 161670, .max = 227000 },
231         .vco = { .min = 1750000, .max = 3500000},
232         .n = { .min = 1, .max = 2 },
233         .m = { .min = 97, .max = 108 },
234         .m1 = { .min = 0x10, .max = 0x12 },
235         .m2 = { .min = 0x05, .max = 0x06 },
236         .p = { .min = 10, .max = 20 },
237         .p1 = { .min = 1, .max = 2},
238         .p2 = { .dot_limit = 0,
239                 .p2_slow = 10, .p2_fast = 10 },
240         .find_pll = intel_find_pll_g4x_dp,
241 };
242
243 static const intel_limit_t intel_limits_pineview_sdvo = {
244         .dot = { .min = 20000, .max = 400000},
245         .vco = { .min = 1700000, .max = 3500000 },
246         /* Pineview's Ncounter is a ring counter */
247         .n = { .min = 3, .max = 6 },
248         .m = { .min = 2, .max = 256 },
249         /* Pineview only has one combined m divider, which we treat as m2. */
250         .m1 = { .min = 0, .max = 0 },
251         .m2 = { .min = 0, .max = 254 },
252         .p = { .min = 5, .max = 80 },
253         .p1 = { .min = 1, .max = 8 },
254         .p2 = { .dot_limit = 200000,
255                 .p2_slow = 10, .p2_fast = 5 },
256         .find_pll = intel_find_best_PLL,
257 };
258
259 static const intel_limit_t intel_limits_pineview_lvds = {
260         .dot = { .min = 20000, .max = 400000 },
261         .vco = { .min = 1700000, .max = 3500000 },
262         .n = { .min = 3, .max = 6 },
263         .m = { .min = 2, .max = 256 },
264         .m1 = { .min = 0, .max = 0 },
265         .m2 = { .min = 0, .max = 254 },
266         .p = { .min = 7, .max = 112 },
267         .p1 = { .min = 1, .max = 8 },
268         .p2 = { .dot_limit = 112000,
269                 .p2_slow = 14, .p2_fast = 14 },
270         .find_pll = intel_find_best_PLL,
271 };
272
273 /* Ironlake / Sandybridge
274  *
275  * We calculate clock using (register_value + 2) for N/M1/M2, so here
276  * the range value for them is (actual_value - 2).
277  */
278 static const intel_limit_t intel_limits_ironlake_dac = {
279         .dot = { .min = 25000, .max = 350000 },
280         .vco = { .min = 1760000, .max = 3510000 },
281         .n = { .min = 1, .max = 5 },
282         .m = { .min = 79, .max = 127 },
283         .m1 = { .min = 12, .max = 22 },
284         .m2 = { .min = 5, .max = 9 },
285         .p = { .min = 5, .max = 80 },
286         .p1 = { .min = 1, .max = 8 },
287         .p2 = { .dot_limit = 225000,
288                 .p2_slow = 10, .p2_fast = 5 },
289         .find_pll = intel_g4x_find_best_PLL,
290 };
291
292 static const intel_limit_t intel_limits_ironlake_single_lvds = {
293         .dot = { .min = 25000, .max = 350000 },
294         .vco = { .min = 1760000, .max = 3510000 },
295         .n = { .min = 1, .max = 3 },
296         .m = { .min = 79, .max = 118 },
297         .m1 = { .min = 12, .max = 22 },
298         .m2 = { .min = 5, .max = 9 },
299         .p = { .min = 28, .max = 112 },
300         .p1 = { .min = 2, .max = 8 },
301         .p2 = { .dot_limit = 225000,
302                 .p2_slow = 14, .p2_fast = 14 },
303         .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 3 },
310         .m = { .min = 79, .max = 127 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 14, .max = 56 },
314         .p1 = { .min = 2, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 7, .p2_fast = 7 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 /* LVDS 100mhz refclk limits. */
321 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
322         .dot = { .min = 25000, .max = 350000 },
323         .vco = { .min = 1760000, .max = 3510000 },
324         .n = { .min = 1, .max = 2 },
325         .m = { .min = 79, .max = 126 },
326         .m1 = { .min = 12, .max = 22 },
327         .m2 = { .min = 5, .max = 9 },
328         .p = { .min = 28, .max = 112 },
329         .p1 = { .min = 2, .max = 8 },
330         .p2 = { .dot_limit = 225000,
331                 .p2_slow = 14, .p2_fast = 14 },
332         .find_pll = intel_g4x_find_best_PLL,
333 };
334
335 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
336         .dot = { .min = 25000, .max = 350000 },
337         .vco = { .min = 1760000, .max = 3510000 },
338         .n = { .min = 1, .max = 3 },
339         .m = { .min = 79, .max = 126 },
340         .m1 = { .min = 12, .max = 22 },
341         .m2 = { .min = 5, .max = 9 },
342         .p = { .min = 14, .max = 42 },
343         .p1 = { .min = 2, .max = 6 },
344         .p2 = { .dot_limit = 225000,
345                 .p2_slow = 7, .p2_fast = 7 },
346         .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_display_port = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000},
352         .n = { .min = 1, .max = 2 },
353         .m = { .min = 81, .max = 90 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 10, .max = 20 },
357         .p1 = { .min = 1, .max = 2},
358         .p2 = { .dot_limit = 0,
359                 .p2_slow = 10, .p2_fast = 10 },
360         .find_pll = intel_find_pll_ironlake_dp,
361 };
362
363 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
364                                                 int refclk)
365 {
366         struct drm_device *dev = crtc->dev;
367         struct drm_i915_private *dev_priv = dev->dev_private;
368         const intel_limit_t *limit;
369
370         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
371                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
372                     LVDS_CLKB_POWER_UP) {
373                         /* LVDS dual channel */
374                         if (refclk == 100000)
375                                 limit = &intel_limits_ironlake_dual_lvds_100m;
376                         else
377                                 limit = &intel_limits_ironlake_dual_lvds;
378                 } else {
379                         if (refclk == 100000)
380                                 limit = &intel_limits_ironlake_single_lvds_100m;
381                         else
382                                 limit = &intel_limits_ironlake_single_lvds;
383                 }
384         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
385                         HAS_eDP)
386                 limit = &intel_limits_ironlake_display_port;
387         else
388                 limit = &intel_limits_ironlake_dac;
389
390         return limit;
391 }
392
393 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
394 {
395         struct drm_device *dev = crtc->dev;
396         struct drm_i915_private *dev_priv = dev->dev_private;
397         const intel_limit_t *limit;
398
399         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
400                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
401                     LVDS_CLKB_POWER_UP)
402                         /* LVDS with dual channel */
403                         limit = &intel_limits_g4x_dual_channel_lvds;
404                 else
405                         /* LVDS with dual channel */
406                         limit = &intel_limits_g4x_single_channel_lvds;
407         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
408                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
409                 limit = &intel_limits_g4x_hdmi;
410         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
411                 limit = &intel_limits_g4x_sdvo;
412         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
413                 limit = &intel_limits_g4x_display_port;
414         } else /* The option is for other outputs */
415                 limit = &intel_limits_i9xx_sdvo;
416
417         return limit;
418 }
419
420 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
421 {
422         struct drm_device *dev = crtc->dev;
423         const intel_limit_t *limit;
424
425         if (HAS_PCH_SPLIT(dev))
426                 limit = intel_ironlake_limit(crtc, refclk);
427         else if (IS_G4X(dev)) {
428                 limit = intel_g4x_limit(crtc);
429         } else if (IS_PINEVIEW(dev)) {
430                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
431                         limit = &intel_limits_pineview_lvds;
432                 else
433                         limit = &intel_limits_pineview_sdvo;
434         } else if (!IS_GEN2(dev)) {
435                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
436                         limit = &intel_limits_i9xx_lvds;
437                 else
438                         limit = &intel_limits_i9xx_sdvo;
439         } else {
440                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
441                         limit = &intel_limits_i8xx_lvds;
442                 else
443                         limit = &intel_limits_i8xx_dvo;
444         }
445         return limit;
446 }
447
448 /* m1 is reserved as 0 in Pineview, n is a ring counter */
449 static void pineview_clock(int refclk, intel_clock_t *clock)
450 {
451         clock->m = clock->m2 + 2;
452         clock->p = clock->p1 * clock->p2;
453         clock->vco = refclk * clock->m / clock->n;
454         clock->dot = clock->vco / clock->p;
455 }
456
457 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
458 {
459         if (IS_PINEVIEW(dev)) {
460                 pineview_clock(refclk, clock);
461                 return;
462         }
463         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
464         clock->p = clock->p1 * clock->p2;
465         clock->vco = refclk * clock->m / (clock->n + 2);
466         clock->dot = clock->vco / clock->p;
467 }
468
469 /**
470  * Returns whether any output on the specified pipe is of the specified type
471  */
472 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
473 {
474         struct drm_device *dev = crtc->dev;
475         struct drm_mode_config *mode_config = &dev->mode_config;
476         struct intel_encoder *encoder;
477
478         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
479                 if (encoder->base.crtc == crtc && encoder->type == type)
480                         return true;
481
482         return false;
483 }
484
485 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
486 /**
487  * Returns whether the given set of divisors are valid for a given refclk with
488  * the given connectors.
489  */
490
491 static bool intel_PLL_is_valid(struct drm_device *dev,
492                                const intel_limit_t *limit,
493                                const intel_clock_t *clock)
494 {
495         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
496                 INTELPllInvalid("p1 out of range\n");
497         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
498                 INTELPllInvalid("p out of range\n");
499         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
500                 INTELPllInvalid("m2 out of range\n");
501         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
502                 INTELPllInvalid("m1 out of range\n");
503         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
504                 INTELPllInvalid("m1 <= m2\n");
505         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
506                 INTELPllInvalid("m out of range\n");
507         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
508                 INTELPllInvalid("n out of range\n");
509         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
510                 INTELPllInvalid("vco out of range\n");
511         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
512          * connector, etc., rather than just a single range.
513          */
514         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
515                 INTELPllInvalid("dot out of range\n");
516
517         return true;
518 }
519
520 static bool
521 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
522                     int target, int refclk, intel_clock_t *match_clock,
523                     intel_clock_t *best_clock)
524
525 {
526         struct drm_device *dev = crtc->dev;
527         struct drm_i915_private *dev_priv = dev->dev_private;
528         intel_clock_t clock;
529         int err = target;
530
531         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
532             (I915_READ(LVDS)) != 0) {
533                 /*
534                  * For LVDS, if the panel is on, just rely on its current
535                  * settings for dual-channel.  We haven't figured out how to
536                  * reliably set up different single/dual channel state, if we
537                  * even can.
538                  */
539                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
540                     LVDS_CLKB_POWER_UP)
541                         clock.p2 = limit->p2.p2_fast;
542                 else
543                         clock.p2 = limit->p2.p2_slow;
544         } else {
545                 if (target < limit->p2.dot_limit)
546                         clock.p2 = limit->p2.p2_slow;
547                 else
548                         clock.p2 = limit->p2.p2_fast;
549         }
550
551         memset(best_clock, 0, sizeof(*best_clock));
552
553         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
554              clock.m1++) {
555                 for (clock.m2 = limit->m2.min;
556                      clock.m2 <= limit->m2.max; clock.m2++) {
557                         /* m1 is always 0 in Pineview */
558                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
559                                 break;
560                         for (clock.n = limit->n.min;
561                              clock.n <= limit->n.max; clock.n++) {
562                                 for (clock.p1 = limit->p1.min;
563                                         clock.p1 <= limit->p1.max; clock.p1++) {
564                                         int this_err;
565
566                                         intel_clock(dev, refclk, &clock);
567                                         if (!intel_PLL_is_valid(dev, limit,
568                                                                 &clock))
569                                                 continue;
570                                         if (match_clock &&
571                                             clock.p != match_clock->p)
572                                                 continue;
573
574                                         this_err = abs(clock.dot - target);
575                                         if (this_err < err) {
576                                                 *best_clock = clock;
577                                                 err = this_err;
578                                         }
579                                 }
580                         }
581                 }
582         }
583
584         return (err != target);
585 }
586
587 static bool
588 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
589                         int target, int refclk, intel_clock_t *match_clock,
590                         intel_clock_t *best_clock)
591 {
592         struct drm_device *dev = crtc->dev;
593         struct drm_i915_private *dev_priv = dev->dev_private;
594         intel_clock_t clock;
595         int max_n;
596         bool found;
597         /* approximately equals target * 0.00585 */
598         int err_most = (target >> 8) + (target >> 9);
599         found = false;
600
601         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
602                 int lvds_reg;
603
604                 if (HAS_PCH_SPLIT(dev))
605                         lvds_reg = PCH_LVDS;
606                 else
607                         lvds_reg = LVDS;
608                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
609                     LVDS_CLKB_POWER_UP)
610                         clock.p2 = limit->p2.p2_fast;
611                 else
612                         clock.p2 = limit->p2.p2_slow;
613         } else {
614                 if (target < limit->p2.dot_limit)
615                         clock.p2 = limit->p2.p2_slow;
616                 else
617                         clock.p2 = limit->p2.p2_fast;
618         }
619
620         memset(best_clock, 0, sizeof(*best_clock));
621         max_n = limit->n.max;
622         /* based on hardware requirement, prefer smaller n to precision */
623         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
624                 /* based on hardware requirement, prefere larger m1,m2 */
625                 for (clock.m1 = limit->m1.max;
626                      clock.m1 >= limit->m1.min; clock.m1--) {
627                         for (clock.m2 = limit->m2.max;
628                              clock.m2 >= limit->m2.min; clock.m2--) {
629                                 for (clock.p1 = limit->p1.max;
630                                      clock.p1 >= limit->p1.min; clock.p1--) {
631                                         int this_err;
632
633                                         intel_clock(dev, refclk, &clock);
634                                         if (!intel_PLL_is_valid(dev, limit,
635                                                                 &clock))
636                                                 continue;
637                                         if (match_clock &&
638                                             clock.p != match_clock->p)
639                                                 continue;
640
641                                         this_err = abs(clock.dot - target);
642                                         if (this_err < err_most) {
643                                                 *best_clock = clock;
644                                                 err_most = this_err;
645                                                 max_n = clock.n;
646                                                 found = true;
647                                         }
648                                 }
649                         }
650                 }
651         }
652         return found;
653 }
654
655 static bool
656 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
657                            int target, int refclk, intel_clock_t *match_clock,
658                            intel_clock_t *best_clock)
659 {
660         struct drm_device *dev = crtc->dev;
661         intel_clock_t clock;
662
663         if (target < 200000) {
664                 clock.n = 1;
665                 clock.p1 = 2;
666                 clock.p2 = 10;
667                 clock.m1 = 12;
668                 clock.m2 = 9;
669         } else {
670                 clock.n = 2;
671                 clock.p1 = 1;
672                 clock.p2 = 10;
673                 clock.m1 = 14;
674                 clock.m2 = 8;
675         }
676         intel_clock(dev, refclk, &clock);
677         memcpy(best_clock, &clock, sizeof(intel_clock_t));
678         return true;
679 }
680
681 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
682 static bool
683 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
684                       int target, int refclk, intel_clock_t *match_clock,
685                       intel_clock_t *best_clock)
686 {
687         intel_clock_t clock;
688         if (target < 200000) {
689                 clock.p1 = 2;
690                 clock.p2 = 10;
691                 clock.n = 2;
692                 clock.m1 = 23;
693                 clock.m2 = 8;
694         } else {
695                 clock.p1 = 1;
696                 clock.p2 = 10;
697                 clock.n = 1;
698                 clock.m1 = 14;
699                 clock.m2 = 2;
700         }
701         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
702         clock.p = (clock.p1 * clock.p2);
703         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
704         clock.vco = 0;
705         memcpy(best_clock, &clock, sizeof(intel_clock_t));
706         return true;
707 }
708
709 /**
710  * intel_wait_for_vblank - wait for vblank on a given pipe
711  * @dev: drm device
712  * @pipe: pipe to wait for
713  *
714  * Wait for vblank to occur on a given pipe.  Needed for various bits of
715  * mode setting code.
716  */
717 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
718 {
719         struct drm_i915_private *dev_priv = dev->dev_private;
720         int pipestat_reg = PIPESTAT(pipe);
721
722         /* Clear existing vblank status. Note this will clear any other
723          * sticky status fields as well.
724          *
725          * This races with i915_driver_irq_handler() with the result
726          * that either function could miss a vblank event.  Here it is not
727          * fatal, as we will either wait upon the next vblank interrupt or
728          * timeout.  Generally speaking intel_wait_for_vblank() is only
729          * called during modeset at which time the GPU should be idle and
730          * should *not* be performing page flips and thus not waiting on
731          * vblanks...
732          * Currently, the result of us stealing a vblank from the irq
733          * handler is that a single frame will be skipped during swapbuffers.
734          */
735         I915_WRITE(pipestat_reg,
736                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
737
738         /* Wait for vblank interrupt bit to set */
739         if (wait_for(I915_READ(pipestat_reg) &
740                      PIPE_VBLANK_INTERRUPT_STATUS,
741                      50))
742                 DRM_DEBUG_KMS("vblank wait timed out\n");
743 }
744
745 /*
746  * intel_wait_for_pipe_off - wait for pipe to turn off
747  * @dev: drm device
748  * @pipe: pipe to wait for
749  *
750  * After disabling a pipe, we can't wait for vblank in the usual way,
751  * spinning on the vblank interrupt status bit, since we won't actually
752  * see an interrupt when the pipe is disabled.
753  *
754  * On Gen4 and above:
755  *   wait for the pipe register state bit to turn off
756  *
757  * Otherwise:
758  *   wait for the display line value to settle (it usually
759  *   ends up stopping at the start of the next frame).
760  *
761  */
762 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
763 {
764         struct drm_i915_private *dev_priv = dev->dev_private;
765
766         if (INTEL_INFO(dev)->gen >= 4) {
767                 int reg = PIPECONF(pipe);
768
769                 /* Wait for the Pipe State to go off */
770                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
771                              100))
772                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
773         } else {
774                 u32 last_line;
775                 int reg = PIPEDSL(pipe);
776                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
777
778                 /* Wait for the display line to settle */
779                 do {
780                         last_line = I915_READ(reg) & DSL_LINEMASK;
781                         mdelay(5);
782                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
783                          time_after(timeout, jiffies));
784                 if (time_after(jiffies, timeout))
785                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
786         }
787 }
788
789 static const char *state_string(bool enabled)
790 {
791         return enabled ? "on" : "off";
792 }
793
794 /* Only for pre-ILK configs */
795 static void assert_pll(struct drm_i915_private *dev_priv,
796                        enum pipe pipe, bool state)
797 {
798         int reg;
799         u32 val;
800         bool cur_state;
801
802         reg = DPLL(pipe);
803         val = I915_READ(reg);
804         cur_state = !!(val & DPLL_VCO_ENABLE);
805         WARN(cur_state != state,
806              "PLL state assertion failure (expected %s, current %s)\n",
807              state_string(state), state_string(cur_state));
808 }
809 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
810 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
811
812 /* For ILK+ */
813 static void assert_pch_pll(struct drm_i915_private *dev_priv,
814                            enum pipe pipe, bool state)
815 {
816         int reg;
817         u32 val;
818         bool cur_state;
819
820         if (HAS_PCH_CPT(dev_priv->dev)) {
821                 u32 pch_dpll;
822
823                 pch_dpll = I915_READ(PCH_DPLL_SEL);
824
825                 /* Make sure the selected PLL is enabled to the transcoder */
826                 WARN(!((pch_dpll >> (4 * pipe)) & 8),
827                      "transcoder %d PLL not enabled\n", pipe);
828
829                 /* Convert the transcoder pipe number to a pll pipe number */
830                 pipe = (pch_dpll >> (4 * pipe)) & 1;
831         }
832
833         reg = PCH_DPLL(pipe);
834         val = I915_READ(reg);
835         cur_state = !!(val & DPLL_VCO_ENABLE);
836         WARN(cur_state != state,
837              "PCH PLL state assertion failure (expected %s, current %s)\n",
838              state_string(state), state_string(cur_state));
839 }
840 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
841 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
842
843 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
844                           enum pipe pipe, bool state)
845 {
846         int reg;
847         u32 val;
848         bool cur_state;
849
850         reg = FDI_TX_CTL(pipe);
851         val = I915_READ(reg);
852         cur_state = !!(val & FDI_TX_ENABLE);
853         WARN(cur_state != state,
854              "FDI TX state assertion failure (expected %s, current %s)\n",
855              state_string(state), state_string(cur_state));
856 }
857 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
858 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
859
860 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
861                           enum pipe pipe, bool state)
862 {
863         int reg;
864         u32 val;
865         bool cur_state;
866
867         reg = FDI_RX_CTL(pipe);
868         val = I915_READ(reg);
869         cur_state = !!(val & FDI_RX_ENABLE);
870         WARN(cur_state != state,
871              "FDI RX state assertion failure (expected %s, current %s)\n",
872              state_string(state), state_string(cur_state));
873 }
874 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
875 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
876
877 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
878                                       enum pipe pipe)
879 {
880         int reg;
881         u32 val;
882
883         /* ILK FDI PLL is always enabled */
884         if (dev_priv->info->gen == 5)
885                 return;
886
887         reg = FDI_TX_CTL(pipe);
888         val = I915_READ(reg);
889         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
890 }
891
892 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
893                                       enum pipe pipe)
894 {
895         int reg;
896         u32 val;
897
898         reg = FDI_RX_CTL(pipe);
899         val = I915_READ(reg);
900         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
901 }
902
903 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
904                                   enum pipe pipe)
905 {
906         int pp_reg, lvds_reg;
907         u32 val;
908         enum pipe panel_pipe = PIPE_A;
909         bool locked = true;
910
911         if (HAS_PCH_SPLIT(dev_priv->dev)) {
912                 pp_reg = PCH_PP_CONTROL;
913                 lvds_reg = PCH_LVDS;
914         } else {
915                 pp_reg = PP_CONTROL;
916                 lvds_reg = LVDS;
917         }
918
919         val = I915_READ(pp_reg);
920         if (!(val & PANEL_POWER_ON) ||
921             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
922                 locked = false;
923
924         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
925                 panel_pipe = PIPE_B;
926
927         WARN(panel_pipe == pipe && locked,
928              "panel assertion failure, pipe %c regs locked\n",
929              pipe_name(pipe));
930 }
931
932 void assert_pipe(struct drm_i915_private *dev_priv,
933                  enum pipe pipe, bool state)
934 {
935         int reg;
936         u32 val;
937         bool cur_state;
938
939         reg = PIPECONF(pipe);
940         val = I915_READ(reg);
941         cur_state = !!(val & PIPECONF_ENABLE);
942         WARN(cur_state != state,
943              "pipe %c assertion failure (expected %s, current %s)\n",
944              pipe_name(pipe), state_string(state), state_string(cur_state));
945 }
946
947 static void assert_plane(struct drm_i915_private *dev_priv,
948                          enum plane plane, bool state)
949 {
950         int reg;
951         u32 val;
952         bool cur_state;
953
954         reg = DSPCNTR(plane);
955         val = I915_READ(reg);
956         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
957         WARN(cur_state != state,
958              "plane %c assertion failure (expected %s, current %s)\n",
959              plane_name(plane), state_string(state), state_string(cur_state));
960 }
961
962 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
963 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
964
965 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
966                                    enum pipe pipe)
967 {
968         int reg, i;
969         u32 val;
970         int cur_pipe;
971
972         /* Planes are fixed to pipes on ILK+ */
973         if (HAS_PCH_SPLIT(dev_priv->dev)) {
974                 reg = DSPCNTR(pipe);
975                 val = I915_READ(reg);
976                 WARN((val & DISPLAY_PLANE_ENABLE),
977                      "plane %c assertion failure, should be disabled but not\n",
978                      plane_name(pipe));
979                 return;
980         }
981
982         /* Need to check both planes against the pipe */
983         for (i = 0; i < 2; i++) {
984                 reg = DSPCNTR(i);
985                 val = I915_READ(reg);
986                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
987                         DISPPLANE_SEL_PIPE_SHIFT;
988                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
989                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
990                      plane_name(i), pipe_name(pipe));
991         }
992 }
993
994 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
995 {
996         u32 val;
997         bool enabled;
998
999         val = I915_READ(PCH_DREF_CONTROL);
1000         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1001                             DREF_SUPERSPREAD_SOURCE_MASK));
1002         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1003 }
1004
1005 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1006                                        enum pipe pipe)
1007 {
1008         int reg;
1009         u32 val;
1010         bool enabled;
1011
1012         reg = TRANSCONF(pipe);
1013         val = I915_READ(reg);
1014         enabled = !!(val & TRANS_ENABLE);
1015         WARN(enabled,
1016              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1017              pipe_name(pipe));
1018 }
1019
1020 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1021                             enum pipe pipe, u32 port_sel, u32 val)
1022 {
1023         if ((val & DP_PORT_EN) == 0)
1024                 return false;
1025
1026         if (HAS_PCH_CPT(dev_priv->dev)) {
1027                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1028                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1029                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1030                         return false;
1031         } else {
1032                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1033                         return false;
1034         }
1035         return true;
1036 }
1037
1038 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1039                               enum pipe pipe, u32 val)
1040 {
1041         if ((val & PORT_ENABLE) == 0)
1042                 return false;
1043
1044         if (HAS_PCH_CPT(dev_priv->dev)) {
1045                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1046                         return false;
1047         } else {
1048                 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1049                         return false;
1050         }
1051         return true;
1052 }
1053
1054 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1055                               enum pipe pipe, u32 val)
1056 {
1057         if ((val & LVDS_PORT_EN) == 0)
1058                 return false;
1059
1060         if (HAS_PCH_CPT(dev_priv->dev)) {
1061                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1062                         return false;
1063         } else {
1064                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1065                         return false;
1066         }
1067         return true;
1068 }
1069
1070 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1071                               enum pipe pipe, u32 val)
1072 {
1073         if ((val & ADPA_DAC_ENABLE) == 0)
1074                 return false;
1075         if (HAS_PCH_CPT(dev_priv->dev)) {
1076                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1077                         return false;
1078         } else {
1079                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1080                         return false;
1081         }
1082         return true;
1083 }
1084
1085 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1086                                    enum pipe pipe, int reg, u32 port_sel)
1087 {
1088         u32 val = I915_READ(reg);
1089         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1090              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1091              reg, pipe_name(pipe));
1092 }
1093
1094 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1095                                      enum pipe pipe, int reg)
1096 {
1097         u32 val = I915_READ(reg);
1098         WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1099              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1100              reg, pipe_name(pipe));
1101 }
1102
1103 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1104                                       enum pipe pipe)
1105 {
1106         int reg;
1107         u32 val;
1108
1109         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1110         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1111         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1112
1113         reg = PCH_ADPA;
1114         val = I915_READ(reg);
1115         WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1116              "PCH VGA enabled on transcoder %c, should be disabled\n",
1117              pipe_name(pipe));
1118
1119         reg = PCH_LVDS;
1120         val = I915_READ(reg);
1121         WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1122              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1123              pipe_name(pipe));
1124
1125         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1126         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1127         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1128 }
1129
1130 /**
1131  * intel_enable_pll - enable a PLL
1132  * @dev_priv: i915 private structure
1133  * @pipe: pipe PLL to enable
1134  *
1135  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1136  * make sure the PLL reg is writable first though, since the panel write
1137  * protect mechanism may be enabled.
1138  *
1139  * Note!  This is for pre-ILK only.
1140  */
1141 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1142 {
1143         int reg;
1144         u32 val;
1145
1146         /* No really, not for ILK+ */
1147         BUG_ON(dev_priv->info->gen >= 5);
1148
1149         /* PLL is protected by panel, make sure we can write it */
1150         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1151                 assert_panel_unlocked(dev_priv, pipe);
1152
1153         reg = DPLL(pipe);
1154         val = I915_READ(reg);
1155         val |= DPLL_VCO_ENABLE;
1156
1157         /* We do this three times for luck */
1158         I915_WRITE(reg, val);
1159         POSTING_READ(reg);
1160         udelay(150); /* wait for warmup */
1161         I915_WRITE(reg, val);
1162         POSTING_READ(reg);
1163         udelay(150); /* wait for warmup */
1164         I915_WRITE(reg, val);
1165         POSTING_READ(reg);
1166         udelay(150); /* wait for warmup */
1167 }
1168
1169 /**
1170  * intel_disable_pll - disable a PLL
1171  * @dev_priv: i915 private structure
1172  * @pipe: pipe PLL to disable
1173  *
1174  * Disable the PLL for @pipe, making sure the pipe is off first.
1175  *
1176  * Note!  This is for pre-ILK only.
1177  */
1178 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1179 {
1180         int reg;
1181         u32 val;
1182
1183         /* Don't disable pipe A or pipe A PLLs if needed */
1184         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1185                 return;
1186
1187         /* Make sure the pipe isn't still relying on us */
1188         assert_pipe_disabled(dev_priv, pipe);
1189
1190         reg = DPLL(pipe);
1191         val = I915_READ(reg);
1192         val &= ~DPLL_VCO_ENABLE;
1193         I915_WRITE(reg, val);
1194         POSTING_READ(reg);
1195 }
1196
1197 /**
1198  * intel_enable_pch_pll - enable PCH PLL
1199  * @dev_priv: i915 private structure
1200  * @pipe: pipe PLL to enable
1201  *
1202  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1203  * drives the transcoder clock.
1204  */
1205 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1206                                  enum pipe pipe)
1207 {
1208         int reg;
1209         u32 val;
1210
1211         if (pipe > 1)
1212                 return;
1213
1214         /* PCH only available on ILK+ */
1215         BUG_ON(dev_priv->info->gen < 5);
1216
1217         /* PCH refclock must be enabled first */
1218         assert_pch_refclk_enabled(dev_priv);
1219
1220         reg = PCH_DPLL(pipe);
1221         val = I915_READ(reg);
1222         val |= DPLL_VCO_ENABLE;
1223         I915_WRITE(reg, val);
1224         POSTING_READ(reg);
1225         udelay(200);
1226 }
1227
1228 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1229                                   enum pipe pipe)
1230 {
1231         int reg;
1232         u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
1233                 pll_sel = TRANSC_DPLL_ENABLE;
1234
1235         if (pipe > 1)
1236                 return;
1237
1238         /* PCH only available on ILK+ */
1239         BUG_ON(dev_priv->info->gen < 5);
1240
1241         /* Make sure transcoder isn't still depending on us */
1242         assert_transcoder_disabled(dev_priv, pipe);
1243
1244         if (pipe == 0)
1245                 pll_sel |= TRANSC_DPLLA_SEL;
1246         else if (pipe == 1)
1247                 pll_sel |= TRANSC_DPLLB_SEL;
1248
1249
1250         if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
1251                 return;
1252
1253         reg = PCH_DPLL(pipe);
1254         val = I915_READ(reg);
1255         val &= ~DPLL_VCO_ENABLE;
1256         I915_WRITE(reg, val);
1257         POSTING_READ(reg);
1258         udelay(200);
1259 }
1260
1261 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1262                                     enum pipe pipe)
1263 {
1264         int reg;
1265         u32 val;
1266
1267         /* PCH only available on ILK+ */
1268         BUG_ON(dev_priv->info->gen < 5);
1269
1270         /* Make sure PCH DPLL is enabled */
1271         assert_pch_pll_enabled(dev_priv, pipe);
1272
1273         /* FDI must be feeding us bits for PCH ports */
1274         assert_fdi_tx_enabled(dev_priv, pipe);
1275         assert_fdi_rx_enabled(dev_priv, pipe);
1276
1277         reg = TRANSCONF(pipe);
1278         val = I915_READ(reg);
1279
1280         if (HAS_PCH_IBX(dev_priv->dev)) {
1281                 /*
1282                  * make the BPC in transcoder be consistent with
1283                  * that in pipeconf reg.
1284                  */
1285                 val &= ~PIPE_BPC_MASK;
1286                 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1287         }
1288         I915_WRITE(reg, val | TRANS_ENABLE);
1289         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1290                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1291 }
1292
1293 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1294                                      enum pipe pipe)
1295 {
1296         int reg;
1297         u32 val;
1298
1299         /* FDI relies on the transcoder */
1300         assert_fdi_tx_disabled(dev_priv, pipe);
1301         assert_fdi_rx_disabled(dev_priv, pipe);
1302
1303         /* Ports must be off as well */
1304         assert_pch_ports_disabled(dev_priv, pipe);
1305
1306         reg = TRANSCONF(pipe);
1307         val = I915_READ(reg);
1308         val &= ~TRANS_ENABLE;
1309         I915_WRITE(reg, val);
1310         /* wait for PCH transcoder off, transcoder state */
1311         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1312                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1313 }
1314
1315 /**
1316  * intel_enable_pipe - enable a pipe, asserting requirements
1317  * @dev_priv: i915 private structure
1318  * @pipe: pipe to enable
1319  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1320  *
1321  * Enable @pipe, making sure that various hardware specific requirements
1322  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1323  *
1324  * @pipe should be %PIPE_A or %PIPE_B.
1325  *
1326  * Will wait until the pipe is actually running (i.e. first vblank) before
1327  * returning.
1328  */
1329 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1330                               bool pch_port)
1331 {
1332         int reg;
1333         u32 val;
1334
1335         /*
1336          * A pipe without a PLL won't actually be able to drive bits from
1337          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1338          * need the check.
1339          */
1340         if (!HAS_PCH_SPLIT(dev_priv->dev))
1341                 assert_pll_enabled(dev_priv, pipe);
1342         else {
1343                 if (pch_port) {
1344                         /* if driving the PCH, we need FDI enabled */
1345                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1346                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1347                 }
1348                 /* FIXME: assert CPU port conditions for SNB+ */
1349         }
1350
1351         reg = PIPECONF(pipe);
1352         val = I915_READ(reg);
1353         if (val & PIPECONF_ENABLE)
1354                 return;
1355
1356         I915_WRITE(reg, val | PIPECONF_ENABLE);
1357         intel_wait_for_vblank(dev_priv->dev, pipe);
1358 }
1359
1360 /**
1361  * intel_disable_pipe - disable a pipe, asserting requirements
1362  * @dev_priv: i915 private structure
1363  * @pipe: pipe to disable
1364  *
1365  * Disable @pipe, making sure that various hardware specific requirements
1366  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1367  *
1368  * @pipe should be %PIPE_A or %PIPE_B.
1369  *
1370  * Will wait until the pipe has shut down before returning.
1371  */
1372 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1373                                enum pipe pipe)
1374 {
1375         int reg;
1376         u32 val;
1377
1378         /*
1379          * Make sure planes won't keep trying to pump pixels to us,
1380          * or we might hang the display.
1381          */
1382         assert_planes_disabled(dev_priv, pipe);
1383
1384         /* Don't disable pipe A or pipe A PLLs if needed */
1385         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1386                 return;
1387
1388         reg = PIPECONF(pipe);
1389         val = I915_READ(reg);
1390         if ((val & PIPECONF_ENABLE) == 0)
1391                 return;
1392
1393         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1394         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1395 }
1396
1397 /*
1398  * Plane regs are double buffered, going from enabled->disabled needs a
1399  * trigger in order to latch.  The display address reg provides this.
1400  */
1401 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1402                                       enum plane plane)
1403 {
1404         I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1405         I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1406 }
1407
1408 /**
1409  * intel_enable_plane - enable a display plane on a given pipe
1410  * @dev_priv: i915 private structure
1411  * @plane: plane to enable
1412  * @pipe: pipe being fed
1413  *
1414  * Enable @plane on @pipe, making sure that @pipe is running first.
1415  */
1416 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1417                                enum plane plane, enum pipe pipe)
1418 {
1419         int reg;
1420         u32 val;
1421
1422         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1423         assert_pipe_enabled(dev_priv, pipe);
1424
1425         reg = DSPCNTR(plane);
1426         val = I915_READ(reg);
1427         if (val & DISPLAY_PLANE_ENABLE)
1428                 return;
1429
1430         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1431         intel_flush_display_plane(dev_priv, plane);
1432         intel_wait_for_vblank(dev_priv->dev, pipe);
1433 }
1434
1435 /**
1436  * intel_disable_plane - disable a display plane
1437  * @dev_priv: i915 private structure
1438  * @plane: plane to disable
1439  * @pipe: pipe consuming the data
1440  *
1441  * Disable @plane; should be an independent operation.
1442  */
1443 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1444                                 enum plane plane, enum pipe pipe)
1445 {
1446         int reg;
1447         u32 val;
1448
1449         reg = DSPCNTR(plane);
1450         val = I915_READ(reg);
1451         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1452                 return;
1453
1454         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1455         intel_flush_display_plane(dev_priv, plane);
1456         intel_wait_for_vblank(dev_priv->dev, pipe);
1457 }
1458
1459 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1460                            enum pipe pipe, int reg, u32 port_sel)
1461 {
1462         u32 val = I915_READ(reg);
1463         if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1464                 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1465                 I915_WRITE(reg, val & ~DP_PORT_EN);
1466         }
1467 }
1468
1469 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1470                              enum pipe pipe, int reg)
1471 {
1472         u32 val = I915_READ(reg);
1473         if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1474                 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1475                               reg, pipe);
1476                 I915_WRITE(reg, val & ~PORT_ENABLE);
1477         }
1478 }
1479
1480 /* Disable any ports connected to this transcoder */
1481 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1482                                     enum pipe pipe)
1483 {
1484         u32 reg, val;
1485
1486         val = I915_READ(PCH_PP_CONTROL);
1487         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1488
1489         disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1490         disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1491         disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1492
1493         reg = PCH_ADPA;
1494         val = I915_READ(reg);
1495         if (adpa_pipe_enabled(dev_priv, val, pipe))
1496                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1497
1498         reg = PCH_LVDS;
1499         val = I915_READ(reg);
1500         if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1501                 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1502                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1503                 POSTING_READ(reg);
1504                 udelay(100);
1505         }
1506
1507         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1508         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1509         disable_pch_hdmi(dev_priv, pipe, HDMID);
1510 }
1511
1512 static void i8xx_disable_fbc(struct drm_device *dev)
1513 {
1514         struct drm_i915_private *dev_priv = dev->dev_private;
1515         u32 fbc_ctl;
1516
1517         /* Disable compression */
1518         fbc_ctl = I915_READ(FBC_CONTROL);
1519         if ((fbc_ctl & FBC_CTL_EN) == 0)
1520                 return;
1521
1522         fbc_ctl &= ~FBC_CTL_EN;
1523         I915_WRITE(FBC_CONTROL, fbc_ctl);
1524
1525         /* Wait for compressing bit to clear */
1526         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1527                 DRM_DEBUG_KMS("FBC idle timed out\n");
1528                 return;
1529         }
1530
1531         DRM_DEBUG_KMS("disabled FBC\n");
1532 }
1533
1534 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1535 {
1536         struct drm_device *dev = crtc->dev;
1537         struct drm_i915_private *dev_priv = dev->dev_private;
1538         struct drm_framebuffer *fb = crtc->fb;
1539         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1540         struct drm_i915_gem_object *obj = intel_fb->obj;
1541         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1542         int cfb_pitch;
1543         int plane, i;
1544         u32 fbc_ctl, fbc_ctl2;
1545
1546         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1547         if (fb->pitches[0] < cfb_pitch)
1548                 cfb_pitch = fb->pitches[0];
1549
1550         /* FBC_CTL wants 64B units */
1551         cfb_pitch = (cfb_pitch / 64) - 1;
1552         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1553
1554         /* Clear old tags */
1555         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1556                 I915_WRITE(FBC_TAG + (i * 4), 0);
1557
1558         /* Set it up... */
1559         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1560         fbc_ctl2 |= plane;
1561         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1562         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1563
1564         /* enable it... */
1565         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1566         if (IS_I945GM(dev))
1567                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1568         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1569         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1570         fbc_ctl |= obj->fence_reg;
1571         I915_WRITE(FBC_CONTROL, fbc_ctl);
1572
1573         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1574                       cfb_pitch, crtc->y, intel_crtc->plane);
1575 }
1576
1577 static bool i8xx_fbc_enabled(struct drm_device *dev)
1578 {
1579         struct drm_i915_private *dev_priv = dev->dev_private;
1580
1581         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1582 }
1583
1584 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1585 {
1586         struct drm_device *dev = crtc->dev;
1587         struct drm_i915_private *dev_priv = dev->dev_private;
1588         struct drm_framebuffer *fb = crtc->fb;
1589         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1590         struct drm_i915_gem_object *obj = intel_fb->obj;
1591         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1592         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1593         unsigned long stall_watermark = 200;
1594         u32 dpfc_ctl;
1595
1596         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1597         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1598         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1599
1600         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1601                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1602                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1603         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1604
1605         /* enable it... */
1606         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1607
1608         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1609 }
1610
1611 static void g4x_disable_fbc(struct drm_device *dev)
1612 {
1613         struct drm_i915_private *dev_priv = dev->dev_private;
1614         u32 dpfc_ctl;
1615
1616         /* Disable compression */
1617         dpfc_ctl = I915_READ(DPFC_CONTROL);
1618         if (dpfc_ctl & DPFC_CTL_EN) {
1619                 dpfc_ctl &= ~DPFC_CTL_EN;
1620                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1621
1622                 DRM_DEBUG_KMS("disabled FBC\n");
1623         }
1624 }
1625
1626 static bool g4x_fbc_enabled(struct drm_device *dev)
1627 {
1628         struct drm_i915_private *dev_priv = dev->dev_private;
1629
1630         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1631 }
1632
1633 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1634 {
1635         struct drm_i915_private *dev_priv = dev->dev_private;
1636         u32 blt_ecoskpd;
1637
1638         /* Make sure blitter notifies FBC of writes */
1639         gen6_gt_force_wake_get(dev_priv);
1640         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1641         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1642                 GEN6_BLITTER_LOCK_SHIFT;
1643         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1644         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1645         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1646         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1647                          GEN6_BLITTER_LOCK_SHIFT);
1648         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1649         POSTING_READ(GEN6_BLITTER_ECOSKPD);
1650         gen6_gt_force_wake_put(dev_priv);
1651 }
1652
1653 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1654 {
1655         struct drm_device *dev = crtc->dev;
1656         struct drm_i915_private *dev_priv = dev->dev_private;
1657         struct drm_framebuffer *fb = crtc->fb;
1658         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1659         struct drm_i915_gem_object *obj = intel_fb->obj;
1660         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1661         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1662         unsigned long stall_watermark = 200;
1663         u32 dpfc_ctl;
1664
1665         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1666         dpfc_ctl &= DPFC_RESERVED;
1667         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1668         /* Set persistent mode for front-buffer rendering, ala X. */
1669         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1670         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1671         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1672
1673         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1674                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1675                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1676         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1677         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1678         /* enable it... */
1679         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1680
1681         if (IS_GEN6(dev)) {
1682                 I915_WRITE(SNB_DPFC_CTL_SA,
1683                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1684                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1685                 sandybridge_blit_fbc_update(dev);
1686         }
1687
1688         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1689 }
1690
1691 static void ironlake_disable_fbc(struct drm_device *dev)
1692 {
1693         struct drm_i915_private *dev_priv = dev->dev_private;
1694         u32 dpfc_ctl;
1695
1696         /* Disable compression */
1697         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1698         if (dpfc_ctl & DPFC_CTL_EN) {
1699                 dpfc_ctl &= ~DPFC_CTL_EN;
1700                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1701
1702                 DRM_DEBUG_KMS("disabled FBC\n");
1703         }
1704 }
1705
1706 static bool ironlake_fbc_enabled(struct drm_device *dev)
1707 {
1708         struct drm_i915_private *dev_priv = dev->dev_private;
1709
1710         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1711 }
1712
1713 bool intel_fbc_enabled(struct drm_device *dev)
1714 {
1715         struct drm_i915_private *dev_priv = dev->dev_private;
1716
1717         if (!dev_priv->display.fbc_enabled)
1718                 return false;
1719
1720         return dev_priv->display.fbc_enabled(dev);
1721 }
1722
1723 static void intel_fbc_work_fn(struct work_struct *__work)
1724 {
1725         struct intel_fbc_work *work =
1726                 container_of(to_delayed_work(__work),
1727                              struct intel_fbc_work, work);
1728         struct drm_device *dev = work->crtc->dev;
1729         struct drm_i915_private *dev_priv = dev->dev_private;
1730
1731         mutex_lock(&dev->struct_mutex);
1732         if (work == dev_priv->fbc_work) {
1733                 /* Double check that we haven't switched fb without cancelling
1734                  * the prior work.
1735                  */
1736                 if (work->crtc->fb == work->fb) {
1737                         dev_priv->display.enable_fbc(work->crtc,
1738                                                      work->interval);
1739
1740                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1741                         dev_priv->cfb_fb = work->crtc->fb->base.id;
1742                         dev_priv->cfb_y = work->crtc->y;
1743                 }
1744
1745                 dev_priv->fbc_work = NULL;
1746         }
1747         mutex_unlock(&dev->struct_mutex);
1748
1749         kfree(work);
1750 }
1751
1752 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1753 {
1754         if (dev_priv->fbc_work == NULL)
1755                 return;
1756
1757         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1758
1759         /* Synchronisation is provided by struct_mutex and checking of
1760          * dev_priv->fbc_work, so we can perform the cancellation
1761          * entirely asynchronously.
1762          */
1763         if (cancel_delayed_work(&dev_priv->fbc_work->work))
1764                 /* tasklet was killed before being run, clean up */
1765                 kfree(dev_priv->fbc_work);
1766
1767         /* Mark the work as no longer wanted so that if it does
1768          * wake-up (because the work was already running and waiting
1769          * for our mutex), it will discover that is no longer
1770          * necessary to run.
1771          */
1772         dev_priv->fbc_work = NULL;
1773 }
1774
1775 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1776 {
1777         struct intel_fbc_work *work;
1778         struct drm_device *dev = crtc->dev;
1779         struct drm_i915_private *dev_priv = dev->dev_private;
1780
1781         if (!dev_priv->display.enable_fbc)
1782                 return;
1783
1784         intel_cancel_fbc_work(dev_priv);
1785
1786         work = kzalloc(sizeof *work, GFP_KERNEL);
1787         if (work == NULL) {
1788                 dev_priv->display.enable_fbc(crtc, interval);
1789                 return;
1790         }
1791
1792         work->crtc = crtc;
1793         work->fb = crtc->fb;
1794         work->interval = interval;
1795         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1796
1797         dev_priv->fbc_work = work;
1798
1799         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1800
1801         /* Delay the actual enabling to let pageflipping cease and the
1802          * display to settle before starting the compression. Note that
1803          * this delay also serves a second purpose: it allows for a
1804          * vblank to pass after disabling the FBC before we attempt
1805          * to modify the control registers.
1806          *
1807          * A more complicated solution would involve tracking vblanks
1808          * following the termination of the page-flipping sequence
1809          * and indeed performing the enable as a co-routine and not
1810          * waiting synchronously upon the vblank.
1811          */
1812         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1813 }
1814
1815 void intel_disable_fbc(struct drm_device *dev)
1816 {
1817         struct drm_i915_private *dev_priv = dev->dev_private;
1818
1819         intel_cancel_fbc_work(dev_priv);
1820
1821         if (!dev_priv->display.disable_fbc)
1822                 return;
1823
1824         dev_priv->display.disable_fbc(dev);
1825         dev_priv->cfb_plane = -1;
1826 }
1827
1828 /**
1829  * intel_update_fbc - enable/disable FBC as needed
1830  * @dev: the drm_device
1831  *
1832  * Set up the framebuffer compression hardware at mode set time.  We
1833  * enable it if possible:
1834  *   - plane A only (on pre-965)
1835  *   - no pixel mulitply/line duplication
1836  *   - no alpha buffer discard
1837  *   - no dual wide
1838  *   - framebuffer <= 2048 in width, 1536 in height
1839  *
1840  * We can't assume that any compression will take place (worst case),
1841  * so the compressed buffer has to be the same size as the uncompressed
1842  * one.  It also must reside (along with the line length buffer) in
1843  * stolen memory.
1844  *
1845  * We need to enable/disable FBC on a global basis.
1846  */
1847 static void intel_update_fbc(struct drm_device *dev)
1848 {
1849         struct drm_i915_private *dev_priv = dev->dev_private;
1850         struct drm_crtc *crtc = NULL, *tmp_crtc;
1851         struct intel_crtc *intel_crtc;
1852         struct drm_framebuffer *fb;
1853         struct intel_framebuffer *intel_fb;
1854         struct drm_i915_gem_object *obj;
1855         int enable_fbc;
1856
1857         DRM_DEBUG_KMS("\n");
1858
1859         if (!i915_powersave)
1860                 return;
1861
1862         if (!I915_HAS_FBC(dev))
1863                 return;
1864
1865         /*
1866          * If FBC is already on, we just have to verify that we can
1867          * keep it that way...
1868          * Need to disable if:
1869          *   - more than one pipe is active
1870          *   - changing FBC params (stride, fence, mode)
1871          *   - new fb is too large to fit in compressed buffer
1872          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1873          */
1874         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1875                 if (tmp_crtc->enabled && tmp_crtc->fb) {
1876                         if (crtc) {
1877                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1878                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1879                                 goto out_disable;
1880                         }
1881                         crtc = tmp_crtc;
1882                 }
1883         }
1884
1885         if (!crtc || crtc->fb == NULL) {
1886                 DRM_DEBUG_KMS("no output, disabling\n");
1887                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1888                 goto out_disable;
1889         }
1890
1891         intel_crtc = to_intel_crtc(crtc);
1892         fb = crtc->fb;
1893         intel_fb = to_intel_framebuffer(fb);
1894         obj = intel_fb->obj;
1895
1896         enable_fbc = i915_enable_fbc;
1897         if (enable_fbc < 0) {
1898                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1899                 enable_fbc = 1;
1900                 if (INTEL_INFO(dev)->gen <= 5)
1901                         enable_fbc = 0;
1902         }
1903         if (!enable_fbc) {
1904                 DRM_DEBUG_KMS("fbc disabled per module param\n");
1905                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1906                 goto out_disable;
1907         }
1908         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1909                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1910                               "compression\n");
1911                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1912                 goto out_disable;
1913         }
1914         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1915             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1916                 DRM_DEBUG_KMS("mode incompatible with compression, "
1917                               "disabling\n");
1918                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1919                 goto out_disable;
1920         }
1921         if ((crtc->mode.hdisplay > 2048) ||
1922             (crtc->mode.vdisplay > 1536)) {
1923                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1924                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1925                 goto out_disable;
1926         }
1927         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1928                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1929                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1930                 goto out_disable;
1931         }
1932
1933         /* The use of a CPU fence is mandatory in order to detect writes
1934          * by the CPU to the scanout and trigger updates to the FBC.
1935          */
1936         if (obj->tiling_mode != I915_TILING_X ||
1937             obj->fence_reg == I915_FENCE_REG_NONE) {
1938                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1939                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1940                 goto out_disable;
1941         }
1942
1943         /* If the kernel debugger is active, always disable compression */
1944         if (in_dbg_master())
1945                 goto out_disable;
1946
1947         /* If the scanout has not changed, don't modify the FBC settings.
1948          * Note that we make the fundamental assumption that the fb->obj
1949          * cannot be unpinned (and have its GTT offset and fence revoked)
1950          * without first being decoupled from the scanout and FBC disabled.
1951          */
1952         if (dev_priv->cfb_plane == intel_crtc->plane &&
1953             dev_priv->cfb_fb == fb->base.id &&
1954             dev_priv->cfb_y == crtc->y)
1955                 return;
1956
1957         if (intel_fbc_enabled(dev)) {
1958                 /* We update FBC along two paths, after changing fb/crtc
1959                  * configuration (modeswitching) and after page-flipping
1960                  * finishes. For the latter, we know that not only did
1961                  * we disable the FBC at the start of the page-flip
1962                  * sequence, but also more than one vblank has passed.
1963                  *
1964                  * For the former case of modeswitching, it is possible
1965                  * to switch between two FBC valid configurations
1966                  * instantaneously so we do need to disable the FBC
1967                  * before we can modify its control registers. We also
1968                  * have to wait for the next vblank for that to take
1969                  * effect. However, since we delay enabling FBC we can
1970                  * assume that a vblank has passed since disabling and
1971                  * that we can safely alter the registers in the deferred
1972                  * callback.
1973                  *
1974                  * In the scenario that we go from a valid to invalid
1975                  * and then back to valid FBC configuration we have
1976                  * no strict enforcement that a vblank occurred since
1977                  * disabling the FBC. However, along all current pipe
1978                  * disabling paths we do need to wait for a vblank at
1979                  * some point. And we wait before enabling FBC anyway.
1980                  */
1981                 DRM_DEBUG_KMS("disabling active FBC for update\n");
1982                 intel_disable_fbc(dev);
1983         }
1984
1985         intel_enable_fbc(crtc, 500);
1986         return;
1987
1988 out_disable:
1989         /* Multiple disables should be harmless */
1990         if (intel_fbc_enabled(dev)) {
1991                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1992                 intel_disable_fbc(dev);
1993         }
1994 }
1995
1996 int
1997 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1998                            struct drm_i915_gem_object *obj,
1999                            struct intel_ring_buffer *pipelined)
2000 {
2001         struct drm_i915_private *dev_priv = dev->dev_private;
2002         u32 alignment;
2003         int ret;
2004
2005         switch (obj->tiling_mode) {
2006         case I915_TILING_NONE:
2007                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2008                         alignment = 128 * 1024;
2009                 else if (INTEL_INFO(dev)->gen >= 4)
2010                         alignment = 4 * 1024;
2011                 else
2012                         alignment = 64 * 1024;
2013                 break;
2014         case I915_TILING_X:
2015                 /* pin() will align the object as required by fence */
2016                 alignment = 0;
2017                 break;
2018         case I915_TILING_Y:
2019                 /* FIXME: Is this true? */
2020                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
2021                 return -EINVAL;
2022         default:
2023                 BUG();
2024         }
2025
2026         dev_priv->mm.interruptible = false;
2027         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2028         if (ret)
2029                 goto err_interruptible;
2030
2031         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2032          * fence, whereas 965+ only requires a fence if using
2033          * framebuffer compression.  For simplicity, we always install
2034          * a fence as the cost is not that onerous.
2035          */
2036         if (obj->tiling_mode != I915_TILING_NONE) {
2037                 ret = i915_gem_object_get_fence(obj, pipelined);
2038                 if (ret)
2039                         goto err_unpin;
2040         }
2041
2042         dev_priv->mm.interruptible = true;
2043         return 0;
2044
2045 err_unpin:
2046         i915_gem_object_unpin(obj);
2047 err_interruptible:
2048         dev_priv->mm.interruptible = true;
2049         return ret;
2050 }
2051
2052 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2053                              int x, int y)
2054 {
2055         struct drm_device *dev = crtc->dev;
2056         struct drm_i915_private *dev_priv = dev->dev_private;
2057         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2058         struct intel_framebuffer *intel_fb;
2059         struct drm_i915_gem_object *obj;
2060         int plane = intel_crtc->plane;
2061         unsigned long Start, Offset;
2062         u32 dspcntr;
2063         u32 reg;
2064
2065         switch (plane) {
2066         case 0:
2067         case 1:
2068                 break;
2069         default:
2070                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2071                 return -EINVAL;
2072         }
2073
2074         intel_fb = to_intel_framebuffer(fb);
2075         obj = intel_fb->obj;
2076
2077         reg = DSPCNTR(plane);
2078         dspcntr = I915_READ(reg);
2079         /* Mask out pixel format bits in case we change it */
2080         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2081         switch (fb->bits_per_pixel) {
2082         case 8:
2083                 dspcntr |= DISPPLANE_8BPP;
2084                 break;
2085         case 16:
2086                 if (fb->depth == 15)
2087                         dspcntr |= DISPPLANE_15_16BPP;
2088                 else
2089                         dspcntr |= DISPPLANE_16BPP;
2090                 break;
2091         case 24:
2092         case 32:
2093                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2094                 break;
2095         default:
2096                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2097                 return -EINVAL;
2098         }
2099         if (INTEL_INFO(dev)->gen >= 4) {
2100                 if (obj->tiling_mode != I915_TILING_NONE)
2101                         dspcntr |= DISPPLANE_TILED;
2102                 else
2103                         dspcntr &= ~DISPPLANE_TILED;
2104         }
2105
2106         I915_WRITE(reg, dspcntr);
2107
2108         Start = obj->gtt_offset;
2109         Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2110
2111         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2112                       Start, Offset, x, y, fb->pitches[0]);
2113         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2114         if (INTEL_INFO(dev)->gen >= 4) {
2115                 I915_WRITE(DSPSURF(plane), Start);
2116                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2117                 I915_WRITE(DSPADDR(plane), Offset);
2118         } else
2119                 I915_WRITE(DSPADDR(plane), Start + Offset);
2120         POSTING_READ(reg);
2121
2122         return 0;
2123 }
2124
2125 static int ironlake_update_plane(struct drm_crtc *crtc,
2126                                  struct drm_framebuffer *fb, int x, int y)
2127 {
2128         struct drm_device *dev = crtc->dev;
2129         struct drm_i915_private *dev_priv = dev->dev_private;
2130         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2131         struct intel_framebuffer *intel_fb;
2132         struct drm_i915_gem_object *obj;
2133         int plane = intel_crtc->plane;
2134         unsigned long Start, Offset;
2135         u32 dspcntr;
2136         u32 reg;
2137
2138         switch (plane) {
2139         case 0:
2140         case 1:
2141         case 2:
2142                 break;
2143         default:
2144                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2145                 return -EINVAL;
2146         }
2147
2148         intel_fb = to_intel_framebuffer(fb);
2149         obj = intel_fb->obj;
2150
2151         reg = DSPCNTR(plane);
2152         dspcntr = I915_READ(reg);
2153         /* Mask out pixel format bits in case we change it */
2154         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2155         switch (fb->bits_per_pixel) {
2156         case 8:
2157                 dspcntr |= DISPPLANE_8BPP;
2158                 break;
2159         case 16:
2160                 if (fb->depth != 16)
2161                         return -EINVAL;
2162
2163                 dspcntr |= DISPPLANE_16BPP;
2164                 break;
2165         case 24:
2166         case 32:
2167                 if (fb->depth == 24)
2168                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2169                 else if (fb->depth == 30)
2170                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2171                 else
2172                         return -EINVAL;
2173                 break;
2174         default:
2175                 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2176                 return -EINVAL;
2177         }
2178
2179         if (obj->tiling_mode != I915_TILING_NONE)
2180                 dspcntr |= DISPPLANE_TILED;
2181         else
2182                 dspcntr &= ~DISPPLANE_TILED;
2183
2184         /* must disable */
2185         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2186
2187         I915_WRITE(reg, dspcntr);
2188
2189         Start = obj->gtt_offset;
2190         Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2191
2192         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2193                       Start, Offset, x, y, fb->pitches[0]);
2194         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2195         I915_WRITE(DSPSURF(plane), Start);
2196         I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2197         I915_WRITE(DSPADDR(plane), Offset);
2198         POSTING_READ(reg);
2199
2200         return 0;
2201 }
2202
2203 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2204 static int
2205 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2206                            int x, int y, enum mode_set_atomic state)
2207 {
2208         struct drm_device *dev = crtc->dev;
2209         struct drm_i915_private *dev_priv = dev->dev_private;
2210         int ret;
2211
2212         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2213         if (ret)
2214                 return ret;
2215
2216         intel_update_fbc(dev);
2217         intel_increase_pllclock(crtc);
2218
2219         return 0;
2220 }
2221
2222 static int
2223 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2224                     struct drm_framebuffer *old_fb)
2225 {
2226         struct drm_device *dev = crtc->dev;
2227         struct drm_i915_master_private *master_priv;
2228         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2229         int ret;
2230
2231         /* no fb bound */
2232         if (!crtc->fb) {
2233                 DRM_ERROR("No FB bound\n");
2234                 return 0;
2235         }
2236
2237         switch (intel_crtc->plane) {
2238         case 0:
2239         case 1:
2240                 break;
2241         case 2:
2242                 if (IS_IVYBRIDGE(dev))
2243                         break;
2244                 /* fall through otherwise */
2245         default:
2246                 DRM_ERROR("no plane for crtc\n");
2247                 return -EINVAL;
2248         }
2249
2250         mutex_lock(&dev->struct_mutex);
2251         ret = intel_pin_and_fence_fb_obj(dev,
2252                                          to_intel_framebuffer(crtc->fb)->obj,
2253                                          NULL);
2254         if (ret != 0) {
2255                 mutex_unlock(&dev->struct_mutex);
2256                 DRM_ERROR("pin & fence failed\n");
2257                 return ret;
2258         }
2259
2260         if (old_fb) {
2261                 struct drm_i915_private *dev_priv = dev->dev_private;
2262                 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2263
2264                 wait_event(dev_priv->pending_flip_queue,
2265                            atomic_read(&dev_priv->mm.wedged) ||
2266                            atomic_read(&obj->pending_flip) == 0);
2267
2268                 /* Big Hammer, we also need to ensure that any pending
2269                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2270                  * current scanout is retired before unpinning the old
2271                  * framebuffer.
2272                  *
2273                  * This should only fail upon a hung GPU, in which case we
2274                  * can safely continue.
2275                  */
2276                 ret = i915_gem_object_finish_gpu(obj);
2277                 (void) ret;
2278         }
2279
2280         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2281                                          LEAVE_ATOMIC_MODE_SET);
2282         if (ret) {
2283                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2284                 mutex_unlock(&dev->struct_mutex);
2285                 DRM_ERROR("failed to update base address\n");
2286                 return ret;
2287         }
2288
2289         if (old_fb) {
2290                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2291                 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
2292         }
2293
2294         mutex_unlock(&dev->struct_mutex);
2295
2296         if (!dev->primary->master)
2297                 return 0;
2298
2299         master_priv = dev->primary->master->driver_priv;
2300         if (!master_priv->sarea_priv)
2301                 return 0;
2302
2303         if (intel_crtc->pipe) {
2304                 master_priv->sarea_priv->pipeB_x = x;
2305                 master_priv->sarea_priv->pipeB_y = y;
2306         } else {
2307                 master_priv->sarea_priv->pipeA_x = x;
2308                 master_priv->sarea_priv->pipeA_y = y;
2309         }
2310
2311         return 0;
2312 }
2313
2314 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2315 {
2316         struct drm_device *dev = crtc->dev;
2317         struct drm_i915_private *dev_priv = dev->dev_private;
2318         u32 dpa_ctl;
2319
2320         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2321         dpa_ctl = I915_READ(DP_A);
2322         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2323
2324         if (clock < 200000) {
2325                 u32 temp;
2326                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2327                 /* workaround for 160Mhz:
2328                    1) program 0x4600c bits 15:0 = 0x8124
2329                    2) program 0x46010 bit 0 = 1
2330                    3) program 0x46034 bit 24 = 1
2331                    4) program 0x64000 bit 14 = 1
2332                    */
2333                 temp = I915_READ(0x4600c);
2334                 temp &= 0xffff0000;
2335                 I915_WRITE(0x4600c, temp | 0x8124);
2336
2337                 temp = I915_READ(0x46010);
2338                 I915_WRITE(0x46010, temp | 1);
2339
2340                 temp = I915_READ(0x46034);
2341                 I915_WRITE(0x46034, temp | (1 << 24));
2342         } else {
2343                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2344         }
2345         I915_WRITE(DP_A, dpa_ctl);
2346
2347         POSTING_READ(DP_A);
2348         udelay(500);
2349 }
2350
2351 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2352 {
2353         struct drm_device *dev = crtc->dev;
2354         struct drm_i915_private *dev_priv = dev->dev_private;
2355         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2356         int pipe = intel_crtc->pipe;
2357         u32 reg, temp;
2358
2359         /* enable normal train */
2360         reg = FDI_TX_CTL(pipe);
2361         temp = I915_READ(reg);
2362         if (IS_IVYBRIDGE(dev)) {
2363                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2364                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2365         } else {
2366                 temp &= ~FDI_LINK_TRAIN_NONE;
2367                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2368         }
2369         I915_WRITE(reg, temp);
2370
2371         reg = FDI_RX_CTL(pipe);
2372         temp = I915_READ(reg);
2373         if (HAS_PCH_CPT(dev)) {
2374                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2375                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2376         } else {
2377                 temp &= ~FDI_LINK_TRAIN_NONE;
2378                 temp |= FDI_LINK_TRAIN_NONE;
2379         }
2380         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2381
2382         /* wait one idle pattern time */
2383         POSTING_READ(reg);
2384         udelay(1000);
2385
2386         /* IVB wants error correction enabled */
2387         if (IS_IVYBRIDGE(dev))
2388                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2389                            FDI_FE_ERRC_ENABLE);
2390 }
2391
2392 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2393 {
2394         struct drm_i915_private *dev_priv = dev->dev_private;
2395         u32 flags = I915_READ(SOUTH_CHICKEN1);
2396
2397         flags |= FDI_PHASE_SYNC_OVR(pipe);
2398         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2399         flags |= FDI_PHASE_SYNC_EN(pipe);
2400         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2401         POSTING_READ(SOUTH_CHICKEN1);
2402 }
2403
2404 /* The FDI link training functions for ILK/Ibexpeak. */
2405 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2406 {
2407         struct drm_device *dev = crtc->dev;
2408         struct drm_i915_private *dev_priv = dev->dev_private;
2409         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2410         int pipe = intel_crtc->pipe;
2411         int plane = intel_crtc->plane;
2412         u32 reg, temp, tries;
2413
2414         /* FDI needs bits from pipe & plane first */
2415         assert_pipe_enabled(dev_priv, pipe);
2416         assert_plane_enabled(dev_priv, plane);
2417
2418         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2419            for train result */
2420         reg = FDI_RX_IMR(pipe);
2421         temp = I915_READ(reg);
2422         temp &= ~FDI_RX_SYMBOL_LOCK;
2423         temp &= ~FDI_RX_BIT_LOCK;
2424         I915_WRITE(reg, temp);
2425         I915_READ(reg);
2426         udelay(150);
2427
2428         /* enable CPU FDI TX and PCH FDI RX */
2429         reg = FDI_TX_CTL(pipe);
2430         temp = I915_READ(reg);
2431         temp &= ~(7 << 19);
2432         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2433         temp &= ~FDI_LINK_TRAIN_NONE;
2434         temp |= FDI_LINK_TRAIN_PATTERN_1;
2435         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2436
2437         reg = FDI_RX_CTL(pipe);
2438         temp = I915_READ(reg);
2439         temp &= ~FDI_LINK_TRAIN_NONE;
2440         temp |= FDI_LINK_TRAIN_PATTERN_1;
2441         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2442
2443         POSTING_READ(reg);
2444         udelay(150);
2445
2446         /* Ironlake workaround, enable clock pointer after FDI enable*/
2447         if (HAS_PCH_IBX(dev)) {
2448                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2449                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2450                            FDI_RX_PHASE_SYNC_POINTER_EN);
2451         }
2452
2453         reg = FDI_RX_IIR(pipe);
2454         for (tries = 0; tries < 5; tries++) {
2455                 temp = I915_READ(reg);
2456                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2457
2458                 if ((temp & FDI_RX_BIT_LOCK)) {
2459                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2460                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2461                         break;
2462                 }
2463         }
2464         if (tries == 5)
2465                 DRM_ERROR("FDI train 1 fail!\n");
2466
2467         /* Train 2 */
2468         reg = FDI_TX_CTL(pipe);
2469         temp = I915_READ(reg);
2470         temp &= ~FDI_LINK_TRAIN_NONE;
2471         temp |= FDI_LINK_TRAIN_PATTERN_2;
2472         I915_WRITE(reg, temp);
2473
2474         reg = FDI_RX_CTL(pipe);
2475         temp = I915_READ(reg);
2476         temp &= ~FDI_LINK_TRAIN_NONE;
2477         temp |= FDI_LINK_TRAIN_PATTERN_2;
2478         I915_WRITE(reg, temp);
2479
2480         POSTING_READ(reg);
2481         udelay(150);
2482
2483         reg = FDI_RX_IIR(pipe);
2484         for (tries = 0; tries < 5; tries++) {
2485                 temp = I915_READ(reg);
2486                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2487
2488                 if (temp & FDI_RX_SYMBOL_LOCK) {
2489                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2490                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2491                         break;
2492                 }
2493         }
2494         if (tries == 5)
2495                 DRM_ERROR("FDI train 2 fail!\n");
2496
2497         DRM_DEBUG_KMS("FDI train done\n");
2498
2499 }
2500
2501 static const int snb_b_fdi_train_param[] = {
2502         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2503         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2504         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2505         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2506 };
2507
2508 /* The FDI link training functions for SNB/Cougarpoint. */
2509 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2510 {
2511         struct drm_device *dev = crtc->dev;
2512         struct drm_i915_private *dev_priv = dev->dev_private;
2513         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2514         int pipe = intel_crtc->pipe;
2515         u32 reg, temp, i;
2516
2517         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2518            for train result */
2519         reg = FDI_RX_IMR(pipe);
2520         temp = I915_READ(reg);
2521         temp &= ~FDI_RX_SYMBOL_LOCK;
2522         temp &= ~FDI_RX_BIT_LOCK;
2523         I915_WRITE(reg, temp);
2524
2525         POSTING_READ(reg);
2526         udelay(150);
2527
2528         /* enable CPU FDI TX and PCH FDI RX */
2529         reg = FDI_TX_CTL(pipe);
2530         temp = I915_READ(reg);
2531         temp &= ~(7 << 19);
2532         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2533         temp &= ~FDI_LINK_TRAIN_NONE;
2534         temp |= FDI_LINK_TRAIN_PATTERN_1;
2535         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2536         /* SNB-B */
2537         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2538         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2539
2540         reg = FDI_RX_CTL(pipe);
2541         temp = I915_READ(reg);
2542         if (HAS_PCH_CPT(dev)) {
2543                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2544                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2545         } else {
2546                 temp &= ~FDI_LINK_TRAIN_NONE;
2547                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2548         }
2549         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2550
2551         POSTING_READ(reg);
2552         udelay(150);
2553
2554         if (HAS_PCH_CPT(dev))
2555                 cpt_phase_pointer_enable(dev, pipe);
2556
2557         for (i = 0; i < 4; i++) {
2558                 reg = FDI_TX_CTL(pipe);
2559                 temp = I915_READ(reg);
2560                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2561                 temp |= snb_b_fdi_train_param[i];
2562                 I915_WRITE(reg, temp);
2563
2564                 POSTING_READ(reg);
2565                 udelay(500);
2566
2567                 reg = FDI_RX_IIR(pipe);
2568                 temp = I915_READ(reg);
2569                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2570
2571                 if (temp & FDI_RX_BIT_LOCK) {
2572                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2573                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2574                         break;
2575                 }
2576         }
2577         if (i == 4)
2578                 DRM_ERROR("FDI train 1 fail!\n");
2579
2580         /* Train 2 */
2581         reg = FDI_TX_CTL(pipe);
2582         temp = I915_READ(reg);
2583         temp &= ~FDI_LINK_TRAIN_NONE;
2584         temp |= FDI_LINK_TRAIN_PATTERN_2;
2585         if (IS_GEN6(dev)) {
2586                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2587                 /* SNB-B */
2588                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2589         }
2590         I915_WRITE(reg, temp);
2591
2592         reg = FDI_RX_CTL(pipe);
2593         temp = I915_READ(reg);
2594         if (HAS_PCH_CPT(dev)) {
2595                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2596                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2597         } else {
2598                 temp &= ~FDI_LINK_TRAIN_NONE;
2599                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2600         }
2601         I915_WRITE(reg, temp);
2602
2603         POSTING_READ(reg);
2604         udelay(150);
2605
2606         for (i = 0; i < 4; i++) {
2607                 reg = FDI_TX_CTL(pipe);
2608                 temp = I915_READ(reg);
2609                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2610                 temp |= snb_b_fdi_train_param[i];
2611                 I915_WRITE(reg, temp);
2612
2613                 POSTING_READ(reg);
2614                 udelay(500);
2615
2616                 reg = FDI_RX_IIR(pipe);
2617                 temp = I915_READ(reg);
2618                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2619
2620                 if (temp & FDI_RX_SYMBOL_LOCK) {
2621                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2622                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2623                         break;
2624                 }
2625         }
2626         if (i == 4)
2627                 DRM_ERROR("FDI train 2 fail!\n");
2628
2629         DRM_DEBUG_KMS("FDI train done.\n");
2630 }
2631
2632 /* Manual link training for Ivy Bridge A0 parts */
2633 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2634 {
2635         struct drm_device *dev = crtc->dev;
2636         struct drm_i915_private *dev_priv = dev->dev_private;
2637         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2638         int pipe = intel_crtc->pipe;
2639         u32 reg, temp, i;
2640
2641         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2642            for train result */
2643         reg = FDI_RX_IMR(pipe);
2644         temp = I915_READ(reg);
2645         temp &= ~FDI_RX_SYMBOL_LOCK;
2646         temp &= ~FDI_RX_BIT_LOCK;
2647         I915_WRITE(reg, temp);
2648
2649         POSTING_READ(reg);
2650         udelay(150);
2651
2652         /* enable CPU FDI TX and PCH FDI RX */
2653         reg = FDI_TX_CTL(pipe);
2654         temp = I915_READ(reg);
2655         temp &= ~(7 << 19);
2656         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2657         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2658         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2659         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2660         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2661         temp |= FDI_COMPOSITE_SYNC;
2662         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2663
2664         reg = FDI_RX_CTL(pipe);
2665         temp = I915_READ(reg);
2666         temp &= ~FDI_LINK_TRAIN_AUTO;
2667         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2668         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2669         temp |= FDI_COMPOSITE_SYNC;
2670         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2671
2672         POSTING_READ(reg);
2673         udelay(150);
2674
2675         if (HAS_PCH_CPT(dev))
2676                 cpt_phase_pointer_enable(dev, pipe);
2677
2678         for (i = 0; i < 4; i++) {
2679                 reg = FDI_TX_CTL(pipe);
2680                 temp = I915_READ(reg);
2681                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2682                 temp |= snb_b_fdi_train_param[i];
2683                 I915_WRITE(reg, temp);
2684
2685                 POSTING_READ(reg);
2686                 udelay(500);
2687
2688                 reg = FDI_RX_IIR(pipe);
2689                 temp = I915_READ(reg);
2690                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2691
2692                 if (temp & FDI_RX_BIT_LOCK ||
2693                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2694                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2695                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2696                         break;
2697                 }
2698         }
2699         if (i == 4)
2700                 DRM_ERROR("FDI train 1 fail!\n");
2701
2702         /* Train 2 */
2703         reg = FDI_TX_CTL(pipe);
2704         temp = I915_READ(reg);
2705         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2706         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2707         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2708         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2709         I915_WRITE(reg, temp);
2710
2711         reg = FDI_RX_CTL(pipe);
2712         temp = I915_READ(reg);
2713         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2714         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2715         I915_WRITE(reg, temp);
2716
2717         POSTING_READ(reg);
2718         udelay(150);
2719
2720         for (i = 0; i < 4; i++) {
2721                 reg = FDI_TX_CTL(pipe);
2722                 temp = I915_READ(reg);
2723                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2724                 temp |= snb_b_fdi_train_param[i];
2725                 I915_WRITE(reg, temp);
2726
2727                 POSTING_READ(reg);
2728                 udelay(500);
2729
2730                 reg = FDI_RX_IIR(pipe);
2731                 temp = I915_READ(reg);
2732                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2733
2734                 if (temp & FDI_RX_SYMBOL_LOCK) {
2735                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2736                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2737                         break;
2738                 }
2739         }
2740         if (i == 4)
2741                 DRM_ERROR("FDI train 2 fail!\n");
2742
2743         DRM_DEBUG_KMS("FDI train done.\n");
2744 }
2745
2746 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2747 {
2748         struct drm_device *dev = crtc->dev;
2749         struct drm_i915_private *dev_priv = dev->dev_private;
2750         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2751         int pipe = intel_crtc->pipe;
2752         u32 reg, temp;
2753
2754         /* Write the TU size bits so error detection works */
2755         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2756                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2757
2758         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2759         reg = FDI_RX_CTL(pipe);
2760         temp = I915_READ(reg);
2761         temp &= ~((0x7 << 19) | (0x7 << 16));
2762         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2763         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2764         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2765
2766         POSTING_READ(reg);
2767         udelay(200);
2768
2769         /* Switch from Rawclk to PCDclk */
2770         temp = I915_READ(reg);
2771         I915_WRITE(reg, temp | FDI_PCDCLK);
2772
2773         POSTING_READ(reg);
2774         udelay(200);
2775
2776         /* Enable CPU FDI TX PLL, always on for Ironlake */
2777         reg = FDI_TX_CTL(pipe);
2778         temp = I915_READ(reg);
2779         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2780                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2781
2782                 POSTING_READ(reg);
2783                 udelay(100);
2784         }
2785 }
2786
2787 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2788 {
2789         struct drm_i915_private *dev_priv = dev->dev_private;
2790         u32 flags = I915_READ(SOUTH_CHICKEN1);
2791
2792         flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2793         I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2794         flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2795         I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2796         POSTING_READ(SOUTH_CHICKEN1);
2797 }
2798 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2799 {
2800         struct drm_device *dev = crtc->dev;
2801         struct drm_i915_private *dev_priv = dev->dev_private;
2802         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2803         int pipe = intel_crtc->pipe;
2804         u32 reg, temp;
2805
2806         /* disable CPU FDI tx and PCH FDI rx */
2807         reg = FDI_TX_CTL(pipe);
2808         temp = I915_READ(reg);
2809         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2810         POSTING_READ(reg);
2811
2812         reg = FDI_RX_CTL(pipe);
2813         temp = I915_READ(reg);
2814         temp &= ~(0x7 << 16);
2815         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2816         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2817
2818         POSTING_READ(reg);
2819         udelay(100);
2820
2821         /* Ironlake workaround, disable clock pointer after downing FDI */
2822         if (HAS_PCH_IBX(dev)) {
2823                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2824                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2825                            I915_READ(FDI_RX_CHICKEN(pipe) &
2826                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2827         } else if (HAS_PCH_CPT(dev)) {
2828                 cpt_phase_pointer_disable(dev, pipe);
2829         }
2830
2831         /* still set train pattern 1 */
2832         reg = FDI_TX_CTL(pipe);
2833         temp = I915_READ(reg);
2834         temp &= ~FDI_LINK_TRAIN_NONE;
2835         temp |= FDI_LINK_TRAIN_PATTERN_1;
2836         I915_WRITE(reg, temp);
2837
2838         reg = FDI_RX_CTL(pipe);
2839         temp = I915_READ(reg);
2840         if (HAS_PCH_CPT(dev)) {
2841                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2842                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2843         } else {
2844                 temp &= ~FDI_LINK_TRAIN_NONE;
2845                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2846         }
2847         /* BPC in FDI rx is consistent with that in PIPECONF */
2848         temp &= ~(0x07 << 16);
2849         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2850         I915_WRITE(reg, temp);
2851
2852         POSTING_READ(reg);
2853         udelay(100);
2854 }
2855
2856 /*
2857  * When we disable a pipe, we need to clear any pending scanline wait events
2858  * to avoid hanging the ring, which we assume we are waiting on.
2859  */
2860 static void intel_clear_scanline_wait(struct drm_device *dev)
2861 {
2862         struct drm_i915_private *dev_priv = dev->dev_private;
2863         struct intel_ring_buffer *ring;
2864         u32 tmp;
2865
2866         if (IS_GEN2(dev))
2867                 /* Can't break the hang on i8xx */
2868                 return;
2869
2870         ring = LP_RING(dev_priv);
2871         tmp = I915_READ_CTL(ring);
2872         if (tmp & RING_WAIT)
2873                 I915_WRITE_CTL(ring, tmp);
2874 }
2875
2876 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2877 {
2878         struct drm_i915_gem_object *obj;
2879         struct drm_i915_private *dev_priv;
2880
2881         if (crtc->fb == NULL)
2882                 return;
2883
2884         obj = to_intel_framebuffer(crtc->fb)->obj;
2885         dev_priv = crtc->dev->dev_private;
2886         wait_event(dev_priv->pending_flip_queue,
2887                    atomic_read(&obj->pending_flip) == 0);
2888 }
2889
2890 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2891 {
2892         struct drm_device *dev = crtc->dev;
2893         struct drm_mode_config *mode_config = &dev->mode_config;
2894         struct intel_encoder *encoder;
2895
2896         /*
2897          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2898          * must be driven by its own crtc; no sharing is possible.
2899          */
2900         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2901                 if (encoder->base.crtc != crtc)
2902                         continue;
2903
2904                 switch (encoder->type) {
2905                 case INTEL_OUTPUT_EDP:
2906                         if (!intel_encoder_is_pch_edp(&encoder->base))
2907                                 return false;
2908                         continue;
2909                 }
2910         }
2911
2912         return true;
2913 }
2914
2915 /*
2916  * Enable PCH resources required for PCH ports:
2917  *   - PCH PLLs
2918  *   - FDI training & RX/TX
2919  *   - update transcoder timings
2920  *   - DP transcoding bits
2921  *   - transcoder
2922  */
2923 static void ironlake_pch_enable(struct drm_crtc *crtc)
2924 {
2925         struct drm_device *dev = crtc->dev;
2926         struct drm_i915_private *dev_priv = dev->dev_private;
2927         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2928         int pipe = intel_crtc->pipe;
2929         u32 reg, temp, transc_sel;
2930
2931         /* For PCH output, training FDI link */
2932         dev_priv->display.fdi_link_train(crtc);
2933
2934         intel_enable_pch_pll(dev_priv, pipe);
2935
2936         if (HAS_PCH_CPT(dev)) {
2937                 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
2938                         TRANSC_DPLLB_SEL;
2939
2940                 /* Be sure PCH DPLL SEL is set */
2941                 temp = I915_READ(PCH_DPLL_SEL);
2942                 if (pipe == 0) {
2943                         temp &= ~(TRANSA_DPLLB_SEL);
2944                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2945                 } else if (pipe == 1) {
2946                         temp &= ~(TRANSB_DPLLB_SEL);
2947                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2948                 } else if (pipe == 2) {
2949                         temp &= ~(TRANSC_DPLLB_SEL);
2950                         temp |= (TRANSC_DPLL_ENABLE | transc_sel);
2951                 }
2952                 I915_WRITE(PCH_DPLL_SEL, temp);
2953         }
2954
2955         /* set transcoder timing, panel must allow it */
2956         assert_panel_unlocked(dev_priv, pipe);
2957         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2958         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2959         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2960
2961         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2962         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2963         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2964
2965         intel_fdi_normal_train(crtc);
2966
2967         /* For PCH DP, enable TRANS_DP_CTL */
2968         if (HAS_PCH_CPT(dev) &&
2969             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2970              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2971                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2972                 reg = TRANS_DP_CTL(pipe);
2973                 temp = I915_READ(reg);
2974                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2975                           TRANS_DP_SYNC_MASK |
2976                           TRANS_DP_BPC_MASK);
2977                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2978                          TRANS_DP_ENH_FRAMING);
2979                 temp |= bpc << 9; /* same format but at 11:9 */
2980
2981                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2982                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2983                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2984                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2985
2986                 switch (intel_trans_dp_port_sel(crtc)) {
2987                 case PCH_DP_B:
2988                         temp |= TRANS_DP_PORT_SEL_B;
2989                         break;
2990                 case PCH_DP_C:
2991                         temp |= TRANS_DP_PORT_SEL_C;
2992                         break;
2993                 case PCH_DP_D:
2994                         temp |= TRANS_DP_PORT_SEL_D;
2995                         break;
2996                 default:
2997                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2998                         temp |= TRANS_DP_PORT_SEL_B;
2999                         break;
3000                 }
3001
3002                 I915_WRITE(reg, temp);
3003         }
3004
3005         intel_enable_transcoder(dev_priv, pipe);
3006 }
3007
3008 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3009 {
3010         struct drm_i915_private *dev_priv = dev->dev_private;
3011         int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3012         u32 temp;
3013
3014         temp = I915_READ(dslreg);
3015         udelay(500);
3016         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3017                 /* Without this, mode sets may fail silently on FDI */
3018                 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3019                 udelay(250);
3020                 I915_WRITE(tc2reg, 0);
3021                 if (wait_for(I915_READ(dslreg) != temp, 5))
3022                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3023         }
3024 }
3025
3026 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3027 {
3028         struct drm_device *dev = crtc->dev;
3029         struct drm_i915_private *dev_priv = dev->dev_private;
3030         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3031         int pipe = intel_crtc->pipe;
3032         int plane = intel_crtc->plane;
3033         u32 temp;
3034         bool is_pch_port;
3035
3036         if (intel_crtc->active)
3037                 return;
3038
3039         intel_crtc->active = true;
3040         intel_update_watermarks(dev);
3041
3042         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3043                 temp = I915_READ(PCH_LVDS);
3044                 if ((temp & LVDS_PORT_EN) == 0)
3045                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3046         }
3047
3048         is_pch_port = intel_crtc_driving_pch(crtc);
3049
3050         if (is_pch_port)
3051                 ironlake_fdi_pll_enable(crtc);
3052         else
3053                 ironlake_fdi_disable(crtc);
3054
3055         /* Enable panel fitting for LVDS */
3056         if (dev_priv->pch_pf_size &&
3057             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3058                 /* Force use of hard-coded filter coefficients
3059                  * as some pre-programmed values are broken,
3060                  * e.g. x201.
3061                  */
3062                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3063                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3064                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3065         }
3066
3067         /*
3068          * On ILK+ LUT must be loaded before the pipe is running but with
3069          * clocks enabled
3070          */
3071         intel_crtc_load_lut(crtc);
3072
3073         intel_enable_pipe(dev_priv, pipe, is_pch_port);
3074         intel_enable_plane(dev_priv, plane, pipe);
3075
3076         if (is_pch_port)
3077                 ironlake_pch_enable(crtc);
3078
3079         mutex_lock(&dev->struct_mutex);
3080         intel_update_fbc(dev);
3081         mutex_unlock(&dev->struct_mutex);
3082
3083         intel_crtc_update_cursor(crtc, true);
3084 }
3085
3086 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3087 {
3088         struct drm_device *dev = crtc->dev;
3089         struct drm_i915_private *dev_priv = dev->dev_private;
3090         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3091         int pipe = intel_crtc->pipe;
3092         int plane = intel_crtc->plane;
3093         u32 reg, temp;
3094
3095         if (!intel_crtc->active)
3096                 return;
3097
3098         intel_crtc_wait_for_pending_flips(crtc);
3099         drm_vblank_off(dev, pipe);
3100         intel_crtc_update_cursor(crtc, false);
3101
3102         intel_disable_plane(dev_priv, plane, pipe);
3103
3104         if (dev_priv->cfb_plane == plane)
3105                 intel_disable_fbc(dev);
3106
3107         intel_disable_pipe(dev_priv, pipe);
3108
3109         /* Disable PF */
3110         I915_WRITE(PF_CTL(pipe), 0);
3111         I915_WRITE(PF_WIN_SZ(pipe), 0);
3112
3113         ironlake_fdi_disable(crtc);
3114
3115         /* This is a horrible layering violation; we should be doing this in
3116          * the connector/encoder ->prepare instead, but we don't always have
3117          * enough information there about the config to know whether it will
3118          * actually be necessary or just cause undesired flicker.
3119          */
3120         intel_disable_pch_ports(dev_priv, pipe);
3121
3122         intel_disable_transcoder(dev_priv, pipe);
3123
3124         if (HAS_PCH_CPT(dev)) {
3125                 /* disable TRANS_DP_CTL */
3126                 reg = TRANS_DP_CTL(pipe);
3127                 temp = I915_READ(reg);
3128                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3129                 temp |= TRANS_DP_PORT_SEL_NONE;
3130                 I915_WRITE(reg, temp);
3131
3132                 /* disable DPLL_SEL */
3133                 temp = I915_READ(PCH_DPLL_SEL);
3134                 switch (pipe) {
3135                 case 0:
3136                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3137                         break;
3138                 case 1:
3139                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3140                         break;
3141                 case 2:
3142                         /* C shares PLL A or B */
3143                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3144                         break;
3145                 default:
3146                         BUG(); /* wtf */
3147                 }
3148                 I915_WRITE(PCH_DPLL_SEL, temp);
3149         }
3150
3151         /* disable PCH DPLL */
3152         if (!intel_crtc->no_pll)
3153                 intel_disable_pch_pll(dev_priv, pipe);
3154
3155         /* Switch from PCDclk to Rawclk */
3156         reg = FDI_RX_CTL(pipe);
3157         temp = I915_READ(reg);
3158         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3159
3160         /* Disable CPU FDI TX PLL */
3161         reg = FDI_TX_CTL(pipe);
3162         temp = I915_READ(reg);
3163         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3164
3165         POSTING_READ(reg);
3166         udelay(100);
3167
3168         reg = FDI_RX_CTL(pipe);
3169         temp = I915_READ(reg);
3170         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3171
3172         /* Wait for the clocks to turn off. */
3173         POSTING_READ(reg);
3174         udelay(100);
3175
3176         intel_crtc->active = false;
3177         intel_update_watermarks(dev);
3178
3179         mutex_lock(&dev->struct_mutex);
3180         intel_update_fbc(dev);
3181         intel_clear_scanline_wait(dev);
3182         mutex_unlock(&dev->struct_mutex);
3183 }
3184
3185 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3186 {
3187         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3188         int pipe = intel_crtc->pipe;
3189         int plane = intel_crtc->plane;
3190
3191         /* XXX: When our outputs are all unaware of DPMS modes other than off
3192          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3193          */
3194         switch (mode) {
3195         case DRM_MODE_DPMS_ON:
3196         case DRM_MODE_DPMS_STANDBY:
3197         case DRM_MODE_DPMS_SUSPEND:
3198                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3199                 ironlake_crtc_enable(crtc);
3200                 break;
3201
3202         case DRM_MODE_DPMS_OFF:
3203                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3204                 ironlake_crtc_disable(crtc);
3205                 break;
3206         }
3207 }
3208
3209 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3210 {
3211         if (!enable && intel_crtc->overlay) {
3212                 struct drm_device *dev = intel_crtc->base.dev;
3213                 struct drm_i915_private *dev_priv = dev->dev_private;
3214
3215                 mutex_lock(&dev->struct_mutex);
3216                 dev_priv->mm.interruptible = false;
3217                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3218                 dev_priv->mm.interruptible = true;
3219                 mutex_unlock(&dev->struct_mutex);
3220         }
3221
3222         /* Let userspace switch the overlay on again. In most cases userspace
3223          * has to recompute where to put it anyway.
3224          */
3225 }
3226
3227 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3228 {
3229         struct drm_device *dev = crtc->dev;
3230         struct drm_i915_private *dev_priv = dev->dev_private;
3231         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3232         int pipe = intel_crtc->pipe;
3233         int plane = intel_crtc->plane;
3234
3235         if (intel_crtc->active)
3236                 return;
3237
3238         intel_crtc->active = true;
3239         intel_update_watermarks(dev);
3240
3241         intel_enable_pll(dev_priv, pipe);
3242         intel_enable_pipe(dev_priv, pipe, false);
3243         intel_enable_plane(dev_priv, plane, pipe);
3244
3245         intel_crtc_load_lut(crtc);
3246         intel_update_fbc(dev);
3247
3248         /* Give the overlay scaler a chance to enable if it's on this pipe */
3249         intel_crtc_dpms_overlay(intel_crtc, true);
3250         intel_crtc_update_cursor(crtc, true);
3251 }
3252
3253 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3254 {
3255         struct drm_device *dev = crtc->dev;
3256         struct drm_i915_private *dev_priv = dev->dev_private;
3257         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3258         int pipe = intel_crtc->pipe;
3259         int plane = intel_crtc->plane;
3260
3261         if (!intel_crtc->active)
3262                 return;
3263
3264         /* Give the overlay scaler a chance to disable if it's on this pipe */
3265         intel_crtc_wait_for_pending_flips(crtc);
3266         drm_vblank_off(dev, pipe);
3267         intel_crtc_dpms_overlay(intel_crtc, false);
3268         intel_crtc_update_cursor(crtc, false);
3269
3270         if (dev_priv->cfb_plane == plane)
3271                 intel_disable_fbc(dev);
3272
3273         intel_disable_plane(dev_priv, plane, pipe);
3274         intel_disable_pipe(dev_priv, pipe);
3275         intel_disable_pll(dev_priv, pipe);
3276
3277         intel_crtc->active = false;
3278         intel_update_fbc(dev);
3279         intel_update_watermarks(dev);
3280         intel_clear_scanline_wait(dev);
3281 }
3282
3283 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3284 {
3285         /* XXX: When our outputs are all unaware of DPMS modes other than off
3286          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3287          */
3288         switch (mode) {
3289         case DRM_MODE_DPMS_ON:
3290         case DRM_MODE_DPMS_STANDBY:
3291         case DRM_MODE_DPMS_SUSPEND:
3292                 i9xx_crtc_enable(crtc);
3293                 break;
3294         case DRM_MODE_DPMS_OFF:
3295                 i9xx_crtc_disable(crtc);
3296                 break;
3297         }
3298 }
3299
3300 /**
3301  * Sets the power management mode of the pipe and plane.
3302  */
3303 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3304 {
3305         struct drm_device *dev = crtc->dev;
3306         struct drm_i915_private *dev_priv = dev->dev_private;
3307         struct drm_i915_master_private *master_priv;
3308         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3309         int pipe = intel_crtc->pipe;
3310         bool enabled;
3311
3312         if (intel_crtc->dpms_mode == mode)
3313                 return;
3314
3315         intel_crtc->dpms_mode = mode;
3316
3317         dev_priv->display.dpms(crtc, mode);
3318
3319         if (!dev->primary->master)
3320                 return;
3321
3322         master_priv = dev->primary->master->driver_priv;
3323         if (!master_priv->sarea_priv)
3324                 return;
3325
3326         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3327
3328         switch (pipe) {
3329         case 0:
3330                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3331                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3332                 break;
3333         case 1:
3334                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3335                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3336                 break;
3337         default:
3338                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3339                 break;
3340         }
3341 }
3342
3343 static void intel_crtc_disable(struct drm_crtc *crtc)
3344 {
3345         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3346         struct drm_device *dev = crtc->dev;
3347
3348         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3349         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3350         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3351
3352         if (crtc->fb) {
3353                 mutex_lock(&dev->struct_mutex);
3354                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3355                 mutex_unlock(&dev->struct_mutex);
3356         }
3357 }
3358
3359 /* Prepare for a mode set.
3360  *
3361  * Note we could be a lot smarter here.  We need to figure out which outputs
3362  * will be enabled, which disabled (in short, how the config will changes)
3363  * and perform the minimum necessary steps to accomplish that, e.g. updating
3364  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3365  * panel fitting is in the proper state, etc.
3366  */
3367 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3368 {
3369         i9xx_crtc_disable(crtc);
3370 }
3371
3372 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3373 {
3374         i9xx_crtc_enable(crtc);
3375 }
3376
3377 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3378 {
3379         ironlake_crtc_disable(crtc);
3380 }
3381
3382 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3383 {
3384         ironlake_crtc_enable(crtc);
3385 }
3386
3387 void intel_encoder_prepare(struct drm_encoder *encoder)
3388 {
3389         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3390         /* lvds has its own version of prepare see intel_lvds_prepare */
3391         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3392 }
3393
3394 void intel_encoder_commit(struct drm_encoder *encoder)
3395 {
3396         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3397         struct drm_device *dev = encoder->dev;
3398         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3399         struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3400
3401         /* lvds has its own version of commit see intel_lvds_commit */
3402         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3403
3404         if (HAS_PCH_CPT(dev))
3405                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3406 }
3407
3408 void intel_encoder_destroy(struct drm_encoder *encoder)
3409 {
3410         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3411
3412         drm_encoder_cleanup(encoder);
3413         kfree(intel_encoder);
3414 }
3415
3416 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3417                                   struct drm_display_mode *mode,
3418                                   struct drm_display_mode *adjusted_mode)
3419 {
3420         struct drm_device *dev = crtc->dev;
3421
3422         if (HAS_PCH_SPLIT(dev)) {
3423                 /* FDI link clock is fixed at 2.7G */
3424                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3425                         return false;
3426         }
3427
3428         /* XXX some encoders set the crtcinfo, others don't.
3429          * Obviously we need some form of conflict resolution here...
3430          */
3431         if (adjusted_mode->crtc_htotal == 0)
3432                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3433
3434         return true;
3435 }
3436
3437 static int i945_get_display_clock_speed(struct drm_device *dev)
3438 {
3439         return 400000;
3440 }
3441
3442 static int i915_get_display_clock_speed(struct drm_device *dev)
3443 {
3444         return 333000;
3445 }
3446
3447 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3448 {
3449         return 200000;
3450 }
3451
3452 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3453 {
3454         u16 gcfgc = 0;
3455
3456         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3457
3458         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3459                 return 133000;
3460         else {
3461                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3462                 case GC_DISPLAY_CLOCK_333_MHZ:
3463                         return 333000;
3464                 default:
3465                 case GC_DISPLAY_CLOCK_190_200_MHZ:
3466                         return 190000;
3467                 }
3468         }
3469 }
3470
3471 static int i865_get_display_clock_speed(struct drm_device *dev)
3472 {
3473         return 266000;
3474 }
3475
3476 static int i855_get_display_clock_speed(struct drm_device *dev)
3477 {
3478         u16 hpllcc = 0;
3479         /* Assume that the hardware is in the high speed state.  This
3480          * should be the default.
3481          */
3482         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3483         case GC_CLOCK_133_200:
3484         case GC_CLOCK_100_200:
3485                 return 200000;
3486         case GC_CLOCK_166_250:
3487                 return 250000;
3488         case GC_CLOCK_100_133:
3489                 return 133000;
3490         }
3491
3492         /* Shouldn't happen */
3493         return 0;
3494 }
3495
3496 static int i830_get_display_clock_speed(struct drm_device *dev)
3497 {
3498         return 133000;
3499 }
3500
3501 struct fdi_m_n {
3502         u32        tu;
3503         u32        gmch_m;
3504         u32        gmch_n;
3505         u32        link_m;
3506         u32        link_n;
3507 };
3508
3509 static void
3510 fdi_reduce_ratio(u32 *num, u32 *den)
3511 {
3512         while (*num > 0xffffff || *den > 0xffffff) {
3513                 *num >>= 1;
3514                 *den >>= 1;
3515         }
3516 }
3517
3518 static void
3519 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3520                      int link_clock, struct fdi_m_n *m_n)
3521 {
3522         m_n->tu = 64; /* default size */
3523
3524         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3525         m_n->gmch_m = bits_per_pixel * pixel_clock;
3526         m_n->gmch_n = link_clock * nlanes * 8;
3527         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3528
3529         m_n->link_m = pixel_clock;
3530         m_n->link_n = link_clock;
3531         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3532 }
3533
3534
3535 struct intel_watermark_params {
3536         unsigned long fifo_size;
3537         unsigned long max_wm;
3538         unsigned long default_wm;
3539         unsigned long guard_size;
3540         unsigned long cacheline_size;
3541 };
3542
3543 /* Pineview has different values for various configs */
3544 static const struct intel_watermark_params pineview_display_wm = {
3545         PINEVIEW_DISPLAY_FIFO,
3546         PINEVIEW_MAX_WM,
3547         PINEVIEW_DFT_WM,
3548         PINEVIEW_GUARD_WM,
3549         PINEVIEW_FIFO_LINE_SIZE
3550 };
3551 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3552         PINEVIEW_DISPLAY_FIFO,
3553         PINEVIEW_MAX_WM,
3554         PINEVIEW_DFT_HPLLOFF_WM,
3555         PINEVIEW_GUARD_WM,
3556         PINEVIEW_FIFO_LINE_SIZE
3557 };
3558 static const struct intel_watermark_params pineview_cursor_wm = {
3559         PINEVIEW_CURSOR_FIFO,
3560         PINEVIEW_CURSOR_MAX_WM,
3561         PINEVIEW_CURSOR_DFT_WM,
3562         PINEVIEW_CURSOR_GUARD_WM,
3563         PINEVIEW_FIFO_LINE_SIZE,
3564 };
3565 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3566         PINEVIEW_CURSOR_FIFO,
3567         PINEVIEW_CURSOR_MAX_WM,
3568         PINEVIEW_CURSOR_DFT_WM,
3569         PINEVIEW_CURSOR_GUARD_WM,
3570         PINEVIEW_FIFO_LINE_SIZE
3571 };
3572 static const struct intel_watermark_params g4x_wm_info = {
3573         G4X_FIFO_SIZE,
3574         G4X_MAX_WM,
3575         G4X_MAX_WM,
3576         2,
3577         G4X_FIFO_LINE_SIZE,
3578 };
3579 static const struct intel_watermark_params g4x_cursor_wm_info = {
3580         I965_CURSOR_FIFO,
3581         I965_CURSOR_MAX_WM,
3582         I965_CURSOR_DFT_WM,
3583         2,
3584         G4X_FIFO_LINE_SIZE,
3585 };
3586 static const struct intel_watermark_params i965_cursor_wm_info = {
3587         I965_CURSOR_FIFO,
3588         I965_CURSOR_MAX_WM,
3589         I965_CURSOR_DFT_WM,
3590         2,
3591         I915_FIFO_LINE_SIZE,
3592 };
3593 static const struct intel_watermark_params i945_wm_info = {
3594         I945_FIFO_SIZE,
3595         I915_MAX_WM,
3596         1,
3597         2,
3598         I915_FIFO_LINE_SIZE
3599 };
3600 static const struct intel_watermark_params i915_wm_info = {
3601         I915_FIFO_SIZE,
3602         I915_MAX_WM,
3603         1,
3604         2,
3605         I915_FIFO_LINE_SIZE
3606 };
3607 static const struct intel_watermark_params i855_wm_info = {
3608         I855GM_FIFO_SIZE,
3609         I915_MAX_WM,
3610         1,
3611         2,
3612         I830_FIFO_LINE_SIZE
3613 };
3614 static const struct intel_watermark_params i830_wm_info = {
3615         I830_FIFO_SIZE,
3616         I915_MAX_WM,
3617         1,
3618         2,
3619         I830_FIFO_LINE_SIZE
3620 };
3621
3622 static const struct intel_watermark_params ironlake_display_wm_info = {
3623         ILK_DISPLAY_FIFO,
3624         ILK_DISPLAY_MAXWM,
3625         ILK_DISPLAY_DFTWM,
3626         2,
3627         ILK_FIFO_LINE_SIZE
3628 };
3629 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3630         ILK_CURSOR_FIFO,
3631         ILK_CURSOR_MAXWM,
3632         ILK_CURSOR_DFTWM,
3633         2,
3634         ILK_FIFO_LINE_SIZE
3635 };
3636 static const struct intel_watermark_params ironlake_display_srwm_info = {
3637         ILK_DISPLAY_SR_FIFO,
3638         ILK_DISPLAY_MAX_SRWM,
3639         ILK_DISPLAY_DFT_SRWM,
3640         2,
3641         ILK_FIFO_LINE_SIZE
3642 };
3643 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3644         ILK_CURSOR_SR_FIFO,
3645         ILK_CURSOR_MAX_SRWM,
3646         ILK_CURSOR_DFT_SRWM,
3647         2,
3648         ILK_FIFO_LINE_SIZE
3649 };
3650
3651 static const struct intel_watermark_params sandybridge_display_wm_info = {
3652         SNB_DISPLAY_FIFO,
3653         SNB_DISPLAY_MAXWM,
3654         SNB_DISPLAY_DFTWM,
3655         2,
3656         SNB_FIFO_LINE_SIZE
3657 };
3658 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3659         SNB_CURSOR_FIFO,
3660         SNB_CURSOR_MAXWM,
3661         SNB_CURSOR_DFTWM,
3662         2,
3663         SNB_FIFO_LINE_SIZE
3664 };
3665 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3666         SNB_DISPLAY_SR_FIFO,
3667         SNB_DISPLAY_MAX_SRWM,
3668         SNB_DISPLAY_DFT_SRWM,
3669         2,
3670         SNB_FIFO_LINE_SIZE
3671 };
3672 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3673         SNB_CURSOR_SR_FIFO,
3674         SNB_CURSOR_MAX_SRWM,
3675         SNB_CURSOR_DFT_SRWM,
3676         2,
3677         SNB_FIFO_LINE_SIZE
3678 };
3679
3680
3681 /**
3682  * intel_calculate_wm - calculate watermark level
3683  * @clock_in_khz: pixel clock
3684  * @wm: chip FIFO params
3685  * @pixel_size: display pixel size
3686  * @latency_ns: memory latency for the platform
3687  *
3688  * Calculate the watermark level (the level at which the display plane will
3689  * start fetching from memory again).  Each chip has a different display
3690  * FIFO size and allocation, so the caller needs to figure that out and pass
3691  * in the correct intel_watermark_params structure.
3692  *
3693  * As the pixel clock runs, the FIFO will be drained at a rate that depends
3694  * on the pixel size.  When it reaches the watermark level, it'll start
3695  * fetching FIFO line sized based chunks from memory until the FIFO fills
3696  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
3697  * will occur, and a display engine hang could result.
3698  */
3699 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3700                                         const struct intel_watermark_params *wm,
3701                                         int fifo_size,
3702                                         int pixel_size,
3703                                         unsigned long latency_ns)
3704 {
3705         long entries_required, wm_size;
3706
3707         /*
3708          * Note: we need to make sure we don't overflow for various clock &
3709          * latency values.
3710          * clocks go from a few thousand to several hundred thousand.
3711          * latency is usually a few thousand
3712          */
3713         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3714                 1000;
3715         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3716
3717         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3718
3719         wm_size = fifo_size - (entries_required + wm->guard_size);
3720
3721         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3722
3723         /* Don't promote wm_size to unsigned... */
3724         if (wm_size > (long)wm->max_wm)
3725                 wm_size = wm->max_wm;
3726         if (wm_size <= 0)
3727                 wm_size = wm->default_wm;
3728         return wm_size;
3729 }
3730
3731 struct cxsr_latency {
3732         int is_desktop;
3733         int is_ddr3;
3734         unsigned long fsb_freq;
3735         unsigned long mem_freq;
3736         unsigned long display_sr;
3737         unsigned long display_hpll_disable;
3738         unsigned long cursor_sr;
3739         unsigned long cursor_hpll_disable;
3740 };
3741
3742 static const struct cxsr_latency cxsr_latency_table[] = {
3743         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
3744         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
3745         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
3746         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
3747         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
3748
3749         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
3750         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
3751         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
3752         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
3753         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
3754
3755         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
3756         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
3757         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
3758         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
3759         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
3760
3761         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
3762         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
3763         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
3764         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
3765         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
3766
3767         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
3768         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
3769         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
3770         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
3771         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
3772
3773         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
3774         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
3775         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
3776         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
3777         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
3778 };
3779
3780 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3781                                                          int is_ddr3,
3782                                                          int fsb,
3783                                                          int mem)
3784 {
3785         const struct cxsr_latency *latency;
3786         int i;
3787
3788         if (fsb == 0 || mem == 0)
3789                 return NULL;
3790
3791         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3792                 latency = &cxsr_latency_table[i];
3793                 if (is_desktop == latency->is_desktop &&
3794                     is_ddr3 == latency->is_ddr3 &&
3795                     fsb == latency->fsb_freq && mem == latency->mem_freq)
3796                         return latency;
3797         }
3798
3799         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3800
3801         return NULL;
3802 }
3803
3804 static void pineview_disable_cxsr(struct drm_device *dev)
3805 {
3806         struct drm_i915_private *dev_priv = dev->dev_private;
3807
3808         /* deactivate cxsr */
3809         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3810 }
3811
3812 /*
3813  * Latency for FIFO fetches is dependent on several factors:
3814  *   - memory configuration (speed, channels)
3815  *   - chipset
3816  *   - current MCH state
3817  * It can be fairly high in some situations, so here we assume a fairly
3818  * pessimal value.  It's a tradeoff between extra memory fetches (if we
3819  * set this value too high, the FIFO will fetch frequently to stay full)
3820  * and power consumption (set it too low to save power and we might see
3821  * FIFO underruns and display "flicker").
3822  *
3823  * A value of 5us seems to be a good balance; safe for very low end
3824  * platforms but not overly aggressive on lower latency configs.
3825  */
3826 static const int latency_ns = 5000;
3827
3828 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3829 {
3830         struct drm_i915_private *dev_priv = dev->dev_private;
3831         uint32_t dsparb = I915_READ(DSPARB);
3832         int size;
3833
3834         size = dsparb & 0x7f;
3835         if (plane)
3836                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3837
3838         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3839                       plane ? "B" : "A", size);
3840
3841         return size;
3842 }
3843
3844 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3845 {
3846         struct drm_i915_private *dev_priv = dev->dev_private;
3847         uint32_t dsparb = I915_READ(DSPARB);
3848         int size;
3849
3850         size = dsparb & 0x1ff;
3851         if (plane)
3852                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3853         size >>= 1; /* Convert to cachelines */
3854
3855         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3856                       plane ? "B" : "A", size);
3857
3858         return size;
3859 }
3860
3861 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3862 {
3863         struct drm_i915_private *dev_priv = dev->dev_private;
3864         uint32_t dsparb = I915_READ(DSPARB);
3865         int size;
3866
3867         size = dsparb & 0x7f;
3868         size >>= 2; /* Convert to cachelines */
3869
3870         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3871                       plane ? "B" : "A",
3872                       size);
3873
3874         return size;
3875 }
3876
3877 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3878 {
3879         struct drm_i915_private *dev_priv = dev->dev_private;
3880         uint32_t dsparb = I915_READ(DSPARB);
3881         int size;
3882
3883         size = dsparb & 0x7f;
3884         size >>= 1; /* Convert to cachelines */
3885
3886         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3887                       plane ? "B" : "A", size);
3888
3889         return size;
3890 }
3891
3892 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3893 {
3894         struct drm_crtc *crtc, *enabled = NULL;
3895
3896         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3897                 if (crtc->enabled && crtc->fb) {
3898                         if (enabled)
3899                                 return NULL;
3900                         enabled = crtc;
3901                 }
3902         }
3903
3904         return enabled;
3905 }
3906
3907 static void pineview_update_wm(struct drm_device *dev)
3908 {
3909         struct drm_i915_private *dev_priv = dev->dev_private;
3910         struct drm_crtc *crtc;
3911         const struct cxsr_latency *latency;
3912         u32 reg;
3913         unsigned long wm;
3914
3915         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3916                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3917         if (!latency) {
3918                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3919                 pineview_disable_cxsr(dev);
3920                 return;
3921         }
3922
3923         crtc = single_enabled_crtc(dev);
3924         if (crtc) {
3925                 int clock = crtc->mode.clock;
3926                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3927
3928                 /* Display SR */
3929                 wm = intel_calculate_wm(clock, &pineview_display_wm,
3930                                         pineview_display_wm.fifo_size,
3931                                         pixel_size, latency->display_sr);
3932                 reg = I915_READ(DSPFW1);
3933                 reg &= ~DSPFW_SR_MASK;
3934                 reg |= wm << DSPFW_SR_SHIFT;
3935                 I915_WRITE(DSPFW1, reg);
3936                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3937
3938                 /* cursor SR */
3939                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3940                                         pineview_display_wm.fifo_size,
3941                                         pixel_size, latency->cursor_sr);
3942                 reg = I915_READ(DSPFW3);
3943                 reg &= ~DSPFW_CURSOR_SR_MASK;
3944                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3945                 I915_WRITE(DSPFW3, reg);
3946
3947                 /* Display HPLL off SR */
3948                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3949                                         pineview_display_hplloff_wm.fifo_size,
3950                                         pixel_size, latency->display_hpll_disable);
3951                 reg = I915_READ(DSPFW3);
3952                 reg &= ~DSPFW_HPLL_SR_MASK;
3953                 reg |= wm & DSPFW_HPLL_SR_MASK;
3954                 I915_WRITE(DSPFW3, reg);
3955
3956                 /* cursor HPLL off SR */
3957                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3958                                         pineview_display_hplloff_wm.fifo_size,
3959                                         pixel_size, latency->cursor_hpll_disable);
3960                 reg = I915_READ(DSPFW3);
3961                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3962                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3963                 I915_WRITE(DSPFW3, reg);
3964                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3965
3966                 /* activate cxsr */
3967                 I915_WRITE(DSPFW3,
3968                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3969                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3970         } else {
3971                 pineview_disable_cxsr(dev);
3972                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3973         }
3974 }
3975
3976 static bool g4x_compute_wm0(struct drm_device *dev,
3977                             int plane,
3978                             const struct intel_watermark_params *display,
3979                             int display_latency_ns,
3980                             const struct intel_watermark_params *cursor,
3981                             int cursor_latency_ns,
3982                             int *plane_wm,
3983                             int *cursor_wm)
3984 {
3985         struct drm_crtc *crtc;
3986         int htotal, hdisplay, clock, pixel_size;
3987         int line_time_us, line_count;
3988         int entries, tlb_miss;
3989
3990         crtc = intel_get_crtc_for_plane(dev, plane);
3991         if (crtc->fb == NULL || !crtc->enabled) {
3992                 *cursor_wm = cursor->guard_size;
3993                 *plane_wm = display->guard_size;
3994                 return false;
3995         }
3996
3997         htotal = crtc->mode.htotal;
3998         hdisplay = crtc->mode.hdisplay;
3999         clock = crtc->mode.clock;
4000         pixel_size = crtc->fb->bits_per_pixel / 8;
4001
4002         /* Use the small buffer method to calculate plane watermark */
4003         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4004         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
4005         if (tlb_miss > 0)
4006                 entries += tlb_miss;
4007         entries = DIV_ROUND_UP(entries, display->cacheline_size);
4008         *plane_wm = entries + display->guard_size;
4009         if (*plane_wm > (int)display->max_wm)
4010                 *plane_wm = display->max_wm;
4011
4012         /* Use the large buffer method to calculate cursor watermark */
4013         line_time_us = ((htotal * 1000) / clock);
4014         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
4015         entries = line_count * 64 * pixel_size;
4016         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
4017         if (tlb_miss > 0)
4018                 entries += tlb_miss;
4019         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4020         *cursor_wm = entries + cursor->guard_size;
4021         if (*cursor_wm > (int)cursor->max_wm)
4022                 *cursor_wm = (int)cursor->max_wm;
4023
4024         return true;
4025 }
4026
4027 /*
4028  * Check the wm result.
4029  *
4030  * If any calculated watermark values is larger than the maximum value that
4031  * can be programmed into the associated watermark register, that watermark
4032  * must be disabled.
4033  */
4034 static bool g4x_check_srwm(struct drm_device *dev,
4035                            int display_wm, int cursor_wm,
4036                            const struct intel_watermark_params *display,
4037                            const struct intel_watermark_params *cursor)
4038 {
4039         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4040                       display_wm, cursor_wm);
4041
4042         if (display_wm > display->max_wm) {
4043                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4044                               display_wm, display->max_wm);
4045                 return false;
4046         }
4047
4048         if (cursor_wm > cursor->max_wm) {
4049                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4050                               cursor_wm, cursor->max_wm);
4051                 return false;
4052         }
4053
4054         if (!(display_wm || cursor_wm)) {
4055                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4056                 return false;
4057         }
4058
4059         return true;
4060 }
4061
4062 static bool g4x_compute_srwm(struct drm_device *dev,
4063                              int plane,
4064                              int latency_ns,
4065                              const struct intel_watermark_params *display,
4066                              const struct intel_watermark_params *cursor,
4067                              int *display_wm, int *cursor_wm)
4068 {
4069         struct drm_crtc *crtc;
4070         int hdisplay, htotal, pixel_size, clock;
4071         unsigned long line_time_us;
4072         int line_count, line_size;
4073         int small, large;
4074         int entries;
4075
4076         if (!latency_ns) {
4077                 *display_wm = *cursor_wm = 0;
4078                 return false;
4079         }
4080
4081         crtc = intel_get_crtc_for_plane(dev, plane);
4082         hdisplay = crtc->mode.hdisplay;
4083         htotal = crtc->mode.htotal;
4084         clock = crtc->mode.clock;
4085         pixel_size = crtc->fb->bits_per_pixel / 8;
4086
4087         line_time_us = (htotal * 1000) / clock;
4088         line_count = (latency_ns / line_time_us + 1000) / 1000;
4089         line_size = hdisplay * pixel_size;
4090
4091         /* Use the minimum of the small and large buffer method for primary */
4092         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4093         large = line_count * line_size;
4094
4095         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4096         *display_wm = entries + display->guard_size;
4097
4098         /* calculate the self-refresh watermark for display cursor */
4099         entries = line_count * pixel_size * 64;
4100         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4101         *cursor_wm = entries + cursor->guard_size;
4102
4103         return g4x_check_srwm(dev,
4104                               *display_wm, *cursor_wm,
4105                               display, cursor);
4106 }
4107
4108 #define single_plane_enabled(mask) is_power_of_2(mask)
4109
4110 static void g4x_update_wm(struct drm_device *dev)
4111 {
4112         static const int sr_latency_ns = 12000;
4113         struct drm_i915_private *dev_priv = dev->dev_private;
4114         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4115         int plane_sr, cursor_sr;
4116         unsigned int enabled = 0;
4117
4118         if (g4x_compute_wm0(dev, 0,
4119                             &g4x_wm_info, latency_ns,
4120                             &g4x_cursor_wm_info, latency_ns,
4121                             &planea_wm, &cursora_wm))
4122                 enabled |= 1;
4123
4124         if (g4x_compute_wm0(dev, 1,
4125                             &g4x_wm_info, latency_ns,
4126                             &g4x_cursor_wm_info, latency_ns,
4127                             &planeb_wm, &cursorb_wm))
4128                 enabled |= 2;
4129
4130         plane_sr = cursor_sr = 0;
4131         if (single_plane_enabled(enabled) &&
4132             g4x_compute_srwm(dev, ffs(enabled) - 1,
4133                              sr_latency_ns,
4134                              &g4x_wm_info,
4135                              &g4x_cursor_wm_info,
4136                              &plane_sr, &cursor_sr))
4137                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4138         else
4139                 I915_WRITE(FW_BLC_SELF,
4140                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4141
4142         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4143                       planea_wm, cursora_wm,
4144                       planeb_wm, cursorb_wm,
4145                       plane_sr, cursor_sr);
4146
4147         I915_WRITE(DSPFW1,
4148                    (plane_sr << DSPFW_SR_SHIFT) |
4149                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4150                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
4151                    planea_wm);
4152         I915_WRITE(DSPFW2,
4153                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4154                    (cursora_wm << DSPFW_CURSORA_SHIFT));
4155         /* HPLL off in SR has some issues on G4x... disable it */
4156         I915_WRITE(DSPFW3,
4157                    (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4158                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4159 }
4160
4161 static void i965_update_wm(struct drm_device *dev)
4162 {
4163         struct drm_i915_private *dev_priv = dev->dev_private;
4164         struct drm_crtc *crtc;
4165         int srwm = 1;
4166         int cursor_sr = 16;
4167
4168         /* Calc sr entries for one plane configs */
4169         crtc = single_enabled_crtc(dev);
4170         if (crtc) {
4171                 /* self-refresh has much higher latency */
4172                 static const int sr_latency_ns = 12000;
4173                 int clock = crtc->mode.clock;
4174                 int htotal = crtc->mode.htotal;
4175                 int hdisplay = crtc->mode.hdisplay;
4176                 int pixel_size = crtc->fb->bits_per_pixel / 8;
4177                 unsigned long line_time_us;
4178                 int entries;
4179
4180                 line_time_us = ((htotal * 1000) / clock);
4181
4182                 /* Use ns/us then divide to preserve precision */
4183                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4184                         pixel_size * hdisplay;
4185                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
4186                 srwm = I965_FIFO_SIZE - entries;
4187                 if (srwm < 0)
4188                         srwm = 1;
4189                 srwm &= 0x1ff;
4190                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4191                               entries, srwm);
4192
4193                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4194                         pixel_size * 64;
4195                 entries = DIV_ROUND_UP(entries,
4196                                           i965_cursor_wm_info.cacheline_size);
4197                 cursor_sr = i965_cursor_wm_info.fifo_size -
4198                         (entries + i965_cursor_wm_info.guard_size);
4199
4200                 if (cursor_sr > i965_cursor_wm_info.max_wm)
4201                         cursor_sr = i965_cursor_wm_info.max_wm;
4202
4203                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4204                               "cursor %d\n", srwm, cursor_sr);
4205
4206                 if (IS_CRESTLINE(dev))
4207                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4208         } else {
4209                 /* Turn off self refresh if both pipes are enabled */
4210                 if (IS_CRESTLINE(dev))
4211                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4212                                    & ~FW_BLC_SELF_EN);
4213         }
4214
4215         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4216                       srwm);
4217
4218         /* 965 has limitations... */
4219         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4220                    (8 << 16) | (8 << 8) | (8 << 0));
4221         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4222         /* update cursor SR watermark */
4223         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4224 }
4225
4226 static void i9xx_update_wm(struct drm_device *dev)
4227 {
4228         struct drm_i915_private *dev_priv = dev->dev_private;
4229         const struct intel_watermark_params *wm_info;
4230         uint32_t fwater_lo;
4231         uint32_t fwater_hi;
4232         int cwm, srwm = 1;
4233         int fifo_size;
4234         int planea_wm, planeb_wm;
4235         struct drm_crtc *crtc, *enabled = NULL;
4236
4237         if (IS_I945GM(dev))
4238                 wm_info = &i945_wm_info;
4239         else if (!IS_GEN2(dev))
4240                 wm_info = &i915_wm_info;
4241         else
4242                 wm_info = &i855_wm_info;
4243
4244         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4245         crtc = intel_get_crtc_for_plane(dev, 0);
4246         if (crtc->enabled && crtc->fb) {
4247                 planea_wm = intel_calculate_wm(crtc->mode.clock,
4248                                                wm_info, fifo_size,
4249                                                crtc->fb->bits_per_pixel / 8,
4250                                                latency_ns);
4251                 enabled = crtc;
4252         } else
4253                 planea_wm = fifo_size - wm_info->guard_size;
4254
4255         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4256         crtc = intel_get_crtc_for_plane(dev, 1);
4257         if (crtc->enabled && crtc->fb) {
4258                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4259                                                wm_info, fifo_size,
4260                                                crtc->fb->bits_per_pixel / 8,
4261                                                latency_ns);
4262                 if (enabled == NULL)
4263                         enabled = crtc;
4264                 else
4265                         enabled = NULL;
4266         } else
4267                 planeb_wm = fifo_size - wm_info->guard_size;
4268
4269         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4270
4271         /*
4272          * Overlay gets an aggressive default since video jitter is bad.
4273          */
4274         cwm = 2;
4275
4276         /* Play safe and disable self-refresh before adjusting watermarks. */
4277         if (IS_I945G(dev) || IS_I945GM(dev))
4278                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4279         else if (IS_I915GM(dev))
4280                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4281
4282         /* Calc sr entries for one plane configs */
4283         if (HAS_FW_BLC(dev) && enabled) {
4284                 /* self-refresh has much higher latency */
4285                 static const int sr_latency_ns = 6000;
4286                 int clock = enabled->mode.clock;
4287                 int htotal = enabled->mode.htotal;
4288                 int hdisplay = enabled->mode.hdisplay;
4289                 int pixel_size = enabled->fb->bits_per_pixel / 8;
4290                 unsigned long line_time_us;
4291                 int entries;
4292
4293                 line_time_us = (htotal * 1000) / clock;
4294
4295                 /* Use ns/us then divide to preserve precision */
4296                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4297                         pixel_size * hdisplay;
4298                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4299                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4300                 srwm = wm_info->fifo_size - entries;
4301                 if (srwm < 0)
4302                         srwm = 1;
4303
4304                 if (IS_I945G(dev) || IS_I945GM(dev))
4305                         I915_WRITE(FW_BLC_SELF,
4306                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4307                 else if (IS_I915GM(dev))
4308                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4309         }
4310
4311         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4312                       planea_wm, planeb_wm, cwm, srwm);
4313
4314         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4315         fwater_hi = (cwm & 0x1f);
4316
4317         /* Set request length to 8 cachelines per fetch */
4318         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4319         fwater_hi = fwater_hi | (1 << 8);
4320
4321         I915_WRITE(FW_BLC, fwater_lo);
4322         I915_WRITE(FW_BLC2, fwater_hi);
4323
4324         if (HAS_FW_BLC(dev)) {
4325                 if (enabled) {
4326                         if (IS_I945G(dev) || IS_I945GM(dev))
4327                                 I915_WRITE(FW_BLC_SELF,
4328                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4329                         else if (IS_I915GM(dev))
4330                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4331                         DRM_DEBUG_KMS("memory self refresh enabled\n");
4332                 } else
4333                         DRM_DEBUG_KMS("memory self refresh disabled\n");
4334         }
4335 }
4336
4337 static void i830_update_wm(struct drm_device *dev)
4338 {
4339         struct drm_i915_private *dev_priv = dev->dev_private;
4340         struct drm_crtc *crtc;
4341         uint32_t fwater_lo;
4342         int planea_wm;
4343
4344         crtc = single_enabled_crtc(dev);
4345         if (crtc == NULL)
4346                 return;
4347
4348         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4349                                        dev_priv->display.get_fifo_size(dev, 0),
4350                                        crtc->fb->bits_per_pixel / 8,
4351                                        latency_ns);
4352         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4353         fwater_lo |= (3<<8) | planea_wm;
4354
4355         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4356
4357         I915_WRITE(FW_BLC, fwater_lo);
4358 }
4359
4360 #define ILK_LP0_PLANE_LATENCY           700
4361 #define ILK_LP0_CURSOR_LATENCY          1300
4362
4363 /*
4364  * Check the wm result.
4365  *
4366  * If any calculated watermark values is larger than the maximum value that
4367  * can be programmed into the associated watermark register, that watermark
4368  * must be disabled.
4369  */
4370 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4371                                 int fbc_wm, int display_wm, int cursor_wm,
4372                                 const struct intel_watermark_params *display,
4373                                 const struct intel_watermark_params *cursor)
4374 {
4375         struct drm_i915_private *dev_priv = dev->dev_private;
4376
4377         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4378                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4379
4380         if (fbc_wm > SNB_FBC_MAX_SRWM) {
4381                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4382                               fbc_wm, SNB_FBC_MAX_SRWM, level);
4383
4384                 /* fbc has it's own way to disable FBC WM */
4385                 I915_WRITE(DISP_ARB_CTL,
4386                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4387                 return false;
4388         }
4389
4390         if (display_wm > display->max_wm) {
4391                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4392                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
4393                 return false;
4394         }
4395
4396         if (cursor_wm > cursor->max_wm) {
4397                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4398                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4399                 return false;
4400         }
4401
4402         if (!(fbc_wm || display_wm || cursor_wm)) {
4403                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4404                 return false;
4405         }
4406
4407         return true;
4408 }
4409
4410 /*
4411  * Compute watermark values of WM[1-3],
4412  */
4413 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4414                                   int latency_ns,
4415                                   const struct intel_watermark_params *display,
4416                                   const struct intel_watermark_params *cursor,
4417                                   int *fbc_wm, int *display_wm, int *cursor_wm)
4418 {
4419         struct drm_crtc *crtc;
4420         unsigned long line_time_us;
4421         int hdisplay, htotal, pixel_size, clock;
4422         int line_count, line_size;
4423         int small, large;
4424         int entries;
4425
4426         if (!latency_ns) {
4427                 *fbc_wm = *display_wm = *cursor_wm = 0;
4428                 return false;
4429         }
4430
4431         crtc = intel_get_crtc_for_plane(dev, plane);
4432         hdisplay = crtc->mode.hdisplay;
4433         htotal = crtc->mode.htotal;
4434         clock = crtc->mode.clock;
4435         pixel_size = crtc->fb->bits_per_pixel / 8;
4436
4437         line_time_us = (htotal * 1000) / clock;
4438         line_count = (latency_ns / line_time_us + 1000) / 1000;
4439         line_size = hdisplay * pixel_size;
4440
4441         /* Use the minimum of the small and large buffer method for primary */
4442         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4443         large = line_count * line_size;
4444
4445         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4446         *display_wm = entries + display->guard_size;
4447
4448         /*
4449          * Spec says:
4450          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4451          */
4452         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4453
4454         /* calculate the self-refresh watermark for display cursor */
4455         entries = line_count * pixel_size * 64;
4456         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4457         *cursor_wm = entries + cursor->guard_size;
4458
4459         return ironlake_check_srwm(dev, level,
4460                                    *fbc_wm, *display_wm, *cursor_wm,
4461                                    display, cursor);
4462 }
4463
4464 static void ironlake_update_wm(struct drm_device *dev)
4465 {
4466         struct drm_i915_private *dev_priv = dev->dev_private;
4467         int fbc_wm, plane_wm, cursor_wm;
4468         unsigned int enabled;
4469
4470         enabled = 0;
4471         if (g4x_compute_wm0(dev, 0,
4472                             &ironlake_display_wm_info,
4473                             ILK_LP0_PLANE_LATENCY,
4474                             &ironlake_cursor_wm_info,
4475                             ILK_LP0_CURSOR_LATENCY,
4476                             &plane_wm, &cursor_wm)) {
4477                 I915_WRITE(WM0_PIPEA_ILK,
4478                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4479                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4480                               " plane %d, " "cursor: %d\n",
4481                               plane_wm, cursor_wm);
4482                 enabled |= 1;
4483         }
4484
4485         if (g4x_compute_wm0(dev, 1,
4486                             &ironlake_display_wm_info,
4487                             ILK_LP0_PLANE_LATENCY,
4488                             &ironlake_cursor_wm_info,
4489                             ILK_LP0_CURSOR_LATENCY,
4490                             &plane_wm, &cursor_wm)) {
4491                 I915_WRITE(WM0_PIPEB_ILK,
4492                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4493                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4494                               " plane %d, cursor: %d\n",
4495                               plane_wm, cursor_wm);
4496                 enabled |= 2;
4497         }
4498
4499         /*
4500          * Calculate and update the self-refresh watermark only when one
4501          * display plane is used.
4502          */
4503         I915_WRITE(WM3_LP_ILK, 0);
4504         I915_WRITE(WM2_LP_ILK, 0);
4505         I915_WRITE(WM1_LP_ILK, 0);
4506
4507         if (!single_plane_enabled(enabled))
4508                 return;
4509         enabled = ffs(enabled) - 1;
4510
4511         /* WM1 */
4512         if (!ironlake_compute_srwm(dev, 1, enabled,
4513                                    ILK_READ_WM1_LATENCY() * 500,
4514                                    &ironlake_display_srwm_info,
4515                                    &ironlake_cursor_srwm_info,
4516                                    &fbc_wm, &plane_wm, &cursor_wm))
4517                 return;
4518
4519         I915_WRITE(WM1_LP_ILK,
4520                    WM1_LP_SR_EN |
4521                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4522                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4523                    (plane_wm << WM1_LP_SR_SHIFT) |
4524                    cursor_wm);
4525
4526         /* WM2 */
4527         if (!ironlake_compute_srwm(dev, 2, enabled,
4528                                    ILK_READ_WM2_LATENCY() * 500,
4529                                    &ironlake_display_srwm_info,
4530                                    &ironlake_cursor_srwm_info,
4531                                    &fbc_wm, &plane_wm, &cursor_wm))
4532                 return;
4533
4534         I915_WRITE(WM2_LP_ILK,
4535                    WM2_LP_EN |
4536                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4537                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4538                    (plane_wm << WM1_LP_SR_SHIFT) |
4539                    cursor_wm);
4540
4541         /*
4542          * WM3 is unsupported on ILK, probably because we don't have latency
4543          * data for that power state
4544          */
4545 }
4546
4547 void sandybridge_update_wm(struct drm_device *dev)
4548 {
4549         struct drm_i915_private *dev_priv = dev->dev_private;
4550         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4551         int fbc_wm, plane_wm, cursor_wm;
4552         unsigned int enabled;
4553
4554         enabled = 0;
4555         if (g4x_compute_wm0(dev, 0,
4556                             &sandybridge_display_wm_info, latency,
4557                             &sandybridge_cursor_wm_info, latency,
4558                             &plane_wm, &cursor_wm)) {
4559                 I915_WRITE(WM0_PIPEA_ILK,
4560                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4561                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4562                               " plane %d, " "cursor: %d\n",
4563                               plane_wm, cursor_wm);
4564                 enabled |= 1;
4565         }
4566
4567         if (g4x_compute_wm0(dev, 1,
4568                             &sandybridge_display_wm_info, latency,
4569                             &sandybridge_cursor_wm_info, latency,
4570                             &plane_wm, &cursor_wm)) {
4571                 I915_WRITE(WM0_PIPEB_ILK,
4572                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4573                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4574                               " plane %d, cursor: %d\n",
4575                               plane_wm, cursor_wm);
4576                 enabled |= 2;
4577         }
4578
4579         /* IVB has 3 pipes */
4580         if (IS_IVYBRIDGE(dev) &&
4581             g4x_compute_wm0(dev, 2,
4582                             &sandybridge_display_wm_info, latency,
4583                             &sandybridge_cursor_wm_info, latency,
4584                             &plane_wm, &cursor_wm)) {
4585                 I915_WRITE(WM0_PIPEC_IVB,
4586                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4587                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4588                               " plane %d, cursor: %d\n",
4589                               plane_wm, cursor_wm);
4590                 enabled |= 3;
4591         }
4592
4593         /*
4594          * Calculate and update the self-refresh watermark only when one
4595          * display plane is used.
4596          *
4597          * SNB support 3 levels of watermark.
4598          *
4599          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4600          * and disabled in the descending order
4601          *
4602          */
4603         I915_WRITE(WM3_LP_ILK, 0);
4604         I915_WRITE(WM2_LP_ILK, 0);
4605         I915_WRITE(WM1_LP_ILK, 0);
4606
4607         if (!single_plane_enabled(enabled) ||
4608             dev_priv->sprite_scaling_enabled)
4609                 return;
4610         enabled = ffs(enabled) - 1;
4611
4612         /* WM1 */
4613         if (!ironlake_compute_srwm(dev, 1, enabled,
4614                                    SNB_READ_WM1_LATENCY() * 500,
4615                                    &sandybridge_display_srwm_info,
4616                                    &sandybridge_cursor_srwm_info,
4617                                    &fbc_wm, &plane_wm, &cursor_wm))
4618                 return;
4619
4620         I915_WRITE(WM1_LP_ILK,
4621                    WM1_LP_SR_EN |
4622                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4623                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4624                    (plane_wm << WM1_LP_SR_SHIFT) |
4625                    cursor_wm);
4626
4627         /* WM2 */
4628         if (!ironlake_compute_srwm(dev, 2, enabled,
4629                                    SNB_READ_WM2_LATENCY() * 500,
4630                                    &sandybridge_display_srwm_info,
4631                                    &sandybridge_cursor_srwm_info,
4632                                    &fbc_wm, &plane_wm, &cursor_wm))
4633                 return;
4634
4635         I915_WRITE(WM2_LP_ILK,
4636                    WM2_LP_EN |
4637                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4638                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4639                    (plane_wm << WM1_LP_SR_SHIFT) |
4640                    cursor_wm);
4641
4642         /* WM3 */
4643         if (!ironlake_compute_srwm(dev, 3, enabled,
4644                                    SNB_READ_WM3_LATENCY() * 500,
4645                                    &sandybridge_display_srwm_info,
4646                                    &sandybridge_cursor_srwm_info,
4647                                    &fbc_wm, &plane_wm, &cursor_wm))
4648                 return;
4649
4650         I915_WRITE(WM3_LP_ILK,
4651                    WM3_LP_EN |
4652                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4653                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4654                    (plane_wm << WM1_LP_SR_SHIFT) |
4655                    cursor_wm);
4656 }
4657
4658 static bool
4659 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
4660                               uint32_t sprite_width, int pixel_size,
4661                               const struct intel_watermark_params *display,
4662                               int display_latency_ns, int *sprite_wm)
4663 {
4664         struct drm_crtc *crtc;
4665         int clock;
4666         int entries, tlb_miss;
4667
4668         crtc = intel_get_crtc_for_plane(dev, plane);
4669         if (crtc->fb == NULL || !crtc->enabled) {
4670                 *sprite_wm = display->guard_size;
4671                 return false;
4672         }
4673
4674         clock = crtc->mode.clock;
4675
4676         /* Use the small buffer method to calculate the sprite watermark */
4677         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4678         tlb_miss = display->fifo_size*display->cacheline_size -
4679                 sprite_width * 8;
4680         if (tlb_miss > 0)
4681                 entries += tlb_miss;
4682         entries = DIV_ROUND_UP(entries, display->cacheline_size);
4683         *sprite_wm = entries + display->guard_size;
4684         if (*sprite_wm > (int)display->max_wm)
4685                 *sprite_wm = display->max_wm;
4686
4687         return true;
4688 }
4689
4690 static bool
4691 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
4692                                 uint32_t sprite_width, int pixel_size,
4693                                 const struct intel_watermark_params *display,
4694                                 int latency_ns, int *sprite_wm)
4695 {
4696         struct drm_crtc *crtc;
4697         unsigned long line_time_us;
4698         int clock;
4699         int line_count, line_size;
4700         int small, large;
4701         int entries;
4702
4703         if (!latency_ns) {
4704                 *sprite_wm = 0;
4705                 return false;
4706         }
4707
4708         crtc = intel_get_crtc_for_plane(dev, plane);
4709         clock = crtc->mode.clock;
4710
4711         line_time_us = (sprite_width * 1000) / clock;
4712         line_count = (latency_ns / line_time_us + 1000) / 1000;
4713         line_size = sprite_width * pixel_size;
4714
4715         /* Use the minimum of the small and large buffer method for primary */
4716         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4717         large = line_count * line_size;
4718
4719         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4720         *sprite_wm = entries + display->guard_size;
4721
4722         return *sprite_wm > 0x3ff ? false : true;
4723 }
4724
4725 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
4726                                          uint32_t sprite_width, int pixel_size)
4727 {
4728         struct drm_i915_private *dev_priv = dev->dev_private;
4729         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4730         int sprite_wm, reg;
4731         int ret;
4732
4733         switch (pipe) {
4734         case 0:
4735                 reg = WM0_PIPEA_ILK;
4736                 break;
4737         case 1:
4738                 reg = WM0_PIPEB_ILK;
4739                 break;
4740         case 2:
4741                 reg = WM0_PIPEC_IVB;
4742                 break;
4743         default:
4744                 return; /* bad pipe */
4745         }
4746
4747         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
4748                                             &sandybridge_display_wm_info,
4749                                             latency, &sprite_wm);
4750         if (!ret) {
4751                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
4752                               pipe);
4753                 return;
4754         }
4755
4756         I915_WRITE(reg, I915_READ(reg) | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
4757         DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
4758
4759
4760         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4761                                               pixel_size,
4762                                               &sandybridge_display_srwm_info,
4763                                               SNB_READ_WM1_LATENCY() * 500,
4764                                               &sprite_wm);
4765         if (!ret) {
4766                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
4767                               pipe);
4768                 return;
4769         }
4770         I915_WRITE(WM1S_LP_ILK, sprite_wm);
4771
4772         /* Only IVB has two more LP watermarks for sprite */
4773         if (!IS_IVYBRIDGE(dev))
4774                 return;
4775
4776         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4777                                               pixel_size,
4778                                               &sandybridge_display_srwm_info,
4779                                               SNB_READ_WM2_LATENCY() * 500,
4780                                               &sprite_wm);
4781         if (!ret) {
4782                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
4783                               pipe);
4784                 return;
4785         }
4786         I915_WRITE(WM2S_LP_IVB, sprite_wm);
4787
4788         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4789                                               pixel_size,
4790                                               &sandybridge_display_srwm_info,
4791                                               SNB_READ_WM3_LATENCY() * 500,
4792                                               &sprite_wm);
4793         if (!ret) {
4794                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
4795                               pipe);
4796                 return;
4797         }
4798         I915_WRITE(WM3S_LP_IVB, sprite_wm);
4799 }
4800
4801 /**
4802  * intel_update_watermarks - update FIFO watermark values based on current modes
4803  *
4804  * Calculate watermark values for the various WM regs based on current mode
4805  * and plane configuration.
4806  *
4807  * There are several cases to deal with here:
4808  *   - normal (i.e. non-self-refresh)
4809  *   - self-refresh (SR) mode
4810  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4811  *   - lines are small relative to FIFO size (buffer can hold more than 2
4812  *     lines), so need to account for TLB latency
4813  *
4814  *   The normal calculation is:
4815  *     watermark = dotclock * bytes per pixel * latency
4816  *   where latency is platform & configuration dependent (we assume pessimal
4817  *   values here).
4818  *
4819  *   The SR calculation is:
4820  *     watermark = (trunc(latency/line time)+1) * surface width *
4821  *       bytes per pixel
4822  *   where
4823  *     line time = htotal / dotclock
4824  *     surface width = hdisplay for normal plane and 64 for cursor
4825  *   and latency is assumed to be high, as above.
4826  *
4827  * The final value programmed to the register should always be rounded up,
4828  * and include an extra 2 entries to account for clock crossings.
4829  *
4830  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4831  * to set the non-SR watermarks to 8.
4832  */
4833 static void intel_update_watermarks(struct drm_device *dev)
4834 {
4835         struct drm_i915_private *dev_priv = dev->dev_private;
4836
4837         if (dev_priv->display.update_wm)
4838                 dev_priv->display.update_wm(dev);
4839 }
4840
4841 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
4842                                     uint32_t sprite_width, int pixel_size)
4843 {
4844         struct drm_i915_private *dev_priv = dev->dev_private;
4845
4846         if (dev_priv->display.update_sprite_wm)
4847                 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
4848                                                    pixel_size);
4849 }
4850
4851 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4852 {
4853         if (i915_panel_use_ssc >= 0)
4854                 return i915_panel_use_ssc != 0;
4855         return dev_priv->lvds_use_ssc
4856                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4857 }
4858
4859 /**
4860  * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4861  * @crtc: CRTC structure
4862  * @mode: requested mode
4863  *
4864  * A pipe may be connected to one or more outputs.  Based on the depth of the
4865  * attached framebuffer, choose a good color depth to use on the pipe.
4866  *
4867  * If possible, match the pipe depth to the fb depth.  In some cases, this
4868  * isn't ideal, because the connected output supports a lesser or restricted
4869  * set of depths.  Resolve that here:
4870  *    LVDS typically supports only 6bpc, so clamp down in that case
4871  *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4872  *    Displays may support a restricted set as well, check EDID and clamp as
4873  *      appropriate.
4874  *    DP may want to dither down to 6bpc to fit larger modes
4875  *
4876  * RETURNS:
4877  * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4878  * true if they don't match).
4879  */
4880 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4881                                          unsigned int *pipe_bpp,
4882                                          struct drm_display_mode *mode)
4883 {
4884         struct drm_device *dev = crtc->dev;
4885         struct drm_i915_private *dev_priv = dev->dev_private;
4886         struct drm_encoder *encoder;
4887         struct drm_connector *connector;
4888         unsigned int display_bpc = UINT_MAX, bpc;
4889
4890         /* Walk the encoders & connectors on this crtc, get min bpc */
4891         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4892                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4893
4894                 if (encoder->crtc != crtc)
4895                         continue;
4896
4897                 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4898                         unsigned int lvds_bpc;
4899
4900                         if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4901                             LVDS_A3_POWER_UP)
4902                                 lvds_bpc = 8;
4903                         else
4904                                 lvds_bpc = 6;
4905
4906                         if (lvds_bpc < display_bpc) {
4907                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4908                                 display_bpc = lvds_bpc;
4909                         }
4910                         continue;
4911                 }
4912
4913                 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4914                         /* Use VBT settings if we have an eDP panel */
4915                         unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4916
4917                         if (edp_bpc < display_bpc) {
4918                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4919                                 display_bpc = edp_bpc;
4920                         }
4921                         continue;
4922                 }
4923
4924                 /* Not one of the known troublemakers, check the EDID */
4925                 list_for_each_entry(connector, &dev->mode_config.connector_list,
4926                                     head) {
4927                         if (connector->encoder != encoder)
4928                                 continue;
4929
4930                         /* Don't use an invalid EDID bpc value */
4931                         if (connector->display_info.bpc &&
4932                             connector->display_info.bpc < display_bpc) {
4933                                 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4934                                 display_bpc = connector->display_info.bpc;
4935                         }
4936                 }
4937
4938                 /*
4939                  * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4940                  * through, clamp it down.  (Note: >12bpc will be caught below.)
4941                  */
4942                 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4943                         if (display_bpc > 8 && display_bpc < 12) {
4944                                 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4945                                 display_bpc = 12;
4946                         } else {
4947                                 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4948                                 display_bpc = 8;
4949                         }
4950                 }
4951         }
4952
4953         if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4954                 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4955                 display_bpc = 6;
4956         }
4957
4958         /*
4959          * We could just drive the pipe at the highest bpc all the time and
4960          * enable dithering as needed, but that costs bandwidth.  So choose
4961          * the minimum value that expresses the full color range of the fb but
4962          * also stays within the max display bpc discovered above.
4963          */
4964
4965         switch (crtc->fb->depth) {
4966         case 8:
4967                 bpc = 8; /* since we go through a colormap */
4968                 break;
4969         case 15:
4970         case 16:
4971                 bpc = 6; /* min is 18bpp */
4972                 break;
4973         case 24:
4974                 bpc = 8;
4975                 break;
4976         case 30:
4977                 bpc = 10;
4978                 break;
4979         case 48:
4980                 bpc = 12;
4981                 break;
4982         default:
4983                 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4984                 bpc = min((unsigned int)8, display_bpc);
4985                 break;
4986         }
4987
4988         display_bpc = min(display_bpc, bpc);
4989
4990         DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4991                       bpc, display_bpc);
4992
4993         *pipe_bpp = display_bpc * 3;
4994
4995         return display_bpc != bpc;
4996 }
4997
4998 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4999 {
5000         struct drm_device *dev = crtc->dev;
5001         struct drm_i915_private *dev_priv = dev->dev_private;
5002         int refclk;
5003
5004         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5005             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5006                 refclk = dev_priv->lvds_ssc_freq * 1000;
5007                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5008                               refclk / 1000);
5009         } else if (!IS_GEN2(dev)) {
5010                 refclk = 96000;
5011         } else {
5012                 refclk = 48000;
5013         }
5014
5015         return refclk;
5016 }
5017
5018 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
5019                                       intel_clock_t *clock)
5020 {
5021         /* SDVO TV has fixed PLL values depend on its clock range,
5022            this mirrors vbios setting. */
5023         if (adjusted_mode->clock >= 100000
5024             && adjusted_mode->clock < 140500) {
5025                 clock->p1 = 2;
5026                 clock->p2 = 10;
5027                 clock->n = 3;
5028                 clock->m1 = 16;
5029                 clock->m2 = 8;
5030         } else if (adjusted_mode->clock >= 140500
5031                    && adjusted_mode->clock <= 200000) {
5032                 clock->p1 = 1;
5033                 clock->p2 = 10;
5034                 clock->n = 6;
5035                 clock->m1 = 12;
5036                 clock->m2 = 8;
5037         }
5038 }
5039
5040 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
5041                                      intel_clock_t *clock,
5042                                      intel_clock_t *reduced_clock)
5043 {
5044         struct drm_device *dev = crtc->dev;
5045         struct drm_i915_private *dev_priv = dev->dev_private;
5046         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5047         int pipe = intel_crtc->pipe;
5048         u32 fp, fp2 = 0;
5049
5050         if (IS_PINEVIEW(dev)) {
5051                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
5052                 if (reduced_clock)
5053                         fp2 = (1 << reduced_clock->n) << 16 |
5054                                 reduced_clock->m1 << 8 | reduced_clock->m2;
5055         } else {
5056                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
5057                 if (reduced_clock)
5058                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
5059                                 reduced_clock->m2;
5060         }
5061
5062         I915_WRITE(FP0(pipe), fp);
5063
5064         intel_crtc->lowfreq_avail = false;
5065         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5066             reduced_clock && i915_powersave) {
5067                 I915_WRITE(FP1(pipe), fp2);
5068                 intel_crtc->lowfreq_avail = true;
5069         } else {
5070                 I915_WRITE(FP1(pipe), fp);
5071         }
5072 }
5073
5074 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5075                               struct drm_display_mode *mode,
5076                               struct drm_display_mode *adjusted_mode,
5077                               int x, int y,
5078                               struct drm_framebuffer *old_fb)
5079 {
5080         struct drm_device *dev = crtc->dev;
5081         struct drm_i915_private *dev_priv = dev->dev_private;
5082         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5083         int pipe = intel_crtc->pipe;
5084         int plane = intel_crtc->plane;
5085         int refclk, num_connectors = 0;
5086         intel_clock_t clock, reduced_clock;
5087         u32 dpll, dspcntr, pipeconf;
5088         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
5089         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5090         struct drm_mode_config *mode_config = &dev->mode_config;
5091         struct intel_encoder *encoder;
5092         const intel_limit_t *limit;
5093         int ret;
5094         u32 temp;
5095         u32 lvds_sync = 0;
5096
5097         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5098                 if (encoder->base.crtc != crtc)
5099                         continue;
5100
5101                 switch (encoder->type) {
5102                 case INTEL_OUTPUT_LVDS:
5103                         is_lvds = true;
5104                         break;
5105                 case INTEL_OUTPUT_SDVO:
5106                 case INTEL_OUTPUT_HDMI:
5107                         is_sdvo = true;
5108                         if (encoder->needs_tv_clock)
5109                                 is_tv = true;
5110                         break;
5111                 case INTEL_OUTPUT_DVO:
5112                         is_dvo = true;
5113                         break;
5114                 case INTEL_OUTPUT_TVOUT:
5115                         is_tv = true;
5116                         break;
5117                 case INTEL_OUTPUT_ANALOG:
5118                         is_crt = true;
5119                         break;
5120                 case INTEL_OUTPUT_DISPLAYPORT:
5121                         is_dp = true;
5122                         break;
5123                 }
5124
5125                 num_connectors++;
5126         }
5127
5128         refclk = i9xx_get_refclk(crtc, num_connectors);
5129
5130         /*
5131          * Returns a set of divisors for the desired target clock with the given
5132          * refclk, or FALSE.  The returned values represent the clock equation:
5133          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5134          */
5135         limit = intel_limit(crtc, refclk);
5136         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5137                              &clock);
5138         if (!ok) {
5139                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5140                 return -EINVAL;
5141         }
5142
5143         /* Ensure that the cursor is valid for the new mode before changing... */
5144         intel_crtc_update_cursor(crtc, true);
5145
5146         if (is_lvds && dev_priv->lvds_downclock_avail) {
5147                 /*
5148                  * Ensure we match the reduced clock's P to the target clock.
5149                  * If the clocks don't match, we can't switch the display clock
5150                  * by using the FP0/FP1. In such case we will disable the LVDS
5151                  * downclock feature.
5152                 */
5153                 has_reduced_clock = limit->find_pll(limit, crtc,
5154                                                     dev_priv->lvds_downclock,
5155                                                     refclk,
5156                                                     &clock,
5157                                                     &reduced_clock);
5158         }
5159
5160         if (is_sdvo && is_tv)
5161                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
5162
5163         i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
5164                                  &reduced_clock : NULL);
5165
5166         dpll = DPLL_VGA_MODE_DIS;
5167
5168         if (!IS_GEN2(dev)) {
5169                 if (is_lvds)
5170                         dpll |= DPLLB_MODE_LVDS;
5171                 else
5172                         dpll |= DPLLB_MODE_DAC_SERIAL;
5173                 if (is_sdvo) {
5174                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5175                         if (pixel_multiplier > 1) {
5176                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5177                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
5178                         }
5179                         dpll |= DPLL_DVO_HIGH_SPEED;
5180                 }
5181                 if (is_dp)
5182                         dpll |= DPLL_DVO_HIGH_SPEED;
5183
5184                 /* compute bitmask from p1 value */
5185                 if (IS_PINEVIEW(dev))
5186                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5187                 else {
5188                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5189                         if (IS_G4X(dev) && has_reduced_clock)
5190                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5191                 }
5192                 switch (clock.p2) {
5193                 case 5:
5194                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5195                         break;
5196                 case 7:
5197                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5198                         break;
5199                 case 10:
5200                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5201                         break;
5202                 case 14:
5203                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5204                         break;
5205                 }
5206                 if (INTEL_INFO(dev)->gen >= 4)
5207                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5208         } else {
5209                 if (is_lvds) {
5210                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5211                 } else {
5212                         if (clock.p1 == 2)
5213                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
5214                         else
5215                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5216                         if (clock.p2 == 4)
5217                                 dpll |= PLL_P2_DIVIDE_BY_4;
5218                 }
5219         }
5220
5221         if (is_sdvo && is_tv)
5222                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5223         else if (is_tv)
5224                 /* XXX: just matching BIOS for now */
5225                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5226                 dpll |= 3;
5227         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5228                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5229         else
5230                 dpll |= PLL_REF_INPUT_DREFCLK;
5231
5232         /* setup pipeconf */
5233         pipeconf = I915_READ(PIPECONF(pipe));
5234
5235         /* Set up the display plane register */
5236         dspcntr = DISPPLANE_GAMMA_ENABLE;
5237
5238         if (pipe == 0)
5239                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5240         else
5241                 dspcntr |= DISPPLANE_SEL_PIPE_B;
5242
5243         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
5244                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5245                  * core speed.
5246                  *
5247                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5248                  * pipe == 0 check?
5249                  */
5250                 if (mode->clock >
5251                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5252                         pipeconf |= PIPECONF_DOUBLE_WIDE;
5253                 else
5254                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
5255         }
5256
5257         /* default to 8bpc */
5258         pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
5259         if (is_dp) {
5260                 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5261                         pipeconf |= PIPECONF_BPP_6 |
5262                                     PIPECONF_DITHER_EN |
5263                                     PIPECONF_DITHER_TYPE_SP;
5264                 }
5265         }
5266
5267         dpll |= DPLL_VCO_ENABLE;
5268
5269         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5270         drm_mode_debug_printmodeline(mode);
5271
5272         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5273
5274         POSTING_READ(DPLL(pipe));
5275         udelay(150);
5276
5277         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5278          * This is an exception to the general rule that mode_set doesn't turn
5279          * things on.
5280          */
5281         if (is_lvds) {
5282                 temp = I915_READ(LVDS);
5283                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5284                 if (pipe == 1) {
5285                         temp |= LVDS_PIPEB_SELECT;
5286                 } else {
5287                         temp &= ~LVDS_PIPEB_SELECT;
5288                 }
5289                 /* set the corresponsding LVDS_BORDER bit */
5290                 temp |= dev_priv->lvds_border_bits;
5291                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5292                  * set the DPLLs for dual-channel mode or not.
5293                  */
5294                 if (clock.p2 == 7)
5295                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5296                 else
5297                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5298
5299                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5300                  * appropriately here, but we need to look more thoroughly into how
5301                  * panels behave in the two modes.
5302                  */
5303                 /* set the dithering flag on LVDS as needed */
5304                 if (INTEL_INFO(dev)->gen >= 4) {
5305                         if (dev_priv->lvds_dither)
5306                                 temp |= LVDS_ENABLE_DITHER;
5307                         else
5308                                 temp &= ~LVDS_ENABLE_DITHER;
5309                 }
5310                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5311                         lvds_sync |= LVDS_HSYNC_POLARITY;
5312                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5313                         lvds_sync |= LVDS_VSYNC_POLARITY;
5314                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5315                     != lvds_sync) {
5316                         char flags[2] = "-+";
5317                         DRM_INFO("Changing LVDS panel from "
5318                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5319                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5320                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5321                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5322                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5323                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5324                         temp |= lvds_sync;
5325                 }
5326                 I915_WRITE(LVDS, temp);
5327         }
5328
5329         if (is_dp) {
5330                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5331         }
5332
5333         I915_WRITE(DPLL(pipe), dpll);
5334
5335         /* Wait for the clocks to stabilize. */
5336         POSTING_READ(DPLL(pipe));
5337         udelay(150);
5338
5339         if (INTEL_INFO(dev)->gen >= 4) {
5340                 temp = 0;
5341                 if (is_sdvo) {
5342                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5343                         if (temp > 1)
5344                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5345                         else
5346                                 temp = 0;
5347                 }
5348                 I915_WRITE(DPLL_MD(pipe), temp);
5349         } else {
5350                 /* The pixel multiplier can only be updated once the
5351                  * DPLL is enabled and the clocks are stable.
5352                  *
5353                  * So write it again.
5354                  */
5355                 I915_WRITE(DPLL(pipe), dpll);
5356         }
5357
5358         if (HAS_PIPE_CXSR(dev)) {
5359                 if (intel_crtc->lowfreq_avail) {
5360                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5361                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5362                 } else {
5363                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5364                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5365                 }
5366         }
5367
5368         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5369                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5370                 /* the chip adds 2 halflines automatically */
5371                 adjusted_mode->crtc_vdisplay -= 1;
5372                 adjusted_mode->crtc_vtotal -= 1;
5373                 adjusted_mode->crtc_vblank_start -= 1;
5374                 adjusted_mode->crtc_vblank_end -= 1;
5375                 adjusted_mode->crtc_vsync_end -= 1;
5376                 adjusted_mode->crtc_vsync_start -= 1;
5377         } else
5378                 pipeconf &= ~PIPECONF_INTERLACE_MASK; /* progressive */
5379
5380         I915_WRITE(HTOTAL(pipe),
5381                    (adjusted_mode->crtc_hdisplay - 1) |
5382                    ((adjusted_mode->crtc_htotal - 1) << 16));
5383         I915_WRITE(HBLANK(pipe),
5384                    (adjusted_mode->crtc_hblank_start - 1) |
5385                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5386         I915_WRITE(HSYNC(pipe),
5387                    (adjusted_mode->crtc_hsync_start - 1) |
5388                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5389
5390         I915_WRITE(VTOTAL(pipe),
5391                    (adjusted_mode->crtc_vdisplay - 1) |
5392                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5393         I915_WRITE(VBLANK(pipe),
5394                    (adjusted_mode->crtc_vblank_start - 1) |
5395                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5396         I915_WRITE(VSYNC(pipe),
5397                    (adjusted_mode->crtc_vsync_start - 1) |
5398                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5399
5400         /* pipesrc and dspsize control the size that is scaled from,
5401          * which should always be the user's requested size.
5402          */
5403         I915_WRITE(DSPSIZE(plane),
5404                    ((mode->vdisplay - 1) << 16) |
5405                    (mode->hdisplay - 1));
5406         I915_WRITE(DSPPOS(plane), 0);
5407         I915_WRITE(PIPESRC(pipe),
5408                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5409
5410         I915_WRITE(PIPECONF(pipe), pipeconf);
5411         POSTING_READ(PIPECONF(pipe));
5412         intel_enable_pipe(dev_priv, pipe, false);
5413
5414         intel_wait_for_vblank(dev, pipe);
5415
5416         I915_WRITE(DSPCNTR(plane), dspcntr);
5417         POSTING_READ(DSPCNTR(plane));
5418         intel_enable_plane(dev_priv, plane, pipe);
5419
5420         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5421
5422         intel_update_watermarks(dev);
5423
5424         return ret;
5425 }
5426
5427 /*
5428  * Initialize reference clocks when the driver loads
5429  */
5430 void ironlake_init_pch_refclk(struct drm_device *dev)
5431 {
5432         struct drm_i915_private *dev_priv = dev->dev_private;
5433         struct drm_mode_config *mode_config = &dev->mode_config;
5434         struct intel_encoder *encoder;
5435         u32 temp;
5436         bool has_lvds = false;
5437         bool has_cpu_edp = false;
5438         bool has_pch_edp = false;
5439         bool has_panel = false;
5440         bool has_ck505 = false;
5441         bool can_ssc = false;
5442
5443         /* We need to take the global config into account */
5444         list_for_each_entry(encoder, &mode_config->encoder_list,
5445                             base.head) {
5446                 switch (encoder->type) {
5447                 case INTEL_OUTPUT_LVDS:
5448                         has_panel = true;
5449                         has_lvds = true;
5450                         break;
5451                 case INTEL_OUTPUT_EDP:
5452                         has_panel = true;
5453                         if (intel_encoder_is_pch_edp(&encoder->base))
5454                                 has_pch_edp = true;
5455                         else
5456                                 has_cpu_edp = true;
5457                         break;
5458                 }
5459         }
5460
5461         if (HAS_PCH_IBX(dev)) {
5462                 has_ck505 = dev_priv->display_clock_mode;
5463                 can_ssc = has_ck505;
5464         } else {
5465                 has_ck505 = false;
5466                 can_ssc = true;
5467         }
5468
5469         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5470                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5471                       has_ck505);
5472
5473         /* Ironlake: try to setup display ref clock before DPLL
5474          * enabling. This is only under driver's control after
5475          * PCH B stepping, previous chipset stepping should be
5476          * ignoring this setting.
5477          */
5478         temp = I915_READ(PCH_DREF_CONTROL);
5479         /* Always enable nonspread source */
5480         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5481
5482         if (has_ck505)
5483                 temp |= DREF_NONSPREAD_CK505_ENABLE;
5484         else
5485                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5486
5487         if (has_panel) {
5488                 temp &= ~DREF_SSC_SOURCE_MASK;
5489                 temp |= DREF_SSC_SOURCE_ENABLE;
5490
5491                 /* SSC must be turned on before enabling the CPU output  */
5492                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5493                         DRM_DEBUG_KMS("Using SSC on panel\n");
5494                         temp |= DREF_SSC1_ENABLE;
5495                 }
5496
5497                 /* Get SSC going before enabling the outputs */
5498                 I915_WRITE(PCH_DREF_CONTROL, temp);
5499                 POSTING_READ(PCH_DREF_CONTROL);
5500                 udelay(200);
5501
5502                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5503
5504                 /* Enable CPU source on CPU attached eDP */
5505                 if (has_cpu_edp) {
5506                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5507                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5508                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5509                         }
5510                         else
5511                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5512                 } else
5513                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5514
5515                 I915_WRITE(PCH_DREF_CONTROL, temp);
5516                 POSTING_READ(PCH_DREF_CONTROL);
5517                 udelay(200);
5518         } else {
5519                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5520
5521                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5522
5523                 /* Turn off CPU output */
5524                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5525
5526                 I915_WRITE(PCH_DREF_CONTROL, temp);
5527                 POSTING_READ(PCH_DREF_CONTROL);
5528                 udelay(200);
5529
5530                 /* Turn off the SSC source */
5531                 temp &= ~DREF_SSC_SOURCE_MASK;
5532                 temp |= DREF_SSC_SOURCE_DISABLE;
5533
5534                 /* Turn off SSC1 */
5535                 temp &= ~ DREF_SSC1_ENABLE;
5536
5537                 I915_WRITE(PCH_DREF_CONTROL, temp);
5538                 POSTING_READ(PCH_DREF_CONTROL);
5539                 udelay(200);
5540         }
5541 }
5542
5543 static int ironlake_get_refclk(struct drm_crtc *crtc)
5544 {
5545         struct drm_device *dev = crtc->dev;
5546         struct drm_i915_private *dev_priv = dev->dev_private;
5547         struct intel_encoder *encoder;
5548         struct drm_mode_config *mode_config = &dev->mode_config;
5549         struct intel_encoder *edp_encoder = NULL;
5550         int num_connectors = 0;
5551         bool is_lvds = false;
5552
5553         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5554                 if (encoder->base.crtc != crtc)
5555                         continue;
5556
5557                 switch (encoder->type) {
5558                 case INTEL_OUTPUT_LVDS:
5559                         is_lvds = true;
5560                         break;
5561                 case INTEL_OUTPUT_EDP:
5562                         edp_encoder = encoder;
5563                         break;
5564                 }
5565                 num_connectors++;
5566         }
5567
5568         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5569                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5570                               dev_priv->lvds_ssc_freq);
5571                 return dev_priv->lvds_ssc_freq * 1000;
5572         }
5573
5574         return 120000;
5575 }
5576
5577 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5578                                   struct drm_display_mode *mode,
5579                                   struct drm_display_mode *adjusted_mode,
5580                                   int x, int y,
5581                                   struct drm_framebuffer *old_fb)
5582 {
5583         struct drm_device *dev = crtc->dev;
5584         struct drm_i915_private *dev_priv = dev->dev_private;
5585         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5586         int pipe = intel_crtc->pipe;
5587         int plane = intel_crtc->plane;
5588         int refclk, num_connectors = 0;
5589         intel_clock_t clock, reduced_clock;
5590         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5591         bool ok, has_reduced_clock = false, is_sdvo = false;
5592         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5593         struct intel_encoder *has_edp_encoder = NULL;
5594         struct drm_mode_config *mode_config = &dev->mode_config;
5595         struct intel_encoder *encoder;
5596         const intel_limit_t *limit;
5597         int ret;
5598         struct fdi_m_n m_n = {0};
5599         u32 temp;
5600         u32 lvds_sync = 0;
5601         int target_clock, pixel_multiplier, lane, link_bw, factor;
5602         unsigned int pipe_bpp;
5603         bool dither;
5604
5605         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5606                 if (encoder->base.crtc != crtc)
5607                         continue;
5608
5609                 switch (encoder->type) {
5610                 case INTEL_OUTPUT_LVDS:
5611                         is_lvds = true;
5612                         break;
5613                 case INTEL_OUTPUT_SDVO:
5614                 case INTEL_OUTPUT_HDMI:
5615                         is_sdvo = true;
5616                         if (encoder->needs_tv_clock)
5617                                 is_tv = true;
5618                         break;
5619                 case INTEL_OUTPUT_TVOUT:
5620                         is_tv = true;
5621                         break;
5622                 case INTEL_OUTPUT_ANALOG:
5623                         is_crt = true;
5624                         break;
5625                 case INTEL_OUTPUT_DISPLAYPORT:
5626                         is_dp = true;
5627                         break;
5628                 case INTEL_OUTPUT_EDP:
5629                         has_edp_encoder = encoder;
5630                         break;
5631                 }
5632
5633                 num_connectors++;
5634         }
5635
5636         refclk = ironlake_get_refclk(crtc);
5637
5638         /*
5639          * Returns a set of divisors for the desired target clock with the given
5640          * refclk, or FALSE.  The returned values represent the clock equation:
5641          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5642          */
5643         limit = intel_limit(crtc, refclk);
5644         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5645                              &clock);
5646         if (!ok) {
5647                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5648                 return -EINVAL;
5649         }
5650
5651         /* Ensure that the cursor is valid for the new mode before changing... */
5652         intel_crtc_update_cursor(crtc, true);
5653
5654         if (is_lvds && dev_priv->lvds_downclock_avail) {
5655                 /*
5656                  * Ensure we match the reduced clock's P to the target clock.
5657                  * If the clocks don't match, we can't switch the display clock
5658                  * by using the FP0/FP1. In such case we will disable the LVDS
5659                  * downclock feature.
5660                 */
5661                 has_reduced_clock = limit->find_pll(limit, crtc,
5662                                                     dev_priv->lvds_downclock,
5663                                                     refclk,
5664                                                     &clock,
5665                                                     &reduced_clock);
5666         }
5667         /* SDVO TV has fixed PLL values depend on its clock range,
5668            this mirrors vbios setting. */
5669         if (is_sdvo && is_tv) {
5670                 if (adjusted_mode->clock >= 100000
5671                     && adjusted_mode->clock < 140500) {
5672                         clock.p1 = 2;
5673                         clock.p2 = 10;
5674                         clock.n = 3;
5675                         clock.m1 = 16;
5676                         clock.m2 = 8;
5677                 } else if (adjusted_mode->clock >= 140500
5678                            && adjusted_mode->clock <= 200000) {
5679                         clock.p1 = 1;
5680                         clock.p2 = 10;
5681                         clock.n = 6;
5682                         clock.m1 = 12;
5683                         clock.m2 = 8;
5684                 }
5685         }
5686
5687         /* FDI link */
5688         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5689         lane = 0;
5690         /* CPU eDP doesn't require FDI link, so just set DP M/N
5691            according to current link config */
5692         if (has_edp_encoder &&
5693             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5694                 target_clock = mode->clock;
5695                 intel_edp_link_config(has_edp_encoder,
5696                                       &lane, &link_bw);
5697         } else {
5698                 /* [e]DP over FDI requires target mode clock
5699                    instead of link clock */
5700                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5701                         target_clock = mode->clock;
5702                 else
5703                         target_clock = adjusted_mode->clock;
5704
5705                 /* FDI is a binary signal running at ~2.7GHz, encoding
5706                  * each output octet as 10 bits. The actual frequency
5707                  * is stored as a divider into a 100MHz clock, and the
5708                  * mode pixel clock is stored in units of 1KHz.
5709                  * Hence the bw of each lane in terms of the mode signal
5710                  * is:
5711                  */
5712                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5713         }
5714
5715         /* determine panel color depth */
5716         temp = I915_READ(PIPECONF(pipe));
5717         temp &= ~PIPE_BPC_MASK;
5718         dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
5719         switch (pipe_bpp) {
5720         case 18:
5721                 temp |= PIPE_6BPC;
5722                 break;
5723         case 24:
5724                 temp |= PIPE_8BPC;
5725                 break;
5726         case 30:
5727                 temp |= PIPE_10BPC;
5728                 break;
5729         case 36:
5730                 temp |= PIPE_12BPC;
5731                 break;
5732         default:
5733                 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5734                         pipe_bpp);
5735                 temp |= PIPE_8BPC;
5736                 pipe_bpp = 24;
5737                 break;
5738         }
5739
5740         intel_crtc->bpp = pipe_bpp;
5741         I915_WRITE(PIPECONF(pipe), temp);
5742
5743         if (!lane) {
5744                 /*
5745                  * Account for spread spectrum to avoid
5746                  * oversubscribing the link. Max center spread
5747                  * is 2.5%; use 5% for safety's sake.
5748                  */
5749                 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5750                 lane = bps / (link_bw * 8) + 1;
5751         }
5752
5753         intel_crtc->fdi_lanes = lane;
5754
5755         if (pixel_multiplier > 1)
5756                 link_bw *= pixel_multiplier;
5757         ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5758                              &m_n);
5759
5760         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5761         if (has_reduced_clock)
5762                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5763                         reduced_clock.m2;
5764
5765         /* Enable autotuning of the PLL clock (if permissible) */
5766         factor = 21;
5767         if (is_lvds) {
5768                 if ((intel_panel_use_ssc(dev_priv) &&
5769                      dev_priv->lvds_ssc_freq == 100) ||
5770                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5771                         factor = 25;
5772         } else if (is_sdvo && is_tv)
5773                 factor = 20;
5774
5775         if (clock.m < factor * clock.n)
5776                 fp |= FP_CB_TUNE;
5777
5778         dpll = 0;
5779
5780         if (is_lvds)
5781                 dpll |= DPLLB_MODE_LVDS;
5782         else
5783                 dpll |= DPLLB_MODE_DAC_SERIAL;
5784         if (is_sdvo) {
5785                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5786                 if (pixel_multiplier > 1) {
5787                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5788                 }
5789                 dpll |= DPLL_DVO_HIGH_SPEED;
5790         }
5791         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5792                 dpll |= DPLL_DVO_HIGH_SPEED;
5793
5794         /* compute bitmask from p1 value */
5795         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5796         /* also FPA1 */
5797         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5798
5799         switch (clock.p2) {
5800         case 5:
5801                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5802                 break;
5803         case 7:
5804                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5805                 break;
5806         case 10:
5807                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5808                 break;
5809         case 14:
5810                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5811                 break;
5812         }
5813
5814         if (is_sdvo && is_tv)
5815                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5816         else if (is_tv)
5817                 /* XXX: just matching BIOS for now */
5818                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5819                 dpll |= 3;
5820         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5821                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5822         else
5823                 dpll |= PLL_REF_INPUT_DREFCLK;
5824
5825         /* setup pipeconf */
5826         pipeconf = I915_READ(PIPECONF(pipe));
5827
5828         /* Set up the display plane register */
5829         dspcntr = DISPPLANE_GAMMA_ENABLE;
5830
5831         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5832         drm_mode_debug_printmodeline(mode);
5833
5834         /* PCH eDP needs FDI, but CPU eDP does not */
5835         if (!intel_crtc->no_pll) {
5836                 if (!has_edp_encoder ||
5837                     intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5838                         I915_WRITE(PCH_FP0(pipe), fp);
5839                         I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5840
5841                         POSTING_READ(PCH_DPLL(pipe));
5842                         udelay(150);
5843                 }
5844         } else {
5845                 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5846                     fp == I915_READ(PCH_FP0(0))) {
5847                         intel_crtc->use_pll_a = true;
5848                         DRM_DEBUG_KMS("using pipe a dpll\n");
5849                 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5850                            fp == I915_READ(PCH_FP0(1))) {
5851                         intel_crtc->use_pll_a = false;
5852                         DRM_DEBUG_KMS("using pipe b dpll\n");
5853                 } else {
5854                         DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5855                         return -EINVAL;
5856                 }
5857         }
5858
5859         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5860          * This is an exception to the general rule that mode_set doesn't turn
5861          * things on.
5862          */
5863         if (is_lvds) {
5864                 temp = I915_READ(PCH_LVDS);
5865                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5866                 if (HAS_PCH_CPT(dev)) {
5867                         temp &= ~PORT_TRANS_SEL_MASK;
5868                         temp |= PORT_TRANS_SEL_CPT(pipe);
5869                 } else {
5870                         if (pipe == 1)
5871                                 temp |= LVDS_PIPEB_SELECT;
5872                         else
5873                                 temp &= ~LVDS_PIPEB_SELECT;
5874                 }
5875
5876                 /* set the corresponsding LVDS_BORDER bit */
5877                 temp |= dev_priv->lvds_border_bits;
5878                 /* Set the B0-B3 data pairs corresponding to whether we're going to
5879                  * set the DPLLs for dual-channel mode or not.
5880                  */
5881                 if (clock.p2 == 7)
5882                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5883                 else
5884                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5885
5886                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5887                  * appropriately here, but we need to look more thoroughly into how
5888                  * panels behave in the two modes.
5889                  */
5890                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5891                         lvds_sync |= LVDS_HSYNC_POLARITY;
5892                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5893                         lvds_sync |= LVDS_VSYNC_POLARITY;
5894                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5895                     != lvds_sync) {
5896                         char flags[2] = "-+";
5897                         DRM_INFO("Changing LVDS panel from "
5898                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5899                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5900                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5901                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5902                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5903                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5904                         temp |= lvds_sync;
5905                 }
5906                 I915_WRITE(PCH_LVDS, temp);
5907         }
5908
5909         pipeconf &= ~PIPECONF_DITHER_EN;
5910         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5911         if ((is_lvds && dev_priv->lvds_dither) || dither) {
5912                 pipeconf |= PIPECONF_DITHER_EN;
5913                 pipeconf |= PIPECONF_DITHER_TYPE_SP;
5914         }
5915         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5916                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5917         } else {
5918                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5919                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5920                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5921                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5922                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5923         }
5924
5925         if (!intel_crtc->no_pll &&
5926             (!has_edp_encoder ||
5927              intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
5928                 I915_WRITE(PCH_DPLL(pipe), dpll);
5929
5930                 /* Wait for the clocks to stabilize. */
5931                 POSTING_READ(PCH_DPLL(pipe));
5932                 udelay(150);
5933
5934                 /* The pixel multiplier can only be updated once the
5935                  * DPLL is enabled and the clocks are stable.
5936                  *
5937                  * So write it again.
5938                  */
5939                 I915_WRITE(PCH_DPLL(pipe), dpll);
5940         }
5941
5942         intel_crtc->lowfreq_avail = false;
5943         if (!intel_crtc->no_pll) {
5944                 if (is_lvds && has_reduced_clock && i915_powersave) {
5945                         I915_WRITE(PCH_FP1(pipe), fp2);
5946                         intel_crtc->lowfreq_avail = true;
5947                         if (HAS_PIPE_CXSR(dev)) {
5948                                 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5949                                 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5950                         }
5951                 } else {
5952                         I915_WRITE(PCH_FP1(pipe), fp);
5953                         if (HAS_PIPE_CXSR(dev)) {
5954                                 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5955                                 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5956                         }
5957                 }
5958         }
5959
5960         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5961                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5962                 /* the chip adds 2 halflines automatically */
5963                 adjusted_mode->crtc_vdisplay -= 1;
5964                 adjusted_mode->crtc_vtotal -= 1;
5965                 adjusted_mode->crtc_vblank_start -= 1;
5966                 adjusted_mode->crtc_vblank_end -= 1;
5967                 adjusted_mode->crtc_vsync_end -= 1;
5968                 adjusted_mode->crtc_vsync_start -= 1;
5969         } else
5970                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5971
5972         I915_WRITE(HTOTAL(pipe),
5973                    (adjusted_mode->crtc_hdisplay - 1) |
5974                    ((adjusted_mode->crtc_htotal - 1) << 16));
5975         I915_WRITE(HBLANK(pipe),
5976                    (adjusted_mode->crtc_hblank_start - 1) |
5977                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5978         I915_WRITE(HSYNC(pipe),
5979                    (adjusted_mode->crtc_hsync_start - 1) |
5980                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5981
5982         I915_WRITE(VTOTAL(pipe),
5983                    (adjusted_mode->crtc_vdisplay - 1) |
5984                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5985         I915_WRITE(VBLANK(pipe),
5986                    (adjusted_mode->crtc_vblank_start - 1) |
5987                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5988         I915_WRITE(VSYNC(pipe),
5989                    (adjusted_mode->crtc_vsync_start - 1) |
5990                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5991
5992         /* pipesrc controls the size that is scaled from, which should
5993          * always be the user's requested size.
5994          */
5995         I915_WRITE(PIPESRC(pipe),
5996                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5997
5998         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5999         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
6000         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
6001         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
6002
6003         if (has_edp_encoder &&
6004             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
6005                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
6006         }
6007
6008         I915_WRITE(PIPECONF(pipe), pipeconf);
6009         POSTING_READ(PIPECONF(pipe));
6010
6011         intel_wait_for_vblank(dev, pipe);
6012
6013         if (IS_GEN5(dev)) {
6014                 /* enable address swizzle for tiling buffer */
6015                 temp = I915_READ(DISP_ARB_CTL);
6016                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
6017         }
6018
6019         I915_WRITE(DSPCNTR(plane), dspcntr);
6020         POSTING_READ(DSPCNTR(plane));
6021
6022         ret = intel_pipe_set_base(crtc, x, y, old_fb);
6023
6024         intel_update_watermarks(dev);
6025
6026         return ret;
6027 }
6028
6029 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6030                                struct drm_display_mode *mode,
6031                                struct drm_display_mode *adjusted_mode,
6032                                int x, int y,
6033                                struct drm_framebuffer *old_fb)
6034 {
6035         struct drm_device *dev = crtc->dev;
6036         struct drm_i915_private *dev_priv = dev->dev_private;
6037         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6038         int pipe = intel_crtc->pipe;
6039         int ret;
6040
6041         drm_vblank_pre_modeset(dev, pipe);
6042
6043         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
6044                                               x, y, old_fb);
6045         drm_vblank_post_modeset(dev, pipe);
6046
6047         if (ret)
6048                 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
6049         else
6050                 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
6051
6052         return ret;
6053 }
6054
6055 static bool intel_eld_uptodate(struct drm_connector *connector,
6056                                int reg_eldv, uint32_t bits_eldv,
6057                                int reg_elda, uint32_t bits_elda,
6058                                int reg_edid)
6059 {
6060         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6061         uint8_t *eld = connector->eld;
6062         uint32_t i;
6063
6064         i = I915_READ(reg_eldv);
6065         i &= bits_eldv;
6066
6067         if (!eld[0])
6068                 return !i;
6069
6070         if (!i)
6071                 return false;
6072
6073         i = I915_READ(reg_elda);
6074         i &= ~bits_elda;
6075         I915_WRITE(reg_elda, i);
6076
6077         for (i = 0; i < eld[2]; i++)
6078                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6079                         return false;
6080
6081         return true;
6082 }
6083
6084 static void g4x_write_eld(struct drm_connector *connector,
6085                           struct drm_crtc *crtc)
6086 {
6087         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6088         uint8_t *eld = connector->eld;
6089         uint32_t eldv;
6090         uint32_t len;
6091         uint32_t i;
6092
6093         i = I915_READ(G4X_AUD_VID_DID);
6094
6095         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6096                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6097         else
6098                 eldv = G4X_ELDV_DEVCTG;
6099
6100         if (intel_eld_uptodate(connector,
6101                                G4X_AUD_CNTL_ST, eldv,
6102                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6103                                G4X_HDMIW_HDMIEDID))
6104                 return;
6105
6106         i = I915_READ(G4X_AUD_CNTL_ST);
6107         i &= ~(eldv | G4X_ELD_ADDR);
6108         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6109         I915_WRITE(G4X_AUD_CNTL_ST, i);
6110
6111         if (!eld[0])
6112                 return;
6113
6114         len = min_t(uint8_t, eld[2], len);
6115         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6116         for (i = 0; i < len; i++)
6117                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6118
6119         i = I915_READ(G4X_AUD_CNTL_ST);
6120         i |= eldv;
6121         I915_WRITE(G4X_AUD_CNTL_ST, i);
6122 }
6123
6124 static void ironlake_write_eld(struct drm_connector *connector,
6125                                      struct drm_crtc *crtc)
6126 {
6127         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6128         uint8_t *eld = connector->eld;
6129         uint32_t eldv;
6130         uint32_t i;
6131         int len;
6132         int hdmiw_hdmiedid;
6133         int aud_cntl_st;
6134         int aud_cntrl_st2;
6135
6136         if (HAS_PCH_IBX(connector->dev)) {
6137                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
6138                 aud_cntl_st = IBX_AUD_CNTL_ST_A;
6139                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6140         } else {
6141                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
6142                 aud_cntl_st = CPT_AUD_CNTL_ST_A;
6143                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6144         }
6145
6146         i = to_intel_crtc(crtc)->pipe;
6147         hdmiw_hdmiedid += i * 0x100;
6148         aud_cntl_st += i * 0x100;
6149
6150         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
6151
6152         i = I915_READ(aud_cntl_st);
6153         i = (i >> 29) & 0x3;            /* DIP_Port_Select, 0x1 = PortB */
6154         if (!i) {
6155                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6156                 /* operate blindly on all ports */
6157                 eldv = IBX_ELD_VALIDB;
6158                 eldv |= IBX_ELD_VALIDB << 4;
6159                 eldv |= IBX_ELD_VALIDB << 8;
6160         } else {
6161                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6162                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6163         }
6164
6165         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6166                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6167                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6168         }
6169
6170         if (intel_eld_uptodate(connector,
6171                                aud_cntrl_st2, eldv,
6172                                aud_cntl_st, IBX_ELD_ADDRESS,
6173                                hdmiw_hdmiedid))
6174                 return;
6175
6176         i = I915_READ(aud_cntrl_st2);
6177         i &= ~eldv;
6178         I915_WRITE(aud_cntrl_st2, i);
6179
6180         if (!eld[0])
6181                 return;
6182
6183         i = I915_READ(aud_cntl_st);
6184         i &= ~IBX_ELD_ADDRESS;
6185         I915_WRITE(aud_cntl_st, i);
6186
6187         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6188         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6189         for (i = 0; i < len; i++)
6190                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6191
6192         i = I915_READ(aud_cntrl_st2);
6193         i |= eldv;
6194         I915_WRITE(aud_cntrl_st2, i);
6195 }
6196
6197 void intel_write_eld(struct drm_encoder *encoder,
6198                      struct drm_display_mode *mode)
6199 {
6200         struct drm_crtc *crtc = encoder->crtc;
6201         struct drm_connector *connector;
6202         struct drm_device *dev = encoder->dev;
6203         struct drm_i915_private *dev_priv = dev->dev_private;
6204
6205         connector = drm_select_eld(encoder, mode);
6206         if (!connector)
6207                 return;
6208
6209         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6210                          connector->base.id,
6211                          drm_get_connector_name(connector),
6212                          connector->encoder->base.id,
6213                          drm_get_encoder_name(connector->encoder));
6214
6215         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6216
6217         if (dev_priv->display.write_eld)
6218                 dev_priv->display.write_eld(connector, crtc);
6219 }
6220
6221 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6222 void intel_crtc_load_lut(struct drm_crtc *crtc)
6223 {
6224         struct drm_device *dev = crtc->dev;
6225         struct drm_i915_private *dev_priv = dev->dev_private;
6226         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6227         int palreg = PALETTE(intel_crtc->pipe);
6228         int i;
6229
6230         /* The clocks have to be on to load the palette. */
6231         if (!crtc->enabled)
6232                 return;
6233
6234         /* use legacy palette for Ironlake */
6235         if (HAS_PCH_SPLIT(dev))
6236                 palreg = LGC_PALETTE(intel_crtc->pipe);
6237
6238         for (i = 0; i < 256; i++) {
6239                 I915_WRITE(palreg + 4 * i,
6240                            (intel_crtc->lut_r[i] << 16) |
6241                            (intel_crtc->lut_g[i] << 8) |
6242                            intel_crtc->lut_b[i]);
6243         }
6244 }
6245
6246 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6247 {
6248         struct drm_device *dev = crtc->dev;
6249         struct drm_i915_private *dev_priv = dev->dev_private;
6250         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6251         bool visible = base != 0;
6252         u32 cntl;
6253
6254         if (intel_crtc->cursor_visible == visible)
6255                 return;
6256
6257         cntl = I915_READ(_CURACNTR);
6258         if (visible) {
6259                 /* On these chipsets we can only modify the base whilst
6260                  * the cursor is disabled.
6261                  */
6262                 I915_WRITE(_CURABASE, base);
6263
6264                 cntl &= ~(CURSOR_FORMAT_MASK);
6265                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6266                 cntl |= CURSOR_ENABLE |
6267                         CURSOR_GAMMA_ENABLE |
6268                         CURSOR_FORMAT_ARGB;
6269         } else
6270                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6271         I915_WRITE(_CURACNTR, cntl);
6272
6273         intel_crtc->cursor_visible = visible;
6274 }
6275
6276 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6277 {
6278         struct drm_device *dev = crtc->dev;
6279         struct drm_i915_private *dev_priv = dev->dev_private;
6280         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6281         int pipe = intel_crtc->pipe;
6282         bool visible = base != 0;
6283
6284         if (intel_crtc->cursor_visible != visible) {
6285                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6286                 if (base) {
6287                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6288                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6289                         cntl |= pipe << 28; /* Connect to correct pipe */
6290                 } else {
6291                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6292                         cntl |= CURSOR_MODE_DISABLE;
6293                 }
6294                 I915_WRITE(CURCNTR(pipe), cntl);
6295
6296                 intel_crtc->cursor_visible = visible;
6297         }
6298         /* and commit changes on next vblank */
6299         I915_WRITE(CURBASE(pipe), base);
6300 }
6301
6302 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6303 {
6304         struct drm_device *dev = crtc->dev;
6305         struct drm_i915_private *dev_priv = dev->dev_private;
6306         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6307         int pipe = intel_crtc->pipe;
6308         bool visible = base != 0;
6309
6310         if (intel_crtc->cursor_visible != visible) {
6311                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6312                 if (base) {
6313                         cntl &= ~CURSOR_MODE;
6314                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6315                 } else {
6316                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6317                         cntl |= CURSOR_MODE_DISABLE;
6318                 }
6319                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6320
6321                 intel_crtc->cursor_visible = visible;
6322         }
6323         /* and commit changes on next vblank */
6324         I915_WRITE(CURBASE_IVB(pipe), base);
6325 }
6326
6327 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6328 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6329                                      bool on)
6330 {
6331         struct drm_device *dev = crtc->dev;
6332         struct drm_i915_private *dev_priv = dev->dev_private;
6333         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6334         int pipe = intel_crtc->pipe;
6335         int x = intel_crtc->cursor_x;
6336         int y = intel_crtc->cursor_y;
6337         u32 base, pos;
6338         bool visible;
6339
6340         pos = 0;
6341
6342         if (on && crtc->enabled && crtc->fb) {
6343                 base = intel_crtc->cursor_addr;
6344                 if (x > (int) crtc->fb->width)
6345                         base = 0;
6346
6347                 if (y > (int) crtc->fb->height)
6348                         base = 0;
6349         } else
6350                 base = 0;
6351
6352         if (x < 0) {
6353                 if (x + intel_crtc->cursor_width < 0)
6354                         base = 0;
6355
6356                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6357                 x = -x;
6358         }
6359         pos |= x << CURSOR_X_SHIFT;
6360
6361         if (y < 0) {
6362                 if (y + intel_crtc->cursor_height < 0)
6363                         base = 0;
6364
6365                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6366                 y = -y;
6367         }
6368         pos |= y << CURSOR_Y_SHIFT;
6369
6370         visible = base != 0;
6371         if (!visible && !intel_crtc->cursor_visible)
6372                 return;
6373
6374         if (IS_IVYBRIDGE(dev)) {
6375                 I915_WRITE(CURPOS_IVB(pipe), pos);
6376                 ivb_update_cursor(crtc, base);
6377         } else {
6378                 I915_WRITE(CURPOS(pipe), pos);
6379                 if (IS_845G(dev) || IS_I865G(dev))
6380                         i845_update_cursor(crtc, base);
6381                 else
6382                         i9xx_update_cursor(crtc, base);
6383         }
6384
6385         if (visible)
6386                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6387 }
6388
6389 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6390                                  struct drm_file *file,
6391                                  uint32_t handle,
6392                                  uint32_t width, uint32_t height)
6393 {
6394         struct drm_device *dev = crtc->dev;
6395         struct drm_i915_private *dev_priv = dev->dev_private;
6396         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6397         struct drm_i915_gem_object *obj;
6398         uint32_t addr;
6399         int ret;
6400
6401         DRM_DEBUG_KMS("\n");
6402
6403         /* if we want to turn off the cursor ignore width and height */
6404         if (!handle) {
6405                 DRM_DEBUG_KMS("cursor off\n");
6406                 addr = 0;
6407                 obj = NULL;
6408                 mutex_lock(&dev->struct_mutex);
6409                 goto finish;
6410         }
6411
6412         /* Currently we only support 64x64 cursors */
6413         if (width != 64 || height != 64) {
6414                 DRM_ERROR("we currently only support 64x64 cursors\n");
6415                 return -EINVAL;
6416         }
6417
6418         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6419         if (&obj->base == NULL)
6420                 return -ENOENT;
6421
6422         if (obj->base.size < width * height * 4) {
6423                 DRM_ERROR("buffer is to small\n");
6424                 ret = -ENOMEM;
6425                 goto fail;
6426         }
6427
6428         /* we only need to pin inside GTT if cursor is non-phy */
6429         mutex_lock(&dev->struct_mutex);
6430         if (!dev_priv->info->cursor_needs_physical) {
6431                 if (obj->tiling_mode) {
6432                         DRM_ERROR("cursor cannot be tiled\n");
6433                         ret = -EINVAL;
6434                         goto fail_locked;
6435                 }
6436
6437                 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6438                 if (ret) {
6439                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6440                         goto fail_locked;
6441                 }
6442
6443                 ret = i915_gem_object_put_fence(obj);
6444                 if (ret) {
6445                         DRM_ERROR("failed to release fence for cursor");
6446                         goto fail_unpin;
6447                 }
6448
6449                 addr = obj->gtt_offset;
6450         } else {
6451                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6452                 ret = i915_gem_attach_phys_object(dev, obj,
6453                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6454                                                   align);
6455                 if (ret) {
6456                         DRM_ERROR("failed to attach phys object\n");
6457                         goto fail_locked;
6458                 }
6459                 addr = obj->phys_obj->handle->busaddr;
6460         }
6461
6462         if (IS_GEN2(dev))
6463                 I915_WRITE(CURSIZE, (height << 12) | width);
6464
6465  finish:
6466         if (intel_crtc->cursor_bo) {
6467                 if (dev_priv->info->cursor_needs_physical) {
6468                         if (intel_crtc->cursor_bo != obj)
6469                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6470                 } else
6471                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6472                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6473         }
6474
6475         mutex_unlock(&dev->struct_mutex);
6476
6477         intel_crtc->cursor_addr = addr;
6478         intel_crtc->cursor_bo = obj;
6479         intel_crtc->cursor_width = width;
6480         intel_crtc->cursor_height = height;
6481
6482         intel_crtc_update_cursor(crtc, true);
6483
6484         return 0;
6485 fail_unpin:
6486         i915_gem_object_unpin(obj);
6487 fail_locked:
6488         mutex_unlock(&dev->struct_mutex);
6489 fail:
6490         drm_gem_object_unreference_unlocked(&obj->base);
6491         return ret;
6492 }
6493
6494 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6495 {
6496         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6497
6498         intel_crtc->cursor_x = x;
6499         intel_crtc->cursor_y = y;
6500
6501         intel_crtc_update_cursor(crtc, true);
6502
6503         return 0;
6504 }
6505
6506 /** Sets the color ramps on behalf of RandR */
6507 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6508                                  u16 blue, int regno)
6509 {
6510         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6511
6512         intel_crtc->lut_r[regno] = red >> 8;
6513         intel_crtc->lut_g[regno] = green >> 8;
6514         intel_crtc->lut_b[regno] = blue >> 8;
6515 }
6516
6517 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6518                              u16 *blue, int regno)
6519 {
6520         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6521
6522         *red = intel_crtc->lut_r[regno] << 8;
6523         *green = intel_crtc->lut_g[regno] << 8;
6524         *blue = intel_crtc->lut_b[regno] << 8;
6525 }
6526
6527 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6528                                  u16 *blue, uint32_t start, uint32_t size)
6529 {
6530         int end = (start + size > 256) ? 256 : start + size, i;
6531         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6532
6533         for (i = start; i < end; i++) {
6534                 intel_crtc->lut_r[i] = red[i] >> 8;
6535                 intel_crtc->lut_g[i] = green[i] >> 8;
6536                 intel_crtc->lut_b[i] = blue[i] >> 8;
6537         }
6538
6539         intel_crtc_load_lut(crtc);
6540 }
6541
6542 /**
6543  * Get a pipe with a simple mode set on it for doing load-based monitor
6544  * detection.
6545  *
6546  * It will be up to the load-detect code to adjust the pipe as appropriate for
6547  * its requirements.  The pipe will be connected to no other encoders.
6548  *
6549  * Currently this code will only succeed if there is a pipe with no encoders
6550  * configured for it.  In the future, it could choose to temporarily disable
6551  * some outputs to free up a pipe for its use.
6552  *
6553  * \return crtc, or NULL if no pipes are available.
6554  */
6555
6556 /* VESA 640x480x72Hz mode to set on the pipe */
6557 static struct drm_display_mode load_detect_mode = {
6558         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6559                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6560 };
6561
6562 static struct drm_framebuffer *
6563 intel_framebuffer_create(struct drm_device *dev,
6564                          struct drm_mode_fb_cmd2 *mode_cmd,
6565                          struct drm_i915_gem_object *obj)
6566 {
6567         struct intel_framebuffer *intel_fb;
6568         int ret;
6569
6570         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6571         if (!intel_fb) {
6572                 drm_gem_object_unreference_unlocked(&obj->base);
6573                 return ERR_PTR(-ENOMEM);
6574         }
6575
6576         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6577         if (ret) {
6578                 drm_gem_object_unreference_unlocked(&obj->base);
6579                 kfree(intel_fb);
6580                 return ERR_PTR(ret);
6581         }
6582
6583         return &intel_fb->base;
6584 }
6585
6586 static u32
6587 intel_framebuffer_pitch_for_width(int width, int bpp)
6588 {
6589         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6590         return ALIGN(pitch, 64);
6591 }
6592
6593 static u32
6594 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6595 {
6596         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6597         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6598 }
6599
6600 static struct drm_framebuffer *
6601 intel_framebuffer_create_for_mode(struct drm_device *dev,
6602                                   struct drm_display_mode *mode,
6603                                   int depth, int bpp)
6604 {
6605         struct drm_i915_gem_object *obj;
6606         struct drm_mode_fb_cmd2 mode_cmd;
6607
6608         obj = i915_gem_alloc_object(dev,
6609                                     intel_framebuffer_size_for_mode(mode, bpp));
6610         if (obj == NULL)
6611                 return ERR_PTR(-ENOMEM);
6612
6613         mode_cmd.width = mode->hdisplay;
6614         mode_cmd.height = mode->vdisplay;
6615         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6616                                                                 bpp);
6617         mode_cmd.pixel_format = 0;
6618
6619         return intel_framebuffer_create(dev, &mode_cmd, obj);
6620 }
6621
6622 static struct drm_framebuffer *
6623 mode_fits_in_fbdev(struct drm_device *dev,
6624                    struct drm_display_mode *mode)
6625 {
6626         struct drm_i915_private *dev_priv = dev->dev_private;
6627         struct drm_i915_gem_object *obj;
6628         struct drm_framebuffer *fb;
6629
6630         if (dev_priv->fbdev == NULL)
6631                 return NULL;
6632
6633         obj = dev_priv->fbdev->ifb.obj;
6634         if (obj == NULL)
6635                 return NULL;
6636
6637         fb = &dev_priv->fbdev->ifb.base;
6638         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6639                                                                fb->bits_per_pixel))
6640                 return NULL;
6641
6642         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6643                 return NULL;
6644
6645         return fb;
6646 }
6647
6648 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6649                                 struct drm_connector *connector,
6650                                 struct drm_display_mode *mode,
6651                                 struct intel_load_detect_pipe *old)
6652 {
6653         struct intel_crtc *intel_crtc;
6654         struct drm_crtc *possible_crtc;
6655         struct drm_encoder *encoder = &intel_encoder->base;
6656         struct drm_crtc *crtc = NULL;
6657         struct drm_device *dev = encoder->dev;
6658         struct drm_framebuffer *old_fb;
6659         int i = -1;
6660
6661         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6662                       connector->base.id, drm_get_connector_name(connector),
6663                       encoder->base.id, drm_get_encoder_name(encoder));
6664
6665         /*
6666          * Algorithm gets a little messy:
6667          *
6668          *   - if the connector already has an assigned crtc, use it (but make
6669          *     sure it's on first)
6670          *
6671          *   - try to find the first unused crtc that can drive this connector,
6672          *     and use that if we find one
6673          */
6674
6675         /* See if we already have a CRTC for this connector */
6676         if (encoder->crtc) {
6677                 crtc = encoder->crtc;
6678
6679                 intel_crtc = to_intel_crtc(crtc);
6680                 old->dpms_mode = intel_crtc->dpms_mode;
6681                 old->load_detect_temp = false;
6682
6683                 /* Make sure the crtc and connector are running */
6684                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6685                         struct drm_encoder_helper_funcs *encoder_funcs;
6686                         struct drm_crtc_helper_funcs *crtc_funcs;
6687
6688                         crtc_funcs = crtc->helper_private;
6689                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6690
6691                         encoder_funcs = encoder->helper_private;
6692                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6693                 }
6694
6695                 return true;
6696         }
6697
6698         /* Find an unused one (if possible) */
6699         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6700                 i++;
6701                 if (!(encoder->possible_crtcs & (1 << i)))
6702                         continue;
6703                 if (!possible_crtc->enabled) {
6704                         crtc = possible_crtc;
6705                         break;
6706                 }
6707         }
6708
6709         /*
6710          * If we didn't find an unused CRTC, don't use any.
6711          */
6712         if (!crtc) {
6713                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6714                 return false;
6715         }
6716
6717         encoder->crtc = crtc;
6718         connector->encoder = encoder;
6719
6720         intel_crtc = to_intel_crtc(crtc);
6721         old->dpms_mode = intel_crtc->dpms_mode;
6722         old->load_detect_temp = true;
6723         old->release_fb = NULL;
6724
6725         if (!mode)
6726                 mode = &load_detect_mode;
6727
6728         old_fb = crtc->fb;
6729
6730         /* We need a framebuffer large enough to accommodate all accesses
6731          * that the plane may generate whilst we perform load detection.
6732          * We can not rely on the fbcon either being present (we get called
6733          * during its initialisation to detect all boot displays, or it may
6734          * not even exist) or that it is large enough to satisfy the
6735          * requested mode.
6736          */
6737         crtc->fb = mode_fits_in_fbdev(dev, mode);
6738         if (crtc->fb == NULL) {
6739                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6740                 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6741                 old->release_fb = crtc->fb;
6742         } else
6743                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6744         if (IS_ERR(crtc->fb)) {
6745                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6746                 crtc->fb = old_fb;
6747                 return false;
6748         }
6749
6750         if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6751                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6752                 if (old->release_fb)
6753                         old->release_fb->funcs->destroy(old->release_fb);
6754                 crtc->fb = old_fb;
6755                 return false;
6756         }
6757
6758         /* let the connector get through one full cycle before testing */
6759         intel_wait_for_vblank(dev, intel_crtc->pipe);
6760
6761         return true;
6762 }
6763
6764 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6765                                     struct drm_connector *connector,
6766                                     struct intel_load_detect_pipe *old)
6767 {
6768         struct drm_encoder *encoder = &intel_encoder->base;
6769         struct drm_device *dev = encoder->dev;
6770         struct drm_crtc *crtc = encoder->crtc;
6771         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6772         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6773
6774         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6775                       connector->base.id, drm_get_connector_name(connector),
6776                       encoder->base.id, drm_get_encoder_name(encoder));
6777
6778         if (old->load_detect_temp) {
6779                 connector->encoder = NULL;
6780                 drm_helper_disable_unused_functions(dev);
6781
6782                 if (old->release_fb)
6783                         old->release_fb->funcs->destroy(old->release_fb);
6784
6785                 return;
6786         }
6787
6788         /* Switch crtc and encoder back off if necessary */
6789         if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6790                 encoder_funcs->dpms(encoder, old->dpms_mode);
6791                 crtc_funcs->dpms(crtc, old->dpms_mode);
6792         }
6793 }
6794
6795 /* Returns the clock of the currently programmed mode of the given pipe. */
6796 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6797 {
6798         struct drm_i915_private *dev_priv = dev->dev_private;
6799         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6800         int pipe = intel_crtc->pipe;
6801         u32 dpll = I915_READ(DPLL(pipe));
6802         u32 fp;
6803         intel_clock_t clock;
6804
6805         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6806                 fp = I915_READ(FP0(pipe));
6807         else
6808                 fp = I915_READ(FP1(pipe));
6809
6810         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6811         if (IS_PINEVIEW(dev)) {
6812                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6813                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6814         } else {
6815                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6816                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6817         }
6818
6819         if (!IS_GEN2(dev)) {
6820                 if (IS_PINEVIEW(dev))
6821                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6822                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6823                 else
6824                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6825                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6826
6827                 switch (dpll & DPLL_MODE_MASK) {
6828                 case DPLLB_MODE_DAC_SERIAL:
6829                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6830                                 5 : 10;
6831                         break;
6832                 case DPLLB_MODE_LVDS:
6833                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6834                                 7 : 14;
6835                         break;
6836                 default:
6837                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6838                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6839                         return 0;
6840                 }
6841
6842                 /* XXX: Handle the 100Mhz refclk */
6843                 intel_clock(dev, 96000, &clock);
6844         } else {
6845                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6846
6847                 if (is_lvds) {
6848                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6849                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6850                         clock.p2 = 14;
6851
6852                         if ((dpll & PLL_REF_INPUT_MASK) ==
6853                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6854                                 /* XXX: might not be 66MHz */
6855                                 intel_clock(dev, 66000, &clock);
6856                         } else
6857                                 intel_clock(dev, 48000, &clock);
6858                 } else {
6859                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6860                                 clock.p1 = 2;
6861                         else {
6862                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6863                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6864                         }
6865                         if (dpll & PLL_P2_DIVIDE_BY_4)
6866                                 clock.p2 = 4;
6867                         else
6868                                 clock.p2 = 2;
6869
6870                         intel_clock(dev, 48000, &clock);
6871                 }
6872         }
6873
6874         /* XXX: It would be nice to validate the clocks, but we can't reuse
6875          * i830PllIsValid() because it relies on the xf86_config connector
6876          * configuration being accurate, which it isn't necessarily.
6877          */
6878
6879         return clock.dot;
6880 }
6881
6882 /** Returns the currently programmed mode of the given pipe. */
6883 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6884                                              struct drm_crtc *crtc)
6885 {
6886         struct drm_i915_private *dev_priv = dev->dev_private;
6887         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6888         int pipe = intel_crtc->pipe;
6889         struct drm_display_mode *mode;
6890         int htot = I915_READ(HTOTAL(pipe));
6891         int hsync = I915_READ(HSYNC(pipe));
6892         int vtot = I915_READ(VTOTAL(pipe));
6893         int vsync = I915_READ(VSYNC(pipe));
6894
6895         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6896         if (!mode)
6897                 return NULL;
6898
6899         mode->clock = intel_crtc_clock_get(dev, crtc);
6900         mode->hdisplay = (htot & 0xffff) + 1;
6901         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6902         mode->hsync_start = (hsync & 0xffff) + 1;
6903         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6904         mode->vdisplay = (vtot & 0xffff) + 1;
6905         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6906         mode->vsync_start = (vsync & 0xffff) + 1;
6907         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6908
6909         drm_mode_set_name(mode);
6910         drm_mode_set_crtcinfo(mode, 0);
6911
6912         return mode;
6913 }
6914
6915 #define GPU_IDLE_TIMEOUT 500 /* ms */
6916
6917 /* When this timer fires, we've been idle for awhile */
6918 static void intel_gpu_idle_timer(unsigned long arg)
6919 {
6920         struct drm_device *dev = (struct drm_device *)arg;
6921         drm_i915_private_t *dev_priv = dev->dev_private;
6922
6923         if (!list_empty(&dev_priv->mm.active_list)) {
6924                 /* Still processing requests, so just re-arm the timer. */
6925                 mod_timer(&dev_priv->idle_timer, jiffies +
6926                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6927                 return;
6928         }
6929
6930         dev_priv->busy = false;
6931         queue_work(dev_priv->wq, &dev_priv->idle_work);
6932 }
6933
6934 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6935
6936 static void intel_crtc_idle_timer(unsigned long arg)
6937 {
6938         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6939         struct drm_crtc *crtc = &intel_crtc->base;
6940         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
6941         struct intel_framebuffer *intel_fb;
6942
6943         intel_fb = to_intel_framebuffer(crtc->fb);
6944         if (intel_fb && intel_fb->obj->active) {
6945                 /* The framebuffer is still being accessed by the GPU. */
6946                 mod_timer(&intel_crtc->idle_timer, jiffies +
6947                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6948                 return;
6949         }
6950
6951         intel_crtc->busy = false;
6952         queue_work(dev_priv->wq, &dev_priv->idle_work);
6953 }
6954
6955 static void intel_increase_pllclock(struct drm_crtc *crtc)
6956 {
6957         struct drm_device *dev = crtc->dev;
6958         drm_i915_private_t *dev_priv = dev->dev_private;
6959         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6960         int pipe = intel_crtc->pipe;
6961         int dpll_reg = DPLL(pipe);
6962         int dpll;
6963
6964         if (HAS_PCH_SPLIT(dev))
6965                 return;
6966
6967         if (!dev_priv->lvds_downclock_avail)
6968                 return;
6969
6970         dpll = I915_READ(dpll_reg);
6971         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6972                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6973
6974                 /* Unlock panel regs */
6975                 I915_WRITE(PP_CONTROL,
6976                            I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
6977
6978                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6979                 I915_WRITE(dpll_reg, dpll);
6980                 intel_wait_for_vblank(dev, pipe);
6981
6982                 dpll = I915_READ(dpll_reg);
6983                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6984                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6985
6986                 /* ...and lock them again */
6987                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6988         }
6989
6990         /* Schedule downclock */
6991         mod_timer(&intel_crtc->idle_timer, jiffies +
6992                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6993 }
6994
6995 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6996 {
6997         struct drm_device *dev = crtc->dev;
6998         drm_i915_private_t *dev_priv = dev->dev_private;
6999         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7000         int pipe = intel_crtc->pipe;
7001         int dpll_reg = DPLL(pipe);
7002         int dpll = I915_READ(dpll_reg);
7003
7004         if (HAS_PCH_SPLIT(dev))
7005                 return;
7006
7007         if (!dev_priv->lvds_downclock_avail)
7008                 return;
7009
7010         /*
7011          * Since this is called by a timer, we should never get here in
7012          * the manual case.
7013          */
7014         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7015                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7016
7017                 /* Unlock panel regs */
7018                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
7019                            PANEL_UNLOCK_REGS);
7020
7021                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7022                 I915_WRITE(dpll_reg, dpll);
7023                 intel_wait_for_vblank(dev, pipe);
7024                 dpll = I915_READ(dpll_reg);
7025                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7026                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7027
7028                 /* ...and lock them again */
7029                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
7030         }
7031
7032 }
7033
7034 /**
7035  * intel_idle_update - adjust clocks for idleness
7036  * @work: work struct
7037  *
7038  * Either the GPU or display (or both) went idle.  Check the busy status
7039  * here and adjust the CRTC and GPU clocks as necessary.
7040  */
7041 static void intel_idle_update(struct work_struct *work)
7042 {
7043         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
7044                                                     idle_work);
7045         struct drm_device *dev = dev_priv->dev;
7046         struct drm_crtc *crtc;
7047         struct intel_crtc *intel_crtc;
7048
7049         if (!i915_powersave)
7050                 return;
7051
7052         mutex_lock(&dev->struct_mutex);
7053
7054         i915_update_gfx_val(dev_priv);
7055
7056         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7057                 /* Skip inactive CRTCs */
7058                 if (!crtc->fb)
7059                         continue;
7060
7061                 intel_crtc = to_intel_crtc(crtc);
7062                 if (!intel_crtc->busy)
7063                         intel_decrease_pllclock(crtc);
7064         }
7065
7066
7067         mutex_unlock(&dev->struct_mutex);
7068 }
7069
7070 /**
7071  * intel_mark_busy - mark the GPU and possibly the display busy
7072  * @dev: drm device
7073  * @obj: object we're operating on
7074  *
7075  * Callers can use this function to indicate that the GPU is busy processing
7076  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
7077  * buffer), we'll also mark the display as busy, so we know to increase its
7078  * clock frequency.
7079  */
7080 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
7081 {
7082         drm_i915_private_t *dev_priv = dev->dev_private;
7083         struct drm_crtc *crtc = NULL;
7084         struct intel_framebuffer *intel_fb;
7085         struct intel_crtc *intel_crtc;
7086
7087         if (!drm_core_check_feature(dev, DRIVER_MODESET))
7088                 return;
7089
7090         if (!dev_priv->busy)
7091                 dev_priv->busy = true;
7092         else
7093                 mod_timer(&dev_priv->idle_timer, jiffies +
7094                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
7095
7096         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7097                 if (!crtc->fb)
7098                         continue;
7099
7100                 intel_crtc = to_intel_crtc(crtc);
7101                 intel_fb = to_intel_framebuffer(crtc->fb);
7102                 if (intel_fb->obj == obj) {
7103                         if (!intel_crtc->busy) {
7104                                 /* Non-busy -> busy, upclock */
7105                                 intel_increase_pllclock(crtc);
7106                                 intel_crtc->busy = true;
7107                         } else {
7108                                 /* Busy -> busy, put off timer */
7109                                 mod_timer(&intel_crtc->idle_timer, jiffies +
7110                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7111                         }
7112                 }
7113         }
7114 }
7115
7116 static void intel_crtc_destroy(struct drm_crtc *crtc)
7117 {
7118         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7119         struct drm_device *dev = crtc->dev;
7120         struct intel_unpin_work *work;
7121         unsigned long flags;
7122
7123         spin_lock_irqsave(&dev->event_lock, flags);
7124         work = intel_crtc->unpin_work;
7125         intel_crtc->unpin_work = NULL;
7126         spin_unlock_irqrestore(&dev->event_lock, flags);
7127
7128         if (work) {
7129                 cancel_work_sync(&work->work);
7130                 kfree(work);
7131         }
7132
7133         drm_crtc_cleanup(crtc);
7134
7135         kfree(intel_crtc);
7136 }
7137
7138 static void intel_unpin_work_fn(struct work_struct *__work)
7139 {
7140         struct intel_unpin_work *work =
7141                 container_of(__work, struct intel_unpin_work, work);
7142
7143         mutex_lock(&work->dev->struct_mutex);
7144         i915_gem_object_unpin(work->old_fb_obj);
7145         drm_gem_object_unreference(&work->pending_flip_obj->base);
7146         drm_gem_object_unreference(&work->old_fb_obj->base);
7147
7148         intel_update_fbc(work->dev);
7149         mutex_unlock(&work->dev->struct_mutex);
7150         kfree(work);
7151 }
7152
7153 static void do_intel_finish_page_flip(struct drm_device *dev,
7154                                       struct drm_crtc *crtc)
7155 {
7156         drm_i915_private_t *dev_priv = dev->dev_private;
7157         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7158         struct intel_unpin_work *work;
7159         struct drm_i915_gem_object *obj;
7160         struct drm_pending_vblank_event *e;
7161         struct timeval tnow, tvbl;
7162         unsigned long flags;
7163
7164         /* Ignore early vblank irqs */
7165         if (intel_crtc == NULL)
7166                 return;
7167
7168         do_gettimeofday(&tnow);
7169
7170         spin_lock_irqsave(&dev->event_lock, flags);
7171         work = intel_crtc->unpin_work;
7172         if (work == NULL || !work->pending) {
7173                 spin_unlock_irqrestore(&dev->event_lock, flags);
7174                 return;
7175         }
7176
7177         intel_crtc->unpin_work = NULL;
7178
7179         if (work->event) {
7180                 e = work->event;
7181                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
7182
7183                 /* Called before vblank count and timestamps have
7184                  * been updated for the vblank interval of flip
7185                  * completion? Need to increment vblank count and
7186                  * add one videorefresh duration to returned timestamp
7187                  * to account for this. We assume this happened if we
7188                  * get called over 0.9 frame durations after the last
7189                  * timestamped vblank.
7190                  *
7191                  * This calculation can not be used with vrefresh rates
7192                  * below 5Hz (10Hz to be on the safe side) without
7193                  * promoting to 64 integers.
7194                  */
7195                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
7196                     9 * crtc->framedur_ns) {
7197                         e->event.sequence++;
7198                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
7199                                              crtc->framedur_ns);
7200                 }
7201
7202                 e->event.tv_sec = tvbl.tv_sec;
7203                 e->event.tv_usec = tvbl.tv_usec;
7204
7205                 list_add_tail(&e->base.link,
7206                               &e->base.file_priv->event_list);
7207                 wake_up_interruptible(&e->base.file_priv->event_wait);
7208         }
7209
7210         drm_vblank_put(dev, intel_crtc->pipe);
7211
7212         spin_unlock_irqrestore(&dev->event_lock, flags);
7213
7214         obj = work->old_fb_obj;
7215
7216         atomic_clear_mask(1 << intel_crtc->plane,
7217                           &obj->pending_flip.counter);
7218         if (atomic_read(&obj->pending_flip) == 0)
7219                 wake_up(&dev_priv->pending_flip_queue);
7220
7221         schedule_work(&work->work);
7222
7223         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7224 }
7225
7226 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7227 {
7228         drm_i915_private_t *dev_priv = dev->dev_private;
7229         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7230
7231         do_intel_finish_page_flip(dev, crtc);
7232 }
7233
7234 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7235 {
7236         drm_i915_private_t *dev_priv = dev->dev_private;
7237         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7238
7239         do_intel_finish_page_flip(dev, crtc);
7240 }
7241
7242 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7243 {
7244         drm_i915_private_t *dev_priv = dev->dev_private;
7245         struct intel_crtc *intel_crtc =
7246                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7247         unsigned long flags;
7248
7249         spin_lock_irqsave(&dev->event_lock, flags);
7250         if (intel_crtc->unpin_work) {
7251                 if ((++intel_crtc->unpin_work->pending) > 1)
7252                         DRM_ERROR("Prepared flip multiple times\n");
7253         } else {
7254                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7255         }
7256         spin_unlock_irqrestore(&dev->event_lock, flags);
7257 }
7258
7259 static int intel_gen2_queue_flip(struct drm_device *dev,
7260                                  struct drm_crtc *crtc,
7261                                  struct drm_framebuffer *fb,
7262                                  struct drm_i915_gem_object *obj)
7263 {
7264         struct drm_i915_private *dev_priv = dev->dev_private;
7265         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7266         unsigned long offset;
7267         u32 flip_mask;
7268         int ret;
7269
7270         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7271         if (ret)
7272                 goto out;
7273
7274         /* Offset into the new buffer for cases of shared fbs between CRTCs */
7275         offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7276
7277         ret = BEGIN_LP_RING(6);
7278         if (ret)
7279                 goto out;
7280
7281         /* Can't queue multiple flips, so wait for the previous
7282          * one to finish before executing the next.
7283          */
7284         if (intel_crtc->plane)
7285                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7286         else
7287                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7288         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7289         OUT_RING(MI_NOOP);
7290         OUT_RING(MI_DISPLAY_FLIP |
7291                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7292         OUT_RING(fb->pitches[0]);
7293         OUT_RING(obj->gtt_offset + offset);
7294         OUT_RING(MI_NOOP);
7295         ADVANCE_LP_RING();
7296 out:
7297         return ret;
7298 }
7299
7300 static int intel_gen3_queue_flip(struct drm_device *dev,
7301                                  struct drm_crtc *crtc,
7302                                  struct drm_framebuffer *fb,
7303                                  struct drm_i915_gem_object *obj)
7304 {
7305         struct drm_i915_private *dev_priv = dev->dev_private;
7306         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7307         unsigned long offset;
7308         u32 flip_mask;
7309         int ret;
7310
7311         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7312         if (ret)
7313                 goto out;
7314
7315         /* Offset into the new buffer for cases of shared fbs between CRTCs */
7316         offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7317
7318         ret = BEGIN_LP_RING(6);
7319         if (ret)
7320                 goto out;
7321
7322         if (intel_crtc->plane)
7323                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7324         else
7325                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7326         OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7327         OUT_RING(MI_NOOP);
7328         OUT_RING(MI_DISPLAY_FLIP_I915 |
7329                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7330         OUT_RING(fb->pitches[0]);
7331         OUT_RING(obj->gtt_offset + offset);
7332         OUT_RING(MI_NOOP);
7333
7334         ADVANCE_LP_RING();
7335 out:
7336         return ret;
7337 }
7338
7339 static int intel_gen4_queue_flip(struct drm_device *dev,
7340                                  struct drm_crtc *crtc,
7341                                  struct drm_framebuffer *fb,
7342                                  struct drm_i915_gem_object *obj)
7343 {
7344         struct drm_i915_private *dev_priv = dev->dev_private;
7345         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7346         uint32_t pf, pipesrc;
7347         int ret;
7348
7349         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7350         if (ret)
7351                 goto out;
7352
7353         ret = BEGIN_LP_RING(4);
7354         if (ret)
7355                 goto out;
7356
7357         /* i965+ uses the linear or tiled offsets from the
7358          * Display Registers (which do not change across a page-flip)
7359          * so we need only reprogram the base address.
7360          */
7361         OUT_RING(MI_DISPLAY_FLIP |
7362                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7363         OUT_RING(fb->pitches[0]);
7364         OUT_RING(obj->gtt_offset | obj->tiling_mode);
7365
7366         /* XXX Enabling the panel-fitter across page-flip is so far
7367          * untested on non-native modes, so ignore it for now.
7368          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7369          */
7370         pf = 0;
7371         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7372         OUT_RING(pf | pipesrc);
7373         ADVANCE_LP_RING();
7374 out:
7375         return ret;
7376 }
7377
7378 static int intel_gen6_queue_flip(struct drm_device *dev,
7379                                  struct drm_crtc *crtc,
7380                                  struct drm_framebuffer *fb,
7381                                  struct drm_i915_gem_object *obj)
7382 {
7383         struct drm_i915_private *dev_priv = dev->dev_private;
7384         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7385         uint32_t pf, pipesrc;
7386         int ret;
7387
7388         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7389         if (ret)
7390                 goto out;
7391
7392         ret = BEGIN_LP_RING(4);
7393         if (ret)
7394                 goto out;
7395
7396         OUT_RING(MI_DISPLAY_FLIP |
7397                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7398         OUT_RING(fb->pitches[0] | obj->tiling_mode);
7399         OUT_RING(obj->gtt_offset);
7400
7401         pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7402         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7403         OUT_RING(pf | pipesrc);
7404         ADVANCE_LP_RING();
7405 out:
7406         return ret;
7407 }
7408
7409 /*
7410  * On gen7 we currently use the blit ring because (in early silicon at least)
7411  * the render ring doesn't give us interrpts for page flip completion, which
7412  * means clients will hang after the first flip is queued.  Fortunately the
7413  * blit ring generates interrupts properly, so use it instead.
7414  */
7415 static int intel_gen7_queue_flip(struct drm_device *dev,
7416                                  struct drm_crtc *crtc,
7417                                  struct drm_framebuffer *fb,
7418                                  struct drm_i915_gem_object *obj)
7419 {
7420         struct drm_i915_private *dev_priv = dev->dev_private;
7421         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7422         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7423         int ret;
7424
7425         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7426         if (ret)
7427                 goto out;
7428
7429         ret = intel_ring_begin(ring, 4);
7430         if (ret)
7431                 goto out;
7432
7433         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7434         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7435         intel_ring_emit(ring, (obj->gtt_offset));
7436         intel_ring_emit(ring, (MI_NOOP));
7437         intel_ring_advance(ring);
7438 out:
7439         return ret;
7440 }
7441
7442 static int intel_default_queue_flip(struct drm_device *dev,
7443                                     struct drm_crtc *crtc,
7444                                     struct drm_framebuffer *fb,
7445                                     struct drm_i915_gem_object *obj)
7446 {
7447         return -ENODEV;
7448 }
7449
7450 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7451                                 struct drm_framebuffer *fb,
7452                                 struct drm_pending_vblank_event *event)
7453 {
7454         struct drm_device *dev = crtc->dev;
7455         struct drm_i915_private *dev_priv = dev->dev_private;
7456         struct intel_framebuffer *intel_fb;
7457         struct drm_i915_gem_object *obj;
7458         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7459         struct intel_unpin_work *work;
7460         unsigned long flags;
7461         int ret;
7462
7463         work = kzalloc(sizeof *work, GFP_KERNEL);
7464         if (work == NULL)
7465                 return -ENOMEM;
7466
7467         work->event = event;
7468         work->dev = crtc->dev;
7469         intel_fb = to_intel_framebuffer(crtc->fb);
7470         work->old_fb_obj = intel_fb->obj;
7471         INIT_WORK(&work->work, intel_unpin_work_fn);
7472
7473         ret = drm_vblank_get(dev, intel_crtc->pipe);
7474         if (ret)
7475                 goto free_work;
7476
7477         /* We borrow the event spin lock for protecting unpin_work */
7478         spin_lock_irqsave(&dev->event_lock, flags);
7479         if (intel_crtc->unpin_work) {
7480                 spin_unlock_irqrestore(&dev->event_lock, flags);
7481                 kfree(work);
7482                 drm_vblank_put(dev, intel_crtc->pipe);
7483
7484                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7485                 return -EBUSY;
7486         }
7487         intel_crtc->unpin_work = work;
7488         spin_unlock_irqrestore(&dev->event_lock, flags);
7489
7490         intel_fb = to_intel_framebuffer(fb);
7491         obj = intel_fb->obj;
7492
7493         mutex_lock(&dev->struct_mutex);
7494
7495         /* Reference the objects for the scheduled work. */
7496         drm_gem_object_reference(&work->old_fb_obj->base);
7497         drm_gem_object_reference(&obj->base);
7498
7499         crtc->fb = fb;
7500
7501         work->pending_flip_obj = obj;
7502
7503         work->enable_stall_check = true;
7504
7505         /* Block clients from rendering to the new back buffer until
7506          * the flip occurs and the object is no longer visible.
7507          */
7508         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7509
7510         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7511         if (ret)
7512                 goto cleanup_pending;
7513
7514         intel_disable_fbc(dev);
7515         mutex_unlock(&dev->struct_mutex);
7516
7517         trace_i915_flip_request(intel_crtc->plane, obj);
7518
7519         return 0;
7520
7521 cleanup_pending:
7522         atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7523         drm_gem_object_unreference(&work->old_fb_obj->base);
7524         drm_gem_object_unreference(&obj->base);
7525         mutex_unlock(&dev->struct_mutex);
7526
7527         spin_lock_irqsave(&dev->event_lock, flags);
7528         intel_crtc->unpin_work = NULL;
7529         spin_unlock_irqrestore(&dev->event_lock, flags);
7530
7531         drm_vblank_put(dev, intel_crtc->pipe);
7532 free_work:
7533         kfree(work);
7534
7535         return ret;
7536 }
7537
7538 static void intel_sanitize_modesetting(struct drm_device *dev,
7539                                        int pipe, int plane)
7540 {
7541         struct drm_i915_private *dev_priv = dev->dev_private;
7542         u32 reg, val;
7543
7544         if (HAS_PCH_SPLIT(dev))
7545                 return;
7546
7547         /* Who knows what state these registers were left in by the BIOS or
7548          * grub?
7549          *
7550          * If we leave the registers in a conflicting state (e.g. with the
7551          * display plane reading from the other pipe than the one we intend
7552          * to use) then when we attempt to teardown the active mode, we will
7553          * not disable the pipes and planes in the correct order -- leaving
7554          * a plane reading from a disabled pipe and possibly leading to
7555          * undefined behaviour.
7556          */
7557
7558         reg = DSPCNTR(plane);
7559         val = I915_READ(reg);
7560
7561         if ((val & DISPLAY_PLANE_ENABLE) == 0)
7562                 return;
7563         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7564                 return;
7565
7566         /* This display plane is active and attached to the other CPU pipe. */
7567         pipe = !pipe;
7568
7569         /* Disable the plane and wait for it to stop reading from the pipe. */
7570         intel_disable_plane(dev_priv, plane, pipe);
7571         intel_disable_pipe(dev_priv, pipe);
7572 }
7573
7574 static void intel_crtc_reset(struct drm_crtc *crtc)
7575 {
7576         struct drm_device *dev = crtc->dev;
7577         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7578
7579         /* Reset flags back to the 'unknown' status so that they
7580          * will be correctly set on the initial modeset.
7581          */
7582         intel_crtc->dpms_mode = -1;
7583
7584         /* We need to fix up any BIOS configuration that conflicts with
7585          * our expectations.
7586          */
7587         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7588 }
7589
7590 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7591         .dpms = intel_crtc_dpms,
7592         .mode_fixup = intel_crtc_mode_fixup,
7593         .mode_set = intel_crtc_mode_set,
7594         .mode_set_base = intel_pipe_set_base,
7595         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7596         .load_lut = intel_crtc_load_lut,
7597         .disable = intel_crtc_disable,
7598 };
7599
7600 static const struct drm_crtc_funcs intel_crtc_funcs = {
7601         .reset = intel_crtc_reset,
7602         .cursor_set = intel_crtc_cursor_set,
7603         .cursor_move = intel_crtc_cursor_move,
7604         .gamma_set = intel_crtc_gamma_set,
7605         .set_config = drm_crtc_helper_set_config,
7606         .destroy = intel_crtc_destroy,
7607         .page_flip = intel_crtc_page_flip,
7608 };
7609
7610 static void intel_crtc_init(struct drm_device *dev, int pipe)
7611 {
7612         drm_i915_private_t *dev_priv = dev->dev_private;
7613         struct intel_crtc *intel_crtc;
7614         int i;
7615
7616         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7617         if (intel_crtc == NULL)
7618                 return;
7619
7620         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7621
7622         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7623         for (i = 0; i < 256; i++) {
7624                 intel_crtc->lut_r[i] = i;
7625                 intel_crtc->lut_g[i] = i;
7626                 intel_crtc->lut_b[i] = i;
7627         }
7628
7629         /* Swap pipes & planes for FBC on pre-965 */
7630         intel_crtc->pipe = pipe;
7631         intel_crtc->plane = pipe;
7632         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7633                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7634                 intel_crtc->plane = !pipe;
7635         }
7636
7637         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7638                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7639         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7640         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7641
7642         intel_crtc_reset(&intel_crtc->base);
7643         intel_crtc->active = true; /* force the pipe off on setup_init_config */
7644         intel_crtc->bpp = 24; /* default for pre-Ironlake */
7645
7646         if (HAS_PCH_SPLIT(dev)) {
7647                 if (pipe == 2 && IS_IVYBRIDGE(dev))
7648                         intel_crtc->no_pll = true;
7649                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7650                 intel_helper_funcs.commit = ironlake_crtc_commit;
7651         } else {
7652                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7653                 intel_helper_funcs.commit = i9xx_crtc_commit;
7654         }
7655
7656         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7657
7658         intel_crtc->busy = false;
7659
7660         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7661                     (unsigned long)intel_crtc);
7662 }
7663
7664 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7665                                 struct drm_file *file)
7666 {
7667         drm_i915_private_t *dev_priv = dev->dev_private;
7668         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7669         struct drm_mode_object *drmmode_obj;
7670         struct intel_crtc *crtc;
7671
7672         if (!dev_priv) {
7673                 DRM_ERROR("called with no initialization\n");
7674                 return -EINVAL;
7675         }
7676
7677         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7678                         DRM_MODE_OBJECT_CRTC);
7679
7680         if (!drmmode_obj) {
7681                 DRM_ERROR("no such CRTC id\n");
7682                 return -EINVAL;
7683         }
7684
7685         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7686         pipe_from_crtc_id->pipe = crtc->pipe;
7687
7688         return 0;
7689 }
7690
7691 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
7692 {
7693         struct intel_encoder *encoder;
7694         int index_mask = 0;
7695         int entry = 0;
7696
7697         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7698                 if (type_mask & encoder->clone_mask)
7699                         index_mask |= (1 << entry);
7700                 entry++;
7701         }
7702
7703         return index_mask;
7704 }
7705
7706 static bool has_edp_a(struct drm_device *dev)
7707 {
7708         struct drm_i915_private *dev_priv = dev->dev_private;
7709
7710         if (!IS_MOBILE(dev))
7711                 return false;
7712
7713         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7714                 return false;
7715
7716         if (IS_GEN5(dev) &&
7717             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7718                 return false;
7719
7720         return true;
7721 }
7722
7723 static void intel_setup_outputs(struct drm_device *dev)
7724 {
7725         struct drm_i915_private *dev_priv = dev->dev_private;
7726         struct intel_encoder *encoder;
7727         bool dpd_is_edp = false;
7728         bool has_lvds = false;
7729
7730         if (IS_MOBILE(dev) && !IS_I830(dev))
7731                 has_lvds = intel_lvds_init(dev);
7732         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7733                 /* disable the panel fitter on everything but LVDS */
7734                 I915_WRITE(PFIT_CONTROL, 0);
7735         }
7736
7737         if (HAS_PCH_SPLIT(dev)) {
7738                 dpd_is_edp = intel_dpd_is_edp(dev);
7739
7740                 if (has_edp_a(dev))
7741                         intel_dp_init(dev, DP_A);
7742
7743                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7744                         intel_dp_init(dev, PCH_DP_D);
7745         }
7746
7747         intel_crt_init(dev);
7748
7749         if (HAS_PCH_SPLIT(dev)) {
7750                 int found;
7751
7752                 if (I915_READ(HDMIB) & PORT_DETECTED) {
7753                         /* PCH SDVOB multiplex with HDMIB */
7754                         found = intel_sdvo_init(dev, PCH_SDVOB);
7755                         if (!found)
7756                                 intel_hdmi_init(dev, HDMIB);
7757                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7758                                 intel_dp_init(dev, PCH_DP_B);
7759                 }
7760
7761                 if (I915_READ(HDMIC) & PORT_DETECTED)
7762                         intel_hdmi_init(dev, HDMIC);
7763
7764                 if (I915_READ(HDMID) & PORT_DETECTED)
7765                         intel_hdmi_init(dev, HDMID);
7766
7767                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7768                         intel_dp_init(dev, PCH_DP_C);
7769
7770                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7771                         intel_dp_init(dev, PCH_DP_D);
7772
7773         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7774                 bool found = false;
7775
7776                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7777                         DRM_DEBUG_KMS("probing SDVOB\n");
7778                         found = intel_sdvo_init(dev, SDVOB);
7779                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7780                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7781                                 intel_hdmi_init(dev, SDVOB);
7782                         }
7783
7784                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7785                                 DRM_DEBUG_KMS("probing DP_B\n");
7786                                 intel_dp_init(dev, DP_B);
7787                         }
7788                 }
7789
7790                 /* Before G4X SDVOC doesn't have its own detect register */
7791
7792                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7793                         DRM_DEBUG_KMS("probing SDVOC\n");
7794                         found = intel_sdvo_init(dev, SDVOC);
7795                 }
7796
7797                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7798
7799                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7800                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7801                                 intel_hdmi_init(dev, SDVOC);
7802                         }
7803                         if (SUPPORTS_INTEGRATED_DP(dev)) {
7804                                 DRM_DEBUG_KMS("probing DP_C\n");
7805                                 intel_dp_init(dev, DP_C);
7806                         }
7807                 }
7808
7809                 if (SUPPORTS_INTEGRATED_DP(dev) &&
7810                     (I915_READ(DP_D) & DP_DETECTED)) {
7811                         DRM_DEBUG_KMS("probing DP_D\n");
7812                         intel_dp_init(dev, DP_D);
7813                 }
7814         } else if (IS_GEN2(dev))
7815                 intel_dvo_init(dev);
7816
7817         if (SUPPORTS_TV(dev))
7818                 intel_tv_init(dev);
7819
7820         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7821                 encoder->base.possible_crtcs = encoder->crtc_mask;
7822                 encoder->base.possible_clones =
7823                         intel_encoder_clones(dev, encoder->clone_mask);
7824         }
7825
7826         /* disable all the possible outputs/crtcs before entering KMS mode */
7827         drm_helper_disable_unused_functions(dev);
7828
7829         if (HAS_PCH_SPLIT(dev))
7830                 ironlake_init_pch_refclk(dev);
7831 }
7832
7833 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7834 {
7835         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7836
7837         drm_framebuffer_cleanup(fb);
7838         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7839
7840         kfree(intel_fb);
7841 }
7842
7843 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7844                                                 struct drm_file *file,
7845                                                 unsigned int *handle)
7846 {
7847         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7848         struct drm_i915_gem_object *obj = intel_fb->obj;
7849
7850         return drm_gem_handle_create(file, &obj->base, handle);
7851 }
7852
7853 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7854         .destroy = intel_user_framebuffer_destroy,
7855         .create_handle = intel_user_framebuffer_create_handle,
7856 };
7857
7858 int intel_framebuffer_init(struct drm_device *dev,
7859                            struct intel_framebuffer *intel_fb,
7860                            struct drm_mode_fb_cmd2 *mode_cmd,
7861                            struct drm_i915_gem_object *obj)
7862 {
7863         int ret;
7864
7865         if (obj->tiling_mode == I915_TILING_Y)
7866                 return -EINVAL;
7867
7868         if (mode_cmd->pitches[0] & 63)
7869                 return -EINVAL;
7870
7871         switch (mode_cmd->pixel_format) {
7872         case DRM_FORMAT_RGB332:
7873         case DRM_FORMAT_RGB565:
7874         case DRM_FORMAT_XRGB8888:
7875         case DRM_FORMAT_ARGB8888:
7876         case DRM_FORMAT_XRGB2101010:
7877         case DRM_FORMAT_ARGB2101010:
7878                 /* RGB formats are common across chipsets */
7879                 break;
7880         case DRM_FORMAT_YUYV:
7881         case DRM_FORMAT_UYVY:
7882         case DRM_FORMAT_YVYU:
7883         case DRM_FORMAT_VYUY:
7884                 break;
7885         default:
7886                 DRM_ERROR("unsupported pixel format\n");
7887                 return -EINVAL;
7888         }
7889
7890         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7891         if (ret) {
7892                 DRM_ERROR("framebuffer init failed %d\n", ret);
7893                 return ret;
7894         }
7895
7896         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7897         intel_fb->obj = obj;
7898         return 0;
7899 }
7900
7901 static struct drm_framebuffer *
7902 intel_user_framebuffer_create(struct drm_device *dev,
7903                               struct drm_file *filp,
7904                               struct drm_mode_fb_cmd2 *mode_cmd)
7905 {
7906         struct drm_i915_gem_object *obj;
7907
7908         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
7909                                                 mode_cmd->handles[0]));
7910         if (&obj->base == NULL)
7911                 return ERR_PTR(-ENOENT);
7912
7913         return intel_framebuffer_create(dev, mode_cmd, obj);
7914 }
7915
7916 static const struct drm_mode_config_funcs intel_mode_funcs = {
7917         .fb_create = intel_user_framebuffer_create,
7918         .output_poll_changed = intel_fb_output_poll_changed,
7919 };
7920
7921 static struct drm_i915_gem_object *
7922 intel_alloc_context_page(struct drm_device *dev)
7923 {
7924         struct drm_i915_gem_object *ctx;
7925         int ret;
7926
7927         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7928
7929         ctx = i915_gem_alloc_object(dev, 4096);
7930         if (!ctx) {
7931                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7932                 return NULL;
7933         }
7934
7935         ret = i915_gem_object_pin(ctx, 4096, true);
7936         if (ret) {
7937                 DRM_ERROR("failed to pin power context: %d\n", ret);
7938                 goto err_unref;
7939         }
7940
7941         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
7942         if (ret) {
7943                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7944                 goto err_unpin;
7945         }
7946
7947         return ctx;
7948
7949 err_unpin:
7950         i915_gem_object_unpin(ctx);
7951 err_unref:
7952         drm_gem_object_unreference(&ctx->base);
7953         mutex_unlock(&dev->struct_mutex);
7954         return NULL;
7955 }
7956
7957 bool ironlake_set_drps(struct drm_device *dev, u8 val)
7958 {
7959         struct drm_i915_private *dev_priv = dev->dev_private;
7960         u16 rgvswctl;
7961
7962         rgvswctl = I915_READ16(MEMSWCTL);
7963         if (rgvswctl & MEMCTL_CMD_STS) {
7964                 DRM_DEBUG("gpu busy, RCS change rejected\n");
7965                 return false; /* still busy with another command */
7966         }
7967
7968         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7969                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7970         I915_WRITE16(MEMSWCTL, rgvswctl);
7971         POSTING_READ16(MEMSWCTL);
7972
7973         rgvswctl |= MEMCTL_CMD_STS;
7974         I915_WRITE16(MEMSWCTL, rgvswctl);
7975
7976         return true;
7977 }
7978
7979 void ironlake_enable_drps(struct drm_device *dev)
7980 {
7981         struct drm_i915_private *dev_priv = dev->dev_private;
7982         u32 rgvmodectl = I915_READ(MEMMODECTL);
7983         u8 fmax, fmin, fstart, vstart;
7984
7985         /* Enable temp reporting */
7986         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7987         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7988
7989         /* 100ms RC evaluation intervals */
7990         I915_WRITE(RCUPEI, 100000);
7991         I915_WRITE(RCDNEI, 100000);
7992
7993         /* Set max/min thresholds to 90ms and 80ms respectively */
7994         I915_WRITE(RCBMAXAVG, 90000);
7995         I915_WRITE(RCBMINAVG, 80000);
7996
7997         I915_WRITE(MEMIHYST, 1);
7998
7999         /* Set up min, max, and cur for interrupt handling */
8000         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
8001         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
8002         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
8003                 MEMMODE_FSTART_SHIFT;
8004
8005         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
8006                 PXVFREQ_PX_SHIFT;
8007
8008         dev_priv->fmax = fmax; /* IPS callback will increase this */
8009         dev_priv->fstart = fstart;
8010
8011         dev_priv->max_delay = fstart;
8012         dev_priv->min_delay = fmin;
8013         dev_priv->cur_delay = fstart;
8014
8015         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
8016                          fmax, fmin, fstart);
8017
8018         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
8019
8020         /*
8021          * Interrupts will be enabled in ironlake_irq_postinstall
8022          */
8023
8024         I915_WRITE(VIDSTART, vstart);
8025         POSTING_READ(VIDSTART);
8026
8027         rgvmodectl |= MEMMODE_SWMODE_EN;
8028         I915_WRITE(MEMMODECTL, rgvmodectl);
8029
8030         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
8031                 DRM_ERROR("stuck trying to change perf mode\n");
8032         msleep(1);
8033
8034         ironlake_set_drps(dev, fstart);
8035
8036         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
8037                 I915_READ(0x112e0);
8038         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
8039         dev_priv->last_count2 = I915_READ(0x112f4);
8040         getrawmonotonic(&dev_priv->last_time2);
8041 }
8042
8043 void ironlake_disable_drps(struct drm_device *dev)
8044 {
8045         struct drm_i915_private *dev_priv = dev->dev_private;
8046         u16 rgvswctl = I915_READ16(MEMSWCTL);
8047
8048         /* Ack interrupts, disable EFC interrupt */
8049         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
8050         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
8051         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
8052         I915_WRITE(DEIIR, DE_PCU_EVENT);
8053         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
8054
8055         /* Go back to the starting frequency */
8056         ironlake_set_drps(dev, dev_priv->fstart);
8057         msleep(1);
8058         rgvswctl |= MEMCTL_CMD_STS;
8059         I915_WRITE(MEMSWCTL, rgvswctl);
8060         msleep(1);
8061
8062 }
8063
8064 void gen6_set_rps(struct drm_device *dev, u8 val)
8065 {
8066         struct drm_i915_private *dev_priv = dev->dev_private;
8067         u32 swreq;
8068
8069         swreq = (val & 0x3ff) << 25;
8070         I915_WRITE(GEN6_RPNSWREQ, swreq);
8071 }
8072
8073 void gen6_disable_rps(struct drm_device *dev)
8074 {
8075         struct drm_i915_private *dev_priv = dev->dev_private;
8076
8077         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
8078         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
8079         I915_WRITE(GEN6_PMIER, 0);
8080         /* Complete PM interrupt masking here doesn't race with the rps work
8081          * item again unmasking PM interrupts because that is using a different
8082          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
8083          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
8084
8085         spin_lock_irq(&dev_priv->rps_lock);
8086         dev_priv->pm_iir = 0;
8087         spin_unlock_irq(&dev_priv->rps_lock);
8088
8089         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
8090 }
8091
8092 static unsigned long intel_pxfreq(u32 vidfreq)
8093 {
8094         unsigned long freq;
8095         int div = (vidfreq & 0x3f0000) >> 16;
8096         int post = (vidfreq & 0x3000) >> 12;
8097         int pre = (vidfreq & 0x7);
8098
8099         if (!pre)
8100                 return 0;
8101
8102         freq = ((div * 133333) / ((1<<post) * pre));
8103
8104         return freq;
8105 }
8106
8107 void intel_init_emon(struct drm_device *dev)
8108 {
8109         struct drm_i915_private *dev_priv = dev->dev_private;
8110         u32 lcfuse;
8111         u8 pxw[16];
8112         int i;
8113
8114         /* Disable to program */
8115         I915_WRITE(ECR, 0);
8116         POSTING_READ(ECR);
8117
8118         /* Program energy weights for various events */
8119         I915_WRITE(SDEW, 0x15040d00);
8120         I915_WRITE(CSIEW0, 0x007f0000);
8121         I915_WRITE(CSIEW1, 0x1e220004);
8122         I915_WRITE(CSIEW2, 0x04000004);
8123
8124         for (i = 0; i < 5; i++)
8125                 I915_WRITE(PEW + (i * 4), 0);
8126         for (i = 0; i < 3; i++)
8127                 I915_WRITE(DEW + (i * 4), 0);
8128
8129         /* Program P-state weights to account for frequency power adjustment */
8130         for (i = 0; i < 16; i++) {
8131                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
8132                 unsigned long freq = intel_pxfreq(pxvidfreq);
8133                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8134                         PXVFREQ_PX_SHIFT;
8135                 unsigned long val;
8136
8137                 val = vid * vid;
8138                 val *= (freq / 1000);
8139                 val *= 255;
8140                 val /= (127*127*900);
8141                 if (val > 0xff)
8142                         DRM_ERROR("bad pxval: %ld\n", val);
8143                 pxw[i] = val;
8144         }
8145         /* Render standby states get 0 weight */
8146         pxw[14] = 0;
8147         pxw[15] = 0;
8148
8149         for (i = 0; i < 4; i++) {
8150                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8151                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8152                 I915_WRITE(PXW + (i * 4), val);
8153         }
8154
8155         /* Adjust magic regs to magic values (more experimental results) */
8156         I915_WRITE(OGW0, 0);
8157         I915_WRITE(OGW1, 0);
8158         I915_WRITE(EG0, 0x00007f00);
8159         I915_WRITE(EG1, 0x0000000e);
8160         I915_WRITE(EG2, 0x000e0000);
8161         I915_WRITE(EG3, 0x68000300);
8162         I915_WRITE(EG4, 0x42000000);
8163         I915_WRITE(EG5, 0x00140031);
8164         I915_WRITE(EG6, 0);
8165         I915_WRITE(EG7, 0);
8166
8167         for (i = 0; i < 8; i++)
8168                 I915_WRITE(PXWL + (i * 4), 0);
8169
8170         /* Enable PMON + select events */
8171         I915_WRITE(ECR, 0x80000019);
8172
8173         lcfuse = I915_READ(LCFUSE02);
8174
8175         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
8176 }
8177
8178 static bool intel_enable_rc6(struct drm_device *dev)
8179 {
8180         /*
8181          * Respect the kernel parameter if it is set
8182          */
8183         if (i915_enable_rc6 >= 0)
8184                 return i915_enable_rc6;
8185
8186         /*
8187          * Disable RC6 on Ironlake
8188          */
8189         if (INTEL_INFO(dev)->gen == 5)
8190                 return 0;
8191
8192         /*
8193          * Disable rc6 on Sandybridge
8194          */
8195         if (INTEL_INFO(dev)->gen == 6) {
8196                 DRM_DEBUG_DRIVER("Sandybridge: RC6 disabled\n");
8197                 return 0;
8198         }
8199         DRM_DEBUG_DRIVER("RC6 enabled\n");
8200         return 1;
8201 }
8202
8203 void gen6_enable_rps(struct drm_i915_private *dev_priv)
8204 {
8205         u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
8206         u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
8207         u32 pcu_mbox, rc6_mask = 0;
8208         int cur_freq, min_freq, max_freq;
8209         int i;
8210
8211         /* Here begins a magic sequence of register writes to enable
8212          * auto-downclocking.
8213          *
8214          * Perhaps there might be some value in exposing these to
8215          * userspace...
8216          */
8217         I915_WRITE(GEN6_RC_STATE, 0);
8218         mutex_lock(&dev_priv->dev->struct_mutex);
8219         gen6_gt_force_wake_get(dev_priv);
8220
8221         /* disable the counters and set deterministic thresholds */
8222         I915_WRITE(GEN6_RC_CONTROL, 0);
8223
8224         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
8225         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
8226         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
8227         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8228         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8229
8230         for (i = 0; i < I915_NUM_RINGS; i++)
8231                 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
8232
8233         I915_WRITE(GEN6_RC_SLEEP, 0);
8234         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
8235         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
8236         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
8237         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
8238
8239         if (intel_enable_rc6(dev_priv->dev))
8240                 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
8241                         GEN6_RC_CTL_RC6_ENABLE;
8242
8243         I915_WRITE(GEN6_RC_CONTROL,
8244                    rc6_mask |
8245                    GEN6_RC_CTL_EI_MODE(1) |
8246                    GEN6_RC_CTL_HW_ENABLE);
8247
8248         I915_WRITE(GEN6_RPNSWREQ,
8249                    GEN6_FREQUENCY(10) |
8250                    GEN6_OFFSET(0) |
8251                    GEN6_AGGRESSIVE_TURBO);
8252         I915_WRITE(GEN6_RC_VIDEO_FREQ,
8253                    GEN6_FREQUENCY(12));
8254
8255         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8256         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
8257                    18 << 24 |
8258                    6 << 16);
8259         I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
8260         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8261         I915_WRITE(GEN6_RP_UP_EI, 100000);
8262         I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8263         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8264         I915_WRITE(GEN6_RP_CONTROL,
8265                    GEN6_RP_MEDIA_TURBO |
8266                    GEN6_RP_MEDIA_HW_MODE |
8267                    GEN6_RP_MEDIA_IS_GFX |
8268                    GEN6_RP_ENABLE |
8269                    GEN6_RP_UP_BUSY_AVG |
8270                    GEN6_RP_DOWN_IDLE_CONT);
8271
8272         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8273                      500))
8274                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8275
8276         I915_WRITE(GEN6_PCODE_DATA, 0);
8277         I915_WRITE(GEN6_PCODE_MAILBOX,
8278                    GEN6_PCODE_READY |
8279                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8280         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8281                      500))
8282                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8283
8284         min_freq = (rp_state_cap & 0xff0000) >> 16;
8285         max_freq = rp_state_cap & 0xff;
8286         cur_freq = (gt_perf_status & 0xff00) >> 8;
8287
8288         /* Check for overclock support */
8289         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8290                      500))
8291                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8292         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
8293         pcu_mbox = I915_READ(GEN6_PCODE_DATA);
8294         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8295                      500))
8296                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8297         if (pcu_mbox & (1<<31)) { /* OC supported */
8298                 max_freq = pcu_mbox & 0xff;
8299                 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
8300         }
8301
8302         /* In units of 100MHz */
8303         dev_priv->max_delay = max_freq;
8304         dev_priv->min_delay = min_freq;
8305         dev_priv->cur_delay = cur_freq;
8306
8307         /* requires MSI enabled */
8308         I915_WRITE(GEN6_PMIER,
8309                    GEN6_PM_MBOX_EVENT |
8310                    GEN6_PM_THERMAL_EVENT |
8311                    GEN6_PM_RP_DOWN_TIMEOUT |
8312                    GEN6_PM_RP_UP_THRESHOLD |
8313                    GEN6_PM_RP_DOWN_THRESHOLD |
8314                    GEN6_PM_RP_UP_EI_EXPIRED |
8315                    GEN6_PM_RP_DOWN_EI_EXPIRED);
8316         spin_lock_irq(&dev_priv->rps_lock);
8317         WARN_ON(dev_priv->pm_iir != 0);
8318         I915_WRITE(GEN6_PMIMR, 0);
8319         spin_unlock_irq(&dev_priv->rps_lock);
8320         /* enable all PM interrupts */
8321         I915_WRITE(GEN6_PMINTRMSK, 0);
8322
8323         gen6_gt_force_wake_put(dev_priv);
8324         mutex_unlock(&dev_priv->dev->struct_mutex);
8325 }
8326
8327 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8328 {
8329         int min_freq = 15;
8330         int gpu_freq, ia_freq, max_ia_freq;
8331         int scaling_factor = 180;
8332
8333         max_ia_freq = cpufreq_quick_get_max(0);
8334         /*
8335          * Default to measured freq if none found, PCU will ensure we don't go
8336          * over
8337          */
8338         if (!max_ia_freq)
8339                 max_ia_freq = tsc_khz;
8340
8341         /* Convert from kHz to MHz */
8342         max_ia_freq /= 1000;
8343
8344         mutex_lock(&dev_priv->dev->struct_mutex);
8345
8346         /*
8347          * For each potential GPU frequency, load a ring frequency we'd like
8348          * to use for memory access.  We do this by specifying the IA frequency
8349          * the PCU should use as a reference to determine the ring frequency.
8350          */
8351         for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8352              gpu_freq--) {
8353                 int diff = dev_priv->max_delay - gpu_freq;
8354
8355                 /*
8356                  * For GPU frequencies less than 750MHz, just use the lowest
8357                  * ring freq.
8358                  */
8359                 if (gpu_freq < min_freq)
8360                         ia_freq = 800;
8361                 else
8362                         ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8363                 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
8364
8365                 I915_WRITE(GEN6_PCODE_DATA,
8366                            (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8367                            gpu_freq);
8368                 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8369                            GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8370                 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
8371                               GEN6_PCODE_READY) == 0, 10)) {
8372                         DRM_ERROR("pcode write of freq table timed out\n");
8373                         continue;
8374                 }
8375         }
8376
8377         mutex_unlock(&dev_priv->dev->struct_mutex);
8378 }
8379
8380 static void ironlake_init_clock_gating(struct drm_device *dev)
8381 {
8382         struct drm_i915_private *dev_priv = dev->dev_private;
8383         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8384
8385         /* Required for FBC */
8386         dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8387                 DPFCRUNIT_CLOCK_GATE_DISABLE |
8388                 DPFDUNIT_CLOCK_GATE_DISABLE;
8389         /* Required for CxSR */
8390         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8391
8392         I915_WRITE(PCH_3DCGDIS0,
8393                    MARIUNIT_CLOCK_GATE_DISABLE |
8394                    SVSMUNIT_CLOCK_GATE_DISABLE);
8395         I915_WRITE(PCH_3DCGDIS1,
8396                    VFMUNIT_CLOCK_GATE_DISABLE);
8397
8398         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8399
8400         /*
8401          * According to the spec the following bits should be set in
8402          * order to enable memory self-refresh
8403          * The bit 22/21 of 0x42004
8404          * The bit 5 of 0x42020
8405          * The bit 15 of 0x45000
8406          */
8407         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8408                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
8409                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8410         I915_WRITE(ILK_DSPCLK_GATE,
8411                    (I915_READ(ILK_DSPCLK_GATE) |
8412                     ILK_DPARB_CLK_GATE));
8413         I915_WRITE(DISP_ARB_CTL,
8414                    (I915_READ(DISP_ARB_CTL) |
8415                     DISP_FBC_WM_DIS));
8416         I915_WRITE(WM3_LP_ILK, 0);
8417         I915_WRITE(WM2_LP_ILK, 0);
8418         I915_WRITE(WM1_LP_ILK, 0);
8419
8420         /*
8421          * Based on the document from hardware guys the following bits
8422          * should be set unconditionally in order to enable FBC.
8423          * The bit 22 of 0x42000
8424          * The bit 22 of 0x42004
8425          * The bit 7,8,9 of 0x42020.
8426          */
8427         if (IS_IRONLAKE_M(dev)) {
8428                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8429                            I915_READ(ILK_DISPLAY_CHICKEN1) |
8430                            ILK_FBCQ_DIS);
8431                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8432                            I915_READ(ILK_DISPLAY_CHICKEN2) |
8433                            ILK_DPARB_GATE);
8434                 I915_WRITE(ILK_DSPCLK_GATE,
8435                            I915_READ(ILK_DSPCLK_GATE) |
8436                            ILK_DPFC_DIS1 |
8437                            ILK_DPFC_DIS2 |
8438                            ILK_CLK_FBC);
8439         }
8440
8441         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8442                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8443                    ILK_ELPIN_409_SELECT);
8444         I915_WRITE(_3D_CHICKEN2,
8445                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8446                    _3D_CHICKEN2_WM_READ_PIPELINED);
8447 }
8448
8449 static void gen6_init_clock_gating(struct drm_device *dev)
8450 {
8451         struct drm_i915_private *dev_priv = dev->dev_private;
8452         int pipe;
8453         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8454
8455         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8456
8457         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8458                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8459                    ILK_ELPIN_409_SELECT);
8460
8461         I915_WRITE(WM3_LP_ILK, 0);
8462         I915_WRITE(WM2_LP_ILK, 0);
8463         I915_WRITE(WM1_LP_ILK, 0);
8464
8465         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8466          * gating disable must be set.  Failure to set it results in
8467          * flickering pixels due to Z write ordering failures after
8468          * some amount of runtime in the Mesa "fire" demo, and Unigine
8469          * Sanctuary and Tropics, and apparently anything else with
8470          * alpha test or pixel discard.
8471          *
8472          * According to the spec, bit 11 (RCCUNIT) must also be set,
8473          * but we didn't debug actual testcases to find it out.
8474          */
8475         I915_WRITE(GEN6_UCGCTL2,
8476                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8477                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8478
8479         /*
8480          * According to the spec the following bits should be
8481          * set in order to enable memory self-refresh and fbc:
8482          * The bit21 and bit22 of 0x42000
8483          * The bit21 and bit22 of 0x42004
8484          * The bit5 and bit7 of 0x42020
8485          * The bit14 of 0x70180
8486          * The bit14 of 0x71180
8487          */
8488         I915_WRITE(ILK_DISPLAY_CHICKEN1,
8489                    I915_READ(ILK_DISPLAY_CHICKEN1) |
8490                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8491         I915_WRITE(ILK_DISPLAY_CHICKEN2,
8492                    I915_READ(ILK_DISPLAY_CHICKEN2) |
8493                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8494         I915_WRITE(ILK_DSPCLK_GATE,
8495                    I915_READ(ILK_DSPCLK_GATE) |
8496                    ILK_DPARB_CLK_GATE  |
8497                    ILK_DPFD_CLK_GATE);
8498
8499         for_each_pipe(pipe) {
8500                 I915_WRITE(DSPCNTR(pipe),
8501                            I915_READ(DSPCNTR(pipe)) |
8502                            DISPPLANE_TRICKLE_FEED_DISABLE);
8503                 intel_flush_display_plane(dev_priv, pipe);
8504         }
8505 }
8506
8507 static void ivybridge_init_clock_gating(struct drm_device *dev)
8508 {
8509         struct drm_i915_private *dev_priv = dev->dev_private;
8510         int pipe;
8511         uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8512
8513         I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8514
8515         I915_WRITE(WM3_LP_ILK, 0);
8516         I915_WRITE(WM2_LP_ILK, 0);
8517         I915_WRITE(WM1_LP_ILK, 0);
8518
8519         I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8520
8521         I915_WRITE(IVB_CHICKEN3,
8522                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8523                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
8524
8525         for_each_pipe(pipe) {
8526                 I915_WRITE(DSPCNTR(pipe),
8527                            I915_READ(DSPCNTR(pipe)) |
8528                            DISPPLANE_TRICKLE_FEED_DISABLE);
8529                 intel_flush_display_plane(dev_priv, pipe);
8530         }
8531 }
8532
8533 static void g4x_init_clock_gating(struct drm_device *dev)
8534 {
8535         struct drm_i915_private *dev_priv = dev->dev_private;
8536         uint32_t dspclk_gate;
8537
8538         I915_WRITE(RENCLK_GATE_D1, 0);
8539         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8540                    GS_UNIT_CLOCK_GATE_DISABLE |
8541                    CL_UNIT_CLOCK_GATE_DISABLE);
8542         I915_WRITE(RAMCLK_GATE_D, 0);
8543         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8544                 OVRUNIT_CLOCK_GATE_DISABLE |
8545                 OVCUNIT_CLOCK_GATE_DISABLE;
8546         if (IS_GM45(dev))
8547                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8548         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8549 }
8550
8551 static void crestline_init_clock_gating(struct drm_device *dev)
8552 {
8553         struct drm_i915_private *dev_priv = dev->dev_private;
8554
8555         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8556         I915_WRITE(RENCLK_GATE_D2, 0);
8557         I915_WRITE(DSPCLK_GATE_D, 0);
8558         I915_WRITE(RAMCLK_GATE_D, 0);
8559         I915_WRITE16(DEUC, 0);
8560 }
8561
8562 static void broadwater_init_clock_gating(struct drm_device *dev)
8563 {
8564         struct drm_i915_private *dev_priv = dev->dev_private;
8565
8566         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8567                    I965_RCC_CLOCK_GATE_DISABLE |
8568                    I965_RCPB_CLOCK_GATE_DISABLE |
8569                    I965_ISC_CLOCK_GATE_DISABLE |
8570                    I965_FBC_CLOCK_GATE_DISABLE);
8571         I915_WRITE(RENCLK_GATE_D2, 0);
8572 }
8573
8574 static void gen3_init_clock_gating(struct drm_device *dev)
8575 {
8576         struct drm_i915_private *dev_priv = dev->dev_private;
8577         u32 dstate = I915_READ(D_STATE);
8578
8579         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8580                 DSTATE_DOT_CLOCK_GATING;
8581         I915_WRITE(D_STATE, dstate);
8582 }
8583
8584 static void i85x_init_clock_gating(struct drm_device *dev)
8585 {
8586         struct drm_i915_private *dev_priv = dev->dev_private;
8587
8588         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8589 }
8590
8591 static void i830_init_clock_gating(struct drm_device *dev)
8592 {
8593         struct drm_i915_private *dev_priv = dev->dev_private;
8594
8595         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
8596 }
8597
8598 static void ibx_init_clock_gating(struct drm_device *dev)
8599 {
8600         struct drm_i915_private *dev_priv = dev->dev_private;
8601
8602         /*
8603          * On Ibex Peak and Cougar Point, we need to disable clock
8604          * gating for the panel power sequencer or it will fail to
8605          * start up when no ports are active.
8606          */
8607         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8608 }
8609
8610 static void cpt_init_clock_gating(struct drm_device *dev)
8611 {
8612         struct drm_i915_private *dev_priv = dev->dev_private;
8613         int pipe;
8614
8615         /*
8616          * On Ibex Peak and Cougar Point, we need to disable clock
8617          * gating for the panel power sequencer or it will fail to
8618          * start up when no ports are active.
8619          */
8620         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8621         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8622                    DPLS_EDP_PPS_FIX_DIS);
8623         /* Without this, mode sets may fail silently on FDI */
8624         for_each_pipe(pipe)
8625                 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
8626 }
8627
8628 static void ironlake_teardown_rc6(struct drm_device *dev)
8629 {
8630         struct drm_i915_private *dev_priv = dev->dev_private;
8631
8632         if (dev_priv->renderctx) {
8633                 i915_gem_object_unpin(dev_priv->renderctx);
8634                 drm_gem_object_unreference(&dev_priv->renderctx->base);
8635                 dev_priv->renderctx = NULL;
8636         }
8637
8638         if (dev_priv->pwrctx) {
8639                 i915_gem_object_unpin(dev_priv->pwrctx);
8640                 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8641                 dev_priv->pwrctx = NULL;
8642         }
8643 }
8644
8645 static void ironlake_disable_rc6(struct drm_device *dev)
8646 {
8647         struct drm_i915_private *dev_priv = dev->dev_private;
8648
8649         if (I915_READ(PWRCTXA)) {
8650                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8651                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8652                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8653                          50);
8654
8655                 I915_WRITE(PWRCTXA, 0);
8656                 POSTING_READ(PWRCTXA);
8657
8658                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8659                 POSTING_READ(RSTDBYCTL);
8660         }
8661
8662         ironlake_teardown_rc6(dev);
8663 }
8664
8665 static int ironlake_setup_rc6(struct drm_device *dev)
8666 {
8667         struct drm_i915_private *dev_priv = dev->dev_private;
8668
8669         if (dev_priv->renderctx == NULL)
8670                 dev_priv->renderctx = intel_alloc_context_page(dev);
8671         if (!dev_priv->renderctx)
8672                 return -ENOMEM;
8673
8674         if (dev_priv->pwrctx == NULL)
8675                 dev_priv->pwrctx = intel_alloc_context_page(dev);
8676         if (!dev_priv->pwrctx) {
8677                 ironlake_teardown_rc6(dev);
8678                 return -ENOMEM;
8679         }
8680
8681         return 0;
8682 }
8683
8684 void ironlake_enable_rc6(struct drm_device *dev)
8685 {
8686         struct drm_i915_private *dev_priv = dev->dev_private;
8687         int ret;
8688
8689         /* rc6 disabled by default due to repeated reports of hanging during
8690          * boot and resume.
8691          */
8692         if (!intel_enable_rc6(dev))
8693                 return;
8694
8695         mutex_lock(&dev->struct_mutex);
8696         ret = ironlake_setup_rc6(dev);
8697         if (ret) {
8698                 mutex_unlock(&dev->struct_mutex);
8699                 return;
8700         }
8701
8702         /*
8703          * GPU can automatically power down the render unit if given a page
8704          * to save state.
8705          */
8706         ret = BEGIN_LP_RING(6);
8707         if (ret) {
8708                 ironlake_teardown_rc6(dev);
8709                 mutex_unlock(&dev->struct_mutex);
8710                 return;
8711         }
8712
8713         OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8714         OUT_RING(MI_SET_CONTEXT);
8715         OUT_RING(dev_priv->renderctx->gtt_offset |
8716                  MI_MM_SPACE_GTT |
8717                  MI_SAVE_EXT_STATE_EN |
8718                  MI_RESTORE_EXT_STATE_EN |
8719                  MI_RESTORE_INHIBIT);
8720         OUT_RING(MI_SUSPEND_FLUSH);
8721         OUT_RING(MI_NOOP);
8722         OUT_RING(MI_FLUSH);
8723         ADVANCE_LP_RING();
8724
8725         /*
8726          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8727          * does an implicit flush, combined with MI_FLUSH above, it should be
8728          * safe to assume that renderctx is valid
8729          */
8730         ret = intel_wait_ring_idle(LP_RING(dev_priv));
8731         if (ret) {
8732                 DRM_ERROR("failed to enable ironlake power power savings\n");
8733                 ironlake_teardown_rc6(dev);
8734                 mutex_unlock(&dev->struct_mutex);
8735                 return;
8736         }
8737
8738         I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8739         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8740         mutex_unlock(&dev->struct_mutex);
8741 }
8742
8743 void intel_init_clock_gating(struct drm_device *dev)
8744 {
8745         struct drm_i915_private *dev_priv = dev->dev_private;
8746
8747         dev_priv->display.init_clock_gating(dev);
8748
8749         if (dev_priv->display.init_pch_clock_gating)
8750                 dev_priv->display.init_pch_clock_gating(dev);
8751 }
8752
8753 /* Set up chip specific display functions */
8754 static void intel_init_display(struct drm_device *dev)
8755 {
8756         struct drm_i915_private *dev_priv = dev->dev_private;
8757
8758         /* We always want a DPMS function */
8759         if (HAS_PCH_SPLIT(dev)) {
8760                 dev_priv->display.dpms = ironlake_crtc_dpms;
8761                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8762                 dev_priv->display.update_plane = ironlake_update_plane;
8763         } else {
8764                 dev_priv->display.dpms = i9xx_crtc_dpms;
8765                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8766                 dev_priv->display.update_plane = i9xx_update_plane;
8767         }
8768
8769         if (I915_HAS_FBC(dev)) {
8770                 if (HAS_PCH_SPLIT(dev)) {
8771                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8772                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
8773                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
8774                 } else if (IS_GM45(dev)) {
8775                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8776                         dev_priv->display.enable_fbc = g4x_enable_fbc;
8777                         dev_priv->display.disable_fbc = g4x_disable_fbc;
8778                 } else if (IS_CRESTLINE(dev)) {
8779                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8780                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
8781                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
8782                 }
8783                 /* 855GM needs testing */
8784         }
8785
8786         /* Returns the core display clock speed */
8787         if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8788                 dev_priv->display.get_display_clock_speed =
8789                         i945_get_display_clock_speed;
8790         else if (IS_I915G(dev))
8791                 dev_priv->display.get_display_clock_speed =
8792                         i915_get_display_clock_speed;
8793         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8794                 dev_priv->display.get_display_clock_speed =
8795                         i9xx_misc_get_display_clock_speed;
8796         else if (IS_I915GM(dev))
8797                 dev_priv->display.get_display_clock_speed =
8798                         i915gm_get_display_clock_speed;
8799         else if (IS_I865G(dev))
8800                 dev_priv->display.get_display_clock_speed =
8801                         i865_get_display_clock_speed;
8802         else if (IS_I85X(dev))
8803                 dev_priv->display.get_display_clock_speed =
8804                         i855_get_display_clock_speed;
8805         else /* 852, 830 */
8806                 dev_priv->display.get_display_clock_speed =
8807                         i830_get_display_clock_speed;
8808
8809         /* For FIFO watermark updates */
8810         if (HAS_PCH_SPLIT(dev)) {
8811                 dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
8812                 dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
8813
8814                 /* IVB configs may use multi-threaded forcewake */
8815                 if (IS_IVYBRIDGE(dev)) {
8816                         u32     ecobus;
8817
8818                         /* A small trick here - if the bios hasn't configured MT forcewake,
8819                          * and if the device is in RC6, then force_wake_mt_get will not wake
8820                          * the device and the ECOBUS read will return zero. Which will be
8821                          * (correctly) interpreted by the test below as MT forcewake being
8822                          * disabled.
8823                          */
8824                         mutex_lock(&dev->struct_mutex);
8825                         __gen6_gt_force_wake_mt_get(dev_priv);
8826                         ecobus = I915_READ_NOTRACE(ECOBUS);
8827                         __gen6_gt_force_wake_mt_put(dev_priv);
8828                         mutex_unlock(&dev->struct_mutex);
8829
8830                         if (ecobus & FORCEWAKE_MT_ENABLE) {
8831                                 DRM_DEBUG_KMS("Using MT version of forcewake\n");
8832                                 dev_priv->display.force_wake_get =
8833                                         __gen6_gt_force_wake_mt_get;
8834                                 dev_priv->display.force_wake_put =
8835                                         __gen6_gt_force_wake_mt_put;
8836                         }
8837                 }
8838
8839                 if (HAS_PCH_IBX(dev))
8840                         dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8841                 else if (HAS_PCH_CPT(dev))
8842                         dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8843
8844                 if (IS_GEN5(dev)) {
8845                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8846                                 dev_priv->display.update_wm = ironlake_update_wm;
8847                         else {
8848                                 DRM_DEBUG_KMS("Failed to get proper latency. "
8849                                               "Disable CxSR\n");
8850                                 dev_priv->display.update_wm = NULL;
8851                         }
8852                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8853                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8854                         dev_priv->display.write_eld = ironlake_write_eld;
8855                 } else if (IS_GEN6(dev)) {
8856                         if (SNB_READ_WM0_LATENCY()) {
8857                                 dev_priv->display.update_wm = sandybridge_update_wm;
8858                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
8859                         } else {
8860                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
8861                                               "Disable CxSR\n");
8862                                 dev_priv->display.update_wm = NULL;
8863                         }
8864                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8865                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8866                         dev_priv->display.write_eld = ironlake_write_eld;
8867                 } else if (IS_IVYBRIDGE(dev)) {
8868                         /* FIXME: detect B0+ stepping and use auto training */
8869                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8870                         if (SNB_READ_WM0_LATENCY()) {
8871                                 dev_priv->display.update_wm = sandybridge_update_wm;
8872                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
8873                         } else {
8874                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
8875                                               "Disable CxSR\n");
8876                                 dev_priv->display.update_wm = NULL;
8877                         }
8878                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8879                         dev_priv->display.write_eld = ironlake_write_eld;
8880                 } else
8881                         dev_priv->display.update_wm = NULL;
8882         } else if (IS_PINEVIEW(dev)) {
8883                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
8884                                             dev_priv->is_ddr3,
8885                                             dev_priv->fsb_freq,
8886                                             dev_priv->mem_freq)) {
8887                         DRM_INFO("failed to find known CxSR latency "
8888                                  "(found ddr%s fsb freq %d, mem freq %d), "
8889                                  "disabling CxSR\n",
8890                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
8891                                  dev_priv->fsb_freq, dev_priv->mem_freq);
8892                         /* Disable CxSR and never update its watermark again */
8893                         pineview_disable_cxsr(dev);
8894                         dev_priv->display.update_wm = NULL;
8895                 } else
8896                         dev_priv->display.update_wm = pineview_update_wm;
8897                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8898         } else if (IS_G4X(dev)) {
8899                 dev_priv->display.write_eld = g4x_write_eld;
8900                 dev_priv->display.update_wm = g4x_update_wm;
8901                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8902         } else if (IS_GEN4(dev)) {
8903                 dev_priv->display.update_wm = i965_update_wm;
8904                 if (IS_CRESTLINE(dev))
8905                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8906                 else if (IS_BROADWATER(dev))
8907                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8908         } else if (IS_GEN3(dev)) {
8909                 dev_priv->display.update_wm = i9xx_update_wm;
8910                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8911                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8912         } else if (IS_I865G(dev)) {
8913                 dev_priv->display.update_wm = i830_update_wm;
8914                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8915                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8916         } else if (IS_I85X(dev)) {
8917                 dev_priv->display.update_wm = i9xx_update_wm;
8918                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
8919                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8920         } else {
8921                 dev_priv->display.update_wm = i830_update_wm;
8922                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8923                 if (IS_845G(dev))
8924                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
8925                 else
8926                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
8927         }
8928
8929         /* Default just returns -ENODEV to indicate unsupported */
8930         dev_priv->display.queue_flip = intel_default_queue_flip;
8931
8932         switch (INTEL_INFO(dev)->gen) {
8933         case 2:
8934                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8935                 break;
8936
8937         case 3:
8938                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8939                 break;
8940
8941         case 4:
8942         case 5:
8943                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8944                 break;
8945
8946         case 6:
8947                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8948                 break;
8949         case 7:
8950                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8951                 break;
8952         }
8953 }
8954
8955 /*
8956  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8957  * resume, or other times.  This quirk makes sure that's the case for
8958  * affected systems.
8959  */
8960 static void quirk_pipea_force(struct drm_device *dev)
8961 {
8962         struct drm_i915_private *dev_priv = dev->dev_private;
8963
8964         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8965         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8966 }
8967
8968 /*
8969  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8970  */
8971 static void quirk_ssc_force_disable(struct drm_device *dev)
8972 {
8973         struct drm_i915_private *dev_priv = dev->dev_private;
8974         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8975 }
8976
8977 struct intel_quirk {
8978         int device;
8979         int subsystem_vendor;
8980         int subsystem_device;
8981         void (*hook)(struct drm_device *dev);
8982 };
8983
8984 struct intel_quirk intel_quirks[] = {
8985         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8986         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8987         /* HP Mini needs pipe A force quirk (LP: #322104) */
8988         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8989
8990         /* Thinkpad R31 needs pipe A force quirk */
8991         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8992         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8993         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8994
8995         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8996         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
8997         /* ThinkPad X40 needs pipe A force quirk */
8998
8999         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9000         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9001
9002         /* 855 & before need to leave pipe A & dpll A up */
9003         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9004         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9005
9006         /* Lenovo U160 cannot use SSC on LVDS */
9007         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9008
9009         /* Sony Vaio Y cannot use SSC on LVDS */
9010         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9011 };
9012
9013 static void intel_init_quirks(struct drm_device *dev)
9014 {
9015         struct pci_dev *d = dev->pdev;
9016         int i;
9017
9018         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9019                 struct intel_quirk *q = &intel_quirks[i];
9020
9021                 if (d->device == q->device &&
9022                     (d->subsystem_vendor == q->subsystem_vendor ||
9023                      q->subsystem_vendor == PCI_ANY_ID) &&
9024                     (d->subsystem_device == q->subsystem_device ||
9025                      q->subsystem_device == PCI_ANY_ID))
9026                         q->hook(dev);
9027         }
9028 }
9029
9030 /* Disable the VGA plane that we never use */
9031 static void i915_disable_vga(struct drm_device *dev)
9032 {
9033         struct drm_i915_private *dev_priv = dev->dev_private;
9034         u8 sr1;
9035         u32 vga_reg;
9036
9037         if (HAS_PCH_SPLIT(dev))
9038                 vga_reg = CPU_VGACNTRL;
9039         else
9040                 vga_reg = VGACNTRL;
9041
9042         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9043         outb(1, VGA_SR_INDEX);
9044         sr1 = inb(VGA_SR_DATA);
9045         outb(sr1 | 1<<5, VGA_SR_DATA);
9046         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9047         udelay(300);
9048
9049         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9050         POSTING_READ(vga_reg);
9051 }
9052
9053 void intel_modeset_init(struct drm_device *dev)
9054 {
9055         struct drm_i915_private *dev_priv = dev->dev_private;
9056         int i, ret;
9057
9058         drm_mode_config_init(dev);
9059
9060         dev->mode_config.min_width = 0;
9061         dev->mode_config.min_height = 0;
9062
9063         dev->mode_config.funcs = (void *)&intel_mode_funcs;
9064
9065         intel_init_quirks(dev);
9066
9067         intel_init_display(dev);
9068
9069         if (IS_GEN2(dev)) {
9070                 dev->mode_config.max_width = 2048;
9071                 dev->mode_config.max_height = 2048;
9072         } else if (IS_GEN3(dev)) {
9073                 dev->mode_config.max_width = 4096;
9074                 dev->mode_config.max_height = 4096;
9075         } else {
9076                 dev->mode_config.max_width = 8192;
9077                 dev->mode_config.max_height = 8192;
9078         }
9079         dev->mode_config.fb_base = dev->agp->base;
9080
9081         DRM_DEBUG_KMS("%d display pipe%s available.\n",
9082                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
9083
9084         for (i = 0; i < dev_priv->num_pipe; i++) {
9085                 intel_crtc_init(dev, i);
9086                 ret = intel_plane_init(dev, i);
9087                 if (ret)
9088                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
9089         }
9090
9091         /* Just disable it once at startup */
9092         i915_disable_vga(dev);
9093         intel_setup_outputs(dev);
9094
9095         intel_init_clock_gating(dev);
9096
9097         if (IS_IRONLAKE_M(dev)) {
9098                 ironlake_enable_drps(dev);
9099                 intel_init_emon(dev);
9100         }
9101
9102         if (IS_GEN6(dev) || IS_GEN7(dev)) {
9103                 gen6_enable_rps(dev_priv);
9104                 gen6_update_ring_freq(dev_priv);
9105         }
9106
9107         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
9108         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
9109                     (unsigned long)dev);
9110 }
9111
9112 void intel_modeset_gem_init(struct drm_device *dev)
9113 {
9114         if (IS_IRONLAKE_M(dev))
9115                 ironlake_enable_rc6(dev);
9116
9117         intel_setup_overlay(dev);
9118 }
9119
9120 void intel_modeset_cleanup(struct drm_device *dev)
9121 {
9122         struct drm_i915_private *dev_priv = dev->dev_private;
9123         struct drm_crtc *crtc;
9124         struct intel_crtc *intel_crtc;
9125
9126         drm_kms_helper_poll_fini(dev);
9127         mutex_lock(&dev->struct_mutex);
9128
9129         intel_unregister_dsm_handler();
9130
9131
9132         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9133                 /* Skip inactive CRTCs */
9134                 if (!crtc->fb)
9135                         continue;
9136
9137                 intel_crtc = to_intel_crtc(crtc);
9138                 intel_increase_pllclock(crtc);
9139         }
9140
9141         intel_disable_fbc(dev);
9142
9143         if (IS_IRONLAKE_M(dev))
9144                 ironlake_disable_drps(dev);
9145         if (IS_GEN6(dev) || IS_GEN7(dev))
9146                 gen6_disable_rps(dev);
9147
9148         if (IS_IRONLAKE_M(dev))
9149                 ironlake_disable_rc6(dev);
9150
9151         mutex_unlock(&dev->struct_mutex);
9152
9153         /* Disable the irq before mode object teardown, for the irq might
9154          * enqueue unpin/hotplug work. */
9155         drm_irq_uninstall(dev);
9156         cancel_work_sync(&dev_priv->hotplug_work);
9157         cancel_work_sync(&dev_priv->rps_work);
9158
9159         /* flush any delayed tasks or pending work */
9160         flush_scheduled_work();
9161
9162         /* Shut off idle work before the crtcs get freed. */
9163         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9164                 intel_crtc = to_intel_crtc(crtc);
9165                 del_timer_sync(&intel_crtc->idle_timer);
9166         }
9167         del_timer_sync(&dev_priv->idle_timer);
9168         cancel_work_sync(&dev_priv->idle_work);
9169
9170         drm_mode_config_cleanup(dev);
9171 }
9172
9173 /*
9174  * Return which encoder is currently attached for connector.
9175  */
9176 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9177 {
9178         return &intel_attached_encoder(connector)->base;
9179 }
9180
9181 void intel_connector_attach_encoder(struct intel_connector *connector,
9182                                     struct intel_encoder *encoder)
9183 {
9184         connector->encoder = encoder;
9185         drm_mode_connector_attach_encoder(&connector->base,
9186                                           &encoder->base);
9187 }
9188
9189 /*
9190  * set vga decode state - true == enable VGA decode
9191  */
9192 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9193 {
9194         struct drm_i915_private *dev_priv = dev->dev_private;
9195         u16 gmch_ctrl;
9196
9197         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9198         if (state)
9199                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9200         else
9201                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9202         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9203         return 0;
9204 }
9205
9206 #ifdef CONFIG_DEBUG_FS
9207 #include <linux/seq_file.h>
9208
9209 struct intel_display_error_state {
9210         struct intel_cursor_error_state {
9211                 u32 control;
9212                 u32 position;
9213                 u32 base;
9214                 u32 size;
9215         } cursor[2];
9216
9217         struct intel_pipe_error_state {
9218                 u32 conf;
9219                 u32 source;
9220
9221                 u32 htotal;
9222                 u32 hblank;
9223                 u32 hsync;
9224                 u32 vtotal;
9225                 u32 vblank;
9226                 u32 vsync;
9227         } pipe[2];
9228
9229         struct intel_plane_error_state {
9230                 u32 control;
9231                 u32 stride;
9232                 u32 size;
9233                 u32 pos;
9234                 u32 addr;
9235                 u32 surface;
9236                 u32 tile_offset;
9237         } plane[2];
9238 };
9239
9240 struct intel_display_error_state *
9241 intel_display_capture_error_state(struct drm_device *dev)
9242 {
9243         drm_i915_private_t *dev_priv = dev->dev_private;
9244         struct intel_display_error_state *error;
9245         int i;
9246
9247         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9248         if (error == NULL)
9249                 return NULL;
9250
9251         for (i = 0; i < 2; i++) {
9252                 error->cursor[i].control = I915_READ(CURCNTR(i));
9253                 error->cursor[i].position = I915_READ(CURPOS(i));
9254                 error->cursor[i].base = I915_READ(CURBASE(i));
9255
9256                 error->plane[i].control = I915_READ(DSPCNTR(i));
9257                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9258                 error->plane[i].size = I915_READ(DSPSIZE(i));
9259                 error->plane[i].pos = I915_READ(DSPPOS(i));
9260                 error->plane[i].addr = I915_READ(DSPADDR(i));
9261                 if (INTEL_INFO(dev)->gen >= 4) {
9262                         error->plane[i].surface = I915_READ(DSPSURF(i));
9263                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9264                 }
9265
9266                 error->pipe[i].conf = I915_READ(PIPECONF(i));
9267                 error->pipe[i].source = I915_READ(PIPESRC(i));
9268                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
9269                 error->pipe[i].hblank = I915_READ(HBLANK(i));
9270                 error->pipe[i].hsync = I915_READ(HSYNC(i));
9271                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
9272                 error->pipe[i].vblank = I915_READ(VBLANK(i));
9273                 error->pipe[i].vsync = I915_READ(VSYNC(i));
9274         }
9275
9276         return error;
9277 }
9278
9279 void
9280 intel_display_print_error_state(struct seq_file *m,
9281                                 struct drm_device *dev,
9282                                 struct intel_display_error_state *error)
9283 {
9284         int i;
9285
9286         for (i = 0; i < 2; i++) {
9287                 seq_printf(m, "Pipe [%d]:\n", i);
9288                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9289                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9290                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9291                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9292                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9293                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9294                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9295                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9296
9297                 seq_printf(m, "Plane [%d]:\n", i);
9298                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9299                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9300                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9301                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9302                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9303                 if (INTEL_INFO(dev)->gen >= 4) {
9304                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9305                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9306                 }
9307
9308                 seq_printf(m, "Cursor [%d]:\n", i);
9309                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9310                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9311                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9312         }
9313 }
9314 #endif