objtool: Re-arrange validate_functions()
[linux-block.git] / drivers / gpu / drm / i915 / i915_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31
32 #include "gem/i915_gem_context.h"
33 #include "gt/intel_context.h"
34 #include "gt/intel_ring.h"
35 #include "gt/intel_rps.h"
36
37 #include "i915_active.h"
38 #include "i915_drv.h"
39 #include "i915_globals.h"
40 #include "i915_trace.h"
41 #include "intel_pm.h"
42
43 struct execute_cb {
44         struct list_head link;
45         struct irq_work work;
46         struct i915_sw_fence *fence;
47         void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48         struct i915_request *signal;
49 };
50
51 static struct i915_global_request {
52         struct i915_global base;
53         struct kmem_cache *slab_requests;
54         struct kmem_cache *slab_dependencies;
55         struct kmem_cache *slab_execute_cbs;
56 } global;
57
58 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59 {
60         return dev_name(to_request(fence)->i915->drm.dev);
61 }
62
63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64 {
65         const struct i915_gem_context *ctx;
66
67         /*
68          * The timeline struct (as part of the ppgtt underneath a context)
69          * may be freed when the request is no longer in use by the GPU.
70          * We could extend the life of a context to beyond that of all
71          * fences, possibly keeping the hw resource around indefinitely,
72          * or we just give them a false name. Since
73          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
74          * lie seems justifiable.
75          */
76         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
77                 return "signaled";
78
79         ctx = i915_request_gem_context(to_request(fence));
80         if (!ctx)
81                 return "[" DRIVER_NAME "]";
82
83         return ctx->name;
84 }
85
86 static bool i915_fence_signaled(struct dma_fence *fence)
87 {
88         return i915_request_completed(to_request(fence));
89 }
90
91 static bool i915_fence_enable_signaling(struct dma_fence *fence)
92 {
93         return i915_request_enable_breadcrumb(to_request(fence));
94 }
95
96 static signed long i915_fence_wait(struct dma_fence *fence,
97                                    bool interruptible,
98                                    signed long timeout)
99 {
100         return i915_request_wait(to_request(fence),
101                                  interruptible | I915_WAIT_PRIORITY,
102                                  timeout);
103 }
104
105 static void i915_fence_release(struct dma_fence *fence)
106 {
107         struct i915_request *rq = to_request(fence);
108
109         /*
110          * The request is put onto a RCU freelist (i.e. the address
111          * is immediately reused), mark the fences as being freed now.
112          * Otherwise the debugobjects for the fences are only marked as
113          * freed when the slab cache itself is freed, and so we would get
114          * caught trying to reuse dead objects.
115          */
116         i915_sw_fence_fini(&rq->submit);
117         i915_sw_fence_fini(&rq->semaphore);
118
119         kmem_cache_free(global.slab_requests, rq);
120 }
121
122 const struct dma_fence_ops i915_fence_ops = {
123         .get_driver_name = i915_fence_get_driver_name,
124         .get_timeline_name = i915_fence_get_timeline_name,
125         .enable_signaling = i915_fence_enable_signaling,
126         .signaled = i915_fence_signaled,
127         .wait = i915_fence_wait,
128         .release = i915_fence_release,
129 };
130
131 static void irq_execute_cb(struct irq_work *wrk)
132 {
133         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
134
135         i915_sw_fence_complete(cb->fence);
136         kmem_cache_free(global.slab_execute_cbs, cb);
137 }
138
139 static void irq_execute_cb_hook(struct irq_work *wrk)
140 {
141         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
142
143         cb->hook(container_of(cb->fence, struct i915_request, submit),
144                  &cb->signal->fence);
145         i915_request_put(cb->signal);
146
147         irq_execute_cb(wrk);
148 }
149
150 static void __notify_execute_cb(struct i915_request *rq)
151 {
152         struct execute_cb *cb;
153
154         lockdep_assert_held(&rq->lock);
155
156         if (list_empty(&rq->execute_cb))
157                 return;
158
159         list_for_each_entry(cb, &rq->execute_cb, link)
160                 irq_work_queue(&cb->work);
161
162         /*
163          * XXX Rollback on __i915_request_unsubmit()
164          *
165          * In the future, perhaps when we have an active time-slicing scheduler,
166          * it will be interesting to unsubmit parallel execution and remove
167          * busywaits from the GPU until their master is restarted. This is
168          * quite hairy, we have to carefully rollback the fence and do a
169          * preempt-to-idle cycle on the target engine, all the while the
170          * master execute_cb may refire.
171          */
172         INIT_LIST_HEAD(&rq->execute_cb);
173 }
174
175 static inline void
176 remove_from_client(struct i915_request *request)
177 {
178         struct drm_i915_file_private *file_priv;
179
180         if (!READ_ONCE(request->file_priv))
181                 return;
182
183         rcu_read_lock();
184         file_priv = xchg(&request->file_priv, NULL);
185         if (file_priv) {
186                 spin_lock(&file_priv->mm.lock);
187                 list_del(&request->client_link);
188                 spin_unlock(&file_priv->mm.lock);
189         }
190         rcu_read_unlock();
191 }
192
193 static void free_capture_list(struct i915_request *request)
194 {
195         struct i915_capture_list *capture;
196
197         capture = fetch_and_zero(&request->capture_list);
198         while (capture) {
199                 struct i915_capture_list *next = capture->next;
200
201                 kfree(capture);
202                 capture = next;
203         }
204 }
205
206 static void remove_from_engine(struct i915_request *rq)
207 {
208         struct intel_engine_cs *engine, *locked;
209
210         /*
211          * Virtual engines complicate acquiring the engine timeline lock,
212          * as their rq->engine pointer is not stable until under that
213          * engine lock. The simple ploy we use is to take the lock then
214          * check that the rq still belongs to the newly locked engine.
215          */
216         locked = READ_ONCE(rq->engine);
217         spin_lock_irq(&locked->active.lock);
218         while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
219                 spin_unlock(&locked->active.lock);
220                 spin_lock(&engine->active.lock);
221                 locked = engine;
222         }
223         list_del_init(&rq->sched.link);
224         spin_unlock_irq(&locked->active.lock);
225 }
226
227 bool i915_request_retire(struct i915_request *rq)
228 {
229         if (!i915_request_completed(rq))
230                 return false;
231
232         RQ_TRACE(rq, "\n");
233
234         GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
235         trace_i915_request_retire(rq);
236
237         /*
238          * We know the GPU must have read the request to have
239          * sent us the seqno + interrupt, so use the position
240          * of tail of the request to update the last known position
241          * of the GPU head.
242          *
243          * Note this requires that we are always called in request
244          * completion order.
245          */
246         GEM_BUG_ON(!list_is_first(&rq->link,
247                                   &i915_request_timeline(rq)->requests));
248         rq->ring->head = rq->postfix;
249
250         /*
251          * We only loosely track inflight requests across preemption,
252          * and so we may find ourselves attempting to retire a _completed_
253          * request that we have removed from the HW and put back on a run
254          * queue.
255          */
256         remove_from_engine(rq);
257
258         spin_lock_irq(&rq->lock);
259         i915_request_mark_complete(rq);
260         if (!i915_request_signaled(rq))
261                 dma_fence_signal_locked(&rq->fence);
262         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
263                 i915_request_cancel_breadcrumb(rq);
264         if (i915_request_has_waitboost(rq)) {
265                 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
266                 atomic_dec(&rq->engine->gt->rps.num_waiters);
267         }
268         if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
269                 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
270                 __notify_execute_cb(rq);
271         }
272         GEM_BUG_ON(!list_empty(&rq->execute_cb));
273         spin_unlock_irq(&rq->lock);
274
275         remove_from_client(rq);
276         list_del(&rq->link);
277
278         intel_context_exit(rq->context);
279         intel_context_unpin(rq->context);
280
281         free_capture_list(rq);
282         i915_sched_node_fini(&rq->sched);
283         i915_request_put(rq);
284
285         return true;
286 }
287
288 void i915_request_retire_upto(struct i915_request *rq)
289 {
290         struct intel_timeline * const tl = i915_request_timeline(rq);
291         struct i915_request *tmp;
292
293         RQ_TRACE(rq, "\n");
294
295         GEM_BUG_ON(!i915_request_completed(rq));
296
297         do {
298                 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
299         } while (i915_request_retire(tmp) && tmp != rq);
300 }
301
302 static int
303 __await_execution(struct i915_request *rq,
304                   struct i915_request *signal,
305                   void (*hook)(struct i915_request *rq,
306                                struct dma_fence *signal),
307                   gfp_t gfp)
308 {
309         struct execute_cb *cb;
310
311         if (i915_request_is_active(signal)) {
312                 if (hook)
313                         hook(rq, &signal->fence);
314                 return 0;
315         }
316
317         cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
318         if (!cb)
319                 return -ENOMEM;
320
321         cb->fence = &rq->submit;
322         i915_sw_fence_await(cb->fence);
323         init_irq_work(&cb->work, irq_execute_cb);
324
325         if (hook) {
326                 cb->hook = hook;
327                 cb->signal = i915_request_get(signal);
328                 cb->work.func = irq_execute_cb_hook;
329         }
330
331         spin_lock_irq(&signal->lock);
332         if (i915_request_is_active(signal)) {
333                 if (hook) {
334                         hook(rq, &signal->fence);
335                         i915_request_put(signal);
336                 }
337                 i915_sw_fence_complete(cb->fence);
338                 kmem_cache_free(global.slab_execute_cbs, cb);
339         } else {
340                 list_add_tail(&cb->link, &signal->execute_cb);
341         }
342         spin_unlock_irq(&signal->lock);
343
344         /* Copy across semaphore status as we need the same behaviour */
345         rq->sched.flags |= signal->sched.flags;
346         return 0;
347 }
348
349 bool __i915_request_submit(struct i915_request *request)
350 {
351         struct intel_engine_cs *engine = request->engine;
352         bool result = false;
353
354         RQ_TRACE(request, "\n");
355
356         GEM_BUG_ON(!irqs_disabled());
357         lockdep_assert_held(&engine->active.lock);
358
359         /*
360          * With the advent of preempt-to-busy, we frequently encounter
361          * requests that we have unsubmitted from HW, but left running
362          * until the next ack and so have completed in the meantime. On
363          * resubmission of that completed request, we can skip
364          * updating the payload, and execlists can even skip submitting
365          * the request.
366          *
367          * We must remove the request from the caller's priority queue,
368          * and the caller must only call us when the request is in their
369          * priority queue, under the active.lock. This ensures that the
370          * request has *not* yet been retired and we can safely move
371          * the request into the engine->active.list where it will be
372          * dropped upon retiring. (Otherwise if resubmit a *retired*
373          * request, this would be a horrible use-after-free.)
374          */
375         if (i915_request_completed(request))
376                 goto xfer;
377
378         if (intel_context_is_banned(request->context))
379                 i915_request_skip(request, -EIO);
380
381         /*
382          * Are we using semaphores when the gpu is already saturated?
383          *
384          * Using semaphores incurs a cost in having the GPU poll a
385          * memory location, busywaiting for it to change. The continual
386          * memory reads can have a noticeable impact on the rest of the
387          * system with the extra bus traffic, stalling the cpu as it too
388          * tries to access memory across the bus (perf stat -e bus-cycles).
389          *
390          * If we installed a semaphore on this request and we only submit
391          * the request after the signaler completed, that indicates the
392          * system is overloaded and using semaphores at this time only
393          * increases the amount of work we are doing. If so, we disable
394          * further use of semaphores until we are idle again, whence we
395          * optimistically try again.
396          */
397         if (request->sched.semaphores &&
398             i915_sw_fence_signaled(&request->semaphore))
399                 engine->saturated |= request->sched.semaphores;
400
401         engine->emit_fini_breadcrumb(request,
402                                      request->ring->vaddr + request->postfix);
403
404         trace_i915_request_execute(request);
405         engine->serial++;
406         result = true;
407
408 xfer:   /* We may be recursing from the signal callback of another i915 fence */
409         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
410
411         if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
412                 list_move_tail(&request->sched.link, &engine->active.requests);
413
414         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
415             !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
416             !i915_request_enable_breadcrumb(request))
417                 intel_engine_signal_breadcrumbs(engine);
418
419         __notify_execute_cb(request);
420
421         spin_unlock(&request->lock);
422
423         return result;
424 }
425
426 void i915_request_submit(struct i915_request *request)
427 {
428         struct intel_engine_cs *engine = request->engine;
429         unsigned long flags;
430
431         /* Will be called from irq-context when using foreign fences. */
432         spin_lock_irqsave(&engine->active.lock, flags);
433
434         __i915_request_submit(request);
435
436         spin_unlock_irqrestore(&engine->active.lock, flags);
437 }
438
439 void __i915_request_unsubmit(struct i915_request *request)
440 {
441         struct intel_engine_cs *engine = request->engine;
442
443         RQ_TRACE(request, "\n");
444
445         GEM_BUG_ON(!irqs_disabled());
446         lockdep_assert_held(&engine->active.lock);
447
448         /*
449          * Only unwind in reverse order, required so that the per-context list
450          * is kept in seqno/ring order.
451          */
452
453         /* We may be recursing from the signal callback of another i915 fence */
454         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
455
456         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
457                 i915_request_cancel_breadcrumb(request);
458
459         GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
460         clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
461
462         spin_unlock(&request->lock);
463
464         /* We've already spun, don't charge on resubmitting. */
465         if (request->sched.semaphores && i915_request_started(request)) {
466                 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
467                 request->sched.semaphores = 0;
468         }
469
470         /*
471          * We don't need to wake_up any waiters on request->execute, they
472          * will get woken by any other event or us re-adding this request
473          * to the engine timeline (__i915_request_submit()). The waiters
474          * should be quite adapt at finding that the request now has a new
475          * global_seqno to the one they went to sleep on.
476          */
477 }
478
479 void i915_request_unsubmit(struct i915_request *request)
480 {
481         struct intel_engine_cs *engine = request->engine;
482         unsigned long flags;
483
484         /* Will be called from irq-context when using foreign fences. */
485         spin_lock_irqsave(&engine->active.lock, flags);
486
487         __i915_request_unsubmit(request);
488
489         spin_unlock_irqrestore(&engine->active.lock, flags);
490 }
491
492 static int __i915_sw_fence_call
493 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
494 {
495         struct i915_request *request =
496                 container_of(fence, typeof(*request), submit);
497
498         switch (state) {
499         case FENCE_COMPLETE:
500                 trace_i915_request_submit(request);
501
502                 if (unlikely(fence->error))
503                         i915_request_skip(request, fence->error);
504
505                 /*
506                  * We need to serialize use of the submit_request() callback
507                  * with its hotplugging performed during an emergency
508                  * i915_gem_set_wedged().  We use the RCU mechanism to mark the
509                  * critical section in order to force i915_gem_set_wedged() to
510                  * wait until the submit_request() is completed before
511                  * proceeding.
512                  */
513                 rcu_read_lock();
514                 request->engine->submit_request(request);
515                 rcu_read_unlock();
516                 break;
517
518         case FENCE_FREE:
519                 i915_request_put(request);
520                 break;
521         }
522
523         return NOTIFY_DONE;
524 }
525
526 static int __i915_sw_fence_call
527 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
528 {
529         struct i915_request *request =
530                 container_of(fence, typeof(*request), semaphore);
531
532         switch (state) {
533         case FENCE_COMPLETE:
534                 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
535                 break;
536
537         case FENCE_FREE:
538                 i915_request_put(request);
539                 break;
540         }
541
542         return NOTIFY_DONE;
543 }
544
545 static void retire_requests(struct intel_timeline *tl)
546 {
547         struct i915_request *rq, *rn;
548
549         list_for_each_entry_safe(rq, rn, &tl->requests, link)
550                 if (!i915_request_retire(rq))
551                         break;
552 }
553
554 static noinline struct i915_request *
555 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
556 {
557         struct i915_request *rq;
558
559         if (list_empty(&tl->requests))
560                 goto out;
561
562         if (!gfpflags_allow_blocking(gfp))
563                 goto out;
564
565         /* Move our oldest request to the slab-cache (if not in use!) */
566         rq = list_first_entry(&tl->requests, typeof(*rq), link);
567         i915_request_retire(rq);
568
569         rq = kmem_cache_alloc(global.slab_requests,
570                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
571         if (rq)
572                 return rq;
573
574         /* Ratelimit ourselves to prevent oom from malicious clients */
575         rq = list_last_entry(&tl->requests, typeof(*rq), link);
576         cond_synchronize_rcu(rq->rcustate);
577
578         /* Retire our old requests in the hope that we free some */
579         retire_requests(tl);
580
581 out:
582         return kmem_cache_alloc(global.slab_requests, gfp);
583 }
584
585 static void __i915_request_ctor(void *arg)
586 {
587         struct i915_request *rq = arg;
588
589         spin_lock_init(&rq->lock);
590         i915_sched_node_init(&rq->sched);
591         i915_sw_fence_init(&rq->submit, submit_notify);
592         i915_sw_fence_init(&rq->semaphore, semaphore_notify);
593
594         rq->file_priv = NULL;
595         rq->capture_list = NULL;
596
597         INIT_LIST_HEAD(&rq->execute_cb);
598 }
599
600 struct i915_request *
601 __i915_request_create(struct intel_context *ce, gfp_t gfp)
602 {
603         struct intel_timeline *tl = ce->timeline;
604         struct i915_request *rq;
605         u32 seqno;
606         int ret;
607
608         might_sleep_if(gfpflags_allow_blocking(gfp));
609
610         /* Check that the caller provided an already pinned context */
611         __intel_context_pin(ce);
612
613         /*
614          * Beware: Dragons be flying overhead.
615          *
616          * We use RCU to look up requests in flight. The lookups may
617          * race with the request being allocated from the slab freelist.
618          * That is the request we are writing to here, may be in the process
619          * of being read by __i915_active_request_get_rcu(). As such,
620          * we have to be very careful when overwriting the contents. During
621          * the RCU lookup, we change chase the request->engine pointer,
622          * read the request->global_seqno and increment the reference count.
623          *
624          * The reference count is incremented atomically. If it is zero,
625          * the lookup knows the request is unallocated and complete. Otherwise,
626          * it is either still in use, or has been reallocated and reset
627          * with dma_fence_init(). This increment is safe for release as we
628          * check that the request we have a reference to and matches the active
629          * request.
630          *
631          * Before we increment the refcount, we chase the request->engine
632          * pointer. We must not call kmem_cache_zalloc() or else we set
633          * that pointer to NULL and cause a crash during the lookup. If
634          * we see the request is completed (based on the value of the
635          * old engine and seqno), the lookup is complete and reports NULL.
636          * If we decide the request is not completed (new engine or seqno),
637          * then we grab a reference and double check that it is still the
638          * active request - which it won't be and restart the lookup.
639          *
640          * Do not use kmem_cache_zalloc() here!
641          */
642         rq = kmem_cache_alloc(global.slab_requests,
643                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
644         if (unlikely(!rq)) {
645                 rq = request_alloc_slow(tl, gfp);
646                 if (!rq) {
647                         ret = -ENOMEM;
648                         goto err_unreserve;
649                 }
650         }
651
652         ret = intel_timeline_get_seqno(tl, rq, &seqno);
653         if (ret)
654                 goto err_free;
655
656         rq->i915 = ce->engine->i915;
657         rq->context = ce;
658         rq->engine = ce->engine;
659         rq->ring = ce->ring;
660         rq->execution_mask = ce->engine->mask;
661
662         RCU_INIT_POINTER(rq->timeline, tl);
663         RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
664         rq->hwsp_seqno = tl->hwsp_seqno;
665
666         rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
667
668         dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
669                        tl->fence_context, seqno);
670
671         /* We bump the ref for the fence chain */
672         i915_sw_fence_reinit(&i915_request_get(rq)->submit);
673         i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
674
675         i915_sched_node_reinit(&rq->sched);
676
677         /* No zalloc, everything must be cleared after use */
678         rq->batch = NULL;
679         GEM_BUG_ON(rq->file_priv);
680         GEM_BUG_ON(rq->capture_list);
681         GEM_BUG_ON(!list_empty(&rq->execute_cb));
682
683         /*
684          * Reserve space in the ring buffer for all the commands required to
685          * eventually emit this request. This is to guarantee that the
686          * i915_request_add() call can't fail. Note that the reserve may need
687          * to be redone if the request is not actually submitted straight
688          * away, e.g. because a GPU scheduler has deferred it.
689          *
690          * Note that due to how we add reserved_space to intel_ring_begin()
691          * we need to double our request to ensure that if we need to wrap
692          * around inside i915_request_add() there is sufficient space at
693          * the beginning of the ring as well.
694          */
695         rq->reserved_space =
696                 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
697
698         /*
699          * Record the position of the start of the request so that
700          * should we detect the updated seqno part-way through the
701          * GPU processing the request, we never over-estimate the
702          * position of the head.
703          */
704         rq->head = rq->ring->emit;
705
706         ret = rq->engine->request_alloc(rq);
707         if (ret)
708                 goto err_unwind;
709
710         rq->infix = rq->ring->emit; /* end of header; start of user payload */
711
712         intel_context_mark_active(ce);
713         return rq;
714
715 err_unwind:
716         ce->ring->emit = rq->head;
717
718         /* Make sure we didn't add ourselves to external state before freeing */
719         GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
720         GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
721
722 err_free:
723         kmem_cache_free(global.slab_requests, rq);
724 err_unreserve:
725         intel_context_unpin(ce);
726         return ERR_PTR(ret);
727 }
728
729 struct i915_request *
730 i915_request_create(struct intel_context *ce)
731 {
732         struct i915_request *rq;
733         struct intel_timeline *tl;
734
735         tl = intel_context_timeline_lock(ce);
736         if (IS_ERR(tl))
737                 return ERR_CAST(tl);
738
739         /* Move our oldest request to the slab-cache (if not in use!) */
740         rq = list_first_entry(&tl->requests, typeof(*rq), link);
741         if (!list_is_last(&rq->link, &tl->requests))
742                 i915_request_retire(rq);
743
744         intel_context_enter(ce);
745         rq = __i915_request_create(ce, GFP_KERNEL);
746         intel_context_exit(ce); /* active reference transferred to request */
747         if (IS_ERR(rq))
748                 goto err_unlock;
749
750         /* Check that we do not interrupt ourselves with a new request */
751         rq->cookie = lockdep_pin_lock(&tl->mutex);
752
753         return rq;
754
755 err_unlock:
756         intel_context_timeline_unlock(tl);
757         return rq;
758 }
759
760 static int
761 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
762 {
763         struct dma_fence *fence;
764         int err;
765
766         GEM_BUG_ON(i915_request_timeline(rq) ==
767                    rcu_access_pointer(signal->timeline));
768
769         fence = NULL;
770         rcu_read_lock();
771         spin_lock_irq(&signal->lock);
772         if (!i915_request_started(signal) &&
773             !list_is_first(&signal->link,
774                            &rcu_dereference(signal->timeline)->requests)) {
775                 struct i915_request *prev = list_prev_entry(signal, link);
776
777                 /*
778                  * Peek at the request before us in the timeline. That
779                  * request will only be valid before it is retired, so
780                  * after acquiring a reference to it, confirm that it is
781                  * still part of the signaler's timeline.
782                  */
783                 if (i915_request_get_rcu(prev)) {
784                         if (list_next_entry(prev, link) == signal)
785                                 fence = &prev->fence;
786                         else
787                                 i915_request_put(prev);
788                 }
789         }
790         spin_unlock_irq(&signal->lock);
791         rcu_read_unlock();
792         if (!fence)
793                 return 0;
794
795         err = 0;
796         if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
797                 err = i915_sw_fence_await_dma_fence(&rq->submit,
798                                                     fence, 0,
799                                                     I915_FENCE_GFP);
800         dma_fence_put(fence);
801
802         return err;
803 }
804
805 static intel_engine_mask_t
806 already_busywaiting(struct i915_request *rq)
807 {
808         /*
809          * Polling a semaphore causes bus traffic, delaying other users of
810          * both the GPU and CPU. We want to limit the impact on others,
811          * while taking advantage of early submission to reduce GPU
812          * latency. Therefore we restrict ourselves to not using more
813          * than one semaphore from each source, and not using a semaphore
814          * if we have detected the engine is saturated (i.e. would not be
815          * submitted early and cause bus traffic reading an already passed
816          * semaphore).
817          *
818          * See the are-we-too-late? check in __i915_request_submit().
819          */
820         return rq->sched.semaphores | rq->engine->saturated;
821 }
822
823 static int
824 __emit_semaphore_wait(struct i915_request *to,
825                       struct i915_request *from,
826                       u32 seqno)
827 {
828         const int has_token = INTEL_GEN(to->i915) >= 12;
829         u32 hwsp_offset;
830         int len, err;
831         u32 *cs;
832
833         GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
834
835         /* We need to pin the signaler's HWSP until we are finished reading. */
836         err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
837         if (err)
838                 return err;
839
840         len = 4;
841         if (has_token)
842                 len += 2;
843
844         cs = intel_ring_begin(to, len);
845         if (IS_ERR(cs))
846                 return PTR_ERR(cs);
847
848         /*
849          * Using greater-than-or-equal here means we have to worry
850          * about seqno wraparound. To side step that issue, we swap
851          * the timeline HWSP upon wrapping, so that everyone listening
852          * for the old (pre-wrap) values do not see the much smaller
853          * (post-wrap) values than they were expecting (and so wait
854          * forever).
855          */
856         *cs++ = (MI_SEMAPHORE_WAIT |
857                  MI_SEMAPHORE_GLOBAL_GTT |
858                  MI_SEMAPHORE_POLL |
859                  MI_SEMAPHORE_SAD_GTE_SDD) +
860                 has_token;
861         *cs++ = seqno;
862         *cs++ = hwsp_offset;
863         *cs++ = 0;
864         if (has_token) {
865                 *cs++ = 0;
866                 *cs++ = MI_NOOP;
867         }
868
869         intel_ring_advance(to, cs);
870         return 0;
871 }
872
873 static int
874 emit_semaphore_wait(struct i915_request *to,
875                     struct i915_request *from,
876                     gfp_t gfp)
877 {
878         /* Just emit the first semaphore we see as request space is limited. */
879         if (already_busywaiting(to) & from->engine->mask)
880                 goto await_fence;
881
882         if (i915_request_await_start(to, from) < 0)
883                 goto await_fence;
884
885         /* Only submit our spinner after the signaler is running! */
886         if (__await_execution(to, from, NULL, gfp))
887                 goto await_fence;
888
889         if (__emit_semaphore_wait(to, from, from->fence.seqno))
890                 goto await_fence;
891
892         to->sched.semaphores |= from->engine->mask;
893         to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
894         return 0;
895
896 await_fence:
897         return i915_sw_fence_await_dma_fence(&to->submit,
898                                              &from->fence, 0,
899                                              I915_FENCE_GFP);
900 }
901
902 static int
903 i915_request_await_request(struct i915_request *to, struct i915_request *from)
904 {
905         int ret;
906
907         GEM_BUG_ON(to == from);
908         GEM_BUG_ON(to->timeline == from->timeline);
909
910         if (i915_request_completed(from))
911                 return 0;
912
913         if (to->engine->schedule) {
914                 ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
915                 if (ret < 0)
916                         return ret;
917         }
918
919         if (to->engine == from->engine)
920                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
921                                                        &from->submit,
922                                                        I915_FENCE_GFP);
923         else if (intel_context_use_semaphores(to->context))
924                 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
925         else
926                 ret = i915_sw_fence_await_dma_fence(&to->submit,
927                                                     &from->fence, 0,
928                                                     I915_FENCE_GFP);
929         if (ret < 0)
930                 return ret;
931
932         if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
933                 ret = i915_sw_fence_await_dma_fence(&to->semaphore,
934                                                     &from->fence, 0,
935                                                     I915_FENCE_GFP);
936                 if (ret < 0)
937                         return ret;
938         }
939
940         return 0;
941 }
942
943 int
944 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
945 {
946         struct dma_fence **child = &fence;
947         unsigned int nchild = 1;
948         int ret;
949
950         /*
951          * Note that if the fence-array was created in signal-on-any mode,
952          * we should *not* decompose it into its individual fences. However,
953          * we don't currently store which mode the fence-array is operating
954          * in. Fortunately, the only user of signal-on-any is private to
955          * amdgpu and we should not see any incoming fence-array from
956          * sync-file being in signal-on-any mode.
957          */
958         if (dma_fence_is_array(fence)) {
959                 struct dma_fence_array *array = to_dma_fence_array(fence);
960
961                 child = array->fences;
962                 nchild = array->num_fences;
963                 GEM_BUG_ON(!nchild);
964         }
965
966         do {
967                 fence = *child++;
968                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
969                         i915_sw_fence_set_error_once(&rq->submit, fence->error);
970                         continue;
971                 }
972
973                 /*
974                  * Requests on the same timeline are explicitly ordered, along
975                  * with their dependencies, by i915_request_add() which ensures
976                  * that requests are submitted in-order through each ring.
977                  */
978                 if (fence->context == rq->fence.context)
979                         continue;
980
981                 /* Squash repeated waits to the same timelines */
982                 if (fence->context &&
983                     intel_timeline_sync_is_later(i915_request_timeline(rq),
984                                                  fence))
985                         continue;
986
987                 if (dma_fence_is_i915(fence))
988                         ret = i915_request_await_request(rq, to_request(fence));
989                 else
990                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
991                                                             fence->context ? I915_FENCE_TIMEOUT : 0,
992                                                             I915_FENCE_GFP);
993                 if (ret < 0)
994                         return ret;
995
996                 /* Record the latest fence used against each timeline */
997                 if (fence->context)
998                         intel_timeline_sync_set(i915_request_timeline(rq),
999                                                 fence);
1000         } while (--nchild);
1001
1002         return 0;
1003 }
1004
1005 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1006                                           struct dma_fence *fence)
1007 {
1008         return __intel_timeline_sync_is_later(tl,
1009                                               fence->context,
1010                                               fence->seqno - 1);
1011 }
1012
1013 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1014                                          const struct dma_fence *fence)
1015 {
1016         return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1017 }
1018
1019 static int
1020 __i915_request_await_execution(struct i915_request *to,
1021                                struct i915_request *from,
1022                                void (*hook)(struct i915_request *rq,
1023                                             struct dma_fence *signal))
1024 {
1025         int err;
1026
1027         /* Submit both requests at the same time */
1028         err = __await_execution(to, from, hook, I915_FENCE_GFP);
1029         if (err)
1030                 return err;
1031
1032         /* Squash repeated depenendices to the same timelines */
1033         if (intel_timeline_sync_has_start(i915_request_timeline(to),
1034                                           &from->fence))
1035                 return 0;
1036
1037         /* Ensure both start together [after all semaphores in signal] */
1038         if (intel_engine_has_semaphores(to->engine))
1039                 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1040         else
1041                 err = i915_request_await_start(to, from);
1042         if (err < 0)
1043                 return err;
1044
1045         /* Couple the dependency tree for PI on this exposed to->fence */
1046         if (to->engine->schedule) {
1047                 err = i915_sched_node_add_dependency(&to->sched, &from->sched);
1048                 if (err < 0)
1049                         return err;
1050         }
1051
1052         return intel_timeline_sync_set_start(i915_request_timeline(to),
1053                                              &from->fence);
1054 }
1055
1056 int
1057 i915_request_await_execution(struct i915_request *rq,
1058                              struct dma_fence *fence,
1059                              void (*hook)(struct i915_request *rq,
1060                                           struct dma_fence *signal))
1061 {
1062         struct dma_fence **child = &fence;
1063         unsigned int nchild = 1;
1064         int ret;
1065
1066         if (dma_fence_is_array(fence)) {
1067                 struct dma_fence_array *array = to_dma_fence_array(fence);
1068
1069                 /* XXX Error for signal-on-any fence arrays */
1070
1071                 child = array->fences;
1072                 nchild = array->num_fences;
1073                 GEM_BUG_ON(!nchild);
1074         }
1075
1076         do {
1077                 fence = *child++;
1078                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1079                         i915_sw_fence_set_error_once(&rq->submit, fence->error);
1080                         continue;
1081                 }
1082
1083                 /*
1084                  * We don't squash repeated fence dependencies here as we
1085                  * want to run our callback in all cases.
1086                  */
1087
1088                 if (dma_fence_is_i915(fence))
1089                         ret = __i915_request_await_execution(rq,
1090                                                              to_request(fence),
1091                                                              hook);
1092                 else
1093                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1094                                                             I915_FENCE_TIMEOUT,
1095                                                             GFP_KERNEL);
1096                 if (ret < 0)
1097                         return ret;
1098         } while (--nchild);
1099
1100         return 0;
1101 }
1102
1103 /**
1104  * i915_request_await_object - set this request to (async) wait upon a bo
1105  * @to: request we are wishing to use
1106  * @obj: object which may be in use on another ring.
1107  * @write: whether the wait is on behalf of a writer
1108  *
1109  * This code is meant to abstract object synchronization with the GPU.
1110  * Conceptually we serialise writes between engines inside the GPU.
1111  * We only allow one engine to write into a buffer at any time, but
1112  * multiple readers. To ensure each has a coherent view of memory, we must:
1113  *
1114  * - If there is an outstanding write request to the object, the new
1115  *   request must wait for it to complete (either CPU or in hw, requests
1116  *   on the same ring will be naturally ordered).
1117  *
1118  * - If we are a write request (pending_write_domain is set), the new
1119  *   request must wait for outstanding read requests to complete.
1120  *
1121  * Returns 0 if successful, else propagates up the lower layer error.
1122  */
1123 int
1124 i915_request_await_object(struct i915_request *to,
1125                           struct drm_i915_gem_object *obj,
1126                           bool write)
1127 {
1128         struct dma_fence *excl;
1129         int ret = 0;
1130
1131         if (write) {
1132                 struct dma_fence **shared;
1133                 unsigned int count, i;
1134
1135                 ret = dma_resv_get_fences_rcu(obj->base.resv,
1136                                                         &excl, &count, &shared);
1137                 if (ret)
1138                         return ret;
1139
1140                 for (i = 0; i < count; i++) {
1141                         ret = i915_request_await_dma_fence(to, shared[i]);
1142                         if (ret)
1143                                 break;
1144
1145                         dma_fence_put(shared[i]);
1146                 }
1147
1148                 for (; i < count; i++)
1149                         dma_fence_put(shared[i]);
1150                 kfree(shared);
1151         } else {
1152                 excl = dma_resv_get_excl_rcu(obj->base.resv);
1153         }
1154
1155         if (excl) {
1156                 if (ret == 0)
1157                         ret = i915_request_await_dma_fence(to, excl);
1158
1159                 dma_fence_put(excl);
1160         }
1161
1162         return ret;
1163 }
1164
1165 void i915_request_skip(struct i915_request *rq, int error)
1166 {
1167         void *vaddr = rq->ring->vaddr;
1168         u32 head;
1169
1170         GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1171         dma_fence_set_error(&rq->fence, error);
1172
1173         if (rq->infix == rq->postfix)
1174                 return;
1175
1176         /*
1177          * As this request likely depends on state from the lost
1178          * context, clear out all the user operations leaving the
1179          * breadcrumb at the end (so we get the fence notifications).
1180          */
1181         head = rq->infix;
1182         if (rq->postfix < head) {
1183                 memset(vaddr + head, 0, rq->ring->size - head);
1184                 head = 0;
1185         }
1186         memset(vaddr + head, 0, rq->postfix - head);
1187         rq->infix = rq->postfix;
1188 }
1189
1190 static struct i915_request *
1191 __i915_request_add_to_timeline(struct i915_request *rq)
1192 {
1193         struct intel_timeline *timeline = i915_request_timeline(rq);
1194         struct i915_request *prev;
1195
1196         /*
1197          * Dependency tracking and request ordering along the timeline
1198          * is special cased so that we can eliminate redundant ordering
1199          * operations while building the request (we know that the timeline
1200          * itself is ordered, and here we guarantee it).
1201          *
1202          * As we know we will need to emit tracking along the timeline,
1203          * we embed the hooks into our request struct -- at the cost of
1204          * having to have specialised no-allocation interfaces (which will
1205          * be beneficial elsewhere).
1206          *
1207          * A second benefit to open-coding i915_request_await_request is
1208          * that we can apply a slight variant of the rules specialised
1209          * for timelines that jump between engines (such as virtual engines).
1210          * If we consider the case of virtual engine, we must emit a dma-fence
1211          * to prevent scheduling of the second request until the first is
1212          * complete (to maximise our greedy late load balancing) and this
1213          * precludes optimising to use semaphores serialisation of a single
1214          * timeline across engines.
1215          */
1216         prev = to_request(__i915_active_fence_set(&timeline->last_request,
1217                                                   &rq->fence));
1218         if (prev && !i915_request_completed(prev)) {
1219                 if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1220                         i915_sw_fence_await_sw_fence(&rq->submit,
1221                                                      &prev->submit,
1222                                                      &rq->submitq);
1223                 else
1224                         __i915_sw_fence_await_dma_fence(&rq->submit,
1225                                                         &prev->fence,
1226                                                         &rq->dmaq);
1227                 if (rq->engine->schedule)
1228                         __i915_sched_node_add_dependency(&rq->sched,
1229                                                          &prev->sched,
1230                                                          &rq->dep,
1231                                                          0);
1232         }
1233
1234         list_add_tail(&rq->link, &timeline->requests);
1235
1236         /*
1237          * Make sure that no request gazumped us - if it was allocated after
1238          * our i915_request_alloc() and called __i915_request_add() before
1239          * us, the timeline will hold its seqno which is later than ours.
1240          */
1241         GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1242
1243         return prev;
1244 }
1245
1246 /*
1247  * NB: This function is not allowed to fail. Doing so would mean the the
1248  * request is not being tracked for completion but the work itself is
1249  * going to happen on the hardware. This would be a Bad Thing(tm).
1250  */
1251 struct i915_request *__i915_request_commit(struct i915_request *rq)
1252 {
1253         struct intel_engine_cs *engine = rq->engine;
1254         struct intel_ring *ring = rq->ring;
1255         u32 *cs;
1256
1257         RQ_TRACE(rq, "\n");
1258
1259         /*
1260          * To ensure that this call will not fail, space for its emissions
1261          * should already have been reserved in the ring buffer. Let the ring
1262          * know that it is time to use that space up.
1263          */
1264         GEM_BUG_ON(rq->reserved_space > ring->space);
1265         rq->reserved_space = 0;
1266         rq->emitted_jiffies = jiffies;
1267
1268         /*
1269          * Record the position of the start of the breadcrumb so that
1270          * should we detect the updated seqno part-way through the
1271          * GPU processing the request, we never over-estimate the
1272          * position of the ring's HEAD.
1273          */
1274         cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1275         GEM_BUG_ON(IS_ERR(cs));
1276         rq->postfix = intel_ring_offset(rq, cs);
1277
1278         return __i915_request_add_to_timeline(rq);
1279 }
1280
1281 void __i915_request_queue(struct i915_request *rq,
1282                           const struct i915_sched_attr *attr)
1283 {
1284         /*
1285          * Let the backend know a new request has arrived that may need
1286          * to adjust the existing execution schedule due to a high priority
1287          * request - i.e. we may want to preempt the current request in order
1288          * to run a high priority dependency chain *before* we can execute this
1289          * request.
1290          *
1291          * This is called before the request is ready to run so that we can
1292          * decide whether to preempt the entire chain so that it is ready to
1293          * run at the earliest possible convenience.
1294          */
1295         i915_sw_fence_commit(&rq->semaphore);
1296         if (attr && rq->engine->schedule)
1297                 rq->engine->schedule(rq, attr);
1298         i915_sw_fence_commit(&rq->submit);
1299 }
1300
1301 void i915_request_add(struct i915_request *rq)
1302 {
1303         struct intel_timeline * const tl = i915_request_timeline(rq);
1304         struct i915_sched_attr attr = {};
1305         struct i915_request *prev;
1306
1307         lockdep_assert_held(&tl->mutex);
1308         lockdep_unpin_lock(&tl->mutex, rq->cookie);
1309
1310         trace_i915_request_add(rq);
1311
1312         prev = __i915_request_commit(rq);
1313
1314         if (rcu_access_pointer(rq->context->gem_context))
1315                 attr = i915_request_gem_context(rq)->sched;
1316
1317         /*
1318          * Boost actual workloads past semaphores!
1319          *
1320          * With semaphores we spin on one engine waiting for another,
1321          * simply to reduce the latency of starting our work when
1322          * the signaler completes. However, if there is any other
1323          * work that we could be doing on this engine instead, that
1324          * is better utilisation and will reduce the overall duration
1325          * of the current work. To avoid PI boosting a semaphore
1326          * far in the distance past over useful work, we keep a history
1327          * of any semaphore use along our dependency chain.
1328          */
1329         if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1330                 attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1331
1332         /*
1333          * Boost priorities to new clients (new request flows).
1334          *
1335          * Allow interactive/synchronous clients to jump ahead of
1336          * the bulk clients. (FQ_CODEL)
1337          */
1338         if (list_empty(&rq->sched.signalers_list))
1339                 attr.priority |= I915_PRIORITY_WAIT;
1340
1341         local_bh_disable();
1342         __i915_request_queue(rq, &attr);
1343         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1344
1345         /*
1346          * In typical scenarios, we do not expect the previous request on
1347          * the timeline to be still tracked by timeline->last_request if it
1348          * has been completed. If the completed request is still here, that
1349          * implies that request retirement is a long way behind submission,
1350          * suggesting that we haven't been retiring frequently enough from
1351          * the combination of retire-before-alloc, waiters and the background
1352          * retirement worker. So if the last request on this timeline was
1353          * already completed, do a catch up pass, flushing the retirement queue
1354          * up to this client. Since we have now moved the heaviest operations
1355          * during retirement onto secondary workers, such as freeing objects
1356          * or contexts, retiring a bunch of requests is mostly list management
1357          * (and cache misses), and so we should not be overly penalizing this
1358          * client by performing excess work, though we may still performing
1359          * work on behalf of others -- but instead we should benefit from
1360          * improved resource management. (Well, that's the theory at least.)
1361          */
1362         if (prev &&
1363             i915_request_completed(prev) &&
1364             rcu_access_pointer(prev->timeline) == tl)
1365                 i915_request_retire_upto(prev);
1366
1367         mutex_unlock(&tl->mutex);
1368 }
1369
1370 static unsigned long local_clock_us(unsigned int *cpu)
1371 {
1372         unsigned long t;
1373
1374         /*
1375          * Cheaply and approximately convert from nanoseconds to microseconds.
1376          * The result and subsequent calculations are also defined in the same
1377          * approximate microseconds units. The principal source of timing
1378          * error here is from the simple truncation.
1379          *
1380          * Note that local_clock() is only defined wrt to the current CPU;
1381          * the comparisons are no longer valid if we switch CPUs. Instead of
1382          * blocking preemption for the entire busywait, we can detect the CPU
1383          * switch and use that as indicator of system load and a reason to
1384          * stop busywaiting, see busywait_stop().
1385          */
1386         *cpu = get_cpu();
1387         t = local_clock() >> 10;
1388         put_cpu();
1389
1390         return t;
1391 }
1392
1393 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1394 {
1395         unsigned int this_cpu;
1396
1397         if (time_after(local_clock_us(&this_cpu), timeout))
1398                 return true;
1399
1400         return this_cpu != cpu;
1401 }
1402
1403 static bool __i915_spin_request(const struct i915_request * const rq,
1404                                 int state, unsigned long timeout_us)
1405 {
1406         unsigned int cpu;
1407
1408         /*
1409          * Only wait for the request if we know it is likely to complete.
1410          *
1411          * We don't track the timestamps around requests, nor the average
1412          * request length, so we do not have a good indicator that this
1413          * request will complete within the timeout. What we do know is the
1414          * order in which requests are executed by the context and so we can
1415          * tell if the request has been started. If the request is not even
1416          * running yet, it is a fair assumption that it will not complete
1417          * within our relatively short timeout.
1418          */
1419         if (!i915_request_is_running(rq))
1420                 return false;
1421
1422         /*
1423          * When waiting for high frequency requests, e.g. during synchronous
1424          * rendering split between the CPU and GPU, the finite amount of time
1425          * required to set up the irq and wait upon it limits the response
1426          * rate. By busywaiting on the request completion for a short while we
1427          * can service the high frequency waits as quick as possible. However,
1428          * if it is a slow request, we want to sleep as quickly as possible.
1429          * The tradeoff between waiting and sleeping is roughly the time it
1430          * takes to sleep on a request, on the order of a microsecond.
1431          */
1432
1433         timeout_us += local_clock_us(&cpu);
1434         do {
1435                 if (i915_request_completed(rq))
1436                         return true;
1437
1438                 if (signal_pending_state(state, current))
1439                         break;
1440
1441                 if (busywait_stop(timeout_us, cpu))
1442                         break;
1443
1444                 cpu_relax();
1445         } while (!need_resched());
1446
1447         return false;
1448 }
1449
1450 struct request_wait {
1451         struct dma_fence_cb cb;
1452         struct task_struct *tsk;
1453 };
1454
1455 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1456 {
1457         struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1458
1459         wake_up_process(wait->tsk);
1460 }
1461
1462 /**
1463  * i915_request_wait - wait until execution of request has finished
1464  * @rq: the request to wait upon
1465  * @flags: how to wait
1466  * @timeout: how long to wait in jiffies
1467  *
1468  * i915_request_wait() waits for the request to be completed, for a
1469  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1470  * unbounded wait).
1471  *
1472  * Returns the remaining time (in jiffies) if the request completed, which may
1473  * be zero or -ETIME if the request is unfinished after the timeout expires.
1474  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1475  * pending before the request completes.
1476  */
1477 long i915_request_wait(struct i915_request *rq,
1478                        unsigned int flags,
1479                        long timeout)
1480 {
1481         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1482                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1483         struct request_wait wait;
1484
1485         might_sleep();
1486         GEM_BUG_ON(timeout < 0);
1487
1488         if (dma_fence_is_signaled(&rq->fence))
1489                 return timeout;
1490
1491         if (!timeout)
1492                 return -ETIME;
1493
1494         trace_i915_request_wait_begin(rq, flags);
1495
1496         /*
1497          * We must never wait on the GPU while holding a lock as we
1498          * may need to perform a GPU reset. So while we don't need to
1499          * serialise wait/reset with an explicit lock, we do want
1500          * lockdep to detect potential dependency cycles.
1501          */
1502         mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1503
1504         /*
1505          * Optimistic spin before touching IRQs.
1506          *
1507          * We may use a rather large value here to offset the penalty of
1508          * switching away from the active task. Frequently, the client will
1509          * wait upon an old swapbuffer to throttle itself to remain within a
1510          * frame of the gpu. If the client is running in lockstep with the gpu,
1511          * then it should not be waiting long at all, and a sleep now will incur
1512          * extra scheduler latency in producing the next frame. To try to
1513          * avoid adding the cost of enabling/disabling the interrupt to the
1514          * short wait, we first spin to see if the request would have completed
1515          * in the time taken to setup the interrupt.
1516          *
1517          * We need upto 5us to enable the irq, and upto 20us to hide the
1518          * scheduler latency of a context switch, ignoring the secondary
1519          * impacts from a context switch such as cache eviction.
1520          *
1521          * The scheme used for low-latency IO is called "hybrid interrupt
1522          * polling". The suggestion there is to sleep until just before you
1523          * expect to be woken by the device interrupt and then poll for its
1524          * completion. That requires having a good predictor for the request
1525          * duration, which we currently lack.
1526          */
1527         if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1528             __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1529                 dma_fence_signal(&rq->fence);
1530                 goto out;
1531         }
1532
1533         /*
1534          * This client is about to stall waiting for the GPU. In many cases
1535          * this is undesirable and limits the throughput of the system, as
1536          * many clients cannot continue processing user input/output whilst
1537          * blocked. RPS autotuning may take tens of milliseconds to respond
1538          * to the GPU load and thus incurs additional latency for the client.
1539          * We can circumvent that by promoting the GPU frequency to maximum
1540          * before we sleep. This makes the GPU throttle up much more quickly
1541          * (good for benchmarks and user experience, e.g. window animations),
1542          * but at a cost of spending more power processing the workload
1543          * (bad for battery).
1544          */
1545         if (flags & I915_WAIT_PRIORITY) {
1546                 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1547                         intel_rps_boost(rq);
1548                 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1549         }
1550
1551         wait.tsk = current;
1552         if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1553                 goto out;
1554
1555         for (;;) {
1556                 set_current_state(state);
1557
1558                 if (i915_request_completed(rq)) {
1559                         dma_fence_signal(&rq->fence);
1560                         break;
1561                 }
1562
1563                 if (signal_pending_state(state, current)) {
1564                         timeout = -ERESTARTSYS;
1565                         break;
1566                 }
1567
1568                 if (!timeout) {
1569                         timeout = -ETIME;
1570                         break;
1571                 }
1572
1573                 intel_engine_flush_submission(rq->engine);
1574                 timeout = io_schedule_timeout(timeout);
1575         }
1576         __set_current_state(TASK_RUNNING);
1577
1578         dma_fence_remove_callback(&rq->fence, &wait.cb);
1579
1580 out:
1581         mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1582         trace_i915_request_wait_end(rq);
1583         return timeout;
1584 }
1585
1586 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1587 #include "selftests/mock_request.c"
1588 #include "selftests/i915_request.c"
1589 #endif
1590
1591 static void i915_global_request_shrink(void)
1592 {
1593         kmem_cache_shrink(global.slab_dependencies);
1594         kmem_cache_shrink(global.slab_execute_cbs);
1595         kmem_cache_shrink(global.slab_requests);
1596 }
1597
1598 static void i915_global_request_exit(void)
1599 {
1600         kmem_cache_destroy(global.slab_dependencies);
1601         kmem_cache_destroy(global.slab_execute_cbs);
1602         kmem_cache_destroy(global.slab_requests);
1603 }
1604
1605 static struct i915_global_request global = { {
1606         .shrink = i915_global_request_shrink,
1607         .exit = i915_global_request_exit,
1608 } };
1609
1610 int __init i915_global_request_init(void)
1611 {
1612         global.slab_requests =
1613                 kmem_cache_create("i915_request",
1614                                   sizeof(struct i915_request),
1615                                   __alignof__(struct i915_request),
1616                                   SLAB_HWCACHE_ALIGN |
1617                                   SLAB_RECLAIM_ACCOUNT |
1618                                   SLAB_TYPESAFE_BY_RCU,
1619                                   __i915_request_ctor);
1620         if (!global.slab_requests)
1621                 return -ENOMEM;
1622
1623         global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1624                                              SLAB_HWCACHE_ALIGN |
1625                                              SLAB_RECLAIM_ACCOUNT |
1626                                              SLAB_TYPESAFE_BY_RCU);
1627         if (!global.slab_execute_cbs)
1628                 goto err_requests;
1629
1630         global.slab_dependencies = KMEM_CACHE(i915_dependency,
1631                                               SLAB_HWCACHE_ALIGN |
1632                                               SLAB_RECLAIM_ACCOUNT);
1633         if (!global.slab_dependencies)
1634                 goto err_execute_cbs;
1635
1636         i915_global_register(&global.base);
1637         return 0;
1638
1639 err_execute_cbs:
1640         kmem_cache_destroy(global.slab_execute_cbs);
1641 err_requests:
1642         kmem_cache_destroy(global.slab_requests);
1643         return -ENOMEM;
1644 }