drm/i915: Drop no-semaphore boosting
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32
33 #include "gem/i915_gem_context.h"
34 #include "gt/intel_context.h"
35 #include "gt/intel_ring.h"
36 #include "gt/intel_rps.h"
37
38 #include "i915_active.h"
39 #include "i915_drv.h"
40 #include "i915_globals.h"
41 #include "i915_trace.h"
42 #include "intel_pm.h"
43
44 struct execute_cb {
45         struct list_head link;
46         struct irq_work work;
47         struct i915_sw_fence *fence;
48         void (*hook)(struct i915_request *rq, struct dma_fence *signal);
49         struct i915_request *signal;
50 };
51
52 static struct i915_global_request {
53         struct i915_global base;
54         struct kmem_cache *slab_requests;
55         struct kmem_cache *slab_execute_cbs;
56 } global;
57
58 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59 {
60         return dev_name(to_request(fence)->i915->drm.dev);
61 }
62
63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64 {
65         const struct i915_gem_context *ctx;
66
67         /*
68          * The timeline struct (as part of the ppgtt underneath a context)
69          * may be freed when the request is no longer in use by the GPU.
70          * We could extend the life of a context to beyond that of all
71          * fences, possibly keeping the hw resource around indefinitely,
72          * or we just give them a false name. Since
73          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
74          * lie seems justifiable.
75          */
76         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
77                 return "signaled";
78
79         ctx = i915_request_gem_context(to_request(fence));
80         if (!ctx)
81                 return "[" DRIVER_NAME "]";
82
83         return ctx->name;
84 }
85
86 static bool i915_fence_signaled(struct dma_fence *fence)
87 {
88         return i915_request_completed(to_request(fence));
89 }
90
91 static bool i915_fence_enable_signaling(struct dma_fence *fence)
92 {
93         return i915_request_enable_breadcrumb(to_request(fence));
94 }
95
96 static signed long i915_fence_wait(struct dma_fence *fence,
97                                    bool interruptible,
98                                    signed long timeout)
99 {
100         return i915_request_wait(to_request(fence),
101                                  interruptible | I915_WAIT_PRIORITY,
102                                  timeout);
103 }
104
105 struct kmem_cache *i915_request_slab_cache(void)
106 {
107         return global.slab_requests;
108 }
109
110 static void i915_fence_release(struct dma_fence *fence)
111 {
112         struct i915_request *rq = to_request(fence);
113
114         /*
115          * The request is put onto a RCU freelist (i.e. the address
116          * is immediately reused), mark the fences as being freed now.
117          * Otherwise the debugobjects for the fences are only marked as
118          * freed when the slab cache itself is freed, and so we would get
119          * caught trying to reuse dead objects.
120          */
121         i915_sw_fence_fini(&rq->submit);
122         i915_sw_fence_fini(&rq->semaphore);
123
124         /* Keep one request on each engine for reserved use under mempressure */
125         if (!cmpxchg(&rq->engine->request_pool, NULL, rq))
126                 return;
127
128         kmem_cache_free(global.slab_requests, rq);
129 }
130
131 const struct dma_fence_ops i915_fence_ops = {
132         .get_driver_name = i915_fence_get_driver_name,
133         .get_timeline_name = i915_fence_get_timeline_name,
134         .enable_signaling = i915_fence_enable_signaling,
135         .signaled = i915_fence_signaled,
136         .wait = i915_fence_wait,
137         .release = i915_fence_release,
138 };
139
140 static void irq_execute_cb(struct irq_work *wrk)
141 {
142         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
143
144         i915_sw_fence_complete(cb->fence);
145         kmem_cache_free(global.slab_execute_cbs, cb);
146 }
147
148 static void irq_execute_cb_hook(struct irq_work *wrk)
149 {
150         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
151
152         cb->hook(container_of(cb->fence, struct i915_request, submit),
153                  &cb->signal->fence);
154         i915_request_put(cb->signal);
155
156         irq_execute_cb(wrk);
157 }
158
159 static void __notify_execute_cb(struct i915_request *rq)
160 {
161         struct execute_cb *cb;
162
163         lockdep_assert_held(&rq->lock);
164
165         if (list_empty(&rq->execute_cb))
166                 return;
167
168         list_for_each_entry(cb, &rq->execute_cb, link)
169                 irq_work_queue(&cb->work);
170
171         /*
172          * XXX Rollback on __i915_request_unsubmit()
173          *
174          * In the future, perhaps when we have an active time-slicing scheduler,
175          * it will be interesting to unsubmit parallel execution and remove
176          * busywaits from the GPU until their master is restarted. This is
177          * quite hairy, we have to carefully rollback the fence and do a
178          * preempt-to-idle cycle on the target engine, all the while the
179          * master execute_cb may refire.
180          */
181         INIT_LIST_HEAD(&rq->execute_cb);
182 }
183
184 static inline void
185 remove_from_client(struct i915_request *request)
186 {
187         struct drm_i915_file_private *file_priv;
188
189         if (!READ_ONCE(request->file_priv))
190                 return;
191
192         rcu_read_lock();
193         file_priv = xchg(&request->file_priv, NULL);
194         if (file_priv) {
195                 spin_lock(&file_priv->mm.lock);
196                 list_del(&request->client_link);
197                 spin_unlock(&file_priv->mm.lock);
198         }
199         rcu_read_unlock();
200 }
201
202 static void free_capture_list(struct i915_request *request)
203 {
204         struct i915_capture_list *capture;
205
206         capture = fetch_and_zero(&request->capture_list);
207         while (capture) {
208                 struct i915_capture_list *next = capture->next;
209
210                 kfree(capture);
211                 capture = next;
212         }
213 }
214
215 static void __i915_request_fill(struct i915_request *rq, u8 val)
216 {
217         void *vaddr = rq->ring->vaddr;
218         u32 head;
219
220         head = rq->infix;
221         if (rq->postfix < head) {
222                 memset(vaddr + head, val, rq->ring->size - head);
223                 head = 0;
224         }
225         memset(vaddr + head, val, rq->postfix - head);
226 }
227
228 static void remove_from_engine(struct i915_request *rq)
229 {
230         struct intel_engine_cs *engine, *locked;
231
232         /*
233          * Virtual engines complicate acquiring the engine timeline lock,
234          * as their rq->engine pointer is not stable until under that
235          * engine lock. The simple ploy we use is to take the lock then
236          * check that the rq still belongs to the newly locked engine.
237          */
238         locked = READ_ONCE(rq->engine);
239         spin_lock_irq(&locked->active.lock);
240         while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
241                 spin_unlock(&locked->active.lock);
242                 spin_lock(&engine->active.lock);
243                 locked = engine;
244         }
245         list_del_init(&rq->sched.link);
246         clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
247         clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
248         spin_unlock_irq(&locked->active.lock);
249 }
250
251 bool i915_request_retire(struct i915_request *rq)
252 {
253         if (!i915_request_completed(rq))
254                 return false;
255
256         RQ_TRACE(rq, "\n");
257
258         GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
259         trace_i915_request_retire(rq);
260
261         /*
262          * We know the GPU must have read the request to have
263          * sent us the seqno + interrupt, so use the position
264          * of tail of the request to update the last known position
265          * of the GPU head.
266          *
267          * Note this requires that we are always called in request
268          * completion order.
269          */
270         GEM_BUG_ON(!list_is_first(&rq->link,
271                                   &i915_request_timeline(rq)->requests));
272         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
273                 /* Poison before we release our space in the ring */
274                 __i915_request_fill(rq, POISON_FREE);
275         rq->ring->head = rq->postfix;
276
277         /*
278          * We only loosely track inflight requests across preemption,
279          * and so we may find ourselves attempting to retire a _completed_
280          * request that we have removed from the HW and put back on a run
281          * queue.
282          */
283         remove_from_engine(rq);
284
285         spin_lock_irq(&rq->lock);
286         i915_request_mark_complete(rq);
287         if (!i915_request_signaled(rq))
288                 dma_fence_signal_locked(&rq->fence);
289         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
290                 i915_request_cancel_breadcrumb(rq);
291         if (i915_request_has_waitboost(rq)) {
292                 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
293                 atomic_dec(&rq->engine->gt->rps.num_waiters);
294         }
295         if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
296                 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
297                 __notify_execute_cb(rq);
298         }
299         GEM_BUG_ON(!list_empty(&rq->execute_cb));
300         spin_unlock_irq(&rq->lock);
301
302         remove_from_client(rq);
303         __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
304
305         intel_context_exit(rq->context);
306         intel_context_unpin(rq->context);
307
308         free_capture_list(rq);
309         i915_sched_node_fini(&rq->sched);
310         i915_request_put(rq);
311
312         return true;
313 }
314
315 void i915_request_retire_upto(struct i915_request *rq)
316 {
317         struct intel_timeline * const tl = i915_request_timeline(rq);
318         struct i915_request *tmp;
319
320         RQ_TRACE(rq, "\n");
321
322         GEM_BUG_ON(!i915_request_completed(rq));
323
324         do {
325                 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
326         } while (i915_request_retire(tmp) && tmp != rq);
327 }
328
329 static int
330 __await_execution(struct i915_request *rq,
331                   struct i915_request *signal,
332                   void (*hook)(struct i915_request *rq,
333                                struct dma_fence *signal),
334                   gfp_t gfp)
335 {
336         struct execute_cb *cb;
337
338         if (i915_request_is_active(signal)) {
339                 if (hook)
340                         hook(rq, &signal->fence);
341                 return 0;
342         }
343
344         cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
345         if (!cb)
346                 return -ENOMEM;
347
348         cb->fence = &rq->submit;
349         i915_sw_fence_await(cb->fence);
350         init_irq_work(&cb->work, irq_execute_cb);
351
352         if (hook) {
353                 cb->hook = hook;
354                 cb->signal = i915_request_get(signal);
355                 cb->work.func = irq_execute_cb_hook;
356         }
357
358         spin_lock_irq(&signal->lock);
359         if (i915_request_is_active(signal)) {
360                 if (hook) {
361                         hook(rq, &signal->fence);
362                         i915_request_put(signal);
363                 }
364                 i915_sw_fence_complete(cb->fence);
365                 kmem_cache_free(global.slab_execute_cbs, cb);
366         } else {
367                 list_add_tail(&cb->link, &signal->execute_cb);
368         }
369         spin_unlock_irq(&signal->lock);
370
371         return 0;
372 }
373
374 static bool fatal_error(int error)
375 {
376         switch (error) {
377         case 0: /* not an error! */
378         case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
379         case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
380                 return false;
381         default:
382                 return true;
383         }
384 }
385
386 void __i915_request_skip(struct i915_request *rq)
387 {
388         GEM_BUG_ON(!fatal_error(rq->fence.error));
389
390         if (rq->infix == rq->postfix)
391                 return;
392
393         /*
394          * As this request likely depends on state from the lost
395          * context, clear out all the user operations leaving the
396          * breadcrumb at the end (so we get the fence notifications).
397          */
398         __i915_request_fill(rq, 0);
399         rq->infix = rq->postfix;
400 }
401
402 void i915_request_set_error_once(struct i915_request *rq, int error)
403 {
404         int old;
405
406         GEM_BUG_ON(!IS_ERR_VALUE((long)error));
407
408         if (i915_request_signaled(rq))
409                 return;
410
411         old = READ_ONCE(rq->fence.error);
412         do {
413                 if (fatal_error(old))
414                         return;
415         } while (!try_cmpxchg(&rq->fence.error, &old, error));
416 }
417
418 bool __i915_request_submit(struct i915_request *request)
419 {
420         struct intel_engine_cs *engine = request->engine;
421         bool result = false;
422
423         RQ_TRACE(request, "\n");
424
425         GEM_BUG_ON(!irqs_disabled());
426         lockdep_assert_held(&engine->active.lock);
427
428         /*
429          * With the advent of preempt-to-busy, we frequently encounter
430          * requests that we have unsubmitted from HW, but left running
431          * until the next ack and so have completed in the meantime. On
432          * resubmission of that completed request, we can skip
433          * updating the payload, and execlists can even skip submitting
434          * the request.
435          *
436          * We must remove the request from the caller's priority queue,
437          * and the caller must only call us when the request is in their
438          * priority queue, under the active.lock. This ensures that the
439          * request has *not* yet been retired and we can safely move
440          * the request into the engine->active.list where it will be
441          * dropped upon retiring. (Otherwise if resubmit a *retired*
442          * request, this would be a horrible use-after-free.)
443          */
444         if (i915_request_completed(request))
445                 goto xfer;
446
447         if (unlikely(intel_context_is_banned(request->context)))
448                 i915_request_set_error_once(request, -EIO);
449         if (unlikely(fatal_error(request->fence.error)))
450                 __i915_request_skip(request);
451
452         /*
453          * Are we using semaphores when the gpu is already saturated?
454          *
455          * Using semaphores incurs a cost in having the GPU poll a
456          * memory location, busywaiting for it to change. The continual
457          * memory reads can have a noticeable impact on the rest of the
458          * system with the extra bus traffic, stalling the cpu as it too
459          * tries to access memory across the bus (perf stat -e bus-cycles).
460          *
461          * If we installed a semaphore on this request and we only submit
462          * the request after the signaler completed, that indicates the
463          * system is overloaded and using semaphores at this time only
464          * increases the amount of work we are doing. If so, we disable
465          * further use of semaphores until we are idle again, whence we
466          * optimistically try again.
467          */
468         if (request->sched.semaphores &&
469             i915_sw_fence_signaled(&request->semaphore))
470                 engine->saturated |= request->sched.semaphores;
471
472         engine->emit_fini_breadcrumb(request,
473                                      request->ring->vaddr + request->postfix);
474
475         trace_i915_request_execute(request);
476         engine->serial++;
477         result = true;
478
479 xfer:   /* We may be recursing from the signal callback of another i915 fence */
480         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
481
482         if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
483                 list_move_tail(&request->sched.link, &engine->active.requests);
484                 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
485         }
486
487         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
488             !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
489             !i915_request_enable_breadcrumb(request))
490                 intel_engine_signal_breadcrumbs(engine);
491
492         __notify_execute_cb(request);
493
494         spin_unlock(&request->lock);
495
496         return result;
497 }
498
499 void i915_request_submit(struct i915_request *request)
500 {
501         struct intel_engine_cs *engine = request->engine;
502         unsigned long flags;
503
504         /* Will be called from irq-context when using foreign fences. */
505         spin_lock_irqsave(&engine->active.lock, flags);
506
507         __i915_request_submit(request);
508
509         spin_unlock_irqrestore(&engine->active.lock, flags);
510 }
511
512 void __i915_request_unsubmit(struct i915_request *request)
513 {
514         struct intel_engine_cs *engine = request->engine;
515
516         RQ_TRACE(request, "\n");
517
518         GEM_BUG_ON(!irqs_disabled());
519         lockdep_assert_held(&engine->active.lock);
520
521         /*
522          * Only unwind in reverse order, required so that the per-context list
523          * is kept in seqno/ring order.
524          */
525
526         /* We may be recursing from the signal callback of another i915 fence */
527         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
528
529         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
530                 i915_request_cancel_breadcrumb(request);
531
532         GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
533         clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
534
535         spin_unlock(&request->lock);
536
537         /* We've already spun, don't charge on resubmitting. */
538         if (request->sched.semaphores && i915_request_started(request))
539                 request->sched.semaphores = 0;
540
541         /*
542          * We don't need to wake_up any waiters on request->execute, they
543          * will get woken by any other event or us re-adding this request
544          * to the engine timeline (__i915_request_submit()). The waiters
545          * should be quite adapt at finding that the request now has a new
546          * global_seqno to the one they went to sleep on.
547          */
548 }
549
550 void i915_request_unsubmit(struct i915_request *request)
551 {
552         struct intel_engine_cs *engine = request->engine;
553         unsigned long flags;
554
555         /* Will be called from irq-context when using foreign fences. */
556         spin_lock_irqsave(&engine->active.lock, flags);
557
558         __i915_request_unsubmit(request);
559
560         spin_unlock_irqrestore(&engine->active.lock, flags);
561 }
562
563 static int __i915_sw_fence_call
564 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
565 {
566         struct i915_request *request =
567                 container_of(fence, typeof(*request), submit);
568
569         switch (state) {
570         case FENCE_COMPLETE:
571                 trace_i915_request_submit(request);
572
573                 if (unlikely(fence->error))
574                         i915_request_set_error_once(request, fence->error);
575
576                 /*
577                  * We need to serialize use of the submit_request() callback
578                  * with its hotplugging performed during an emergency
579                  * i915_gem_set_wedged().  We use the RCU mechanism to mark the
580                  * critical section in order to force i915_gem_set_wedged() to
581                  * wait until the submit_request() is completed before
582                  * proceeding.
583                  */
584                 rcu_read_lock();
585                 request->engine->submit_request(request);
586                 rcu_read_unlock();
587                 break;
588
589         case FENCE_FREE:
590                 i915_request_put(request);
591                 break;
592         }
593
594         return NOTIFY_DONE;
595 }
596
597 static int __i915_sw_fence_call
598 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
599 {
600         struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
601
602         switch (state) {
603         case FENCE_COMPLETE:
604                 break;
605
606         case FENCE_FREE:
607                 i915_request_put(rq);
608                 break;
609         }
610
611         return NOTIFY_DONE;
612 }
613
614 static void retire_requests(struct intel_timeline *tl)
615 {
616         struct i915_request *rq, *rn;
617
618         list_for_each_entry_safe(rq, rn, &tl->requests, link)
619                 if (!i915_request_retire(rq))
620                         break;
621 }
622
623 static noinline struct i915_request *
624 request_alloc_slow(struct intel_timeline *tl,
625                    struct i915_request **rsvd,
626                    gfp_t gfp)
627 {
628         struct i915_request *rq;
629
630         /* If we cannot wait, dip into our reserves */
631         if (!gfpflags_allow_blocking(gfp)) {
632                 rq = xchg(rsvd, NULL);
633                 if (!rq) /* Use the normal failure path for one final WARN */
634                         goto out;
635
636                 return rq;
637         }
638
639         if (list_empty(&tl->requests))
640                 goto out;
641
642         /* Move our oldest request to the slab-cache (if not in use!) */
643         rq = list_first_entry(&tl->requests, typeof(*rq), link);
644         i915_request_retire(rq);
645
646         rq = kmem_cache_alloc(global.slab_requests,
647                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
648         if (rq)
649                 return rq;
650
651         /* Ratelimit ourselves to prevent oom from malicious clients */
652         rq = list_last_entry(&tl->requests, typeof(*rq), link);
653         cond_synchronize_rcu(rq->rcustate);
654
655         /* Retire our old requests in the hope that we free some */
656         retire_requests(tl);
657
658 out:
659         return kmem_cache_alloc(global.slab_requests, gfp);
660 }
661
662 static void __i915_request_ctor(void *arg)
663 {
664         struct i915_request *rq = arg;
665
666         spin_lock_init(&rq->lock);
667         i915_sched_node_init(&rq->sched);
668         i915_sw_fence_init(&rq->submit, submit_notify);
669         i915_sw_fence_init(&rq->semaphore, semaphore_notify);
670
671         dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
672
673         rq->file_priv = NULL;
674         rq->capture_list = NULL;
675
676         INIT_LIST_HEAD(&rq->execute_cb);
677 }
678
679 struct i915_request *
680 __i915_request_create(struct intel_context *ce, gfp_t gfp)
681 {
682         struct intel_timeline *tl = ce->timeline;
683         struct i915_request *rq;
684         u32 seqno;
685         int ret;
686
687         might_sleep_if(gfpflags_allow_blocking(gfp));
688
689         /* Check that the caller provided an already pinned context */
690         __intel_context_pin(ce);
691
692         /*
693          * Beware: Dragons be flying overhead.
694          *
695          * We use RCU to look up requests in flight. The lookups may
696          * race with the request being allocated from the slab freelist.
697          * That is the request we are writing to here, may be in the process
698          * of being read by __i915_active_request_get_rcu(). As such,
699          * we have to be very careful when overwriting the contents. During
700          * the RCU lookup, we change chase the request->engine pointer,
701          * read the request->global_seqno and increment the reference count.
702          *
703          * The reference count is incremented atomically. If it is zero,
704          * the lookup knows the request is unallocated and complete. Otherwise,
705          * it is either still in use, or has been reallocated and reset
706          * with dma_fence_init(). This increment is safe for release as we
707          * check that the request we have a reference to and matches the active
708          * request.
709          *
710          * Before we increment the refcount, we chase the request->engine
711          * pointer. We must not call kmem_cache_zalloc() or else we set
712          * that pointer to NULL and cause a crash during the lookup. If
713          * we see the request is completed (based on the value of the
714          * old engine and seqno), the lookup is complete and reports NULL.
715          * If we decide the request is not completed (new engine or seqno),
716          * then we grab a reference and double check that it is still the
717          * active request - which it won't be and restart the lookup.
718          *
719          * Do not use kmem_cache_zalloc() here!
720          */
721         rq = kmem_cache_alloc(global.slab_requests,
722                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
723         if (unlikely(!rq)) {
724                 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
725                 if (!rq) {
726                         ret = -ENOMEM;
727                         goto err_unreserve;
728                 }
729         }
730
731         rq->i915 = ce->engine->i915;
732         rq->context = ce;
733         rq->engine = ce->engine;
734         rq->ring = ce->ring;
735         rq->execution_mask = ce->engine->mask;
736
737         kref_init(&rq->fence.refcount);
738         rq->fence.flags = 0;
739         rq->fence.error = 0;
740         INIT_LIST_HEAD(&rq->fence.cb_list);
741
742         ret = intel_timeline_get_seqno(tl, rq, &seqno);
743         if (ret)
744                 goto err_free;
745
746         rq->fence.context = tl->fence_context;
747         rq->fence.seqno = seqno;
748
749         RCU_INIT_POINTER(rq->timeline, tl);
750         RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
751         rq->hwsp_seqno = tl->hwsp_seqno;
752         GEM_BUG_ON(i915_request_completed(rq));
753
754         rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
755
756         /* We bump the ref for the fence chain */
757         i915_sw_fence_reinit(&i915_request_get(rq)->submit);
758         i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
759
760         i915_sched_node_reinit(&rq->sched);
761
762         /* No zalloc, everything must be cleared after use */
763         rq->batch = NULL;
764         GEM_BUG_ON(rq->file_priv);
765         GEM_BUG_ON(rq->capture_list);
766         GEM_BUG_ON(!list_empty(&rq->execute_cb));
767
768         /*
769          * Reserve space in the ring buffer for all the commands required to
770          * eventually emit this request. This is to guarantee that the
771          * i915_request_add() call can't fail. Note that the reserve may need
772          * to be redone if the request is not actually submitted straight
773          * away, e.g. because a GPU scheduler has deferred it.
774          *
775          * Note that due to how we add reserved_space to intel_ring_begin()
776          * we need to double our request to ensure that if we need to wrap
777          * around inside i915_request_add() there is sufficient space at
778          * the beginning of the ring as well.
779          */
780         rq->reserved_space =
781                 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
782
783         /*
784          * Record the position of the start of the request so that
785          * should we detect the updated seqno part-way through the
786          * GPU processing the request, we never over-estimate the
787          * position of the head.
788          */
789         rq->head = rq->ring->emit;
790
791         ret = rq->engine->request_alloc(rq);
792         if (ret)
793                 goto err_unwind;
794
795         rq->infix = rq->ring->emit; /* end of header; start of user payload */
796
797         intel_context_mark_active(ce);
798         list_add_tail_rcu(&rq->link, &tl->requests);
799
800         return rq;
801
802 err_unwind:
803         ce->ring->emit = rq->head;
804
805         /* Make sure we didn't add ourselves to external state before freeing */
806         GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
807         GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
808
809 err_free:
810         kmem_cache_free(global.slab_requests, rq);
811 err_unreserve:
812         intel_context_unpin(ce);
813         return ERR_PTR(ret);
814 }
815
816 struct i915_request *
817 i915_request_create(struct intel_context *ce)
818 {
819         struct i915_request *rq;
820         struct intel_timeline *tl;
821
822         tl = intel_context_timeline_lock(ce);
823         if (IS_ERR(tl))
824                 return ERR_CAST(tl);
825
826         /* Move our oldest request to the slab-cache (if not in use!) */
827         rq = list_first_entry(&tl->requests, typeof(*rq), link);
828         if (!list_is_last(&rq->link, &tl->requests))
829                 i915_request_retire(rq);
830
831         intel_context_enter(ce);
832         rq = __i915_request_create(ce, GFP_KERNEL);
833         intel_context_exit(ce); /* active reference transferred to request */
834         if (IS_ERR(rq))
835                 goto err_unlock;
836
837         /* Check that we do not interrupt ourselves with a new request */
838         rq->cookie = lockdep_pin_lock(&tl->mutex);
839
840         return rq;
841
842 err_unlock:
843         intel_context_timeline_unlock(tl);
844         return rq;
845 }
846
847 static int
848 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
849 {
850         struct dma_fence *fence;
851         int err;
852
853         if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
854                 return 0;
855
856         if (i915_request_started(signal))
857                 return 0;
858
859         fence = NULL;
860         rcu_read_lock();
861         spin_lock_irq(&signal->lock);
862         do {
863                 struct list_head *pos = READ_ONCE(signal->link.prev);
864                 struct i915_request *prev;
865
866                 /* Confirm signal has not been retired, the link is valid */
867                 if (unlikely(i915_request_started(signal)))
868                         break;
869
870                 /* Is signal the earliest request on its timeline? */
871                 if (pos == &rcu_dereference(signal->timeline)->requests)
872                         break;
873
874                 /*
875                  * Peek at the request before us in the timeline. That
876                  * request will only be valid before it is retired, so
877                  * after acquiring a reference to it, confirm that it is
878                  * still part of the signaler's timeline.
879                  */
880                 prev = list_entry(pos, typeof(*prev), link);
881                 if (!i915_request_get_rcu(prev))
882                         break;
883
884                 /* After the strong barrier, confirm prev is still attached */
885                 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
886                         i915_request_put(prev);
887                         break;
888                 }
889
890                 fence = &prev->fence;
891         } while (0);
892         spin_unlock_irq(&signal->lock);
893         rcu_read_unlock();
894         if (!fence)
895                 return 0;
896
897         err = 0;
898         if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
899                 err = i915_sw_fence_await_dma_fence(&rq->submit,
900                                                     fence, 0,
901                                                     I915_FENCE_GFP);
902         dma_fence_put(fence);
903
904         return err;
905 }
906
907 static intel_engine_mask_t
908 already_busywaiting(struct i915_request *rq)
909 {
910         /*
911          * Polling a semaphore causes bus traffic, delaying other users of
912          * both the GPU and CPU. We want to limit the impact on others,
913          * while taking advantage of early submission to reduce GPU
914          * latency. Therefore we restrict ourselves to not using more
915          * than one semaphore from each source, and not using a semaphore
916          * if we have detected the engine is saturated (i.e. would not be
917          * submitted early and cause bus traffic reading an already passed
918          * semaphore).
919          *
920          * See the are-we-too-late? check in __i915_request_submit().
921          */
922         return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
923 }
924
925 static int
926 __emit_semaphore_wait(struct i915_request *to,
927                       struct i915_request *from,
928                       u32 seqno)
929 {
930         const int has_token = INTEL_GEN(to->i915) >= 12;
931         u32 hwsp_offset;
932         int len, err;
933         u32 *cs;
934
935         GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
936         GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
937
938         /* We need to pin the signaler's HWSP until we are finished reading. */
939         err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
940         if (err)
941                 return err;
942
943         len = 4;
944         if (has_token)
945                 len += 2;
946
947         cs = intel_ring_begin(to, len);
948         if (IS_ERR(cs))
949                 return PTR_ERR(cs);
950
951         /*
952          * Using greater-than-or-equal here means we have to worry
953          * about seqno wraparound. To side step that issue, we swap
954          * the timeline HWSP upon wrapping, so that everyone listening
955          * for the old (pre-wrap) values do not see the much smaller
956          * (post-wrap) values than they were expecting (and so wait
957          * forever).
958          */
959         *cs++ = (MI_SEMAPHORE_WAIT |
960                  MI_SEMAPHORE_GLOBAL_GTT |
961                  MI_SEMAPHORE_POLL |
962                  MI_SEMAPHORE_SAD_GTE_SDD) +
963                 has_token;
964         *cs++ = seqno;
965         *cs++ = hwsp_offset;
966         *cs++ = 0;
967         if (has_token) {
968                 *cs++ = 0;
969                 *cs++ = MI_NOOP;
970         }
971
972         intel_ring_advance(to, cs);
973         return 0;
974 }
975
976 static int
977 emit_semaphore_wait(struct i915_request *to,
978                     struct i915_request *from,
979                     gfp_t gfp)
980 {
981         const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
982         struct i915_sw_fence *wait = &to->submit;
983
984         if (!intel_context_use_semaphores(to->context))
985                 goto await_fence;
986
987         if (i915_request_has_initial_breadcrumb(to))
988                 goto await_fence;
989
990         if (!rcu_access_pointer(from->hwsp_cacheline))
991                 goto await_fence;
992
993         /*
994          * If this or its dependents are waiting on an external fence
995          * that may fail catastrophically, then we want to avoid using
996          * sempahores as they bypass the fence signaling metadata, and we
997          * lose the fence->error propagation.
998          */
999         if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1000                 goto await_fence;
1001
1002         /* Just emit the first semaphore we see as request space is limited. */
1003         if (already_busywaiting(to) & mask)
1004                 goto await_fence;
1005
1006         if (i915_request_await_start(to, from) < 0)
1007                 goto await_fence;
1008
1009         /* Only submit our spinner after the signaler is running! */
1010         if (__await_execution(to, from, NULL, gfp))
1011                 goto await_fence;
1012
1013         if (__emit_semaphore_wait(to, from, from->fence.seqno))
1014                 goto await_fence;
1015
1016         to->sched.semaphores |= mask;
1017         wait = &to->semaphore;
1018
1019 await_fence:
1020         return i915_sw_fence_await_dma_fence(wait,
1021                                              &from->fence, 0,
1022                                              I915_FENCE_GFP);
1023 }
1024
1025 static int
1026 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1027 {
1028         int ret;
1029
1030         GEM_BUG_ON(to == from);
1031         GEM_BUG_ON(to->timeline == from->timeline);
1032
1033         if (i915_request_completed(from)) {
1034                 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1035                 return 0;
1036         }
1037
1038         if (to->engine->schedule) {
1039                 ret = i915_sched_node_add_dependency(&to->sched,
1040                                                      &from->sched,
1041                                                      I915_DEPENDENCY_EXTERNAL);
1042                 if (ret < 0)
1043                         return ret;
1044         }
1045
1046         if (to->engine == from->engine)
1047                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
1048                                                        &from->submit,
1049                                                        I915_FENCE_GFP);
1050         else
1051                 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1052         if (ret < 0)
1053                 return ret;
1054
1055         return 0;
1056 }
1057
1058 static void mark_external(struct i915_request *rq)
1059 {
1060         /*
1061          * The downside of using semaphores is that we lose metadata passing
1062          * along the signaling chain. This is particularly nasty when we
1063          * need to pass along a fatal error such as EFAULT or EDEADLK. For
1064          * fatal errors we want to scrub the request before it is executed,
1065          * which means that we cannot preload the request onto HW and have
1066          * it wait upon a semaphore.
1067          */
1068         rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1069 }
1070
1071 static int
1072 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1073 {
1074         mark_external(rq);
1075         return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1076                                              i915_fence_context_timeout(rq->i915,
1077                                                                         fence->context),
1078                                              I915_FENCE_GFP);
1079 }
1080
1081 static int
1082 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1083 {
1084         struct dma_fence *iter;
1085         int err = 0;
1086
1087         if (!to_dma_fence_chain(fence))
1088                 return __i915_request_await_external(rq, fence);
1089
1090         dma_fence_chain_for_each(iter, fence) {
1091                 struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1092
1093                 if (!dma_fence_is_i915(chain->fence)) {
1094                         err = __i915_request_await_external(rq, iter);
1095                         break;
1096                 }
1097
1098                 err = i915_request_await_dma_fence(rq, chain->fence);
1099                 if (err < 0)
1100                         break;
1101         }
1102
1103         dma_fence_put(iter);
1104         return err;
1105 }
1106
1107 int
1108 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1109 {
1110         struct dma_fence **child = &fence;
1111         unsigned int nchild = 1;
1112         int ret;
1113
1114         /*
1115          * Note that if the fence-array was created in signal-on-any mode,
1116          * we should *not* decompose it into its individual fences. However,
1117          * we don't currently store which mode the fence-array is operating
1118          * in. Fortunately, the only user of signal-on-any is private to
1119          * amdgpu and we should not see any incoming fence-array from
1120          * sync-file being in signal-on-any mode.
1121          */
1122         if (dma_fence_is_array(fence)) {
1123                 struct dma_fence_array *array = to_dma_fence_array(fence);
1124
1125                 child = array->fences;
1126                 nchild = array->num_fences;
1127                 GEM_BUG_ON(!nchild);
1128         }
1129
1130         do {
1131                 fence = *child++;
1132                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1133                         i915_sw_fence_set_error_once(&rq->submit, fence->error);
1134                         continue;
1135                 }
1136
1137                 /*
1138                  * Requests on the same timeline are explicitly ordered, along
1139                  * with their dependencies, by i915_request_add() which ensures
1140                  * that requests are submitted in-order through each ring.
1141                  */
1142                 if (fence->context == rq->fence.context)
1143                         continue;
1144
1145                 /* Squash repeated waits to the same timelines */
1146                 if (fence->context &&
1147                     intel_timeline_sync_is_later(i915_request_timeline(rq),
1148                                                  fence))
1149                         continue;
1150
1151                 if (dma_fence_is_i915(fence))
1152                         ret = i915_request_await_request(rq, to_request(fence));
1153                 else
1154                         ret = i915_request_await_external(rq, fence);
1155                 if (ret < 0)
1156                         return ret;
1157
1158                 /* Record the latest fence used against each timeline */
1159                 if (fence->context)
1160                         intel_timeline_sync_set(i915_request_timeline(rq),
1161                                                 fence);
1162         } while (--nchild);
1163
1164         return 0;
1165 }
1166
1167 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1168                                           struct dma_fence *fence)
1169 {
1170         return __intel_timeline_sync_is_later(tl,
1171                                               fence->context,
1172                                               fence->seqno - 1);
1173 }
1174
1175 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1176                                          const struct dma_fence *fence)
1177 {
1178         return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1179 }
1180
1181 static int
1182 __i915_request_await_execution(struct i915_request *to,
1183                                struct i915_request *from,
1184                                void (*hook)(struct i915_request *rq,
1185                                             struct dma_fence *signal))
1186 {
1187         int err;
1188
1189         GEM_BUG_ON(intel_context_is_barrier(from->context));
1190
1191         /* Submit both requests at the same time */
1192         err = __await_execution(to, from, hook, I915_FENCE_GFP);
1193         if (err)
1194                 return err;
1195
1196         /* Squash repeated depenendices to the same timelines */
1197         if (intel_timeline_sync_has_start(i915_request_timeline(to),
1198                                           &from->fence))
1199                 return 0;
1200
1201         /*
1202          * Wait until the start of this request.
1203          *
1204          * The execution cb fires when we submit the request to HW. But in
1205          * many cases this may be long before the request itself is ready to
1206          * run (consider that we submit 2 requests for the same context, where
1207          * the request of interest is behind an indefinite spinner). So we hook
1208          * up to both to reduce our queues and keep the execution lag minimised
1209          * in the worst case, though we hope that the await_start is elided.
1210          */
1211         err = i915_request_await_start(to, from);
1212         if (err < 0)
1213                 return err;
1214
1215         /*
1216          * Ensure both start together [after all semaphores in signal]
1217          *
1218          * Now that we are queued to the HW at roughly the same time (thanks
1219          * to the execute cb) and are ready to run at roughly the same time
1220          * (thanks to the await start), our signaler may still be indefinitely
1221          * delayed by waiting on a semaphore from a remote engine. If our
1222          * signaler depends on a semaphore, so indirectly do we, and we do not
1223          * want to start our payload until our signaler also starts theirs.
1224          * So we wait.
1225          *
1226          * However, there is also a second condition for which we need to wait
1227          * for the precise start of the signaler. Consider that the signaler
1228          * was submitted in a chain of requests following another context
1229          * (with just an ordinary intra-engine fence dependency between the
1230          * two). In this case the signaler is queued to HW, but not for
1231          * immediate execution, and so we must wait until it reaches the
1232          * active slot.
1233          */
1234         if (intel_engine_has_semaphores(to->engine) &&
1235             !i915_request_has_initial_breadcrumb(to)) {
1236                 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1237                 if (err < 0)
1238                         return err;
1239         }
1240
1241         /* Couple the dependency tree for PI on this exposed to->fence */
1242         if (to->engine->schedule) {
1243                 err = i915_sched_node_add_dependency(&to->sched,
1244                                                      &from->sched,
1245                                                      I915_DEPENDENCY_WEAK);
1246                 if (err < 0)
1247                         return err;
1248         }
1249
1250         return intel_timeline_sync_set_start(i915_request_timeline(to),
1251                                              &from->fence);
1252 }
1253
1254 int
1255 i915_request_await_execution(struct i915_request *rq,
1256                              struct dma_fence *fence,
1257                              void (*hook)(struct i915_request *rq,
1258                                           struct dma_fence *signal))
1259 {
1260         struct dma_fence **child = &fence;
1261         unsigned int nchild = 1;
1262         int ret;
1263
1264         if (dma_fence_is_array(fence)) {
1265                 struct dma_fence_array *array = to_dma_fence_array(fence);
1266
1267                 /* XXX Error for signal-on-any fence arrays */
1268
1269                 child = array->fences;
1270                 nchild = array->num_fences;
1271                 GEM_BUG_ON(!nchild);
1272         }
1273
1274         do {
1275                 fence = *child++;
1276                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1277                         i915_sw_fence_set_error_once(&rq->submit, fence->error);
1278                         continue;
1279                 }
1280
1281                 if (fence->context == rq->fence.context)
1282                         continue;
1283
1284                 /*
1285                  * We don't squash repeated fence dependencies here as we
1286                  * want to run our callback in all cases.
1287                  */
1288
1289                 if (dma_fence_is_i915(fence))
1290                         ret = __i915_request_await_execution(rq,
1291                                                              to_request(fence),
1292                                                              hook);
1293                 else
1294                         ret = i915_request_await_external(rq, fence);
1295                 if (ret < 0)
1296                         return ret;
1297         } while (--nchild);
1298
1299         return 0;
1300 }
1301
1302 /**
1303  * i915_request_await_object - set this request to (async) wait upon a bo
1304  * @to: request we are wishing to use
1305  * @obj: object which may be in use on another ring.
1306  * @write: whether the wait is on behalf of a writer
1307  *
1308  * This code is meant to abstract object synchronization with the GPU.
1309  * Conceptually we serialise writes between engines inside the GPU.
1310  * We only allow one engine to write into a buffer at any time, but
1311  * multiple readers. To ensure each has a coherent view of memory, we must:
1312  *
1313  * - If there is an outstanding write request to the object, the new
1314  *   request must wait for it to complete (either CPU or in hw, requests
1315  *   on the same ring will be naturally ordered).
1316  *
1317  * - If we are a write request (pending_write_domain is set), the new
1318  *   request must wait for outstanding read requests to complete.
1319  *
1320  * Returns 0 if successful, else propagates up the lower layer error.
1321  */
1322 int
1323 i915_request_await_object(struct i915_request *to,
1324                           struct drm_i915_gem_object *obj,
1325                           bool write)
1326 {
1327         struct dma_fence *excl;
1328         int ret = 0;
1329
1330         if (write) {
1331                 struct dma_fence **shared;
1332                 unsigned int count, i;
1333
1334                 ret = dma_resv_get_fences_rcu(obj->base.resv,
1335                                                         &excl, &count, &shared);
1336                 if (ret)
1337                         return ret;
1338
1339                 for (i = 0; i < count; i++) {
1340                         ret = i915_request_await_dma_fence(to, shared[i]);
1341                         if (ret)
1342                                 break;
1343
1344                         dma_fence_put(shared[i]);
1345                 }
1346
1347                 for (; i < count; i++)
1348                         dma_fence_put(shared[i]);
1349                 kfree(shared);
1350         } else {
1351                 excl = dma_resv_get_excl_rcu(obj->base.resv);
1352         }
1353
1354         if (excl) {
1355                 if (ret == 0)
1356                         ret = i915_request_await_dma_fence(to, excl);
1357
1358                 dma_fence_put(excl);
1359         }
1360
1361         return ret;
1362 }
1363
1364 static struct i915_request *
1365 __i915_request_add_to_timeline(struct i915_request *rq)
1366 {
1367         struct intel_timeline *timeline = i915_request_timeline(rq);
1368         struct i915_request *prev;
1369
1370         /*
1371          * Dependency tracking and request ordering along the timeline
1372          * is special cased so that we can eliminate redundant ordering
1373          * operations while building the request (we know that the timeline
1374          * itself is ordered, and here we guarantee it).
1375          *
1376          * As we know we will need to emit tracking along the timeline,
1377          * we embed the hooks into our request struct -- at the cost of
1378          * having to have specialised no-allocation interfaces (which will
1379          * be beneficial elsewhere).
1380          *
1381          * A second benefit to open-coding i915_request_await_request is
1382          * that we can apply a slight variant of the rules specialised
1383          * for timelines that jump between engines (such as virtual engines).
1384          * If we consider the case of virtual engine, we must emit a dma-fence
1385          * to prevent scheduling of the second request until the first is
1386          * complete (to maximise our greedy late load balancing) and this
1387          * precludes optimising to use semaphores serialisation of a single
1388          * timeline across engines.
1389          */
1390         prev = to_request(__i915_active_fence_set(&timeline->last_request,
1391                                                   &rq->fence));
1392         if (prev && !i915_request_completed(prev)) {
1393                 /*
1394                  * The requests are supposed to be kept in order. However,
1395                  * we need to be wary in case the timeline->last_request
1396                  * is used as a barrier for external modification to this
1397                  * context.
1398                  */
1399                 GEM_BUG_ON(prev->context == rq->context &&
1400                            i915_seqno_passed(prev->fence.seqno,
1401                                              rq->fence.seqno));
1402
1403                 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1404                         i915_sw_fence_await_sw_fence(&rq->submit,
1405                                                      &prev->submit,
1406                                                      &rq->submitq);
1407                 else
1408                         __i915_sw_fence_await_dma_fence(&rq->submit,
1409                                                         &prev->fence,
1410                                                         &rq->dmaq);
1411                 if (rq->engine->schedule)
1412                         __i915_sched_node_add_dependency(&rq->sched,
1413                                                          &prev->sched,
1414                                                          &rq->dep,
1415                                                          0);
1416         }
1417
1418         /*
1419          * Make sure that no request gazumped us - if it was allocated after
1420          * our i915_request_alloc() and called __i915_request_add() before
1421          * us, the timeline will hold its seqno which is later than ours.
1422          */
1423         GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1424
1425         return prev;
1426 }
1427
1428 /*
1429  * NB: This function is not allowed to fail. Doing so would mean the the
1430  * request is not being tracked for completion but the work itself is
1431  * going to happen on the hardware. This would be a Bad Thing(tm).
1432  */
1433 struct i915_request *__i915_request_commit(struct i915_request *rq)
1434 {
1435         struct intel_engine_cs *engine = rq->engine;
1436         struct intel_ring *ring = rq->ring;
1437         u32 *cs;
1438
1439         RQ_TRACE(rq, "\n");
1440
1441         /*
1442          * To ensure that this call will not fail, space for its emissions
1443          * should already have been reserved in the ring buffer. Let the ring
1444          * know that it is time to use that space up.
1445          */
1446         GEM_BUG_ON(rq->reserved_space > ring->space);
1447         rq->reserved_space = 0;
1448         rq->emitted_jiffies = jiffies;
1449
1450         /*
1451          * Record the position of the start of the breadcrumb so that
1452          * should we detect the updated seqno part-way through the
1453          * GPU processing the request, we never over-estimate the
1454          * position of the ring's HEAD.
1455          */
1456         cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1457         GEM_BUG_ON(IS_ERR(cs));
1458         rq->postfix = intel_ring_offset(rq, cs);
1459
1460         return __i915_request_add_to_timeline(rq);
1461 }
1462
1463 void __i915_request_queue(struct i915_request *rq,
1464                           const struct i915_sched_attr *attr)
1465 {
1466         /*
1467          * Let the backend know a new request has arrived that may need
1468          * to adjust the existing execution schedule due to a high priority
1469          * request - i.e. we may want to preempt the current request in order
1470          * to run a high priority dependency chain *before* we can execute this
1471          * request.
1472          *
1473          * This is called before the request is ready to run so that we can
1474          * decide whether to preempt the entire chain so that it is ready to
1475          * run at the earliest possible convenience.
1476          */
1477         if (attr && rq->engine->schedule)
1478                 rq->engine->schedule(rq, attr);
1479         i915_sw_fence_commit(&rq->semaphore);
1480         i915_sw_fence_commit(&rq->submit);
1481 }
1482
1483 void i915_request_add(struct i915_request *rq)
1484 {
1485         struct intel_timeline * const tl = i915_request_timeline(rq);
1486         struct i915_sched_attr attr = {};
1487         struct i915_gem_context *ctx;
1488
1489         lockdep_assert_held(&tl->mutex);
1490         lockdep_unpin_lock(&tl->mutex, rq->cookie);
1491
1492         trace_i915_request_add(rq);
1493         __i915_request_commit(rq);
1494
1495         /* XXX placeholder for selftests */
1496         rcu_read_lock();
1497         ctx = rcu_dereference(rq->context->gem_context);
1498         if (ctx)
1499                 attr = ctx->sched;
1500         rcu_read_unlock();
1501
1502         __i915_request_queue(rq, &attr);
1503
1504         mutex_unlock(&tl->mutex);
1505 }
1506
1507 static unsigned long local_clock_ns(unsigned int *cpu)
1508 {
1509         unsigned long t;
1510
1511         /*
1512          * Cheaply and approximately convert from nanoseconds to microseconds.
1513          * The result and subsequent calculations are also defined in the same
1514          * approximate microseconds units. The principal source of timing
1515          * error here is from the simple truncation.
1516          *
1517          * Note that local_clock() is only defined wrt to the current CPU;
1518          * the comparisons are no longer valid if we switch CPUs. Instead of
1519          * blocking preemption for the entire busywait, we can detect the CPU
1520          * switch and use that as indicator of system load and a reason to
1521          * stop busywaiting, see busywait_stop().
1522          */
1523         *cpu = get_cpu();
1524         t = local_clock();
1525         put_cpu();
1526
1527         return t;
1528 }
1529
1530 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1531 {
1532         unsigned int this_cpu;
1533
1534         if (time_after(local_clock_ns(&this_cpu), timeout))
1535                 return true;
1536
1537         return this_cpu != cpu;
1538 }
1539
1540 static bool __i915_spin_request(const struct i915_request * const rq, int state)
1541 {
1542         unsigned long timeout_ns;
1543         unsigned int cpu;
1544
1545         /*
1546          * Only wait for the request if we know it is likely to complete.
1547          *
1548          * We don't track the timestamps around requests, nor the average
1549          * request length, so we do not have a good indicator that this
1550          * request will complete within the timeout. What we do know is the
1551          * order in which requests are executed by the context and so we can
1552          * tell if the request has been started. If the request is not even
1553          * running yet, it is a fair assumption that it will not complete
1554          * within our relatively short timeout.
1555          */
1556         if (!i915_request_is_running(rq))
1557                 return false;
1558
1559         /*
1560          * When waiting for high frequency requests, e.g. during synchronous
1561          * rendering split between the CPU and GPU, the finite amount of time
1562          * required to set up the irq and wait upon it limits the response
1563          * rate. By busywaiting on the request completion for a short while we
1564          * can service the high frequency waits as quick as possible. However,
1565          * if it is a slow request, we want to sleep as quickly as possible.
1566          * The tradeoff between waiting and sleeping is roughly the time it
1567          * takes to sleep on a request, on the order of a microsecond.
1568          */
1569
1570         timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1571         timeout_ns += local_clock_ns(&cpu);
1572         do {
1573                 if (i915_request_completed(rq))
1574                         return true;
1575
1576                 if (signal_pending_state(state, current))
1577                         break;
1578
1579                 if (busywait_stop(timeout_ns, cpu))
1580                         break;
1581
1582                 cpu_relax();
1583         } while (!need_resched());
1584
1585         return false;
1586 }
1587
1588 struct request_wait {
1589         struct dma_fence_cb cb;
1590         struct task_struct *tsk;
1591 };
1592
1593 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1594 {
1595         struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1596
1597         wake_up_process(wait->tsk);
1598 }
1599
1600 /**
1601  * i915_request_wait - wait until execution of request has finished
1602  * @rq: the request to wait upon
1603  * @flags: how to wait
1604  * @timeout: how long to wait in jiffies
1605  *
1606  * i915_request_wait() waits for the request to be completed, for a
1607  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1608  * unbounded wait).
1609  *
1610  * Returns the remaining time (in jiffies) if the request completed, which may
1611  * be zero or -ETIME if the request is unfinished after the timeout expires.
1612  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1613  * pending before the request completes.
1614  */
1615 long i915_request_wait(struct i915_request *rq,
1616                        unsigned int flags,
1617                        long timeout)
1618 {
1619         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1620                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1621         struct request_wait wait;
1622
1623         might_sleep();
1624         GEM_BUG_ON(timeout < 0);
1625
1626         if (dma_fence_is_signaled(&rq->fence))
1627                 return timeout;
1628
1629         if (!timeout)
1630                 return -ETIME;
1631
1632         trace_i915_request_wait_begin(rq, flags);
1633
1634         /*
1635          * We must never wait on the GPU while holding a lock as we
1636          * may need to perform a GPU reset. So while we don't need to
1637          * serialise wait/reset with an explicit lock, we do want
1638          * lockdep to detect potential dependency cycles.
1639          */
1640         mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1641
1642         /*
1643          * Optimistic spin before touching IRQs.
1644          *
1645          * We may use a rather large value here to offset the penalty of
1646          * switching away from the active task. Frequently, the client will
1647          * wait upon an old swapbuffer to throttle itself to remain within a
1648          * frame of the gpu. If the client is running in lockstep with the gpu,
1649          * then it should not be waiting long at all, and a sleep now will incur
1650          * extra scheduler latency in producing the next frame. To try to
1651          * avoid adding the cost of enabling/disabling the interrupt to the
1652          * short wait, we first spin to see if the request would have completed
1653          * in the time taken to setup the interrupt.
1654          *
1655          * We need upto 5us to enable the irq, and upto 20us to hide the
1656          * scheduler latency of a context switch, ignoring the secondary
1657          * impacts from a context switch such as cache eviction.
1658          *
1659          * The scheme used for low-latency IO is called "hybrid interrupt
1660          * polling". The suggestion there is to sleep until just before you
1661          * expect to be woken by the device interrupt and then poll for its
1662          * completion. That requires having a good predictor for the request
1663          * duration, which we currently lack.
1664          */
1665         if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1666             __i915_spin_request(rq, state)) {
1667                 dma_fence_signal(&rq->fence);
1668                 goto out;
1669         }
1670
1671         /*
1672          * This client is about to stall waiting for the GPU. In many cases
1673          * this is undesirable and limits the throughput of the system, as
1674          * many clients cannot continue processing user input/output whilst
1675          * blocked. RPS autotuning may take tens of milliseconds to respond
1676          * to the GPU load and thus incurs additional latency for the client.
1677          * We can circumvent that by promoting the GPU frequency to maximum
1678          * before we sleep. This makes the GPU throttle up much more quickly
1679          * (good for benchmarks and user experience, e.g. window animations),
1680          * but at a cost of spending more power processing the workload
1681          * (bad for battery).
1682          */
1683         if (flags & I915_WAIT_PRIORITY) {
1684                 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1685                         intel_rps_boost(rq);
1686         }
1687
1688         wait.tsk = current;
1689         if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1690                 goto out;
1691
1692         for (;;) {
1693                 set_current_state(state);
1694
1695                 if (i915_request_completed(rq)) {
1696                         dma_fence_signal(&rq->fence);
1697                         break;
1698                 }
1699
1700                 intel_engine_flush_submission(rq->engine);
1701
1702                 if (signal_pending_state(state, current)) {
1703                         timeout = -ERESTARTSYS;
1704                         break;
1705                 }
1706
1707                 if (!timeout) {
1708                         timeout = -ETIME;
1709                         break;
1710                 }
1711
1712                 timeout = io_schedule_timeout(timeout);
1713         }
1714         __set_current_state(TASK_RUNNING);
1715
1716         dma_fence_remove_callback(&rq->fence, &wait.cb);
1717
1718 out:
1719         mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1720         trace_i915_request_wait_end(rq);
1721         return timeout;
1722 }
1723
1724 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1725 #include "selftests/mock_request.c"
1726 #include "selftests/i915_request.c"
1727 #endif
1728
1729 static void i915_global_request_shrink(void)
1730 {
1731         kmem_cache_shrink(global.slab_execute_cbs);
1732         kmem_cache_shrink(global.slab_requests);
1733 }
1734
1735 static void i915_global_request_exit(void)
1736 {
1737         kmem_cache_destroy(global.slab_execute_cbs);
1738         kmem_cache_destroy(global.slab_requests);
1739 }
1740
1741 static struct i915_global_request global = { {
1742         .shrink = i915_global_request_shrink,
1743         .exit = i915_global_request_exit,
1744 } };
1745
1746 int __init i915_global_request_init(void)
1747 {
1748         global.slab_requests =
1749                 kmem_cache_create("i915_request",
1750                                   sizeof(struct i915_request),
1751                                   __alignof__(struct i915_request),
1752                                   SLAB_HWCACHE_ALIGN |
1753                                   SLAB_RECLAIM_ACCOUNT |
1754                                   SLAB_TYPESAFE_BY_RCU,
1755                                   __i915_request_ctor);
1756         if (!global.slab_requests)
1757                 return -ENOMEM;
1758
1759         global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1760                                              SLAB_HWCACHE_ALIGN |
1761                                              SLAB_RECLAIM_ACCOUNT |
1762                                              SLAB_TYPESAFE_BY_RCU);
1763         if (!global.slab_execute_cbs)
1764                 goto err_requests;
1765
1766         i915_global_register(&global.base);
1767         return 0;
1768
1769 err_requests:
1770         kmem_cache_destroy(global.slab_requests);
1771         return -ENOMEM;
1772 }