18865ce04e1303dacd28e88b423041b923456251
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31
32 #include "gem/i915_gem_context.h"
33 #include "gt/intel_context.h"
34
35 #include "i915_active.h"
36 #include "i915_drv.h"
37 #include "i915_globals.h"
38 #include "i915_trace.h"
39 #include "intel_pm.h"
40
41 struct execute_cb {
42         struct list_head link;
43         struct irq_work work;
44         struct i915_sw_fence *fence;
45         void (*hook)(struct i915_request *rq, struct dma_fence *signal);
46         struct i915_request *signal;
47 };
48
49 static struct i915_global_request {
50         struct i915_global base;
51         struct kmem_cache *slab_requests;
52         struct kmem_cache *slab_dependencies;
53         struct kmem_cache *slab_execute_cbs;
54 } global;
55
56 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
57 {
58         return "i915";
59 }
60
61 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
62 {
63         /*
64          * The timeline struct (as part of the ppgtt underneath a context)
65          * may be freed when the request is no longer in use by the GPU.
66          * We could extend the life of a context to beyond that of all
67          * fences, possibly keeping the hw resource around indefinitely,
68          * or we just give them a false name. Since
69          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
70          * lie seems justifiable.
71          */
72         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
73                 return "signaled";
74
75         return to_request(fence)->gem_context->name ?: "[i915]";
76 }
77
78 static bool i915_fence_signaled(struct dma_fence *fence)
79 {
80         return i915_request_completed(to_request(fence));
81 }
82
83 static bool i915_fence_enable_signaling(struct dma_fence *fence)
84 {
85         return i915_request_enable_breadcrumb(to_request(fence));
86 }
87
88 static signed long i915_fence_wait(struct dma_fence *fence,
89                                    bool interruptible,
90                                    signed long timeout)
91 {
92         return i915_request_wait(to_request(fence),
93                                  interruptible | I915_WAIT_PRIORITY,
94                                  timeout);
95 }
96
97 static void i915_fence_release(struct dma_fence *fence)
98 {
99         struct i915_request *rq = to_request(fence);
100
101         /*
102          * The request is put onto a RCU freelist (i.e. the address
103          * is immediately reused), mark the fences as being freed now.
104          * Otherwise the debugobjects for the fences are only marked as
105          * freed when the slab cache itself is freed, and so we would get
106          * caught trying to reuse dead objects.
107          */
108         i915_sw_fence_fini(&rq->submit);
109         i915_sw_fence_fini(&rq->semaphore);
110
111         kmem_cache_free(global.slab_requests, rq);
112 }
113
114 const struct dma_fence_ops i915_fence_ops = {
115         .get_driver_name = i915_fence_get_driver_name,
116         .get_timeline_name = i915_fence_get_timeline_name,
117         .enable_signaling = i915_fence_enable_signaling,
118         .signaled = i915_fence_signaled,
119         .wait = i915_fence_wait,
120         .release = i915_fence_release,
121 };
122
123 static void irq_execute_cb(struct irq_work *wrk)
124 {
125         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
126
127         i915_sw_fence_complete(cb->fence);
128         kmem_cache_free(global.slab_execute_cbs, cb);
129 }
130
131 static void irq_execute_cb_hook(struct irq_work *wrk)
132 {
133         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
134
135         cb->hook(container_of(cb->fence, struct i915_request, submit),
136                  &cb->signal->fence);
137         i915_request_put(cb->signal);
138
139         irq_execute_cb(wrk);
140 }
141
142 static void __notify_execute_cb(struct i915_request *rq)
143 {
144         struct execute_cb *cb;
145
146         lockdep_assert_held(&rq->lock);
147
148         if (list_empty(&rq->execute_cb))
149                 return;
150
151         list_for_each_entry(cb, &rq->execute_cb, link)
152                 irq_work_queue(&cb->work);
153
154         /*
155          * XXX Rollback on __i915_request_unsubmit()
156          *
157          * In the future, perhaps when we have an active time-slicing scheduler,
158          * it will be interesting to unsubmit parallel execution and remove
159          * busywaits from the GPU until their master is restarted. This is
160          * quite hairy, we have to carefully rollback the fence and do a
161          * preempt-to-idle cycle on the target engine, all the while the
162          * master execute_cb may refire.
163          */
164         INIT_LIST_HEAD(&rq->execute_cb);
165 }
166
167 static inline void
168 remove_from_client(struct i915_request *request)
169 {
170         struct drm_i915_file_private *file_priv;
171
172         if (!READ_ONCE(request->file_priv))
173                 return;
174
175         rcu_read_lock();
176         file_priv = xchg(&request->file_priv, NULL);
177         if (file_priv) {
178                 spin_lock(&file_priv->mm.lock);
179                 list_del(&request->client_link);
180                 spin_unlock(&file_priv->mm.lock);
181         }
182         rcu_read_unlock();
183 }
184
185 static void free_capture_list(struct i915_request *request)
186 {
187         struct i915_capture_list *capture;
188
189         capture = request->capture_list;
190         while (capture) {
191                 struct i915_capture_list *next = capture->next;
192
193                 kfree(capture);
194                 capture = next;
195         }
196 }
197
198 static bool i915_request_retire(struct i915_request *rq)
199 {
200         struct i915_active_request *active, *next;
201
202         lockdep_assert_held(&rq->timeline->mutex);
203         if (!i915_request_completed(rq))
204                 return false;
205
206         GEM_TRACE("%s fence %llx:%lld, current %d\n",
207                   rq->engine->name,
208                   rq->fence.context, rq->fence.seqno,
209                   hwsp_seqno(rq));
210
211         GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
212         trace_i915_request_retire(rq);
213
214         /*
215          * We know the GPU must have read the request to have
216          * sent us the seqno + interrupt, so use the position
217          * of tail of the request to update the last known position
218          * of the GPU head.
219          *
220          * Note this requires that we are always called in request
221          * completion order.
222          */
223         GEM_BUG_ON(!list_is_first(&rq->link, &rq->timeline->requests));
224         rq->ring->head = rq->postfix;
225
226         /*
227          * Walk through the active list, calling retire on each. This allows
228          * objects to track their GPU activity and mark themselves as idle
229          * when their *last* active request is completed (updating state
230          * tracking lists for eviction, active references for GEM, etc).
231          *
232          * As the ->retire() may free the node, we decouple it first and
233          * pass along the auxiliary information (to avoid dereferencing
234          * the node after the callback).
235          */
236         list_for_each_entry_safe(active, next, &rq->active_list, link) {
237                 /*
238                  * In microbenchmarks or focusing upon time inside the kernel,
239                  * we may spend an inordinate amount of time simply handling
240                  * the retirement of requests and processing their callbacks.
241                  * Of which, this loop itself is particularly hot due to the
242                  * cache misses when jumping around the list of
243                  * i915_active_request.  So we try to keep this loop as
244                  * streamlined as possible and also prefetch the next
245                  * i915_active_request to try and hide the likely cache miss.
246                  */
247                 prefetchw(next);
248
249                 INIT_LIST_HEAD(&active->link);
250                 RCU_INIT_POINTER(active->request, NULL);
251
252                 active->retire(active, rq);
253         }
254
255         local_irq_disable();
256
257         /*
258          * We only loosely track inflight requests across preemption,
259          * and so we may find ourselves attempting to retire a _completed_
260          * request that we have removed from the HW and put back on a run
261          * queue.
262          */
263         spin_lock(&rq->engine->active.lock);
264         list_del(&rq->sched.link);
265         spin_unlock(&rq->engine->active.lock);
266
267         spin_lock(&rq->lock);
268         i915_request_mark_complete(rq);
269         if (!i915_request_signaled(rq))
270                 dma_fence_signal_locked(&rq->fence);
271         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
272                 i915_request_cancel_breadcrumb(rq);
273         if (i915_request_has_waitboost(rq)) {
274                 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
275                 atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
276         }
277         if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
278                 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
279                 __notify_execute_cb(rq);
280         }
281         GEM_BUG_ON(!list_empty(&rq->execute_cb));
282         spin_unlock(&rq->lock);
283
284         local_irq_enable();
285
286         remove_from_client(rq);
287         list_del(&rq->link);
288
289         intel_context_exit(rq->hw_context);
290         intel_context_unpin(rq->hw_context);
291
292         free_capture_list(rq);
293         i915_sched_node_fini(&rq->sched);
294         i915_request_put(rq);
295
296         return true;
297 }
298
299 void i915_request_retire_upto(struct i915_request *rq)
300 {
301         struct intel_timeline * const tl = rq->timeline;
302         struct i915_request *tmp;
303
304         GEM_TRACE("%s fence %llx:%lld, current %d\n",
305                   rq->engine->name,
306                   rq->fence.context, rq->fence.seqno,
307                   hwsp_seqno(rq));
308
309         lockdep_assert_held(&tl->mutex);
310         GEM_BUG_ON(!i915_request_completed(rq));
311
312         do {
313                 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
314         } while (i915_request_retire(tmp) && tmp != rq);
315 }
316
317 static int
318 __i915_request_await_execution(struct i915_request *rq,
319                                struct i915_request *signal,
320                                void (*hook)(struct i915_request *rq,
321                                             struct dma_fence *signal),
322                                gfp_t gfp)
323 {
324         struct execute_cb *cb;
325
326         if (i915_request_is_active(signal)) {
327                 if (hook)
328                         hook(rq, &signal->fence);
329                 return 0;
330         }
331
332         cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
333         if (!cb)
334                 return -ENOMEM;
335
336         cb->fence = &rq->submit;
337         i915_sw_fence_await(cb->fence);
338         init_irq_work(&cb->work, irq_execute_cb);
339
340         if (hook) {
341                 cb->hook = hook;
342                 cb->signal = i915_request_get(signal);
343                 cb->work.func = irq_execute_cb_hook;
344         }
345
346         spin_lock_irq(&signal->lock);
347         if (i915_request_is_active(signal)) {
348                 if (hook) {
349                         hook(rq, &signal->fence);
350                         i915_request_put(signal);
351                 }
352                 i915_sw_fence_complete(cb->fence);
353                 kmem_cache_free(global.slab_execute_cbs, cb);
354         } else {
355                 list_add_tail(&cb->link, &signal->execute_cb);
356         }
357         spin_unlock_irq(&signal->lock);
358
359         return 0;
360 }
361
362 void __i915_request_submit(struct i915_request *request)
363 {
364         struct intel_engine_cs *engine = request->engine;
365
366         GEM_TRACE("%s fence %llx:%lld, current %d\n",
367                   engine->name,
368                   request->fence.context, request->fence.seqno,
369                   hwsp_seqno(request));
370
371         GEM_BUG_ON(!irqs_disabled());
372         lockdep_assert_held(&engine->active.lock);
373
374         if (i915_gem_context_is_banned(request->gem_context))
375                 i915_request_skip(request, -EIO);
376
377         /*
378          * Are we using semaphores when the gpu is already saturated?
379          *
380          * Using semaphores incurs a cost in having the GPU poll a
381          * memory location, busywaiting for it to change. The continual
382          * memory reads can have a noticeable impact on the rest of the
383          * system with the extra bus traffic, stalling the cpu as it too
384          * tries to access memory across the bus (perf stat -e bus-cycles).
385          *
386          * If we installed a semaphore on this request and we only submit
387          * the request after the signaler completed, that indicates the
388          * system is overloaded and using semaphores at this time only
389          * increases the amount of work we are doing. If so, we disable
390          * further use of semaphores until we are idle again, whence we
391          * optimistically try again.
392          */
393         if (request->sched.semaphores &&
394             i915_sw_fence_signaled(&request->semaphore))
395                 engine->saturated |= request->sched.semaphores;
396
397         /* We may be recursing from the signal callback of another i915 fence */
398         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
399
400         list_move_tail(&request->sched.link, &engine->active.requests);
401
402         GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
403         set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
404
405         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
406             !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
407             !i915_request_enable_breadcrumb(request))
408                 intel_engine_queue_breadcrumbs(engine);
409
410         __notify_execute_cb(request);
411
412         spin_unlock(&request->lock);
413
414         engine->emit_fini_breadcrumb(request,
415                                      request->ring->vaddr + request->postfix);
416
417         engine->serial++;
418
419         trace_i915_request_execute(request);
420 }
421
422 void i915_request_submit(struct i915_request *request)
423 {
424         struct intel_engine_cs *engine = request->engine;
425         unsigned long flags;
426
427         /* Will be called from irq-context when using foreign fences. */
428         spin_lock_irqsave(&engine->active.lock, flags);
429
430         __i915_request_submit(request);
431
432         spin_unlock_irqrestore(&engine->active.lock, flags);
433 }
434
435 void __i915_request_unsubmit(struct i915_request *request)
436 {
437         struct intel_engine_cs *engine = request->engine;
438
439         GEM_TRACE("%s fence %llx:%lld, current %d\n",
440                   engine->name,
441                   request->fence.context, request->fence.seqno,
442                   hwsp_seqno(request));
443
444         GEM_BUG_ON(!irqs_disabled());
445         lockdep_assert_held(&engine->active.lock);
446
447         /*
448          * Only unwind in reverse order, required so that the per-context list
449          * is kept in seqno/ring order.
450          */
451
452         /* We may be recursing from the signal callback of another i915 fence */
453         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
454
455         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
456                 i915_request_cancel_breadcrumb(request);
457
458         GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
459         clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
460
461         spin_unlock(&request->lock);
462
463         /* We've already spun, don't charge on resubmitting. */
464         if (request->sched.semaphores && i915_request_started(request)) {
465                 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
466                 request->sched.semaphores = 0;
467         }
468
469         /*
470          * We don't need to wake_up any waiters on request->execute, they
471          * will get woken by any other event or us re-adding this request
472          * to the engine timeline (__i915_request_submit()). The waiters
473          * should be quite adapt at finding that the request now has a new
474          * global_seqno to the one they went to sleep on.
475          */
476 }
477
478 void i915_request_unsubmit(struct i915_request *request)
479 {
480         struct intel_engine_cs *engine = request->engine;
481         unsigned long flags;
482
483         /* Will be called from irq-context when using foreign fences. */
484         spin_lock_irqsave(&engine->active.lock, flags);
485
486         __i915_request_unsubmit(request);
487
488         spin_unlock_irqrestore(&engine->active.lock, flags);
489 }
490
491 static int __i915_sw_fence_call
492 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
493 {
494         struct i915_request *request =
495                 container_of(fence, typeof(*request), submit);
496
497         switch (state) {
498         case FENCE_COMPLETE:
499                 trace_i915_request_submit(request);
500
501                 if (unlikely(fence->error))
502                         i915_request_skip(request, fence->error);
503
504                 /*
505                  * We need to serialize use of the submit_request() callback
506                  * with its hotplugging performed during an emergency
507                  * i915_gem_set_wedged().  We use the RCU mechanism to mark the
508                  * critical section in order to force i915_gem_set_wedged() to
509                  * wait until the submit_request() is completed before
510                  * proceeding.
511                  */
512                 rcu_read_lock();
513                 request->engine->submit_request(request);
514                 rcu_read_unlock();
515                 break;
516
517         case FENCE_FREE:
518                 i915_request_put(request);
519                 break;
520         }
521
522         return NOTIFY_DONE;
523 }
524
525 static int __i915_sw_fence_call
526 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
527 {
528         struct i915_request *request =
529                 container_of(fence, typeof(*request), semaphore);
530
531         switch (state) {
532         case FENCE_COMPLETE:
533                 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
534                 break;
535
536         case FENCE_FREE:
537                 i915_request_put(request);
538                 break;
539         }
540
541         return NOTIFY_DONE;
542 }
543
544 static void retire_requests(struct intel_timeline *tl)
545 {
546         struct i915_request *rq, *rn;
547
548         list_for_each_entry_safe(rq, rn, &tl->requests, link)
549                 if (!i915_request_retire(rq))
550                         break;
551 }
552
553 static noinline struct i915_request *
554 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
555 {
556         struct i915_request *rq;
557
558         if (list_empty(&tl->requests))
559                 goto out;
560
561         if (!gfpflags_allow_blocking(gfp))
562                 goto out;
563
564         /* Move our oldest request to the slab-cache (if not in use!) */
565         rq = list_first_entry(&tl->requests, typeof(*rq), link);
566         i915_request_retire(rq);
567
568         rq = kmem_cache_alloc(global.slab_requests,
569                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
570         if (rq)
571                 return rq;
572
573         /* Ratelimit ourselves to prevent oom from malicious clients */
574         rq = list_last_entry(&tl->requests, typeof(*rq), link);
575         cond_synchronize_rcu(rq->rcustate);
576
577         /* Retire our old requests in the hope that we free some */
578         retire_requests(tl);
579
580 out:
581         return kmem_cache_alloc(global.slab_requests, gfp);
582 }
583
584 struct i915_request *
585 __i915_request_create(struct intel_context *ce, gfp_t gfp)
586 {
587         struct intel_timeline *tl = ce->timeline;
588         struct i915_request *rq;
589         u32 seqno;
590         int ret;
591
592         might_sleep_if(gfpflags_allow_blocking(gfp));
593
594         /* Check that the caller provided an already pinned context */
595         __intel_context_pin(ce);
596
597         /*
598          * Beware: Dragons be flying overhead.
599          *
600          * We use RCU to look up requests in flight. The lookups may
601          * race with the request being allocated from the slab freelist.
602          * That is the request we are writing to here, may be in the process
603          * of being read by __i915_active_request_get_rcu(). As such,
604          * we have to be very careful when overwriting the contents. During
605          * the RCU lookup, we change chase the request->engine pointer,
606          * read the request->global_seqno and increment the reference count.
607          *
608          * The reference count is incremented atomically. If it is zero,
609          * the lookup knows the request is unallocated and complete. Otherwise,
610          * it is either still in use, or has been reallocated and reset
611          * with dma_fence_init(). This increment is safe for release as we
612          * check that the request we have a reference to and matches the active
613          * request.
614          *
615          * Before we increment the refcount, we chase the request->engine
616          * pointer. We must not call kmem_cache_zalloc() or else we set
617          * that pointer to NULL and cause a crash during the lookup. If
618          * we see the request is completed (based on the value of the
619          * old engine and seqno), the lookup is complete and reports NULL.
620          * If we decide the request is not completed (new engine or seqno),
621          * then we grab a reference and double check that it is still the
622          * active request - which it won't be and restart the lookup.
623          *
624          * Do not use kmem_cache_zalloc() here!
625          */
626         rq = kmem_cache_alloc(global.slab_requests,
627                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
628         if (unlikely(!rq)) {
629                 rq = request_alloc_slow(tl, gfp);
630                 if (!rq) {
631                         ret = -ENOMEM;
632                         goto err_unreserve;
633                 }
634         }
635
636         ret = intel_timeline_get_seqno(tl, rq, &seqno);
637         if (ret)
638                 goto err_free;
639
640         rq->i915 = ce->engine->i915;
641         rq->hw_context = ce;
642         rq->gem_context = ce->gem_context;
643         rq->engine = ce->engine;
644         rq->ring = ce->ring;
645         rq->timeline = tl;
646         rq->hwsp_seqno = tl->hwsp_seqno;
647         rq->hwsp_cacheline = tl->hwsp_cacheline;
648         rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
649
650         spin_lock_init(&rq->lock);
651         dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
652                        tl->fence_context, seqno);
653
654         /* We bump the ref for the fence chain */
655         i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
656         i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
657
658         i915_sched_node_init(&rq->sched);
659
660         /* No zalloc, must clear what we need by hand */
661         rq->file_priv = NULL;
662         rq->batch = NULL;
663         rq->capture_list = NULL;
664         rq->flags = 0;
665         rq->execution_mask = ALL_ENGINES;
666
667         INIT_LIST_HEAD(&rq->active_list);
668         INIT_LIST_HEAD(&rq->execute_cb);
669
670         /*
671          * Reserve space in the ring buffer for all the commands required to
672          * eventually emit this request. This is to guarantee that the
673          * i915_request_add() call can't fail. Note that the reserve may need
674          * to be redone if the request is not actually submitted straight
675          * away, e.g. because a GPU scheduler has deferred it.
676          *
677          * Note that due to how we add reserved_space to intel_ring_begin()
678          * we need to double our request to ensure that if we need to wrap
679          * around inside i915_request_add() there is sufficient space at
680          * the beginning of the ring as well.
681          */
682         rq->reserved_space =
683                 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
684
685         /*
686          * Record the position of the start of the request so that
687          * should we detect the updated seqno part-way through the
688          * GPU processing the request, we never over-estimate the
689          * position of the head.
690          */
691         rq->head = rq->ring->emit;
692
693         ret = rq->engine->request_alloc(rq);
694         if (ret)
695                 goto err_unwind;
696
697         rq->infix = rq->ring->emit; /* end of header; start of user payload */
698
699         intel_context_mark_active(ce);
700         return rq;
701
702 err_unwind:
703         ce->ring->emit = rq->head;
704
705         /* Make sure we didn't add ourselves to external state before freeing */
706         GEM_BUG_ON(!list_empty(&rq->active_list));
707         GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
708         GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
709
710 err_free:
711         kmem_cache_free(global.slab_requests, rq);
712 err_unreserve:
713         intel_context_unpin(ce);
714         return ERR_PTR(ret);
715 }
716
717 struct i915_request *
718 i915_request_create(struct intel_context *ce)
719 {
720         struct i915_request *rq;
721         struct intel_timeline *tl;
722
723         tl = intel_context_timeline_lock(ce);
724         if (IS_ERR(tl))
725                 return ERR_CAST(tl);
726
727         /* Move our oldest request to the slab-cache (if not in use!) */
728         rq = list_first_entry(&tl->requests, typeof(*rq), link);
729         if (!list_is_last(&rq->link, &tl->requests))
730                 i915_request_retire(rq);
731
732         intel_context_enter(ce);
733         rq = __i915_request_create(ce, GFP_KERNEL);
734         intel_context_exit(ce); /* active reference transferred to request */
735         if (IS_ERR(rq))
736                 goto err_unlock;
737
738         /* Check that we do not interrupt ourselves with a new request */
739         rq->cookie = lockdep_pin_lock(&tl->mutex);
740
741         return rq;
742
743 err_unlock:
744         intel_context_timeline_unlock(tl);
745         return rq;
746 }
747
748 static int
749 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
750 {
751         if (list_is_first(&signal->link, &signal->timeline->requests))
752                 return 0;
753
754         signal = list_prev_entry(signal, link);
755         if (intel_timeline_sync_is_later(rq->timeline, &signal->fence))
756                 return 0;
757
758         return i915_sw_fence_await_dma_fence(&rq->submit,
759                                              &signal->fence, 0,
760                                              I915_FENCE_GFP);
761 }
762
763 static intel_engine_mask_t
764 already_busywaiting(struct i915_request *rq)
765 {
766         /*
767          * Polling a semaphore causes bus traffic, delaying other users of
768          * both the GPU and CPU. We want to limit the impact on others,
769          * while taking advantage of early submission to reduce GPU
770          * latency. Therefore we restrict ourselves to not using more
771          * than one semaphore from each source, and not using a semaphore
772          * if we have detected the engine is saturated (i.e. would not be
773          * submitted early and cause bus traffic reading an already passed
774          * semaphore).
775          *
776          * See the are-we-too-late? check in __i915_request_submit().
777          */
778         return rq->sched.semaphores | rq->engine->saturated;
779 }
780
781 static int
782 emit_semaphore_wait(struct i915_request *to,
783                     struct i915_request *from,
784                     gfp_t gfp)
785 {
786         u32 hwsp_offset;
787         u32 *cs;
788         int err;
789
790         GEM_BUG_ON(!from->timeline->has_initial_breadcrumb);
791         GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
792
793         /* Just emit the first semaphore we see as request space is limited. */
794         if (already_busywaiting(to) & from->engine->mask)
795                 return i915_sw_fence_await_dma_fence(&to->submit,
796                                                      &from->fence, 0,
797                                                      I915_FENCE_GFP);
798
799         err = i915_request_await_start(to, from);
800         if (err < 0)
801                 return err;
802
803         /* Only submit our spinner after the signaler is running! */
804         err = __i915_request_await_execution(to, from, NULL, gfp);
805         if (err)
806                 return err;
807
808         /* We need to pin the signaler's HWSP until we are finished reading. */
809         err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
810         if (err)
811                 return err;
812
813         cs = intel_ring_begin(to, 4);
814         if (IS_ERR(cs))
815                 return PTR_ERR(cs);
816
817         /*
818          * Using greater-than-or-equal here means we have to worry
819          * about seqno wraparound. To side step that issue, we swap
820          * the timeline HWSP upon wrapping, so that everyone listening
821          * for the old (pre-wrap) values do not see the much smaller
822          * (post-wrap) values than they were expecting (and so wait
823          * forever).
824          */
825         *cs++ = MI_SEMAPHORE_WAIT |
826                 MI_SEMAPHORE_GLOBAL_GTT |
827                 MI_SEMAPHORE_POLL |
828                 MI_SEMAPHORE_SAD_GTE_SDD;
829         *cs++ = from->fence.seqno;
830         *cs++ = hwsp_offset;
831         *cs++ = 0;
832
833         intel_ring_advance(to, cs);
834         to->sched.semaphores |= from->engine->mask;
835         to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
836         return 0;
837 }
838
839 static int
840 i915_request_await_request(struct i915_request *to, struct i915_request *from)
841 {
842         int ret;
843
844         GEM_BUG_ON(to == from);
845         GEM_BUG_ON(to->timeline == from->timeline);
846
847         if (i915_request_completed(from))
848                 return 0;
849
850         if (to->engine->schedule) {
851                 ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
852                 if (ret < 0)
853                         return ret;
854         }
855
856         if (to->engine == from->engine) {
857                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
858                                                        &from->submit,
859                                                        I915_FENCE_GFP);
860         } else if (intel_engine_has_semaphores(to->engine) &&
861                    to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
862                 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
863         } else {
864                 ret = i915_sw_fence_await_dma_fence(&to->submit,
865                                                     &from->fence, 0,
866                                                     I915_FENCE_GFP);
867         }
868         if (ret < 0)
869                 return ret;
870
871         if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
872                 ret = i915_sw_fence_await_dma_fence(&to->semaphore,
873                                                     &from->fence, 0,
874                                                     I915_FENCE_GFP);
875                 if (ret < 0)
876                         return ret;
877         }
878
879         return 0;
880 }
881
882 int
883 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
884 {
885         struct dma_fence **child = &fence;
886         unsigned int nchild = 1;
887         int ret;
888
889         /*
890          * Note that if the fence-array was created in signal-on-any mode,
891          * we should *not* decompose it into its individual fences. However,
892          * we don't currently store which mode the fence-array is operating
893          * in. Fortunately, the only user of signal-on-any is private to
894          * amdgpu and we should not see any incoming fence-array from
895          * sync-file being in signal-on-any mode.
896          */
897         if (dma_fence_is_array(fence)) {
898                 struct dma_fence_array *array = to_dma_fence_array(fence);
899
900                 child = array->fences;
901                 nchild = array->num_fences;
902                 GEM_BUG_ON(!nchild);
903         }
904
905         do {
906                 fence = *child++;
907                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
908                         continue;
909
910                 /*
911                  * Requests on the same timeline are explicitly ordered, along
912                  * with their dependencies, by i915_request_add() which ensures
913                  * that requests are submitted in-order through each ring.
914                  */
915                 if (fence->context == rq->fence.context)
916                         continue;
917
918                 /* Squash repeated waits to the same timelines */
919                 if (fence->context &&
920                     intel_timeline_sync_is_later(rq->timeline, fence))
921                         continue;
922
923                 if (dma_fence_is_i915(fence))
924                         ret = i915_request_await_request(rq, to_request(fence));
925                 else
926                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
927                                                             I915_FENCE_TIMEOUT,
928                                                             I915_FENCE_GFP);
929                 if (ret < 0)
930                         return ret;
931
932                 /* Record the latest fence used against each timeline */
933                 if (fence->context)
934                         intel_timeline_sync_set(rq->timeline, fence);
935         } while (--nchild);
936
937         return 0;
938 }
939
940 int
941 i915_request_await_execution(struct i915_request *rq,
942                              struct dma_fence *fence,
943                              void (*hook)(struct i915_request *rq,
944                                           struct dma_fence *signal))
945 {
946         struct dma_fence **child = &fence;
947         unsigned int nchild = 1;
948         int ret;
949
950         if (dma_fence_is_array(fence)) {
951                 struct dma_fence_array *array = to_dma_fence_array(fence);
952
953                 /* XXX Error for signal-on-any fence arrays */
954
955                 child = array->fences;
956                 nchild = array->num_fences;
957                 GEM_BUG_ON(!nchild);
958         }
959
960         do {
961                 fence = *child++;
962                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
963                         continue;
964
965                 /*
966                  * We don't squash repeated fence dependencies here as we
967                  * want to run our callback in all cases.
968                  */
969
970                 if (dma_fence_is_i915(fence))
971                         ret = __i915_request_await_execution(rq,
972                                                              to_request(fence),
973                                                              hook,
974                                                              I915_FENCE_GFP);
975                 else
976                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
977                                                             I915_FENCE_TIMEOUT,
978                                                             GFP_KERNEL);
979                 if (ret < 0)
980                         return ret;
981         } while (--nchild);
982
983         return 0;
984 }
985
986 /**
987  * i915_request_await_object - set this request to (async) wait upon a bo
988  * @to: request we are wishing to use
989  * @obj: object which may be in use on another ring.
990  * @write: whether the wait is on behalf of a writer
991  *
992  * This code is meant to abstract object synchronization with the GPU.
993  * Conceptually we serialise writes between engines inside the GPU.
994  * We only allow one engine to write into a buffer at any time, but
995  * multiple readers. To ensure each has a coherent view of memory, we must:
996  *
997  * - If there is an outstanding write request to the object, the new
998  *   request must wait for it to complete (either CPU or in hw, requests
999  *   on the same ring will be naturally ordered).
1000  *
1001  * - If we are a write request (pending_write_domain is set), the new
1002  *   request must wait for outstanding read requests to complete.
1003  *
1004  * Returns 0 if successful, else propagates up the lower layer error.
1005  */
1006 int
1007 i915_request_await_object(struct i915_request *to,
1008                           struct drm_i915_gem_object *obj,
1009                           bool write)
1010 {
1011         struct dma_fence *excl;
1012         int ret = 0;
1013
1014         if (write) {
1015                 struct dma_fence **shared;
1016                 unsigned int count, i;
1017
1018                 ret = dma_resv_get_fences_rcu(obj->base.resv,
1019                                                         &excl, &count, &shared);
1020                 if (ret)
1021                         return ret;
1022
1023                 for (i = 0; i < count; i++) {
1024                         ret = i915_request_await_dma_fence(to, shared[i]);
1025                         if (ret)
1026                                 break;
1027
1028                         dma_fence_put(shared[i]);
1029                 }
1030
1031                 for (; i < count; i++)
1032                         dma_fence_put(shared[i]);
1033                 kfree(shared);
1034         } else {
1035                 excl = dma_resv_get_excl_rcu(obj->base.resv);
1036         }
1037
1038         if (excl) {
1039                 if (ret == 0)
1040                         ret = i915_request_await_dma_fence(to, excl);
1041
1042                 dma_fence_put(excl);
1043         }
1044
1045         return ret;
1046 }
1047
1048 void i915_request_skip(struct i915_request *rq, int error)
1049 {
1050         void *vaddr = rq->ring->vaddr;
1051         u32 head;
1052
1053         GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1054         dma_fence_set_error(&rq->fence, error);
1055
1056         if (rq->infix == rq->postfix)
1057                 return;
1058
1059         /*
1060          * As this request likely depends on state from the lost
1061          * context, clear out all the user operations leaving the
1062          * breadcrumb at the end (so we get the fence notifications).
1063          */
1064         head = rq->infix;
1065         if (rq->postfix < head) {
1066                 memset(vaddr + head, 0, rq->ring->size - head);
1067                 head = 0;
1068         }
1069         memset(vaddr + head, 0, rq->postfix - head);
1070         rq->infix = rq->postfix;
1071 }
1072
1073 static struct i915_request *
1074 __i915_request_add_to_timeline(struct i915_request *rq)
1075 {
1076         struct intel_timeline *timeline = rq->timeline;
1077         struct i915_request *prev;
1078
1079         /*
1080          * Dependency tracking and request ordering along the timeline
1081          * is special cased so that we can eliminate redundant ordering
1082          * operations while building the request (we know that the timeline
1083          * itself is ordered, and here we guarantee it).
1084          *
1085          * As we know we will need to emit tracking along the timeline,
1086          * we embed the hooks into our request struct -- at the cost of
1087          * having to have specialised no-allocation interfaces (which will
1088          * be beneficial elsewhere).
1089          *
1090          * A second benefit to open-coding i915_request_await_request is
1091          * that we can apply a slight variant of the rules specialised
1092          * for timelines that jump between engines (such as virtual engines).
1093          * If we consider the case of virtual engine, we must emit a dma-fence
1094          * to prevent scheduling of the second request until the first is
1095          * complete (to maximise our greedy late load balancing) and this
1096          * precludes optimising to use semaphores serialisation of a single
1097          * timeline across engines.
1098          */
1099         prev = rcu_dereference_protected(timeline->last_request.request,
1100                                          lockdep_is_held(&timeline->mutex));
1101         if (prev && !i915_request_completed(prev)) {
1102                 if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1103                         i915_sw_fence_await_sw_fence(&rq->submit,
1104                                                      &prev->submit,
1105                                                      &rq->submitq);
1106                 else
1107                         __i915_sw_fence_await_dma_fence(&rq->submit,
1108                                                         &prev->fence,
1109                                                         &rq->dmaq);
1110                 if (rq->engine->schedule)
1111                         __i915_sched_node_add_dependency(&rq->sched,
1112                                                          &prev->sched,
1113                                                          &rq->dep,
1114                                                          0);
1115         }
1116
1117         list_add_tail(&rq->link, &timeline->requests);
1118
1119         /*
1120          * Make sure that no request gazumped us - if it was allocated after
1121          * our i915_request_alloc() and called __i915_request_add() before
1122          * us, the timeline will hold its seqno which is later than ours.
1123          */
1124         GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1125         __i915_active_request_set(&timeline->last_request, rq);
1126
1127         return prev;
1128 }
1129
1130 /*
1131  * NB: This function is not allowed to fail. Doing so would mean the the
1132  * request is not being tracked for completion but the work itself is
1133  * going to happen on the hardware. This would be a Bad Thing(tm).
1134  */
1135 struct i915_request *__i915_request_commit(struct i915_request *rq)
1136 {
1137         struct intel_engine_cs *engine = rq->engine;
1138         struct intel_ring *ring = rq->ring;
1139         u32 *cs;
1140
1141         GEM_TRACE("%s fence %llx:%lld\n",
1142                   engine->name, rq->fence.context, rq->fence.seqno);
1143
1144         /*
1145          * To ensure that this call will not fail, space for its emissions
1146          * should already have been reserved in the ring buffer. Let the ring
1147          * know that it is time to use that space up.
1148          */
1149         GEM_BUG_ON(rq->reserved_space > ring->space);
1150         rq->reserved_space = 0;
1151         rq->emitted_jiffies = jiffies;
1152
1153         /*
1154          * Record the position of the start of the breadcrumb so that
1155          * should we detect the updated seqno part-way through the
1156          * GPU processing the request, we never over-estimate the
1157          * position of the ring's HEAD.
1158          */
1159         cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1160         GEM_BUG_ON(IS_ERR(cs));
1161         rq->postfix = intel_ring_offset(rq, cs);
1162
1163         return __i915_request_add_to_timeline(rq);
1164 }
1165
1166 void __i915_request_queue(struct i915_request *rq,
1167                           const struct i915_sched_attr *attr)
1168 {
1169         /*
1170          * Let the backend know a new request has arrived that may need
1171          * to adjust the existing execution schedule due to a high priority
1172          * request - i.e. we may want to preempt the current request in order
1173          * to run a high priority dependency chain *before* we can execute this
1174          * request.
1175          *
1176          * This is called before the request is ready to run so that we can
1177          * decide whether to preempt the entire chain so that it is ready to
1178          * run at the earliest possible convenience.
1179          */
1180         i915_sw_fence_commit(&rq->semaphore);
1181         if (attr && rq->engine->schedule)
1182                 rq->engine->schedule(rq, attr);
1183         i915_sw_fence_commit(&rq->submit);
1184 }
1185
1186 void i915_request_add(struct i915_request *rq)
1187 {
1188         struct i915_sched_attr attr = rq->gem_context->sched;
1189         struct intel_timeline * const tl = rq->timeline;
1190         struct i915_request *prev;
1191
1192         lockdep_assert_held(&tl->mutex);
1193         lockdep_unpin_lock(&tl->mutex, rq->cookie);
1194
1195         trace_i915_request_add(rq);
1196
1197         prev = __i915_request_commit(rq);
1198
1199         /*
1200          * Boost actual workloads past semaphores!
1201          *
1202          * With semaphores we spin on one engine waiting for another,
1203          * simply to reduce the latency of starting our work when
1204          * the signaler completes. However, if there is any other
1205          * work that we could be doing on this engine instead, that
1206          * is better utilisation and will reduce the overall duration
1207          * of the current work. To avoid PI boosting a semaphore
1208          * far in the distance past over useful work, we keep a history
1209          * of any semaphore use along our dependency chain.
1210          */
1211         if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1212                 attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1213
1214         /*
1215          * Boost priorities to new clients (new request flows).
1216          *
1217          * Allow interactive/synchronous clients to jump ahead of
1218          * the bulk clients. (FQ_CODEL)
1219          */
1220         if (list_empty(&rq->sched.signalers_list))
1221                 attr.priority |= I915_PRIORITY_WAIT;
1222
1223         local_bh_disable();
1224         __i915_request_queue(rq, &attr);
1225         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1226
1227         /*
1228          * In typical scenarios, we do not expect the previous request on
1229          * the timeline to be still tracked by timeline->last_request if it
1230          * has been completed. If the completed request is still here, that
1231          * implies that request retirement is a long way behind submission,
1232          * suggesting that we haven't been retiring frequently enough from
1233          * the combination of retire-before-alloc, waiters and the background
1234          * retirement worker. So if the last request on this timeline was
1235          * already completed, do a catch up pass, flushing the retirement queue
1236          * up to this client. Since we have now moved the heaviest operations
1237          * during retirement onto secondary workers, such as freeing objects
1238          * or contexts, retiring a bunch of requests is mostly list management
1239          * (and cache misses), and so we should not be overly penalizing this
1240          * client by performing excess work, though we may still performing
1241          * work on behalf of others -- but instead we should benefit from
1242          * improved resource management. (Well, that's the theory at least.)
1243          */
1244         if (prev && i915_request_completed(prev) && prev->timeline == tl)
1245                 i915_request_retire_upto(prev);
1246
1247         mutex_unlock(&tl->mutex);
1248 }
1249
1250 static unsigned long local_clock_us(unsigned int *cpu)
1251 {
1252         unsigned long t;
1253
1254         /*
1255          * Cheaply and approximately convert from nanoseconds to microseconds.
1256          * The result and subsequent calculations are also defined in the same
1257          * approximate microseconds units. The principal source of timing
1258          * error here is from the simple truncation.
1259          *
1260          * Note that local_clock() is only defined wrt to the current CPU;
1261          * the comparisons are no longer valid if we switch CPUs. Instead of
1262          * blocking preemption for the entire busywait, we can detect the CPU
1263          * switch and use that as indicator of system load and a reason to
1264          * stop busywaiting, see busywait_stop().
1265          */
1266         *cpu = get_cpu();
1267         t = local_clock() >> 10;
1268         put_cpu();
1269
1270         return t;
1271 }
1272
1273 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1274 {
1275         unsigned int this_cpu;
1276
1277         if (time_after(local_clock_us(&this_cpu), timeout))
1278                 return true;
1279
1280         return this_cpu != cpu;
1281 }
1282
1283 static bool __i915_spin_request(const struct i915_request * const rq,
1284                                 int state, unsigned long timeout_us)
1285 {
1286         unsigned int cpu;
1287
1288         /*
1289          * Only wait for the request if we know it is likely to complete.
1290          *
1291          * We don't track the timestamps around requests, nor the average
1292          * request length, so we do not have a good indicator that this
1293          * request will complete within the timeout. What we do know is the
1294          * order in which requests are executed by the context and so we can
1295          * tell if the request has been started. If the request is not even
1296          * running yet, it is a fair assumption that it will not complete
1297          * within our relatively short timeout.
1298          */
1299         if (!i915_request_is_running(rq))
1300                 return false;
1301
1302         /*
1303          * When waiting for high frequency requests, e.g. during synchronous
1304          * rendering split between the CPU and GPU, the finite amount of time
1305          * required to set up the irq and wait upon it limits the response
1306          * rate. By busywaiting on the request completion for a short while we
1307          * can service the high frequency waits as quick as possible. However,
1308          * if it is a slow request, we want to sleep as quickly as possible.
1309          * The tradeoff between waiting and sleeping is roughly the time it
1310          * takes to sleep on a request, on the order of a microsecond.
1311          */
1312
1313         timeout_us += local_clock_us(&cpu);
1314         do {
1315                 if (i915_request_completed(rq))
1316                         return true;
1317
1318                 if (signal_pending_state(state, current))
1319                         break;
1320
1321                 if (busywait_stop(timeout_us, cpu))
1322                         break;
1323
1324                 cpu_relax();
1325         } while (!need_resched());
1326
1327         return false;
1328 }
1329
1330 struct request_wait {
1331         struct dma_fence_cb cb;
1332         struct task_struct *tsk;
1333 };
1334
1335 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1336 {
1337         struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1338
1339         wake_up_process(wait->tsk);
1340 }
1341
1342 /**
1343  * i915_request_wait - wait until execution of request has finished
1344  * @rq: the request to wait upon
1345  * @flags: how to wait
1346  * @timeout: how long to wait in jiffies
1347  *
1348  * i915_request_wait() waits for the request to be completed, for a
1349  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1350  * unbounded wait).
1351  *
1352  * Returns the remaining time (in jiffies) if the request completed, which may
1353  * be zero or -ETIME if the request is unfinished after the timeout expires.
1354  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1355  * pending before the request completes.
1356  */
1357 long i915_request_wait(struct i915_request *rq,
1358                        unsigned int flags,
1359                        long timeout)
1360 {
1361         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1362                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1363         struct request_wait wait;
1364
1365         might_sleep();
1366         GEM_BUG_ON(timeout < 0);
1367
1368         if (dma_fence_is_signaled(&rq->fence))
1369                 return timeout;
1370
1371         if (!timeout)
1372                 return -ETIME;
1373
1374         trace_i915_request_wait_begin(rq, flags);
1375
1376         /*
1377          * We must never wait on the GPU while holding a lock as we
1378          * may need to perform a GPU reset. So while we don't need to
1379          * serialise wait/reset with an explicit lock, we do want
1380          * lockdep to detect potential dependency cycles.
1381          */
1382         mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1383
1384         /*
1385          * Optimistic spin before touching IRQs.
1386          *
1387          * We may use a rather large value here to offset the penalty of
1388          * switching away from the active task. Frequently, the client will
1389          * wait upon an old swapbuffer to throttle itself to remain within a
1390          * frame of the gpu. If the client is running in lockstep with the gpu,
1391          * then it should not be waiting long at all, and a sleep now will incur
1392          * extra scheduler latency in producing the next frame. To try to
1393          * avoid adding the cost of enabling/disabling the interrupt to the
1394          * short wait, we first spin to see if the request would have completed
1395          * in the time taken to setup the interrupt.
1396          *
1397          * We need upto 5us to enable the irq, and upto 20us to hide the
1398          * scheduler latency of a context switch, ignoring the secondary
1399          * impacts from a context switch such as cache eviction.
1400          *
1401          * The scheme used for low-latency IO is called "hybrid interrupt
1402          * polling". The suggestion there is to sleep until just before you
1403          * expect to be woken by the device interrupt and then poll for its
1404          * completion. That requires having a good predictor for the request
1405          * duration, which we currently lack.
1406          */
1407         if (CONFIG_DRM_I915_SPIN_REQUEST &&
1408             __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1409                 dma_fence_signal(&rq->fence);
1410                 goto out;
1411         }
1412
1413         /*
1414          * This client is about to stall waiting for the GPU. In many cases
1415          * this is undesirable and limits the throughput of the system, as
1416          * many clients cannot continue processing user input/output whilst
1417          * blocked. RPS autotuning may take tens of milliseconds to respond
1418          * to the GPU load and thus incurs additional latency for the client.
1419          * We can circumvent that by promoting the GPU frequency to maximum
1420          * before we sleep. This makes the GPU throttle up much more quickly
1421          * (good for benchmarks and user experience, e.g. window animations),
1422          * but at a cost of spending more power processing the workload
1423          * (bad for battery).
1424          */
1425         if (flags & I915_WAIT_PRIORITY) {
1426                 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1427                         gen6_rps_boost(rq);
1428                 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1429         }
1430
1431         wait.tsk = current;
1432         if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1433                 goto out;
1434
1435         for (;;) {
1436                 set_current_state(state);
1437
1438                 if (i915_request_completed(rq)) {
1439                         dma_fence_signal(&rq->fence);
1440                         break;
1441                 }
1442
1443                 if (signal_pending_state(state, current)) {
1444                         timeout = -ERESTARTSYS;
1445                         break;
1446                 }
1447
1448                 if (!timeout) {
1449                         timeout = -ETIME;
1450                         break;
1451                 }
1452
1453                 timeout = io_schedule_timeout(timeout);
1454         }
1455         __set_current_state(TASK_RUNNING);
1456
1457         dma_fence_remove_callback(&rq->fence, &wait.cb);
1458
1459 out:
1460         mutex_release(&rq->engine->gt->reset.mutex.dep_map, 0, _THIS_IP_);
1461         trace_i915_request_wait_end(rq);
1462         return timeout;
1463 }
1464
1465 bool i915_retire_requests(struct drm_i915_private *i915)
1466 {
1467         struct intel_gt_timelines *timelines = &i915->gt.timelines;
1468         struct intel_timeline *tl, *tn;
1469         unsigned long flags;
1470         LIST_HEAD(free);
1471
1472         spin_lock_irqsave(&timelines->lock, flags);
1473         list_for_each_entry_safe(tl, tn, &timelines->active_list, link) {
1474                 if (!mutex_trylock(&tl->mutex))
1475                         continue;
1476
1477                 intel_timeline_get(tl);
1478                 GEM_BUG_ON(!tl->active_count);
1479                 tl->active_count++; /* pin the list element */
1480                 spin_unlock_irqrestore(&timelines->lock, flags);
1481
1482                 retire_requests(tl);
1483
1484                 spin_lock_irqsave(&timelines->lock, flags);
1485
1486                 /* Resume iteration after dropping lock */
1487                 list_safe_reset_next(tl, tn, link);
1488                 if (!--tl->active_count)
1489                         list_del(&tl->link);
1490
1491                 mutex_unlock(&tl->mutex);
1492
1493                 /* Defer the final release to after the spinlock */
1494                 if (refcount_dec_and_test(&tl->kref.refcount)) {
1495                         GEM_BUG_ON(tl->active_count);
1496                         list_add(&tl->link, &free);
1497                 }
1498         }
1499         spin_unlock_irqrestore(&timelines->lock, flags);
1500
1501         list_for_each_entry_safe(tl, tn, &free, link)
1502                 __intel_timeline_free(&tl->kref);
1503
1504         return !list_empty(&timelines->active_list);
1505 }
1506
1507 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1508 #include "selftests/mock_request.c"
1509 #include "selftests/i915_request.c"
1510 #endif
1511
1512 static void i915_global_request_shrink(void)
1513 {
1514         kmem_cache_shrink(global.slab_dependencies);
1515         kmem_cache_shrink(global.slab_execute_cbs);
1516         kmem_cache_shrink(global.slab_requests);
1517 }
1518
1519 static void i915_global_request_exit(void)
1520 {
1521         kmem_cache_destroy(global.slab_dependencies);
1522         kmem_cache_destroy(global.slab_execute_cbs);
1523         kmem_cache_destroy(global.slab_requests);
1524 }
1525
1526 static struct i915_global_request global = { {
1527         .shrink = i915_global_request_shrink,
1528         .exit = i915_global_request_exit,
1529 } };
1530
1531 int __init i915_global_request_init(void)
1532 {
1533         global.slab_requests = KMEM_CACHE(i915_request,
1534                                           SLAB_HWCACHE_ALIGN |
1535                                           SLAB_RECLAIM_ACCOUNT |
1536                                           SLAB_TYPESAFE_BY_RCU);
1537         if (!global.slab_requests)
1538                 return -ENOMEM;
1539
1540         global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1541                                              SLAB_HWCACHE_ALIGN |
1542                                              SLAB_RECLAIM_ACCOUNT |
1543                                              SLAB_TYPESAFE_BY_RCU);
1544         if (!global.slab_execute_cbs)
1545                 goto err_requests;
1546
1547         global.slab_dependencies = KMEM_CACHE(i915_dependency,
1548                                               SLAB_HWCACHE_ALIGN |
1549                                               SLAB_RECLAIM_ACCOUNT);
1550         if (!global.slab_dependencies)
1551                 goto err_execute_cbs;
1552
1553         i915_global_register(&global.base);
1554         return 0;
1555
1556 err_execute_cbs:
1557         kmem_cache_destroy(global.slab_execute_cbs);
1558 err_requests:
1559         kmem_cache_destroy(global.slab_requests);
1560         return -ENOMEM;
1561 }