drm/i915: Move all ring resets before setting the HWS page
[linux-block.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41         [HPD_CRT] = SDE_CRT_HOTPLUG,
42         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_g4x[] = {
66         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* IIR can theoretically queue up two events. Be paranoid. */
84 #define GEN8_IRQ_RESET_NDX(type, which) do { \
85         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
86         POSTING_READ(GEN8_##type##_IMR(which)); \
87         I915_WRITE(GEN8_##type##_IER(which), 0); \
88         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
89         POSTING_READ(GEN8_##type##_IIR(which)); \
90         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
91         POSTING_READ(GEN8_##type##_IIR(which)); \
92 } while (0)
93
94 #define GEN5_IRQ_RESET(type) do { \
95         I915_WRITE(type##IMR, 0xffffffff); \
96         POSTING_READ(type##IMR); \
97         I915_WRITE(type##IER, 0); \
98         I915_WRITE(type##IIR, 0xffffffff); \
99         POSTING_READ(type##IIR); \
100         I915_WRITE(type##IIR, 0xffffffff); \
101         POSTING_READ(type##IIR); \
102 } while (0)
103
104 /*
105  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
106  */
107 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
108         u32 val = I915_READ(reg); \
109         if (val) { \
110                 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
111                      (reg), val); \
112                 I915_WRITE((reg), 0xffffffff); \
113                 POSTING_READ(reg); \
114                 I915_WRITE((reg), 0xffffffff); \
115                 POSTING_READ(reg); \
116         } \
117 } while (0)
118
119 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
120         GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
121         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
122         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
123         POSTING_READ(GEN8_##type##_IER(which)); \
124 } while (0)
125
126 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
127         GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
128         I915_WRITE(type##IMR, (imr_val)); \
129         I915_WRITE(type##IER, (ier_val)); \
130         POSTING_READ(type##IER); \
131 } while (0)
132
133 /* For display hotplug interrupt */
134 static void
135 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
136 {
137         assert_spin_locked(&dev_priv->irq_lock);
138
139         if (WARN_ON(dev_priv->pm.irqs_disabled))
140                 return;
141
142         if ((dev_priv->irq_mask & mask) != 0) {
143                 dev_priv->irq_mask &= ~mask;
144                 I915_WRITE(DEIMR, dev_priv->irq_mask);
145                 POSTING_READ(DEIMR);
146         }
147 }
148
149 static void
150 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
151 {
152         assert_spin_locked(&dev_priv->irq_lock);
153
154         if (WARN_ON(dev_priv->pm.irqs_disabled))
155                 return;
156
157         if ((dev_priv->irq_mask & mask) != mask) {
158                 dev_priv->irq_mask |= mask;
159                 I915_WRITE(DEIMR, dev_priv->irq_mask);
160                 POSTING_READ(DEIMR);
161         }
162 }
163
164 /**
165  * ilk_update_gt_irq - update GTIMR
166  * @dev_priv: driver private
167  * @interrupt_mask: mask of interrupt bits to update
168  * @enabled_irq_mask: mask of interrupt bits to enable
169  */
170 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
171                               uint32_t interrupt_mask,
172                               uint32_t enabled_irq_mask)
173 {
174         assert_spin_locked(&dev_priv->irq_lock);
175
176         if (WARN_ON(dev_priv->pm.irqs_disabled))
177                 return;
178
179         dev_priv->gt_irq_mask &= ~interrupt_mask;
180         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
181         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
182         POSTING_READ(GTIMR);
183 }
184
185 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187         ilk_update_gt_irq(dev_priv, mask, mask);
188 }
189
190 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
191 {
192         ilk_update_gt_irq(dev_priv, mask, 0);
193 }
194
195 /**
196   * snb_update_pm_irq - update GEN6_PMIMR
197   * @dev_priv: driver private
198   * @interrupt_mask: mask of interrupt bits to update
199   * @enabled_irq_mask: mask of interrupt bits to enable
200   */
201 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
202                               uint32_t interrupt_mask,
203                               uint32_t enabled_irq_mask)
204 {
205         uint32_t new_val;
206
207         assert_spin_locked(&dev_priv->irq_lock);
208
209         if (WARN_ON(dev_priv->pm.irqs_disabled))
210                 return;
211
212         new_val = dev_priv->pm_irq_mask;
213         new_val &= ~interrupt_mask;
214         new_val |= (~enabled_irq_mask & interrupt_mask);
215
216         if (new_val != dev_priv->pm_irq_mask) {
217                 dev_priv->pm_irq_mask = new_val;
218                 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
219                 POSTING_READ(GEN6_PMIMR);
220         }
221 }
222
223 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225         snb_update_pm_irq(dev_priv, mask, mask);
226 }
227
228 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
229 {
230         snb_update_pm_irq(dev_priv, mask, 0);
231 }
232
233 static bool ivb_can_enable_err_int(struct drm_device *dev)
234 {
235         struct drm_i915_private *dev_priv = dev->dev_private;
236         struct intel_crtc *crtc;
237         enum pipe pipe;
238
239         assert_spin_locked(&dev_priv->irq_lock);
240
241         for_each_pipe(pipe) {
242                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
243
244                 if (crtc->cpu_fifo_underrun_disabled)
245                         return false;
246         }
247
248         return true;
249 }
250
251 static bool cpt_can_enable_serr_int(struct drm_device *dev)
252 {
253         struct drm_i915_private *dev_priv = dev->dev_private;
254         enum pipe pipe;
255         struct intel_crtc *crtc;
256
257         assert_spin_locked(&dev_priv->irq_lock);
258
259         for_each_pipe(pipe) {
260                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
261
262                 if (crtc->pch_fifo_underrun_disabled)
263                         return false;
264         }
265
266         return true;
267 }
268
269 static void i9xx_clear_fifo_underrun(struct drm_device *dev, enum pipe pipe)
270 {
271         struct drm_i915_private *dev_priv = dev->dev_private;
272         u32 reg = PIPESTAT(pipe);
273         u32 pipestat = I915_READ(reg) & 0x7fff0000;
274
275         assert_spin_locked(&dev_priv->irq_lock);
276
277         I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
278         POSTING_READ(reg);
279 }
280
281 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
282                                                  enum pipe pipe, bool enable)
283 {
284         struct drm_i915_private *dev_priv = dev->dev_private;
285         uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
286                                           DE_PIPEB_FIFO_UNDERRUN;
287
288         if (enable)
289                 ironlake_enable_display_irq(dev_priv, bit);
290         else
291                 ironlake_disable_display_irq(dev_priv, bit);
292 }
293
294 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
295                                                   enum pipe pipe, bool enable)
296 {
297         struct drm_i915_private *dev_priv = dev->dev_private;
298         if (enable) {
299                 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
300
301                 if (!ivb_can_enable_err_int(dev))
302                         return;
303
304                 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
305         } else {
306                 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
307
308                 /* Change the state _after_ we've read out the current one. */
309                 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
310
311                 if (!was_enabled &&
312                     (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
313                         DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
314                                       pipe_name(pipe));
315                 }
316         }
317 }
318
319 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
320                                                   enum pipe pipe, bool enable)
321 {
322         struct drm_i915_private *dev_priv = dev->dev_private;
323
324         assert_spin_locked(&dev_priv->irq_lock);
325
326         if (enable)
327                 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
328         else
329                 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
330         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
331         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
332 }
333
334 /**
335  * ibx_display_interrupt_update - update SDEIMR
336  * @dev_priv: driver private
337  * @interrupt_mask: mask of interrupt bits to update
338  * @enabled_irq_mask: mask of interrupt bits to enable
339  */
340 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
341                                          uint32_t interrupt_mask,
342                                          uint32_t enabled_irq_mask)
343 {
344         uint32_t sdeimr = I915_READ(SDEIMR);
345         sdeimr &= ~interrupt_mask;
346         sdeimr |= (~enabled_irq_mask & interrupt_mask);
347
348         assert_spin_locked(&dev_priv->irq_lock);
349
350         if (WARN_ON(dev_priv->pm.irqs_disabled))
351                 return;
352
353         I915_WRITE(SDEIMR, sdeimr);
354         POSTING_READ(SDEIMR);
355 }
356 #define ibx_enable_display_interrupt(dev_priv, bits) \
357         ibx_display_interrupt_update((dev_priv), (bits), (bits))
358 #define ibx_disable_display_interrupt(dev_priv, bits) \
359         ibx_display_interrupt_update((dev_priv), (bits), 0)
360
361 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
362                                             enum transcoder pch_transcoder,
363                                             bool enable)
364 {
365         struct drm_i915_private *dev_priv = dev->dev_private;
366         uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
367                        SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
368
369         if (enable)
370                 ibx_enable_display_interrupt(dev_priv, bit);
371         else
372                 ibx_disable_display_interrupt(dev_priv, bit);
373 }
374
375 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
376                                             enum transcoder pch_transcoder,
377                                             bool enable)
378 {
379         struct drm_i915_private *dev_priv = dev->dev_private;
380
381         if (enable) {
382                 I915_WRITE(SERR_INT,
383                            SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
384
385                 if (!cpt_can_enable_serr_int(dev))
386                         return;
387
388                 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
389         } else {
390                 uint32_t tmp = I915_READ(SERR_INT);
391                 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
392
393                 /* Change the state _after_ we've read out the current one. */
394                 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
395
396                 if (!was_enabled &&
397                     (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
398                         DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
399                                       transcoder_name(pch_transcoder));
400                 }
401         }
402 }
403
404 /**
405  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
406  * @dev: drm device
407  * @pipe: pipe
408  * @enable: true if we want to report FIFO underrun errors, false otherwise
409  *
410  * This function makes us disable or enable CPU fifo underruns for a specific
411  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
412  * reporting for one pipe may also disable all the other CPU error interruts for
413  * the other pipes, due to the fact that there's just one interrupt mask/enable
414  * bit for all the pipes.
415  *
416  * Returns the previous state of underrun reporting.
417  */
418 bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
419                                              enum pipe pipe, bool enable)
420 {
421         struct drm_i915_private *dev_priv = dev->dev_private;
422         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
423         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
424         bool ret;
425
426         assert_spin_locked(&dev_priv->irq_lock);
427
428         ret = !intel_crtc->cpu_fifo_underrun_disabled;
429
430         if (enable == ret)
431                 goto done;
432
433         intel_crtc->cpu_fifo_underrun_disabled = !enable;
434
435         if (enable && (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev)))
436                 i9xx_clear_fifo_underrun(dev, pipe);
437         else if (IS_GEN5(dev) || IS_GEN6(dev))
438                 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
439         else if (IS_GEN7(dev))
440                 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
441         else if (IS_GEN8(dev))
442                 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
443
444 done:
445         return ret;
446 }
447
448 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
449                                            enum pipe pipe, bool enable)
450 {
451         struct drm_i915_private *dev_priv = dev->dev_private;
452         unsigned long flags;
453         bool ret;
454
455         spin_lock_irqsave(&dev_priv->irq_lock, flags);
456         ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
457         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
458
459         return ret;
460 }
461
462 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
463                                                   enum pipe pipe)
464 {
465         struct drm_i915_private *dev_priv = dev->dev_private;
466         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
467         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
468
469         return !intel_crtc->cpu_fifo_underrun_disabled;
470 }
471
472 /**
473  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
474  * @dev: drm device
475  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
476  * @enable: true if we want to report FIFO underrun errors, false otherwise
477  *
478  * This function makes us disable or enable PCH fifo underruns for a specific
479  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
480  * underrun reporting for one transcoder may also disable all the other PCH
481  * error interruts for the other transcoders, due to the fact that there's just
482  * one interrupt mask/enable bit for all the transcoders.
483  *
484  * Returns the previous state of underrun reporting.
485  */
486 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
487                                            enum transcoder pch_transcoder,
488                                            bool enable)
489 {
490         struct drm_i915_private *dev_priv = dev->dev_private;
491         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
492         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
493         unsigned long flags;
494         bool ret;
495
496         /*
497          * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
498          * has only one pch transcoder A that all pipes can use. To avoid racy
499          * pch transcoder -> pipe lookups from interrupt code simply store the
500          * underrun statistics in crtc A. Since we never expose this anywhere
501          * nor use it outside of the fifo underrun code here using the "wrong"
502          * crtc on LPT won't cause issues.
503          */
504
505         spin_lock_irqsave(&dev_priv->irq_lock, flags);
506
507         ret = !intel_crtc->pch_fifo_underrun_disabled;
508
509         if (enable == ret)
510                 goto done;
511
512         intel_crtc->pch_fifo_underrun_disabled = !enable;
513
514         if (HAS_PCH_IBX(dev))
515                 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
516         else
517                 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
518
519 done:
520         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
521         return ret;
522 }
523
524
525 static void
526 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
527                        u32 enable_mask, u32 status_mask)
528 {
529         u32 reg = PIPESTAT(pipe);
530         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
531
532         assert_spin_locked(&dev_priv->irq_lock);
533
534         if (WARN_ON_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
535                          status_mask & ~PIPESTAT_INT_STATUS_MASK))
536                 return;
537
538         if ((pipestat & enable_mask) == enable_mask)
539                 return;
540
541         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
542
543         /* Enable the interrupt, clear any pending status */
544         pipestat |= enable_mask | status_mask;
545         I915_WRITE(reg, pipestat);
546         POSTING_READ(reg);
547 }
548
549 static void
550 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
551                         u32 enable_mask, u32 status_mask)
552 {
553         u32 reg = PIPESTAT(pipe);
554         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
555
556         assert_spin_locked(&dev_priv->irq_lock);
557
558         if (WARN_ON_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
559                          status_mask & ~PIPESTAT_INT_STATUS_MASK))
560                 return;
561
562         if ((pipestat & enable_mask) == 0)
563                 return;
564
565         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
566
567         pipestat &= ~enable_mask;
568         I915_WRITE(reg, pipestat);
569         POSTING_READ(reg);
570 }
571
572 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
573 {
574         u32 enable_mask = status_mask << 16;
575
576         /*
577          * On pipe A we don't support the PSR interrupt yet, on pipe B the
578          * same bit MBZ.
579          */
580         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
581                 return 0;
582
583         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
584                          SPRITE0_FLIP_DONE_INT_EN_VLV |
585                          SPRITE1_FLIP_DONE_INT_EN_VLV);
586         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
587                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
588         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
589                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
590
591         return enable_mask;
592 }
593
594 void
595 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
596                      u32 status_mask)
597 {
598         u32 enable_mask;
599
600         if (IS_VALLEYVIEW(dev_priv->dev))
601                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
602                                                            status_mask);
603         else
604                 enable_mask = status_mask << 16;
605         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
606 }
607
608 void
609 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
610                       u32 status_mask)
611 {
612         u32 enable_mask;
613
614         if (IS_VALLEYVIEW(dev_priv->dev))
615                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
616                                                            status_mask);
617         else
618                 enable_mask = status_mask << 16;
619         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
620 }
621
622 /**
623  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
624  */
625 static void i915_enable_asle_pipestat(struct drm_device *dev)
626 {
627         struct drm_i915_private *dev_priv = dev->dev_private;
628         unsigned long irqflags;
629
630         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
631                 return;
632
633         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
634
635         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
636         if (INTEL_INFO(dev)->gen >= 4)
637                 i915_enable_pipestat(dev_priv, PIPE_A,
638                                      PIPE_LEGACY_BLC_EVENT_STATUS);
639
640         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
641 }
642
643 /**
644  * i915_pipe_enabled - check if a pipe is enabled
645  * @dev: DRM device
646  * @pipe: pipe to check
647  *
648  * Reading certain registers when the pipe is disabled can hang the chip.
649  * Use this routine to make sure the PLL is running and the pipe is active
650  * before reading such registers if unsure.
651  */
652 static int
653 i915_pipe_enabled(struct drm_device *dev, int pipe)
654 {
655         struct drm_i915_private *dev_priv = dev->dev_private;
656
657         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
658                 /* Locking is horribly broken here, but whatever. */
659                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
660                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
661
662                 return intel_crtc->active;
663         } else {
664                 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
665         }
666 }
667
668 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
669 {
670         /* Gen2 doesn't have a hardware frame counter */
671         return 0;
672 }
673
674 /* Called from drm generic code, passed a 'crtc', which
675  * we use as a pipe index
676  */
677 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
678 {
679         struct drm_i915_private *dev_priv = dev->dev_private;
680         unsigned long high_frame;
681         unsigned long low_frame;
682         u32 high1, high2, low, pixel, vbl_start;
683
684         if (!i915_pipe_enabled(dev, pipe)) {
685                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
686                                 "pipe %c\n", pipe_name(pipe));
687                 return 0;
688         }
689
690         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
691                 struct intel_crtc *intel_crtc =
692                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
693                 const struct drm_display_mode *mode =
694                         &intel_crtc->config.adjusted_mode;
695
696                 vbl_start = mode->crtc_vblank_start * mode->crtc_htotal;
697         } else {
698                 enum transcoder cpu_transcoder = (enum transcoder) pipe;
699                 u32 htotal;
700
701                 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
702                 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
703
704                 vbl_start *= htotal;
705         }
706
707         high_frame = PIPEFRAME(pipe);
708         low_frame = PIPEFRAMEPIXEL(pipe);
709
710         /*
711          * High & low register fields aren't synchronized, so make sure
712          * we get a low value that's stable across two reads of the high
713          * register.
714          */
715         do {
716                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
717                 low   = I915_READ(low_frame);
718                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
719         } while (high1 != high2);
720
721         high1 >>= PIPE_FRAME_HIGH_SHIFT;
722         pixel = low & PIPE_PIXEL_MASK;
723         low >>= PIPE_FRAME_LOW_SHIFT;
724
725         /*
726          * The frame counter increments at beginning of active.
727          * Cook up a vblank counter by also checking the pixel
728          * counter against vblank start.
729          */
730         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
731 }
732
733 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
734 {
735         struct drm_i915_private *dev_priv = dev->dev_private;
736         int reg = PIPE_FRMCOUNT_GM45(pipe);
737
738         if (!i915_pipe_enabled(dev, pipe)) {
739                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
740                                  "pipe %c\n", pipe_name(pipe));
741                 return 0;
742         }
743
744         return I915_READ(reg);
745 }
746
747 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
748 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
749
750 static bool ilk_pipe_in_vblank_locked(struct drm_device *dev, enum pipe pipe)
751 {
752         struct drm_i915_private *dev_priv = dev->dev_private;
753         uint32_t status;
754         int reg;
755
756         if (INTEL_INFO(dev)->gen >= 8) {
757                 status = GEN8_PIPE_VBLANK;
758                 reg = GEN8_DE_PIPE_ISR(pipe);
759         } else if (INTEL_INFO(dev)->gen >= 7) {
760                 status = DE_PIPE_VBLANK_IVB(pipe);
761                 reg = DEISR;
762         } else {
763                 status = DE_PIPE_VBLANK(pipe);
764                 reg = DEISR;
765         }
766
767         return __raw_i915_read32(dev_priv, reg) & status;
768 }
769
770 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
771                                     unsigned int flags, int *vpos, int *hpos,
772                                     ktime_t *stime, ktime_t *etime)
773 {
774         struct drm_i915_private *dev_priv = dev->dev_private;
775         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
776         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
777         const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
778         int position;
779         int vbl_start, vbl_end, htotal, vtotal;
780         bool in_vbl = true;
781         int ret = 0;
782         unsigned long irqflags;
783
784         if (!intel_crtc->active) {
785                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
786                                  "pipe %c\n", pipe_name(pipe));
787                 return 0;
788         }
789
790         htotal = mode->crtc_htotal;
791         vtotal = mode->crtc_vtotal;
792         vbl_start = mode->crtc_vblank_start;
793         vbl_end = mode->crtc_vblank_end;
794
795         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
796                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
797                 vbl_end /= 2;
798                 vtotal /= 2;
799         }
800
801         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
802
803         /*
804          * Lock uncore.lock, as we will do multiple timing critical raw
805          * register reads, potentially with preemption disabled, so the
806          * following code must not block on uncore.lock.
807          */
808         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
809         
810         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
811
812         /* Get optional system timestamp before query. */
813         if (stime)
814                 *stime = ktime_get();
815
816         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
817                 /* No obvious pixelcount register. Only query vertical
818                  * scanout position from Display scan line register.
819                  */
820                 if (IS_GEN2(dev))
821                         position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
822                 else
823                         position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
824
825                 if (HAS_DDI(dev)) {
826                         /*
827                          * On HSW HDMI outputs there seems to be a 2 line
828                          * difference, whereas eDP has the normal 1 line
829                          * difference that earlier platforms have. External
830                          * DP is unknown. For now just check for the 2 line
831                          * difference case on all output types on HSW+.
832                          *
833                          * This might misinterpret the scanline counter being
834                          * one line too far along on eDP, but that's less
835                          * dangerous than the alternative since that would lead
836                          * the vblank timestamp code astray when it sees a
837                          * scanline count before vblank_start during a vblank
838                          * interrupt.
839                          */
840                         in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
841                         if ((in_vbl && (position == vbl_start - 2 ||
842                                         position == vbl_start - 1)) ||
843                             (!in_vbl && (position == vbl_end - 2 ||
844                                          position == vbl_end - 1)))
845                                 position = (position + 2) % vtotal;
846                 } else if (HAS_PCH_SPLIT(dev)) {
847                         /*
848                          * The scanline counter increments at the leading edge
849                          * of hsync, ie. it completely misses the active portion
850                          * of the line. Fix up the counter at both edges of vblank
851                          * to get a more accurate picture whether we're in vblank
852                          * or not.
853                          */
854                         in_vbl = ilk_pipe_in_vblank_locked(dev, pipe);
855                         if ((in_vbl && position == vbl_start - 1) ||
856                             (!in_vbl && position == vbl_end - 1))
857                                 position = (position + 1) % vtotal;
858                 } else {
859                         /*
860                          * ISR vblank status bits don't work the way we'd want
861                          * them to work on non-PCH platforms (for
862                          * ilk_pipe_in_vblank_locked()), and there doesn't
863                          * appear any other way to determine if we're currently
864                          * in vblank.
865                          *
866                          * Instead let's assume that we're already in vblank if
867                          * we got called from the vblank interrupt and the
868                          * scanline counter value indicates that we're on the
869                          * line just prior to vblank start. This should result
870                          * in the correct answer, unless the vblank interrupt
871                          * delivery really got delayed for almost exactly one
872                          * full frame/field.
873                          */
874                         if (flags & DRM_CALLED_FROM_VBLIRQ &&
875                             position == vbl_start - 1) {
876                                 position = (position + 1) % vtotal;
877
878                                 /* Signal this correction as "applied". */
879                                 ret |= 0x8;
880                         }
881                 }
882         } else {
883                 /* Have access to pixelcount since start of frame.
884                  * We can split this into vertical and horizontal
885                  * scanout position.
886                  */
887                 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
888
889                 /* convert to pixel counts */
890                 vbl_start *= htotal;
891                 vbl_end *= htotal;
892                 vtotal *= htotal;
893         }
894
895         /* Get optional system timestamp after query. */
896         if (etime)
897                 *etime = ktime_get();
898
899         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
900
901         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
902
903         in_vbl = position >= vbl_start && position < vbl_end;
904
905         /*
906          * While in vblank, position will be negative
907          * counting up towards 0 at vbl_end. And outside
908          * vblank, position will be positive counting
909          * up since vbl_end.
910          */
911         if (position >= vbl_start)
912                 position -= vbl_end;
913         else
914                 position += vtotal - vbl_end;
915
916         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
917                 *vpos = position;
918                 *hpos = 0;
919         } else {
920                 *vpos = position / htotal;
921                 *hpos = position - (*vpos * htotal);
922         }
923
924         /* In vblank? */
925         if (in_vbl)
926                 ret |= DRM_SCANOUTPOS_INVBL;
927
928         return ret;
929 }
930
931 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
932                               int *max_error,
933                               struct timeval *vblank_time,
934                               unsigned flags)
935 {
936         struct drm_crtc *crtc;
937
938         if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
939                 DRM_ERROR("Invalid crtc %d\n", pipe);
940                 return -EINVAL;
941         }
942
943         /* Get drm_crtc to timestamp: */
944         crtc = intel_get_crtc_for_pipe(dev, pipe);
945         if (crtc == NULL) {
946                 DRM_ERROR("Invalid crtc %d\n", pipe);
947                 return -EINVAL;
948         }
949
950         if (!crtc->enabled) {
951                 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
952                 return -EBUSY;
953         }
954
955         /* Helper routine in DRM core does all the work: */
956         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
957                                                      vblank_time, flags,
958                                                      crtc,
959                                                      &to_intel_crtc(crtc)->config.adjusted_mode);
960 }
961
962 static bool intel_hpd_irq_event(struct drm_device *dev,
963                                 struct drm_connector *connector)
964 {
965         enum drm_connector_status old_status;
966
967         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
968         old_status = connector->status;
969
970         connector->status = connector->funcs->detect(connector, false);
971         if (old_status == connector->status)
972                 return false;
973
974         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
975                       connector->base.id,
976                       drm_get_connector_name(connector),
977                       drm_get_connector_status_name(old_status),
978                       drm_get_connector_status_name(connector->status));
979
980         return true;
981 }
982
983 /*
984  * Handle hotplug events outside the interrupt handler proper.
985  */
986 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
987
988 static void i915_hotplug_work_func(struct work_struct *work)
989 {
990         struct drm_i915_private *dev_priv =
991                 container_of(work, struct drm_i915_private, hotplug_work);
992         struct drm_device *dev = dev_priv->dev;
993         struct drm_mode_config *mode_config = &dev->mode_config;
994         struct intel_connector *intel_connector;
995         struct intel_encoder *intel_encoder;
996         struct drm_connector *connector;
997         unsigned long irqflags;
998         bool hpd_disabled = false;
999         bool changed = false;
1000         u32 hpd_event_bits;
1001
1002         /* HPD irq before everything is fully set up. */
1003         if (!dev_priv->enable_hotplug_processing)
1004                 return;
1005
1006         mutex_lock(&mode_config->mutex);
1007         DRM_DEBUG_KMS("running encoder hotplug functions\n");
1008
1009         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1010
1011         hpd_event_bits = dev_priv->hpd_event_bits;
1012         dev_priv->hpd_event_bits = 0;
1013         list_for_each_entry(connector, &mode_config->connector_list, head) {
1014                 intel_connector = to_intel_connector(connector);
1015                 intel_encoder = intel_connector->encoder;
1016                 if (intel_encoder->hpd_pin > HPD_NONE &&
1017                     dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
1018                     connector->polled == DRM_CONNECTOR_POLL_HPD) {
1019                         DRM_INFO("HPD interrupt storm detected on connector %s: "
1020                                  "switching from hotplug detection to polling\n",
1021                                 drm_get_connector_name(connector));
1022                         dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
1023                         connector->polled = DRM_CONNECTOR_POLL_CONNECT
1024                                 | DRM_CONNECTOR_POLL_DISCONNECT;
1025                         hpd_disabled = true;
1026                 }
1027                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1028                         DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1029                                       drm_get_connector_name(connector), intel_encoder->hpd_pin);
1030                 }
1031         }
1032          /* if there were no outputs to poll, poll was disabled,
1033           * therefore make sure it's enabled when disabling HPD on
1034           * some connectors */
1035         if (hpd_disabled) {
1036                 drm_kms_helper_poll_enable(dev);
1037                 mod_timer(&dev_priv->hotplug_reenable_timer,
1038                           jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1039         }
1040
1041         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1042
1043         list_for_each_entry(connector, &mode_config->connector_list, head) {
1044                 intel_connector = to_intel_connector(connector);
1045                 intel_encoder = intel_connector->encoder;
1046                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1047                         if (intel_encoder->hot_plug)
1048                                 intel_encoder->hot_plug(intel_encoder);
1049                         if (intel_hpd_irq_event(dev, connector))
1050                                 changed = true;
1051                 }
1052         }
1053         mutex_unlock(&mode_config->mutex);
1054
1055         if (changed)
1056                 drm_kms_helper_hotplug_event(dev);
1057 }
1058
1059 static void intel_hpd_irq_uninstall(struct drm_i915_private *dev_priv)
1060 {
1061         del_timer_sync(&dev_priv->hotplug_reenable_timer);
1062 }
1063
1064 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1065 {
1066         struct drm_i915_private *dev_priv = dev->dev_private;
1067         u32 busy_up, busy_down, max_avg, min_avg;
1068         u8 new_delay;
1069
1070         spin_lock(&mchdev_lock);
1071
1072         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1073
1074         new_delay = dev_priv->ips.cur_delay;
1075
1076         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1077         busy_up = I915_READ(RCPREVBSYTUPAVG);
1078         busy_down = I915_READ(RCPREVBSYTDNAVG);
1079         max_avg = I915_READ(RCBMAXAVG);
1080         min_avg = I915_READ(RCBMINAVG);
1081
1082         /* Handle RCS change request from hw */
1083         if (busy_up > max_avg) {
1084                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1085                         new_delay = dev_priv->ips.cur_delay - 1;
1086                 if (new_delay < dev_priv->ips.max_delay)
1087                         new_delay = dev_priv->ips.max_delay;
1088         } else if (busy_down < min_avg) {
1089                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1090                         new_delay = dev_priv->ips.cur_delay + 1;
1091                 if (new_delay > dev_priv->ips.min_delay)
1092                         new_delay = dev_priv->ips.min_delay;
1093         }
1094
1095         if (ironlake_set_drps(dev, new_delay))
1096                 dev_priv->ips.cur_delay = new_delay;
1097
1098         spin_unlock(&mchdev_lock);
1099
1100         return;
1101 }
1102
1103 static void notify_ring(struct drm_device *dev,
1104                         struct intel_ring_buffer *ring)
1105 {
1106         if (ring->obj == NULL)
1107                 return;
1108
1109         trace_i915_gem_request_complete(ring);
1110
1111         wake_up_all(&ring->irq_queue);
1112         i915_queue_hangcheck(dev);
1113 }
1114
1115 static void gen6_pm_rps_work(struct work_struct *work)
1116 {
1117         struct drm_i915_private *dev_priv =
1118                 container_of(work, struct drm_i915_private, rps.work);
1119         u32 pm_iir;
1120         int new_delay, adj;
1121
1122         spin_lock_irq(&dev_priv->irq_lock);
1123         pm_iir = dev_priv->rps.pm_iir;
1124         dev_priv->rps.pm_iir = 0;
1125         /* Make sure not to corrupt PMIMR state used by ringbuffer code */
1126         snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1127         spin_unlock_irq(&dev_priv->irq_lock);
1128
1129         /* Make sure we didn't queue anything we're not going to process. */
1130         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1131
1132         if ((pm_iir & dev_priv->pm_rps_events) == 0)
1133                 return;
1134
1135         mutex_lock(&dev_priv->rps.hw_lock);
1136
1137         adj = dev_priv->rps.last_adj;
1138         if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1139                 if (adj > 0)
1140                         adj *= 2;
1141                 else
1142                         adj = 1;
1143                 new_delay = dev_priv->rps.cur_freq + adj;
1144
1145                 /*
1146                  * For better performance, jump directly
1147                  * to RPe if we're below it.
1148                  */
1149                 if (new_delay < dev_priv->rps.efficient_freq)
1150                         new_delay = dev_priv->rps.efficient_freq;
1151         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1152                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1153                         new_delay = dev_priv->rps.efficient_freq;
1154                 else
1155                         new_delay = dev_priv->rps.min_freq_softlimit;
1156                 adj = 0;
1157         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1158                 if (adj < 0)
1159                         adj *= 2;
1160                 else
1161                         adj = -1;
1162                 new_delay = dev_priv->rps.cur_freq + adj;
1163         } else { /* unknown event */
1164                 new_delay = dev_priv->rps.cur_freq;
1165         }
1166
1167         /* sysfs frequency interfaces may have snuck in while servicing the
1168          * interrupt
1169          */
1170         new_delay = clamp_t(int, new_delay,
1171                             dev_priv->rps.min_freq_softlimit,
1172                             dev_priv->rps.max_freq_softlimit);
1173
1174         dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1175
1176         if (IS_VALLEYVIEW(dev_priv->dev))
1177                 valleyview_set_rps(dev_priv->dev, new_delay);
1178         else
1179                 gen6_set_rps(dev_priv->dev, new_delay);
1180
1181         mutex_unlock(&dev_priv->rps.hw_lock);
1182 }
1183
1184
1185 /**
1186  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1187  * occurred.
1188  * @work: workqueue struct
1189  *
1190  * Doesn't actually do anything except notify userspace. As a consequence of
1191  * this event, userspace should try to remap the bad rows since statistically
1192  * it is likely the same row is more likely to go bad again.
1193  */
1194 static void ivybridge_parity_work(struct work_struct *work)
1195 {
1196         struct drm_i915_private *dev_priv =
1197                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1198         u32 error_status, row, bank, subbank;
1199         char *parity_event[6];
1200         uint32_t misccpctl;
1201         unsigned long flags;
1202         uint8_t slice = 0;
1203
1204         /* We must turn off DOP level clock gating to access the L3 registers.
1205          * In order to prevent a get/put style interface, acquire struct mutex
1206          * any time we access those registers.
1207          */
1208         mutex_lock(&dev_priv->dev->struct_mutex);
1209
1210         /* If we've screwed up tracking, just let the interrupt fire again */
1211         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1212                 goto out;
1213
1214         misccpctl = I915_READ(GEN7_MISCCPCTL);
1215         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1216         POSTING_READ(GEN7_MISCCPCTL);
1217
1218         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1219                 u32 reg;
1220
1221                 slice--;
1222                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1223                         break;
1224
1225                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1226
1227                 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1228
1229                 error_status = I915_READ(reg);
1230                 row = GEN7_PARITY_ERROR_ROW(error_status);
1231                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1232                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1233
1234                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1235                 POSTING_READ(reg);
1236
1237                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1238                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1239                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1240                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1241                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1242                 parity_event[5] = NULL;
1243
1244                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1245                                    KOBJ_CHANGE, parity_event);
1246
1247                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1248                           slice, row, bank, subbank);
1249
1250                 kfree(parity_event[4]);
1251                 kfree(parity_event[3]);
1252                 kfree(parity_event[2]);
1253                 kfree(parity_event[1]);
1254         }
1255
1256         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1257
1258 out:
1259         WARN_ON(dev_priv->l3_parity.which_slice);
1260         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1261         ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1262         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1263
1264         mutex_unlock(&dev_priv->dev->struct_mutex);
1265 }
1266
1267 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1268 {
1269         struct drm_i915_private *dev_priv = dev->dev_private;
1270
1271         if (!HAS_L3_DPF(dev))
1272                 return;
1273
1274         spin_lock(&dev_priv->irq_lock);
1275         ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1276         spin_unlock(&dev_priv->irq_lock);
1277
1278         iir &= GT_PARITY_ERROR(dev);
1279         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1280                 dev_priv->l3_parity.which_slice |= 1 << 1;
1281
1282         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1283                 dev_priv->l3_parity.which_slice |= 1 << 0;
1284
1285         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1286 }
1287
1288 static void ilk_gt_irq_handler(struct drm_device *dev,
1289                                struct drm_i915_private *dev_priv,
1290                                u32 gt_iir)
1291 {
1292         if (gt_iir &
1293             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1294                 notify_ring(dev, &dev_priv->ring[RCS]);
1295         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1296                 notify_ring(dev, &dev_priv->ring[VCS]);
1297 }
1298
1299 static void snb_gt_irq_handler(struct drm_device *dev,
1300                                struct drm_i915_private *dev_priv,
1301                                u32 gt_iir)
1302 {
1303
1304         if (gt_iir &
1305             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1306                 notify_ring(dev, &dev_priv->ring[RCS]);
1307         if (gt_iir & GT_BSD_USER_INTERRUPT)
1308                 notify_ring(dev, &dev_priv->ring[VCS]);
1309         if (gt_iir & GT_BLT_USER_INTERRUPT)
1310                 notify_ring(dev, &dev_priv->ring[BCS]);
1311
1312         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1313                       GT_BSD_CS_ERROR_INTERRUPT |
1314                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1315                 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1316                                   gt_iir);
1317         }
1318
1319         if (gt_iir & GT_PARITY_ERROR(dev))
1320                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1321 }
1322
1323 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1324                                        struct drm_i915_private *dev_priv,
1325                                        u32 master_ctl)
1326 {
1327         u32 rcs, bcs, vcs;
1328         uint32_t tmp = 0;
1329         irqreturn_t ret = IRQ_NONE;
1330
1331         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1332                 tmp = I915_READ(GEN8_GT_IIR(0));
1333                 if (tmp) {
1334                         ret = IRQ_HANDLED;
1335                         rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1336                         bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1337                         if (rcs & GT_RENDER_USER_INTERRUPT)
1338                                 notify_ring(dev, &dev_priv->ring[RCS]);
1339                         if (bcs & GT_RENDER_USER_INTERRUPT)
1340                                 notify_ring(dev, &dev_priv->ring[BCS]);
1341                         I915_WRITE(GEN8_GT_IIR(0), tmp);
1342                 } else
1343                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1344         }
1345
1346         if (master_ctl & GEN8_GT_VCS1_IRQ) {
1347                 tmp = I915_READ(GEN8_GT_IIR(1));
1348                 if (tmp) {
1349                         ret = IRQ_HANDLED;
1350                         vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1351                         if (vcs & GT_RENDER_USER_INTERRUPT)
1352                                 notify_ring(dev, &dev_priv->ring[VCS]);
1353                         I915_WRITE(GEN8_GT_IIR(1), tmp);
1354                 } else
1355                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1356         }
1357
1358         if (master_ctl & GEN8_GT_VECS_IRQ) {
1359                 tmp = I915_READ(GEN8_GT_IIR(3));
1360                 if (tmp) {
1361                         ret = IRQ_HANDLED;
1362                         vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1363                         if (vcs & GT_RENDER_USER_INTERRUPT)
1364                                 notify_ring(dev, &dev_priv->ring[VECS]);
1365                         I915_WRITE(GEN8_GT_IIR(3), tmp);
1366                 } else
1367                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1368         }
1369
1370         return ret;
1371 }
1372
1373 #define HPD_STORM_DETECT_PERIOD 1000
1374 #define HPD_STORM_THRESHOLD 5
1375
1376 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1377                                          u32 hotplug_trigger,
1378                                          const u32 *hpd)
1379 {
1380         struct drm_i915_private *dev_priv = dev->dev_private;
1381         int i;
1382         bool storm_detected = false;
1383
1384         if (!hotplug_trigger)
1385                 return;
1386
1387         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1388                           hotplug_trigger);
1389
1390         spin_lock(&dev_priv->irq_lock);
1391         for (i = 1; i < HPD_NUM_PINS; i++) {
1392
1393                 WARN_ONCE(hpd[i] & hotplug_trigger &&
1394                           dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED,
1395                           "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1396                           hotplug_trigger, i, hpd[i]);
1397
1398                 if (!(hpd[i] & hotplug_trigger) ||
1399                     dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1400                         continue;
1401
1402                 dev_priv->hpd_event_bits |= (1 << i);
1403                 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1404                                    dev_priv->hpd_stats[i].hpd_last_jiffies
1405                                    + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1406                         dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1407                         dev_priv->hpd_stats[i].hpd_cnt = 0;
1408                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1409                 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1410                         dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1411                         dev_priv->hpd_event_bits &= ~(1 << i);
1412                         DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1413                         storm_detected = true;
1414                 } else {
1415                         dev_priv->hpd_stats[i].hpd_cnt++;
1416                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1417                                       dev_priv->hpd_stats[i].hpd_cnt);
1418                 }
1419         }
1420
1421         if (storm_detected)
1422                 dev_priv->display.hpd_irq_setup(dev);
1423         spin_unlock(&dev_priv->irq_lock);
1424
1425         /*
1426          * Our hotplug handler can grab modeset locks (by calling down into the
1427          * fb helpers). Hence it must not be run on our own dev-priv->wq work
1428          * queue for otherwise the flush_work in the pageflip code will
1429          * deadlock.
1430          */
1431         schedule_work(&dev_priv->hotplug_work);
1432 }
1433
1434 static void gmbus_irq_handler(struct drm_device *dev)
1435 {
1436         struct drm_i915_private *dev_priv = dev->dev_private;
1437
1438         wake_up_all(&dev_priv->gmbus_wait_queue);
1439 }
1440
1441 static void dp_aux_irq_handler(struct drm_device *dev)
1442 {
1443         struct drm_i915_private *dev_priv = dev->dev_private;
1444
1445         wake_up_all(&dev_priv->gmbus_wait_queue);
1446 }
1447
1448 #if defined(CONFIG_DEBUG_FS)
1449 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1450                                          uint32_t crc0, uint32_t crc1,
1451                                          uint32_t crc2, uint32_t crc3,
1452                                          uint32_t crc4)
1453 {
1454         struct drm_i915_private *dev_priv = dev->dev_private;
1455         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1456         struct intel_pipe_crc_entry *entry;
1457         int head, tail;
1458
1459         spin_lock(&pipe_crc->lock);
1460
1461         if (!pipe_crc->entries) {
1462                 spin_unlock(&pipe_crc->lock);
1463                 DRM_ERROR("spurious interrupt\n");
1464                 return;
1465         }
1466
1467         head = pipe_crc->head;
1468         tail = pipe_crc->tail;
1469
1470         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1471                 spin_unlock(&pipe_crc->lock);
1472                 DRM_ERROR("CRC buffer overflowing\n");
1473                 return;
1474         }
1475
1476         entry = &pipe_crc->entries[head];
1477
1478         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1479         entry->crc[0] = crc0;
1480         entry->crc[1] = crc1;
1481         entry->crc[2] = crc2;
1482         entry->crc[3] = crc3;
1483         entry->crc[4] = crc4;
1484
1485         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1486         pipe_crc->head = head;
1487
1488         spin_unlock(&pipe_crc->lock);
1489
1490         wake_up_interruptible(&pipe_crc->wq);
1491 }
1492 #else
1493 static inline void
1494 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1495                              uint32_t crc0, uint32_t crc1,
1496                              uint32_t crc2, uint32_t crc3,
1497                              uint32_t crc4) {}
1498 #endif
1499
1500
1501 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1502 {
1503         struct drm_i915_private *dev_priv = dev->dev_private;
1504
1505         display_pipe_crc_irq_handler(dev, pipe,
1506                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1507                                      0, 0, 0, 0);
1508 }
1509
1510 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1511 {
1512         struct drm_i915_private *dev_priv = dev->dev_private;
1513
1514         display_pipe_crc_irq_handler(dev, pipe,
1515                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1516                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1517                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1518                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1519                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1520 }
1521
1522 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1523 {
1524         struct drm_i915_private *dev_priv = dev->dev_private;
1525         uint32_t res1, res2;
1526
1527         if (INTEL_INFO(dev)->gen >= 3)
1528                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1529         else
1530                 res1 = 0;
1531
1532         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1533                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1534         else
1535                 res2 = 0;
1536
1537         display_pipe_crc_irq_handler(dev, pipe,
1538                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1539                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1540                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1541                                      res1, res2);
1542 }
1543
1544 /* The RPS events need forcewake, so we add them to a work queue and mask their
1545  * IMR bits until the work is done. Other interrupts can be processed without
1546  * the work queue. */
1547 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1548 {
1549         if (pm_iir & dev_priv->pm_rps_events) {
1550                 spin_lock(&dev_priv->irq_lock);
1551                 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1552                 snb_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1553                 spin_unlock(&dev_priv->irq_lock);
1554
1555                 queue_work(dev_priv->wq, &dev_priv->rps.work);
1556         }
1557
1558         if (HAS_VEBOX(dev_priv->dev)) {
1559                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1560                         notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1561
1562                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1563                         i915_handle_error(dev_priv->dev, false,
1564                                           "VEBOX CS error interrupt 0x%08x",
1565                                           pm_iir);
1566                 }
1567         }
1568 }
1569
1570 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1571 {
1572         struct drm_i915_private *dev_priv = dev->dev_private;
1573         u32 pipe_stats[I915_MAX_PIPES] = { };
1574         int pipe;
1575
1576         spin_lock(&dev_priv->irq_lock);
1577         for_each_pipe(pipe) {
1578                 int reg;
1579                 u32 mask, iir_bit = 0;
1580
1581                 /*
1582                  * PIPESTAT bits get signalled even when the interrupt is
1583                  * disabled with the mask bits, and some of the status bits do
1584                  * not generate interrupts at all (like the underrun bit). Hence
1585                  * we need to be careful that we only handle what we want to
1586                  * handle.
1587                  */
1588                 mask = 0;
1589                 if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
1590                         mask |= PIPE_FIFO_UNDERRUN_STATUS;
1591
1592                 switch (pipe) {
1593                 case PIPE_A:
1594                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1595                         break;
1596                 case PIPE_B:
1597                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1598                         break;
1599                 }
1600                 if (iir & iir_bit)
1601                         mask |= dev_priv->pipestat_irq_mask[pipe];
1602
1603                 if (!mask)
1604                         continue;
1605
1606                 reg = PIPESTAT(pipe);
1607                 mask |= PIPESTAT_INT_ENABLE_MASK;
1608                 pipe_stats[pipe] = I915_READ(reg) & mask;
1609
1610                 /*
1611                  * Clear the PIPE*STAT regs before the IIR
1612                  */
1613                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1614                                         PIPESTAT_INT_STATUS_MASK))
1615                         I915_WRITE(reg, pipe_stats[pipe]);
1616         }
1617         spin_unlock(&dev_priv->irq_lock);
1618
1619         for_each_pipe(pipe) {
1620                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1621                         drm_handle_vblank(dev, pipe);
1622
1623                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1624                         intel_prepare_page_flip(dev, pipe);
1625                         intel_finish_page_flip(dev, pipe);
1626                 }
1627
1628                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1629                         i9xx_pipe_crc_irq_handler(dev, pipe);
1630
1631                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
1632                     intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1633                         DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
1634         }
1635
1636         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1637                 gmbus_irq_handler(dev);
1638 }
1639
1640 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1641 {
1642         struct drm_i915_private *dev_priv = dev->dev_private;
1643         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1644
1645         if (IS_G4X(dev)) {
1646                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1647
1648                 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_g4x);
1649         } else {
1650                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1651
1652                 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1653         }
1654
1655         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1656             hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1657                 dp_aux_irq_handler(dev);
1658
1659         I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1660         /*
1661          * Make sure hotplug status is cleared before we clear IIR, or else we
1662          * may miss hotplug events.
1663          */
1664         POSTING_READ(PORT_HOTPLUG_STAT);
1665 }
1666
1667 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1668 {
1669         struct drm_device *dev = (struct drm_device *) arg;
1670         struct drm_i915_private *dev_priv = dev->dev_private;
1671         u32 iir, gt_iir, pm_iir;
1672         irqreturn_t ret = IRQ_NONE;
1673
1674         while (true) {
1675                 iir = I915_READ(VLV_IIR);
1676                 gt_iir = I915_READ(GTIIR);
1677                 pm_iir = I915_READ(GEN6_PMIIR);
1678
1679                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1680                         goto out;
1681
1682                 ret = IRQ_HANDLED;
1683
1684                 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1685
1686                 valleyview_pipestat_irq_handler(dev, iir);
1687
1688                 /* Consume port.  Then clear IIR or we'll miss events */
1689                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1690                         i9xx_hpd_irq_handler(dev);
1691
1692                 if (pm_iir)
1693                         gen6_rps_irq_handler(dev_priv, pm_iir);
1694
1695                 I915_WRITE(GTIIR, gt_iir);
1696                 I915_WRITE(GEN6_PMIIR, pm_iir);
1697                 I915_WRITE(VLV_IIR, iir);
1698         }
1699
1700 out:
1701         return ret;
1702 }
1703
1704 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1705 {
1706         struct drm_i915_private *dev_priv = dev->dev_private;
1707         int pipe;
1708         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1709
1710         intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1711
1712         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1713                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1714                                SDE_AUDIO_POWER_SHIFT);
1715                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1716                                  port_name(port));
1717         }
1718
1719         if (pch_iir & SDE_AUX_MASK)
1720                 dp_aux_irq_handler(dev);
1721
1722         if (pch_iir & SDE_GMBUS)
1723                 gmbus_irq_handler(dev);
1724
1725         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1726                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1727
1728         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1729                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1730
1731         if (pch_iir & SDE_POISON)
1732                 DRM_ERROR("PCH poison interrupt\n");
1733
1734         if (pch_iir & SDE_FDI_MASK)
1735                 for_each_pipe(pipe)
1736                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1737                                          pipe_name(pipe),
1738                                          I915_READ(FDI_RX_IIR(pipe)));
1739
1740         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1741                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1742
1743         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1744                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1745
1746         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1747                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1748                                                           false))
1749                         DRM_ERROR("PCH transcoder A FIFO underrun\n");
1750
1751         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1752                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1753                                                           false))
1754                         DRM_ERROR("PCH transcoder B FIFO underrun\n");
1755 }
1756
1757 static void ivb_err_int_handler(struct drm_device *dev)
1758 {
1759         struct drm_i915_private *dev_priv = dev->dev_private;
1760         u32 err_int = I915_READ(GEN7_ERR_INT);
1761         enum pipe pipe;
1762
1763         if (err_int & ERR_INT_POISON)
1764                 DRM_ERROR("Poison interrupt\n");
1765
1766         for_each_pipe(pipe) {
1767                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1768                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1769                                                                   false))
1770                                 DRM_ERROR("Pipe %c FIFO underrun\n",
1771                                           pipe_name(pipe));
1772                 }
1773
1774                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1775                         if (IS_IVYBRIDGE(dev))
1776                                 ivb_pipe_crc_irq_handler(dev, pipe);
1777                         else
1778                                 hsw_pipe_crc_irq_handler(dev, pipe);
1779                 }
1780         }
1781
1782         I915_WRITE(GEN7_ERR_INT, err_int);
1783 }
1784
1785 static void cpt_serr_int_handler(struct drm_device *dev)
1786 {
1787         struct drm_i915_private *dev_priv = dev->dev_private;
1788         u32 serr_int = I915_READ(SERR_INT);
1789
1790         if (serr_int & SERR_INT_POISON)
1791                 DRM_ERROR("PCH poison interrupt\n");
1792
1793         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1794                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1795                                                           false))
1796                         DRM_ERROR("PCH transcoder A FIFO underrun\n");
1797
1798         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1799                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1800                                                           false))
1801                         DRM_ERROR("PCH transcoder B FIFO underrun\n");
1802
1803         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1804                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1805                                                           false))
1806                         DRM_ERROR("PCH transcoder C FIFO underrun\n");
1807
1808         I915_WRITE(SERR_INT, serr_int);
1809 }
1810
1811 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1812 {
1813         struct drm_i915_private *dev_priv = dev->dev_private;
1814         int pipe;
1815         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1816
1817         intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1818
1819         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1820                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1821                                SDE_AUDIO_POWER_SHIFT_CPT);
1822                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1823                                  port_name(port));
1824         }
1825
1826         if (pch_iir & SDE_AUX_MASK_CPT)
1827                 dp_aux_irq_handler(dev);
1828
1829         if (pch_iir & SDE_GMBUS_CPT)
1830                 gmbus_irq_handler(dev);
1831
1832         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1833                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1834
1835         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1836                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1837
1838         if (pch_iir & SDE_FDI_MASK_CPT)
1839                 for_each_pipe(pipe)
1840                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1841                                          pipe_name(pipe),
1842                                          I915_READ(FDI_RX_IIR(pipe)));
1843
1844         if (pch_iir & SDE_ERROR_CPT)
1845                 cpt_serr_int_handler(dev);
1846 }
1847
1848 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1849 {
1850         struct drm_i915_private *dev_priv = dev->dev_private;
1851         enum pipe pipe;
1852
1853         if (de_iir & DE_AUX_CHANNEL_A)
1854                 dp_aux_irq_handler(dev);
1855
1856         if (de_iir & DE_GSE)
1857                 intel_opregion_asle_intr(dev);
1858
1859         if (de_iir & DE_POISON)
1860                 DRM_ERROR("Poison interrupt\n");
1861
1862         for_each_pipe(pipe) {
1863                 if (de_iir & DE_PIPE_VBLANK(pipe))
1864                         drm_handle_vblank(dev, pipe);
1865
1866                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1867                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1868                                 DRM_ERROR("Pipe %c FIFO underrun\n",
1869                                           pipe_name(pipe));
1870
1871                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
1872                         i9xx_pipe_crc_irq_handler(dev, pipe);
1873
1874                 /* plane/pipes map 1:1 on ilk+ */
1875                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1876                         intel_prepare_page_flip(dev, pipe);
1877                         intel_finish_page_flip_plane(dev, pipe);
1878                 }
1879         }
1880
1881         /* check event from PCH */
1882         if (de_iir & DE_PCH_EVENT) {
1883                 u32 pch_iir = I915_READ(SDEIIR);
1884
1885                 if (HAS_PCH_CPT(dev))
1886                         cpt_irq_handler(dev, pch_iir);
1887                 else
1888                         ibx_irq_handler(dev, pch_iir);
1889
1890                 /* should clear PCH hotplug event before clear CPU irq */
1891                 I915_WRITE(SDEIIR, pch_iir);
1892         }
1893
1894         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1895                 ironlake_rps_change_irq_handler(dev);
1896 }
1897
1898 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1899 {
1900         struct drm_i915_private *dev_priv = dev->dev_private;
1901         enum pipe pipe;
1902
1903         if (de_iir & DE_ERR_INT_IVB)
1904                 ivb_err_int_handler(dev);
1905
1906         if (de_iir & DE_AUX_CHANNEL_A_IVB)
1907                 dp_aux_irq_handler(dev);
1908
1909         if (de_iir & DE_GSE_IVB)
1910                 intel_opregion_asle_intr(dev);
1911
1912         for_each_pipe(pipe) {
1913                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
1914                         drm_handle_vblank(dev, pipe);
1915
1916                 /* plane/pipes map 1:1 on ilk+ */
1917                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
1918                         intel_prepare_page_flip(dev, pipe);
1919                         intel_finish_page_flip_plane(dev, pipe);
1920                 }
1921         }
1922
1923         /* check event from PCH */
1924         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1925                 u32 pch_iir = I915_READ(SDEIIR);
1926
1927                 cpt_irq_handler(dev, pch_iir);
1928
1929                 /* clear PCH hotplug event before clear CPU irq */
1930                 I915_WRITE(SDEIIR, pch_iir);
1931         }
1932 }
1933
1934 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1935 {
1936         struct drm_device *dev = (struct drm_device *) arg;
1937         struct drm_i915_private *dev_priv = dev->dev_private;
1938         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1939         irqreturn_t ret = IRQ_NONE;
1940
1941         /* We get interrupts on unclaimed registers, so check for this before we
1942          * do any I915_{READ,WRITE}. */
1943         intel_uncore_check_errors(dev);
1944
1945         /* disable master interrupt before clearing iir  */
1946         de_ier = I915_READ(DEIER);
1947         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1948         POSTING_READ(DEIER);
1949
1950         /* Disable south interrupts. We'll only write to SDEIIR once, so further
1951          * interrupts will will be stored on its back queue, and then we'll be
1952          * able to process them after we restore SDEIER (as soon as we restore
1953          * it, we'll get an interrupt if SDEIIR still has something to process
1954          * due to its back queue). */
1955         if (!HAS_PCH_NOP(dev)) {
1956                 sde_ier = I915_READ(SDEIER);
1957                 I915_WRITE(SDEIER, 0);
1958                 POSTING_READ(SDEIER);
1959         }
1960
1961         gt_iir = I915_READ(GTIIR);
1962         if (gt_iir) {
1963                 if (INTEL_INFO(dev)->gen >= 6)
1964                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
1965                 else
1966                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1967                 I915_WRITE(GTIIR, gt_iir);
1968                 ret = IRQ_HANDLED;
1969         }
1970
1971         de_iir = I915_READ(DEIIR);
1972         if (de_iir) {
1973                 if (INTEL_INFO(dev)->gen >= 7)
1974                         ivb_display_irq_handler(dev, de_iir);
1975                 else
1976                         ilk_display_irq_handler(dev, de_iir);
1977                 I915_WRITE(DEIIR, de_iir);
1978                 ret = IRQ_HANDLED;
1979         }
1980
1981         if (INTEL_INFO(dev)->gen >= 6) {
1982                 u32 pm_iir = I915_READ(GEN6_PMIIR);
1983                 if (pm_iir) {
1984                         gen6_rps_irq_handler(dev_priv, pm_iir);
1985                         I915_WRITE(GEN6_PMIIR, pm_iir);
1986                         ret = IRQ_HANDLED;
1987                 }
1988         }
1989
1990         I915_WRITE(DEIER, de_ier);
1991         POSTING_READ(DEIER);
1992         if (!HAS_PCH_NOP(dev)) {
1993                 I915_WRITE(SDEIER, sde_ier);
1994                 POSTING_READ(SDEIER);
1995         }
1996
1997         return ret;
1998 }
1999
2000 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2001 {
2002         struct drm_device *dev = arg;
2003         struct drm_i915_private *dev_priv = dev->dev_private;
2004         u32 master_ctl;
2005         irqreturn_t ret = IRQ_NONE;
2006         uint32_t tmp = 0;
2007         enum pipe pipe;
2008
2009         master_ctl = I915_READ(GEN8_MASTER_IRQ);
2010         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2011         if (!master_ctl)
2012                 return IRQ_NONE;
2013
2014         I915_WRITE(GEN8_MASTER_IRQ, 0);
2015         POSTING_READ(GEN8_MASTER_IRQ);
2016
2017         ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2018
2019         if (master_ctl & GEN8_DE_MISC_IRQ) {
2020                 tmp = I915_READ(GEN8_DE_MISC_IIR);
2021                 if (tmp & GEN8_DE_MISC_GSE)
2022                         intel_opregion_asle_intr(dev);
2023                 else if (tmp)
2024                         DRM_ERROR("Unexpected DE Misc interrupt\n");
2025                 else
2026                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2027
2028                 if (tmp) {
2029                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2030                         ret = IRQ_HANDLED;
2031                 }
2032         }
2033
2034         if (master_ctl & GEN8_DE_PORT_IRQ) {
2035                 tmp = I915_READ(GEN8_DE_PORT_IIR);
2036                 if (tmp & GEN8_AUX_CHANNEL_A)
2037                         dp_aux_irq_handler(dev);
2038                 else if (tmp)
2039                         DRM_ERROR("Unexpected DE Port interrupt\n");
2040                 else
2041                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2042
2043                 if (tmp) {
2044                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2045                         ret = IRQ_HANDLED;
2046                 }
2047         }
2048
2049         for_each_pipe(pipe) {
2050                 uint32_t pipe_iir;
2051
2052                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2053                         continue;
2054
2055                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2056                 if (pipe_iir & GEN8_PIPE_VBLANK)
2057                         drm_handle_vblank(dev, pipe);
2058
2059                 if (pipe_iir & GEN8_PIPE_FLIP_DONE) {
2060                         intel_prepare_page_flip(dev, pipe);
2061                         intel_finish_page_flip_plane(dev, pipe);
2062                 }
2063
2064                 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2065                         hsw_pipe_crc_irq_handler(dev, pipe);
2066
2067                 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2068                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2069                                                                   false))
2070                                 DRM_ERROR("Pipe %c FIFO underrun\n",
2071                                           pipe_name(pipe));
2072                 }
2073
2074                 if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2075                         DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2076                                   pipe_name(pipe),
2077                                   pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2078                 }
2079
2080                 if (pipe_iir) {
2081                         ret = IRQ_HANDLED;
2082                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2083                 } else
2084                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2085         }
2086
2087         if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2088                 /*
2089                  * FIXME(BDW): Assume for now that the new interrupt handling
2090                  * scheme also closed the SDE interrupt handling race we've seen
2091                  * on older pch-split platforms. But this needs testing.
2092                  */
2093                 u32 pch_iir = I915_READ(SDEIIR);
2094
2095                 cpt_irq_handler(dev, pch_iir);
2096
2097                 if (pch_iir) {
2098                         I915_WRITE(SDEIIR, pch_iir);
2099                         ret = IRQ_HANDLED;
2100                 }
2101         }
2102
2103         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2104         POSTING_READ(GEN8_MASTER_IRQ);
2105
2106         return ret;
2107 }
2108
2109 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2110                                bool reset_completed)
2111 {
2112         struct intel_ring_buffer *ring;
2113         int i;
2114
2115         /*
2116          * Notify all waiters for GPU completion events that reset state has
2117          * been changed, and that they need to restart their wait after
2118          * checking for potential errors (and bail out to drop locks if there is
2119          * a gpu reset pending so that i915_error_work_func can acquire them).
2120          */
2121
2122         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2123         for_each_ring(ring, dev_priv, i)
2124                 wake_up_all(&ring->irq_queue);
2125
2126         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2127         wake_up_all(&dev_priv->pending_flip_queue);
2128
2129         /*
2130          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2131          * reset state is cleared.
2132          */
2133         if (reset_completed)
2134                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2135 }
2136
2137 /**
2138  * i915_error_work_func - do process context error handling work
2139  * @work: work struct
2140  *
2141  * Fire an error uevent so userspace can see that a hang or error
2142  * was detected.
2143  */
2144 static void i915_error_work_func(struct work_struct *work)
2145 {
2146         struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2147                                                     work);
2148         struct drm_i915_private *dev_priv =
2149                 container_of(error, struct drm_i915_private, gpu_error);
2150         struct drm_device *dev = dev_priv->dev;
2151         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2152         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2153         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2154         int ret;
2155
2156         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2157
2158         /*
2159          * Note that there's only one work item which does gpu resets, so we
2160          * need not worry about concurrent gpu resets potentially incrementing
2161          * error->reset_counter twice. We only need to take care of another
2162          * racing irq/hangcheck declaring the gpu dead for a second time. A
2163          * quick check for that is good enough: schedule_work ensures the
2164          * correct ordering between hang detection and this work item, and since
2165          * the reset in-progress bit is only ever set by code outside of this
2166          * work we don't need to worry about any other races.
2167          */
2168         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2169                 DRM_DEBUG_DRIVER("resetting chip\n");
2170                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2171                                    reset_event);
2172
2173                 /*
2174                  * All state reset _must_ be completed before we update the
2175                  * reset counter, for otherwise waiters might miss the reset
2176                  * pending state and not properly drop locks, resulting in
2177                  * deadlocks with the reset work.
2178                  */
2179                 ret = i915_reset(dev);
2180
2181                 intel_display_handle_reset(dev);
2182
2183                 if (ret == 0) {
2184                         /*
2185                          * After all the gem state is reset, increment the reset
2186                          * counter and wake up everyone waiting for the reset to
2187                          * complete.
2188                          *
2189                          * Since unlock operations are a one-sided barrier only,
2190                          * we need to insert a barrier here to order any seqno
2191                          * updates before
2192                          * the counter increment.
2193                          */
2194                         smp_mb__before_atomic_inc();
2195                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2196
2197                         kobject_uevent_env(&dev->primary->kdev->kobj,
2198                                            KOBJ_CHANGE, reset_done_event);
2199                 } else {
2200                         atomic_set_mask(I915_WEDGED, &error->reset_counter);
2201                 }
2202
2203                 /*
2204                  * Note: The wake_up also serves as a memory barrier so that
2205                  * waiters see the update value of the reset counter atomic_t.
2206                  */
2207                 i915_error_wake_up(dev_priv, true);
2208         }
2209 }
2210
2211 static void i915_report_and_clear_eir(struct drm_device *dev)
2212 {
2213         struct drm_i915_private *dev_priv = dev->dev_private;
2214         uint32_t instdone[I915_NUM_INSTDONE_REG];
2215         u32 eir = I915_READ(EIR);
2216         int pipe, i;
2217
2218         if (!eir)
2219                 return;
2220
2221         pr_err("render error detected, EIR: 0x%08x\n", eir);
2222
2223         i915_get_extra_instdone(dev, instdone);
2224
2225         if (IS_G4X(dev)) {
2226                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2227                         u32 ipeir = I915_READ(IPEIR_I965);
2228
2229                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2230                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2231                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2232                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2233                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2234                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2235                         I915_WRITE(IPEIR_I965, ipeir);
2236                         POSTING_READ(IPEIR_I965);
2237                 }
2238                 if (eir & GM45_ERROR_PAGE_TABLE) {
2239                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2240                         pr_err("page table error\n");
2241                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2242                         I915_WRITE(PGTBL_ER, pgtbl_err);
2243                         POSTING_READ(PGTBL_ER);
2244                 }
2245         }
2246
2247         if (!IS_GEN2(dev)) {
2248                 if (eir & I915_ERROR_PAGE_TABLE) {
2249                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2250                         pr_err("page table error\n");
2251                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2252                         I915_WRITE(PGTBL_ER, pgtbl_err);
2253                         POSTING_READ(PGTBL_ER);
2254                 }
2255         }
2256
2257         if (eir & I915_ERROR_MEMORY_REFRESH) {
2258                 pr_err("memory refresh error:\n");
2259                 for_each_pipe(pipe)
2260                         pr_err("pipe %c stat: 0x%08x\n",
2261                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2262                 /* pipestat has already been acked */
2263         }
2264         if (eir & I915_ERROR_INSTRUCTION) {
2265                 pr_err("instruction error\n");
2266                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2267                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2268                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2269                 if (INTEL_INFO(dev)->gen < 4) {
2270                         u32 ipeir = I915_READ(IPEIR);
2271
2272                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2273                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2274                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2275                         I915_WRITE(IPEIR, ipeir);
2276                         POSTING_READ(IPEIR);
2277                 } else {
2278                         u32 ipeir = I915_READ(IPEIR_I965);
2279
2280                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2281                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2282                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2283                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2284                         I915_WRITE(IPEIR_I965, ipeir);
2285                         POSTING_READ(IPEIR_I965);
2286                 }
2287         }
2288
2289         I915_WRITE(EIR, eir);
2290         POSTING_READ(EIR);
2291         eir = I915_READ(EIR);
2292         if (eir) {
2293                 /*
2294                  * some errors might have become stuck,
2295                  * mask them.
2296                  */
2297                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2298                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2299                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2300         }
2301 }
2302
2303 /**
2304  * i915_handle_error - handle an error interrupt
2305  * @dev: drm device
2306  *
2307  * Do some basic checking of regsiter state at error interrupt time and
2308  * dump it to the syslog.  Also call i915_capture_error_state() to make
2309  * sure we get a record and make it available in debugfs.  Fire a uevent
2310  * so userspace knows something bad happened (should trigger collection
2311  * of a ring dump etc.).
2312  */
2313 void i915_handle_error(struct drm_device *dev, bool wedged,
2314                        const char *fmt, ...)
2315 {
2316         struct drm_i915_private *dev_priv = dev->dev_private;
2317         va_list args;
2318         char error_msg[80];
2319
2320         va_start(args, fmt);
2321         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2322         va_end(args);
2323
2324         i915_capture_error_state(dev, wedged, error_msg);
2325         i915_report_and_clear_eir(dev);
2326
2327         if (wedged) {
2328                 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2329                                 &dev_priv->gpu_error.reset_counter);
2330
2331                 /*
2332                  * Wakeup waiting processes so that the reset work function
2333                  * i915_error_work_func doesn't deadlock trying to grab various
2334                  * locks. By bumping the reset counter first, the woken
2335                  * processes will see a reset in progress and back off,
2336                  * releasing their locks and then wait for the reset completion.
2337                  * We must do this for _all_ gpu waiters that might hold locks
2338                  * that the reset work needs to acquire.
2339                  *
2340                  * Note: The wake_up serves as the required memory barrier to
2341                  * ensure that the waiters see the updated value of the reset
2342                  * counter atomic_t.
2343                  */
2344                 i915_error_wake_up(dev_priv, false);
2345         }
2346
2347         /*
2348          * Our reset work can grab modeset locks (since it needs to reset the
2349          * state of outstanding pagelips). Hence it must not be run on our own
2350          * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2351          * code will deadlock.
2352          */
2353         schedule_work(&dev_priv->gpu_error.work);
2354 }
2355
2356 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2357 {
2358         struct drm_i915_private *dev_priv = dev->dev_private;
2359         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2360         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2361         struct drm_i915_gem_object *obj;
2362         struct intel_unpin_work *work;
2363         unsigned long flags;
2364         bool stall_detected;
2365
2366         /* Ignore early vblank irqs */
2367         if (intel_crtc == NULL)
2368                 return;
2369
2370         spin_lock_irqsave(&dev->event_lock, flags);
2371         work = intel_crtc->unpin_work;
2372
2373         if (work == NULL ||
2374             atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2375             !work->enable_stall_check) {
2376                 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
2377                 spin_unlock_irqrestore(&dev->event_lock, flags);
2378                 return;
2379         }
2380
2381         /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2382         obj = work->pending_flip_obj;
2383         if (INTEL_INFO(dev)->gen >= 4) {
2384                 int dspsurf = DSPSURF(intel_crtc->plane);
2385                 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2386                                         i915_gem_obj_ggtt_offset(obj);
2387         } else {
2388                 int dspaddr = DSPADDR(intel_crtc->plane);
2389                 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2390                                                         crtc->y * crtc->fb->pitches[0] +
2391                                                         crtc->x * crtc->fb->bits_per_pixel/8);
2392         }
2393
2394         spin_unlock_irqrestore(&dev->event_lock, flags);
2395
2396         if (stall_detected) {
2397                 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2398                 intel_prepare_page_flip(dev, intel_crtc->plane);
2399         }
2400 }
2401
2402 /* Called from drm generic code, passed 'crtc' which
2403  * we use as a pipe index
2404  */
2405 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2406 {
2407         struct drm_i915_private *dev_priv = dev->dev_private;
2408         unsigned long irqflags;
2409
2410         if (!i915_pipe_enabled(dev, pipe))
2411                 return -EINVAL;
2412
2413         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2414         if (INTEL_INFO(dev)->gen >= 4)
2415                 i915_enable_pipestat(dev_priv, pipe,
2416                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2417         else
2418                 i915_enable_pipestat(dev_priv, pipe,
2419                                      PIPE_VBLANK_INTERRUPT_STATUS);
2420
2421         /* maintain vblank delivery even in deep C-states */
2422         if (INTEL_INFO(dev)->gen == 3)
2423                 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2424         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2425
2426         return 0;
2427 }
2428
2429 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2430 {
2431         struct drm_i915_private *dev_priv = dev->dev_private;
2432         unsigned long irqflags;
2433         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2434                                                      DE_PIPE_VBLANK(pipe);
2435
2436         if (!i915_pipe_enabled(dev, pipe))
2437                 return -EINVAL;
2438
2439         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2440         ironlake_enable_display_irq(dev_priv, bit);
2441         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2442
2443         return 0;
2444 }
2445
2446 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2447 {
2448         struct drm_i915_private *dev_priv = dev->dev_private;
2449         unsigned long irqflags;
2450
2451         if (!i915_pipe_enabled(dev, pipe))
2452                 return -EINVAL;
2453
2454         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2455         i915_enable_pipestat(dev_priv, pipe,
2456                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2457         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2458
2459         return 0;
2460 }
2461
2462 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2463 {
2464         struct drm_i915_private *dev_priv = dev->dev_private;
2465         unsigned long irqflags;
2466
2467         if (!i915_pipe_enabled(dev, pipe))
2468                 return -EINVAL;
2469
2470         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2471         dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2472         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2473         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2474         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2475         return 0;
2476 }
2477
2478 /* Called from drm generic code, passed 'crtc' which
2479  * we use as a pipe index
2480  */
2481 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2482 {
2483         struct drm_i915_private *dev_priv = dev->dev_private;
2484         unsigned long irqflags;
2485
2486         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2487         if (INTEL_INFO(dev)->gen == 3)
2488                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2489
2490         i915_disable_pipestat(dev_priv, pipe,
2491                               PIPE_VBLANK_INTERRUPT_STATUS |
2492                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2493         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2494 }
2495
2496 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2497 {
2498         struct drm_i915_private *dev_priv = dev->dev_private;
2499         unsigned long irqflags;
2500         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2501                                                      DE_PIPE_VBLANK(pipe);
2502
2503         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2504         ironlake_disable_display_irq(dev_priv, bit);
2505         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2506 }
2507
2508 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2509 {
2510         struct drm_i915_private *dev_priv = dev->dev_private;
2511         unsigned long irqflags;
2512
2513         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2514         i915_disable_pipestat(dev_priv, pipe,
2515                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2516         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2517 }
2518
2519 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2520 {
2521         struct drm_i915_private *dev_priv = dev->dev_private;
2522         unsigned long irqflags;
2523
2524         if (!i915_pipe_enabled(dev, pipe))
2525                 return;
2526
2527         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2528         dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2529         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2530         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2531         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2532 }
2533
2534 static u32
2535 ring_last_seqno(struct intel_ring_buffer *ring)
2536 {
2537         return list_entry(ring->request_list.prev,
2538                           struct drm_i915_gem_request, list)->seqno;
2539 }
2540
2541 static bool
2542 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2543 {
2544         return (list_empty(&ring->request_list) ||
2545                 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2546 }
2547
2548 static bool
2549 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2550 {
2551         if (INTEL_INFO(dev)->gen >= 8) {
2552                 /*
2553                  * FIXME: gen8 semaphore support - currently we don't emit
2554                  * semaphores on bdw anyway, but this needs to be addressed when
2555                  * we merge that code.
2556                  */
2557                 return false;
2558         } else {
2559                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2560                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2561                                  MI_SEMAPHORE_REGISTER);
2562         }
2563 }
2564
2565 static struct intel_ring_buffer *
2566 semaphore_wait_to_signaller_ring(struct intel_ring_buffer *ring, u32 ipehr)
2567 {
2568         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2569         struct intel_ring_buffer *signaller;
2570         int i;
2571
2572         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2573                 /*
2574                  * FIXME: gen8 semaphore support - currently we don't emit
2575                  * semaphores on bdw anyway, but this needs to be addressed when
2576                  * we merge that code.
2577                  */
2578                 return NULL;
2579         } else {
2580                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2581
2582                 for_each_ring(signaller, dev_priv, i) {
2583                         if(ring == signaller)
2584                                 continue;
2585
2586                         if (sync_bits ==
2587                             signaller->semaphore_register[ring->id])
2588                                 return signaller;
2589                 }
2590         }
2591
2592         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x\n",
2593                   ring->id, ipehr);
2594
2595         return NULL;
2596 }
2597
2598 static struct intel_ring_buffer *
2599 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2600 {
2601         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2602         u32 cmd, ipehr, head;
2603         int i;
2604
2605         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2606         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2607                 return NULL;
2608
2609         /*
2610          * HEAD is likely pointing to the dword after the actual command,
2611          * so scan backwards until we find the MBOX. But limit it to just 3
2612          * dwords. Note that we don't care about ACTHD here since that might
2613          * point at at batch, and semaphores are always emitted into the
2614          * ringbuffer itself.
2615          */
2616         head = I915_READ_HEAD(ring) & HEAD_ADDR;
2617
2618         for (i = 4; i; --i) {
2619                 /*
2620                  * Be paranoid and presume the hw has gone off into the wild -
2621                  * our ring is smaller than what the hardware (and hence
2622                  * HEAD_ADDR) allows. Also handles wrap-around.
2623                  */
2624                 head &= ring->size - 1;
2625
2626                 /* This here seems to blow up */
2627                 cmd = ioread32(ring->virtual_start + head);
2628                 if (cmd == ipehr)
2629                         break;
2630
2631                 head -= 4;
2632         }
2633
2634         if (!i)
2635                 return NULL;
2636
2637         *seqno = ioread32(ring->virtual_start + head + 4) + 1;
2638         return semaphore_wait_to_signaller_ring(ring, ipehr);
2639 }
2640
2641 static int semaphore_passed(struct intel_ring_buffer *ring)
2642 {
2643         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2644         struct intel_ring_buffer *signaller;
2645         u32 seqno, ctl;
2646
2647         ring->hangcheck.deadlock = true;
2648
2649         signaller = semaphore_waits_for(ring, &seqno);
2650         if (signaller == NULL || signaller->hangcheck.deadlock)
2651                 return -1;
2652
2653         /* cursory check for an unkickable deadlock */
2654         ctl = I915_READ_CTL(signaller);
2655         if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2656                 return -1;
2657
2658         return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2659 }
2660
2661 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2662 {
2663         struct intel_ring_buffer *ring;
2664         int i;
2665
2666         for_each_ring(ring, dev_priv, i)
2667                 ring->hangcheck.deadlock = false;
2668 }
2669
2670 static enum intel_ring_hangcheck_action
2671 ring_stuck(struct intel_ring_buffer *ring, u64 acthd)
2672 {
2673         struct drm_device *dev = ring->dev;
2674         struct drm_i915_private *dev_priv = dev->dev_private;
2675         u32 tmp;
2676
2677         if (ring->hangcheck.acthd != acthd)
2678                 return HANGCHECK_ACTIVE;
2679
2680         if (IS_GEN2(dev))
2681                 return HANGCHECK_HUNG;
2682
2683         /* Is the chip hanging on a WAIT_FOR_EVENT?
2684          * If so we can simply poke the RB_WAIT bit
2685          * and break the hang. This should work on
2686          * all but the second generation chipsets.
2687          */
2688         tmp = I915_READ_CTL(ring);
2689         if (tmp & RING_WAIT) {
2690                 i915_handle_error(dev, false,
2691                                   "Kicking stuck wait on %s",
2692                                   ring->name);
2693                 I915_WRITE_CTL(ring, tmp);
2694                 return HANGCHECK_KICK;
2695         }
2696
2697         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2698                 switch (semaphore_passed(ring)) {
2699                 default:
2700                         return HANGCHECK_HUNG;
2701                 case 1:
2702                         i915_handle_error(dev, false,
2703                                           "Kicking stuck semaphore on %s",
2704                                           ring->name);
2705                         I915_WRITE_CTL(ring, tmp);
2706                         return HANGCHECK_KICK;
2707                 case 0:
2708                         return HANGCHECK_WAIT;
2709                 }
2710         }
2711
2712         return HANGCHECK_HUNG;
2713 }
2714
2715 /**
2716  * This is called when the chip hasn't reported back with completed
2717  * batchbuffers in a long time. We keep track per ring seqno progress and
2718  * if there are no progress, hangcheck score for that ring is increased.
2719  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2720  * we kick the ring. If we see no progress on three subsequent calls
2721  * we assume chip is wedged and try to fix it by resetting the chip.
2722  */
2723 static void i915_hangcheck_elapsed(unsigned long data)
2724 {
2725         struct drm_device *dev = (struct drm_device *)data;
2726         struct drm_i915_private *dev_priv = dev->dev_private;
2727         struct intel_ring_buffer *ring;
2728         int i;
2729         int busy_count = 0, rings_hung = 0;
2730         bool stuck[I915_NUM_RINGS] = { 0 };
2731 #define BUSY 1
2732 #define KICK 5
2733 #define HUNG 20
2734
2735         if (!i915.enable_hangcheck)
2736                 return;
2737
2738         for_each_ring(ring, dev_priv, i) {
2739                 u64 acthd;
2740                 u32 seqno;
2741                 bool busy = true;
2742
2743                 semaphore_clear_deadlocks(dev_priv);
2744
2745                 seqno = ring->get_seqno(ring, false);
2746                 acthd = intel_ring_get_active_head(ring);
2747
2748                 if (ring->hangcheck.seqno == seqno) {
2749                         if (ring_idle(ring, seqno)) {
2750                                 ring->hangcheck.action = HANGCHECK_IDLE;
2751
2752                                 if (waitqueue_active(&ring->irq_queue)) {
2753                                         /* Issue a wake-up to catch stuck h/w. */
2754                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2755                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2756                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2757                                                                   ring->name);
2758                                                 else
2759                                                         DRM_INFO("Fake missed irq on %s\n",
2760                                                                  ring->name);
2761                                                 wake_up_all(&ring->irq_queue);
2762                                         }
2763                                         /* Safeguard against driver failure */
2764                                         ring->hangcheck.score += BUSY;
2765                                 } else
2766                                         busy = false;
2767                         } else {
2768                                 /* We always increment the hangcheck score
2769                                  * if the ring is busy and still processing
2770                                  * the same request, so that no single request
2771                                  * can run indefinitely (such as a chain of
2772                                  * batches). The only time we do not increment
2773                                  * the hangcheck score on this ring, if this
2774                                  * ring is in a legitimate wait for another
2775                                  * ring. In that case the waiting ring is a
2776                                  * victim and we want to be sure we catch the
2777                                  * right culprit. Then every time we do kick
2778                                  * the ring, add a small increment to the
2779                                  * score so that we can catch a batch that is
2780                                  * being repeatedly kicked and so responsible
2781                                  * for stalling the machine.
2782                                  */
2783                                 ring->hangcheck.action = ring_stuck(ring,
2784                                                                     acthd);
2785
2786                                 switch (ring->hangcheck.action) {
2787                                 case HANGCHECK_IDLE:
2788                                 case HANGCHECK_WAIT:
2789                                         break;
2790                                 case HANGCHECK_ACTIVE:
2791                                         ring->hangcheck.score += BUSY;
2792                                         break;
2793                                 case HANGCHECK_KICK:
2794                                         ring->hangcheck.score += KICK;
2795                                         break;
2796                                 case HANGCHECK_HUNG:
2797                                         ring->hangcheck.score += HUNG;
2798                                         stuck[i] = true;
2799                                         break;
2800                                 }
2801                         }
2802                 } else {
2803                         ring->hangcheck.action = HANGCHECK_ACTIVE;
2804
2805                         /* Gradually reduce the count so that we catch DoS
2806                          * attempts across multiple batches.
2807                          */
2808                         if (ring->hangcheck.score > 0)
2809                                 ring->hangcheck.score--;
2810                 }
2811
2812                 ring->hangcheck.seqno = seqno;
2813                 ring->hangcheck.acthd = acthd;
2814                 busy_count += busy;
2815         }
2816
2817         for_each_ring(ring, dev_priv, i) {
2818                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2819                         DRM_INFO("%s on %s\n",
2820                                  stuck[i] ? "stuck" : "no progress",
2821                                  ring->name);
2822                         rings_hung++;
2823                 }
2824         }
2825
2826         if (rings_hung)
2827                 return i915_handle_error(dev, true, "Ring hung");
2828
2829         if (busy_count)
2830                 /* Reset timer case chip hangs without another request
2831                  * being added */
2832                 i915_queue_hangcheck(dev);
2833 }
2834
2835 void i915_queue_hangcheck(struct drm_device *dev)
2836 {
2837         struct drm_i915_private *dev_priv = dev->dev_private;
2838         if (!i915.enable_hangcheck)
2839                 return;
2840
2841         mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2842                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2843 }
2844
2845 static void ibx_irq_reset(struct drm_device *dev)
2846 {
2847         struct drm_i915_private *dev_priv = dev->dev_private;
2848
2849         if (HAS_PCH_NOP(dev))
2850                 return;
2851
2852         GEN5_IRQ_RESET(SDE);
2853
2854         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2855                 I915_WRITE(SERR_INT, 0xffffffff);
2856 }
2857
2858 /*
2859  * SDEIER is also touched by the interrupt handler to work around missed PCH
2860  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2861  * instead we unconditionally enable all PCH interrupt sources here, but then
2862  * only unmask them as needed with SDEIMR.
2863  *
2864  * This function needs to be called before interrupts are enabled.
2865  */
2866 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2867 {
2868         struct drm_i915_private *dev_priv = dev->dev_private;
2869
2870         if (HAS_PCH_NOP(dev))
2871                 return;
2872
2873         WARN_ON(I915_READ(SDEIER) != 0);
2874         I915_WRITE(SDEIER, 0xffffffff);
2875         POSTING_READ(SDEIER);
2876 }
2877
2878 static void gen5_gt_irq_reset(struct drm_device *dev)
2879 {
2880         struct drm_i915_private *dev_priv = dev->dev_private;
2881
2882         GEN5_IRQ_RESET(GT);
2883         if (INTEL_INFO(dev)->gen >= 6)
2884                 GEN5_IRQ_RESET(GEN6_PM);
2885 }
2886
2887 /* drm_dma.h hooks
2888 */
2889 static void ironlake_irq_reset(struct drm_device *dev)
2890 {
2891         struct drm_i915_private *dev_priv = dev->dev_private;
2892
2893         I915_WRITE(HWSTAM, 0xffffffff);
2894
2895         GEN5_IRQ_RESET(DE);
2896         if (IS_GEN7(dev))
2897                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2898
2899         gen5_gt_irq_reset(dev);
2900
2901         ibx_irq_reset(dev);
2902 }
2903
2904 static void ironlake_irq_preinstall(struct drm_device *dev)
2905 {
2906         ironlake_irq_reset(dev);
2907 }
2908
2909 static void valleyview_irq_preinstall(struct drm_device *dev)
2910 {
2911         struct drm_i915_private *dev_priv = dev->dev_private;
2912         int pipe;
2913
2914         /* VLV magic */
2915         I915_WRITE(VLV_IMR, 0);
2916         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2917         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2918         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2919
2920         /* and GT */
2921         I915_WRITE(GTIIR, I915_READ(GTIIR));
2922         I915_WRITE(GTIIR, I915_READ(GTIIR));
2923
2924         gen5_gt_irq_reset(dev);
2925
2926         I915_WRITE(DPINVGTT, 0xff);
2927
2928         I915_WRITE(PORT_HOTPLUG_EN, 0);
2929         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2930         for_each_pipe(pipe)
2931                 I915_WRITE(PIPESTAT(pipe), 0xffff);
2932         I915_WRITE(VLV_IIR, 0xffffffff);
2933         I915_WRITE(VLV_IMR, 0xffffffff);
2934         I915_WRITE(VLV_IER, 0x0);
2935         POSTING_READ(VLV_IER);
2936 }
2937
2938 static void gen8_irq_reset(struct drm_device *dev)
2939 {
2940         struct drm_i915_private *dev_priv = dev->dev_private;
2941         int pipe;
2942
2943         I915_WRITE(GEN8_MASTER_IRQ, 0);
2944         POSTING_READ(GEN8_MASTER_IRQ);
2945
2946         GEN8_IRQ_RESET_NDX(GT, 0);
2947         GEN8_IRQ_RESET_NDX(GT, 1);
2948         GEN8_IRQ_RESET_NDX(GT, 2);
2949         GEN8_IRQ_RESET_NDX(GT, 3);
2950
2951         for_each_pipe(pipe)
2952                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
2953
2954         GEN5_IRQ_RESET(GEN8_DE_PORT_);
2955         GEN5_IRQ_RESET(GEN8_DE_MISC_);
2956         GEN5_IRQ_RESET(GEN8_PCU_);
2957
2958         ibx_irq_reset(dev);
2959 }
2960
2961 static void gen8_irq_preinstall(struct drm_device *dev)
2962 {
2963         gen8_irq_reset(dev);
2964 }
2965
2966 static void ibx_hpd_irq_setup(struct drm_device *dev)
2967 {
2968         struct drm_i915_private *dev_priv = dev->dev_private;
2969         struct drm_mode_config *mode_config = &dev->mode_config;
2970         struct intel_encoder *intel_encoder;
2971         u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2972
2973         if (HAS_PCH_IBX(dev)) {
2974                 hotplug_irqs = SDE_HOTPLUG_MASK;
2975                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2976                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2977                                 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2978         } else {
2979                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2980                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2981                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2982                                 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2983         }
2984
2985         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2986
2987         /*
2988          * Enable digital hotplug on the PCH, and configure the DP short pulse
2989          * duration to 2ms (which is the minimum in the Display Port spec)
2990          *
2991          * This register is the same on all known PCH chips.
2992          */
2993         hotplug = I915_READ(PCH_PORT_HOTPLUG);
2994         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2995         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2996         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2997         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2998         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2999 }
3000
3001 static void ibx_irq_postinstall(struct drm_device *dev)
3002 {
3003         struct drm_i915_private *dev_priv = dev->dev_private;
3004         u32 mask;
3005
3006         if (HAS_PCH_NOP(dev))
3007                 return;
3008
3009         if (HAS_PCH_IBX(dev))
3010                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3011         else
3012                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3013
3014         GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3015         I915_WRITE(SDEIMR, ~mask);
3016 }
3017
3018 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3019 {
3020         struct drm_i915_private *dev_priv = dev->dev_private;
3021         u32 pm_irqs, gt_irqs;
3022
3023         pm_irqs = gt_irqs = 0;
3024
3025         dev_priv->gt_irq_mask = ~0;
3026         if (HAS_L3_DPF(dev)) {
3027                 /* L3 parity interrupt is always unmasked. */
3028                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3029                 gt_irqs |= GT_PARITY_ERROR(dev);
3030         }
3031
3032         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3033         if (IS_GEN5(dev)) {
3034                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3035                            ILK_BSD_USER_INTERRUPT;
3036         } else {
3037                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3038         }
3039
3040         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3041
3042         if (INTEL_INFO(dev)->gen >= 6) {
3043                 pm_irqs |= dev_priv->pm_rps_events;
3044
3045                 if (HAS_VEBOX(dev))
3046                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3047
3048                 dev_priv->pm_irq_mask = 0xffffffff;
3049                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3050         }
3051 }
3052
3053 static int ironlake_irq_postinstall(struct drm_device *dev)
3054 {
3055         unsigned long irqflags;
3056         struct drm_i915_private *dev_priv = dev->dev_private;
3057         u32 display_mask, extra_mask;
3058
3059         if (INTEL_INFO(dev)->gen >= 7) {
3060                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3061                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3062                                 DE_PLANEB_FLIP_DONE_IVB |
3063                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3064                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3065                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3066         } else {
3067                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3068                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3069                                 DE_AUX_CHANNEL_A |
3070                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3071                                 DE_POISON);
3072                 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3073                                 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3074         }
3075
3076         dev_priv->irq_mask = ~display_mask;
3077
3078         I915_WRITE(HWSTAM, 0xeffe);
3079
3080         ibx_irq_pre_postinstall(dev);
3081
3082         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3083
3084         gen5_gt_irq_postinstall(dev);
3085
3086         ibx_irq_postinstall(dev);
3087
3088         if (IS_IRONLAKE_M(dev)) {
3089                 /* Enable PCU event interrupts
3090                  *
3091                  * spinlocking not required here for correctness since interrupt
3092                  * setup is guaranteed to run in single-threaded context. But we
3093                  * need it to make the assert_spin_locked happy. */
3094                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3095                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3096                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3097         }
3098
3099         return 0;
3100 }
3101
3102 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3103 {
3104         u32 pipestat_mask;
3105         u32 iir_mask;
3106
3107         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3108                         PIPE_FIFO_UNDERRUN_STATUS;
3109
3110         I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3111         I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3112         POSTING_READ(PIPESTAT(PIPE_A));
3113
3114         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3115                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3116
3117         i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3118                                                PIPE_GMBUS_INTERRUPT_STATUS);
3119         i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3120
3121         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3122                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3123                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3124         dev_priv->irq_mask &= ~iir_mask;
3125
3126         I915_WRITE(VLV_IIR, iir_mask);
3127         I915_WRITE(VLV_IIR, iir_mask);
3128         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3129         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3130         POSTING_READ(VLV_IER);
3131 }
3132
3133 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3134 {
3135         u32 pipestat_mask;
3136         u32 iir_mask;
3137
3138         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3139                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3140                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3141
3142         dev_priv->irq_mask |= iir_mask;
3143         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3144         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3145         I915_WRITE(VLV_IIR, iir_mask);
3146         I915_WRITE(VLV_IIR, iir_mask);
3147         POSTING_READ(VLV_IIR);
3148
3149         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3150                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3151
3152         i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3153                                                 PIPE_GMBUS_INTERRUPT_STATUS);
3154         i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3155
3156         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3157                         PIPE_FIFO_UNDERRUN_STATUS;
3158         I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3159         I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3160         POSTING_READ(PIPESTAT(PIPE_A));
3161 }
3162
3163 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3164 {
3165         assert_spin_locked(&dev_priv->irq_lock);
3166
3167         if (dev_priv->display_irqs_enabled)
3168                 return;
3169
3170         dev_priv->display_irqs_enabled = true;
3171
3172         if (dev_priv->dev->irq_enabled)
3173                 valleyview_display_irqs_install(dev_priv);
3174 }
3175
3176 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3177 {
3178         assert_spin_locked(&dev_priv->irq_lock);
3179
3180         if (!dev_priv->display_irqs_enabled)
3181                 return;
3182
3183         dev_priv->display_irqs_enabled = false;
3184
3185         if (dev_priv->dev->irq_enabled)
3186                 valleyview_display_irqs_uninstall(dev_priv);
3187 }
3188
3189 static int valleyview_irq_postinstall(struct drm_device *dev)
3190 {
3191         struct drm_i915_private *dev_priv = dev->dev_private;
3192         unsigned long irqflags;
3193
3194         dev_priv->irq_mask = ~0;
3195
3196         I915_WRITE(PORT_HOTPLUG_EN, 0);
3197         POSTING_READ(PORT_HOTPLUG_EN);
3198
3199         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3200         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3201         I915_WRITE(VLV_IIR, 0xffffffff);
3202         POSTING_READ(VLV_IER);
3203
3204         /* Interrupt setup is already guaranteed to be single-threaded, this is
3205          * just to make the assert_spin_locked check happy. */
3206         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3207         if (dev_priv->display_irqs_enabled)
3208                 valleyview_display_irqs_install(dev_priv);
3209         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3210
3211         I915_WRITE(VLV_IIR, 0xffffffff);
3212         I915_WRITE(VLV_IIR, 0xffffffff);
3213
3214         gen5_gt_irq_postinstall(dev);
3215
3216         /* ack & enable invalid PTE error interrupts */
3217 #if 0 /* FIXME: add support to irq handler for checking these bits */
3218         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3219         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3220 #endif
3221
3222         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3223
3224         return 0;
3225 }
3226
3227 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3228 {
3229         int i;
3230
3231         /* These are interrupts we'll toggle with the ring mask register */
3232         uint32_t gt_interrupts[] = {
3233                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3234                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3235                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3236                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3237                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3238                 0,
3239                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3240                 };
3241
3242         for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++)
3243                 GEN8_IRQ_INIT_NDX(GT, i, ~gt_interrupts[i], gt_interrupts[i]);
3244 }
3245
3246 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3247 {
3248         struct drm_device *dev = dev_priv->dev;
3249         uint32_t de_pipe_masked = GEN8_PIPE_FLIP_DONE |
3250                 GEN8_PIPE_CDCLK_CRC_DONE |
3251                 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3252         uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3253                 GEN8_PIPE_FIFO_UNDERRUN;
3254         int pipe;
3255         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3256         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3257         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3258
3259         for_each_pipe(pipe)
3260                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, dev_priv->de_irq_mask[pipe],
3261                                   de_pipe_enables);
3262
3263         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3264 }
3265
3266 static int gen8_irq_postinstall(struct drm_device *dev)
3267 {
3268         struct drm_i915_private *dev_priv = dev->dev_private;
3269
3270         ibx_irq_pre_postinstall(dev);
3271
3272         gen8_gt_irq_postinstall(dev_priv);
3273         gen8_de_irq_postinstall(dev_priv);
3274
3275         ibx_irq_postinstall(dev);
3276
3277         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3278         POSTING_READ(GEN8_MASTER_IRQ);
3279
3280         return 0;
3281 }
3282
3283 static void gen8_irq_uninstall(struct drm_device *dev)
3284 {
3285         struct drm_i915_private *dev_priv = dev->dev_private;
3286
3287         if (!dev_priv)
3288                 return;
3289
3290         intel_hpd_irq_uninstall(dev_priv);
3291
3292         gen8_irq_reset(dev);
3293 }
3294
3295 static void valleyview_irq_uninstall(struct drm_device *dev)
3296 {
3297         struct drm_i915_private *dev_priv = dev->dev_private;
3298         unsigned long irqflags;
3299         int pipe;
3300
3301         if (!dev_priv)
3302                 return;
3303
3304         intel_hpd_irq_uninstall(dev_priv);
3305
3306         for_each_pipe(pipe)
3307                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3308
3309         I915_WRITE(HWSTAM, 0xffffffff);
3310         I915_WRITE(PORT_HOTPLUG_EN, 0);
3311         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3312
3313         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3314         if (dev_priv->display_irqs_enabled)
3315                 valleyview_display_irqs_uninstall(dev_priv);
3316         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3317
3318         dev_priv->irq_mask = 0;
3319
3320         I915_WRITE(VLV_IIR, 0xffffffff);
3321         I915_WRITE(VLV_IMR, 0xffffffff);
3322         I915_WRITE(VLV_IER, 0x0);
3323         POSTING_READ(VLV_IER);
3324 }
3325
3326 static void ironlake_irq_uninstall(struct drm_device *dev)
3327 {
3328         struct drm_i915_private *dev_priv = dev->dev_private;
3329
3330         if (!dev_priv)
3331                 return;
3332
3333         intel_hpd_irq_uninstall(dev_priv);
3334
3335         ironlake_irq_reset(dev);
3336 }
3337
3338 static void i8xx_irq_preinstall(struct drm_device * dev)
3339 {
3340         struct drm_i915_private *dev_priv = dev->dev_private;
3341         int pipe;
3342
3343         for_each_pipe(pipe)
3344                 I915_WRITE(PIPESTAT(pipe), 0);
3345         I915_WRITE16(IMR, 0xffff);
3346         I915_WRITE16(IER, 0x0);
3347         POSTING_READ16(IER);
3348 }
3349
3350 static int i8xx_irq_postinstall(struct drm_device *dev)
3351 {
3352         struct drm_i915_private *dev_priv = dev->dev_private;
3353         unsigned long irqflags;
3354
3355         I915_WRITE16(EMR,
3356                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3357
3358         /* Unmask the interrupts that we always want on. */
3359         dev_priv->irq_mask =
3360                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3361                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3362                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3363                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3364                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3365         I915_WRITE16(IMR, dev_priv->irq_mask);
3366
3367         I915_WRITE16(IER,
3368                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3369                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3370                      I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3371                      I915_USER_INTERRUPT);
3372         POSTING_READ16(IER);
3373
3374         /* Interrupt setup is already guaranteed to be single-threaded, this is
3375          * just to make the assert_spin_locked check happy. */
3376         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3377         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3378         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3379         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3380
3381         return 0;
3382 }
3383
3384 /*
3385  * Returns true when a page flip has completed.
3386  */
3387 static bool i8xx_handle_vblank(struct drm_device *dev,
3388                                int plane, int pipe, u32 iir)
3389 {
3390         struct drm_i915_private *dev_priv = dev->dev_private;
3391         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3392
3393         if (!drm_handle_vblank(dev, pipe))
3394                 return false;
3395
3396         if ((iir & flip_pending) == 0)
3397                 return false;
3398
3399         intel_prepare_page_flip(dev, plane);
3400
3401         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3402          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3403          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3404          * the flip is completed (no longer pending). Since this doesn't raise
3405          * an interrupt per se, we watch for the change at vblank.
3406          */
3407         if (I915_READ16(ISR) & flip_pending)
3408                 return false;
3409
3410         intel_finish_page_flip(dev, pipe);
3411
3412         return true;
3413 }
3414
3415 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3416 {
3417         struct drm_device *dev = (struct drm_device *) arg;
3418         struct drm_i915_private *dev_priv = dev->dev_private;
3419         u16 iir, new_iir;
3420         u32 pipe_stats[2];
3421         unsigned long irqflags;
3422         int pipe;
3423         u16 flip_mask =
3424                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3425                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3426
3427         iir = I915_READ16(IIR);
3428         if (iir == 0)
3429                 return IRQ_NONE;
3430
3431         while (iir & ~flip_mask) {
3432                 /* Can't rely on pipestat interrupt bit in iir as it might
3433                  * have been cleared after the pipestat interrupt was received.
3434                  * It doesn't set the bit in iir again, but it still produces
3435                  * interrupts (for non-MSI).
3436                  */
3437                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3438                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3439                         i915_handle_error(dev, false,
3440                                           "Command parser error, iir 0x%08x",
3441                                           iir);
3442
3443                 for_each_pipe(pipe) {
3444                         int reg = PIPESTAT(pipe);
3445                         pipe_stats[pipe] = I915_READ(reg);
3446
3447                         /*
3448                          * Clear the PIPE*STAT regs before the IIR
3449                          */
3450                         if (pipe_stats[pipe] & 0x8000ffff)
3451                                 I915_WRITE(reg, pipe_stats[pipe]);
3452                 }
3453                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3454
3455                 I915_WRITE16(IIR, iir & ~flip_mask);
3456                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3457
3458                 i915_update_dri1_breadcrumb(dev);
3459
3460                 if (iir & I915_USER_INTERRUPT)
3461                         notify_ring(dev, &dev_priv->ring[RCS]);
3462
3463                 for_each_pipe(pipe) {
3464                         int plane = pipe;
3465                         if (HAS_FBC(dev))
3466                                 plane = !plane;
3467
3468                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3469                             i8xx_handle_vblank(dev, plane, pipe, iir))
3470                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3471
3472                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3473                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3474
3475                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3476                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3477                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3478                 }
3479
3480                 iir = new_iir;
3481         }
3482
3483         return IRQ_HANDLED;
3484 }
3485
3486 static void i8xx_irq_uninstall(struct drm_device * dev)
3487 {
3488         struct drm_i915_private *dev_priv = dev->dev_private;
3489         int pipe;
3490
3491         for_each_pipe(pipe) {
3492                 /* Clear enable bits; then clear status bits */
3493                 I915_WRITE(PIPESTAT(pipe), 0);
3494                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3495         }
3496         I915_WRITE16(IMR, 0xffff);
3497         I915_WRITE16(IER, 0x0);
3498         I915_WRITE16(IIR, I915_READ16(IIR));
3499 }
3500
3501 static void i915_irq_preinstall(struct drm_device * dev)
3502 {
3503         struct drm_i915_private *dev_priv = dev->dev_private;
3504         int pipe;
3505
3506         if (I915_HAS_HOTPLUG(dev)) {
3507                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3508                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3509         }
3510
3511         I915_WRITE16(HWSTAM, 0xeffe);
3512         for_each_pipe(pipe)
3513                 I915_WRITE(PIPESTAT(pipe), 0);
3514         I915_WRITE(IMR, 0xffffffff);
3515         I915_WRITE(IER, 0x0);
3516         POSTING_READ(IER);
3517 }
3518
3519 static int i915_irq_postinstall(struct drm_device *dev)
3520 {
3521         struct drm_i915_private *dev_priv = dev->dev_private;
3522         u32 enable_mask;
3523         unsigned long irqflags;
3524
3525         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3526
3527         /* Unmask the interrupts that we always want on. */
3528         dev_priv->irq_mask =
3529                 ~(I915_ASLE_INTERRUPT |
3530                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3531                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3532                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3533                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3534                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3535
3536         enable_mask =
3537                 I915_ASLE_INTERRUPT |
3538                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3539                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3540                 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3541                 I915_USER_INTERRUPT;
3542
3543         if (I915_HAS_HOTPLUG(dev)) {
3544                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3545                 POSTING_READ(PORT_HOTPLUG_EN);
3546
3547                 /* Enable in IER... */
3548                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3549                 /* and unmask in IMR */
3550                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3551         }
3552
3553         I915_WRITE(IMR, dev_priv->irq_mask);
3554         I915_WRITE(IER, enable_mask);
3555         POSTING_READ(IER);
3556
3557         i915_enable_asle_pipestat(dev);
3558
3559         /* Interrupt setup is already guaranteed to be single-threaded, this is
3560          * just to make the assert_spin_locked check happy. */
3561         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3562         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3563         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3564         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3565
3566         return 0;
3567 }
3568
3569 /*
3570  * Returns true when a page flip has completed.
3571  */
3572 static bool i915_handle_vblank(struct drm_device *dev,
3573                                int plane, int pipe, u32 iir)
3574 {
3575         struct drm_i915_private *dev_priv = dev->dev_private;
3576         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3577
3578         if (!drm_handle_vblank(dev, pipe))
3579                 return false;
3580
3581         if ((iir & flip_pending) == 0)
3582                 return false;
3583
3584         intel_prepare_page_flip(dev, plane);
3585
3586         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3587          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3588          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3589          * the flip is completed (no longer pending). Since this doesn't raise
3590          * an interrupt per se, we watch for the change at vblank.
3591          */
3592         if (I915_READ(ISR) & flip_pending)
3593                 return false;
3594
3595         intel_finish_page_flip(dev, pipe);
3596
3597         return true;
3598 }
3599
3600 static irqreturn_t i915_irq_handler(int irq, void *arg)
3601 {
3602         struct drm_device *dev = (struct drm_device *) arg;
3603         struct drm_i915_private *dev_priv = dev->dev_private;
3604         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3605         unsigned long irqflags;
3606         u32 flip_mask =
3607                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3608                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3609         int pipe, ret = IRQ_NONE;
3610
3611         iir = I915_READ(IIR);
3612         do {
3613                 bool irq_received = (iir & ~flip_mask) != 0;
3614                 bool blc_event = false;
3615
3616                 /* Can't rely on pipestat interrupt bit in iir as it might
3617                  * have been cleared after the pipestat interrupt was received.
3618                  * It doesn't set the bit in iir again, but it still produces
3619                  * interrupts (for non-MSI).
3620                  */
3621                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3622                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3623                         i915_handle_error(dev, false,
3624                                           "Command parser error, iir 0x%08x",
3625                                           iir);
3626
3627                 for_each_pipe(pipe) {
3628                         int reg = PIPESTAT(pipe);
3629                         pipe_stats[pipe] = I915_READ(reg);
3630
3631                         /* Clear the PIPE*STAT regs before the IIR */
3632                         if (pipe_stats[pipe] & 0x8000ffff) {
3633                                 I915_WRITE(reg, pipe_stats[pipe]);
3634                                 irq_received = true;
3635                         }
3636                 }
3637                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3638
3639                 if (!irq_received)
3640                         break;
3641
3642                 /* Consume port.  Then clear IIR or we'll miss events */
3643                 if (I915_HAS_HOTPLUG(dev) &&
3644                     iir & I915_DISPLAY_PORT_INTERRUPT)
3645                         i9xx_hpd_irq_handler(dev);
3646
3647                 I915_WRITE(IIR, iir & ~flip_mask);
3648                 new_iir = I915_READ(IIR); /* Flush posted writes */
3649
3650                 if (iir & I915_USER_INTERRUPT)
3651                         notify_ring(dev, &dev_priv->ring[RCS]);
3652
3653                 for_each_pipe(pipe) {
3654                         int plane = pipe;
3655                         if (HAS_FBC(dev))
3656                                 plane = !plane;
3657
3658                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3659                             i915_handle_vblank(dev, plane, pipe, iir))
3660                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3661
3662                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3663                                 blc_event = true;
3664
3665                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3666                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3667
3668                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3669                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3670                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3671                 }
3672
3673                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3674                         intel_opregion_asle_intr(dev);
3675
3676                 /* With MSI, interrupts are only generated when iir
3677                  * transitions from zero to nonzero.  If another bit got
3678                  * set while we were handling the existing iir bits, then
3679                  * we would never get another interrupt.
3680                  *
3681                  * This is fine on non-MSI as well, as if we hit this path
3682                  * we avoid exiting the interrupt handler only to generate
3683                  * another one.
3684                  *
3685                  * Note that for MSI this could cause a stray interrupt report
3686                  * if an interrupt landed in the time between writing IIR and
3687                  * the posting read.  This should be rare enough to never
3688                  * trigger the 99% of 100,000 interrupts test for disabling
3689                  * stray interrupts.
3690                  */
3691                 ret = IRQ_HANDLED;
3692                 iir = new_iir;
3693         } while (iir & ~flip_mask);
3694
3695         i915_update_dri1_breadcrumb(dev);
3696
3697         return ret;
3698 }
3699
3700 static void i915_irq_uninstall(struct drm_device * dev)
3701 {
3702         struct drm_i915_private *dev_priv = dev->dev_private;
3703         int pipe;
3704
3705         intel_hpd_irq_uninstall(dev_priv);
3706
3707         if (I915_HAS_HOTPLUG(dev)) {
3708                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3709                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3710         }
3711
3712         I915_WRITE16(HWSTAM, 0xffff);
3713         for_each_pipe(pipe) {
3714                 /* Clear enable bits; then clear status bits */
3715                 I915_WRITE(PIPESTAT(pipe), 0);
3716                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3717         }
3718         I915_WRITE(IMR, 0xffffffff);
3719         I915_WRITE(IER, 0x0);
3720
3721         I915_WRITE(IIR, I915_READ(IIR));
3722 }
3723
3724 static void i965_irq_preinstall(struct drm_device * dev)
3725 {
3726         struct drm_i915_private *dev_priv = dev->dev_private;
3727         int pipe;
3728
3729         I915_WRITE(PORT_HOTPLUG_EN, 0);
3730         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3731
3732         I915_WRITE(HWSTAM, 0xeffe);
3733         for_each_pipe(pipe)
3734                 I915_WRITE(PIPESTAT(pipe), 0);
3735         I915_WRITE(IMR, 0xffffffff);
3736         I915_WRITE(IER, 0x0);
3737         POSTING_READ(IER);
3738 }
3739
3740 static int i965_irq_postinstall(struct drm_device *dev)
3741 {
3742         struct drm_i915_private *dev_priv = dev->dev_private;
3743         u32 enable_mask;
3744         u32 error_mask;
3745         unsigned long irqflags;
3746
3747         /* Unmask the interrupts that we always want on. */
3748         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3749                                I915_DISPLAY_PORT_INTERRUPT |
3750                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3751                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3752                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3753                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3754                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3755
3756         enable_mask = ~dev_priv->irq_mask;
3757         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3758                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3759         enable_mask |= I915_USER_INTERRUPT;
3760
3761         if (IS_G4X(dev))
3762                 enable_mask |= I915_BSD_USER_INTERRUPT;
3763
3764         /* Interrupt setup is already guaranteed to be single-threaded, this is
3765          * just to make the assert_spin_locked check happy. */
3766         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3767         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3768         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3769         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3770         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3771
3772         /*
3773          * Enable some error detection, note the instruction error mask
3774          * bit is reserved, so we leave it masked.
3775          */
3776         if (IS_G4X(dev)) {
3777                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3778                                GM45_ERROR_MEM_PRIV |
3779                                GM45_ERROR_CP_PRIV |
3780                                I915_ERROR_MEMORY_REFRESH);
3781         } else {
3782                 error_mask = ~(I915_ERROR_PAGE_TABLE |
3783                                I915_ERROR_MEMORY_REFRESH);
3784         }
3785         I915_WRITE(EMR, error_mask);
3786
3787         I915_WRITE(IMR, dev_priv->irq_mask);
3788         I915_WRITE(IER, enable_mask);
3789         POSTING_READ(IER);
3790
3791         I915_WRITE(PORT_HOTPLUG_EN, 0);
3792         POSTING_READ(PORT_HOTPLUG_EN);
3793
3794         i915_enable_asle_pipestat(dev);
3795
3796         return 0;
3797 }
3798
3799 static void i915_hpd_irq_setup(struct drm_device *dev)
3800 {
3801         struct drm_i915_private *dev_priv = dev->dev_private;
3802         struct drm_mode_config *mode_config = &dev->mode_config;
3803         struct intel_encoder *intel_encoder;
3804         u32 hotplug_en;
3805
3806         assert_spin_locked(&dev_priv->irq_lock);
3807
3808         if (I915_HAS_HOTPLUG(dev)) {
3809                 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3810                 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3811                 /* Note HDMI and DP share hotplug bits */
3812                 /* enable bits are the same for all generations */
3813                 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3814                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3815                                 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3816                 /* Programming the CRT detection parameters tends
3817                    to generate a spurious hotplug event about three
3818                    seconds later.  So just do it once.
3819                 */
3820                 if (IS_G4X(dev))
3821                         hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3822                 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3823                 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3824
3825                 /* Ignore TV since it's buggy */
3826                 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3827         }
3828 }
3829
3830 static irqreturn_t i965_irq_handler(int irq, void *arg)
3831 {
3832         struct drm_device *dev = (struct drm_device *) arg;
3833         struct drm_i915_private *dev_priv = dev->dev_private;
3834         u32 iir, new_iir;
3835         u32 pipe_stats[I915_MAX_PIPES];
3836         unsigned long irqflags;
3837         int ret = IRQ_NONE, pipe;
3838         u32 flip_mask =
3839                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3840                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3841
3842         iir = I915_READ(IIR);
3843
3844         for (;;) {
3845                 bool irq_received = (iir & ~flip_mask) != 0;
3846                 bool blc_event = false;
3847
3848                 /* Can't rely on pipestat interrupt bit in iir as it might
3849                  * have been cleared after the pipestat interrupt was received.
3850                  * It doesn't set the bit in iir again, but it still produces
3851                  * interrupts (for non-MSI).
3852                  */
3853                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3854                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3855                         i915_handle_error(dev, false,
3856                                           "Command parser error, iir 0x%08x",
3857                                           iir);
3858
3859                 for_each_pipe(pipe) {
3860                         int reg = PIPESTAT(pipe);
3861                         pipe_stats[pipe] = I915_READ(reg);
3862
3863                         /*
3864                          * Clear the PIPE*STAT regs before the IIR
3865                          */
3866                         if (pipe_stats[pipe] & 0x8000ffff) {
3867                                 I915_WRITE(reg, pipe_stats[pipe]);
3868                                 irq_received = true;
3869                         }
3870                 }
3871                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3872
3873                 if (!irq_received)
3874                         break;
3875
3876                 ret = IRQ_HANDLED;
3877
3878                 /* Consume port.  Then clear IIR or we'll miss events */
3879                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
3880                         i9xx_hpd_irq_handler(dev);
3881
3882                 I915_WRITE(IIR, iir & ~flip_mask);
3883                 new_iir = I915_READ(IIR); /* Flush posted writes */
3884
3885                 if (iir & I915_USER_INTERRUPT)
3886                         notify_ring(dev, &dev_priv->ring[RCS]);
3887                 if (iir & I915_BSD_USER_INTERRUPT)
3888                         notify_ring(dev, &dev_priv->ring[VCS]);
3889
3890                 for_each_pipe(pipe) {
3891                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3892                             i915_handle_vblank(dev, pipe, pipe, iir))
3893                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3894
3895                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3896                                 blc_event = true;
3897
3898                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3899                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3900
3901                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3902                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3903                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3904                 }
3905
3906                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3907                         intel_opregion_asle_intr(dev);
3908
3909                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3910                         gmbus_irq_handler(dev);
3911
3912                 /* With MSI, interrupts are only generated when iir
3913                  * transitions from zero to nonzero.  If another bit got
3914                  * set while we were handling the existing iir bits, then
3915                  * we would never get another interrupt.
3916                  *
3917                  * This is fine on non-MSI as well, as if we hit this path
3918                  * we avoid exiting the interrupt handler only to generate
3919                  * another one.
3920                  *
3921                  * Note that for MSI this could cause a stray interrupt report
3922                  * if an interrupt landed in the time between writing IIR and
3923                  * the posting read.  This should be rare enough to never
3924                  * trigger the 99% of 100,000 interrupts test for disabling
3925                  * stray interrupts.
3926                  */
3927                 iir = new_iir;
3928         }
3929
3930         i915_update_dri1_breadcrumb(dev);
3931
3932         return ret;
3933 }
3934
3935 static void i965_irq_uninstall(struct drm_device * dev)
3936 {
3937         struct drm_i915_private *dev_priv = dev->dev_private;
3938         int pipe;
3939
3940         if (!dev_priv)
3941                 return;
3942
3943         intel_hpd_irq_uninstall(dev_priv);
3944
3945         I915_WRITE(PORT_HOTPLUG_EN, 0);
3946         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3947
3948         I915_WRITE(HWSTAM, 0xffffffff);
3949         for_each_pipe(pipe)
3950                 I915_WRITE(PIPESTAT(pipe), 0);
3951         I915_WRITE(IMR, 0xffffffff);
3952         I915_WRITE(IER, 0x0);
3953
3954         for_each_pipe(pipe)
3955                 I915_WRITE(PIPESTAT(pipe),
3956                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3957         I915_WRITE(IIR, I915_READ(IIR));
3958 }
3959
3960 static void intel_hpd_irq_reenable(unsigned long data)
3961 {
3962         struct drm_i915_private *dev_priv = (struct drm_i915_private *)data;
3963         struct drm_device *dev = dev_priv->dev;
3964         struct drm_mode_config *mode_config = &dev->mode_config;
3965         unsigned long irqflags;
3966         int i;
3967
3968         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3969         for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3970                 struct drm_connector *connector;
3971
3972                 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3973                         continue;
3974
3975                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3976
3977                 list_for_each_entry(connector, &mode_config->connector_list, head) {
3978                         struct intel_connector *intel_connector = to_intel_connector(connector);
3979
3980                         if (intel_connector->encoder->hpd_pin == i) {
3981                                 if (connector->polled != intel_connector->polled)
3982                                         DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3983                                                          drm_get_connector_name(connector));
3984                                 connector->polled = intel_connector->polled;
3985                                 if (!connector->polled)
3986                                         connector->polled = DRM_CONNECTOR_POLL_HPD;
3987                         }
3988                 }
3989         }
3990         if (dev_priv->display.hpd_irq_setup)
3991                 dev_priv->display.hpd_irq_setup(dev);
3992         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3993 }
3994
3995 void intel_irq_init(struct drm_device *dev)
3996 {
3997         struct drm_i915_private *dev_priv = dev->dev_private;
3998
3999         INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4000         INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4001         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4002         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4003
4004         /* Let's track the enabled rps events */
4005         dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4006
4007         setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4008                     i915_hangcheck_elapsed,
4009                     (unsigned long) dev);
4010         setup_timer(&dev_priv->hotplug_reenable_timer, intel_hpd_irq_reenable,
4011                     (unsigned long) dev_priv);
4012
4013         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4014
4015         if (IS_GEN2(dev)) {
4016                 dev->max_vblank_count = 0;
4017                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4018         } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4019                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4020                 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4021         } else {
4022                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4023                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4024         }
4025
4026         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4027                 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4028                 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4029         }
4030
4031         if (IS_VALLEYVIEW(dev)) {
4032                 dev->driver->irq_handler = valleyview_irq_handler;
4033                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4034                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4035                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4036                 dev->driver->enable_vblank = valleyview_enable_vblank;
4037                 dev->driver->disable_vblank = valleyview_disable_vblank;
4038                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4039         } else if (IS_GEN8(dev)) {
4040                 dev->driver->irq_handler = gen8_irq_handler;
4041                 dev->driver->irq_preinstall = gen8_irq_preinstall;
4042                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4043                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4044                 dev->driver->enable_vblank = gen8_enable_vblank;
4045                 dev->driver->disable_vblank = gen8_disable_vblank;
4046                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4047         } else if (HAS_PCH_SPLIT(dev)) {
4048                 dev->driver->irq_handler = ironlake_irq_handler;
4049                 dev->driver->irq_preinstall = ironlake_irq_preinstall;
4050                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4051                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4052                 dev->driver->enable_vblank = ironlake_enable_vblank;
4053                 dev->driver->disable_vblank = ironlake_disable_vblank;
4054                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4055         } else {
4056                 if (INTEL_INFO(dev)->gen == 2) {
4057                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4058                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4059                         dev->driver->irq_handler = i8xx_irq_handler;
4060                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4061                 } else if (INTEL_INFO(dev)->gen == 3) {
4062                         dev->driver->irq_preinstall = i915_irq_preinstall;
4063                         dev->driver->irq_postinstall = i915_irq_postinstall;
4064                         dev->driver->irq_uninstall = i915_irq_uninstall;
4065                         dev->driver->irq_handler = i915_irq_handler;
4066                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4067                 } else {
4068                         dev->driver->irq_preinstall = i965_irq_preinstall;
4069                         dev->driver->irq_postinstall = i965_irq_postinstall;
4070                         dev->driver->irq_uninstall = i965_irq_uninstall;
4071                         dev->driver->irq_handler = i965_irq_handler;
4072                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4073                 }
4074                 dev->driver->enable_vblank = i915_enable_vblank;
4075                 dev->driver->disable_vblank = i915_disable_vblank;
4076         }
4077 }
4078
4079 void intel_hpd_init(struct drm_device *dev)
4080 {
4081         struct drm_i915_private *dev_priv = dev->dev_private;
4082         struct drm_mode_config *mode_config = &dev->mode_config;
4083         struct drm_connector *connector;
4084         unsigned long irqflags;
4085         int i;
4086
4087         for (i = 1; i < HPD_NUM_PINS; i++) {
4088                 dev_priv->hpd_stats[i].hpd_cnt = 0;
4089                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4090         }
4091         list_for_each_entry(connector, &mode_config->connector_list, head) {
4092                 struct intel_connector *intel_connector = to_intel_connector(connector);
4093                 connector->polled = intel_connector->polled;
4094                 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4095                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4096         }
4097
4098         /* Interrupt setup is already guaranteed to be single-threaded, this is
4099          * just to make the assert_spin_locked checks happy. */
4100         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4101         if (dev_priv->display.hpd_irq_setup)
4102                 dev_priv->display.hpd_irq_setup(dev);
4103         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4104 }
4105
4106 /* Disable interrupts so we can allow runtime PM. */
4107 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4108 {
4109         struct drm_i915_private *dev_priv = dev->dev_private;
4110
4111         dev->driver->irq_uninstall(dev);
4112         dev_priv->pm.irqs_disabled = true;
4113 }
4114
4115 /* Restore interrupts so we can recover from runtime PM. */
4116 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4117 {
4118         struct drm_i915_private *dev_priv = dev->dev_private;
4119
4120         dev_priv->pm.irqs_disabled = false;
4121         dev->driver->irq_preinstall(dev);
4122         dev->driver->irq_postinstall(dev);
4123 }