371647c4c53cb1b69010d8fb08ffc872f0a21fe3
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143                                     i915_reg_t reg)
144 {
145         u32 val = I915_READ(reg);
146
147         if (val == 0)
148                 return;
149
150         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151              i915_mmio_reg_offset(reg), val);
152         I915_WRITE(reg, 0xffffffff);
153         POSTING_READ(reg);
154         I915_WRITE(reg, 0xffffffff);
155         POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159         gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162         POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166         gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167         I915_WRITE(type##IER, (ier_val)); \
168         I915_WRITE(type##IMR, (imr_val)); \
169         POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177                                      uint32_t mask,
178                                      uint32_t bits)
179 {
180         uint32_t val;
181
182         assert_spin_locked(&dev_priv->irq_lock);
183         WARN_ON(bits & ~mask);
184
185         val = I915_READ(PORT_HOTPLUG_EN);
186         val &= ~mask;
187         val |= bits;
188         I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192  * i915_hotplug_interrupt_update - update hotplug interrupt enable
193  * @dev_priv: driver private
194  * @mask: bits to update
195  * @bits: bits to enable
196  * NOTE: the HPD enable bits are modified both inside and outside
197  * of an interrupt context. To avoid that read-modify-write cycles
198  * interfer, these bits are protected by a spinlock. Since this
199  * function is usually not called from a context where the lock is
200  * held already, this function acquires the lock itself. A non-locking
201  * version is also available.
202  */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204                                    uint32_t mask,
205                                    uint32_t bits)
206 {
207         spin_lock_irq(&dev_priv->irq_lock);
208         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209         spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213  * ilk_update_display_irq - update DEIMR
214  * @dev_priv: driver private
215  * @interrupt_mask: mask of interrupt bits to update
216  * @enabled_irq_mask: mask of interrupt bits to enable
217  */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219                             uint32_t interrupt_mask,
220                             uint32_t enabled_irq_mask)
221 {
222         uint32_t new_val;
223
224         assert_spin_locked(&dev_priv->irq_lock);
225
226         WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229                 return;
230
231         new_val = dev_priv->irq_mask;
232         new_val &= ~interrupt_mask;
233         new_val |= (~enabled_irq_mask & interrupt_mask);
234
235         if (new_val != dev_priv->irq_mask) {
236                 dev_priv->irq_mask = new_val;
237                 I915_WRITE(DEIMR, dev_priv->irq_mask);
238                 POSTING_READ(DEIMR);
239         }
240 }
241
242 /**
243  * ilk_update_gt_irq - update GTIMR
244  * @dev_priv: driver private
245  * @interrupt_mask: mask of interrupt bits to update
246  * @enabled_irq_mask: mask of interrupt bits to enable
247  */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249                               uint32_t interrupt_mask,
250                               uint32_t enabled_irq_mask)
251 {
252         assert_spin_locked(&dev_priv->irq_lock);
253
254         WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257                 return;
258
259         dev_priv->gt_irq_mask &= ~interrupt_mask;
260         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 }
263
264 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
265 {
266         ilk_update_gt_irq(dev_priv, mask, mask);
267         POSTING_READ_FW(GTIMR);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272         ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291  * snb_update_pm_irq - update GEN6_PMIMR
292  * @dev_priv: driver private
293  * @interrupt_mask: mask of interrupt bits to update
294  * @enabled_irq_mask: mask of interrupt bits to enable
295  */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297                               uint32_t interrupt_mask,
298                               uint32_t enabled_irq_mask)
299 {
300         uint32_t new_val;
301
302         WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304         assert_spin_locked(&dev_priv->irq_lock);
305
306         new_val = dev_priv->pm_irq_mask;
307         new_val &= ~interrupt_mask;
308         new_val |= (~enabled_irq_mask & interrupt_mask);
309
310         if (new_val != dev_priv->pm_irq_mask) {
311                 dev_priv->pm_irq_mask = new_val;
312                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313                 POSTING_READ(gen6_pm_imr(dev_priv));
314         }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320                 return;
321
322         snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326                                   uint32_t mask)
327 {
328         snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334                 return;
335
336         __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
340 {
341         i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343         spin_lock_irq(&dev_priv->irq_lock);
344         I915_WRITE(reg, dev_priv->pm_rps_events);
345         I915_WRITE(reg, dev_priv->pm_rps_events);
346         POSTING_READ(reg);
347         dev_priv->rps.pm_iir = 0;
348         spin_unlock_irq(&dev_priv->irq_lock);
349 }
350
351 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
352 {
353         spin_lock_irq(&dev_priv->irq_lock);
354         WARN_ON_ONCE(dev_priv->rps.pm_iir);
355         WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
356         dev_priv->rps.interrupts_enabled = true;
357         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
358                                 dev_priv->pm_rps_events);
359         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
360
361         spin_unlock_irq(&dev_priv->irq_lock);
362 }
363
364 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
365 {
366         return (mask & ~dev_priv->rps.pm_intr_keep);
367 }
368
369 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
370 {
371         spin_lock_irq(&dev_priv->irq_lock);
372         dev_priv->rps.interrupts_enabled = false;
373
374         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
375
376         __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
377         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
378                                 ~dev_priv->pm_rps_events);
379
380         spin_unlock_irq(&dev_priv->irq_lock);
381         synchronize_irq(dev_priv->drm.irq);
382
383         /* Now that we will not be generating any more work, flush any
384          * outsanding tasks. As we are called on the RPS idle path,
385          * we will reset the GPU to minimum frequencies, so the current
386          * state of the worker can be discarded.
387          */
388         cancel_work_sync(&dev_priv->rps.work);
389         gen6_reset_rps_interrupts(dev_priv);
390 }
391
392 /**
393  * bdw_update_port_irq - update DE port interrupt
394  * @dev_priv: driver private
395  * @interrupt_mask: mask of interrupt bits to update
396  * @enabled_irq_mask: mask of interrupt bits to enable
397  */
398 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
399                                 uint32_t interrupt_mask,
400                                 uint32_t enabled_irq_mask)
401 {
402         uint32_t new_val;
403         uint32_t old_val;
404
405         assert_spin_locked(&dev_priv->irq_lock);
406
407         WARN_ON(enabled_irq_mask & ~interrupt_mask);
408
409         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
410                 return;
411
412         old_val = I915_READ(GEN8_DE_PORT_IMR);
413
414         new_val = old_val;
415         new_val &= ~interrupt_mask;
416         new_val |= (~enabled_irq_mask & interrupt_mask);
417
418         if (new_val != old_val) {
419                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
420                 POSTING_READ(GEN8_DE_PORT_IMR);
421         }
422 }
423
424 /**
425  * bdw_update_pipe_irq - update DE pipe interrupt
426  * @dev_priv: driver private
427  * @pipe: pipe whose interrupt to update
428  * @interrupt_mask: mask of interrupt bits to update
429  * @enabled_irq_mask: mask of interrupt bits to enable
430  */
431 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
432                          enum pipe pipe,
433                          uint32_t interrupt_mask,
434                          uint32_t enabled_irq_mask)
435 {
436         uint32_t new_val;
437
438         assert_spin_locked(&dev_priv->irq_lock);
439
440         WARN_ON(enabled_irq_mask & ~interrupt_mask);
441
442         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
443                 return;
444
445         new_val = dev_priv->de_irq_mask[pipe];
446         new_val &= ~interrupt_mask;
447         new_val |= (~enabled_irq_mask & interrupt_mask);
448
449         if (new_val != dev_priv->de_irq_mask[pipe]) {
450                 dev_priv->de_irq_mask[pipe] = new_val;
451                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
452                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
453         }
454 }
455
456 /**
457  * ibx_display_interrupt_update - update SDEIMR
458  * @dev_priv: driver private
459  * @interrupt_mask: mask of interrupt bits to update
460  * @enabled_irq_mask: mask of interrupt bits to enable
461  */
462 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
463                                   uint32_t interrupt_mask,
464                                   uint32_t enabled_irq_mask)
465 {
466         uint32_t sdeimr = I915_READ(SDEIMR);
467         sdeimr &= ~interrupt_mask;
468         sdeimr |= (~enabled_irq_mask & interrupt_mask);
469
470         WARN_ON(enabled_irq_mask & ~interrupt_mask);
471
472         assert_spin_locked(&dev_priv->irq_lock);
473
474         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
475                 return;
476
477         I915_WRITE(SDEIMR, sdeimr);
478         POSTING_READ(SDEIMR);
479 }
480
481 static void
482 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
483                        u32 enable_mask, u32 status_mask)
484 {
485         i915_reg_t reg = PIPESTAT(pipe);
486         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
487
488         assert_spin_locked(&dev_priv->irq_lock);
489         WARN_ON(!intel_irqs_enabled(dev_priv));
490
491         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
492                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
493                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
494                       pipe_name(pipe), enable_mask, status_mask))
495                 return;
496
497         if ((pipestat & enable_mask) == enable_mask)
498                 return;
499
500         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
501
502         /* Enable the interrupt, clear any pending status */
503         pipestat |= enable_mask | status_mask;
504         I915_WRITE(reg, pipestat);
505         POSTING_READ(reg);
506 }
507
508 static void
509 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
510                         u32 enable_mask, u32 status_mask)
511 {
512         i915_reg_t reg = PIPESTAT(pipe);
513         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
514
515         assert_spin_locked(&dev_priv->irq_lock);
516         WARN_ON(!intel_irqs_enabled(dev_priv));
517
518         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
519                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
520                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
521                       pipe_name(pipe), enable_mask, status_mask))
522                 return;
523
524         if ((pipestat & enable_mask) == 0)
525                 return;
526
527         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
528
529         pipestat &= ~enable_mask;
530         I915_WRITE(reg, pipestat);
531         POSTING_READ(reg);
532 }
533
534 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
535 {
536         u32 enable_mask = status_mask << 16;
537
538         /*
539          * On pipe A we don't support the PSR interrupt yet,
540          * on pipe B and C the same bit MBZ.
541          */
542         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
543                 return 0;
544         /*
545          * On pipe B and C we don't support the PSR interrupt yet, on pipe
546          * A the same bit is for perf counters which we don't use either.
547          */
548         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
549                 return 0;
550
551         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
552                          SPRITE0_FLIP_DONE_INT_EN_VLV |
553                          SPRITE1_FLIP_DONE_INT_EN_VLV);
554         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
555                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
556         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
557                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
558
559         return enable_mask;
560 }
561
562 void
563 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
564                      u32 status_mask)
565 {
566         u32 enable_mask;
567
568         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
569                 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
570                                                            status_mask);
571         else
572                 enable_mask = status_mask << 16;
573         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
574 }
575
576 void
577 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
578                       u32 status_mask)
579 {
580         u32 enable_mask;
581
582         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
583                 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
584                                                            status_mask);
585         else
586                 enable_mask = status_mask << 16;
587         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
588 }
589
590 /**
591  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
592  * @dev_priv: i915 device private
593  */
594 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
595 {
596         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
597                 return;
598
599         spin_lock_irq(&dev_priv->irq_lock);
600
601         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
602         if (INTEL_GEN(dev_priv) >= 4)
603                 i915_enable_pipestat(dev_priv, PIPE_A,
604                                      PIPE_LEGACY_BLC_EVENT_STATUS);
605
606         spin_unlock_irq(&dev_priv->irq_lock);
607 }
608
609 /*
610  * This timing diagram depicts the video signal in and
611  * around the vertical blanking period.
612  *
613  * Assumptions about the fictitious mode used in this example:
614  *  vblank_start >= 3
615  *  vsync_start = vblank_start + 1
616  *  vsync_end = vblank_start + 2
617  *  vtotal = vblank_start + 3
618  *
619  *           start of vblank:
620  *           latch double buffered registers
621  *           increment frame counter (ctg+)
622  *           generate start of vblank interrupt (gen4+)
623  *           |
624  *           |          frame start:
625  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
626  *           |          may be shifted forward 1-3 extra lines via PIPECONF
627  *           |          |
628  *           |          |  start of vsync:
629  *           |          |  generate vsync interrupt
630  *           |          |  |
631  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
632  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
633  * ----va---> <-----------------vb--------------------> <--------va-------------
634  *       |          |       <----vs----->                     |
635  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
636  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
637  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
638  *       |          |                                         |
639  *       last visible pixel                                   first visible pixel
640  *                  |                                         increment frame counter (gen3/4)
641  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
642  *
643  * x  = horizontal active
644  * _  = horizontal blanking
645  * hs = horizontal sync
646  * va = vertical active
647  * vb = vertical blanking
648  * vs = vertical sync
649  * vbs = vblank_start (number)
650  *
651  * Summary:
652  * - most events happen at the start of horizontal sync
653  * - frame start happens at the start of horizontal blank, 1-4 lines
654  *   (depending on PIPECONF settings) after the start of vblank
655  * - gen3/4 pixel and frame counter are synchronized with the start
656  *   of horizontal active on the first line of vertical active
657  */
658
659 /* Called from drm generic code, passed a 'crtc', which
660  * we use as a pipe index
661  */
662 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
663 {
664         struct drm_i915_private *dev_priv = to_i915(dev);
665         i915_reg_t high_frame, low_frame;
666         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
667         struct intel_crtc *intel_crtc =
668                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
669         const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
670
671         htotal = mode->crtc_htotal;
672         hsync_start = mode->crtc_hsync_start;
673         vbl_start = mode->crtc_vblank_start;
674         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
675                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
676
677         /* Convert to pixel count */
678         vbl_start *= htotal;
679
680         /* Start of vblank event occurs at start of hsync */
681         vbl_start -= htotal - hsync_start;
682
683         high_frame = PIPEFRAME(pipe);
684         low_frame = PIPEFRAMEPIXEL(pipe);
685
686         /*
687          * High & low register fields aren't synchronized, so make sure
688          * we get a low value that's stable across two reads of the high
689          * register.
690          */
691         do {
692                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
693                 low   = I915_READ(low_frame);
694                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
695         } while (high1 != high2);
696
697         high1 >>= PIPE_FRAME_HIGH_SHIFT;
698         pixel = low & PIPE_PIXEL_MASK;
699         low >>= PIPE_FRAME_LOW_SHIFT;
700
701         /*
702          * The frame counter increments at beginning of active.
703          * Cook up a vblank counter by also checking the pixel
704          * counter against vblank start.
705          */
706         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
707 }
708
709 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
710 {
711         struct drm_i915_private *dev_priv = to_i915(dev);
712
713         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
714 }
715
716 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
717 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
718 {
719         struct drm_device *dev = crtc->base.dev;
720         struct drm_i915_private *dev_priv = to_i915(dev);
721         const struct drm_display_mode *mode = &crtc->base.hwmode;
722         enum pipe pipe = crtc->pipe;
723         int position, vtotal;
724
725         vtotal = mode->crtc_vtotal;
726         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
727                 vtotal /= 2;
728
729         if (IS_GEN2(dev_priv))
730                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
731         else
732                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
733
734         /*
735          * On HSW, the DSL reg (0x70000) appears to return 0 if we
736          * read it just before the start of vblank.  So try it again
737          * so we don't accidentally end up spanning a vblank frame
738          * increment, causing the pipe_update_end() code to squak at us.
739          *
740          * The nature of this problem means we can't simply check the ISR
741          * bit and return the vblank start value; nor can we use the scanline
742          * debug register in the transcoder as it appears to have the same
743          * problem.  We may need to extend this to include other platforms,
744          * but so far testing only shows the problem on HSW.
745          */
746         if (HAS_DDI(dev_priv) && !position) {
747                 int i, temp;
748
749                 for (i = 0; i < 100; i++) {
750                         udelay(1);
751                         temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
752                                 DSL_LINEMASK_GEN3;
753                         if (temp != position) {
754                                 position = temp;
755                                 break;
756                         }
757                 }
758         }
759
760         /*
761          * See update_scanline_offset() for the details on the
762          * scanline_offset adjustment.
763          */
764         return (position + crtc->scanline_offset) % vtotal;
765 }
766
767 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
768                                     unsigned int flags, int *vpos, int *hpos,
769                                     ktime_t *stime, ktime_t *etime,
770                                     const struct drm_display_mode *mode)
771 {
772         struct drm_i915_private *dev_priv = to_i915(dev);
773         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
774         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
775         int position;
776         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
777         bool in_vbl = true;
778         int ret = 0;
779         unsigned long irqflags;
780
781         if (WARN_ON(!mode->crtc_clock)) {
782                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
783                                  "pipe %c\n", pipe_name(pipe));
784                 return 0;
785         }
786
787         htotal = mode->crtc_htotal;
788         hsync_start = mode->crtc_hsync_start;
789         vtotal = mode->crtc_vtotal;
790         vbl_start = mode->crtc_vblank_start;
791         vbl_end = mode->crtc_vblank_end;
792
793         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
794                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
795                 vbl_end /= 2;
796                 vtotal /= 2;
797         }
798
799         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
800
801         /*
802          * Lock uncore.lock, as we will do multiple timing critical raw
803          * register reads, potentially with preemption disabled, so the
804          * following code must not block on uncore.lock.
805          */
806         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
807
808         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
809
810         /* Get optional system timestamp before query. */
811         if (stime)
812                 *stime = ktime_get();
813
814         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
815                 /* No obvious pixelcount register. Only query vertical
816                  * scanout position from Display scan line register.
817                  */
818                 position = __intel_get_crtc_scanline(intel_crtc);
819         } else {
820                 /* Have access to pixelcount since start of frame.
821                  * We can split this into vertical and horizontal
822                  * scanout position.
823                  */
824                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
825
826                 /* convert to pixel counts */
827                 vbl_start *= htotal;
828                 vbl_end *= htotal;
829                 vtotal *= htotal;
830
831                 /*
832                  * In interlaced modes, the pixel counter counts all pixels,
833                  * so one field will have htotal more pixels. In order to avoid
834                  * the reported position from jumping backwards when the pixel
835                  * counter is beyond the length of the shorter field, just
836                  * clamp the position the length of the shorter field. This
837                  * matches how the scanline counter based position works since
838                  * the scanline counter doesn't count the two half lines.
839                  */
840                 if (position >= vtotal)
841                         position = vtotal - 1;
842
843                 /*
844                  * Start of vblank interrupt is triggered at start of hsync,
845                  * just prior to the first active line of vblank. However we
846                  * consider lines to start at the leading edge of horizontal
847                  * active. So, should we get here before we've crossed into
848                  * the horizontal active of the first line in vblank, we would
849                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
850                  * always add htotal-hsync_start to the current pixel position.
851                  */
852                 position = (position + htotal - hsync_start) % vtotal;
853         }
854
855         /* Get optional system timestamp after query. */
856         if (etime)
857                 *etime = ktime_get();
858
859         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
860
861         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
862
863         in_vbl = position >= vbl_start && position < vbl_end;
864
865         /*
866          * While in vblank, position will be negative
867          * counting up towards 0 at vbl_end. And outside
868          * vblank, position will be positive counting
869          * up since vbl_end.
870          */
871         if (position >= vbl_start)
872                 position -= vbl_end;
873         else
874                 position += vtotal - vbl_end;
875
876         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
877                 *vpos = position;
878                 *hpos = 0;
879         } else {
880                 *vpos = position / htotal;
881                 *hpos = position - (*vpos * htotal);
882         }
883
884         /* In vblank? */
885         if (in_vbl)
886                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
887
888         return ret;
889 }
890
891 int intel_get_crtc_scanline(struct intel_crtc *crtc)
892 {
893         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
894         unsigned long irqflags;
895         int position;
896
897         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
898         position = __intel_get_crtc_scanline(crtc);
899         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
900
901         return position;
902 }
903
904 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
905                               int *max_error,
906                               struct timeval *vblank_time,
907                               unsigned flags)
908 {
909         struct drm_crtc *crtc;
910
911         if (pipe >= INTEL_INFO(dev)->num_pipes) {
912                 DRM_ERROR("Invalid crtc %u\n", pipe);
913                 return -EINVAL;
914         }
915
916         /* Get drm_crtc to timestamp: */
917         crtc = intel_get_crtc_for_pipe(dev, pipe);
918         if (crtc == NULL) {
919                 DRM_ERROR("Invalid crtc %u\n", pipe);
920                 return -EINVAL;
921         }
922
923         if (!crtc->hwmode.crtc_clock) {
924                 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
925                 return -EBUSY;
926         }
927
928         /* Helper routine in DRM core does all the work: */
929         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
930                                                      vblank_time, flags,
931                                                      &crtc->hwmode);
932 }
933
934 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
935 {
936         u32 busy_up, busy_down, max_avg, min_avg;
937         u8 new_delay;
938
939         spin_lock(&mchdev_lock);
940
941         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
942
943         new_delay = dev_priv->ips.cur_delay;
944
945         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
946         busy_up = I915_READ(RCPREVBSYTUPAVG);
947         busy_down = I915_READ(RCPREVBSYTDNAVG);
948         max_avg = I915_READ(RCBMAXAVG);
949         min_avg = I915_READ(RCBMINAVG);
950
951         /* Handle RCS change request from hw */
952         if (busy_up > max_avg) {
953                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
954                         new_delay = dev_priv->ips.cur_delay - 1;
955                 if (new_delay < dev_priv->ips.max_delay)
956                         new_delay = dev_priv->ips.max_delay;
957         } else if (busy_down < min_avg) {
958                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
959                         new_delay = dev_priv->ips.cur_delay + 1;
960                 if (new_delay > dev_priv->ips.min_delay)
961                         new_delay = dev_priv->ips.min_delay;
962         }
963
964         if (ironlake_set_drps(dev_priv, new_delay))
965                 dev_priv->ips.cur_delay = new_delay;
966
967         spin_unlock(&mchdev_lock);
968
969         return;
970 }
971
972 static void notify_ring(struct intel_engine_cs *engine)
973 {
974         smp_store_mb(engine->breadcrumbs.irq_posted, true);
975         if (intel_engine_wakeup(engine))
976                 trace_i915_gem_request_notify(engine);
977 }
978
979 static void vlv_c0_read(struct drm_i915_private *dev_priv,
980                         struct intel_rps_ei *ei)
981 {
982         ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
983         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
984         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
985 }
986
987 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
988                          const struct intel_rps_ei *old,
989                          const struct intel_rps_ei *now,
990                          int threshold)
991 {
992         u64 time, c0;
993         unsigned int mul = 100;
994
995         if (old->cz_clock == 0)
996                 return false;
997
998         if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
999                 mul <<= 8;
1000
1001         time = now->cz_clock - old->cz_clock;
1002         time *= threshold * dev_priv->czclk_freq;
1003
1004         /* Workload can be split between render + media, e.g. SwapBuffers
1005          * being blitted in X after being rendered in mesa. To account for
1006          * this we need to combine both engines into our activity counter.
1007          */
1008         c0 = now->render_c0 - old->render_c0;
1009         c0 += now->media_c0 - old->media_c0;
1010         c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1011
1012         return c0 >= time;
1013 }
1014
1015 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1016 {
1017         vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1018         dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1019 }
1020
1021 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1022 {
1023         struct intel_rps_ei now;
1024         u32 events = 0;
1025
1026         if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1027                 return 0;
1028
1029         vlv_c0_read(dev_priv, &now);
1030         if (now.cz_clock == 0)
1031                 return 0;
1032
1033         if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1034                 if (!vlv_c0_above(dev_priv,
1035                                   &dev_priv->rps.down_ei, &now,
1036                                   dev_priv->rps.down_threshold))
1037                         events |= GEN6_PM_RP_DOWN_THRESHOLD;
1038                 dev_priv->rps.down_ei = now;
1039         }
1040
1041         if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1042                 if (vlv_c0_above(dev_priv,
1043                                  &dev_priv->rps.up_ei, &now,
1044                                  dev_priv->rps.up_threshold))
1045                         events |= GEN6_PM_RP_UP_THRESHOLD;
1046                 dev_priv->rps.up_ei = now;
1047         }
1048
1049         return events;
1050 }
1051
1052 static bool any_waiters(struct drm_i915_private *dev_priv)
1053 {
1054         struct intel_engine_cs *engine;
1055
1056         for_each_engine(engine, dev_priv)
1057                 if (intel_engine_has_waiter(engine))
1058                         return true;
1059
1060         return false;
1061 }
1062
1063 static void gen6_pm_rps_work(struct work_struct *work)
1064 {
1065         struct drm_i915_private *dev_priv =
1066                 container_of(work, struct drm_i915_private, rps.work);
1067         bool client_boost;
1068         int new_delay, adj, min, max;
1069         u32 pm_iir;
1070
1071         spin_lock_irq(&dev_priv->irq_lock);
1072         /* Speed up work cancelation during disabling rps interrupts. */
1073         if (!dev_priv->rps.interrupts_enabled) {
1074                 spin_unlock_irq(&dev_priv->irq_lock);
1075                 return;
1076         }
1077
1078         pm_iir = dev_priv->rps.pm_iir;
1079         dev_priv->rps.pm_iir = 0;
1080         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1081         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1082         client_boost = dev_priv->rps.client_boost;
1083         dev_priv->rps.client_boost = false;
1084         spin_unlock_irq(&dev_priv->irq_lock);
1085
1086         /* Make sure we didn't queue anything we're not going to process. */
1087         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1088
1089         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1090                 return;
1091
1092         mutex_lock(&dev_priv->rps.hw_lock);
1093
1094         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1095
1096         adj = dev_priv->rps.last_adj;
1097         new_delay = dev_priv->rps.cur_freq;
1098         min = dev_priv->rps.min_freq_softlimit;
1099         max = dev_priv->rps.max_freq_softlimit;
1100         if (client_boost || any_waiters(dev_priv))
1101                 max = dev_priv->rps.max_freq;
1102         if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1103                 new_delay = dev_priv->rps.boost_freq;
1104                 adj = 0;
1105         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1106                 if (adj > 0)
1107                         adj *= 2;
1108                 else /* CHV needs even encode values */
1109                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1110                 /*
1111                  * For better performance, jump directly
1112                  * to RPe if we're below it.
1113                  */
1114                 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1115                         new_delay = dev_priv->rps.efficient_freq;
1116                         adj = 0;
1117                 }
1118         } else if (client_boost || any_waiters(dev_priv)) {
1119                 adj = 0;
1120         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1121                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1122                         new_delay = dev_priv->rps.efficient_freq;
1123                 else
1124                         new_delay = dev_priv->rps.min_freq_softlimit;
1125                 adj = 0;
1126         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1127                 if (adj < 0)
1128                         adj *= 2;
1129                 else /* CHV needs even encode values */
1130                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1131         } else { /* unknown event */
1132                 adj = 0;
1133         }
1134
1135         dev_priv->rps.last_adj = adj;
1136
1137         /* sysfs frequency interfaces may have snuck in while servicing the
1138          * interrupt
1139          */
1140         new_delay += adj;
1141         new_delay = clamp_t(int, new_delay, min, max);
1142
1143         intel_set_rps(dev_priv, new_delay);
1144
1145         mutex_unlock(&dev_priv->rps.hw_lock);
1146 }
1147
1148
1149 /**
1150  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1151  * occurred.
1152  * @work: workqueue struct
1153  *
1154  * Doesn't actually do anything except notify userspace. As a consequence of
1155  * this event, userspace should try to remap the bad rows since statistically
1156  * it is likely the same row is more likely to go bad again.
1157  */
1158 static void ivybridge_parity_work(struct work_struct *work)
1159 {
1160         struct drm_i915_private *dev_priv =
1161                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1162         u32 error_status, row, bank, subbank;
1163         char *parity_event[6];
1164         uint32_t misccpctl;
1165         uint8_t slice = 0;
1166
1167         /* We must turn off DOP level clock gating to access the L3 registers.
1168          * In order to prevent a get/put style interface, acquire struct mutex
1169          * any time we access those registers.
1170          */
1171         mutex_lock(&dev_priv->drm.struct_mutex);
1172
1173         /* If we've screwed up tracking, just let the interrupt fire again */
1174         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1175                 goto out;
1176
1177         misccpctl = I915_READ(GEN7_MISCCPCTL);
1178         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1179         POSTING_READ(GEN7_MISCCPCTL);
1180
1181         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1182                 i915_reg_t reg;
1183
1184                 slice--;
1185                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1186                         break;
1187
1188                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1189
1190                 reg = GEN7_L3CDERRST1(slice);
1191
1192                 error_status = I915_READ(reg);
1193                 row = GEN7_PARITY_ERROR_ROW(error_status);
1194                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1195                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1196
1197                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1198                 POSTING_READ(reg);
1199
1200                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1201                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1202                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1203                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1204                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1205                 parity_event[5] = NULL;
1206
1207                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1208                                    KOBJ_CHANGE, parity_event);
1209
1210                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1211                           slice, row, bank, subbank);
1212
1213                 kfree(parity_event[4]);
1214                 kfree(parity_event[3]);
1215                 kfree(parity_event[2]);
1216                 kfree(parity_event[1]);
1217         }
1218
1219         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1220
1221 out:
1222         WARN_ON(dev_priv->l3_parity.which_slice);
1223         spin_lock_irq(&dev_priv->irq_lock);
1224         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1225         spin_unlock_irq(&dev_priv->irq_lock);
1226
1227         mutex_unlock(&dev_priv->drm.struct_mutex);
1228 }
1229
1230 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1231                                                u32 iir)
1232 {
1233         if (!HAS_L3_DPF(dev_priv))
1234                 return;
1235
1236         spin_lock(&dev_priv->irq_lock);
1237         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1238         spin_unlock(&dev_priv->irq_lock);
1239
1240         iir &= GT_PARITY_ERROR(dev_priv);
1241         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1242                 dev_priv->l3_parity.which_slice |= 1 << 1;
1243
1244         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1245                 dev_priv->l3_parity.which_slice |= 1 << 0;
1246
1247         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1248 }
1249
1250 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1251                                u32 gt_iir)
1252 {
1253         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1254                 notify_ring(&dev_priv->engine[RCS]);
1255         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1256                 notify_ring(&dev_priv->engine[VCS]);
1257 }
1258
1259 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1260                                u32 gt_iir)
1261 {
1262         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1263                 notify_ring(&dev_priv->engine[RCS]);
1264         if (gt_iir & GT_BSD_USER_INTERRUPT)
1265                 notify_ring(&dev_priv->engine[VCS]);
1266         if (gt_iir & GT_BLT_USER_INTERRUPT)
1267                 notify_ring(&dev_priv->engine[BCS]);
1268
1269         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1270                       GT_BSD_CS_ERROR_INTERRUPT |
1271                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1272                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1273
1274         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1275                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1276 }
1277
1278 static __always_inline void
1279 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1280 {
1281         if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1282                 notify_ring(engine);
1283         if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1284                 tasklet_schedule(&engine->irq_tasklet);
1285 }
1286
1287 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1288                                    u32 master_ctl,
1289                                    u32 gt_iir[4])
1290 {
1291         irqreturn_t ret = IRQ_NONE;
1292
1293         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1294                 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1295                 if (gt_iir[0]) {
1296                         I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1297                         ret = IRQ_HANDLED;
1298                 } else
1299                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1300         }
1301
1302         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1303                 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1304                 if (gt_iir[1]) {
1305                         I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1306                         ret = IRQ_HANDLED;
1307                 } else
1308                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1309         }
1310
1311         if (master_ctl & GEN8_GT_VECS_IRQ) {
1312                 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1313                 if (gt_iir[3]) {
1314                         I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1315                         ret = IRQ_HANDLED;
1316                 } else
1317                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1318         }
1319
1320         if (master_ctl & GEN8_GT_PM_IRQ) {
1321                 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1322                 if (gt_iir[2] & dev_priv->pm_rps_events) {
1323                         I915_WRITE_FW(GEN8_GT_IIR(2),
1324                                       gt_iir[2] & dev_priv->pm_rps_events);
1325                         ret = IRQ_HANDLED;
1326                 } else
1327                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1328         }
1329
1330         return ret;
1331 }
1332
1333 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1334                                 u32 gt_iir[4])
1335 {
1336         if (gt_iir[0]) {
1337                 gen8_cs_irq_handler(&dev_priv->engine[RCS],
1338                                     gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1339                 gen8_cs_irq_handler(&dev_priv->engine[BCS],
1340                                     gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1341         }
1342
1343         if (gt_iir[1]) {
1344                 gen8_cs_irq_handler(&dev_priv->engine[VCS],
1345                                     gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1346                 gen8_cs_irq_handler(&dev_priv->engine[VCS2],
1347                                     gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1348         }
1349
1350         if (gt_iir[3])
1351                 gen8_cs_irq_handler(&dev_priv->engine[VECS],
1352                                     gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1353
1354         if (gt_iir[2] & dev_priv->pm_rps_events)
1355                 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1356 }
1357
1358 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1359 {
1360         switch (port) {
1361         case PORT_A:
1362                 return val & PORTA_HOTPLUG_LONG_DETECT;
1363         case PORT_B:
1364                 return val & PORTB_HOTPLUG_LONG_DETECT;
1365         case PORT_C:
1366                 return val & PORTC_HOTPLUG_LONG_DETECT;
1367         default:
1368                 return false;
1369         }
1370 }
1371
1372 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1373 {
1374         switch (port) {
1375         case PORT_E:
1376                 return val & PORTE_HOTPLUG_LONG_DETECT;
1377         default:
1378                 return false;
1379         }
1380 }
1381
1382 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1383 {
1384         switch (port) {
1385         case PORT_A:
1386                 return val & PORTA_HOTPLUG_LONG_DETECT;
1387         case PORT_B:
1388                 return val & PORTB_HOTPLUG_LONG_DETECT;
1389         case PORT_C:
1390                 return val & PORTC_HOTPLUG_LONG_DETECT;
1391         case PORT_D:
1392                 return val & PORTD_HOTPLUG_LONG_DETECT;
1393         default:
1394                 return false;
1395         }
1396 }
1397
1398 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1399 {
1400         switch (port) {
1401         case PORT_A:
1402                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1403         default:
1404                 return false;
1405         }
1406 }
1407
1408 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1409 {
1410         switch (port) {
1411         case PORT_B:
1412                 return val & PORTB_HOTPLUG_LONG_DETECT;
1413         case PORT_C:
1414                 return val & PORTC_HOTPLUG_LONG_DETECT;
1415         case PORT_D:
1416                 return val & PORTD_HOTPLUG_LONG_DETECT;
1417         default:
1418                 return false;
1419         }
1420 }
1421
1422 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1423 {
1424         switch (port) {
1425         case PORT_B:
1426                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1427         case PORT_C:
1428                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1429         case PORT_D:
1430                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1431         default:
1432                 return false;
1433         }
1434 }
1435
1436 /*
1437  * Get a bit mask of pins that have triggered, and which ones may be long.
1438  * This can be called multiple times with the same masks to accumulate
1439  * hotplug detection results from several registers.
1440  *
1441  * Note that the caller is expected to zero out the masks initially.
1442  */
1443 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1444                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1445                              const u32 hpd[HPD_NUM_PINS],
1446                              bool long_pulse_detect(enum port port, u32 val))
1447 {
1448         enum port port;
1449         int i;
1450
1451         for_each_hpd_pin(i) {
1452                 if ((hpd[i] & hotplug_trigger) == 0)
1453                         continue;
1454
1455                 *pin_mask |= BIT(i);
1456
1457                 if (!intel_hpd_pin_to_port(i, &port))
1458                         continue;
1459
1460                 if (long_pulse_detect(port, dig_hotplug_reg))
1461                         *long_mask |= BIT(i);
1462         }
1463
1464         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1465                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1466
1467 }
1468
1469 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1470 {
1471         wake_up_all(&dev_priv->gmbus_wait_queue);
1472 }
1473
1474 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1475 {
1476         wake_up_all(&dev_priv->gmbus_wait_queue);
1477 }
1478
1479 #if defined(CONFIG_DEBUG_FS)
1480 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1481                                          enum pipe pipe,
1482                                          uint32_t crc0, uint32_t crc1,
1483                                          uint32_t crc2, uint32_t crc3,
1484                                          uint32_t crc4)
1485 {
1486         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1487         struct intel_pipe_crc_entry *entry;
1488         int head, tail;
1489
1490         spin_lock(&pipe_crc->lock);
1491
1492         if (!pipe_crc->entries) {
1493                 spin_unlock(&pipe_crc->lock);
1494                 DRM_DEBUG_KMS("spurious interrupt\n");
1495                 return;
1496         }
1497
1498         head = pipe_crc->head;
1499         tail = pipe_crc->tail;
1500
1501         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1502                 spin_unlock(&pipe_crc->lock);
1503                 DRM_ERROR("CRC buffer overflowing\n");
1504                 return;
1505         }
1506
1507         entry = &pipe_crc->entries[head];
1508
1509         entry->frame = dev_priv->drm.driver->get_vblank_counter(&dev_priv->drm,
1510                                                                  pipe);
1511         entry->crc[0] = crc0;
1512         entry->crc[1] = crc1;
1513         entry->crc[2] = crc2;
1514         entry->crc[3] = crc3;
1515         entry->crc[4] = crc4;
1516
1517         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1518         pipe_crc->head = head;
1519
1520         spin_unlock(&pipe_crc->lock);
1521
1522         wake_up_interruptible(&pipe_crc->wq);
1523 }
1524 #else
1525 static inline void
1526 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1527                              enum pipe pipe,
1528                              uint32_t crc0, uint32_t crc1,
1529                              uint32_t crc2, uint32_t crc3,
1530                              uint32_t crc4) {}
1531 #endif
1532
1533
1534 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1535                                      enum pipe pipe)
1536 {
1537         display_pipe_crc_irq_handler(dev_priv, pipe,
1538                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1539                                      0, 0, 0, 0);
1540 }
1541
1542 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1543                                      enum pipe pipe)
1544 {
1545         display_pipe_crc_irq_handler(dev_priv, pipe,
1546                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1547                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1548                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1549                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1550                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1551 }
1552
1553 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1554                                       enum pipe pipe)
1555 {
1556         uint32_t res1, res2;
1557
1558         if (INTEL_GEN(dev_priv) >= 3)
1559                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1560         else
1561                 res1 = 0;
1562
1563         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1564                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1565         else
1566                 res2 = 0;
1567
1568         display_pipe_crc_irq_handler(dev_priv, pipe,
1569                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1570                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1571                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1572                                      res1, res2);
1573 }
1574
1575 /* The RPS events need forcewake, so we add them to a work queue and mask their
1576  * IMR bits until the work is done. Other interrupts can be processed without
1577  * the work queue. */
1578 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1579 {
1580         if (pm_iir & dev_priv->pm_rps_events) {
1581                 spin_lock(&dev_priv->irq_lock);
1582                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1583                 if (dev_priv->rps.interrupts_enabled) {
1584                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1585                         schedule_work(&dev_priv->rps.work);
1586                 }
1587                 spin_unlock(&dev_priv->irq_lock);
1588         }
1589
1590         if (INTEL_INFO(dev_priv)->gen >= 8)
1591                 return;
1592
1593         if (HAS_VEBOX(dev_priv)) {
1594                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1595                         notify_ring(&dev_priv->engine[VECS]);
1596
1597                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1598                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1599         }
1600 }
1601
1602 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1603                                      enum pipe pipe)
1604 {
1605         bool ret;
1606
1607         ret = drm_handle_vblank(&dev_priv->drm, pipe);
1608         if (ret)
1609                 intel_finish_page_flip_mmio(dev_priv, pipe);
1610
1611         return ret;
1612 }
1613
1614 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1615                                         u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1616 {
1617         int pipe;
1618
1619         spin_lock(&dev_priv->irq_lock);
1620
1621         if (!dev_priv->display_irqs_enabled) {
1622                 spin_unlock(&dev_priv->irq_lock);
1623                 return;
1624         }
1625
1626         for_each_pipe(dev_priv, pipe) {
1627                 i915_reg_t reg;
1628                 u32 mask, iir_bit = 0;
1629
1630                 /*
1631                  * PIPESTAT bits get signalled even when the interrupt is
1632                  * disabled with the mask bits, and some of the status bits do
1633                  * not generate interrupts at all (like the underrun bit). Hence
1634                  * we need to be careful that we only handle what we want to
1635                  * handle.
1636                  */
1637
1638                 /* fifo underruns are filterered in the underrun handler. */
1639                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1640
1641                 switch (pipe) {
1642                 case PIPE_A:
1643                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1644                         break;
1645                 case PIPE_B:
1646                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1647                         break;
1648                 case PIPE_C:
1649                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1650                         break;
1651                 }
1652                 if (iir & iir_bit)
1653                         mask |= dev_priv->pipestat_irq_mask[pipe];
1654
1655                 if (!mask)
1656                         continue;
1657
1658                 reg = PIPESTAT(pipe);
1659                 mask |= PIPESTAT_INT_ENABLE_MASK;
1660                 pipe_stats[pipe] = I915_READ(reg) & mask;
1661
1662                 /*
1663                  * Clear the PIPE*STAT regs before the IIR
1664                  */
1665                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1666                                         PIPESTAT_INT_STATUS_MASK))
1667                         I915_WRITE(reg, pipe_stats[pipe]);
1668         }
1669         spin_unlock(&dev_priv->irq_lock);
1670 }
1671
1672 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1673                                             u32 pipe_stats[I915_MAX_PIPES])
1674 {
1675         enum pipe pipe;
1676
1677         for_each_pipe(dev_priv, pipe) {
1678                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1679                     intel_pipe_handle_vblank(dev_priv, pipe))
1680                         intel_check_page_flip(dev_priv, pipe);
1681
1682                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1683                         intel_finish_page_flip_cs(dev_priv, pipe);
1684
1685                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1686                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1687
1688                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1689                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1690         }
1691
1692         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1693                 gmbus_irq_handler(dev_priv);
1694 }
1695
1696 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1697 {
1698         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1699
1700         if (hotplug_status)
1701                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1702
1703         return hotplug_status;
1704 }
1705
1706 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1707                                  u32 hotplug_status)
1708 {
1709         u32 pin_mask = 0, long_mask = 0;
1710
1711         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1712             IS_CHERRYVIEW(dev_priv)) {
1713                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1714
1715                 if (hotplug_trigger) {
1716                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1717                                            hotplug_trigger, hpd_status_g4x,
1718                                            i9xx_port_hotplug_long_detect);
1719
1720                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1721                 }
1722
1723                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1724                         dp_aux_irq_handler(dev_priv);
1725         } else {
1726                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1727
1728                 if (hotplug_trigger) {
1729                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1730                                            hotplug_trigger, hpd_status_i915,
1731                                            i9xx_port_hotplug_long_detect);
1732                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1733                 }
1734         }
1735 }
1736
1737 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1738 {
1739         struct drm_device *dev = arg;
1740         struct drm_i915_private *dev_priv = to_i915(dev);
1741         irqreturn_t ret = IRQ_NONE;
1742
1743         if (!intel_irqs_enabled(dev_priv))
1744                 return IRQ_NONE;
1745
1746         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1747         disable_rpm_wakeref_asserts(dev_priv);
1748
1749         do {
1750                 u32 iir, gt_iir, pm_iir;
1751                 u32 pipe_stats[I915_MAX_PIPES] = {};
1752                 u32 hotplug_status = 0;
1753                 u32 ier = 0;
1754
1755                 gt_iir = I915_READ(GTIIR);
1756                 pm_iir = I915_READ(GEN6_PMIIR);
1757                 iir = I915_READ(VLV_IIR);
1758
1759                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1760                         break;
1761
1762                 ret = IRQ_HANDLED;
1763
1764                 /*
1765                  * Theory on interrupt generation, based on empirical evidence:
1766                  *
1767                  * x = ((VLV_IIR & VLV_IER) ||
1768                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1769                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1770                  *
1771                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1772                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1773                  * guarantee the CPU interrupt will be raised again even if we
1774                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1775                  * bits this time around.
1776                  */
1777                 I915_WRITE(VLV_MASTER_IER, 0);
1778                 ier = I915_READ(VLV_IER);
1779                 I915_WRITE(VLV_IER, 0);
1780
1781                 if (gt_iir)
1782                         I915_WRITE(GTIIR, gt_iir);
1783                 if (pm_iir)
1784                         I915_WRITE(GEN6_PMIIR, pm_iir);
1785
1786                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1787                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1788
1789                 /* Call regardless, as some status bits might not be
1790                  * signalled in iir */
1791                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1792
1793                 /*
1794                  * VLV_IIR is single buffered, and reflects the level
1795                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1796                  */
1797                 if (iir)
1798                         I915_WRITE(VLV_IIR, iir);
1799
1800                 I915_WRITE(VLV_IER, ier);
1801                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1802                 POSTING_READ(VLV_MASTER_IER);
1803
1804                 if (gt_iir)
1805                         snb_gt_irq_handler(dev_priv, gt_iir);
1806                 if (pm_iir)
1807                         gen6_rps_irq_handler(dev_priv, pm_iir);
1808
1809                 if (hotplug_status)
1810                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1811
1812                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1813         } while (0);
1814
1815         enable_rpm_wakeref_asserts(dev_priv);
1816
1817         return ret;
1818 }
1819
1820 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1821 {
1822         struct drm_device *dev = arg;
1823         struct drm_i915_private *dev_priv = to_i915(dev);
1824         irqreturn_t ret = IRQ_NONE;
1825
1826         if (!intel_irqs_enabled(dev_priv))
1827                 return IRQ_NONE;
1828
1829         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1830         disable_rpm_wakeref_asserts(dev_priv);
1831
1832         do {
1833                 u32 master_ctl, iir;
1834                 u32 gt_iir[4] = {};
1835                 u32 pipe_stats[I915_MAX_PIPES] = {};
1836                 u32 hotplug_status = 0;
1837                 u32 ier = 0;
1838
1839                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1840                 iir = I915_READ(VLV_IIR);
1841
1842                 if (master_ctl == 0 && iir == 0)
1843                         break;
1844
1845                 ret = IRQ_HANDLED;
1846
1847                 /*
1848                  * Theory on interrupt generation, based on empirical evidence:
1849                  *
1850                  * x = ((VLV_IIR & VLV_IER) ||
1851                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1852                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1853                  *
1854                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1855                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1856                  * guarantee the CPU interrupt will be raised again even if we
1857                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1858                  * bits this time around.
1859                  */
1860                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1861                 ier = I915_READ(VLV_IER);
1862                 I915_WRITE(VLV_IER, 0);
1863
1864                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1865
1866                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1867                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1868
1869                 /* Call regardless, as some status bits might not be
1870                  * signalled in iir */
1871                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1872
1873                 /*
1874                  * VLV_IIR is single buffered, and reflects the level
1875                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1876                  */
1877                 if (iir)
1878                         I915_WRITE(VLV_IIR, iir);
1879
1880                 I915_WRITE(VLV_IER, ier);
1881                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1882                 POSTING_READ(GEN8_MASTER_IRQ);
1883
1884                 gen8_gt_irq_handler(dev_priv, gt_iir);
1885
1886                 if (hotplug_status)
1887                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1888
1889                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1890         } while (0);
1891
1892         enable_rpm_wakeref_asserts(dev_priv);
1893
1894         return ret;
1895 }
1896
1897 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1898                                 u32 hotplug_trigger,
1899                                 const u32 hpd[HPD_NUM_PINS])
1900 {
1901         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1902
1903         /*
1904          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1905          * unless we touch the hotplug register, even if hotplug_trigger is
1906          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1907          * errors.
1908          */
1909         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1910         if (!hotplug_trigger) {
1911                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1912                         PORTD_HOTPLUG_STATUS_MASK |
1913                         PORTC_HOTPLUG_STATUS_MASK |
1914                         PORTB_HOTPLUG_STATUS_MASK;
1915                 dig_hotplug_reg &= ~mask;
1916         }
1917
1918         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1919         if (!hotplug_trigger)
1920                 return;
1921
1922         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1923                            dig_hotplug_reg, hpd,
1924                            pch_port_hotplug_long_detect);
1925
1926         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1927 }
1928
1929 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1930 {
1931         int pipe;
1932         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1933
1934         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
1935
1936         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1937                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1938                                SDE_AUDIO_POWER_SHIFT);
1939                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1940                                  port_name(port));
1941         }
1942
1943         if (pch_iir & SDE_AUX_MASK)
1944                 dp_aux_irq_handler(dev_priv);
1945
1946         if (pch_iir & SDE_GMBUS)
1947                 gmbus_irq_handler(dev_priv);
1948
1949         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1950                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1951
1952         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1953                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1954
1955         if (pch_iir & SDE_POISON)
1956                 DRM_ERROR("PCH poison interrupt\n");
1957
1958         if (pch_iir & SDE_FDI_MASK)
1959                 for_each_pipe(dev_priv, pipe)
1960                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1961                                          pipe_name(pipe),
1962                                          I915_READ(FDI_RX_IIR(pipe)));
1963
1964         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1965                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1966
1967         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1968                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1969
1970         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1971                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1972
1973         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1974                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1975 }
1976
1977 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1978 {
1979         u32 err_int = I915_READ(GEN7_ERR_INT);
1980         enum pipe pipe;
1981
1982         if (err_int & ERR_INT_POISON)
1983                 DRM_ERROR("Poison interrupt\n");
1984
1985         for_each_pipe(dev_priv, pipe) {
1986                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1987                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1988
1989                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1990                         if (IS_IVYBRIDGE(dev_priv))
1991                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
1992                         else
1993                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
1994                 }
1995         }
1996
1997         I915_WRITE(GEN7_ERR_INT, err_int);
1998 }
1999
2000 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2001 {
2002         u32 serr_int = I915_READ(SERR_INT);
2003
2004         if (serr_int & SERR_INT_POISON)
2005                 DRM_ERROR("PCH poison interrupt\n");
2006
2007         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2008                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2009
2010         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2011                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2012
2013         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2014                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2015
2016         I915_WRITE(SERR_INT, serr_int);
2017 }
2018
2019 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2020 {
2021         int pipe;
2022         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2023
2024         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2025
2026         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2027                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2028                                SDE_AUDIO_POWER_SHIFT_CPT);
2029                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2030                                  port_name(port));
2031         }
2032
2033         if (pch_iir & SDE_AUX_MASK_CPT)
2034                 dp_aux_irq_handler(dev_priv);
2035
2036         if (pch_iir & SDE_GMBUS_CPT)
2037                 gmbus_irq_handler(dev_priv);
2038
2039         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2040                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2041
2042         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2043                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2044
2045         if (pch_iir & SDE_FDI_MASK_CPT)
2046                 for_each_pipe(dev_priv, pipe)
2047                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2048                                          pipe_name(pipe),
2049                                          I915_READ(FDI_RX_IIR(pipe)));
2050
2051         if (pch_iir & SDE_ERROR_CPT)
2052                 cpt_serr_int_handler(dev_priv);
2053 }
2054
2055 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2056 {
2057         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2058                 ~SDE_PORTE_HOTPLUG_SPT;
2059         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2060         u32 pin_mask = 0, long_mask = 0;
2061
2062         if (hotplug_trigger) {
2063                 u32 dig_hotplug_reg;
2064
2065                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2066                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2067
2068                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2069                                    dig_hotplug_reg, hpd_spt,
2070                                    spt_port_hotplug_long_detect);
2071         }
2072
2073         if (hotplug2_trigger) {
2074                 u32 dig_hotplug_reg;
2075
2076                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2077                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2078
2079                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2080                                    dig_hotplug_reg, hpd_spt,
2081                                    spt_port_hotplug2_long_detect);
2082         }
2083
2084         if (pin_mask)
2085                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2086
2087         if (pch_iir & SDE_GMBUS_CPT)
2088                 gmbus_irq_handler(dev_priv);
2089 }
2090
2091 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2092                                 u32 hotplug_trigger,
2093                                 const u32 hpd[HPD_NUM_PINS])
2094 {
2095         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2096
2097         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2098         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2099
2100         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2101                            dig_hotplug_reg, hpd,
2102                            ilk_port_hotplug_long_detect);
2103
2104         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2105 }
2106
2107 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2108                                     u32 de_iir)
2109 {
2110         enum pipe pipe;
2111         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2112
2113         if (hotplug_trigger)
2114                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2115
2116         if (de_iir & DE_AUX_CHANNEL_A)
2117                 dp_aux_irq_handler(dev_priv);
2118
2119         if (de_iir & DE_GSE)
2120                 intel_opregion_asle_intr(dev_priv);
2121
2122         if (de_iir & DE_POISON)
2123                 DRM_ERROR("Poison interrupt\n");
2124
2125         for_each_pipe(dev_priv, pipe) {
2126                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2127                     intel_pipe_handle_vblank(dev_priv, pipe))
2128                         intel_check_page_flip(dev_priv, pipe);
2129
2130                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2131                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2132
2133                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2134                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2135
2136                 /* plane/pipes map 1:1 on ilk+ */
2137                 if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2138                         intel_finish_page_flip_cs(dev_priv, pipe);
2139         }
2140
2141         /* check event from PCH */
2142         if (de_iir & DE_PCH_EVENT) {
2143                 u32 pch_iir = I915_READ(SDEIIR);
2144
2145                 if (HAS_PCH_CPT(dev_priv))
2146                         cpt_irq_handler(dev_priv, pch_iir);
2147                 else
2148                         ibx_irq_handler(dev_priv, pch_iir);
2149
2150                 /* should clear PCH hotplug event before clear CPU irq */
2151                 I915_WRITE(SDEIIR, pch_iir);
2152         }
2153
2154         if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2155                 ironlake_rps_change_irq_handler(dev_priv);
2156 }
2157
2158 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2159                                     u32 de_iir)
2160 {
2161         enum pipe pipe;
2162         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2163
2164         if (hotplug_trigger)
2165                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2166
2167         if (de_iir & DE_ERR_INT_IVB)
2168                 ivb_err_int_handler(dev_priv);
2169
2170         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2171                 dp_aux_irq_handler(dev_priv);
2172
2173         if (de_iir & DE_GSE_IVB)
2174                 intel_opregion_asle_intr(dev_priv);
2175
2176         for_each_pipe(dev_priv, pipe) {
2177                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2178                     intel_pipe_handle_vblank(dev_priv, pipe))
2179                         intel_check_page_flip(dev_priv, pipe);
2180
2181                 /* plane/pipes map 1:1 on ilk+ */
2182                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2183                         intel_finish_page_flip_cs(dev_priv, pipe);
2184         }
2185
2186         /* check event from PCH */
2187         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2188                 u32 pch_iir = I915_READ(SDEIIR);
2189
2190                 cpt_irq_handler(dev_priv, pch_iir);
2191
2192                 /* clear PCH hotplug event before clear CPU irq */
2193                 I915_WRITE(SDEIIR, pch_iir);
2194         }
2195 }
2196
2197 /*
2198  * To handle irqs with the minimum potential races with fresh interrupts, we:
2199  * 1 - Disable Master Interrupt Control.
2200  * 2 - Find the source(s) of the interrupt.
2201  * 3 - Clear the Interrupt Identity bits (IIR).
2202  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2203  * 5 - Re-enable Master Interrupt Control.
2204  */
2205 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2206 {
2207         struct drm_device *dev = arg;
2208         struct drm_i915_private *dev_priv = to_i915(dev);
2209         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2210         irqreturn_t ret = IRQ_NONE;
2211
2212         if (!intel_irqs_enabled(dev_priv))
2213                 return IRQ_NONE;
2214
2215         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2216         disable_rpm_wakeref_asserts(dev_priv);
2217
2218         /* disable master interrupt before clearing iir  */
2219         de_ier = I915_READ(DEIER);
2220         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2221         POSTING_READ(DEIER);
2222
2223         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2224          * interrupts will will be stored on its back queue, and then we'll be
2225          * able to process them after we restore SDEIER (as soon as we restore
2226          * it, we'll get an interrupt if SDEIIR still has something to process
2227          * due to its back queue). */
2228         if (!HAS_PCH_NOP(dev_priv)) {
2229                 sde_ier = I915_READ(SDEIER);
2230                 I915_WRITE(SDEIER, 0);
2231                 POSTING_READ(SDEIER);
2232         }
2233
2234         /* Find, clear, then process each source of interrupt */
2235
2236         gt_iir = I915_READ(GTIIR);
2237         if (gt_iir) {
2238                 I915_WRITE(GTIIR, gt_iir);
2239                 ret = IRQ_HANDLED;
2240                 if (INTEL_GEN(dev_priv) >= 6)
2241                         snb_gt_irq_handler(dev_priv, gt_iir);
2242                 else
2243                         ilk_gt_irq_handler(dev_priv, gt_iir);
2244         }
2245
2246         de_iir = I915_READ(DEIIR);
2247         if (de_iir) {
2248                 I915_WRITE(DEIIR, de_iir);
2249                 ret = IRQ_HANDLED;
2250                 if (INTEL_GEN(dev_priv) >= 7)
2251                         ivb_display_irq_handler(dev_priv, de_iir);
2252                 else
2253                         ilk_display_irq_handler(dev_priv, de_iir);
2254         }
2255
2256         if (INTEL_GEN(dev_priv) >= 6) {
2257                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2258                 if (pm_iir) {
2259                         I915_WRITE(GEN6_PMIIR, pm_iir);
2260                         ret = IRQ_HANDLED;
2261                         gen6_rps_irq_handler(dev_priv, pm_iir);
2262                 }
2263         }
2264
2265         I915_WRITE(DEIER, de_ier);
2266         POSTING_READ(DEIER);
2267         if (!HAS_PCH_NOP(dev_priv)) {
2268                 I915_WRITE(SDEIER, sde_ier);
2269                 POSTING_READ(SDEIER);
2270         }
2271
2272         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2273         enable_rpm_wakeref_asserts(dev_priv);
2274
2275         return ret;
2276 }
2277
2278 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2279                                 u32 hotplug_trigger,
2280                                 const u32 hpd[HPD_NUM_PINS])
2281 {
2282         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2283
2284         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2285         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2286
2287         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2288                            dig_hotplug_reg, hpd,
2289                            bxt_port_hotplug_long_detect);
2290
2291         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2292 }
2293
2294 static irqreturn_t
2295 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2296 {
2297         irqreturn_t ret = IRQ_NONE;
2298         u32 iir;
2299         enum pipe pipe;
2300
2301         if (master_ctl & GEN8_DE_MISC_IRQ) {
2302                 iir = I915_READ(GEN8_DE_MISC_IIR);
2303                 if (iir) {
2304                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2305                         ret = IRQ_HANDLED;
2306                         if (iir & GEN8_DE_MISC_GSE)
2307                                 intel_opregion_asle_intr(dev_priv);
2308                         else
2309                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2310                 }
2311                 else
2312                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2313         }
2314
2315         if (master_ctl & GEN8_DE_PORT_IRQ) {
2316                 iir = I915_READ(GEN8_DE_PORT_IIR);
2317                 if (iir) {
2318                         u32 tmp_mask;
2319                         bool found = false;
2320
2321                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2322                         ret = IRQ_HANDLED;
2323
2324                         tmp_mask = GEN8_AUX_CHANNEL_A;
2325                         if (INTEL_INFO(dev_priv)->gen >= 9)
2326                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2327                                             GEN9_AUX_CHANNEL_C |
2328                                             GEN9_AUX_CHANNEL_D;
2329
2330                         if (iir & tmp_mask) {
2331                                 dp_aux_irq_handler(dev_priv);
2332                                 found = true;
2333                         }
2334
2335                         if (IS_BROXTON(dev_priv)) {
2336                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2337                                 if (tmp_mask) {
2338                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2339                                                             hpd_bxt);
2340                                         found = true;
2341                                 }
2342                         } else if (IS_BROADWELL(dev_priv)) {
2343                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2344                                 if (tmp_mask) {
2345                                         ilk_hpd_irq_handler(dev_priv,
2346                                                             tmp_mask, hpd_bdw);
2347                                         found = true;
2348                                 }
2349                         }
2350
2351                         if (IS_BROXTON(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2352                                 gmbus_irq_handler(dev_priv);
2353                                 found = true;
2354                         }
2355
2356                         if (!found)
2357                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2358                 }
2359                 else
2360                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2361         }
2362
2363         for_each_pipe(dev_priv, pipe) {
2364                 u32 flip_done, fault_errors;
2365
2366                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2367                         continue;
2368
2369                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2370                 if (!iir) {
2371                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2372                         continue;
2373                 }
2374
2375                 ret = IRQ_HANDLED;
2376                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2377
2378                 if (iir & GEN8_PIPE_VBLANK &&
2379                     intel_pipe_handle_vblank(dev_priv, pipe))
2380                         intel_check_page_flip(dev_priv, pipe);
2381
2382                 flip_done = iir;
2383                 if (INTEL_INFO(dev_priv)->gen >= 9)
2384                         flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2385                 else
2386                         flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2387
2388                 if (flip_done)
2389                         intel_finish_page_flip_cs(dev_priv, pipe);
2390
2391                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2392                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2393
2394                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2395                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2396
2397                 fault_errors = iir;
2398                 if (INTEL_INFO(dev_priv)->gen >= 9)
2399                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2400                 else
2401                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2402
2403                 if (fault_errors)
2404                         DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2405                                   pipe_name(pipe),
2406                                   fault_errors);
2407         }
2408
2409         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2410             master_ctl & GEN8_DE_PCH_IRQ) {
2411                 /*
2412                  * FIXME(BDW): Assume for now that the new interrupt handling
2413                  * scheme also closed the SDE interrupt handling race we've seen
2414                  * on older pch-split platforms. But this needs testing.
2415                  */
2416                 iir = I915_READ(SDEIIR);
2417                 if (iir) {
2418                         I915_WRITE(SDEIIR, iir);
2419                         ret = IRQ_HANDLED;
2420
2421                         if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
2422                                 spt_irq_handler(dev_priv, iir);
2423                         else
2424                                 cpt_irq_handler(dev_priv, iir);
2425                 } else {
2426                         /*
2427                          * Like on previous PCH there seems to be something
2428                          * fishy going on with forwarding PCH interrupts.
2429                          */
2430                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2431                 }
2432         }
2433
2434         return ret;
2435 }
2436
2437 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2438 {
2439         struct drm_device *dev = arg;
2440         struct drm_i915_private *dev_priv = to_i915(dev);
2441         u32 master_ctl;
2442         u32 gt_iir[4] = {};
2443         irqreturn_t ret;
2444
2445         if (!intel_irqs_enabled(dev_priv))
2446                 return IRQ_NONE;
2447
2448         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2449         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2450         if (!master_ctl)
2451                 return IRQ_NONE;
2452
2453         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2454
2455         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2456         disable_rpm_wakeref_asserts(dev_priv);
2457
2458         /* Find, clear, then process each source of interrupt */
2459         ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2460         gen8_gt_irq_handler(dev_priv, gt_iir);
2461         ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2462
2463         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2464         POSTING_READ_FW(GEN8_MASTER_IRQ);
2465
2466         enable_rpm_wakeref_asserts(dev_priv);
2467
2468         return ret;
2469 }
2470
2471 static void i915_error_wake_up(struct drm_i915_private *dev_priv)
2472 {
2473         /*
2474          * Notify all waiters for GPU completion events that reset state has
2475          * been changed, and that they need to restart their wait after
2476          * checking for potential errors (and bail out to drop locks if there is
2477          * a gpu reset pending so that i915_error_work_func can acquire them).
2478          */
2479
2480         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2481         wake_up_all(&dev_priv->gpu_error.wait_queue);
2482
2483         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2484         wake_up_all(&dev_priv->pending_flip_queue);
2485 }
2486
2487 /**
2488  * i915_reset_and_wakeup - do process context error handling work
2489  * @dev_priv: i915 device private
2490  *
2491  * Fire an error uevent so userspace can see that a hang or error
2492  * was detected.
2493  */
2494 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2495 {
2496         struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2497         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2498         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2499         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2500
2501         kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2502
2503         DRM_DEBUG_DRIVER("resetting chip\n");
2504         kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2505
2506         /*
2507          * In most cases it's guaranteed that we get here with an RPM
2508          * reference held, for example because there is a pending GPU
2509          * request that won't finish until the reset is done. This
2510          * isn't the case at least when we get here by doing a
2511          * simulated reset via debugs, so get an RPM reference.
2512          */
2513         intel_runtime_pm_get(dev_priv);
2514         intel_prepare_reset(dev_priv);
2515
2516         do {
2517                 /*
2518                  * All state reset _must_ be completed before we update the
2519                  * reset counter, for otherwise waiters might miss the reset
2520                  * pending state and not properly drop locks, resulting in
2521                  * deadlocks with the reset work.
2522                  */
2523                 if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2524                         i915_reset(dev_priv);
2525                         mutex_unlock(&dev_priv->drm.struct_mutex);
2526                 }
2527
2528                 /* We need to wait for anyone holding the lock to wakeup */
2529         } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2530                                      I915_RESET_IN_PROGRESS,
2531                                      TASK_UNINTERRUPTIBLE,
2532                                      HZ));
2533
2534         intel_finish_reset(dev_priv);
2535         intel_runtime_pm_put(dev_priv);
2536
2537         if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2538                 kobject_uevent_env(kobj,
2539                                    KOBJ_CHANGE, reset_done_event);
2540
2541         /*
2542          * Note: The wake_up also serves as a memory barrier so that
2543          * waiters see the updated value of the dev_priv->gpu_error.
2544          */
2545         wake_up_all(&dev_priv->gpu_error.reset_queue);
2546 }
2547
2548 static inline void
2549 i915_err_print_instdone(struct drm_i915_private *dev_priv,
2550                         struct intel_instdone *instdone)
2551 {
2552         pr_err("  INSTDONE: 0x%08x\n", instdone->instdone);
2553
2554         if (INTEL_GEN(dev_priv) <= 3)
2555                 return;
2556
2557         pr_err("  SC_INSTDONE: 0x%08x\n", instdone->slice_common);
2558
2559         if (INTEL_GEN(dev_priv) <= 6)
2560                 return;
2561
2562         pr_err("  SAMPLER_INSTDONE: 0x%08x\n", instdone->sampler);
2563         pr_err("  ROW_INSTDONE: 0x%08x\n", instdone->row);
2564 }
2565
2566 static void i915_report_and_clear_eir(struct drm_i915_private *dev_priv)
2567 {
2568         struct intel_instdone instdone;
2569         u32 eir = I915_READ(EIR);
2570         int pipe;
2571
2572         if (!eir)
2573                 return;
2574
2575         pr_err("render error detected, EIR: 0x%08x\n", eir);
2576
2577         i915_get_engine_instdone(dev_priv, RCS, &instdone);
2578
2579         if (IS_G4X(dev_priv)) {
2580                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2581                         u32 ipeir = I915_READ(IPEIR_I965);
2582
2583                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2584                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2585                         i915_err_print_instdone(dev_priv, &instdone);
2586                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2587                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2588                         I915_WRITE(IPEIR_I965, ipeir);
2589                         POSTING_READ(IPEIR_I965);
2590                 }
2591                 if (eir & GM45_ERROR_PAGE_TABLE) {
2592                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2593                         pr_err("page table error\n");
2594                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2595                         I915_WRITE(PGTBL_ER, pgtbl_err);
2596                         POSTING_READ(PGTBL_ER);
2597                 }
2598         }
2599
2600         if (!IS_GEN2(dev_priv)) {
2601                 if (eir & I915_ERROR_PAGE_TABLE) {
2602                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2603                         pr_err("page table error\n");
2604                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2605                         I915_WRITE(PGTBL_ER, pgtbl_err);
2606                         POSTING_READ(PGTBL_ER);
2607                 }
2608         }
2609
2610         if (eir & I915_ERROR_MEMORY_REFRESH) {
2611                 pr_err("memory refresh error:\n");
2612                 for_each_pipe(dev_priv, pipe)
2613                         pr_err("pipe %c stat: 0x%08x\n",
2614                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2615                 /* pipestat has already been acked */
2616         }
2617         if (eir & I915_ERROR_INSTRUCTION) {
2618                 pr_err("instruction error\n");
2619                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2620                 i915_err_print_instdone(dev_priv, &instdone);
2621                 if (INTEL_GEN(dev_priv) < 4) {
2622                         u32 ipeir = I915_READ(IPEIR);
2623
2624                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2625                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2626                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2627                         I915_WRITE(IPEIR, ipeir);
2628                         POSTING_READ(IPEIR);
2629                 } else {
2630                         u32 ipeir = I915_READ(IPEIR_I965);
2631
2632                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2633                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2634                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2635                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2636                         I915_WRITE(IPEIR_I965, ipeir);
2637                         POSTING_READ(IPEIR_I965);
2638                 }
2639         }
2640
2641         I915_WRITE(EIR, eir);
2642         POSTING_READ(EIR);
2643         eir = I915_READ(EIR);
2644         if (eir) {
2645                 /*
2646                  * some errors might have become stuck,
2647                  * mask them.
2648                  */
2649                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2650                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2651                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2652         }
2653 }
2654
2655 /**
2656  * i915_handle_error - handle a gpu error
2657  * @dev_priv: i915 device private
2658  * @engine_mask: mask representing engines that are hung
2659  * Do some basic checking of register state at error time and
2660  * dump it to the syslog.  Also call i915_capture_error_state() to make
2661  * sure we get a record and make it available in debugfs.  Fire a uevent
2662  * so userspace knows something bad happened (should trigger collection
2663  * of a ring dump etc.).
2664  * @fmt: Error message format string
2665  */
2666 void i915_handle_error(struct drm_i915_private *dev_priv,
2667                        u32 engine_mask,
2668                        const char *fmt, ...)
2669 {
2670         va_list args;
2671         char error_msg[80];
2672
2673         va_start(args, fmt);
2674         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2675         va_end(args);
2676
2677         i915_capture_error_state(dev_priv, engine_mask, error_msg);
2678         i915_report_and_clear_eir(dev_priv);
2679
2680         if (!engine_mask)
2681                 return;
2682
2683         if (test_and_set_bit(I915_RESET_IN_PROGRESS,
2684                              &dev_priv->gpu_error.flags))
2685                 return;
2686
2687         /*
2688          * Wakeup waiting processes so that the reset function
2689          * i915_reset_and_wakeup doesn't deadlock trying to grab
2690          * various locks. By bumping the reset counter first, the woken
2691          * processes will see a reset in progress and back off,
2692          * releasing their locks and then wait for the reset completion.
2693          * We must do this for _all_ gpu waiters that might hold locks
2694          * that the reset work needs to acquire.
2695          *
2696          * Note: The wake_up also provides a memory barrier to ensure that the
2697          * waiters see the updated value of the reset flags.
2698          */
2699         i915_error_wake_up(dev_priv);
2700
2701         i915_reset_and_wakeup(dev_priv);
2702 }
2703
2704 /* Called from drm generic code, passed 'crtc' which
2705  * we use as a pipe index
2706  */
2707 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2708 {
2709         struct drm_i915_private *dev_priv = to_i915(dev);
2710         unsigned long irqflags;
2711
2712         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2713         if (INTEL_INFO(dev)->gen >= 4)
2714                 i915_enable_pipestat(dev_priv, pipe,
2715                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2716         else
2717                 i915_enable_pipestat(dev_priv, pipe,
2718                                      PIPE_VBLANK_INTERRUPT_STATUS);
2719         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2720
2721         return 0;
2722 }
2723
2724 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2725 {
2726         struct drm_i915_private *dev_priv = to_i915(dev);
2727         unsigned long irqflags;
2728         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2729                                                      DE_PIPE_VBLANK(pipe);
2730
2731         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2732         ilk_enable_display_irq(dev_priv, bit);
2733         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2734
2735         return 0;
2736 }
2737
2738 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2739 {
2740         struct drm_i915_private *dev_priv = to_i915(dev);
2741         unsigned long irqflags;
2742
2743         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2744         i915_enable_pipestat(dev_priv, pipe,
2745                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2746         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2747
2748         return 0;
2749 }
2750
2751 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2752 {
2753         struct drm_i915_private *dev_priv = to_i915(dev);
2754         unsigned long irqflags;
2755
2756         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2757         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2758         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2759
2760         return 0;
2761 }
2762
2763 /* Called from drm generic code, passed 'crtc' which
2764  * we use as a pipe index
2765  */
2766 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2767 {
2768         struct drm_i915_private *dev_priv = to_i915(dev);
2769         unsigned long irqflags;
2770
2771         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2772         i915_disable_pipestat(dev_priv, pipe,
2773                               PIPE_VBLANK_INTERRUPT_STATUS |
2774                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2775         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2776 }
2777
2778 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2779 {
2780         struct drm_i915_private *dev_priv = to_i915(dev);
2781         unsigned long irqflags;
2782         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2783                                                      DE_PIPE_VBLANK(pipe);
2784
2785         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2786         ilk_disable_display_irq(dev_priv, bit);
2787         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2788 }
2789
2790 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2791 {
2792         struct drm_i915_private *dev_priv = to_i915(dev);
2793         unsigned long irqflags;
2794
2795         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2796         i915_disable_pipestat(dev_priv, pipe,
2797                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2798         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2799 }
2800
2801 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2802 {
2803         struct drm_i915_private *dev_priv = to_i915(dev);
2804         unsigned long irqflags;
2805
2806         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2807         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2808         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2809 }
2810
2811 static bool
2812 ipehr_is_semaphore_wait(struct intel_engine_cs *engine, u32 ipehr)
2813 {
2814         if (INTEL_GEN(engine->i915) >= 8) {
2815                 return (ipehr >> 23) == 0x1c;
2816         } else {
2817                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2818                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2819                                  MI_SEMAPHORE_REGISTER);
2820         }
2821 }
2822
2823 static struct intel_engine_cs *
2824 semaphore_wait_to_signaller_ring(struct intel_engine_cs *engine, u32 ipehr,
2825                                  u64 offset)
2826 {
2827         struct drm_i915_private *dev_priv = engine->i915;
2828         struct intel_engine_cs *signaller;
2829
2830         if (INTEL_GEN(dev_priv) >= 8) {
2831                 for_each_engine(signaller, dev_priv) {
2832                         if (engine == signaller)
2833                                 continue;
2834
2835                         if (offset == signaller->semaphore.signal_ggtt[engine->id])
2836                                 return signaller;
2837                 }
2838         } else {
2839                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2840
2841                 for_each_engine(signaller, dev_priv) {
2842                         if(engine == signaller)
2843                                 continue;
2844
2845                         if (sync_bits == signaller->semaphore.mbox.wait[engine->id])
2846                                 return signaller;
2847                 }
2848         }
2849
2850         DRM_DEBUG_DRIVER("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2851                          engine->id, ipehr, offset);
2852
2853         return ERR_PTR(-ENODEV);
2854 }
2855
2856 static struct intel_engine_cs *
2857 semaphore_waits_for(struct intel_engine_cs *engine, u32 *seqno)
2858 {
2859         struct drm_i915_private *dev_priv = engine->i915;
2860         void __iomem *vaddr;
2861         u32 cmd, ipehr, head;
2862         u64 offset = 0;
2863         int i, backwards;
2864
2865         /*
2866          * This function does not support execlist mode - any attempt to
2867          * proceed further into this function will result in a kernel panic
2868          * when dereferencing ring->buffer, which is not set up in execlist
2869          * mode.
2870          *
2871          * The correct way of doing it would be to derive the currently
2872          * executing ring buffer from the current context, which is derived
2873          * from the currently running request. Unfortunately, to get the
2874          * current request we would have to grab the struct_mutex before doing
2875          * anything else, which would be ill-advised since some other thread
2876          * might have grabbed it already and managed to hang itself, causing
2877          * the hang checker to deadlock.
2878          *
2879          * Therefore, this function does not support execlist mode in its
2880          * current form. Just return NULL and move on.
2881          */
2882         if (engine->buffer == NULL)
2883                 return NULL;
2884
2885         ipehr = I915_READ(RING_IPEHR(engine->mmio_base));
2886         if (!ipehr_is_semaphore_wait(engine, ipehr))
2887                 return NULL;
2888
2889         /*
2890          * HEAD is likely pointing to the dword after the actual command,
2891          * so scan backwards until we find the MBOX. But limit it to just 3
2892          * or 4 dwords depending on the semaphore wait command size.
2893          * Note that we don't care about ACTHD here since that might
2894          * point at at batch, and semaphores are always emitted into the
2895          * ringbuffer itself.
2896          */
2897         head = I915_READ_HEAD(engine) & HEAD_ADDR;
2898         backwards = (INTEL_GEN(dev_priv) >= 8) ? 5 : 4;
2899         vaddr = (void __iomem *)engine->buffer->vaddr;
2900
2901         for (i = backwards; i; --i) {
2902                 /*
2903                  * Be paranoid and presume the hw has gone off into the wild -
2904                  * our ring is smaller than what the hardware (and hence
2905                  * HEAD_ADDR) allows. Also handles wrap-around.
2906                  */
2907                 head &= engine->buffer->size - 1;
2908
2909                 /* This here seems to blow up */
2910                 cmd = ioread32(vaddr + head);
2911                 if (cmd == ipehr)
2912                         break;
2913
2914                 head -= 4;
2915         }
2916
2917         if (!i)
2918                 return NULL;
2919
2920         *seqno = ioread32(vaddr + head + 4) + 1;
2921         if (INTEL_GEN(dev_priv) >= 8) {
2922                 offset = ioread32(vaddr + head + 12);
2923                 offset <<= 32;
2924                 offset |= ioread32(vaddr + head + 8);
2925         }
2926         return semaphore_wait_to_signaller_ring(engine, ipehr, offset);
2927 }
2928
2929 static int semaphore_passed(struct intel_engine_cs *engine)
2930 {
2931         struct drm_i915_private *dev_priv = engine->i915;
2932         struct intel_engine_cs *signaller;
2933         u32 seqno;
2934
2935         engine->hangcheck.deadlock++;
2936
2937         signaller = semaphore_waits_for(engine, &seqno);
2938         if (signaller == NULL)
2939                 return -1;
2940
2941         if (IS_ERR(signaller))
2942                 return 0;
2943
2944         /* Prevent pathological recursion due to driver bugs */
2945         if (signaller->hangcheck.deadlock >= I915_NUM_ENGINES)
2946                 return -1;
2947
2948         if (i915_seqno_passed(intel_engine_get_seqno(signaller), seqno))
2949                 return 1;
2950
2951         /* cursory check for an unkickable deadlock */
2952         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2953             semaphore_passed(signaller) < 0)
2954                 return -1;
2955
2956         return 0;
2957 }
2958
2959 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2960 {
2961         struct intel_engine_cs *engine;
2962
2963         for_each_engine(engine, dev_priv)
2964                 engine->hangcheck.deadlock = 0;
2965 }
2966
2967 static bool instdone_unchanged(u32 current_instdone, u32 *old_instdone)
2968 {
2969         u32 tmp = current_instdone | *old_instdone;
2970         bool unchanged;
2971
2972         unchanged = tmp == *old_instdone;
2973         *old_instdone |= tmp;
2974
2975         return unchanged;
2976 }
2977
2978 static bool subunits_stuck(struct intel_engine_cs *engine)
2979 {
2980         struct drm_i915_private *dev_priv = engine->i915;
2981         struct intel_instdone instdone;
2982         struct intel_instdone *accu_instdone = &engine->hangcheck.instdone;
2983         bool stuck;
2984
2985         if (engine->id != RCS)
2986                 return true;
2987
2988         i915_get_engine_instdone(dev_priv, RCS, &instdone);
2989
2990         /* There might be unstable subunit states even when
2991          * actual head is not moving. Filter out the unstable ones by
2992          * accumulating the undone -> done transitions and only
2993          * consider those as progress.
2994          */
2995         stuck = instdone_unchanged(instdone.instdone,
2996                                    &accu_instdone->instdone);
2997         stuck &= instdone_unchanged(instdone.slice_common,
2998                                     &accu_instdone->slice_common);
2999         stuck &= instdone_unchanged(instdone.sampler,
3000                                     &accu_instdone->sampler);
3001         stuck &= instdone_unchanged(instdone.row,
3002                                     &accu_instdone->row);
3003
3004         return stuck;
3005 }
3006
3007 static enum intel_engine_hangcheck_action
3008 head_stuck(struct intel_engine_cs *engine, u64 acthd)
3009 {
3010         if (acthd != engine->hangcheck.acthd) {
3011
3012                 /* Clear subunit states on head movement */
3013                 memset(&engine->hangcheck.instdone, 0,
3014                        sizeof(engine->hangcheck.instdone));
3015
3016                 return HANGCHECK_ACTIVE;
3017         }
3018
3019         if (!subunits_stuck(engine))
3020                 return HANGCHECK_ACTIVE;
3021
3022         return HANGCHECK_HUNG;
3023 }
3024
3025 static enum intel_engine_hangcheck_action
3026 engine_stuck(struct intel_engine_cs *engine, u64 acthd)
3027 {
3028         struct drm_i915_private *dev_priv = engine->i915;
3029         enum intel_engine_hangcheck_action ha;
3030         u32 tmp;
3031
3032         ha = head_stuck(engine, acthd);
3033         if (ha != HANGCHECK_HUNG)
3034                 return ha;
3035
3036         if (IS_GEN2(dev_priv))
3037                 return HANGCHECK_HUNG;
3038
3039         /* Is the chip hanging on a WAIT_FOR_EVENT?
3040          * If so we can simply poke the RB_WAIT bit
3041          * and break the hang. This should work on
3042          * all but the second generation chipsets.
3043          */
3044         tmp = I915_READ_CTL(engine);
3045         if (tmp & RING_WAIT) {
3046                 i915_handle_error(dev_priv, 0,
3047                                   "Kicking stuck wait on %s",
3048                                   engine->name);
3049                 I915_WRITE_CTL(engine, tmp);
3050                 return HANGCHECK_KICK;
3051         }
3052
3053         if (INTEL_GEN(dev_priv) >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3054                 switch (semaphore_passed(engine)) {
3055                 default:
3056                         return HANGCHECK_HUNG;
3057                 case 1:
3058                         i915_handle_error(dev_priv, 0,
3059                                           "Kicking stuck semaphore on %s",
3060                                           engine->name);
3061                         I915_WRITE_CTL(engine, tmp);
3062                         return HANGCHECK_KICK;
3063                 case 0:
3064                         return HANGCHECK_WAIT;
3065                 }
3066         }
3067
3068         return HANGCHECK_HUNG;
3069 }
3070
3071 /*
3072  * This is called when the chip hasn't reported back with completed
3073  * batchbuffers in a long time. We keep track per ring seqno progress and
3074  * if there are no progress, hangcheck score for that ring is increased.
3075  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3076  * we kick the ring. If we see no progress on three subsequent calls
3077  * we assume chip is wedged and try to fix it by resetting the chip.
3078  */
3079 static void i915_hangcheck_elapsed(struct work_struct *work)
3080 {
3081         struct drm_i915_private *dev_priv =
3082                 container_of(work, typeof(*dev_priv),
3083                              gpu_error.hangcheck_work.work);
3084         struct intel_engine_cs *engine;
3085         unsigned int hung = 0, stuck = 0;
3086         int busy_count = 0;
3087 #define BUSY 1
3088 #define KICK 5
3089 #define HUNG 20
3090 #define ACTIVE_DECAY 15
3091
3092         if (!i915.enable_hangcheck)
3093                 return;
3094
3095         if (!READ_ONCE(dev_priv->gt.awake))
3096                 return;
3097
3098         /* As enabling the GPU requires fairly extensive mmio access,
3099          * periodically arm the mmio checker to see if we are triggering
3100          * any invalid access.
3101          */
3102         intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3103
3104         for_each_engine(engine, dev_priv) {
3105                 bool busy = intel_engine_has_waiter(engine);
3106                 u64 acthd;
3107                 u32 seqno;
3108                 u32 submit;
3109
3110                 semaphore_clear_deadlocks(dev_priv);
3111
3112                 /* We don't strictly need an irq-barrier here, as we are not
3113                  * serving an interrupt request, be paranoid in case the
3114                  * barrier has side-effects (such as preventing a broken
3115                  * cacheline snoop) and so be sure that we can see the seqno
3116                  * advance. If the seqno should stick, due to a stale
3117                  * cacheline, we would erroneously declare the GPU hung.
3118                  */
3119                 if (engine->irq_seqno_barrier)
3120                         engine->irq_seqno_barrier(engine);
3121
3122                 acthd = intel_engine_get_active_head(engine);
3123                 seqno = intel_engine_get_seqno(engine);
3124                 submit = READ_ONCE(engine->last_submitted_seqno);
3125
3126                 if (engine->hangcheck.seqno == seqno) {
3127                         if (i915_seqno_passed(seqno, submit)) {
3128                                 engine->hangcheck.action = HANGCHECK_IDLE;
3129                         } else {
3130                                 /* We always increment the hangcheck score
3131                                  * if the engine is busy and still processing
3132                                  * the same request, so that no single request
3133                                  * can run indefinitely (such as a chain of
3134                                  * batches). The only time we do not increment
3135                                  * the hangcheck score on this ring, if this
3136                                  * engine is in a legitimate wait for another
3137                                  * engine. In that case the waiting engine is a
3138                                  * victim and we want to be sure we catch the
3139                                  * right culprit. Then every time we do kick
3140                                  * the ring, add a small increment to the
3141                                  * score so that we can catch a batch that is
3142                                  * being repeatedly kicked and so responsible
3143                                  * for stalling the machine.
3144                                  */
3145                                 engine->hangcheck.action =
3146                                         engine_stuck(engine, acthd);
3147
3148                                 switch (engine->hangcheck.action) {
3149                                 case HANGCHECK_IDLE:
3150                                 case HANGCHECK_WAIT:
3151                                         break;
3152                                 case HANGCHECK_ACTIVE:
3153                                         engine->hangcheck.score += BUSY;
3154                                         break;
3155                                 case HANGCHECK_KICK:
3156                                         engine->hangcheck.score += KICK;
3157                                         break;
3158                                 case HANGCHECK_HUNG:
3159                                         engine->hangcheck.score += HUNG;
3160                                         break;
3161                                 }
3162                         }
3163
3164                         if (engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3165                                 hung |= intel_engine_flag(engine);
3166                                 if (engine->hangcheck.action != HANGCHECK_HUNG)
3167                                         stuck |= intel_engine_flag(engine);
3168                         }
3169                 } else {
3170                         engine->hangcheck.action = HANGCHECK_ACTIVE;
3171
3172                         /* Gradually reduce the count so that we catch DoS
3173                          * attempts across multiple batches.
3174                          */
3175                         if (engine->hangcheck.score > 0)
3176                                 engine->hangcheck.score -= ACTIVE_DECAY;
3177                         if (engine->hangcheck.score < 0)
3178                                 engine->hangcheck.score = 0;
3179
3180                         /* Clear head and subunit states on seqno movement */
3181                         acthd = 0;
3182
3183                         memset(&engine->hangcheck.instdone, 0,
3184                                sizeof(engine->hangcheck.instdone));
3185                 }
3186
3187                 engine->hangcheck.seqno = seqno;
3188                 engine->hangcheck.acthd = acthd;
3189                 busy_count += busy;
3190         }
3191
3192         if (hung) {
3193                 char msg[80];
3194                 unsigned int tmp;
3195                 int len;
3196
3197                 /* If some rings hung but others were still busy, only
3198                  * blame the hanging rings in the synopsis.
3199                  */
3200                 if (stuck != hung)
3201                         hung &= ~stuck;
3202                 len = scnprintf(msg, sizeof(msg),
3203                                 "%s on ", stuck == hung ? "No progress" : "Hang");
3204                 for_each_engine_masked(engine, dev_priv, hung, tmp)
3205                         len += scnprintf(msg + len, sizeof(msg) - len,
3206                                          "%s, ", engine->name);
3207                 msg[len-2] = '\0';
3208
3209                 return i915_handle_error(dev_priv, hung, msg);
3210         }
3211
3212         /* Reset timer in case GPU hangs without another request being added */
3213         if (busy_count)
3214                 i915_queue_hangcheck(dev_priv);
3215 }
3216
3217 static void ibx_irq_reset(struct drm_device *dev)
3218 {
3219         struct drm_i915_private *dev_priv = to_i915(dev);
3220
3221         if (HAS_PCH_NOP(dev))
3222                 return;
3223
3224         GEN5_IRQ_RESET(SDE);
3225
3226         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3227                 I915_WRITE(SERR_INT, 0xffffffff);
3228 }
3229
3230 /*
3231  * SDEIER is also touched by the interrupt handler to work around missed PCH
3232  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3233  * instead we unconditionally enable all PCH interrupt sources here, but then
3234  * only unmask them as needed with SDEIMR.
3235  *
3236  * This function needs to be called before interrupts are enabled.
3237  */
3238 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3239 {
3240         struct drm_i915_private *dev_priv = to_i915(dev);
3241
3242         if (HAS_PCH_NOP(dev))
3243                 return;
3244
3245         WARN_ON(I915_READ(SDEIER) != 0);
3246         I915_WRITE(SDEIER, 0xffffffff);
3247         POSTING_READ(SDEIER);
3248 }
3249
3250 static void gen5_gt_irq_reset(struct drm_device *dev)
3251 {
3252         struct drm_i915_private *dev_priv = to_i915(dev);
3253
3254         GEN5_IRQ_RESET(GT);
3255         if (INTEL_INFO(dev)->gen >= 6)
3256                 GEN5_IRQ_RESET(GEN6_PM);
3257 }
3258
3259 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3260 {
3261         enum pipe pipe;
3262
3263         if (IS_CHERRYVIEW(dev_priv))
3264                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3265         else
3266                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3267
3268         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3269         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3270
3271         for_each_pipe(dev_priv, pipe) {
3272                 I915_WRITE(PIPESTAT(pipe),
3273                            PIPE_FIFO_UNDERRUN_STATUS |
3274                            PIPESTAT_INT_STATUS_MASK);
3275                 dev_priv->pipestat_irq_mask[pipe] = 0;
3276         }
3277
3278         GEN5_IRQ_RESET(VLV_);
3279         dev_priv->irq_mask = ~0;
3280 }
3281
3282 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3283 {
3284         u32 pipestat_mask;
3285         u32 enable_mask;
3286         enum pipe pipe;
3287
3288         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3289                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3290
3291         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3292         for_each_pipe(dev_priv, pipe)
3293                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3294
3295         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3296                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3297                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3298         if (IS_CHERRYVIEW(dev_priv))
3299                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3300
3301         WARN_ON(dev_priv->irq_mask != ~0);
3302
3303         dev_priv->irq_mask = ~enable_mask;
3304
3305         GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3306 }
3307
3308 /* drm_dma.h hooks
3309 */
3310 static void ironlake_irq_reset(struct drm_device *dev)
3311 {
3312         struct drm_i915_private *dev_priv = to_i915(dev);
3313
3314         I915_WRITE(HWSTAM, 0xffffffff);
3315
3316         GEN5_IRQ_RESET(DE);
3317         if (IS_GEN7(dev))
3318                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3319
3320         gen5_gt_irq_reset(dev);
3321
3322         ibx_irq_reset(dev);
3323 }
3324
3325 static void valleyview_irq_preinstall(struct drm_device *dev)
3326 {
3327         struct drm_i915_private *dev_priv = to_i915(dev);
3328
3329         I915_WRITE(VLV_MASTER_IER, 0);
3330         POSTING_READ(VLV_MASTER_IER);
3331
3332         gen5_gt_irq_reset(dev);
3333
3334         spin_lock_irq(&dev_priv->irq_lock);
3335         if (dev_priv->display_irqs_enabled)
3336                 vlv_display_irq_reset(dev_priv);
3337         spin_unlock_irq(&dev_priv->irq_lock);
3338 }
3339
3340 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3341 {
3342         GEN8_IRQ_RESET_NDX(GT, 0);
3343         GEN8_IRQ_RESET_NDX(GT, 1);
3344         GEN8_IRQ_RESET_NDX(GT, 2);
3345         GEN8_IRQ_RESET_NDX(GT, 3);
3346 }
3347
3348 static void gen8_irq_reset(struct drm_device *dev)
3349 {
3350         struct drm_i915_private *dev_priv = to_i915(dev);
3351         int pipe;
3352
3353         I915_WRITE(GEN8_MASTER_IRQ, 0);
3354         POSTING_READ(GEN8_MASTER_IRQ);
3355
3356         gen8_gt_irq_reset(dev_priv);
3357
3358         for_each_pipe(dev_priv, pipe)
3359                 if (intel_display_power_is_enabled(dev_priv,
3360                                                    POWER_DOMAIN_PIPE(pipe)))
3361                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3362
3363         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3364         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3365         GEN5_IRQ_RESET(GEN8_PCU_);
3366
3367         if (HAS_PCH_SPLIT(dev))
3368                 ibx_irq_reset(dev);
3369 }
3370
3371 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3372                                      unsigned int pipe_mask)
3373 {
3374         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3375         enum pipe pipe;
3376
3377         spin_lock_irq(&dev_priv->irq_lock);
3378         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3379                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3380                                   dev_priv->de_irq_mask[pipe],
3381                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3382         spin_unlock_irq(&dev_priv->irq_lock);
3383 }
3384
3385 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3386                                      unsigned int pipe_mask)
3387 {
3388         enum pipe pipe;
3389
3390         spin_lock_irq(&dev_priv->irq_lock);
3391         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3392                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3393         spin_unlock_irq(&dev_priv->irq_lock);
3394
3395         /* make sure we're done processing display irqs */
3396         synchronize_irq(dev_priv->drm.irq);
3397 }
3398
3399 static void cherryview_irq_preinstall(struct drm_device *dev)
3400 {
3401         struct drm_i915_private *dev_priv = to_i915(dev);
3402
3403         I915_WRITE(GEN8_MASTER_IRQ, 0);
3404         POSTING_READ(GEN8_MASTER_IRQ);
3405
3406         gen8_gt_irq_reset(dev_priv);
3407
3408         GEN5_IRQ_RESET(GEN8_PCU_);
3409
3410         spin_lock_irq(&dev_priv->irq_lock);
3411         if (dev_priv->display_irqs_enabled)
3412                 vlv_display_irq_reset(dev_priv);
3413         spin_unlock_irq(&dev_priv->irq_lock);
3414 }
3415
3416 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3417                                   const u32 hpd[HPD_NUM_PINS])
3418 {
3419         struct intel_encoder *encoder;
3420         u32 enabled_irqs = 0;
3421
3422         for_each_intel_encoder(&dev_priv->drm, encoder)
3423                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3424                         enabled_irqs |= hpd[encoder->hpd_pin];
3425
3426         return enabled_irqs;
3427 }
3428
3429 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3430 {
3431         u32 hotplug_irqs, hotplug, enabled_irqs;
3432
3433         if (HAS_PCH_IBX(dev_priv)) {
3434                 hotplug_irqs = SDE_HOTPLUG_MASK;
3435                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3436         } else {
3437                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3438                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3439         }
3440
3441         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3442
3443         /*
3444          * Enable digital hotplug on the PCH, and configure the DP short pulse
3445          * duration to 2ms (which is the minimum in the Display Port spec).
3446          * The pulse duration bits are reserved on LPT+.
3447          */
3448         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3449         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3450         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3451         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3452         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3453         /*
3454          * When CPU and PCH are on the same package, port A
3455          * HPD must be enabled in both north and south.
3456          */
3457         if (HAS_PCH_LPT_LP(dev_priv))
3458                 hotplug |= PORTA_HOTPLUG_ENABLE;
3459         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3460 }
3461
3462 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3463 {
3464         u32 hotplug_irqs, hotplug, enabled_irqs;
3465
3466         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3467         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3468
3469         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3470
3471         /* Enable digital hotplug on the PCH */
3472         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3473         hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3474                 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3475         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3476
3477         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3478         hotplug |= PORTE_HOTPLUG_ENABLE;
3479         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3480 }
3481
3482 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3483 {
3484         u32 hotplug_irqs, hotplug, enabled_irqs;
3485
3486         if (INTEL_GEN(dev_priv) >= 8) {
3487                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3488                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3489
3490                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3491         } else if (INTEL_GEN(dev_priv) >= 7) {
3492                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3493                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3494
3495                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3496         } else {
3497                 hotplug_irqs = DE_DP_A_HOTPLUG;
3498                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3499
3500                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3501         }
3502
3503         /*
3504          * Enable digital hotplug on the CPU, and configure the DP short pulse
3505          * duration to 2ms (which is the minimum in the Display Port spec)
3506          * The pulse duration bits are reserved on HSW+.
3507          */
3508         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3509         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3510         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3511         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3512
3513         ibx_hpd_irq_setup(dev_priv);
3514 }
3515
3516 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3517 {
3518         u32 hotplug_irqs, hotplug, enabled_irqs;
3519
3520         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3521         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3522
3523         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3524
3525         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3526         hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3527                 PORTA_HOTPLUG_ENABLE;
3528
3529         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3530                       hotplug, enabled_irqs);
3531         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3532
3533         /*
3534          * For BXT invert bit has to be set based on AOB design
3535          * for HPD detection logic, update it based on VBT fields.
3536          */
3537
3538         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3539             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3540                 hotplug |= BXT_DDIA_HPD_INVERT;
3541         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3542             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3543                 hotplug |= BXT_DDIB_HPD_INVERT;
3544         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3545             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3546                 hotplug |= BXT_DDIC_HPD_INVERT;
3547
3548         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3549 }
3550
3551 static void ibx_irq_postinstall(struct drm_device *dev)
3552 {
3553         struct drm_i915_private *dev_priv = to_i915(dev);
3554         u32 mask;
3555
3556         if (HAS_PCH_NOP(dev))
3557                 return;
3558
3559         if (HAS_PCH_IBX(dev))
3560                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3561         else
3562                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3563
3564         gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3565         I915_WRITE(SDEIMR, ~mask);
3566 }
3567
3568 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3569 {
3570         struct drm_i915_private *dev_priv = to_i915(dev);
3571         u32 pm_irqs, gt_irqs;
3572
3573         pm_irqs = gt_irqs = 0;
3574
3575         dev_priv->gt_irq_mask = ~0;
3576         if (HAS_L3_DPF(dev)) {
3577                 /* L3 parity interrupt is always unmasked. */
3578                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3579                 gt_irqs |= GT_PARITY_ERROR(dev);
3580         }
3581
3582         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3583         if (IS_GEN5(dev)) {
3584                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3585         } else {
3586                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3587         }
3588
3589         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3590
3591         if (INTEL_INFO(dev)->gen >= 6) {
3592                 /*
3593                  * RPS interrupts will get enabled/disabled on demand when RPS
3594                  * itself is enabled/disabled.
3595                  */
3596                 if (HAS_VEBOX(dev))
3597                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3598
3599                 dev_priv->pm_irq_mask = 0xffffffff;
3600                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3601         }
3602 }
3603
3604 static int ironlake_irq_postinstall(struct drm_device *dev)
3605 {
3606         struct drm_i915_private *dev_priv = to_i915(dev);
3607         u32 display_mask, extra_mask;
3608
3609         if (INTEL_INFO(dev)->gen >= 7) {
3610                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3611                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3612                                 DE_PLANEB_FLIP_DONE_IVB |
3613                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3614                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3615                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3616                               DE_DP_A_HOTPLUG_IVB);
3617         } else {
3618                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3619                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3620                                 DE_AUX_CHANNEL_A |
3621                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3622                                 DE_POISON);
3623                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3624                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3625                               DE_DP_A_HOTPLUG);
3626         }
3627
3628         dev_priv->irq_mask = ~display_mask;
3629
3630         I915_WRITE(HWSTAM, 0xeffe);
3631
3632         ibx_irq_pre_postinstall(dev);
3633
3634         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3635
3636         gen5_gt_irq_postinstall(dev);
3637
3638         ibx_irq_postinstall(dev);
3639
3640         if (IS_IRONLAKE_M(dev)) {
3641                 /* Enable PCU event interrupts
3642                  *
3643                  * spinlocking not required here for correctness since interrupt
3644                  * setup is guaranteed to run in single-threaded context. But we
3645                  * need it to make the assert_spin_locked happy. */
3646                 spin_lock_irq(&dev_priv->irq_lock);
3647                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3648                 spin_unlock_irq(&dev_priv->irq_lock);
3649         }
3650
3651         return 0;
3652 }
3653
3654 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3655 {
3656         assert_spin_locked(&dev_priv->irq_lock);
3657
3658         if (dev_priv->display_irqs_enabled)
3659                 return;
3660
3661         dev_priv->display_irqs_enabled = true;
3662
3663         if (intel_irqs_enabled(dev_priv)) {
3664                 vlv_display_irq_reset(dev_priv);
3665                 vlv_display_irq_postinstall(dev_priv);
3666         }
3667 }
3668
3669 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3670 {
3671         assert_spin_locked(&dev_priv->irq_lock);
3672
3673         if (!dev_priv->display_irqs_enabled)
3674                 return;
3675
3676         dev_priv->display_irqs_enabled = false;
3677
3678         if (intel_irqs_enabled(dev_priv))
3679                 vlv_display_irq_reset(dev_priv);
3680 }
3681
3682
3683 static int valleyview_irq_postinstall(struct drm_device *dev)
3684 {
3685         struct drm_i915_private *dev_priv = to_i915(dev);
3686
3687         gen5_gt_irq_postinstall(dev);
3688
3689         spin_lock_irq(&dev_priv->irq_lock);
3690         if (dev_priv->display_irqs_enabled)
3691                 vlv_display_irq_postinstall(dev_priv);
3692         spin_unlock_irq(&dev_priv->irq_lock);
3693
3694         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3695         POSTING_READ(VLV_MASTER_IER);
3696
3697         return 0;
3698 }
3699
3700 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3701 {
3702         /* These are interrupts we'll toggle with the ring mask register */
3703         uint32_t gt_interrupts[] = {
3704                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3705                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3706                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3707                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3708                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3709                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3710                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3711                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3712                 0,
3713                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3714                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3715                 };
3716
3717         if (HAS_L3_DPF(dev_priv))
3718                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3719
3720         dev_priv->pm_irq_mask = 0xffffffff;
3721         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3722         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3723         /*
3724          * RPS interrupts will get enabled/disabled on demand when RPS itself
3725          * is enabled/disabled.
3726          */
3727         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3728         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3729 }
3730
3731 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3732 {
3733         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3734         uint32_t de_pipe_enables;
3735         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3736         u32 de_port_enables;
3737         u32 de_misc_masked = GEN8_DE_MISC_GSE;
3738         enum pipe pipe;
3739
3740         if (INTEL_INFO(dev_priv)->gen >= 9) {
3741                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3742                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3743                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3744                                   GEN9_AUX_CHANNEL_D;
3745                 if (IS_BROXTON(dev_priv))
3746                         de_port_masked |= BXT_DE_PORT_GMBUS;
3747         } else {
3748                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3749                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3750         }
3751
3752         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3753                                            GEN8_PIPE_FIFO_UNDERRUN;
3754
3755         de_port_enables = de_port_masked;
3756         if (IS_BROXTON(dev_priv))
3757                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3758         else if (IS_BROADWELL(dev_priv))
3759                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3760
3761         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3762         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3763         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3764
3765         for_each_pipe(dev_priv, pipe)
3766                 if (intel_display_power_is_enabled(dev_priv,
3767                                 POWER_DOMAIN_PIPE(pipe)))
3768                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3769                                           dev_priv->de_irq_mask[pipe],
3770                                           de_pipe_enables);
3771
3772         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3773         GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3774 }
3775
3776 static int gen8_irq_postinstall(struct drm_device *dev)
3777 {
3778         struct drm_i915_private *dev_priv = to_i915(dev);
3779
3780         if (HAS_PCH_SPLIT(dev))
3781                 ibx_irq_pre_postinstall(dev);
3782
3783         gen8_gt_irq_postinstall(dev_priv);
3784         gen8_de_irq_postinstall(dev_priv);
3785
3786         if (HAS_PCH_SPLIT(dev))
3787                 ibx_irq_postinstall(dev);
3788
3789         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3790         POSTING_READ(GEN8_MASTER_IRQ);
3791
3792         return 0;
3793 }
3794
3795 static int cherryview_irq_postinstall(struct drm_device *dev)
3796 {
3797         struct drm_i915_private *dev_priv = to_i915(dev);
3798
3799         gen8_gt_irq_postinstall(dev_priv);
3800
3801         spin_lock_irq(&dev_priv->irq_lock);
3802         if (dev_priv->display_irqs_enabled)
3803                 vlv_display_irq_postinstall(dev_priv);
3804         spin_unlock_irq(&dev_priv->irq_lock);
3805
3806         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3807         POSTING_READ(GEN8_MASTER_IRQ);
3808
3809         return 0;
3810 }
3811
3812 static void gen8_irq_uninstall(struct drm_device *dev)
3813 {
3814         struct drm_i915_private *dev_priv = to_i915(dev);
3815
3816         if (!dev_priv)
3817                 return;
3818
3819         gen8_irq_reset(dev);
3820 }
3821
3822 static void valleyview_irq_uninstall(struct drm_device *dev)
3823 {
3824         struct drm_i915_private *dev_priv = to_i915(dev);
3825
3826         if (!dev_priv)
3827                 return;
3828
3829         I915_WRITE(VLV_MASTER_IER, 0);
3830         POSTING_READ(VLV_MASTER_IER);
3831
3832         gen5_gt_irq_reset(dev);
3833
3834         I915_WRITE(HWSTAM, 0xffffffff);
3835
3836         spin_lock_irq(&dev_priv->irq_lock);
3837         if (dev_priv->display_irqs_enabled)
3838                 vlv_display_irq_reset(dev_priv);
3839         spin_unlock_irq(&dev_priv->irq_lock);
3840 }
3841
3842 static void cherryview_irq_uninstall(struct drm_device *dev)
3843 {
3844         struct drm_i915_private *dev_priv = to_i915(dev);
3845
3846         if (!dev_priv)
3847                 return;
3848
3849         I915_WRITE(GEN8_MASTER_IRQ, 0);
3850         POSTING_READ(GEN8_MASTER_IRQ);
3851
3852         gen8_gt_irq_reset(dev_priv);
3853
3854         GEN5_IRQ_RESET(GEN8_PCU_);
3855
3856         spin_lock_irq(&dev_priv->irq_lock);
3857         if (dev_priv->display_irqs_enabled)
3858                 vlv_display_irq_reset(dev_priv);
3859         spin_unlock_irq(&dev_priv->irq_lock);
3860 }
3861
3862 static void ironlake_irq_uninstall(struct drm_device *dev)
3863 {
3864         struct drm_i915_private *dev_priv = to_i915(dev);
3865
3866         if (!dev_priv)
3867                 return;
3868
3869         ironlake_irq_reset(dev);
3870 }
3871
3872 static void i8xx_irq_preinstall(struct drm_device * dev)
3873 {
3874         struct drm_i915_private *dev_priv = to_i915(dev);
3875         int pipe;
3876
3877         for_each_pipe(dev_priv, pipe)
3878                 I915_WRITE(PIPESTAT(pipe), 0);
3879         I915_WRITE16(IMR, 0xffff);
3880         I915_WRITE16(IER, 0x0);
3881         POSTING_READ16(IER);
3882 }
3883
3884 static int i8xx_irq_postinstall(struct drm_device *dev)
3885 {
3886         struct drm_i915_private *dev_priv = to_i915(dev);
3887
3888         I915_WRITE16(EMR,
3889                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3890
3891         /* Unmask the interrupts that we always want on. */
3892         dev_priv->irq_mask =
3893                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3894                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3895                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3896                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3897         I915_WRITE16(IMR, dev_priv->irq_mask);
3898
3899         I915_WRITE16(IER,
3900                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3901                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3902                      I915_USER_INTERRUPT);
3903         POSTING_READ16(IER);
3904
3905         /* Interrupt setup is already guaranteed to be single-threaded, this is
3906          * just to make the assert_spin_locked check happy. */
3907         spin_lock_irq(&dev_priv->irq_lock);
3908         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3909         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3910         spin_unlock_irq(&dev_priv->irq_lock);
3911
3912         return 0;
3913 }
3914
3915 /*
3916  * Returns true when a page flip has completed.
3917  */
3918 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3919                                int plane, int pipe, u32 iir)
3920 {
3921         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3922
3923         if (!intel_pipe_handle_vblank(dev_priv, pipe))
3924                 return false;
3925
3926         if ((iir & flip_pending) == 0)
3927                 goto check_page_flip;
3928
3929         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3930          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3931          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3932          * the flip is completed (no longer pending). Since this doesn't raise
3933          * an interrupt per se, we watch for the change at vblank.
3934          */
3935         if (I915_READ16(ISR) & flip_pending)
3936                 goto check_page_flip;
3937
3938         intel_finish_page_flip_cs(dev_priv, pipe);
3939         return true;
3940
3941 check_page_flip:
3942         intel_check_page_flip(dev_priv, pipe);
3943         return false;
3944 }
3945
3946 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3947 {
3948         struct drm_device *dev = arg;
3949         struct drm_i915_private *dev_priv = to_i915(dev);
3950         u16 iir, new_iir;
3951         u32 pipe_stats[2];
3952         int pipe;
3953         u16 flip_mask =
3954                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3955                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3956         irqreturn_t ret;
3957
3958         if (!intel_irqs_enabled(dev_priv))
3959                 return IRQ_NONE;
3960
3961         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3962         disable_rpm_wakeref_asserts(dev_priv);
3963
3964         ret = IRQ_NONE;
3965         iir = I915_READ16(IIR);
3966         if (iir == 0)
3967                 goto out;
3968
3969         while (iir & ~flip_mask) {
3970                 /* Can't rely on pipestat interrupt bit in iir as it might
3971                  * have been cleared after the pipestat interrupt was received.
3972                  * It doesn't set the bit in iir again, but it still produces
3973                  * interrupts (for non-MSI).
3974                  */
3975                 spin_lock(&dev_priv->irq_lock);
3976                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3977                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3978
3979                 for_each_pipe(dev_priv, pipe) {
3980                         i915_reg_t reg = PIPESTAT(pipe);
3981                         pipe_stats[pipe] = I915_READ(reg);
3982
3983                         /*
3984                          * Clear the PIPE*STAT regs before the IIR
3985                          */
3986                         if (pipe_stats[pipe] & 0x8000ffff)
3987                                 I915_WRITE(reg, pipe_stats[pipe]);
3988                 }
3989                 spin_unlock(&dev_priv->irq_lock);
3990
3991                 I915_WRITE16(IIR, iir & ~flip_mask);
3992                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3993
3994                 if (iir & I915_USER_INTERRUPT)
3995                         notify_ring(&dev_priv->engine[RCS]);
3996
3997                 for_each_pipe(dev_priv, pipe) {
3998                         int plane = pipe;
3999                         if (HAS_FBC(dev_priv))
4000                                 plane = !plane;
4001
4002                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4003                             i8xx_handle_vblank(dev_priv, plane, pipe, iir))
4004                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4005
4006                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4007                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4008
4009                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4010                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4011                                                                     pipe);
4012                 }
4013
4014                 iir = new_iir;
4015         }
4016         ret = IRQ_HANDLED;
4017
4018 out:
4019         enable_rpm_wakeref_asserts(dev_priv);
4020
4021         return ret;
4022 }
4023
4024 static void i8xx_irq_uninstall(struct drm_device * dev)
4025 {
4026         struct drm_i915_private *dev_priv = to_i915(dev);
4027         int pipe;
4028
4029         for_each_pipe(dev_priv, pipe) {
4030                 /* Clear enable bits; then clear status bits */
4031                 I915_WRITE(PIPESTAT(pipe), 0);
4032                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4033         }
4034         I915_WRITE16(IMR, 0xffff);
4035         I915_WRITE16(IER, 0x0);
4036         I915_WRITE16(IIR, I915_READ16(IIR));
4037 }
4038
4039 static void i915_irq_preinstall(struct drm_device * dev)
4040 {
4041         struct drm_i915_private *dev_priv = to_i915(dev);
4042         int pipe;
4043
4044         if (I915_HAS_HOTPLUG(dev)) {
4045                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4046                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4047         }
4048
4049         I915_WRITE16(HWSTAM, 0xeffe);
4050         for_each_pipe(dev_priv, pipe)
4051                 I915_WRITE(PIPESTAT(pipe), 0);
4052         I915_WRITE(IMR, 0xffffffff);
4053         I915_WRITE(IER, 0x0);
4054         POSTING_READ(IER);
4055 }
4056
4057 static int i915_irq_postinstall(struct drm_device *dev)
4058 {
4059         struct drm_i915_private *dev_priv = to_i915(dev);
4060         u32 enable_mask;
4061
4062         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4063
4064         /* Unmask the interrupts that we always want on. */
4065         dev_priv->irq_mask =
4066                 ~(I915_ASLE_INTERRUPT |
4067                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4068                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4069                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4070                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4071
4072         enable_mask =
4073                 I915_ASLE_INTERRUPT |
4074                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4075                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4076                 I915_USER_INTERRUPT;
4077
4078         if (I915_HAS_HOTPLUG(dev)) {
4079                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4080                 POSTING_READ(PORT_HOTPLUG_EN);
4081
4082                 /* Enable in IER... */
4083                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4084                 /* and unmask in IMR */
4085                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4086         }
4087
4088         I915_WRITE(IMR, dev_priv->irq_mask);
4089         I915_WRITE(IER, enable_mask);
4090         POSTING_READ(IER);
4091
4092         i915_enable_asle_pipestat(dev_priv);
4093
4094         /* Interrupt setup is already guaranteed to be single-threaded, this is
4095          * just to make the assert_spin_locked check happy. */
4096         spin_lock_irq(&dev_priv->irq_lock);
4097         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4098         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4099         spin_unlock_irq(&dev_priv->irq_lock);
4100
4101         return 0;
4102 }
4103
4104 /*
4105  * Returns true when a page flip has completed.
4106  */
4107 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
4108                                int plane, int pipe, u32 iir)
4109 {
4110         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4111
4112         if (!intel_pipe_handle_vblank(dev_priv, pipe))
4113                 return false;
4114
4115         if ((iir & flip_pending) == 0)
4116                 goto check_page_flip;
4117
4118         /* We detect FlipDone by looking for the change in PendingFlip from '1'
4119          * to '0' on the following vblank, i.e. IIR has the Pendingflip
4120          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4121          * the flip is completed (no longer pending). Since this doesn't raise
4122          * an interrupt per se, we watch for the change at vblank.
4123          */
4124         if (I915_READ(ISR) & flip_pending)
4125                 goto check_page_flip;
4126
4127         intel_finish_page_flip_cs(dev_priv, pipe);
4128         return true;
4129
4130 check_page_flip:
4131         intel_check_page_flip(dev_priv, pipe);
4132         return false;
4133 }
4134
4135 static irqreturn_t i915_irq_handler(int irq, void *arg)
4136 {
4137         struct drm_device *dev = arg;
4138         struct drm_i915_private *dev_priv = to_i915(dev);
4139         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4140         u32 flip_mask =
4141                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4142                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4143         int pipe, ret = IRQ_NONE;
4144
4145         if (!intel_irqs_enabled(dev_priv))
4146                 return IRQ_NONE;
4147
4148         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4149         disable_rpm_wakeref_asserts(dev_priv);
4150
4151         iir = I915_READ(IIR);
4152         do {
4153                 bool irq_received = (iir & ~flip_mask) != 0;
4154                 bool blc_event = false;
4155
4156                 /* Can't rely on pipestat interrupt bit in iir as it might
4157                  * have been cleared after the pipestat interrupt was received.
4158                  * It doesn't set the bit in iir again, but it still produces
4159                  * interrupts (for non-MSI).
4160                  */
4161                 spin_lock(&dev_priv->irq_lock);
4162                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4163                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4164
4165                 for_each_pipe(dev_priv, pipe) {
4166                         i915_reg_t reg = PIPESTAT(pipe);
4167                         pipe_stats[pipe] = I915_READ(reg);
4168
4169                         /* Clear the PIPE*STAT regs before the IIR */
4170                         if (pipe_stats[pipe] & 0x8000ffff) {
4171                                 I915_WRITE(reg, pipe_stats[pipe]);
4172                                 irq_received = true;
4173                         }
4174                 }
4175                 spin_unlock(&dev_priv->irq_lock);
4176
4177                 if (!irq_received)
4178                         break;
4179
4180                 /* Consume port.  Then clear IIR or we'll miss events */
4181                 if (I915_HAS_HOTPLUG(dev_priv) &&
4182                     iir & I915_DISPLAY_PORT_INTERRUPT) {
4183                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4184                         if (hotplug_status)
4185                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4186                 }
4187
4188                 I915_WRITE(IIR, iir & ~flip_mask);
4189                 new_iir = I915_READ(IIR); /* Flush posted writes */
4190
4191                 if (iir & I915_USER_INTERRUPT)
4192                         notify_ring(&dev_priv->engine[RCS]);
4193
4194                 for_each_pipe(dev_priv, pipe) {
4195                         int plane = pipe;
4196                         if (HAS_FBC(dev_priv))
4197                                 plane = !plane;
4198
4199                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4200                             i915_handle_vblank(dev_priv, plane, pipe, iir))
4201                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4202
4203                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4204                                 blc_event = true;
4205
4206                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4207                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4208
4209                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4210                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4211                                                                     pipe);
4212                 }
4213
4214                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4215                         intel_opregion_asle_intr(dev_priv);
4216
4217                 /* With MSI, interrupts are only generated when iir
4218                  * transitions from zero to nonzero.  If another bit got
4219                  * set while we were handling the existing iir bits, then
4220                  * we would never get another interrupt.
4221                  *
4222                  * This is fine on non-MSI as well, as if we hit this path
4223                  * we avoid exiting the interrupt handler only to generate
4224                  * another one.
4225                  *
4226                  * Note that for MSI this could cause a stray interrupt report
4227                  * if an interrupt landed in the time between writing IIR and
4228                  * the posting read.  This should be rare enough to never
4229                  * trigger the 99% of 100,000 interrupts test for disabling
4230                  * stray interrupts.
4231                  */
4232                 ret = IRQ_HANDLED;
4233                 iir = new_iir;
4234         } while (iir & ~flip_mask);
4235
4236         enable_rpm_wakeref_asserts(dev_priv);
4237
4238         return ret;
4239 }
4240
4241 static void i915_irq_uninstall(struct drm_device * dev)
4242 {
4243         struct drm_i915_private *dev_priv = to_i915(dev);
4244         int pipe;
4245
4246         if (I915_HAS_HOTPLUG(dev)) {
4247                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4248                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4249         }
4250
4251         I915_WRITE16(HWSTAM, 0xffff);
4252         for_each_pipe(dev_priv, pipe) {
4253                 /* Clear enable bits; then clear status bits */
4254                 I915_WRITE(PIPESTAT(pipe), 0);
4255                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4256         }
4257         I915_WRITE(IMR, 0xffffffff);
4258         I915_WRITE(IER, 0x0);
4259
4260         I915_WRITE(IIR, I915_READ(IIR));
4261 }
4262
4263 static void i965_irq_preinstall(struct drm_device * dev)
4264 {
4265         struct drm_i915_private *dev_priv = to_i915(dev);
4266         int pipe;
4267
4268         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4269         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4270
4271         I915_WRITE(HWSTAM, 0xeffe);
4272         for_each_pipe(dev_priv, pipe)
4273                 I915_WRITE(PIPESTAT(pipe), 0);
4274         I915_WRITE(IMR, 0xffffffff);
4275         I915_WRITE(IER, 0x0);
4276         POSTING_READ(IER);
4277 }
4278
4279 static int i965_irq_postinstall(struct drm_device *dev)
4280 {
4281         struct drm_i915_private *dev_priv = to_i915(dev);
4282         u32 enable_mask;
4283         u32 error_mask;
4284
4285         /* Unmask the interrupts that we always want on. */
4286         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4287                                I915_DISPLAY_PORT_INTERRUPT |
4288                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4289                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4290                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4291                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4292                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4293
4294         enable_mask = ~dev_priv->irq_mask;
4295         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4296                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4297         enable_mask |= I915_USER_INTERRUPT;
4298
4299         if (IS_G4X(dev_priv))
4300                 enable_mask |= I915_BSD_USER_INTERRUPT;
4301
4302         /* Interrupt setup is already guaranteed to be single-threaded, this is
4303          * just to make the assert_spin_locked check happy. */
4304         spin_lock_irq(&dev_priv->irq_lock);
4305         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4306         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4307         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4308         spin_unlock_irq(&dev_priv->irq_lock);
4309
4310         /*
4311          * Enable some error detection, note the instruction error mask
4312          * bit is reserved, so we leave it masked.
4313          */
4314         if (IS_G4X(dev_priv)) {
4315                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4316                                GM45_ERROR_MEM_PRIV |
4317                                GM45_ERROR_CP_PRIV |
4318                                I915_ERROR_MEMORY_REFRESH);
4319         } else {
4320                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4321                                I915_ERROR_MEMORY_REFRESH);
4322         }
4323         I915_WRITE(EMR, error_mask);
4324
4325         I915_WRITE(IMR, dev_priv->irq_mask);
4326         I915_WRITE(IER, enable_mask);
4327         POSTING_READ(IER);
4328
4329         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4330         POSTING_READ(PORT_HOTPLUG_EN);
4331
4332         i915_enable_asle_pipestat(dev_priv);
4333
4334         return 0;
4335 }
4336
4337 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4338 {
4339         u32 hotplug_en;
4340
4341         assert_spin_locked(&dev_priv->irq_lock);
4342
4343         /* Note HDMI and DP share hotplug bits */
4344         /* enable bits are the same for all generations */
4345         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4346         /* Programming the CRT detection parameters tends
4347            to generate a spurious hotplug event about three
4348            seconds later.  So just do it once.
4349         */
4350         if (IS_G4X(dev_priv))
4351                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4352         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4353
4354         /* Ignore TV since it's buggy */
4355         i915_hotplug_interrupt_update_locked(dev_priv,
4356                                              HOTPLUG_INT_EN_MASK |
4357                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4358                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4359                                              hotplug_en);
4360 }
4361
4362 static irqreturn_t i965_irq_handler(int irq, void *arg)
4363 {
4364         struct drm_device *dev = arg;
4365         struct drm_i915_private *dev_priv = to_i915(dev);
4366         u32 iir, new_iir;
4367         u32 pipe_stats[I915_MAX_PIPES];
4368         int ret = IRQ_NONE, pipe;
4369         u32 flip_mask =
4370                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4371                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4372
4373         if (!intel_irqs_enabled(dev_priv))
4374                 return IRQ_NONE;
4375
4376         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4377         disable_rpm_wakeref_asserts(dev_priv);
4378
4379         iir = I915_READ(IIR);
4380
4381         for (;;) {
4382                 bool irq_received = (iir & ~flip_mask) != 0;
4383                 bool blc_event = false;
4384
4385                 /* Can't rely on pipestat interrupt bit in iir as it might
4386                  * have been cleared after the pipestat interrupt was received.
4387                  * It doesn't set the bit in iir again, but it still produces
4388                  * interrupts (for non-MSI).
4389                  */
4390                 spin_lock(&dev_priv->irq_lock);
4391                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4392                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4393
4394                 for_each_pipe(dev_priv, pipe) {
4395                         i915_reg_t reg = PIPESTAT(pipe);
4396                         pipe_stats[pipe] = I915_READ(reg);
4397
4398                         /*
4399                          * Clear the PIPE*STAT regs before the IIR
4400                          */
4401                         if (pipe_stats[pipe] & 0x8000ffff) {
4402                                 I915_WRITE(reg, pipe_stats[pipe]);
4403                                 irq_received = true;
4404                         }
4405                 }
4406                 spin_unlock(&dev_priv->irq_lock);
4407
4408                 if (!irq_received)
4409                         break;
4410
4411                 ret = IRQ_HANDLED;
4412
4413                 /* Consume port.  Then clear IIR or we'll miss events */
4414                 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4415                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4416                         if (hotplug_status)
4417                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4418                 }
4419
4420                 I915_WRITE(IIR, iir & ~flip_mask);
4421                 new_iir = I915_READ(IIR); /* Flush posted writes */
4422
4423                 if (iir & I915_USER_INTERRUPT)
4424                         notify_ring(&dev_priv->engine[RCS]);
4425                 if (iir & I915_BSD_USER_INTERRUPT)
4426                         notify_ring(&dev_priv->engine[VCS]);
4427
4428                 for_each_pipe(dev_priv, pipe) {
4429                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4430                             i915_handle_vblank(dev_priv, pipe, pipe, iir))
4431                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4432
4433                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4434                                 blc_event = true;
4435
4436                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4437                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4438
4439                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4440                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4441                 }
4442
4443                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4444                         intel_opregion_asle_intr(dev_priv);
4445
4446                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4447                         gmbus_irq_handler(dev_priv);
4448
4449                 /* With MSI, interrupts are only generated when iir
4450                  * transitions from zero to nonzero.  If another bit got
4451                  * set while we were handling the existing iir bits, then
4452                  * we would never get another interrupt.
4453                  *
4454                  * This is fine on non-MSI as well, as if we hit this path
4455                  * we avoid exiting the interrupt handler only to generate
4456                  * another one.
4457                  *
4458                  * Note that for MSI this could cause a stray interrupt report
4459                  * if an interrupt landed in the time between writing IIR and
4460                  * the posting read.  This should be rare enough to never
4461                  * trigger the 99% of 100,000 interrupts test for disabling
4462                  * stray interrupts.
4463                  */
4464                 iir = new_iir;
4465         }
4466
4467         enable_rpm_wakeref_asserts(dev_priv);
4468
4469         return ret;
4470 }
4471
4472 static void i965_irq_uninstall(struct drm_device * dev)
4473 {
4474         struct drm_i915_private *dev_priv = to_i915(dev);
4475         int pipe;
4476
4477         if (!dev_priv)
4478                 return;
4479
4480         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4481         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4482
4483         I915_WRITE(HWSTAM, 0xffffffff);
4484         for_each_pipe(dev_priv, pipe)
4485                 I915_WRITE(PIPESTAT(pipe), 0);
4486         I915_WRITE(IMR, 0xffffffff);
4487         I915_WRITE(IER, 0x0);
4488
4489         for_each_pipe(dev_priv, pipe)
4490                 I915_WRITE(PIPESTAT(pipe),
4491                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4492         I915_WRITE(IIR, I915_READ(IIR));
4493 }
4494
4495 /**
4496  * intel_irq_init - initializes irq support
4497  * @dev_priv: i915 device instance
4498  *
4499  * This function initializes all the irq support including work items, timers
4500  * and all the vtables. It does not setup the interrupt itself though.
4501  */
4502 void intel_irq_init(struct drm_i915_private *dev_priv)
4503 {
4504         struct drm_device *dev = &dev_priv->drm;
4505
4506         intel_hpd_init_work(dev_priv);
4507
4508         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4509         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4510
4511         /* Let's track the enabled rps events */
4512         if (IS_VALLEYVIEW(dev_priv))
4513                 /* WaGsvRC0ResidencyMethod:vlv */
4514                 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4515         else
4516                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4517
4518         dev_priv->rps.pm_intr_keep = 0;
4519
4520         /*
4521          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
4522          * if GEN6_PM_UP_EI_EXPIRED is masked.
4523          *
4524          * TODO: verify if this can be reproduced on VLV,CHV.
4525          */
4526         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
4527                 dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED;
4528
4529         if (INTEL_INFO(dev_priv)->gen >= 8)
4530                 dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_GUC;
4531
4532         INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4533                           i915_hangcheck_elapsed);
4534
4535         if (IS_GEN2(dev_priv)) {
4536                 /* Gen2 doesn't have a hardware frame counter */
4537                 dev->max_vblank_count = 0;
4538                 dev->driver->get_vblank_counter = drm_vblank_no_hw_counter;
4539         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4540                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4541                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4542         } else {
4543                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4544                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4545         }
4546
4547         /*
4548          * Opt out of the vblank disable timer on everything except gen2.
4549          * Gen2 doesn't have a hardware frame counter and so depends on
4550          * vblank interrupts to produce sane vblank seuquence numbers.
4551          */
4552         if (!IS_GEN2(dev_priv))
4553                 dev->vblank_disable_immediate = true;
4554
4555         dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4556         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4557
4558         if (IS_CHERRYVIEW(dev_priv)) {
4559                 dev->driver->irq_handler = cherryview_irq_handler;
4560                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4561                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4562                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4563                 dev->driver->enable_vblank = valleyview_enable_vblank;
4564                 dev->driver->disable_vblank = valleyview_disable_vblank;
4565                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4566         } else if (IS_VALLEYVIEW(dev_priv)) {
4567                 dev->driver->irq_handler = valleyview_irq_handler;
4568                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4569                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4570                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4571                 dev->driver->enable_vblank = valleyview_enable_vblank;
4572                 dev->driver->disable_vblank = valleyview_disable_vblank;
4573                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4574         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4575                 dev->driver->irq_handler = gen8_irq_handler;
4576                 dev->driver->irq_preinstall = gen8_irq_reset;
4577                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4578                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4579                 dev->driver->enable_vblank = gen8_enable_vblank;
4580                 dev->driver->disable_vblank = gen8_disable_vblank;
4581                 if (IS_BROXTON(dev))
4582                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4583                 else if (HAS_PCH_SPT(dev) || HAS_PCH_KBP(dev))
4584                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4585                 else
4586                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4587         } else if (HAS_PCH_SPLIT(dev)) {
4588                 dev->driver->irq_handler = ironlake_irq_handler;
4589                 dev->driver->irq_preinstall = ironlake_irq_reset;
4590                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4591                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4592                 dev->driver->enable_vblank = ironlake_enable_vblank;
4593                 dev->driver->disable_vblank = ironlake_disable_vblank;
4594                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4595         } else {
4596                 if (IS_GEN2(dev_priv)) {
4597                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4598                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4599                         dev->driver->irq_handler = i8xx_irq_handler;
4600                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4601                 } else if (IS_GEN3(dev_priv)) {
4602                         dev->driver->irq_preinstall = i915_irq_preinstall;
4603                         dev->driver->irq_postinstall = i915_irq_postinstall;
4604                         dev->driver->irq_uninstall = i915_irq_uninstall;
4605                         dev->driver->irq_handler = i915_irq_handler;
4606                 } else {
4607                         dev->driver->irq_preinstall = i965_irq_preinstall;
4608                         dev->driver->irq_postinstall = i965_irq_postinstall;
4609                         dev->driver->irq_uninstall = i965_irq_uninstall;
4610                         dev->driver->irq_handler = i965_irq_handler;
4611                 }
4612                 if (I915_HAS_HOTPLUG(dev_priv))
4613                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4614                 dev->driver->enable_vblank = i915_enable_vblank;
4615                 dev->driver->disable_vblank = i915_disable_vblank;
4616         }
4617 }
4618
4619 /**
4620  * intel_irq_install - enables the hardware interrupt
4621  * @dev_priv: i915 device instance
4622  *
4623  * This function enables the hardware interrupt handling, but leaves the hotplug
4624  * handling still disabled. It is called after intel_irq_init().
4625  *
4626  * In the driver load and resume code we need working interrupts in a few places
4627  * but don't want to deal with the hassle of concurrent probe and hotplug
4628  * workers. Hence the split into this two-stage approach.
4629  */
4630 int intel_irq_install(struct drm_i915_private *dev_priv)
4631 {
4632         /*
4633          * We enable some interrupt sources in our postinstall hooks, so mark
4634          * interrupts as enabled _before_ actually enabling them to avoid
4635          * special cases in our ordering checks.
4636          */
4637         dev_priv->pm.irqs_enabled = true;
4638
4639         return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4640 }
4641
4642 /**
4643  * intel_irq_uninstall - finilizes all irq handling
4644  * @dev_priv: i915 device instance
4645  *
4646  * This stops interrupt and hotplug handling and unregisters and frees all
4647  * resources acquired in the init functions.
4648  */
4649 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4650 {
4651         drm_irq_uninstall(&dev_priv->drm);
4652         intel_hpd_cancel_work(dev_priv);
4653         dev_priv->pm.irqs_enabled = false;
4654 }
4655
4656 /**
4657  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4658  * @dev_priv: i915 device instance
4659  *
4660  * This function is used to disable interrupts at runtime, both in the runtime
4661  * pm and the system suspend/resume code.
4662  */
4663 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4664 {
4665         dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4666         dev_priv->pm.irqs_enabled = false;
4667         synchronize_irq(dev_priv->drm.irq);
4668 }
4669
4670 /**
4671  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4672  * @dev_priv: i915 device instance
4673  *
4674  * This function is used to enable interrupts at runtime, both in the runtime
4675  * pm and the system suspend/resume code.
4676  */
4677 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4678 {
4679         dev_priv->pm.irqs_enabled = true;
4680         dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4681         dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4682 }