Merge tag 'drm-misc-next-2017-01-23' of git://anongit.freedesktop.org/git/drm-misc...
[linux-block.git] / drivers / gpu / drm / i915 / i915_gem_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27
28 #include "i915_drv.h"
29
30 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
31 {
32         return "i915";
33 }
34
35 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
36 {
37         return to_request(fence)->timeline->common->name;
38 }
39
40 static bool i915_fence_signaled(struct dma_fence *fence)
41 {
42         return i915_gem_request_completed(to_request(fence));
43 }
44
45 static bool i915_fence_enable_signaling(struct dma_fence *fence)
46 {
47         if (i915_fence_signaled(fence))
48                 return false;
49
50         intel_engine_enable_signaling(to_request(fence));
51         return true;
52 }
53
54 static signed long i915_fence_wait(struct dma_fence *fence,
55                                    bool interruptible,
56                                    signed long timeout)
57 {
58         return i915_wait_request(to_request(fence), interruptible, timeout);
59 }
60
61 static void i915_fence_release(struct dma_fence *fence)
62 {
63         struct drm_i915_gem_request *req = to_request(fence);
64
65         /* The request is put onto a RCU freelist (i.e. the address
66          * is immediately reused), mark the fences as being freed now.
67          * Otherwise the debugobjects for the fences are only marked as
68          * freed when the slab cache itself is freed, and so we would get
69          * caught trying to reuse dead objects.
70          */
71         i915_sw_fence_fini(&req->submit);
72         i915_sw_fence_fini(&req->execute);
73
74         kmem_cache_free(req->i915->requests, req);
75 }
76
77 const struct dma_fence_ops i915_fence_ops = {
78         .get_driver_name = i915_fence_get_driver_name,
79         .get_timeline_name = i915_fence_get_timeline_name,
80         .enable_signaling = i915_fence_enable_signaling,
81         .signaled = i915_fence_signaled,
82         .wait = i915_fence_wait,
83         .release = i915_fence_release,
84 };
85
86 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
87                                    struct drm_file *file)
88 {
89         struct drm_i915_private *dev_private;
90         struct drm_i915_file_private *file_priv;
91
92         WARN_ON(!req || !file || req->file_priv);
93
94         if (!req || !file)
95                 return -EINVAL;
96
97         if (req->file_priv)
98                 return -EINVAL;
99
100         dev_private = req->i915;
101         file_priv = file->driver_priv;
102
103         spin_lock(&file_priv->mm.lock);
104         req->file_priv = file_priv;
105         list_add_tail(&req->client_list, &file_priv->mm.request_list);
106         spin_unlock(&file_priv->mm.lock);
107
108         return 0;
109 }
110
111 static inline void
112 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
113 {
114         struct drm_i915_file_private *file_priv = request->file_priv;
115
116         if (!file_priv)
117                 return;
118
119         spin_lock(&file_priv->mm.lock);
120         list_del(&request->client_list);
121         request->file_priv = NULL;
122         spin_unlock(&file_priv->mm.lock);
123 }
124
125 static struct i915_dependency *
126 i915_dependency_alloc(struct drm_i915_private *i915)
127 {
128         return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
129 }
130
131 static void
132 i915_dependency_free(struct drm_i915_private *i915,
133                      struct i915_dependency *dep)
134 {
135         kmem_cache_free(i915->dependencies, dep);
136 }
137
138 static void
139 __i915_priotree_add_dependency(struct i915_priotree *pt,
140                                struct i915_priotree *signal,
141                                struct i915_dependency *dep,
142                                unsigned long flags)
143 {
144         INIT_LIST_HEAD(&dep->dfs_link);
145         list_add(&dep->wait_link, &signal->waiters_list);
146         list_add(&dep->signal_link, &pt->signalers_list);
147         dep->signaler = signal;
148         dep->flags = flags;
149 }
150
151 static int
152 i915_priotree_add_dependency(struct drm_i915_private *i915,
153                              struct i915_priotree *pt,
154                              struct i915_priotree *signal)
155 {
156         struct i915_dependency *dep;
157
158         dep = i915_dependency_alloc(i915);
159         if (!dep)
160                 return -ENOMEM;
161
162         __i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
163         return 0;
164 }
165
166 static void
167 i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
168 {
169         struct i915_dependency *dep, *next;
170
171         GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));
172
173         /* Everyone we depended upon (the fences we wait to be signaled)
174          * should retire before us and remove themselves from our list.
175          * However, retirement is run independently on each timeline and
176          * so we may be called out-of-order.
177          */
178         list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
179                 list_del(&dep->wait_link);
180                 if (dep->flags & I915_DEPENDENCY_ALLOC)
181                         i915_dependency_free(i915, dep);
182         }
183
184         /* Remove ourselves from everyone who depends upon us */
185         list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
186                 list_del(&dep->signal_link);
187                 if (dep->flags & I915_DEPENDENCY_ALLOC)
188                         i915_dependency_free(i915, dep);
189         }
190 }
191
192 static void
193 i915_priotree_init(struct i915_priotree *pt)
194 {
195         INIT_LIST_HEAD(&pt->signalers_list);
196         INIT_LIST_HEAD(&pt->waiters_list);
197         RB_CLEAR_NODE(&pt->node);
198         pt->priority = INT_MIN;
199 }
200
201 void i915_gem_retire_noop(struct i915_gem_active *active,
202                           struct drm_i915_gem_request *request)
203 {
204         /* Space left intentionally blank */
205 }
206
207 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
208 {
209         struct intel_engine_cs *engine = request->engine;
210         struct i915_gem_active *active, *next;
211
212         lockdep_assert_held(&request->i915->drm.struct_mutex);
213         GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
214         GEM_BUG_ON(!i915_sw_fence_signaled(&request->execute));
215         GEM_BUG_ON(!i915_gem_request_completed(request));
216         GEM_BUG_ON(!request->i915->gt.active_requests);
217
218         trace_i915_gem_request_retire(request);
219
220         spin_lock_irq(&engine->timeline->lock);
221         list_del_init(&request->link);
222         spin_unlock_irq(&engine->timeline->lock);
223
224         /* We know the GPU must have read the request to have
225          * sent us the seqno + interrupt, so use the position
226          * of tail of the request to update the last known position
227          * of the GPU head.
228          *
229          * Note this requires that we are always called in request
230          * completion order.
231          */
232         list_del(&request->ring_link);
233         request->ring->last_retired_head = request->postfix;
234         if (!--request->i915->gt.active_requests) {
235                 GEM_BUG_ON(!request->i915->gt.awake);
236                 mod_delayed_work(request->i915->wq,
237                                  &request->i915->gt.idle_work,
238                                  msecs_to_jiffies(100));
239         }
240
241         /* Walk through the active list, calling retire on each. This allows
242          * objects to track their GPU activity and mark themselves as idle
243          * when their *last* active request is completed (updating state
244          * tracking lists for eviction, active references for GEM, etc).
245          *
246          * As the ->retire() may free the node, we decouple it first and
247          * pass along the auxiliary information (to avoid dereferencing
248          * the node after the callback).
249          */
250         list_for_each_entry_safe(active, next, &request->active_list, link) {
251                 /* In microbenchmarks or focusing upon time inside the kernel,
252                  * we may spend an inordinate amount of time simply handling
253                  * the retirement of requests and processing their callbacks.
254                  * Of which, this loop itself is particularly hot due to the
255                  * cache misses when jumping around the list of i915_gem_active.
256                  * So we try to keep this loop as streamlined as possible and
257                  * also prefetch the next i915_gem_active to try and hide
258                  * the likely cache miss.
259                  */
260                 prefetchw(next);
261
262                 INIT_LIST_HEAD(&active->link);
263                 RCU_INIT_POINTER(active->request, NULL);
264
265                 active->retire(active, request);
266         }
267
268         i915_gem_request_remove_from_client(request);
269
270         /* Retirement decays the ban score as it is a sign of ctx progress */
271         if (request->ctx->ban_score > 0)
272                 request->ctx->ban_score--;
273
274         /* The backing object for the context is done after switching to the
275          * *next* context. Therefore we cannot retire the previous context until
276          * the next context has already started running. However, since we
277          * cannot take the required locks at i915_gem_request_submit() we
278          * defer the unpinning of the active context to now, retirement of
279          * the subsequent request.
280          */
281         if (engine->last_retired_context)
282                 engine->context_unpin(engine, engine->last_retired_context);
283         engine->last_retired_context = request->ctx;
284
285         dma_fence_signal(&request->fence);
286
287         i915_priotree_fini(request->i915, &request->priotree);
288         i915_gem_request_put(request);
289 }
290
291 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
292 {
293         struct intel_engine_cs *engine = req->engine;
294         struct drm_i915_gem_request *tmp;
295
296         lockdep_assert_held(&req->i915->drm.struct_mutex);
297         GEM_BUG_ON(!i915_gem_request_completed(req));
298
299         if (list_empty(&req->link))
300                 return;
301
302         do {
303                 tmp = list_first_entry(&engine->timeline->requests,
304                                        typeof(*tmp), link);
305
306                 i915_gem_request_retire(tmp);
307         } while (tmp != req);
308 }
309
310 static int i915_gem_init_global_seqno(struct drm_i915_private *i915, u32 seqno)
311 {
312         struct i915_gem_timeline *timeline = &i915->gt.global_timeline;
313         struct intel_engine_cs *engine;
314         enum intel_engine_id id;
315         int ret;
316
317         /* Carefully retire all requests without writing to the rings */
318         ret = i915_gem_wait_for_idle(i915,
319                                      I915_WAIT_INTERRUPTIBLE |
320                                      I915_WAIT_LOCKED);
321         if (ret)
322                 return ret;
323
324         i915_gem_retire_requests(i915);
325         GEM_BUG_ON(i915->gt.active_requests > 1);
326
327         /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
328         if (!i915_seqno_passed(seqno, atomic_read(&timeline->seqno))) {
329                 while (intel_breadcrumbs_busy(i915))
330                         cond_resched(); /* spin until threads are complete */
331         }
332         atomic_set(&timeline->seqno, seqno);
333
334         /* Finally reset hw state */
335         for_each_engine(engine, i915, id)
336                 intel_engine_init_global_seqno(engine, seqno);
337
338         list_for_each_entry(timeline, &i915->gt.timelines, link) {
339                 for_each_engine(engine, i915, id) {
340                         struct intel_timeline *tl = &timeline->engine[id];
341
342                         memset(tl->sync_seqno, 0, sizeof(tl->sync_seqno));
343                 }
344         }
345
346         return 0;
347 }
348
349 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
350 {
351         struct drm_i915_private *dev_priv = to_i915(dev);
352
353         lockdep_assert_held(&dev_priv->drm.struct_mutex);
354
355         if (seqno == 0)
356                 return -EINVAL;
357
358         /* HWS page needs to be set less than what we
359          * will inject to ring
360          */
361         return i915_gem_init_global_seqno(dev_priv, seqno - 1);
362 }
363
364 static int reserve_global_seqno(struct drm_i915_private *i915)
365 {
366         u32 active_requests = ++i915->gt.active_requests;
367         u32 seqno = atomic_read(&i915->gt.global_timeline.seqno);
368         int ret;
369
370         /* Reservation is fine until we need to wrap around */
371         if (likely(seqno + active_requests > seqno))
372                 return 0;
373
374         ret = i915_gem_init_global_seqno(i915, 0);
375         if (ret) {
376                 i915->gt.active_requests--;
377                 return ret;
378         }
379
380         return 0;
381 }
382
383 static u32 __timeline_get_seqno(struct i915_gem_timeline *tl)
384 {
385         /* seqno only incremented under a mutex */
386         return ++tl->seqno.counter;
387 }
388
389 static u32 timeline_get_seqno(struct i915_gem_timeline *tl)
390 {
391         return atomic_inc_return(&tl->seqno);
392 }
393
394 void __i915_gem_request_submit(struct drm_i915_gem_request *request)
395 {
396         struct intel_engine_cs *engine = request->engine;
397         struct intel_timeline *timeline;
398         u32 seqno;
399
400         /* Transfer from per-context onto the global per-engine timeline */
401         timeline = engine->timeline;
402         GEM_BUG_ON(timeline == request->timeline);
403         assert_spin_locked(&timeline->lock);
404
405         seqno = timeline_get_seqno(timeline->common);
406         GEM_BUG_ON(!seqno);
407         GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
408
409         GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno, seqno));
410         request->previous_seqno = timeline->last_submitted_seqno;
411         timeline->last_submitted_seqno = seqno;
412
413         /* We may be recursing from the signal callback of another i915 fence */
414         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
415         request->global_seqno = seqno;
416         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
417                 intel_engine_enable_signaling(request);
418         spin_unlock(&request->lock);
419
420         GEM_BUG_ON(!request->global_seqno);
421         engine->emit_breadcrumb(request,
422                                 request->ring->vaddr + request->postfix);
423
424         spin_lock(&request->timeline->lock);
425         list_move_tail(&request->link, &timeline->requests);
426         spin_unlock(&request->timeline->lock);
427
428         i915_sw_fence_commit(&request->execute);
429 }
430
431 void i915_gem_request_submit(struct drm_i915_gem_request *request)
432 {
433         struct intel_engine_cs *engine = request->engine;
434         unsigned long flags;
435
436         /* Will be called from irq-context when using foreign fences. */
437         spin_lock_irqsave(&engine->timeline->lock, flags);
438
439         __i915_gem_request_submit(request);
440
441         spin_unlock_irqrestore(&engine->timeline->lock, flags);
442 }
443
444 static int __i915_sw_fence_call
445 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
446 {
447         struct drm_i915_gem_request *request =
448                 container_of(fence, typeof(*request), submit);
449
450         switch (state) {
451         case FENCE_COMPLETE:
452                 request->engine->submit_request(request);
453                 break;
454
455         case FENCE_FREE:
456                 i915_gem_request_put(request);
457                 break;
458         }
459
460         return NOTIFY_DONE;
461 }
462
463 static int __i915_sw_fence_call
464 execute_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
465 {
466         struct drm_i915_gem_request *request =
467                 container_of(fence, typeof(*request), execute);
468
469         switch (state) {
470         case FENCE_COMPLETE:
471                 break;
472
473         case FENCE_FREE:
474                 i915_gem_request_put(request);
475                 break;
476         }
477
478         return NOTIFY_DONE;
479 }
480
481 /**
482  * i915_gem_request_alloc - allocate a request structure
483  *
484  * @engine: engine that we wish to issue the request on.
485  * @ctx: context that the request will be associated with.
486  *       This can be NULL if the request is not directly related to
487  *       any specific user context, in which case this function will
488  *       choose an appropriate context to use.
489  *
490  * Returns a pointer to the allocated request if successful,
491  * or an error code if not.
492  */
493 struct drm_i915_gem_request *
494 i915_gem_request_alloc(struct intel_engine_cs *engine,
495                        struct i915_gem_context *ctx)
496 {
497         struct drm_i915_private *dev_priv = engine->i915;
498         struct drm_i915_gem_request *req;
499         int ret;
500
501         lockdep_assert_held(&dev_priv->drm.struct_mutex);
502
503         /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
504          * EIO if the GPU is already wedged.
505          */
506         if (i915_terminally_wedged(&dev_priv->gpu_error))
507                 return ERR_PTR(-EIO);
508
509         /* Pinning the contexts may generate requests in order to acquire
510          * GGTT space, so do this first before we reserve a seqno for
511          * ourselves.
512          */
513         ret = engine->context_pin(engine, ctx);
514         if (ret)
515                 return ERR_PTR(ret);
516
517         ret = reserve_global_seqno(dev_priv);
518         if (ret)
519                 goto err_unpin;
520
521         /* Move the oldest request to the slab-cache (if not in use!) */
522         req = list_first_entry_or_null(&engine->timeline->requests,
523                                        typeof(*req), link);
524         if (req && __i915_gem_request_completed(req))
525                 i915_gem_request_retire(req);
526
527         /* Beware: Dragons be flying overhead.
528          *
529          * We use RCU to look up requests in flight. The lookups may
530          * race with the request being allocated from the slab freelist.
531          * That is the request we are writing to here, may be in the process
532          * of being read by __i915_gem_active_get_rcu(). As such,
533          * we have to be very careful when overwriting the contents. During
534          * the RCU lookup, we change chase the request->engine pointer,
535          * read the request->global_seqno and increment the reference count.
536          *
537          * The reference count is incremented atomically. If it is zero,
538          * the lookup knows the request is unallocated and complete. Otherwise,
539          * it is either still in use, or has been reallocated and reset
540          * with dma_fence_init(). This increment is safe for release as we
541          * check that the request we have a reference to and matches the active
542          * request.
543          *
544          * Before we increment the refcount, we chase the request->engine
545          * pointer. We must not call kmem_cache_zalloc() or else we set
546          * that pointer to NULL and cause a crash during the lookup. If
547          * we see the request is completed (based on the value of the
548          * old engine and seqno), the lookup is complete and reports NULL.
549          * If we decide the request is not completed (new engine or seqno),
550          * then we grab a reference and double check that it is still the
551          * active request - which it won't be and restart the lookup.
552          *
553          * Do not use kmem_cache_zalloc() here!
554          */
555         req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
556         if (!req) {
557                 ret = -ENOMEM;
558                 goto err_unreserve;
559         }
560
561         req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
562         GEM_BUG_ON(req->timeline == engine->timeline);
563
564         spin_lock_init(&req->lock);
565         dma_fence_init(&req->fence,
566                        &i915_fence_ops,
567                        &req->lock,
568                        req->timeline->fence_context,
569                        __timeline_get_seqno(req->timeline->common));
570
571         /* We bump the ref for the fence chain */
572         i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
573         i915_sw_fence_init(&i915_gem_request_get(req)->execute, execute_notify);
574
575         /* Ensure that the execute fence completes after the submit fence -
576          * as we complete the execute fence from within the submit fence
577          * callback, its completion would otherwise be visible first.
578          */
579         i915_sw_fence_await_sw_fence(&req->execute, &req->submit, &req->execq);
580
581         i915_priotree_init(&req->priotree);
582
583         INIT_LIST_HEAD(&req->active_list);
584         req->i915 = dev_priv;
585         req->engine = engine;
586         req->ctx = ctx;
587
588         /* No zalloc, must clear what we need by hand */
589         req->global_seqno = 0;
590         req->file_priv = NULL;
591         req->batch = NULL;
592
593         /*
594          * Reserve space in the ring buffer for all the commands required to
595          * eventually emit this request. This is to guarantee that the
596          * i915_add_request() call can't fail. Note that the reserve may need
597          * to be redone if the request is not actually submitted straight
598          * away, e.g. because a GPU scheduler has deferred it.
599          */
600         req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
601         GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
602
603         ret = engine->request_alloc(req);
604         if (ret)
605                 goto err_ctx;
606
607         /* Record the position of the start of the request so that
608          * should we detect the updated seqno part-way through the
609          * GPU processing the request, we never over-estimate the
610          * position of the head.
611          */
612         req->head = req->ring->tail;
613
614         return req;
615
616 err_ctx:
617         /* Make sure we didn't add ourselves to external state before freeing */
618         GEM_BUG_ON(!list_empty(&req->active_list));
619         GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
620         GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));
621
622         kmem_cache_free(dev_priv->requests, req);
623 err_unreserve:
624         dev_priv->gt.active_requests--;
625 err_unpin:
626         engine->context_unpin(engine, ctx);
627         return ERR_PTR(ret);
628 }
629
630 static int
631 i915_gem_request_await_request(struct drm_i915_gem_request *to,
632                                struct drm_i915_gem_request *from)
633 {
634         int ret;
635
636         GEM_BUG_ON(to == from);
637
638         if (to->engine->schedule) {
639                 ret = i915_priotree_add_dependency(to->i915,
640                                                    &to->priotree,
641                                                    &from->priotree);
642                 if (ret < 0)
643                         return ret;
644         }
645
646         if (to->timeline == from->timeline)
647                 return 0;
648
649         if (to->engine == from->engine) {
650                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
651                                                        &from->submit,
652                                                        GFP_KERNEL);
653                 return ret < 0 ? ret : 0;
654         }
655
656         if (!from->global_seqno) {
657                 ret = i915_sw_fence_await_dma_fence(&to->submit,
658                                                     &from->fence, 0,
659                                                     GFP_KERNEL);
660                 return ret < 0 ? ret : 0;
661         }
662
663         if (from->global_seqno <= to->timeline->sync_seqno[from->engine->id])
664                 return 0;
665
666         trace_i915_gem_ring_sync_to(to, from);
667         if (!i915.semaphores) {
668                 if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
669                         ret = i915_sw_fence_await_dma_fence(&to->submit,
670                                                             &from->fence, 0,
671                                                             GFP_KERNEL);
672                         if (ret < 0)
673                                 return ret;
674                 }
675         } else {
676                 ret = to->engine->semaphore.sync_to(to, from);
677                 if (ret)
678                         return ret;
679         }
680
681         to->timeline->sync_seqno[from->engine->id] = from->global_seqno;
682         return 0;
683 }
684
685 int
686 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
687                                  struct dma_fence *fence)
688 {
689         struct dma_fence_array *array;
690         int ret;
691         int i;
692
693         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
694                 return 0;
695
696         if (dma_fence_is_i915(fence))
697                 return i915_gem_request_await_request(req, to_request(fence));
698
699         if (!dma_fence_is_array(fence)) {
700                 ret = i915_sw_fence_await_dma_fence(&req->submit,
701                                                     fence, I915_FENCE_TIMEOUT,
702                                                     GFP_KERNEL);
703                 return ret < 0 ? ret : 0;
704         }
705
706         /* Note that if the fence-array was created in signal-on-any mode,
707          * we should *not* decompose it into its individual fences. However,
708          * we don't currently store which mode the fence-array is operating
709          * in. Fortunately, the only user of signal-on-any is private to
710          * amdgpu and we should not see any incoming fence-array from
711          * sync-file being in signal-on-any mode.
712          */
713
714         array = to_dma_fence_array(fence);
715         for (i = 0; i < array->num_fences; i++) {
716                 struct dma_fence *child = array->fences[i];
717
718                 if (dma_fence_is_i915(child))
719                         ret = i915_gem_request_await_request(req,
720                                                              to_request(child));
721                 else
722                         ret = i915_sw_fence_await_dma_fence(&req->submit,
723                                                             child, I915_FENCE_TIMEOUT,
724                                                             GFP_KERNEL);
725                 if (ret < 0)
726                         return ret;
727         }
728
729         return 0;
730 }
731
732 /**
733  * i915_gem_request_await_object - set this request to (async) wait upon a bo
734  *
735  * @to: request we are wishing to use
736  * @obj: object which may be in use on another ring.
737  *
738  * This code is meant to abstract object synchronization with the GPU.
739  * Conceptually we serialise writes between engines inside the GPU.
740  * We only allow one engine to write into a buffer at any time, but
741  * multiple readers. To ensure each has a coherent view of memory, we must:
742  *
743  * - If there is an outstanding write request to the object, the new
744  *   request must wait for it to complete (either CPU or in hw, requests
745  *   on the same ring will be naturally ordered).
746  *
747  * - If we are a write request (pending_write_domain is set), the new
748  *   request must wait for outstanding read requests to complete.
749  *
750  * Returns 0 if successful, else propagates up the lower layer error.
751  */
752 int
753 i915_gem_request_await_object(struct drm_i915_gem_request *to,
754                               struct drm_i915_gem_object *obj,
755                               bool write)
756 {
757         struct dma_fence *excl;
758         int ret = 0;
759
760         if (write) {
761                 struct dma_fence **shared;
762                 unsigned int count, i;
763
764                 ret = reservation_object_get_fences_rcu(obj->resv,
765                                                         &excl, &count, &shared);
766                 if (ret)
767                         return ret;
768
769                 for (i = 0; i < count; i++) {
770                         ret = i915_gem_request_await_dma_fence(to, shared[i]);
771                         if (ret)
772                                 break;
773
774                         dma_fence_put(shared[i]);
775                 }
776
777                 for (; i < count; i++)
778                         dma_fence_put(shared[i]);
779                 kfree(shared);
780         } else {
781                 excl = reservation_object_get_excl_rcu(obj->resv);
782         }
783
784         if (excl) {
785                 if (ret == 0)
786                         ret = i915_gem_request_await_dma_fence(to, excl);
787
788                 dma_fence_put(excl);
789         }
790
791         return ret;
792 }
793
794 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
795 {
796         struct drm_i915_private *dev_priv = engine->i915;
797
798         if (dev_priv->gt.awake)
799                 return;
800
801         GEM_BUG_ON(!dev_priv->gt.active_requests);
802
803         intel_runtime_pm_get_noresume(dev_priv);
804         dev_priv->gt.awake = true;
805
806         intel_enable_gt_powersave(dev_priv);
807         i915_update_gfx_val(dev_priv);
808         if (INTEL_GEN(dev_priv) >= 6)
809                 gen6_rps_busy(dev_priv);
810
811         queue_delayed_work(dev_priv->wq,
812                            &dev_priv->gt.retire_work,
813                            round_jiffies_up_relative(HZ));
814 }
815
816 /*
817  * NB: This function is not allowed to fail. Doing so would mean the the
818  * request is not being tracked for completion but the work itself is
819  * going to happen on the hardware. This would be a Bad Thing(tm).
820  */
821 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
822 {
823         struct intel_engine_cs *engine = request->engine;
824         struct intel_ring *ring = request->ring;
825         struct intel_timeline *timeline = request->timeline;
826         struct drm_i915_gem_request *prev;
827         int err;
828
829         lockdep_assert_held(&request->i915->drm.struct_mutex);
830         trace_i915_gem_request_add(request);
831
832         /* Make sure that no request gazumped us - if it was allocated after
833          * our i915_gem_request_alloc() and called __i915_add_request() before
834          * us, the timeline will hold its seqno which is later than ours.
835          */
836         GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno,
837                                      request->fence.seqno));
838
839         /*
840          * To ensure that this call will not fail, space for its emissions
841          * should already have been reserved in the ring buffer. Let the ring
842          * know that it is time to use that space up.
843          */
844         request->reserved_space = 0;
845
846         /*
847          * Emit any outstanding flushes - execbuf can fail to emit the flush
848          * after having emitted the batchbuffer command. Hence we need to fix
849          * things up similar to emitting the lazy request. The difference here
850          * is that the flush _must_ happen before the next request, no matter
851          * what.
852          */
853         if (flush_caches) {
854                 err = engine->emit_flush(request, EMIT_FLUSH);
855
856                 /* Not allowed to fail! */
857                 WARN(err, "engine->emit_flush() failed: %d!\n", err);
858         }
859
860         /* Record the position of the start of the breadcrumb so that
861          * should we detect the updated seqno part-way through the
862          * GPU processing the request, we never over-estimate the
863          * position of the ring's HEAD.
864          */
865         err = intel_ring_begin(request, engine->emit_breadcrumb_sz);
866         GEM_BUG_ON(err);
867         request->postfix = ring->tail;
868         ring->tail += engine->emit_breadcrumb_sz * sizeof(u32);
869
870         /* Seal the request and mark it as pending execution. Note that
871          * we may inspect this state, without holding any locks, during
872          * hangcheck. Hence we apply the barrier to ensure that we do not
873          * see a more recent value in the hws than we are tracking.
874          */
875
876         prev = i915_gem_active_raw(&timeline->last_request,
877                                    &request->i915->drm.struct_mutex);
878         if (prev) {
879                 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
880                                              &request->submitq);
881                 if (engine->schedule)
882                         __i915_priotree_add_dependency(&request->priotree,
883                                                        &prev->priotree,
884                                                        &request->dep,
885                                                        0);
886         }
887
888         spin_lock_irq(&timeline->lock);
889         list_add_tail(&request->link, &timeline->requests);
890         spin_unlock_irq(&timeline->lock);
891
892         GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno,
893                                      request->fence.seqno));
894
895         timeline->last_submitted_seqno = request->fence.seqno;
896         i915_gem_active_set(&timeline->last_request, request);
897
898         list_add_tail(&request->ring_link, &ring->request_list);
899         request->emitted_jiffies = jiffies;
900
901         i915_gem_mark_busy(engine);
902
903         /* Let the backend know a new request has arrived that may need
904          * to adjust the existing execution schedule due to a high priority
905          * request - i.e. we may want to preempt the current request in order
906          * to run a high priority dependency chain *before* we can execute this
907          * request.
908          *
909          * This is called before the request is ready to run so that we can
910          * decide whether to preempt the entire chain so that it is ready to
911          * run at the earliest possible convenience.
912          */
913         if (engine->schedule)
914                 engine->schedule(request, request->ctx->priority);
915
916         local_bh_disable();
917         i915_sw_fence_commit(&request->submit);
918         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
919 }
920
921 static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
922 {
923         unsigned long flags;
924
925         spin_lock_irqsave(&q->lock, flags);
926         if (list_empty(&wait->task_list))
927                 __add_wait_queue(q, wait);
928         spin_unlock_irqrestore(&q->lock, flags);
929 }
930
931 static unsigned long local_clock_us(unsigned int *cpu)
932 {
933         unsigned long t;
934
935         /* Cheaply and approximately convert from nanoseconds to microseconds.
936          * The result and subsequent calculations are also defined in the same
937          * approximate microseconds units. The principal source of timing
938          * error here is from the simple truncation.
939          *
940          * Note that local_clock() is only defined wrt to the current CPU;
941          * the comparisons are no longer valid if we switch CPUs. Instead of
942          * blocking preemption for the entire busywait, we can detect the CPU
943          * switch and use that as indicator of system load and a reason to
944          * stop busywaiting, see busywait_stop().
945          */
946         *cpu = get_cpu();
947         t = local_clock() >> 10;
948         put_cpu();
949
950         return t;
951 }
952
953 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
954 {
955         unsigned int this_cpu;
956
957         if (time_after(local_clock_us(&this_cpu), timeout))
958                 return true;
959
960         return this_cpu != cpu;
961 }
962
963 bool __i915_spin_request(const struct drm_i915_gem_request *req,
964                          int state, unsigned long timeout_us)
965 {
966         unsigned int cpu;
967
968         /* When waiting for high frequency requests, e.g. during synchronous
969          * rendering split between the CPU and GPU, the finite amount of time
970          * required to set up the irq and wait upon it limits the response
971          * rate. By busywaiting on the request completion for a short while we
972          * can service the high frequency waits as quick as possible. However,
973          * if it is a slow request, we want to sleep as quickly as possible.
974          * The tradeoff between waiting and sleeping is roughly the time it
975          * takes to sleep on a request, on the order of a microsecond.
976          */
977
978         timeout_us += local_clock_us(&cpu);
979         do {
980                 if (__i915_gem_request_completed(req))
981                         return true;
982
983                 if (signal_pending_state(state, current))
984                         break;
985
986                 if (busywait_stop(timeout_us, cpu))
987                         break;
988
989                 cpu_relax();
990         } while (!need_resched());
991
992         return false;
993 }
994
995 static long
996 __i915_request_wait_for_execute(struct drm_i915_gem_request *request,
997                                 unsigned int flags,
998                                 long timeout)
999 {
1000         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1001                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1002         wait_queue_head_t *q = &request->i915->gpu_error.wait_queue;
1003         DEFINE_WAIT(reset);
1004         DEFINE_WAIT(wait);
1005
1006         if (flags & I915_WAIT_LOCKED)
1007                 add_wait_queue(q, &reset);
1008
1009         do {
1010                 prepare_to_wait(&request->execute.wait, &wait, state);
1011
1012                 if (i915_sw_fence_done(&request->execute))
1013                         break;
1014
1015                 if (flags & I915_WAIT_LOCKED &&
1016                     i915_reset_in_progress(&request->i915->gpu_error)) {
1017                         __set_current_state(TASK_RUNNING);
1018                         i915_reset(request->i915);
1019                         reset_wait_queue(q, &reset);
1020                         continue;
1021                 }
1022
1023                 if (signal_pending_state(state, current)) {
1024                         timeout = -ERESTARTSYS;
1025                         break;
1026                 }
1027
1028                 timeout = io_schedule_timeout(timeout);
1029         } while (timeout);
1030         finish_wait(&request->execute.wait, &wait);
1031
1032         if (flags & I915_WAIT_LOCKED)
1033                 remove_wait_queue(q, &reset);
1034
1035         return timeout;
1036 }
1037
1038 /**
1039  * i915_wait_request - wait until execution of request has finished
1040  * @req: the request to wait upon
1041  * @flags: how to wait
1042  * @timeout: how long to wait in jiffies
1043  *
1044  * i915_wait_request() waits for the request to be completed, for a
1045  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1046  * unbounded wait).
1047  *
1048  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1049  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1050  * must not specify that the wait is locked.
1051  *
1052  * Returns the remaining time (in jiffies) if the request completed, which may
1053  * be zero or -ETIME if the request is unfinished after the timeout expires.
1054  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1055  * pending before the request completes.
1056  */
1057 long i915_wait_request(struct drm_i915_gem_request *req,
1058                        unsigned int flags,
1059                        long timeout)
1060 {
1061         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1062                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1063         DEFINE_WAIT(reset);
1064         struct intel_wait wait;
1065
1066         might_sleep();
1067 #if IS_ENABLED(CONFIG_LOCKDEP)
1068         GEM_BUG_ON(debug_locks &&
1069                    !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1070                    !!(flags & I915_WAIT_LOCKED));
1071 #endif
1072         GEM_BUG_ON(timeout < 0);
1073
1074         if (i915_gem_request_completed(req))
1075                 return timeout;
1076
1077         if (!timeout)
1078                 return -ETIME;
1079
1080         trace_i915_gem_request_wait_begin(req);
1081
1082         if (!i915_sw_fence_done(&req->execute)) {
1083                 timeout = __i915_request_wait_for_execute(req, flags, timeout);
1084                 if (timeout < 0)
1085                         goto complete;
1086
1087                 GEM_BUG_ON(!i915_sw_fence_done(&req->execute));
1088         }
1089         GEM_BUG_ON(!i915_sw_fence_done(&req->submit));
1090         GEM_BUG_ON(!req->global_seqno);
1091
1092         /* Optimistic short spin before touching IRQs */
1093         if (i915_spin_request(req, state, 5))
1094                 goto complete;
1095
1096         set_current_state(state);
1097         if (flags & I915_WAIT_LOCKED)
1098                 add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1099
1100         intel_wait_init(&wait, req->global_seqno);
1101         if (intel_engine_add_wait(req->engine, &wait))
1102                 /* In order to check that we haven't missed the interrupt
1103                  * as we enabled it, we need to kick ourselves to do a
1104                  * coherent check on the seqno before we sleep.
1105                  */
1106                 goto wakeup;
1107
1108         for (;;) {
1109                 if (signal_pending_state(state, current)) {
1110                         timeout = -ERESTARTSYS;
1111                         break;
1112                 }
1113
1114                 if (!timeout) {
1115                         timeout = -ETIME;
1116                         break;
1117                 }
1118
1119                 timeout = io_schedule_timeout(timeout);
1120
1121                 if (intel_wait_complete(&wait))
1122                         break;
1123
1124                 set_current_state(state);
1125
1126 wakeup:
1127                 /* Carefully check if the request is complete, giving time
1128                  * for the seqno to be visible following the interrupt.
1129                  * We also have to check in case we are kicked by the GPU
1130                  * reset in order to drop the struct_mutex.
1131                  */
1132                 if (__i915_request_irq_complete(req))
1133                         break;
1134
1135                 /* If the GPU is hung, and we hold the lock, reset the GPU
1136                  * and then check for completion. On a full reset, the engine's
1137                  * HW seqno will be advanced passed us and we are complete.
1138                  * If we do a partial reset, we have to wait for the GPU to
1139                  * resume and update the breadcrumb.
1140                  *
1141                  * If we don't hold the mutex, we can just wait for the worker
1142                  * to come along and update the breadcrumb (either directly
1143                  * itself, or indirectly by recovering the GPU).
1144                  */
1145                 if (flags & I915_WAIT_LOCKED &&
1146                     i915_reset_in_progress(&req->i915->gpu_error)) {
1147                         __set_current_state(TASK_RUNNING);
1148                         i915_reset(req->i915);
1149                         reset_wait_queue(&req->i915->gpu_error.wait_queue,
1150                                          &reset);
1151                         continue;
1152                 }
1153
1154                 /* Only spin if we know the GPU is processing this request */
1155                 if (i915_spin_request(req, state, 2))
1156                         break;
1157         }
1158
1159         intel_engine_remove_wait(req->engine, &wait);
1160         if (flags & I915_WAIT_LOCKED)
1161                 remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1162         __set_current_state(TASK_RUNNING);
1163
1164 complete:
1165         trace_i915_gem_request_wait_end(req);
1166
1167         return timeout;
1168 }
1169
1170 static void engine_retire_requests(struct intel_engine_cs *engine)
1171 {
1172         struct drm_i915_gem_request *request, *next;
1173
1174         list_for_each_entry_safe(request, next,
1175                                  &engine->timeline->requests, link) {
1176                 if (!__i915_gem_request_completed(request))
1177                         return;
1178
1179                 i915_gem_request_retire(request);
1180         }
1181 }
1182
1183 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1184 {
1185         struct intel_engine_cs *engine;
1186         enum intel_engine_id id;
1187
1188         lockdep_assert_held(&dev_priv->drm.struct_mutex);
1189
1190         if (!dev_priv->gt.active_requests)
1191                 return;
1192
1193         for_each_engine(engine, dev_priv, id)
1194                 engine_retire_requests(engine);
1195 }