2 * Copyright © 2008-2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
30 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
35 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
37 return to_request(fence)->timeline->common->name;
40 static bool i915_fence_signaled(struct dma_fence *fence)
42 return i915_gem_request_completed(to_request(fence));
45 static bool i915_fence_enable_signaling(struct dma_fence *fence)
47 if (i915_fence_signaled(fence))
50 intel_engine_enable_signaling(to_request(fence));
54 static signed long i915_fence_wait(struct dma_fence *fence,
58 return i915_wait_request(to_request(fence), interruptible, timeout);
61 static void i915_fence_release(struct dma_fence *fence)
63 struct drm_i915_gem_request *req = to_request(fence);
65 kmem_cache_free(req->i915->requests, req);
68 const struct dma_fence_ops i915_fence_ops = {
69 .get_driver_name = i915_fence_get_driver_name,
70 .get_timeline_name = i915_fence_get_timeline_name,
71 .enable_signaling = i915_fence_enable_signaling,
72 .signaled = i915_fence_signaled,
73 .wait = i915_fence_wait,
74 .release = i915_fence_release,
77 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
78 struct drm_file *file)
80 struct drm_i915_private *dev_private;
81 struct drm_i915_file_private *file_priv;
83 WARN_ON(!req || !file || req->file_priv);
91 dev_private = req->i915;
92 file_priv = file->driver_priv;
94 spin_lock(&file_priv->mm.lock);
95 req->file_priv = file_priv;
96 list_add_tail(&req->client_list, &file_priv->mm.request_list);
97 spin_unlock(&file_priv->mm.lock);
103 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
105 struct drm_i915_file_private *file_priv = request->file_priv;
110 spin_lock(&file_priv->mm.lock);
111 list_del(&request->client_list);
112 request->file_priv = NULL;
113 spin_unlock(&file_priv->mm.lock);
116 void i915_gem_retire_noop(struct i915_gem_active *active,
117 struct drm_i915_gem_request *request)
119 /* Space left intentionally blank */
122 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
124 struct i915_gem_active *active, *next;
126 lockdep_assert_held(&request->i915->drm.struct_mutex);
127 GEM_BUG_ON(!i915_gem_request_completed(request));
129 trace_i915_gem_request_retire(request);
131 spin_lock_irq(&request->engine->timeline->lock);
132 list_del_init(&request->link);
133 spin_unlock_irq(&request->engine->timeline->lock);
135 /* We know the GPU must have read the request to have
136 * sent us the seqno + interrupt, so use the position
137 * of tail of the request to update the last known position
140 * Note this requires that we are always called in request
143 list_del(&request->ring_link);
144 request->ring->last_retired_head = request->postfix;
145 request->i915->gt.active_requests--;
147 /* Walk through the active list, calling retire on each. This allows
148 * objects to track their GPU activity and mark themselves as idle
149 * when their *last* active request is completed (updating state
150 * tracking lists for eviction, active references for GEM, etc).
152 * As the ->retire() may free the node, we decouple it first and
153 * pass along the auxiliary information (to avoid dereferencing
154 * the node after the callback).
156 list_for_each_entry_safe(active, next, &request->active_list, link) {
157 /* In microbenchmarks or focusing upon time inside the kernel,
158 * we may spend an inordinate amount of time simply handling
159 * the retirement of requests and processing their callbacks.
160 * Of which, this loop itself is particularly hot due to the
161 * cache misses when jumping around the list of i915_gem_active.
162 * So we try to keep this loop as streamlined as possible and
163 * also prefetch the next i915_gem_active to try and hide
164 * the likely cache miss.
168 INIT_LIST_HEAD(&active->link);
169 RCU_INIT_POINTER(active->request, NULL);
171 active->retire(active, request);
174 i915_gem_request_remove_from_client(request);
176 if (request->previous_context) {
177 if (i915.enable_execlists)
178 intel_lr_context_unpin(request->previous_context,
182 i915_gem_context_put(request->ctx);
184 dma_fence_signal(&request->fence);
185 i915_gem_request_put(request);
188 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
190 struct intel_engine_cs *engine = req->engine;
191 struct drm_i915_gem_request *tmp;
193 lockdep_assert_held(&req->i915->drm.struct_mutex);
194 if (list_empty(&req->link))
198 tmp = list_first_entry(&engine->timeline->requests,
201 i915_gem_request_retire(tmp);
202 } while (tmp != req);
205 static int i915_gem_check_wedge(struct drm_i915_private *dev_priv)
207 struct i915_gpu_error *error = &dev_priv->gpu_error;
209 if (i915_terminally_wedged(error))
212 if (i915_reset_in_progress(error)) {
213 /* Non-interruptible callers can't handle -EAGAIN, hence return
214 * -EIO unconditionally for these.
216 if (!dev_priv->mm.interruptible)
225 static int i915_gem_init_global_seqno(struct drm_i915_private *i915, u32 seqno)
227 struct i915_gem_timeline *timeline = &i915->gt.global_timeline;
228 struct intel_engine_cs *engine;
229 enum intel_engine_id id;
232 /* Carefully retire all requests without writing to the rings */
233 ret = i915_gem_wait_for_idle(i915,
234 I915_WAIT_INTERRUPTIBLE |
239 i915_gem_retire_requests(i915);
240 GEM_BUG_ON(i915->gt.active_requests > 1);
242 /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
243 if (!i915_seqno_passed(seqno, atomic_read(&timeline->next_seqno))) {
244 while (intel_kick_waiters(i915) || intel_kick_signalers(i915))
248 atomic_set(&timeline->next_seqno, seqno);
250 /* Finally reset hw state */
251 for_each_engine(engine, i915, id)
252 intel_engine_init_global_seqno(engine, seqno);
254 list_for_each_entry(timeline, &i915->gt.timelines, link) {
255 for_each_engine(engine, i915, id) {
256 struct intel_timeline *tl = &timeline->engine[id];
258 memset(tl->sync_seqno, 0, sizeof(tl->sync_seqno));
265 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
267 struct drm_i915_private *dev_priv = to_i915(dev);
269 lockdep_assert_held(&dev_priv->drm.struct_mutex);
274 /* HWS page needs to be set less than what we
275 * will inject to ring
277 return i915_gem_init_global_seqno(dev_priv, seqno - 1);
280 static int reserve_global_seqno(struct drm_i915_private *i915)
282 u32 active_requests = ++i915->gt.active_requests;
283 u32 next_seqno = atomic_read(&i915->gt.global_timeline.next_seqno);
286 /* Reservation is fine until we need to wrap around */
287 if (likely(next_seqno + active_requests > next_seqno))
290 ret = i915_gem_init_global_seqno(i915, 0);
292 i915->gt.active_requests--;
299 static u32 __timeline_get_seqno(struct i915_gem_timeline *tl)
301 /* next_seqno only incremented under a mutex */
302 return ++tl->next_seqno.counter;
305 static u32 timeline_get_seqno(struct i915_gem_timeline *tl)
307 return atomic_inc_return(&tl->next_seqno);
310 static int __i915_sw_fence_call
311 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
313 struct drm_i915_gem_request *request =
314 container_of(fence, typeof(*request), submit);
315 struct intel_engine_cs *engine = request->engine;
316 struct intel_timeline *timeline;
320 if (state != FENCE_COMPLETE)
323 /* Transfer from per-context onto the global per-engine timeline */
324 timeline = engine->timeline;
325 GEM_BUG_ON(timeline == request->timeline);
327 /* Will be called from irq-context when using foreign DMA fences */
328 spin_lock_irqsave(&timeline->lock, flags);
330 seqno = timeline_get_seqno(timeline->common);
332 GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
334 GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno, seqno));
335 request->previous_seqno = timeline->last_submitted_seqno;
336 timeline->last_submitted_seqno = seqno;
338 /* We may be recursing from the signal callback of another i915 fence */
339 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
340 request->global_seqno = seqno;
341 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
342 intel_engine_enable_signaling(request);
343 spin_unlock(&request->lock);
345 GEM_BUG_ON(!request->global_seqno);
346 engine->emit_breadcrumb(request,
347 request->ring->vaddr + request->postfix);
348 engine->submit_request(request);
350 spin_lock_nested(&request->timeline->lock, SINGLE_DEPTH_NESTING);
351 list_move_tail(&request->link, &timeline->requests);
352 spin_unlock(&request->timeline->lock);
354 spin_unlock_irqrestore(&timeline->lock, flags);
360 * i915_gem_request_alloc - allocate a request structure
362 * @engine: engine that we wish to issue the request on.
363 * @ctx: context that the request will be associated with.
364 * This can be NULL if the request is not directly related to
365 * any specific user context, in which case this function will
366 * choose an appropriate context to use.
368 * Returns a pointer to the allocated request if successful,
369 * or an error code if not.
371 struct drm_i915_gem_request *
372 i915_gem_request_alloc(struct intel_engine_cs *engine,
373 struct i915_gem_context *ctx)
375 struct drm_i915_private *dev_priv = engine->i915;
376 struct drm_i915_gem_request *req;
379 lockdep_assert_held(&dev_priv->drm.struct_mutex);
381 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
382 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
385 ret = i915_gem_check_wedge(dev_priv);
389 ret = reserve_global_seqno(dev_priv);
393 /* Move the oldest request to the slab-cache (if not in use!) */
394 req = list_first_entry_or_null(&engine->timeline->requests,
396 if (req && __i915_gem_request_completed(req))
397 i915_gem_request_retire(req);
399 /* Beware: Dragons be flying overhead.
401 * We use RCU to look up requests in flight. The lookups may
402 * race with the request being allocated from the slab freelist.
403 * That is the request we are writing to here, may be in the process
404 * of being read by __i915_gem_active_get_rcu(). As such,
405 * we have to be very careful when overwriting the contents. During
406 * the RCU lookup, we change chase the request->engine pointer,
407 * read the request->global_seqno and increment the reference count.
409 * The reference count is incremented atomically. If it is zero,
410 * the lookup knows the request is unallocated and complete. Otherwise,
411 * it is either still in use, or has been reallocated and reset
412 * with dma_fence_init(). This increment is safe for release as we
413 * check that the request we have a reference to and matches the active
416 * Before we increment the refcount, we chase the request->engine
417 * pointer. We must not call kmem_cache_zalloc() or else we set
418 * that pointer to NULL and cause a crash during the lookup. If
419 * we see the request is completed (based on the value of the
420 * old engine and seqno), the lookup is complete and reports NULL.
421 * If we decide the request is not completed (new engine or seqno),
422 * then we grab a reference and double check that it is still the
423 * active request - which it won't be and restart the lookup.
425 * Do not use kmem_cache_zalloc() here!
427 req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
433 req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
434 GEM_BUG_ON(req->timeline == engine->timeline);
436 spin_lock_init(&req->lock);
437 dma_fence_init(&req->fence,
440 req->timeline->fence_context,
441 __timeline_get_seqno(req->timeline->common));
443 i915_sw_fence_init(&req->submit, submit_notify);
445 INIT_LIST_HEAD(&req->active_list);
446 req->i915 = dev_priv;
447 req->engine = engine;
448 req->ctx = i915_gem_context_get(ctx);
450 /* No zalloc, must clear what we need by hand */
451 req->global_seqno = 0;
452 req->previous_context = NULL;
453 req->file_priv = NULL;
457 * Reserve space in the ring buffer for all the commands required to
458 * eventually emit this request. This is to guarantee that the
459 * i915_add_request() call can't fail. Note that the reserve may need
460 * to be redone if the request is not actually submitted straight
461 * away, e.g. because a GPU scheduler has deferred it.
463 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
464 GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
466 if (i915.enable_execlists)
467 ret = intel_logical_ring_alloc_request_extras(req);
469 ret = intel_ring_alloc_request_extras(req);
473 /* Record the position of the start of the request so that
474 * should we detect the updated seqno part-way through the
475 * GPU processing the request, we never over-estimate the
476 * position of the head.
478 req->head = req->ring->tail;
483 i915_gem_context_put(ctx);
484 kmem_cache_free(dev_priv->requests, req);
486 dev_priv->gt.active_requests--;
491 i915_gem_request_await_request(struct drm_i915_gem_request *to,
492 struct drm_i915_gem_request *from)
496 GEM_BUG_ON(to == from);
498 if (to->timeline == from->timeline)
501 if (to->engine == from->engine) {
502 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
505 return ret < 0 ? ret : 0;
508 if (!from->global_seqno) {
509 ret = i915_sw_fence_await_dma_fence(&to->submit,
512 return ret < 0 ? ret : 0;
515 if (from->global_seqno <= to->timeline->sync_seqno[from->engine->id])
518 trace_i915_gem_ring_sync_to(to, from);
519 if (!i915.semaphores) {
520 if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
521 ret = i915_sw_fence_await_dma_fence(&to->submit,
528 ret = to->engine->semaphore.sync_to(to, from);
533 to->timeline->sync_seqno[from->engine->id] = from->global_seqno;
538 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
539 struct dma_fence *fence)
541 struct dma_fence_array *array;
545 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
548 if (dma_fence_is_i915(fence))
549 return i915_gem_request_await_request(req, to_request(fence));
551 if (!dma_fence_is_array(fence)) {
552 ret = i915_sw_fence_await_dma_fence(&req->submit,
553 fence, I915_FENCE_TIMEOUT,
555 return ret < 0 ? ret : 0;
558 /* Note that if the fence-array was created in signal-on-any mode,
559 * we should *not* decompose it into its individual fences. However,
560 * we don't currently store which mode the fence-array is operating
561 * in. Fortunately, the only user of signal-on-any is private to
562 * amdgpu and we should not see any incoming fence-array from
563 * sync-file being in signal-on-any mode.
566 array = to_dma_fence_array(fence);
567 for (i = 0; i < array->num_fences; i++) {
568 struct dma_fence *child = array->fences[i];
570 if (dma_fence_is_i915(child))
571 ret = i915_gem_request_await_request(req,
574 ret = i915_sw_fence_await_dma_fence(&req->submit,
575 child, I915_FENCE_TIMEOUT,
585 * i915_gem_request_await_object - set this request to (async) wait upon a bo
587 * @to: request we are wishing to use
588 * @obj: object which may be in use on another ring.
590 * This code is meant to abstract object synchronization with the GPU.
591 * Conceptually we serialise writes between engines inside the GPU.
592 * We only allow one engine to write into a buffer at any time, but
593 * multiple readers. To ensure each has a coherent view of memory, we must:
595 * - If there is an outstanding write request to the object, the new
596 * request must wait for it to complete (either CPU or in hw, requests
597 * on the same ring will be naturally ordered).
599 * - If we are a write request (pending_write_domain is set), the new
600 * request must wait for outstanding read requests to complete.
602 * Returns 0 if successful, else propagates up the lower layer error.
605 i915_gem_request_await_object(struct drm_i915_gem_request *to,
606 struct drm_i915_gem_object *obj,
609 struct dma_fence *excl;
613 struct dma_fence **shared;
614 unsigned int count, i;
616 ret = reservation_object_get_fences_rcu(obj->resv,
617 &excl, &count, &shared);
621 for (i = 0; i < count; i++) {
622 ret = i915_gem_request_await_dma_fence(to, shared[i]);
626 dma_fence_put(shared[i]);
629 for (; i < count; i++)
630 dma_fence_put(shared[i]);
633 excl = reservation_object_get_excl_rcu(obj->resv);
638 ret = i915_gem_request_await_dma_fence(to, excl);
646 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
648 struct drm_i915_private *dev_priv = engine->i915;
650 if (dev_priv->gt.awake)
653 intel_runtime_pm_get_noresume(dev_priv);
654 dev_priv->gt.awake = true;
656 intel_enable_gt_powersave(dev_priv);
657 i915_update_gfx_val(dev_priv);
658 if (INTEL_GEN(dev_priv) >= 6)
659 gen6_rps_busy(dev_priv);
661 queue_delayed_work(dev_priv->wq,
662 &dev_priv->gt.retire_work,
663 round_jiffies_up_relative(HZ));
667 * NB: This function is not allowed to fail. Doing so would mean the the
668 * request is not being tracked for completion but the work itself is
669 * going to happen on the hardware. This would be a Bad Thing(tm).
671 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
673 struct intel_engine_cs *engine = request->engine;
674 struct intel_ring *ring = request->ring;
675 struct intel_timeline *timeline = request->timeline;
676 struct drm_i915_gem_request *prev;
679 lockdep_assert_held(&request->i915->drm.struct_mutex);
680 trace_i915_gem_request_add(request);
683 * To ensure that this call will not fail, space for its emissions
684 * should already have been reserved in the ring buffer. Let the ring
685 * know that it is time to use that space up.
687 request->reserved_space = 0;
690 * Emit any outstanding flushes - execbuf can fail to emit the flush
691 * after having emitted the batchbuffer command. Hence we need to fix
692 * things up similar to emitting the lazy request. The difference here
693 * is that the flush _must_ happen before the next request, no matter
697 err = engine->emit_flush(request, EMIT_FLUSH);
699 /* Not allowed to fail! */
700 WARN(err, "engine->emit_flush() failed: %d!\n", err);
703 /* Record the position of the start of the breadcrumb so that
704 * should we detect the updated seqno part-way through the
705 * GPU processing the request, we never over-estimate the
706 * position of the ring's HEAD.
708 err = intel_ring_begin(request, engine->emit_breadcrumb_sz);
710 request->postfix = ring->tail;
711 ring->tail += engine->emit_breadcrumb_sz * sizeof(u32);
713 /* Seal the request and mark it as pending execution. Note that
714 * we may inspect this state, without holding any locks, during
715 * hangcheck. Hence we apply the barrier to ensure that we do not
716 * see a more recent value in the hws than we are tracking.
719 prev = i915_gem_active_raw(&timeline->last_request,
720 &request->i915->drm.struct_mutex);
722 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
725 spin_lock_irq(&timeline->lock);
726 list_add_tail(&request->link, &timeline->requests);
727 spin_unlock_irq(&timeline->lock);
729 GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno,
730 request->fence.seqno));
732 timeline->last_submitted_seqno = request->fence.seqno;
733 i915_gem_active_set(&timeline->last_request, request);
735 list_add_tail(&request->ring_link, &ring->request_list);
736 request->emitted_jiffies = jiffies;
738 i915_gem_mark_busy(engine);
741 i915_sw_fence_commit(&request->submit);
742 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
745 static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
749 spin_lock_irqsave(&q->lock, flags);
750 if (list_empty(&wait->task_list))
751 __add_wait_queue(q, wait);
752 spin_unlock_irqrestore(&q->lock, flags);
755 static unsigned long local_clock_us(unsigned int *cpu)
759 /* Cheaply and approximately convert from nanoseconds to microseconds.
760 * The result and subsequent calculations are also defined in the same
761 * approximate microseconds units. The principal source of timing
762 * error here is from the simple truncation.
764 * Note that local_clock() is only defined wrt to the current CPU;
765 * the comparisons are no longer valid if we switch CPUs. Instead of
766 * blocking preemption for the entire busywait, we can detect the CPU
767 * switch and use that as indicator of system load and a reason to
768 * stop busywaiting, see busywait_stop().
771 t = local_clock() >> 10;
777 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
779 unsigned int this_cpu;
781 if (time_after(local_clock_us(&this_cpu), timeout))
784 return this_cpu != cpu;
787 bool __i915_spin_request(const struct drm_i915_gem_request *req,
788 int state, unsigned long timeout_us)
792 /* When waiting for high frequency requests, e.g. during synchronous
793 * rendering split between the CPU and GPU, the finite amount of time
794 * required to set up the irq and wait upon it limits the response
795 * rate. By busywaiting on the request completion for a short while we
796 * can service the high frequency waits as quick as possible. However,
797 * if it is a slow request, we want to sleep as quickly as possible.
798 * The tradeoff between waiting and sleeping is roughly the time it
799 * takes to sleep on a request, on the order of a microsecond.
802 timeout_us += local_clock_us(&cpu);
804 if (__i915_gem_request_completed(req))
807 if (signal_pending_state(state, current))
810 if (busywait_stop(timeout_us, cpu))
813 cpu_relax_lowlatency();
814 } while (!need_resched());
820 __i915_request_wait_for_submit(struct drm_i915_gem_request *request,
824 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
825 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
826 wait_queue_head_t *q = &request->i915->gpu_error.wait_queue;
830 if (flags & I915_WAIT_LOCKED)
831 add_wait_queue(q, &reset);
834 prepare_to_wait(&request->submit.wait, &wait, state);
836 if (i915_sw_fence_done(&request->submit))
839 if (flags & I915_WAIT_LOCKED &&
840 i915_reset_in_progress(&request->i915->gpu_error)) {
841 __set_current_state(TASK_RUNNING);
842 i915_reset(request->i915);
843 reset_wait_queue(q, &reset);
847 if (signal_pending_state(state, current)) {
848 timeout = -ERESTARTSYS;
852 timeout = io_schedule_timeout(timeout);
854 finish_wait(&request->submit.wait, &wait);
856 if (flags & I915_WAIT_LOCKED)
857 remove_wait_queue(q, &reset);
863 * i915_wait_request - wait until execution of request has finished
864 * @req: the request to wait upon
865 * @flags: how to wait
866 * @timeout: how long to wait in jiffies
868 * i915_wait_request() waits for the request to be completed, for a
869 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
872 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
873 * in via the flags, and vice versa if the struct_mutex is not held, the caller
874 * must not specify that the wait is locked.
876 * Returns the remaining time (in jiffies) if the request completed, which may
877 * be zero or -ETIME if the request is unfinished after the timeout expires.
878 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
879 * pending before the request completes.
881 long i915_wait_request(struct drm_i915_gem_request *req,
885 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
886 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
888 struct intel_wait wait;
891 #if IS_ENABLED(CONFIG_LOCKDEP)
892 GEM_BUG_ON(debug_locks &&
893 !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
894 !!(flags & I915_WAIT_LOCKED));
896 GEM_BUG_ON(timeout < 0);
898 if (i915_gem_request_completed(req))
904 trace_i915_gem_request_wait_begin(req);
906 if (!i915_sw_fence_done(&req->submit)) {
907 timeout = __i915_request_wait_for_submit(req, flags, timeout);
911 GEM_BUG_ON(!i915_sw_fence_done(&req->submit));
913 GEM_BUG_ON(!req->global_seqno);
915 /* Optimistic short spin before touching IRQs */
916 if (i915_spin_request(req, state, 5))
919 set_current_state(state);
920 if (flags & I915_WAIT_LOCKED)
921 add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
923 intel_wait_init(&wait, req->global_seqno);
924 if (intel_engine_add_wait(req->engine, &wait))
925 /* In order to check that we haven't missed the interrupt
926 * as we enabled it, we need to kick ourselves to do a
927 * coherent check on the seqno before we sleep.
932 if (signal_pending_state(state, current)) {
933 timeout = -ERESTARTSYS;
942 timeout = io_schedule_timeout(timeout);
944 if (intel_wait_complete(&wait))
947 set_current_state(state);
950 /* Carefully check if the request is complete, giving time
951 * for the seqno to be visible following the interrupt.
952 * We also have to check in case we are kicked by the GPU
953 * reset in order to drop the struct_mutex.
955 if (__i915_request_irq_complete(req))
958 /* If the GPU is hung, and we hold the lock, reset the GPU
959 * and then check for completion. On a full reset, the engine's
960 * HW seqno will be advanced passed us and we are complete.
961 * If we do a partial reset, we have to wait for the GPU to
962 * resume and update the breadcrumb.
964 * If we don't hold the mutex, we can just wait for the worker
965 * to come along and update the breadcrumb (either directly
966 * itself, or indirectly by recovering the GPU).
968 if (flags & I915_WAIT_LOCKED &&
969 i915_reset_in_progress(&req->i915->gpu_error)) {
970 __set_current_state(TASK_RUNNING);
971 i915_reset(req->i915);
972 reset_wait_queue(&req->i915->gpu_error.wait_queue,
977 /* Only spin if we know the GPU is processing this request */
978 if (i915_spin_request(req, state, 2))
982 intel_engine_remove_wait(req->engine, &wait);
983 if (flags & I915_WAIT_LOCKED)
984 remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
985 __set_current_state(TASK_RUNNING);
988 trace_i915_gem_request_wait_end(req);
993 static void engine_retire_requests(struct intel_engine_cs *engine)
995 struct drm_i915_gem_request *request, *next;
997 list_for_each_entry_safe(request, next,
998 &engine->timeline->requests, link) {
999 if (!__i915_gem_request_completed(request))
1002 i915_gem_request_retire(request);
1006 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1008 struct intel_engine_cs *engine;
1009 enum intel_engine_id id;
1011 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1013 if (!dev_priv->gt.active_requests)
1016 GEM_BUG_ON(!dev_priv->gt.awake);
1018 for_each_engine(engine, dev_priv, id)
1019 engine_retire_requests(engine);
1021 if (!dev_priv->gt.active_requests)
1022 mod_delayed_work(dev_priv->wq,
1023 &dev_priv->gt.idle_work,
1024 msecs_to_jiffies(100));