0b3b051a5683397489ca5cc1241f301cc5963383
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_gem_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27
28 #include "i915_drv.h"
29
30 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
31 {
32         return "i915";
33 }
34
35 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
36 {
37         return to_request(fence)->timeline->common->name;
38 }
39
40 static bool i915_fence_signaled(struct dma_fence *fence)
41 {
42         return i915_gem_request_completed(to_request(fence));
43 }
44
45 static bool i915_fence_enable_signaling(struct dma_fence *fence)
46 {
47         if (i915_fence_signaled(fence))
48                 return false;
49
50         intel_engine_enable_signaling(to_request(fence));
51         return true;
52 }
53
54 static signed long i915_fence_wait(struct dma_fence *fence,
55                                    bool interruptible,
56                                    signed long timeout)
57 {
58         return i915_wait_request(to_request(fence), interruptible, timeout);
59 }
60
61 static void i915_fence_release(struct dma_fence *fence)
62 {
63         struct drm_i915_gem_request *req = to_request(fence);
64
65         kmem_cache_free(req->i915->requests, req);
66 }
67
68 const struct dma_fence_ops i915_fence_ops = {
69         .get_driver_name = i915_fence_get_driver_name,
70         .get_timeline_name = i915_fence_get_timeline_name,
71         .enable_signaling = i915_fence_enable_signaling,
72         .signaled = i915_fence_signaled,
73         .wait = i915_fence_wait,
74         .release = i915_fence_release,
75 };
76
77 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
78                                    struct drm_file *file)
79 {
80         struct drm_i915_private *dev_private;
81         struct drm_i915_file_private *file_priv;
82
83         WARN_ON(!req || !file || req->file_priv);
84
85         if (!req || !file)
86                 return -EINVAL;
87
88         if (req->file_priv)
89                 return -EINVAL;
90
91         dev_private = req->i915;
92         file_priv = file->driver_priv;
93
94         spin_lock(&file_priv->mm.lock);
95         req->file_priv = file_priv;
96         list_add_tail(&req->client_list, &file_priv->mm.request_list);
97         spin_unlock(&file_priv->mm.lock);
98
99         return 0;
100 }
101
102 static inline void
103 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
104 {
105         struct drm_i915_file_private *file_priv = request->file_priv;
106
107         if (!file_priv)
108                 return;
109
110         spin_lock(&file_priv->mm.lock);
111         list_del(&request->client_list);
112         request->file_priv = NULL;
113         spin_unlock(&file_priv->mm.lock);
114 }
115
116 void i915_gem_retire_noop(struct i915_gem_active *active,
117                           struct drm_i915_gem_request *request)
118 {
119         /* Space left intentionally blank */
120 }
121
122 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
123 {
124         struct i915_gem_active *active, *next;
125
126         lockdep_assert_held(&request->i915->drm.struct_mutex);
127         GEM_BUG_ON(!i915_gem_request_completed(request));
128
129         trace_i915_gem_request_retire(request);
130
131         spin_lock_irq(&request->engine->timeline->lock);
132         list_del_init(&request->link);
133         spin_unlock_irq(&request->engine->timeline->lock);
134
135         /* We know the GPU must have read the request to have
136          * sent us the seqno + interrupt, so use the position
137          * of tail of the request to update the last known position
138          * of the GPU head.
139          *
140          * Note this requires that we are always called in request
141          * completion order.
142          */
143         list_del(&request->ring_link);
144         request->ring->last_retired_head = request->postfix;
145         request->i915->gt.active_requests--;
146
147         /* Walk through the active list, calling retire on each. This allows
148          * objects to track their GPU activity and mark themselves as idle
149          * when their *last* active request is completed (updating state
150          * tracking lists for eviction, active references for GEM, etc).
151          *
152          * As the ->retire() may free the node, we decouple it first and
153          * pass along the auxiliary information (to avoid dereferencing
154          * the node after the callback).
155          */
156         list_for_each_entry_safe(active, next, &request->active_list, link) {
157                 /* In microbenchmarks or focusing upon time inside the kernel,
158                  * we may spend an inordinate amount of time simply handling
159                  * the retirement of requests and processing their callbacks.
160                  * Of which, this loop itself is particularly hot due to the
161                  * cache misses when jumping around the list of i915_gem_active.
162                  * So we try to keep this loop as streamlined as possible and
163                  * also prefetch the next i915_gem_active to try and hide
164                  * the likely cache miss.
165                  */
166                 prefetchw(next);
167
168                 INIT_LIST_HEAD(&active->link);
169                 RCU_INIT_POINTER(active->request, NULL);
170
171                 active->retire(active, request);
172         }
173
174         i915_gem_request_remove_from_client(request);
175
176         if (request->previous_context) {
177                 if (i915.enable_execlists)
178                         intel_lr_context_unpin(request->previous_context,
179                                                request->engine);
180         }
181
182         i915_gem_context_put(request->ctx);
183
184         dma_fence_signal(&request->fence);
185         i915_gem_request_put(request);
186 }
187
188 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
189 {
190         struct intel_engine_cs *engine = req->engine;
191         struct drm_i915_gem_request *tmp;
192
193         lockdep_assert_held(&req->i915->drm.struct_mutex);
194         if (list_empty(&req->link))
195                 return;
196
197         do {
198                 tmp = list_first_entry(&engine->timeline->requests,
199                                        typeof(*tmp), link);
200
201                 i915_gem_request_retire(tmp);
202         } while (tmp != req);
203 }
204
205 static int i915_gem_check_wedge(struct drm_i915_private *dev_priv)
206 {
207         struct i915_gpu_error *error = &dev_priv->gpu_error;
208
209         if (i915_terminally_wedged(error))
210                 return -EIO;
211
212         if (i915_reset_in_progress(error)) {
213                 /* Non-interruptible callers can't handle -EAGAIN, hence return
214                  * -EIO unconditionally for these.
215                  */
216                 if (!dev_priv->mm.interruptible)
217                         return -EIO;
218
219                 return -EAGAIN;
220         }
221
222         return 0;
223 }
224
225 static int i915_gem_init_global_seqno(struct drm_i915_private *i915, u32 seqno)
226 {
227         struct i915_gem_timeline *timeline = &i915->gt.global_timeline;
228         struct intel_engine_cs *engine;
229         enum intel_engine_id id;
230         int ret;
231
232         /* Carefully retire all requests without writing to the rings */
233         ret = i915_gem_wait_for_idle(i915,
234                                      I915_WAIT_INTERRUPTIBLE |
235                                      I915_WAIT_LOCKED);
236         if (ret)
237                 return ret;
238
239         i915_gem_retire_requests(i915);
240         GEM_BUG_ON(i915->gt.active_requests > 1);
241
242         /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
243         if (!i915_seqno_passed(seqno, atomic_read(&timeline->next_seqno))) {
244                 while (intel_kick_waiters(i915) || intel_kick_signalers(i915))
245                         yield();
246                 yield();
247         }
248         atomic_set(&timeline->next_seqno, seqno);
249
250         /* Finally reset hw state */
251         for_each_engine(engine, i915, id)
252                 intel_engine_init_global_seqno(engine, seqno);
253
254         list_for_each_entry(timeline, &i915->gt.timelines, link) {
255                 for_each_engine(engine, i915, id) {
256                         struct intel_timeline *tl = &timeline->engine[id];
257
258                         memset(tl->sync_seqno, 0, sizeof(tl->sync_seqno));
259                 }
260         }
261
262         return 0;
263 }
264
265 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
266 {
267         struct drm_i915_private *dev_priv = to_i915(dev);
268
269         lockdep_assert_held(&dev_priv->drm.struct_mutex);
270
271         if (seqno == 0)
272                 return -EINVAL;
273
274         /* HWS page needs to be set less than what we
275          * will inject to ring
276          */
277         return i915_gem_init_global_seqno(dev_priv, seqno - 1);
278 }
279
280 static int reserve_global_seqno(struct drm_i915_private *i915)
281 {
282         u32 active_requests = ++i915->gt.active_requests;
283         u32 next_seqno = atomic_read(&i915->gt.global_timeline.next_seqno);
284         int ret;
285
286         /* Reservation is fine until we need to wrap around */
287         if (likely(next_seqno + active_requests > next_seqno))
288                 return 0;
289
290         ret = i915_gem_init_global_seqno(i915, 0);
291         if (ret) {
292                 i915->gt.active_requests--;
293                 return ret;
294         }
295
296         return 0;
297 }
298
299 static u32 __timeline_get_seqno(struct i915_gem_timeline *tl)
300 {
301         /* next_seqno only incremented under a mutex */
302         return ++tl->next_seqno.counter;
303 }
304
305 static u32 timeline_get_seqno(struct i915_gem_timeline *tl)
306 {
307         return atomic_inc_return(&tl->next_seqno);
308 }
309
310 static int __i915_sw_fence_call
311 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
312 {
313         struct drm_i915_gem_request *request =
314                 container_of(fence, typeof(*request), submit);
315         struct intel_engine_cs *engine = request->engine;
316         struct intel_timeline *timeline;
317         unsigned long flags;
318         u32 seqno;
319
320         if (state != FENCE_COMPLETE)
321                 return NOTIFY_DONE;
322
323         /* Transfer from per-context onto the global per-engine timeline */
324         timeline = engine->timeline;
325         GEM_BUG_ON(timeline == request->timeline);
326
327         /* Will be called from irq-context when using foreign DMA fences */
328         spin_lock_irqsave(&timeline->lock, flags);
329
330         seqno = timeline_get_seqno(timeline->common);
331         GEM_BUG_ON(!seqno);
332         GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
333
334         GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno, seqno));
335         request->previous_seqno = timeline->last_submitted_seqno;
336         timeline->last_submitted_seqno = seqno;
337
338         /* We may be recursing from the signal callback of another i915 fence */
339         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
340         request->global_seqno = seqno;
341         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
342                 intel_engine_enable_signaling(request);
343         spin_unlock(&request->lock);
344
345         GEM_BUG_ON(!request->global_seqno);
346         engine->emit_breadcrumb(request,
347                                 request->ring->vaddr + request->postfix);
348         engine->submit_request(request);
349
350         spin_lock_nested(&request->timeline->lock, SINGLE_DEPTH_NESTING);
351         list_move_tail(&request->link, &timeline->requests);
352         spin_unlock(&request->timeline->lock);
353
354         spin_unlock_irqrestore(&timeline->lock, flags);
355
356         return NOTIFY_DONE;
357 }
358
359 /**
360  * i915_gem_request_alloc - allocate a request structure
361  *
362  * @engine: engine that we wish to issue the request on.
363  * @ctx: context that the request will be associated with.
364  *       This can be NULL if the request is not directly related to
365  *       any specific user context, in which case this function will
366  *       choose an appropriate context to use.
367  *
368  * Returns a pointer to the allocated request if successful,
369  * or an error code if not.
370  */
371 struct drm_i915_gem_request *
372 i915_gem_request_alloc(struct intel_engine_cs *engine,
373                        struct i915_gem_context *ctx)
374 {
375         struct drm_i915_private *dev_priv = engine->i915;
376         struct drm_i915_gem_request *req;
377         int ret;
378
379         lockdep_assert_held(&dev_priv->drm.struct_mutex);
380
381         /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
382          * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
383          * and restart.
384          */
385         ret = i915_gem_check_wedge(dev_priv);
386         if (ret)
387                 return ERR_PTR(ret);
388
389         ret = reserve_global_seqno(dev_priv);
390         if (ret)
391                 return ERR_PTR(ret);
392
393         /* Move the oldest request to the slab-cache (if not in use!) */
394         req = list_first_entry_or_null(&engine->timeline->requests,
395                                        typeof(*req), link);
396         if (req && __i915_gem_request_completed(req))
397                 i915_gem_request_retire(req);
398
399         /* Beware: Dragons be flying overhead.
400          *
401          * We use RCU to look up requests in flight. The lookups may
402          * race with the request being allocated from the slab freelist.
403          * That is the request we are writing to here, may be in the process
404          * of being read by __i915_gem_active_get_rcu(). As such,
405          * we have to be very careful when overwriting the contents. During
406          * the RCU lookup, we change chase the request->engine pointer,
407          * read the request->global_seqno and increment the reference count.
408          *
409          * The reference count is incremented atomically. If it is zero,
410          * the lookup knows the request is unallocated and complete. Otherwise,
411          * it is either still in use, or has been reallocated and reset
412          * with dma_fence_init(). This increment is safe for release as we
413          * check that the request we have a reference to and matches the active
414          * request.
415          *
416          * Before we increment the refcount, we chase the request->engine
417          * pointer. We must not call kmem_cache_zalloc() or else we set
418          * that pointer to NULL and cause a crash during the lookup. If
419          * we see the request is completed (based on the value of the
420          * old engine and seqno), the lookup is complete and reports NULL.
421          * If we decide the request is not completed (new engine or seqno),
422          * then we grab a reference and double check that it is still the
423          * active request - which it won't be and restart the lookup.
424          *
425          * Do not use kmem_cache_zalloc() here!
426          */
427         req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
428         if (!req) {
429                 ret = -ENOMEM;
430                 goto err_unreserve;
431         }
432
433         req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
434         GEM_BUG_ON(req->timeline == engine->timeline);
435
436         spin_lock_init(&req->lock);
437         dma_fence_init(&req->fence,
438                        &i915_fence_ops,
439                        &req->lock,
440                        req->timeline->fence_context,
441                        __timeline_get_seqno(req->timeline->common));
442
443         i915_sw_fence_init(&req->submit, submit_notify);
444
445         INIT_LIST_HEAD(&req->active_list);
446         req->i915 = dev_priv;
447         req->engine = engine;
448         req->ctx = i915_gem_context_get(ctx);
449
450         /* No zalloc, must clear what we need by hand */
451         req->global_seqno = 0;
452         req->previous_context = NULL;
453         req->file_priv = NULL;
454         req->batch = NULL;
455
456         /*
457          * Reserve space in the ring buffer for all the commands required to
458          * eventually emit this request. This is to guarantee that the
459          * i915_add_request() call can't fail. Note that the reserve may need
460          * to be redone if the request is not actually submitted straight
461          * away, e.g. because a GPU scheduler has deferred it.
462          */
463         req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
464         GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
465
466         if (i915.enable_execlists)
467                 ret = intel_logical_ring_alloc_request_extras(req);
468         else
469                 ret = intel_ring_alloc_request_extras(req);
470         if (ret)
471                 goto err_ctx;
472
473         /* Record the position of the start of the request so that
474          * should we detect the updated seqno part-way through the
475          * GPU processing the request, we never over-estimate the
476          * position of the head.
477          */
478         req->head = req->ring->tail;
479
480         return req;
481
482 err_ctx:
483         i915_gem_context_put(ctx);
484         kmem_cache_free(dev_priv->requests, req);
485 err_unreserve:
486         dev_priv->gt.active_requests--;
487         return ERR_PTR(ret);
488 }
489
490 static int
491 i915_gem_request_await_request(struct drm_i915_gem_request *to,
492                                struct drm_i915_gem_request *from)
493 {
494         int ret;
495
496         GEM_BUG_ON(to == from);
497
498         if (to->timeline == from->timeline)
499                 return 0;
500
501         if (to->engine == from->engine) {
502                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
503                                                        &from->submit,
504                                                        GFP_KERNEL);
505                 return ret < 0 ? ret : 0;
506         }
507
508         if (!from->global_seqno) {
509                 ret = i915_sw_fence_await_dma_fence(&to->submit,
510                                                     &from->fence, 0,
511                                                     GFP_KERNEL);
512                 return ret < 0 ? ret : 0;
513         }
514
515         if (from->global_seqno <= to->timeline->sync_seqno[from->engine->id])
516                 return 0;
517
518         trace_i915_gem_ring_sync_to(to, from);
519         if (!i915.semaphores) {
520                 if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
521                         ret = i915_sw_fence_await_dma_fence(&to->submit,
522                                                             &from->fence, 0,
523                                                             GFP_KERNEL);
524                         if (ret < 0)
525                                 return ret;
526                 }
527         } else {
528                 ret = to->engine->semaphore.sync_to(to, from);
529                 if (ret)
530                         return ret;
531         }
532
533         to->timeline->sync_seqno[from->engine->id] = from->global_seqno;
534         return 0;
535 }
536
537 int
538 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
539                                  struct dma_fence *fence)
540 {
541         struct dma_fence_array *array;
542         int ret;
543         int i;
544
545         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
546                 return 0;
547
548         if (dma_fence_is_i915(fence))
549                 return i915_gem_request_await_request(req, to_request(fence));
550
551         if (!dma_fence_is_array(fence)) {
552                 ret = i915_sw_fence_await_dma_fence(&req->submit,
553                                                     fence, I915_FENCE_TIMEOUT,
554                                                     GFP_KERNEL);
555                 return ret < 0 ? ret : 0;
556         }
557
558         /* Note that if the fence-array was created in signal-on-any mode,
559          * we should *not* decompose it into its individual fences. However,
560          * we don't currently store which mode the fence-array is operating
561          * in. Fortunately, the only user of signal-on-any is private to
562          * amdgpu and we should not see any incoming fence-array from
563          * sync-file being in signal-on-any mode.
564          */
565
566         array = to_dma_fence_array(fence);
567         for (i = 0; i < array->num_fences; i++) {
568                 struct dma_fence *child = array->fences[i];
569
570                 if (dma_fence_is_i915(child))
571                         ret = i915_gem_request_await_request(req,
572                                                              to_request(child));
573                 else
574                         ret = i915_sw_fence_await_dma_fence(&req->submit,
575                                                             child, I915_FENCE_TIMEOUT,
576                                                             GFP_KERNEL);
577                 if (ret < 0)
578                         return ret;
579         }
580
581         return 0;
582 }
583
584 /**
585  * i915_gem_request_await_object - set this request to (async) wait upon a bo
586  *
587  * @to: request we are wishing to use
588  * @obj: object which may be in use on another ring.
589  *
590  * This code is meant to abstract object synchronization with the GPU.
591  * Conceptually we serialise writes between engines inside the GPU.
592  * We only allow one engine to write into a buffer at any time, but
593  * multiple readers. To ensure each has a coherent view of memory, we must:
594  *
595  * - If there is an outstanding write request to the object, the new
596  *   request must wait for it to complete (either CPU or in hw, requests
597  *   on the same ring will be naturally ordered).
598  *
599  * - If we are a write request (pending_write_domain is set), the new
600  *   request must wait for outstanding read requests to complete.
601  *
602  * Returns 0 if successful, else propagates up the lower layer error.
603  */
604 int
605 i915_gem_request_await_object(struct drm_i915_gem_request *to,
606                               struct drm_i915_gem_object *obj,
607                               bool write)
608 {
609         struct dma_fence *excl;
610         int ret = 0;
611
612         if (write) {
613                 struct dma_fence **shared;
614                 unsigned int count, i;
615
616                 ret = reservation_object_get_fences_rcu(obj->resv,
617                                                         &excl, &count, &shared);
618                 if (ret)
619                         return ret;
620
621                 for (i = 0; i < count; i++) {
622                         ret = i915_gem_request_await_dma_fence(to, shared[i]);
623                         if (ret)
624                                 break;
625
626                         dma_fence_put(shared[i]);
627                 }
628
629                 for (; i < count; i++)
630                         dma_fence_put(shared[i]);
631                 kfree(shared);
632         } else {
633                 excl = reservation_object_get_excl_rcu(obj->resv);
634         }
635
636         if (excl) {
637                 if (ret == 0)
638                         ret = i915_gem_request_await_dma_fence(to, excl);
639
640                 dma_fence_put(excl);
641         }
642
643         return ret;
644 }
645
646 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
647 {
648         struct drm_i915_private *dev_priv = engine->i915;
649
650         if (dev_priv->gt.awake)
651                 return;
652
653         intel_runtime_pm_get_noresume(dev_priv);
654         dev_priv->gt.awake = true;
655
656         intel_enable_gt_powersave(dev_priv);
657         i915_update_gfx_val(dev_priv);
658         if (INTEL_GEN(dev_priv) >= 6)
659                 gen6_rps_busy(dev_priv);
660
661         queue_delayed_work(dev_priv->wq,
662                            &dev_priv->gt.retire_work,
663                            round_jiffies_up_relative(HZ));
664 }
665
666 /*
667  * NB: This function is not allowed to fail. Doing so would mean the the
668  * request is not being tracked for completion but the work itself is
669  * going to happen on the hardware. This would be a Bad Thing(tm).
670  */
671 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
672 {
673         struct intel_engine_cs *engine = request->engine;
674         struct intel_ring *ring = request->ring;
675         struct intel_timeline *timeline = request->timeline;
676         struct drm_i915_gem_request *prev;
677         int err;
678
679         lockdep_assert_held(&request->i915->drm.struct_mutex);
680         trace_i915_gem_request_add(request);
681
682         /*
683          * To ensure that this call will not fail, space for its emissions
684          * should already have been reserved in the ring buffer. Let the ring
685          * know that it is time to use that space up.
686          */
687         request->reserved_space = 0;
688
689         /*
690          * Emit any outstanding flushes - execbuf can fail to emit the flush
691          * after having emitted the batchbuffer command. Hence we need to fix
692          * things up similar to emitting the lazy request. The difference here
693          * is that the flush _must_ happen before the next request, no matter
694          * what.
695          */
696         if (flush_caches) {
697                 err = engine->emit_flush(request, EMIT_FLUSH);
698
699                 /* Not allowed to fail! */
700                 WARN(err, "engine->emit_flush() failed: %d!\n", err);
701         }
702
703         /* Record the position of the start of the breadcrumb so that
704          * should we detect the updated seqno part-way through the
705          * GPU processing the request, we never over-estimate the
706          * position of the ring's HEAD.
707          */
708         err = intel_ring_begin(request, engine->emit_breadcrumb_sz);
709         GEM_BUG_ON(err);
710         request->postfix = ring->tail;
711         ring->tail += engine->emit_breadcrumb_sz * sizeof(u32);
712
713         /* Seal the request and mark it as pending execution. Note that
714          * we may inspect this state, without holding any locks, during
715          * hangcheck. Hence we apply the barrier to ensure that we do not
716          * see a more recent value in the hws than we are tracking.
717          */
718
719         prev = i915_gem_active_raw(&timeline->last_request,
720                                    &request->i915->drm.struct_mutex);
721         if (prev)
722                 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
723                                              &request->submitq);
724
725         spin_lock_irq(&timeline->lock);
726         list_add_tail(&request->link, &timeline->requests);
727         spin_unlock_irq(&timeline->lock);
728
729         GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno,
730                                      request->fence.seqno));
731
732         timeline->last_submitted_seqno = request->fence.seqno;
733         i915_gem_active_set(&timeline->last_request, request);
734
735         list_add_tail(&request->ring_link, &ring->request_list);
736         request->emitted_jiffies = jiffies;
737
738         i915_gem_mark_busy(engine);
739
740         local_bh_disable();
741         i915_sw_fence_commit(&request->submit);
742         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
743 }
744
745 static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
746 {
747         unsigned long flags;
748
749         spin_lock_irqsave(&q->lock, flags);
750         if (list_empty(&wait->task_list))
751                 __add_wait_queue(q, wait);
752         spin_unlock_irqrestore(&q->lock, flags);
753 }
754
755 static unsigned long local_clock_us(unsigned int *cpu)
756 {
757         unsigned long t;
758
759         /* Cheaply and approximately convert from nanoseconds to microseconds.
760          * The result and subsequent calculations are also defined in the same
761          * approximate microseconds units. The principal source of timing
762          * error here is from the simple truncation.
763          *
764          * Note that local_clock() is only defined wrt to the current CPU;
765          * the comparisons are no longer valid if we switch CPUs. Instead of
766          * blocking preemption for the entire busywait, we can detect the CPU
767          * switch and use that as indicator of system load and a reason to
768          * stop busywaiting, see busywait_stop().
769          */
770         *cpu = get_cpu();
771         t = local_clock() >> 10;
772         put_cpu();
773
774         return t;
775 }
776
777 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
778 {
779         unsigned int this_cpu;
780
781         if (time_after(local_clock_us(&this_cpu), timeout))
782                 return true;
783
784         return this_cpu != cpu;
785 }
786
787 bool __i915_spin_request(const struct drm_i915_gem_request *req,
788                          int state, unsigned long timeout_us)
789 {
790         unsigned int cpu;
791
792         /* When waiting for high frequency requests, e.g. during synchronous
793          * rendering split between the CPU and GPU, the finite amount of time
794          * required to set up the irq and wait upon it limits the response
795          * rate. By busywaiting on the request completion for a short while we
796          * can service the high frequency waits as quick as possible. However,
797          * if it is a slow request, we want to sleep as quickly as possible.
798          * The tradeoff between waiting and sleeping is roughly the time it
799          * takes to sleep on a request, on the order of a microsecond.
800          */
801
802         timeout_us += local_clock_us(&cpu);
803         do {
804                 if (__i915_gem_request_completed(req))
805                         return true;
806
807                 if (signal_pending_state(state, current))
808                         break;
809
810                 if (busywait_stop(timeout_us, cpu))
811                         break;
812
813                 cpu_relax_lowlatency();
814         } while (!need_resched());
815
816         return false;
817 }
818
819 static long
820 __i915_request_wait_for_submit(struct drm_i915_gem_request *request,
821                                unsigned int flags,
822                                long timeout)
823 {
824         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
825                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
826         wait_queue_head_t *q = &request->i915->gpu_error.wait_queue;
827         DEFINE_WAIT(reset);
828         DEFINE_WAIT(wait);
829
830         if (flags & I915_WAIT_LOCKED)
831                 add_wait_queue(q, &reset);
832
833         do {
834                 prepare_to_wait(&request->submit.wait, &wait, state);
835
836                 if (i915_sw_fence_done(&request->submit))
837                         break;
838
839                 if (flags & I915_WAIT_LOCKED &&
840                     i915_reset_in_progress(&request->i915->gpu_error)) {
841                         __set_current_state(TASK_RUNNING);
842                         i915_reset(request->i915);
843                         reset_wait_queue(q, &reset);
844                         continue;
845                 }
846
847                 if (signal_pending_state(state, current)) {
848                         timeout = -ERESTARTSYS;
849                         break;
850                 }
851
852                 timeout = io_schedule_timeout(timeout);
853         } while (timeout);
854         finish_wait(&request->submit.wait, &wait);
855
856         if (flags & I915_WAIT_LOCKED)
857                 remove_wait_queue(q, &reset);
858
859         return timeout;
860 }
861
862 /**
863  * i915_wait_request - wait until execution of request has finished
864  * @req: the request to wait upon
865  * @flags: how to wait
866  * @timeout: how long to wait in jiffies
867  *
868  * i915_wait_request() waits for the request to be completed, for a
869  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
870  * unbounded wait).
871  *
872  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
873  * in via the flags, and vice versa if the struct_mutex is not held, the caller
874  * must not specify that the wait is locked.
875  *
876  * Returns the remaining time (in jiffies) if the request completed, which may
877  * be zero or -ETIME if the request is unfinished after the timeout expires.
878  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
879  * pending before the request completes.
880  */
881 long i915_wait_request(struct drm_i915_gem_request *req,
882                        unsigned int flags,
883                        long timeout)
884 {
885         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
886                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
887         DEFINE_WAIT(reset);
888         struct intel_wait wait;
889
890         might_sleep();
891 #if IS_ENABLED(CONFIG_LOCKDEP)
892         GEM_BUG_ON(debug_locks &&
893                    !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
894                    !!(flags & I915_WAIT_LOCKED));
895 #endif
896         GEM_BUG_ON(timeout < 0);
897
898         if (i915_gem_request_completed(req))
899                 return timeout;
900
901         if (!timeout)
902                 return -ETIME;
903
904         trace_i915_gem_request_wait_begin(req);
905
906         if (!i915_sw_fence_done(&req->submit)) {
907                 timeout = __i915_request_wait_for_submit(req, flags, timeout);
908                 if (timeout < 0)
909                         goto complete;
910
911                 GEM_BUG_ON(!i915_sw_fence_done(&req->submit));
912         }
913         GEM_BUG_ON(!req->global_seqno);
914
915         /* Optimistic short spin before touching IRQs */
916         if (i915_spin_request(req, state, 5))
917                 goto complete;
918
919         set_current_state(state);
920         if (flags & I915_WAIT_LOCKED)
921                 add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
922
923         intel_wait_init(&wait, req->global_seqno);
924         if (intel_engine_add_wait(req->engine, &wait))
925                 /* In order to check that we haven't missed the interrupt
926                  * as we enabled it, we need to kick ourselves to do a
927                  * coherent check on the seqno before we sleep.
928                  */
929                 goto wakeup;
930
931         for (;;) {
932                 if (signal_pending_state(state, current)) {
933                         timeout = -ERESTARTSYS;
934                         break;
935                 }
936
937                 if (!timeout) {
938                         timeout = -ETIME;
939                         break;
940                 }
941
942                 timeout = io_schedule_timeout(timeout);
943
944                 if (intel_wait_complete(&wait))
945                         break;
946
947                 set_current_state(state);
948
949 wakeup:
950                 /* Carefully check if the request is complete, giving time
951                  * for the seqno to be visible following the interrupt.
952                  * We also have to check in case we are kicked by the GPU
953                  * reset in order to drop the struct_mutex.
954                  */
955                 if (__i915_request_irq_complete(req))
956                         break;
957
958                 /* If the GPU is hung, and we hold the lock, reset the GPU
959                  * and then check for completion. On a full reset, the engine's
960                  * HW seqno will be advanced passed us and we are complete.
961                  * If we do a partial reset, we have to wait for the GPU to
962                  * resume and update the breadcrumb.
963                  *
964                  * If we don't hold the mutex, we can just wait for the worker
965                  * to come along and update the breadcrumb (either directly
966                  * itself, or indirectly by recovering the GPU).
967                  */
968                 if (flags & I915_WAIT_LOCKED &&
969                     i915_reset_in_progress(&req->i915->gpu_error)) {
970                         __set_current_state(TASK_RUNNING);
971                         i915_reset(req->i915);
972                         reset_wait_queue(&req->i915->gpu_error.wait_queue,
973                                          &reset);
974                         continue;
975                 }
976
977                 /* Only spin if we know the GPU is processing this request */
978                 if (i915_spin_request(req, state, 2))
979                         break;
980         }
981
982         intel_engine_remove_wait(req->engine, &wait);
983         if (flags & I915_WAIT_LOCKED)
984                 remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
985         __set_current_state(TASK_RUNNING);
986
987 complete:
988         trace_i915_gem_request_wait_end(req);
989
990         return timeout;
991 }
992
993 static void engine_retire_requests(struct intel_engine_cs *engine)
994 {
995         struct drm_i915_gem_request *request, *next;
996
997         list_for_each_entry_safe(request, next,
998                                  &engine->timeline->requests, link) {
999                 if (!__i915_gem_request_completed(request))
1000                         return;
1001
1002                 i915_gem_request_retire(request);
1003         }
1004 }
1005
1006 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1007 {
1008         struct intel_engine_cs *engine;
1009         enum intel_engine_id id;
1010
1011         lockdep_assert_held(&dev_priv->drm.struct_mutex);
1012
1013         if (!dev_priv->gt.active_requests)
1014                 return;
1015
1016         GEM_BUG_ON(!dev_priv->gt.awake);
1017
1018         for_each_engine(engine, dev_priv, id)
1019                 engine_retire_requests(engine);
1020
1021         if (!dev_priv->gt.active_requests)
1022                 mod_delayed_work(dev_priv->wq,
1023                                  &dev_priv->gt.idle_work,
1024                                  msecs_to_jiffies(100));
1025 }