drm/i915: One hopeful eviction on PPGTT alloc
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30
31 #define GEN6_PPGTT_PD_ENTRIES 512
32 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
33 typedef uint64_t gen8_gtt_pte_t;
34 typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
35
36 /* PPGTT stuff */
37 #define GEN6_GTT_ADDR_ENCODE(addr)      ((addr) | (((addr) >> 28) & 0xff0))
38 #define HSW_GTT_ADDR_ENCODE(addr)       ((addr) | (((addr) >> 28) & 0x7f0))
39
40 #define GEN6_PDE_VALID                  (1 << 0)
41 /* gen6+ has bit 11-4 for physical addr bit 39-32 */
42 #define GEN6_PDE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
43
44 #define GEN6_PTE_VALID                  (1 << 0)
45 #define GEN6_PTE_UNCACHED               (1 << 1)
46 #define HSW_PTE_UNCACHED                (0)
47 #define GEN6_PTE_CACHE_LLC              (2 << 1)
48 #define GEN7_PTE_CACHE_L3_LLC           (3 << 1)
49 #define GEN6_PTE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
50 #define HSW_PTE_ADDR_ENCODE(addr)       HSW_GTT_ADDR_ENCODE(addr)
51
52 /* Cacheability Control is a 4-bit value. The low three bits are stored in *
53  * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
54  */
55 #define HSW_CACHEABILITY_CONTROL(bits)  ((((bits) & 0x7) << 1) | \
56                                          (((bits) & 0x8) << (11 - 3)))
57 #define HSW_WB_LLC_AGE3                 HSW_CACHEABILITY_CONTROL(0x2)
58 #define HSW_WB_LLC_AGE0                 HSW_CACHEABILITY_CONTROL(0x3)
59 #define HSW_WB_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0xb)
60 #define HSW_WT_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0x6)
61
62 #define GEN8_PTES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
63 #define GEN8_PDES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
64 #define GEN8_LEGACY_PDPS                4
65
66 #define PPAT_UNCACHED_INDEX             (_PAGE_PWT | _PAGE_PCD)
67 #define PPAT_CACHED_PDE_INDEX           0 /* WB LLC */
68 #define PPAT_CACHED_INDEX               _PAGE_PAT /* WB LLCeLLC */
69 #define PPAT_DISPLAY_ELLC_INDEX         _PAGE_PCD /* WT eLLC */
70
71 static void ppgtt_bind_vma(struct i915_vma *vma,
72                            enum i915_cache_level cache_level,
73                            u32 flags);
74 static void ppgtt_unbind_vma(struct i915_vma *vma);
75
76 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
77                                              enum i915_cache_level level,
78                                              bool valid)
79 {
80         gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
81         pte |= addr;
82         if (level != I915_CACHE_NONE)
83                 pte |= PPAT_CACHED_INDEX;
84         else
85                 pte |= PPAT_UNCACHED_INDEX;
86         return pte;
87 }
88
89 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
90                                              dma_addr_t addr,
91                                              enum i915_cache_level level)
92 {
93         gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
94         pde |= addr;
95         if (level != I915_CACHE_NONE)
96                 pde |= PPAT_CACHED_PDE_INDEX;
97         else
98                 pde |= PPAT_UNCACHED_INDEX;
99         return pde;
100 }
101
102 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
103                                      enum i915_cache_level level,
104                                      bool valid)
105 {
106         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
107         pte |= GEN6_PTE_ADDR_ENCODE(addr);
108
109         switch (level) {
110         case I915_CACHE_L3_LLC:
111         case I915_CACHE_LLC:
112                 pte |= GEN6_PTE_CACHE_LLC;
113                 break;
114         case I915_CACHE_NONE:
115                 pte |= GEN6_PTE_UNCACHED;
116                 break;
117         default:
118                 WARN_ON(1);
119         }
120
121         return pte;
122 }
123
124 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
125                                      enum i915_cache_level level,
126                                      bool valid)
127 {
128         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
129         pte |= GEN6_PTE_ADDR_ENCODE(addr);
130
131         switch (level) {
132         case I915_CACHE_L3_LLC:
133                 pte |= GEN7_PTE_CACHE_L3_LLC;
134                 break;
135         case I915_CACHE_LLC:
136                 pte |= GEN6_PTE_CACHE_LLC;
137                 break;
138         case I915_CACHE_NONE:
139                 pte |= GEN6_PTE_UNCACHED;
140                 break;
141         default:
142                 WARN_ON(1);
143         }
144
145         return pte;
146 }
147
148 #define BYT_PTE_WRITEABLE               (1 << 1)
149 #define BYT_PTE_SNOOPED_BY_CPU_CACHES   (1 << 2)
150
151 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
152                                      enum i915_cache_level level,
153                                      bool valid)
154 {
155         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
156         pte |= GEN6_PTE_ADDR_ENCODE(addr);
157
158         /* Mark the page as writeable.  Other platforms don't have a
159          * setting for read-only/writable, so this matches that behavior.
160          */
161         pte |= BYT_PTE_WRITEABLE;
162
163         if (level != I915_CACHE_NONE)
164                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
165
166         return pte;
167 }
168
169 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
170                                      enum i915_cache_level level,
171                                      bool valid)
172 {
173         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
174         pte |= HSW_PTE_ADDR_ENCODE(addr);
175
176         if (level != I915_CACHE_NONE)
177                 pte |= HSW_WB_LLC_AGE3;
178
179         return pte;
180 }
181
182 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
183                                       enum i915_cache_level level,
184                                       bool valid)
185 {
186         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
187         pte |= HSW_PTE_ADDR_ENCODE(addr);
188
189         switch (level) {
190         case I915_CACHE_NONE:
191                 break;
192         case I915_CACHE_WT:
193                 pte |= HSW_WT_ELLC_LLC_AGE0;
194                 break;
195         default:
196                 pte |= HSW_WB_ELLC_LLC_AGE0;
197                 break;
198         }
199
200         return pte;
201 }
202
203 /* Broadwell Page Directory Pointer Descriptors */
204 static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
205                            uint64_t val, bool synchronous)
206 {
207         struct drm_i915_private *dev_priv = ring->dev->dev_private;
208         int ret;
209
210         BUG_ON(entry >= 4);
211
212         if (synchronous) {
213                 I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
214                 I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
215                 return 0;
216         }
217
218         ret = intel_ring_begin(ring, 6);
219         if (ret)
220                 return ret;
221
222         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
223         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
224         intel_ring_emit(ring, (u32)(val >> 32));
225         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
226         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
227         intel_ring_emit(ring, (u32)(val));
228         intel_ring_advance(ring);
229
230         return 0;
231 }
232
233 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
234 {
235         struct drm_device *dev = ppgtt->base.dev;
236         struct drm_i915_private *dev_priv = dev->dev_private;
237         struct intel_ring_buffer *ring;
238         int i, j, ret;
239
240         /* bit of a hack to find the actual last used pd */
241         int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
242
243         for_each_ring(ring, dev_priv, j) {
244                 I915_WRITE(RING_MODE_GEN7(ring),
245                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
246         }
247
248         for (i = used_pd - 1; i >= 0; i--) {
249                 dma_addr_t addr = ppgtt->pd_dma_addr[i];
250                 for_each_ring(ring, dev_priv, j) {
251                         ret = gen8_write_pdp(ring, i, addr,
252                                              i915_reset_in_progress(&dev_priv->gpu_error));
253                         if (ret)
254                                 goto err_out;
255                 }
256         }
257         return 0;
258
259 err_out:
260         for_each_ring(ring, dev_priv, j)
261                 I915_WRITE(RING_MODE_GEN7(ring),
262                            _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
263         return ret;
264 }
265
266 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
267                                    unsigned first_entry,
268                                    unsigned num_entries,
269                                    bool use_scratch)
270 {
271         struct i915_hw_ppgtt *ppgtt =
272                 container_of(vm, struct i915_hw_ppgtt, base);
273         gen8_gtt_pte_t *pt_vaddr, scratch_pte;
274         unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
275         unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE;
276         unsigned last_pte, i;
277
278         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
279                                       I915_CACHE_LLC, use_scratch);
280
281         while (num_entries) {
282                 struct page *page_table = &ppgtt->gen8_pt_pages[act_pt];
283
284                 last_pte = first_pte + num_entries;
285                 if (last_pte > GEN8_PTES_PER_PAGE)
286                         last_pte = GEN8_PTES_PER_PAGE;
287
288                 pt_vaddr = kmap_atomic(page_table);
289
290                 for (i = first_pte; i < last_pte; i++)
291                         pt_vaddr[i] = scratch_pte;
292
293                 kunmap_atomic(pt_vaddr);
294
295                 num_entries -= last_pte - first_pte;
296                 first_pte = 0;
297                 act_pt++;
298         }
299 }
300
301 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
302                                       struct sg_table *pages,
303                                       unsigned first_entry,
304                                       enum i915_cache_level cache_level)
305 {
306         struct i915_hw_ppgtt *ppgtt =
307                 container_of(vm, struct i915_hw_ppgtt, base);
308         gen8_gtt_pte_t *pt_vaddr;
309         unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
310         unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE;
311         struct sg_page_iter sg_iter;
312
313         pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
314         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
315                 dma_addr_t page_addr;
316
317                 page_addr = sg_dma_address(sg_iter.sg) +
318                                 (sg_iter.sg_pgoffset << PAGE_SHIFT);
319                 pt_vaddr[act_pte] = gen8_pte_encode(page_addr, cache_level,
320                                                     true);
321                 if (++act_pte == GEN8_PTES_PER_PAGE) {
322                         kunmap_atomic(pt_vaddr);
323                         act_pt++;
324                         pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
325                         act_pte = 0;
326
327                 }
328         }
329         kunmap_atomic(pt_vaddr);
330 }
331
332 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
333 {
334         struct i915_hw_ppgtt *ppgtt =
335                 container_of(vm, struct i915_hw_ppgtt, base);
336         int i, j;
337
338         drm_mm_takedown(&vm->mm);
339
340         for (i = 0; i < ppgtt->num_pd_pages ; i++) {
341                 if (ppgtt->pd_dma_addr[i]) {
342                         pci_unmap_page(ppgtt->base.dev->pdev,
343                                        ppgtt->pd_dma_addr[i],
344                                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
345
346                         for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
347                                 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
348                                 if (addr)
349                                         pci_unmap_page(ppgtt->base.dev->pdev,
350                                                        addr,
351                                                        PAGE_SIZE,
352                                                        PCI_DMA_BIDIRECTIONAL);
353
354                         }
355                 }
356                 kfree(ppgtt->gen8_pt_dma_addr[i]);
357         }
358
359         __free_pages(ppgtt->gen8_pt_pages, get_order(ppgtt->num_pt_pages << PAGE_SHIFT));
360         __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
361 }
362
363 /**
364  * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
365  * net effect resembling a 2-level page table in normal x86 terms. Each PDP
366  * represents 1GB of memory
367  * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
368  *
369  * TODO: Do something with the size parameter
370  **/
371 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
372 {
373         struct page *pt_pages;
374         int i, j, ret = -ENOMEM;
375         const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
376         const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
377
378         if (size % (1<<30))
379                 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
380
381         /* FIXME: split allocation into smaller pieces. For now we only ever do
382          * this once, but with full PPGTT, the multiple contiguous allocations
383          * will be bad.
384          */
385         ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
386         if (!ppgtt->pd_pages)
387                 return -ENOMEM;
388
389         pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
390         if (!pt_pages) {
391                 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
392                 return -ENOMEM;
393         }
394
395         ppgtt->gen8_pt_pages = pt_pages;
396         ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
397         ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
398         ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
399         ppgtt->enable = gen8_ppgtt_enable;
400         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
401         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
402         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
403         ppgtt->base.start = 0;
404         ppgtt->base.total = ppgtt->num_pt_pages * GEN8_PTES_PER_PAGE * PAGE_SIZE;
405
406         BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
407
408         /*
409          * - Create a mapping for the page directories.
410          * - For each page directory:
411          *      allocate space for page table mappings.
412          *      map each page table
413          */
414         for (i = 0; i < max_pdp; i++) {
415                 dma_addr_t temp;
416                 temp = pci_map_page(ppgtt->base.dev->pdev,
417                                     &ppgtt->pd_pages[i], 0,
418                                     PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
419                 if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
420                         goto err_out;
421
422                 ppgtt->pd_dma_addr[i] = temp;
423
424                 ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL);
425                 if (!ppgtt->gen8_pt_dma_addr[i])
426                         goto err_out;
427
428                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
429                         struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
430                         temp = pci_map_page(ppgtt->base.dev->pdev,
431                                             p, 0, PAGE_SIZE,
432                                             PCI_DMA_BIDIRECTIONAL);
433
434                         if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
435                                 goto err_out;
436
437                         ppgtt->gen8_pt_dma_addr[i][j] = temp;
438                 }
439         }
440
441         /* For now, the PPGTT helper functions all require that the PDEs are
442          * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
443          * will never need to touch the PDEs again */
444         for (i = 0; i < max_pdp; i++) {
445                 gen8_ppgtt_pde_t *pd_vaddr;
446                 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
447                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
448                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
449                         pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
450                                                       I915_CACHE_LLC);
451                 }
452                 kunmap_atomic(pd_vaddr);
453         }
454
455         ppgtt->base.clear_range(&ppgtt->base, 0,
456                                 ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE,
457                                 true);
458
459         DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
460                          ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
461         DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
462                          ppgtt->num_pt_pages,
463                          (ppgtt->num_pt_pages - num_pt_pages) +
464                          size % (1<<30));
465         return 0;
466
467 err_out:
468         ppgtt->base.cleanup(&ppgtt->base);
469         return ret;
470 }
471
472 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
473 {
474         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
475         gen6_gtt_pte_t __iomem *pd_addr;
476         uint32_t pd_entry;
477         int i;
478
479         WARN_ON(ppgtt->pd_offset & 0x3f);
480         pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
481                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
482         for (i = 0; i < ppgtt->num_pd_entries; i++) {
483                 dma_addr_t pt_addr;
484
485                 pt_addr = ppgtt->pt_dma_addr[i];
486                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
487                 pd_entry |= GEN6_PDE_VALID;
488
489                 writel(pd_entry, pd_addr + i);
490         }
491         readl(pd_addr);
492 }
493
494 static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
495 {
496         struct drm_device *dev = ppgtt->base.dev;
497         drm_i915_private_t *dev_priv = dev->dev_private;
498         uint32_t pd_offset;
499         struct intel_ring_buffer *ring;
500         int i;
501
502         BUG_ON(ppgtt->pd_offset & 0x3f);
503
504         gen6_write_pdes(ppgtt);
505
506         pd_offset = ppgtt->pd_offset;
507         pd_offset /= 64; /* in cachelines, */
508         pd_offset <<= 16;
509
510         if (INTEL_INFO(dev)->gen == 6) {
511                 uint32_t ecochk, gab_ctl, ecobits;
512
513                 ecobits = I915_READ(GAC_ECO_BITS);
514                 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
515                                          ECOBITS_PPGTT_CACHE64B);
516
517                 gab_ctl = I915_READ(GAB_CTL);
518                 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
519
520                 ecochk = I915_READ(GAM_ECOCHK);
521                 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
522                                        ECOCHK_PPGTT_CACHE64B);
523                 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
524         } else if (INTEL_INFO(dev)->gen >= 7) {
525                 uint32_t ecochk, ecobits;
526
527                 ecobits = I915_READ(GAC_ECO_BITS);
528                 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
529
530                 ecochk = I915_READ(GAM_ECOCHK);
531                 if (IS_HASWELL(dev)) {
532                         ecochk |= ECOCHK_PPGTT_WB_HSW;
533                 } else {
534                         ecochk |= ECOCHK_PPGTT_LLC_IVB;
535                         ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
536                 }
537                 I915_WRITE(GAM_ECOCHK, ecochk);
538                 /* GFX_MODE is per-ring on gen7+ */
539         }
540
541         for_each_ring(ring, dev_priv, i) {
542                 if (INTEL_INFO(dev)->gen >= 7)
543                         I915_WRITE(RING_MODE_GEN7(ring),
544                                    _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
545
546                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
547                 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
548         }
549         return 0;
550 }
551
552 /* PPGTT support for Sandybdrige/Gen6 and later */
553 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
554                                    unsigned first_entry,
555                                    unsigned num_entries,
556                                    bool use_scratch)
557 {
558         struct i915_hw_ppgtt *ppgtt =
559                 container_of(vm, struct i915_hw_ppgtt, base);
560         gen6_gtt_pte_t *pt_vaddr, scratch_pte;
561         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
562         unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
563         unsigned last_pte, i;
564
565         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
566
567         while (num_entries) {
568                 last_pte = first_pte + num_entries;
569                 if (last_pte > I915_PPGTT_PT_ENTRIES)
570                         last_pte = I915_PPGTT_PT_ENTRIES;
571
572                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
573
574                 for (i = first_pte; i < last_pte; i++)
575                         pt_vaddr[i] = scratch_pte;
576
577                 kunmap_atomic(pt_vaddr);
578
579                 num_entries -= last_pte - first_pte;
580                 first_pte = 0;
581                 act_pt++;
582         }
583 }
584
585 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
586                                       struct sg_table *pages,
587                                       unsigned first_entry,
588                                       enum i915_cache_level cache_level)
589 {
590         struct i915_hw_ppgtt *ppgtt =
591                 container_of(vm, struct i915_hw_ppgtt, base);
592         gen6_gtt_pte_t *pt_vaddr;
593         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
594         unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
595         struct sg_page_iter sg_iter;
596
597         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
598         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
599                 dma_addr_t page_addr;
600
601                 page_addr = sg_page_iter_dma_address(&sg_iter);
602                 pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level, true);
603                 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
604                         kunmap_atomic(pt_vaddr);
605                         act_pt++;
606                         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
607                         act_pte = 0;
608
609                 }
610         }
611         kunmap_atomic(pt_vaddr);
612 }
613
614 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
615 {
616         struct i915_hw_ppgtt *ppgtt =
617                 container_of(vm, struct i915_hw_ppgtt, base);
618         int i;
619
620         drm_mm_takedown(&ppgtt->base.mm);
621         drm_mm_remove_node(&ppgtt->node);
622
623         if (ppgtt->pt_dma_addr) {
624                 for (i = 0; i < ppgtt->num_pd_entries; i++)
625                         pci_unmap_page(ppgtt->base.dev->pdev,
626                                        ppgtt->pt_dma_addr[i],
627                                        4096, PCI_DMA_BIDIRECTIONAL);
628         }
629
630         kfree(ppgtt->pt_dma_addr);
631         for (i = 0; i < ppgtt->num_pd_entries; i++)
632                 __free_page(ppgtt->pt_pages[i]);
633         kfree(ppgtt->pt_pages);
634         kfree(ppgtt);
635 }
636
637 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
638 {
639 #define GEN6_PD_ALIGN (PAGE_SIZE * 16)
640 #define GEN6_PD_SIZE (GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE)
641         struct drm_device *dev = ppgtt->base.dev;
642         struct drm_i915_private *dev_priv = dev->dev_private;
643         bool retried = false;
644         int i, ret;
645
646         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
647          * allocator works in address space sizes, so it's multiplied by page
648          * size. We allocate at the top of the GTT to avoid fragmentation.
649          */
650         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
651 alloc:
652         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
653                                                   &ppgtt->node, GEN6_PD_SIZE,
654                                                   GEN6_PD_ALIGN, 0,
655                                                   0, dev_priv->gtt.base.total,
656                                                   DRM_MM_SEARCH_DEFAULT);
657         if (ret == -ENOSPC && !retried) {
658                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
659                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
660                                                I915_CACHE_NONE, false, true);
661                 if (ret)
662                         return ret;
663
664                 retried = true;
665                 goto alloc;
666         }
667
668         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
669                 DRM_DEBUG("Forced to use aperture for PDEs\n");
670
671         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
672         ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
673         ppgtt->enable = gen6_ppgtt_enable;
674         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
675         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
676         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
677         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
678         ppgtt->base.start = 0;
679         ppgtt->base.total = GEN6_PPGTT_PD_ENTRIES * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
680         ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
681                                   GFP_KERNEL);
682         if (!ppgtt->pt_pages) {
683                 drm_mm_remove_node(&ppgtt->node);
684                 return -ENOMEM;
685         }
686
687         for (i = 0; i < ppgtt->num_pd_entries; i++) {
688                 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
689                 if (!ppgtt->pt_pages[i])
690                         goto err_pt_alloc;
691         }
692
693         ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
694                                      GFP_KERNEL);
695         if (!ppgtt->pt_dma_addr)
696                 goto err_pt_alloc;
697
698         for (i = 0; i < ppgtt->num_pd_entries; i++) {
699                 dma_addr_t pt_addr;
700
701                 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
702                                        PCI_DMA_BIDIRECTIONAL);
703
704                 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
705                         ret = -EIO;
706                         goto err_pd_pin;
707
708                 }
709                 ppgtt->pt_dma_addr[i] = pt_addr;
710         }
711
712         ppgtt->base.clear_range(&ppgtt->base, 0,
713                                 ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
714
715         DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
716                          ppgtt->node.size >> 20,
717                          ppgtt->node.start / PAGE_SIZE);
718         ppgtt->pd_offset =
719                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
720
721         return 0;
722
723 err_pd_pin:
724         if (ppgtt->pt_dma_addr) {
725                 for (i--; i >= 0; i--)
726                         pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
727                                        4096, PCI_DMA_BIDIRECTIONAL);
728         }
729 err_pt_alloc:
730         kfree(ppgtt->pt_dma_addr);
731         for (i = 0; i < ppgtt->num_pd_entries; i++) {
732                 if (ppgtt->pt_pages[i])
733                         __free_page(ppgtt->pt_pages[i]);
734         }
735         kfree(ppgtt->pt_pages);
736         drm_mm_remove_node(&ppgtt->node);
737
738         return ret;
739 }
740
741 static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
742 {
743         struct drm_i915_private *dev_priv = dev->dev_private;
744         struct i915_hw_ppgtt *ppgtt;
745         int ret;
746
747         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
748         if (!ppgtt)
749                 return -ENOMEM;
750
751         ppgtt->base.dev = dev;
752
753         if (INTEL_INFO(dev)->gen < 8)
754                 ret = gen6_ppgtt_init(ppgtt);
755         else if (IS_GEN8(dev))
756                 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
757         else
758                 BUG();
759
760         if (ret)
761                 kfree(ppgtt);
762         else {
763                 dev_priv->mm.aliasing_ppgtt = ppgtt;
764                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
765                             ppgtt->base.total);
766         }
767
768         return ret;
769 }
770
771 void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
772 {
773         struct drm_i915_private *dev_priv = dev->dev_private;
774         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
775
776         if (!ppgtt)
777                 return;
778
779         ppgtt->base.cleanup(&ppgtt->base);
780         dev_priv->mm.aliasing_ppgtt = NULL;
781 }
782
783 static void __always_unused
784 ppgtt_bind_vma(struct i915_vma *vma,
785                enum i915_cache_level cache_level,
786                u32 flags)
787 {
788         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
789
790         WARN_ON(flags);
791
792         vma->vm->insert_entries(vma->vm, vma->obj->pages, entry, cache_level);
793 }
794
795 static void __always_unused ppgtt_unbind_vma(struct i915_vma *vma)
796 {
797         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
798
799         vma->vm->clear_range(vma->vm,
800                              entry,
801                              vma->obj->base.size >> PAGE_SHIFT,
802                              true);
803 }
804
805 extern int intel_iommu_gfx_mapped;
806 /* Certain Gen5 chipsets require require idling the GPU before
807  * unmapping anything from the GTT when VT-d is enabled.
808  */
809 static inline bool needs_idle_maps(struct drm_device *dev)
810 {
811 #ifdef CONFIG_INTEL_IOMMU
812         /* Query intel_iommu to see if we need the workaround. Presumably that
813          * was loaded first.
814          */
815         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
816                 return true;
817 #endif
818         return false;
819 }
820
821 static bool do_idling(struct drm_i915_private *dev_priv)
822 {
823         bool ret = dev_priv->mm.interruptible;
824
825         if (unlikely(dev_priv->gtt.do_idle_maps)) {
826                 dev_priv->mm.interruptible = false;
827                 if (i915_gpu_idle(dev_priv->dev)) {
828                         DRM_ERROR("Couldn't idle GPU\n");
829                         /* Wait a bit, in hopes it avoids the hang */
830                         udelay(10);
831                 }
832         }
833
834         return ret;
835 }
836
837 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
838 {
839         if (unlikely(dev_priv->gtt.do_idle_maps))
840                 dev_priv->mm.interruptible = interruptible;
841 }
842
843 void i915_check_and_clear_faults(struct drm_device *dev)
844 {
845         struct drm_i915_private *dev_priv = dev->dev_private;
846         struct intel_ring_buffer *ring;
847         int i;
848
849         if (INTEL_INFO(dev)->gen < 6)
850                 return;
851
852         for_each_ring(ring, dev_priv, i) {
853                 u32 fault_reg;
854                 fault_reg = I915_READ(RING_FAULT_REG(ring));
855                 if (fault_reg & RING_FAULT_VALID) {
856                         DRM_DEBUG_DRIVER("Unexpected fault\n"
857                                          "\tAddr: 0x%08lx\\n"
858                                          "\tAddress space: %s\n"
859                                          "\tSource ID: %d\n"
860                                          "\tType: %d\n",
861                                          fault_reg & PAGE_MASK,
862                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
863                                          RING_FAULT_SRCID(fault_reg),
864                                          RING_FAULT_FAULT_TYPE(fault_reg));
865                         I915_WRITE(RING_FAULT_REG(ring),
866                                    fault_reg & ~RING_FAULT_VALID);
867                 }
868         }
869         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
870 }
871
872 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
873 {
874         struct drm_i915_private *dev_priv = dev->dev_private;
875
876         /* Don't bother messing with faults pre GEN6 as we have little
877          * documentation supporting that it's a good idea.
878          */
879         if (INTEL_INFO(dev)->gen < 6)
880                 return;
881
882         i915_check_and_clear_faults(dev);
883
884         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
885                                        dev_priv->gtt.base.start / PAGE_SIZE,
886                                        dev_priv->gtt.base.total / PAGE_SIZE,
887                                        false);
888 }
889
890 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
891 {
892         struct drm_i915_private *dev_priv = dev->dev_private;
893         struct drm_i915_gem_object *obj;
894
895         i915_check_and_clear_faults(dev);
896
897         /* First fill our portion of the GTT with scratch pages */
898         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
899                                        dev_priv->gtt.base.start / PAGE_SIZE,
900                                        dev_priv->gtt.base.total / PAGE_SIZE,
901                                        true);
902
903         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
904                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
905                                                            &dev_priv->gtt.base);
906                 if (!vma)
907                         continue;
908
909                 i915_gem_clflush_object(obj, obj->pin_display);
910                 /* The bind_vma code tries to be smart about tracking mappings.
911                  * Unfortunately above, we've just wiped out the mappings
912                  * without telling our object about it. So we need to fake it.
913                  */
914                 obj->has_global_gtt_mapping = 0;
915                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
916         }
917
918         i915_gem_chipset_flush(dev);
919 }
920
921 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
922 {
923         if (obj->has_dma_mapping)
924                 return 0;
925
926         if (!dma_map_sg(&obj->base.dev->pdev->dev,
927                         obj->pages->sgl, obj->pages->nents,
928                         PCI_DMA_BIDIRECTIONAL))
929                 return -ENOSPC;
930
931         return 0;
932 }
933
934 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
935 {
936 #ifdef writeq
937         writeq(pte, addr);
938 #else
939         iowrite32((u32)pte, addr);
940         iowrite32(pte >> 32, addr + 4);
941 #endif
942 }
943
944 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
945                                      struct sg_table *st,
946                                      unsigned int first_entry,
947                                      enum i915_cache_level level)
948 {
949         struct drm_i915_private *dev_priv = vm->dev->dev_private;
950         gen8_gtt_pte_t __iomem *gtt_entries =
951                 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
952         int i = 0;
953         struct sg_page_iter sg_iter;
954         dma_addr_t addr;
955
956         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
957                 addr = sg_dma_address(sg_iter.sg) +
958                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
959                 gen8_set_pte(&gtt_entries[i],
960                              gen8_pte_encode(addr, level, true));
961                 i++;
962         }
963
964         /*
965          * XXX: This serves as a posting read to make sure that the PTE has
966          * actually been updated. There is some concern that even though
967          * registers and PTEs are within the same BAR that they are potentially
968          * of NUMA access patterns. Therefore, even with the way we assume
969          * hardware should work, we must keep this posting read for paranoia.
970          */
971         if (i != 0)
972                 WARN_ON(readq(&gtt_entries[i-1])
973                         != gen8_pte_encode(addr, level, true));
974
975 #if 0 /* TODO: Still needed on GEN8? */
976         /* This next bit makes the above posting read even more important. We
977          * want to flush the TLBs only after we're certain all the PTE updates
978          * have finished.
979          */
980         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
981         POSTING_READ(GFX_FLSH_CNTL_GEN6);
982 #endif
983 }
984
985 /*
986  * Binds an object into the global gtt with the specified cache level. The object
987  * will be accessible to the GPU via commands whose operands reference offsets
988  * within the global GTT as well as accessible by the GPU through the GMADR
989  * mapped BAR (dev_priv->mm.gtt->gtt).
990  */
991 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
992                                      struct sg_table *st,
993                                      unsigned int first_entry,
994                                      enum i915_cache_level level)
995 {
996         struct drm_i915_private *dev_priv = vm->dev->dev_private;
997         gen6_gtt_pte_t __iomem *gtt_entries =
998                 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
999         int i = 0;
1000         struct sg_page_iter sg_iter;
1001         dma_addr_t addr;
1002
1003         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1004                 addr = sg_page_iter_dma_address(&sg_iter);
1005                 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
1006                 i++;
1007         }
1008
1009         /* XXX: This serves as a posting read to make sure that the PTE has
1010          * actually been updated. There is some concern that even though
1011          * registers and PTEs are within the same BAR that they are potentially
1012          * of NUMA access patterns. Therefore, even with the way we assume
1013          * hardware should work, we must keep this posting read for paranoia.
1014          */
1015         if (i != 0)
1016                 WARN_ON(readl(&gtt_entries[i-1]) !=
1017                         vm->pte_encode(addr, level, true));
1018
1019         /* This next bit makes the above posting read even more important. We
1020          * want to flush the TLBs only after we're certain all the PTE updates
1021          * have finished.
1022          */
1023         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1024         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1025 }
1026
1027 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1028                                   unsigned int first_entry,
1029                                   unsigned int num_entries,
1030                                   bool use_scratch)
1031 {
1032         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1033         gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1034                 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1035         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1036         int i;
1037
1038         if (WARN(num_entries > max_entries,
1039                  "First entry = %d; Num entries = %d (max=%d)\n",
1040                  first_entry, num_entries, max_entries))
1041                 num_entries = max_entries;
1042
1043         scratch_pte = gen8_pte_encode(vm->scratch.addr,
1044                                       I915_CACHE_LLC,
1045                                       use_scratch);
1046         for (i = 0; i < num_entries; i++)
1047                 gen8_set_pte(&gtt_base[i], scratch_pte);
1048         readl(gtt_base);
1049 }
1050
1051 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1052                                   unsigned int first_entry,
1053                                   unsigned int num_entries,
1054                                   bool use_scratch)
1055 {
1056         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1057         gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1058                 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1059         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1060         int i;
1061
1062         if (WARN(num_entries > max_entries,
1063                  "First entry = %d; Num entries = %d (max=%d)\n",
1064                  first_entry, num_entries, max_entries))
1065                 num_entries = max_entries;
1066
1067         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1068
1069         for (i = 0; i < num_entries; i++)
1070                 iowrite32(scratch_pte, &gtt_base[i]);
1071         readl(gtt_base);
1072 }
1073
1074
1075 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1076                                enum i915_cache_level cache_level,
1077                                u32 unused)
1078 {
1079         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1080         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1081                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1082
1083         BUG_ON(!i915_is_ggtt(vma->vm));
1084         intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
1085         vma->obj->has_global_gtt_mapping = 1;
1086 }
1087
1088 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1089                                   unsigned int first_entry,
1090                                   unsigned int num_entries,
1091                                   bool unused)
1092 {
1093         intel_gtt_clear_range(first_entry, num_entries);
1094 }
1095
1096 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1097 {
1098         const unsigned int first = vma->node.start >> PAGE_SHIFT;
1099         const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1100
1101         BUG_ON(!i915_is_ggtt(vma->vm));
1102         vma->obj->has_global_gtt_mapping = 0;
1103         intel_gtt_clear_range(first, size);
1104 }
1105
1106 static void ggtt_bind_vma(struct i915_vma *vma,
1107                           enum i915_cache_level cache_level,
1108                           u32 flags)
1109 {
1110         struct drm_device *dev = vma->vm->dev;
1111         struct drm_i915_private *dev_priv = dev->dev_private;
1112         struct drm_i915_gem_object *obj = vma->obj;
1113         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1114
1115         /* If there is no aliasing PPGTT, or the caller needs a global mapping,
1116          * or we have a global mapping already but the cacheability flags have
1117          * changed, set the global PTEs.
1118          *
1119          * If there is an aliasing PPGTT it is anecdotally faster, so use that
1120          * instead if none of the above hold true.
1121          *
1122          * NB: A global mapping should only be needed for special regions like
1123          * "gtt mappable", SNB errata, or if specified via special execbuf
1124          * flags. At all other times, the GPU will use the aliasing PPGTT.
1125          */
1126         if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1127                 if (!obj->has_global_gtt_mapping ||
1128                     (cache_level != obj->cache_level)) {
1129                         vma->vm->insert_entries(vma->vm, obj->pages, entry,
1130                                                 cache_level);
1131                         obj->has_global_gtt_mapping = 1;
1132                 }
1133         }
1134
1135         if (dev_priv->mm.aliasing_ppgtt &&
1136             (!obj->has_aliasing_ppgtt_mapping ||
1137              (cache_level != obj->cache_level))) {
1138                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1139                 appgtt->base.insert_entries(&appgtt->base,
1140                                             vma->obj->pages, entry, cache_level);
1141                 vma->obj->has_aliasing_ppgtt_mapping = 1;
1142         }
1143 }
1144
1145 static void ggtt_unbind_vma(struct i915_vma *vma)
1146 {
1147         struct drm_device *dev = vma->vm->dev;
1148         struct drm_i915_private *dev_priv = dev->dev_private;
1149         struct drm_i915_gem_object *obj = vma->obj;
1150         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1151
1152         if (obj->has_global_gtt_mapping) {
1153                 vma->vm->clear_range(vma->vm, entry,
1154                                      vma->obj->base.size >> PAGE_SHIFT,
1155                                      true);
1156                 obj->has_global_gtt_mapping = 0;
1157         }
1158
1159         if (obj->has_aliasing_ppgtt_mapping) {
1160                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1161                 appgtt->base.clear_range(&appgtt->base,
1162                                          entry,
1163                                          obj->base.size >> PAGE_SHIFT,
1164                                          true);
1165                 obj->has_aliasing_ppgtt_mapping = 0;
1166         }
1167 }
1168
1169 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1170 {
1171         struct drm_device *dev = obj->base.dev;
1172         struct drm_i915_private *dev_priv = dev->dev_private;
1173         bool interruptible;
1174
1175         interruptible = do_idling(dev_priv);
1176
1177         if (!obj->has_dma_mapping)
1178                 dma_unmap_sg(&dev->pdev->dev,
1179                              obj->pages->sgl, obj->pages->nents,
1180                              PCI_DMA_BIDIRECTIONAL);
1181
1182         undo_idling(dev_priv, interruptible);
1183 }
1184
1185 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1186                                   unsigned long color,
1187                                   unsigned long *start,
1188                                   unsigned long *end)
1189 {
1190         if (node->color != color)
1191                 *start += 4096;
1192
1193         if (!list_empty(&node->node_list)) {
1194                 node = list_entry(node->node_list.next,
1195                                   struct drm_mm_node,
1196                                   node_list);
1197                 if (node->allocated && node->color != color)
1198                         *end -= 4096;
1199         }
1200 }
1201
1202 void i915_gem_setup_global_gtt(struct drm_device *dev,
1203                                unsigned long start,
1204                                unsigned long mappable_end,
1205                                unsigned long end)
1206 {
1207         /* Let GEM Manage all of the aperture.
1208          *
1209          * However, leave one page at the end still bound to the scratch page.
1210          * There are a number of places where the hardware apparently prefetches
1211          * past the end of the object, and we've seen multiple hangs with the
1212          * GPU head pointer stuck in a batchbuffer bound at the last page of the
1213          * aperture.  One page should be enough to keep any prefetching inside
1214          * of the aperture.
1215          */
1216         struct drm_i915_private *dev_priv = dev->dev_private;
1217         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1218         struct drm_mm_node *entry;
1219         struct drm_i915_gem_object *obj;
1220         unsigned long hole_start, hole_end;
1221
1222         BUG_ON(mappable_end > end);
1223
1224         /* Subtract the guard page ... */
1225         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1226         if (!HAS_LLC(dev))
1227                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1228
1229         /* Mark any preallocated objects as occupied */
1230         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1231                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1232                 int ret;
1233                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1234                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
1235
1236                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1237                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1238                 if (ret)
1239                         DRM_DEBUG_KMS("Reservation failed\n");
1240                 obj->has_global_gtt_mapping = 1;
1241         }
1242
1243         dev_priv->gtt.base.start = start;
1244         dev_priv->gtt.base.total = end - start;
1245
1246         /* Clear any non-preallocated blocks */
1247         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1248                 const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
1249                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1250                               hole_start, hole_end);
1251                 ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
1252         }
1253
1254         /* And finally clear the reserved guard page */
1255         ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
1256 }
1257
1258 static bool
1259 intel_enable_ppgtt(struct drm_device *dev)
1260 {
1261         if (i915_enable_ppgtt >= 0)
1262                 return i915_enable_ppgtt;
1263
1264 #ifdef CONFIG_INTEL_IOMMU
1265         /* Disable ppgtt on SNB if VT-d is on. */
1266         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
1267                 return false;
1268 #endif
1269
1270         return true;
1271 }
1272
1273 void i915_gem_init_global_gtt(struct drm_device *dev)
1274 {
1275         struct drm_i915_private *dev_priv = dev->dev_private;
1276         unsigned long gtt_size, mappable_size;
1277
1278         gtt_size = dev_priv->gtt.base.total;
1279         mappable_size = dev_priv->gtt.mappable_end;
1280
1281         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1282         if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
1283                 int ret;
1284
1285                 ret = i915_gem_init_aliasing_ppgtt(dev);
1286                 if (ret)
1287                         DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
1288         }
1289 }
1290
1291 static int setup_scratch_page(struct drm_device *dev)
1292 {
1293         struct drm_i915_private *dev_priv = dev->dev_private;
1294         struct page *page;
1295         dma_addr_t dma_addr;
1296
1297         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1298         if (page == NULL)
1299                 return -ENOMEM;
1300         get_page(page);
1301         set_pages_uc(page, 1);
1302
1303 #ifdef CONFIG_INTEL_IOMMU
1304         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1305                                 PCI_DMA_BIDIRECTIONAL);
1306         if (pci_dma_mapping_error(dev->pdev, dma_addr))
1307                 return -EINVAL;
1308 #else
1309         dma_addr = page_to_phys(page);
1310 #endif
1311         dev_priv->gtt.base.scratch.page = page;
1312         dev_priv->gtt.base.scratch.addr = dma_addr;
1313
1314         return 0;
1315 }
1316
1317 static void teardown_scratch_page(struct drm_device *dev)
1318 {
1319         struct drm_i915_private *dev_priv = dev->dev_private;
1320         struct page *page = dev_priv->gtt.base.scratch.page;
1321
1322         set_pages_wb(page, 1);
1323         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1324                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1325         put_page(page);
1326         __free_page(page);
1327 }
1328
1329 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1330 {
1331         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1332         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1333         return snb_gmch_ctl << 20;
1334 }
1335
1336 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1337 {
1338         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1339         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1340         if (bdw_gmch_ctl)
1341                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1342         if (bdw_gmch_ctl > 4) {
1343                 WARN_ON(!i915_preliminary_hw_support);
1344                 return 4<<20;
1345         }
1346
1347         return bdw_gmch_ctl << 20;
1348 }
1349
1350 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1351 {
1352         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1353         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1354         return snb_gmch_ctl << 25; /* 32 MB units */
1355 }
1356
1357 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1358 {
1359         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1360         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1361         return bdw_gmch_ctl << 25; /* 32 MB units */
1362 }
1363
1364 static int ggtt_probe_common(struct drm_device *dev,
1365                              size_t gtt_size)
1366 {
1367         struct drm_i915_private *dev_priv = dev->dev_private;
1368         phys_addr_t gtt_bus_addr;
1369         int ret;
1370
1371         /* For Modern GENs the PTEs and register space are split in the BAR */
1372         gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
1373                 (pci_resource_len(dev->pdev, 0) / 2);
1374
1375         dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
1376         if (!dev_priv->gtt.gsm) {
1377                 DRM_ERROR("Failed to map the gtt page table\n");
1378                 return -ENOMEM;
1379         }
1380
1381         ret = setup_scratch_page(dev);
1382         if (ret) {
1383                 DRM_ERROR("Scratch setup failed\n");
1384                 /* iounmap will also get called at remove, but meh */
1385                 iounmap(dev_priv->gtt.gsm);
1386         }
1387
1388         return ret;
1389 }
1390
1391 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1392  * bits. When using advanced contexts each context stores its own PAT, but
1393  * writing this data shouldn't be harmful even in those cases. */
1394 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
1395 {
1396 #define GEN8_PPAT_UC            (0<<0)
1397 #define GEN8_PPAT_WC            (1<<0)
1398 #define GEN8_PPAT_WT            (2<<0)
1399 #define GEN8_PPAT_WB            (3<<0)
1400 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
1401 /* FIXME(BDW): Bspec is completely confused about cache control bits. */
1402 #define GEN8_PPAT_LLC           (1<<2)
1403 #define GEN8_PPAT_LLCELLC       (2<<2)
1404 #define GEN8_PPAT_LLCeLLC       (3<<2)
1405 #define GEN8_PPAT_AGE(x)        (x<<4)
1406 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
1407         uint64_t pat;
1408
1409         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
1410               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1411               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1412               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
1413               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1414               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1415               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1416               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1417
1418         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1419          * write would work. */
1420         I915_WRITE(GEN8_PRIVATE_PAT, pat);
1421         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1422 }
1423
1424 static int gen8_gmch_probe(struct drm_device *dev,
1425                            size_t *gtt_total,
1426                            size_t *stolen,
1427                            phys_addr_t *mappable_base,
1428                            unsigned long *mappable_end)
1429 {
1430         struct drm_i915_private *dev_priv = dev->dev_private;
1431         unsigned int gtt_size;
1432         u16 snb_gmch_ctl;
1433         int ret;
1434
1435         /* TODO: We're not aware of mappable constraints on gen8 yet */
1436         *mappable_base = pci_resource_start(dev->pdev, 2);
1437         *mappable_end = pci_resource_len(dev->pdev, 2);
1438
1439         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1440                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1441
1442         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1443
1444         *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1445
1446         gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1447         *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1448
1449         gen8_setup_private_ppat(dev_priv);
1450
1451         ret = ggtt_probe_common(dev, gtt_size);
1452
1453         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1454         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1455
1456         return ret;
1457 }
1458
1459 static int gen6_gmch_probe(struct drm_device *dev,
1460                            size_t *gtt_total,
1461                            size_t *stolen,
1462                            phys_addr_t *mappable_base,
1463                            unsigned long *mappable_end)
1464 {
1465         struct drm_i915_private *dev_priv = dev->dev_private;
1466         unsigned int gtt_size;
1467         u16 snb_gmch_ctl;
1468         int ret;
1469
1470         *mappable_base = pci_resource_start(dev->pdev, 2);
1471         *mappable_end = pci_resource_len(dev->pdev, 2);
1472
1473         /* 64/512MB is the current min/max we actually know of, but this is just
1474          * a coarse sanity check.
1475          */
1476         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1477                 DRM_ERROR("Unknown GMADR size (%lx)\n",
1478                           dev_priv->gtt.mappable_end);
1479                 return -ENXIO;
1480         }
1481
1482         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1483                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1484         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1485
1486         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1487
1488         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1489         *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1490
1491         ret = ggtt_probe_common(dev, gtt_size);
1492
1493         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1494         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
1495
1496         return ret;
1497 }
1498
1499 static void gen6_gmch_remove(struct i915_address_space *vm)
1500 {
1501
1502         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
1503
1504         drm_mm_takedown(&vm->mm);
1505         iounmap(gtt->gsm);
1506         teardown_scratch_page(vm->dev);
1507 }
1508
1509 static int i915_gmch_probe(struct drm_device *dev,
1510                            size_t *gtt_total,
1511                            size_t *stolen,
1512                            phys_addr_t *mappable_base,
1513                            unsigned long *mappable_end)
1514 {
1515         struct drm_i915_private *dev_priv = dev->dev_private;
1516         int ret;
1517
1518         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1519         if (!ret) {
1520                 DRM_ERROR("failed to set up gmch\n");
1521                 return -EIO;
1522         }
1523
1524         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
1525
1526         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
1527         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
1528
1529         return 0;
1530 }
1531
1532 static void i915_gmch_remove(struct i915_address_space *vm)
1533 {
1534         intel_gmch_remove();
1535 }
1536
1537 int i915_gem_gtt_init(struct drm_device *dev)
1538 {
1539         struct drm_i915_private *dev_priv = dev->dev_private;
1540         struct i915_gtt *gtt = &dev_priv->gtt;
1541         int ret;
1542
1543         if (INTEL_INFO(dev)->gen <= 5) {
1544                 gtt->gtt_probe = i915_gmch_probe;
1545                 gtt->base.cleanup = i915_gmch_remove;
1546         } else if (INTEL_INFO(dev)->gen < 8) {
1547                 gtt->gtt_probe = gen6_gmch_probe;
1548                 gtt->base.cleanup = gen6_gmch_remove;
1549                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
1550                         gtt->base.pte_encode = iris_pte_encode;
1551                 else if (IS_HASWELL(dev))
1552                         gtt->base.pte_encode = hsw_pte_encode;
1553                 else if (IS_VALLEYVIEW(dev))
1554                         gtt->base.pte_encode = byt_pte_encode;
1555                 else if (INTEL_INFO(dev)->gen >= 7)
1556                         gtt->base.pte_encode = ivb_pte_encode;
1557                 else
1558                         gtt->base.pte_encode = snb_pte_encode;
1559         } else {
1560                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
1561                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
1562         }
1563
1564         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
1565                              &gtt->mappable_base, &gtt->mappable_end);
1566         if (ret)
1567                 return ret;
1568
1569         gtt->base.dev = dev;
1570
1571         /* GMADR is the PCI mmio aperture into the global GTT. */
1572         DRM_INFO("Memory usable by graphics device = %zdM\n",
1573                  gtt->base.total >> 20);
1574         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
1575         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
1576
1577         return 0;
1578 }
1579
1580 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
1581                                               struct i915_address_space *vm)
1582 {
1583         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
1584         if (vma == NULL)
1585                 return ERR_PTR(-ENOMEM);
1586
1587         INIT_LIST_HEAD(&vma->vma_link);
1588         INIT_LIST_HEAD(&vma->mm_list);
1589         INIT_LIST_HEAD(&vma->exec_list);
1590         vma->vm = vm;
1591         vma->obj = obj;
1592
1593         switch (INTEL_INFO(vm->dev)->gen) {
1594         case 8:
1595         case 7:
1596         case 6:
1597                 vma->unbind_vma = ggtt_unbind_vma;
1598                 vma->bind_vma = ggtt_bind_vma;
1599                 break;
1600         case 5:
1601         case 4:
1602         case 3:
1603         case 2:
1604                 BUG_ON(!i915_is_ggtt(vm));
1605                 vma->unbind_vma = i915_ggtt_unbind_vma;
1606                 vma->bind_vma = i915_ggtt_bind_vma;
1607                 break;
1608         default:
1609                 BUG();
1610         }
1611
1612         /* Keep GGTT vmas first to make debug easier */
1613         if (i915_is_ggtt(vm))
1614                 list_add(&vma->vma_link, &obj->vma_list);
1615         else
1616                 list_add_tail(&vma->vma_link, &obj->vma_list);
1617
1618         return vma;
1619 }
1620
1621 struct i915_vma *
1622 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
1623                                   struct i915_address_space *vm)
1624 {
1625         struct i915_vma *vma;
1626
1627         vma = i915_gem_obj_to_vma(obj, vm);
1628         if (!vma)
1629                 vma = __i915_gem_vma_create(obj, vm);
1630
1631         return vma;
1632 }