88e49b19baba2ba90c7994f6263f50d53d873fcc
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30
31 #define GEN6_PPGTT_PD_ENTRIES 512
32 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
33 typedef uint64_t gen8_gtt_pte_t;
34 typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
35
36 /* PPGTT stuff */
37 #define GEN6_GTT_ADDR_ENCODE(addr)      ((addr) | (((addr) >> 28) & 0xff0))
38 #define HSW_GTT_ADDR_ENCODE(addr)       ((addr) | (((addr) >> 28) & 0x7f0))
39
40 #define GEN6_PDE_VALID                  (1 << 0)
41 /* gen6+ has bit 11-4 for physical addr bit 39-32 */
42 #define GEN6_PDE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
43
44 #define GEN6_PTE_VALID                  (1 << 0)
45 #define GEN6_PTE_UNCACHED               (1 << 1)
46 #define HSW_PTE_UNCACHED                (0)
47 #define GEN6_PTE_CACHE_LLC              (2 << 1)
48 #define GEN7_PTE_CACHE_L3_LLC           (3 << 1)
49 #define GEN6_PTE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
50 #define HSW_PTE_ADDR_ENCODE(addr)       HSW_GTT_ADDR_ENCODE(addr)
51
52 /* Cacheability Control is a 4-bit value. The low three bits are stored in *
53  * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
54  */
55 #define HSW_CACHEABILITY_CONTROL(bits)  ((((bits) & 0x7) << 1) | \
56                                          (((bits) & 0x8) << (11 - 3)))
57 #define HSW_WB_LLC_AGE3                 HSW_CACHEABILITY_CONTROL(0x2)
58 #define HSW_WB_LLC_AGE0                 HSW_CACHEABILITY_CONTROL(0x3)
59 #define HSW_WB_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0xb)
60 #define HSW_WB_ELLC_LLC_AGE3            HSW_CACHEABILITY_CONTROL(0x8)
61 #define HSW_WT_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0x6)
62 #define HSW_WT_ELLC_LLC_AGE3            HSW_CACHEABILITY_CONTROL(0x7)
63
64 #define GEN8_PTES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
65 #define GEN8_PDES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
66 #define GEN8_LEGACY_PDPS                4
67
68 #define PPAT_UNCACHED_INDEX             (_PAGE_PWT | _PAGE_PCD)
69 #define PPAT_CACHED_PDE_INDEX           0 /* WB LLC */
70 #define PPAT_CACHED_INDEX               _PAGE_PAT /* WB LLCeLLC */
71 #define PPAT_DISPLAY_ELLC_INDEX         _PAGE_PCD /* WT eLLC */
72
73 static void ppgtt_bind_vma(struct i915_vma *vma,
74                            enum i915_cache_level cache_level,
75                            u32 flags);
76 static void ppgtt_unbind_vma(struct i915_vma *vma);
77 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt);
78
79 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
80                                              enum i915_cache_level level,
81                                              bool valid)
82 {
83         gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
84         pte |= addr;
85         if (level != I915_CACHE_NONE)
86                 pte |= PPAT_CACHED_INDEX;
87         else
88                 pte |= PPAT_UNCACHED_INDEX;
89         return pte;
90 }
91
92 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
93                                              dma_addr_t addr,
94                                              enum i915_cache_level level)
95 {
96         gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
97         pde |= addr;
98         if (level != I915_CACHE_NONE)
99                 pde |= PPAT_CACHED_PDE_INDEX;
100         else
101                 pde |= PPAT_UNCACHED_INDEX;
102         return pde;
103 }
104
105 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
106                                      enum i915_cache_level level,
107                                      bool valid)
108 {
109         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
110         pte |= GEN6_PTE_ADDR_ENCODE(addr);
111
112         switch (level) {
113         case I915_CACHE_L3_LLC:
114         case I915_CACHE_LLC:
115                 pte |= GEN6_PTE_CACHE_LLC;
116                 break;
117         case I915_CACHE_NONE:
118                 pte |= GEN6_PTE_UNCACHED;
119                 break;
120         default:
121                 WARN_ON(1);
122         }
123
124         return pte;
125 }
126
127 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
128                                      enum i915_cache_level level,
129                                      bool valid)
130 {
131         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
132         pte |= GEN6_PTE_ADDR_ENCODE(addr);
133
134         switch (level) {
135         case I915_CACHE_L3_LLC:
136                 pte |= GEN7_PTE_CACHE_L3_LLC;
137                 break;
138         case I915_CACHE_LLC:
139                 pte |= GEN6_PTE_CACHE_LLC;
140                 break;
141         case I915_CACHE_NONE:
142                 pte |= GEN6_PTE_UNCACHED;
143                 break;
144         default:
145                 WARN_ON(1);
146         }
147
148         return pte;
149 }
150
151 #define BYT_PTE_WRITEABLE               (1 << 1)
152 #define BYT_PTE_SNOOPED_BY_CPU_CACHES   (1 << 2)
153
154 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
155                                      enum i915_cache_level level,
156                                      bool valid)
157 {
158         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
159         pte |= GEN6_PTE_ADDR_ENCODE(addr);
160
161         /* Mark the page as writeable.  Other platforms don't have a
162          * setting for read-only/writable, so this matches that behavior.
163          */
164         pte |= BYT_PTE_WRITEABLE;
165
166         if (level != I915_CACHE_NONE)
167                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
168
169         return pte;
170 }
171
172 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
173                                      enum i915_cache_level level,
174                                      bool valid)
175 {
176         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
177         pte |= HSW_PTE_ADDR_ENCODE(addr);
178
179         if (level != I915_CACHE_NONE)
180                 pte |= HSW_WB_LLC_AGE3;
181
182         return pte;
183 }
184
185 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
186                                       enum i915_cache_level level,
187                                       bool valid)
188 {
189         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
190         pte |= HSW_PTE_ADDR_ENCODE(addr);
191
192         switch (level) {
193         case I915_CACHE_NONE:
194                 break;
195         case I915_CACHE_WT:
196                 pte |= HSW_WT_ELLC_LLC_AGE3;
197                 break;
198         default:
199                 pte |= HSW_WB_ELLC_LLC_AGE3;
200                 break;
201         }
202
203         return pte;
204 }
205
206 /* Broadwell Page Directory Pointer Descriptors */
207 static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
208                            uint64_t val, bool synchronous)
209 {
210         struct drm_i915_private *dev_priv = ring->dev->dev_private;
211         int ret;
212
213         BUG_ON(entry >= 4);
214
215         if (synchronous) {
216                 I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
217                 I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
218                 return 0;
219         }
220
221         ret = intel_ring_begin(ring, 6);
222         if (ret)
223                 return ret;
224
225         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
226         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
227         intel_ring_emit(ring, (u32)(val >> 32));
228         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
229         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
230         intel_ring_emit(ring, (u32)(val));
231         intel_ring_advance(ring);
232
233         return 0;
234 }
235
236 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
237                           struct intel_ring_buffer *ring,
238                           bool synchronous)
239 {
240         int i, ret;
241
242         /* bit of a hack to find the actual last used pd */
243         int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
244
245         for (i = used_pd - 1; i >= 0; i--) {
246                 dma_addr_t addr = ppgtt->pd_dma_addr[i];
247                 ret = gen8_write_pdp(ring, i, addr, synchronous);
248                 if (ret)
249                         return ret;
250         }
251
252         return 0;
253 }
254
255 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
256                                    unsigned first_entry,
257                                    unsigned num_entries,
258                                    bool use_scratch)
259 {
260         struct i915_hw_ppgtt *ppgtt =
261                 container_of(vm, struct i915_hw_ppgtt, base);
262         gen8_gtt_pte_t *pt_vaddr, scratch_pte;
263         unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
264         unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE;
265         unsigned last_pte, i;
266
267         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
268                                       I915_CACHE_LLC, use_scratch);
269
270         while (num_entries) {
271                 struct page *page_table = &ppgtt->gen8_pt_pages[act_pt];
272
273                 last_pte = first_pte + num_entries;
274                 if (last_pte > GEN8_PTES_PER_PAGE)
275                         last_pte = GEN8_PTES_PER_PAGE;
276
277                 pt_vaddr = kmap_atomic(page_table);
278
279                 for (i = first_pte; i < last_pte; i++)
280                         pt_vaddr[i] = scratch_pte;
281
282                 kunmap_atomic(pt_vaddr);
283
284                 num_entries -= last_pte - first_pte;
285                 first_pte = 0;
286                 act_pt++;
287         }
288 }
289
290 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
291                                       struct sg_table *pages,
292                                       unsigned first_entry,
293                                       enum i915_cache_level cache_level)
294 {
295         struct i915_hw_ppgtt *ppgtt =
296                 container_of(vm, struct i915_hw_ppgtt, base);
297         gen8_gtt_pte_t *pt_vaddr;
298         unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
299         unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE;
300         struct sg_page_iter sg_iter;
301
302         pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
303         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
304                 dma_addr_t page_addr;
305
306                 page_addr = sg_dma_address(sg_iter.sg) +
307                                 (sg_iter.sg_pgoffset << PAGE_SHIFT);
308                 pt_vaddr[act_pte] = gen8_pte_encode(page_addr, cache_level,
309                                                     true);
310                 if (++act_pte == GEN8_PTES_PER_PAGE) {
311                         kunmap_atomic(pt_vaddr);
312                         act_pt++;
313                         pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
314                         act_pte = 0;
315
316                 }
317         }
318         kunmap_atomic(pt_vaddr);
319 }
320
321 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
322 {
323         struct i915_hw_ppgtt *ppgtt =
324                 container_of(vm, struct i915_hw_ppgtt, base);
325         int i, j;
326
327         drm_mm_takedown(&vm->mm);
328
329         for (i = 0; i < ppgtt->num_pd_pages ; i++) {
330                 if (ppgtt->pd_dma_addr[i]) {
331                         pci_unmap_page(ppgtt->base.dev->pdev,
332                                        ppgtt->pd_dma_addr[i],
333                                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
334
335                         for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
336                                 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
337                                 if (addr)
338                                         pci_unmap_page(ppgtt->base.dev->pdev,
339                                                        addr,
340                                                        PAGE_SIZE,
341                                                        PCI_DMA_BIDIRECTIONAL);
342
343                         }
344                 }
345                 kfree(ppgtt->gen8_pt_dma_addr[i]);
346         }
347
348         __free_pages(ppgtt->gen8_pt_pages, get_order(ppgtt->num_pt_pages << PAGE_SHIFT));
349         __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
350 }
351
352 /**
353  * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
354  * net effect resembling a 2-level page table in normal x86 terms. Each PDP
355  * represents 1GB of memory
356  * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
357  *
358  * TODO: Do something with the size parameter
359  **/
360 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
361 {
362         struct page *pt_pages;
363         int i, j, ret = -ENOMEM;
364         const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
365         const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
366
367         if (size % (1<<30))
368                 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
369
370         /* FIXME: split allocation into smaller pieces. For now we only ever do
371          * this once, but with full PPGTT, the multiple contiguous allocations
372          * will be bad.
373          */
374         ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
375         if (!ppgtt->pd_pages)
376                 return -ENOMEM;
377
378         pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
379         if (!pt_pages) {
380                 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
381                 return -ENOMEM;
382         }
383
384         ppgtt->gen8_pt_pages = pt_pages;
385         ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
386         ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
387         ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
388         ppgtt->enable = gen8_ppgtt_enable;
389         ppgtt->switch_mm = gen8_mm_switch;
390         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
391         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
392         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
393         ppgtt->base.start = 0;
394         ppgtt->base.total = ppgtt->num_pt_pages * GEN8_PTES_PER_PAGE * PAGE_SIZE;
395
396         BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
397
398         /*
399          * - Create a mapping for the page directories.
400          * - For each page directory:
401          *      allocate space for page table mappings.
402          *      map each page table
403          */
404         for (i = 0; i < max_pdp; i++) {
405                 dma_addr_t temp;
406                 temp = pci_map_page(ppgtt->base.dev->pdev,
407                                     &ppgtt->pd_pages[i], 0,
408                                     PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
409                 if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
410                         goto err_out;
411
412                 ppgtt->pd_dma_addr[i] = temp;
413
414                 ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL);
415                 if (!ppgtt->gen8_pt_dma_addr[i])
416                         goto err_out;
417
418                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
419                         struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
420                         temp = pci_map_page(ppgtt->base.dev->pdev,
421                                             p, 0, PAGE_SIZE,
422                                             PCI_DMA_BIDIRECTIONAL);
423
424                         if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
425                                 goto err_out;
426
427                         ppgtt->gen8_pt_dma_addr[i][j] = temp;
428                 }
429         }
430
431         /* For now, the PPGTT helper functions all require that the PDEs are
432          * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
433          * will never need to touch the PDEs again */
434         for (i = 0; i < max_pdp; i++) {
435                 gen8_ppgtt_pde_t *pd_vaddr;
436                 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
437                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
438                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
439                         pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
440                                                       I915_CACHE_LLC);
441                 }
442                 kunmap_atomic(pd_vaddr);
443         }
444
445         ppgtt->base.clear_range(&ppgtt->base, 0,
446                                 ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE,
447                                 true);
448
449         DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
450                          ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
451         DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
452                          ppgtt->num_pt_pages,
453                          (ppgtt->num_pt_pages - num_pt_pages) +
454                          size % (1<<30));
455         return 0;
456
457 err_out:
458         ppgtt->base.cleanup(&ppgtt->base);
459         return ret;
460 }
461
462 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
463 {
464         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
465         gen6_gtt_pte_t __iomem *pd_addr;
466         uint32_t pd_entry;
467         int i;
468
469         WARN_ON(ppgtt->pd_offset & 0x3f);
470         pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
471                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
472         for (i = 0; i < ppgtt->num_pd_entries; i++) {
473                 dma_addr_t pt_addr;
474
475                 pt_addr = ppgtt->pt_dma_addr[i];
476                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
477                 pd_entry |= GEN6_PDE_VALID;
478
479                 writel(pd_entry, pd_addr + i);
480         }
481         readl(pd_addr);
482 }
483
484 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
485 {
486         BUG_ON(ppgtt->pd_offset & 0x3f);
487
488         return (ppgtt->pd_offset / 64) << 16;
489 }
490
491 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
492                          struct intel_ring_buffer *ring,
493                          bool synchronous)
494 {
495         struct drm_device *dev = ppgtt->base.dev;
496         struct drm_i915_private *dev_priv = dev->dev_private;
497         int ret;
498
499         /* If we're in reset, we can assume the GPU is sufficiently idle to
500          * manually frob these bits. Ideally we could use the ring functions,
501          * except our error handling makes it quite difficult (can't use
502          * intel_ring_begin, ring->flush, or intel_ring_advance)
503          *
504          * FIXME: We should try not to special case reset
505          */
506         if (synchronous ||
507             i915_reset_in_progress(&dev_priv->gpu_error)) {
508                 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
509                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
510                 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
511                 POSTING_READ(RING_PP_DIR_BASE(ring));
512                 return 0;
513         }
514
515         /* NB: TLBs must be flushed and invalidated before a switch */
516         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
517         if (ret)
518                 return ret;
519
520         ret = intel_ring_begin(ring, 6);
521         if (ret)
522                 return ret;
523
524         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
525         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
526         intel_ring_emit(ring, PP_DIR_DCLV_2G);
527         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
528         intel_ring_emit(ring, get_pd_offset(ppgtt));
529         intel_ring_emit(ring, MI_NOOP);
530         intel_ring_advance(ring);
531
532         return 0;
533 }
534
535 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
536                           struct intel_ring_buffer *ring,
537                           bool synchronous)
538 {
539         struct drm_device *dev = ppgtt->base.dev;
540         struct drm_i915_private *dev_priv = dev->dev_private;
541         int ret;
542
543         /* If we're in reset, we can assume the GPU is sufficiently idle to
544          * manually frob these bits. Ideally we could use the ring functions,
545          * except our error handling makes it quite difficult (can't use
546          * intel_ring_begin, ring->flush, or intel_ring_advance)
547          *
548          * FIXME: We should try not to special case reset
549          */
550         if (synchronous ||
551             i915_reset_in_progress(&dev_priv->gpu_error)) {
552                 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
553                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
554                 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
555                 POSTING_READ(RING_PP_DIR_BASE(ring));
556                 return 0;
557         }
558
559         /* NB: TLBs must be flushed and invalidated before a switch */
560         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
561         if (ret)
562                 return ret;
563
564         ret = intel_ring_begin(ring, 6);
565         if (ret)
566                 return ret;
567
568         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
569         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
570         intel_ring_emit(ring, PP_DIR_DCLV_2G);
571         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
572         intel_ring_emit(ring, get_pd_offset(ppgtt));
573         intel_ring_emit(ring, MI_NOOP);
574         intel_ring_advance(ring);
575
576         /* XXX: RCS is the only one to auto invalidate the TLBs? */
577         if (ring->id != RCS) {
578                 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
579                 if (ret)
580                         return ret;
581         }
582
583         return 0;
584 }
585
586 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
587                           struct intel_ring_buffer *ring,
588                           bool synchronous)
589 {
590         struct drm_device *dev = ppgtt->base.dev;
591         struct drm_i915_private *dev_priv = dev->dev_private;
592
593         if (!synchronous)
594                 return 0;
595
596         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
597         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
598
599         POSTING_READ(RING_PP_DIR_DCLV(ring));
600
601         return 0;
602 }
603
604 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
605 {
606         struct drm_device *dev = ppgtt->base.dev;
607         struct drm_i915_private *dev_priv = dev->dev_private;
608         struct intel_ring_buffer *ring;
609         int j, ret;
610
611         for_each_ring(ring, dev_priv, j) {
612                 I915_WRITE(RING_MODE_GEN7(ring),
613                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
614                 ret = ppgtt->switch_mm(ppgtt, ring, true);
615                 if (ret)
616                         goto err_out;
617         }
618
619         return 0;
620
621 err_out:
622         for_each_ring(ring, dev_priv, j)
623                 I915_WRITE(RING_MODE_GEN7(ring),
624                            _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
625         return ret;
626 }
627
628 static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
629 {
630         struct drm_device *dev = ppgtt->base.dev;
631         drm_i915_private_t *dev_priv = dev->dev_private;
632         struct intel_ring_buffer *ring;
633         uint32_t ecochk, ecobits;
634         int i;
635
636         ecobits = I915_READ(GAC_ECO_BITS);
637         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
638
639         ecochk = I915_READ(GAM_ECOCHK);
640         if (IS_HASWELL(dev)) {
641                 ecochk |= ECOCHK_PPGTT_WB_HSW;
642         } else {
643                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
644                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
645         }
646         I915_WRITE(GAM_ECOCHK, ecochk);
647
648         for_each_ring(ring, dev_priv, i) {
649                 int ret;
650                 /* GFX_MODE is per-ring on gen7+ */
651                 I915_WRITE(RING_MODE_GEN7(ring),
652                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
653                 ret = ppgtt->switch_mm(ppgtt, ring, true);
654                 if (ret)
655                         return ret;
656
657         }
658         return 0;
659 }
660
661 static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
662 {
663         struct drm_device *dev = ppgtt->base.dev;
664         drm_i915_private_t *dev_priv = dev->dev_private;
665         struct intel_ring_buffer *ring;
666         uint32_t ecochk, gab_ctl, ecobits;
667         int i;
668
669         ecobits = I915_READ(GAC_ECO_BITS);
670         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
671                    ECOBITS_PPGTT_CACHE64B);
672
673         gab_ctl = I915_READ(GAB_CTL);
674         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
675
676         ecochk = I915_READ(GAM_ECOCHK);
677         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
678
679         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
680
681         for_each_ring(ring, dev_priv, i) {
682                 int ret = ppgtt->switch_mm(ppgtt, ring, true);
683                 if (ret)
684                         return ret;
685         }
686
687         return 0;
688 }
689
690 /* PPGTT support for Sandybdrige/Gen6 and later */
691 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
692                                    unsigned first_entry,
693                                    unsigned num_entries,
694                                    bool use_scratch)
695 {
696         struct i915_hw_ppgtt *ppgtt =
697                 container_of(vm, struct i915_hw_ppgtt, base);
698         gen6_gtt_pte_t *pt_vaddr, scratch_pte;
699         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
700         unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
701         unsigned last_pte, i;
702
703         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
704
705         while (num_entries) {
706                 last_pte = first_pte + num_entries;
707                 if (last_pte > I915_PPGTT_PT_ENTRIES)
708                         last_pte = I915_PPGTT_PT_ENTRIES;
709
710                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
711
712                 for (i = first_pte; i < last_pte; i++)
713                         pt_vaddr[i] = scratch_pte;
714
715                 kunmap_atomic(pt_vaddr);
716
717                 num_entries -= last_pte - first_pte;
718                 first_pte = 0;
719                 act_pt++;
720         }
721 }
722
723 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
724                                       struct sg_table *pages,
725                                       unsigned first_entry,
726                                       enum i915_cache_level cache_level)
727 {
728         struct i915_hw_ppgtt *ppgtt =
729                 container_of(vm, struct i915_hw_ppgtt, base);
730         gen6_gtt_pte_t *pt_vaddr;
731         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
732         unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
733         struct sg_page_iter sg_iter;
734
735         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
736         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
737                 dma_addr_t page_addr;
738
739                 page_addr = sg_page_iter_dma_address(&sg_iter);
740                 pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level, true);
741                 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
742                         kunmap_atomic(pt_vaddr);
743                         act_pt++;
744                         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
745                         act_pte = 0;
746
747                 }
748         }
749         kunmap_atomic(pt_vaddr);
750 }
751
752 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
753 {
754         struct i915_hw_ppgtt *ppgtt =
755                 container_of(vm, struct i915_hw_ppgtt, base);
756         int i;
757
758         drm_mm_takedown(&ppgtt->base.mm);
759         drm_mm_remove_node(&ppgtt->node);
760
761         if (ppgtt->pt_dma_addr) {
762                 for (i = 0; i < ppgtt->num_pd_entries; i++)
763                         pci_unmap_page(ppgtt->base.dev->pdev,
764                                        ppgtt->pt_dma_addr[i],
765                                        4096, PCI_DMA_BIDIRECTIONAL);
766         }
767
768         kfree(ppgtt->pt_dma_addr);
769         for (i = 0; i < ppgtt->num_pd_entries; i++)
770                 __free_page(ppgtt->pt_pages[i]);
771         kfree(ppgtt->pt_pages);
772         kfree(ppgtt);
773 }
774
775 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
776 {
777 #define GEN6_PD_ALIGN (PAGE_SIZE * 16)
778 #define GEN6_PD_SIZE (GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE)
779         struct drm_device *dev = ppgtt->base.dev;
780         struct drm_i915_private *dev_priv = dev->dev_private;
781         bool retried = false;
782         int i, ret;
783
784         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
785          * allocator works in address space sizes, so it's multiplied by page
786          * size. We allocate at the top of the GTT to avoid fragmentation.
787          */
788         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
789 alloc:
790         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
791                                                   &ppgtt->node, GEN6_PD_SIZE,
792                                                   GEN6_PD_ALIGN, 0,
793                                                   0, dev_priv->gtt.base.total,
794                                                   DRM_MM_SEARCH_DEFAULT);
795         if (ret == -ENOSPC && !retried) {
796                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
797                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
798                                                I915_CACHE_NONE, false, true);
799                 if (ret)
800                         return ret;
801
802                 retried = true;
803                 goto alloc;
804         }
805
806         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
807                 DRM_DEBUG("Forced to use aperture for PDEs\n");
808
809         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
810         ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
811         if (IS_GEN6(dev)) {
812                 ppgtt->enable = gen6_ppgtt_enable;
813                 ppgtt->switch_mm = gen6_mm_switch;
814         } else if (IS_HASWELL(dev)) {
815                 ppgtt->enable = gen7_ppgtt_enable;
816                 ppgtt->switch_mm = hsw_mm_switch;
817         } else if (IS_GEN7(dev)) {
818                 ppgtt->enable = gen7_ppgtt_enable;
819                 ppgtt->switch_mm = gen7_mm_switch;
820         } else
821                 BUG();
822         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
823         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
824         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
825         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
826         ppgtt->base.start = 0;
827         ppgtt->base.total = GEN6_PPGTT_PD_ENTRIES * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
828         ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
829                                   GFP_KERNEL);
830         if (!ppgtt->pt_pages) {
831                 drm_mm_remove_node(&ppgtt->node);
832                 return -ENOMEM;
833         }
834
835         for (i = 0; i < ppgtt->num_pd_entries; i++) {
836                 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
837                 if (!ppgtt->pt_pages[i])
838                         goto err_pt_alloc;
839         }
840
841         ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
842                                      GFP_KERNEL);
843         if (!ppgtt->pt_dma_addr)
844                 goto err_pt_alloc;
845
846         for (i = 0; i < ppgtt->num_pd_entries; i++) {
847                 dma_addr_t pt_addr;
848
849                 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
850                                        PCI_DMA_BIDIRECTIONAL);
851
852                 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
853                         ret = -EIO;
854                         goto err_pd_pin;
855
856                 }
857                 ppgtt->pt_dma_addr[i] = pt_addr;
858         }
859
860         ppgtt->base.clear_range(&ppgtt->base, 0,
861                                 ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
862
863         DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
864                          ppgtt->node.size >> 20,
865                          ppgtt->node.start / PAGE_SIZE);
866         ppgtt->pd_offset =
867                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
868
869         return 0;
870
871 err_pd_pin:
872         if (ppgtt->pt_dma_addr) {
873                 for (i--; i >= 0; i--)
874                         pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
875                                        4096, PCI_DMA_BIDIRECTIONAL);
876         }
877 err_pt_alloc:
878         kfree(ppgtt->pt_dma_addr);
879         for (i = 0; i < ppgtt->num_pd_entries; i++) {
880                 if (ppgtt->pt_pages[i])
881                         __free_page(ppgtt->pt_pages[i]);
882         }
883         kfree(ppgtt->pt_pages);
884         drm_mm_remove_node(&ppgtt->node);
885
886         return ret;
887 }
888
889 int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
890 {
891         struct drm_i915_private *dev_priv = dev->dev_private;
892         int ret = 0;
893
894         ppgtt->base.dev = dev;
895
896         if (INTEL_INFO(dev)->gen < 8)
897                 ret = gen6_ppgtt_init(ppgtt);
898         else if (IS_GEN8(dev))
899                 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
900         else
901                 BUG();
902
903         if (!ret) {
904                 kref_init(&ppgtt->ref);
905                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
906                             ppgtt->base.total);
907                 if (INTEL_INFO(dev)->gen < 8)
908                         gen6_write_pdes(ppgtt);
909         }
910
911         return ret;
912 }
913
914 static void __always_unused
915 ppgtt_bind_vma(struct i915_vma *vma,
916                enum i915_cache_level cache_level,
917                u32 flags)
918 {
919         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
920
921         WARN_ON(flags);
922
923         vma->vm->insert_entries(vma->vm, vma->obj->pages, entry, cache_level);
924 }
925
926 static void __always_unused ppgtt_unbind_vma(struct i915_vma *vma)
927 {
928         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
929
930         vma->vm->clear_range(vma->vm,
931                              entry,
932                              vma->obj->base.size >> PAGE_SHIFT,
933                              true);
934 }
935
936 extern int intel_iommu_gfx_mapped;
937 /* Certain Gen5 chipsets require require idling the GPU before
938  * unmapping anything from the GTT when VT-d is enabled.
939  */
940 static inline bool needs_idle_maps(struct drm_device *dev)
941 {
942 #ifdef CONFIG_INTEL_IOMMU
943         /* Query intel_iommu to see if we need the workaround. Presumably that
944          * was loaded first.
945          */
946         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
947                 return true;
948 #endif
949         return false;
950 }
951
952 static bool do_idling(struct drm_i915_private *dev_priv)
953 {
954         bool ret = dev_priv->mm.interruptible;
955
956         if (unlikely(dev_priv->gtt.do_idle_maps)) {
957                 dev_priv->mm.interruptible = false;
958                 if (i915_gpu_idle(dev_priv->dev)) {
959                         DRM_ERROR("Couldn't idle GPU\n");
960                         /* Wait a bit, in hopes it avoids the hang */
961                         udelay(10);
962                 }
963         }
964
965         return ret;
966 }
967
968 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
969 {
970         if (unlikely(dev_priv->gtt.do_idle_maps))
971                 dev_priv->mm.interruptible = interruptible;
972 }
973
974 void i915_check_and_clear_faults(struct drm_device *dev)
975 {
976         struct drm_i915_private *dev_priv = dev->dev_private;
977         struct intel_ring_buffer *ring;
978         int i;
979
980         if (INTEL_INFO(dev)->gen < 6)
981                 return;
982
983         for_each_ring(ring, dev_priv, i) {
984                 u32 fault_reg;
985                 fault_reg = I915_READ(RING_FAULT_REG(ring));
986                 if (fault_reg & RING_FAULT_VALID) {
987                         DRM_DEBUG_DRIVER("Unexpected fault\n"
988                                          "\tAddr: 0x%08lx\\n"
989                                          "\tAddress space: %s\n"
990                                          "\tSource ID: %d\n"
991                                          "\tType: %d\n",
992                                          fault_reg & PAGE_MASK,
993                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
994                                          RING_FAULT_SRCID(fault_reg),
995                                          RING_FAULT_FAULT_TYPE(fault_reg));
996                         I915_WRITE(RING_FAULT_REG(ring),
997                                    fault_reg & ~RING_FAULT_VALID);
998                 }
999         }
1000         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1001 }
1002
1003 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1004 {
1005         struct drm_i915_private *dev_priv = dev->dev_private;
1006
1007         /* Don't bother messing with faults pre GEN6 as we have little
1008          * documentation supporting that it's a good idea.
1009          */
1010         if (INTEL_INFO(dev)->gen < 6)
1011                 return;
1012
1013         i915_check_and_clear_faults(dev);
1014
1015         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1016                                        dev_priv->gtt.base.start / PAGE_SIZE,
1017                                        dev_priv->gtt.base.total / PAGE_SIZE,
1018                                        false);
1019 }
1020
1021 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1022 {
1023         struct drm_i915_private *dev_priv = dev->dev_private;
1024         struct drm_i915_gem_object *obj;
1025         struct i915_address_space *vm;
1026
1027         i915_check_and_clear_faults(dev);
1028
1029         /* First fill our portion of the GTT with scratch pages */
1030         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1031                                        dev_priv->gtt.base.start / PAGE_SIZE,
1032                                        dev_priv->gtt.base.total / PAGE_SIZE,
1033                                        true);
1034
1035         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1036                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1037                                                            &dev_priv->gtt.base);
1038                 if (!vma)
1039                         continue;
1040
1041                 i915_gem_clflush_object(obj, obj->pin_display);
1042                 /* The bind_vma code tries to be smart about tracking mappings.
1043                  * Unfortunately above, we've just wiped out the mappings
1044                  * without telling our object about it. So we need to fake it.
1045                  */
1046                 obj->has_global_gtt_mapping = 0;
1047                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
1048         }
1049
1050
1051         if (INTEL_INFO(dev)->gen >= 8)
1052                 return;
1053
1054         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1055                 /* TODO: Perhaps it shouldn't be gen6 specific */
1056                 if (i915_is_ggtt(vm)) {
1057                         if (dev_priv->mm.aliasing_ppgtt)
1058                                 gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
1059                         continue;
1060                 }
1061
1062                 gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
1063         }
1064
1065         i915_gem_chipset_flush(dev);
1066 }
1067
1068 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1069 {
1070         if (obj->has_dma_mapping)
1071                 return 0;
1072
1073         if (!dma_map_sg(&obj->base.dev->pdev->dev,
1074                         obj->pages->sgl, obj->pages->nents,
1075                         PCI_DMA_BIDIRECTIONAL))
1076                 return -ENOSPC;
1077
1078         return 0;
1079 }
1080
1081 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
1082 {
1083 #ifdef writeq
1084         writeq(pte, addr);
1085 #else
1086         iowrite32((u32)pte, addr);
1087         iowrite32(pte >> 32, addr + 4);
1088 #endif
1089 }
1090
1091 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1092                                      struct sg_table *st,
1093                                      unsigned int first_entry,
1094                                      enum i915_cache_level level)
1095 {
1096         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1097         gen8_gtt_pte_t __iomem *gtt_entries =
1098                 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1099         int i = 0;
1100         struct sg_page_iter sg_iter;
1101         dma_addr_t addr;
1102
1103         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1104                 addr = sg_dma_address(sg_iter.sg) +
1105                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
1106                 gen8_set_pte(&gtt_entries[i],
1107                              gen8_pte_encode(addr, level, true));
1108                 i++;
1109         }
1110
1111         /*
1112          * XXX: This serves as a posting read to make sure that the PTE has
1113          * actually been updated. There is some concern that even though
1114          * registers and PTEs are within the same BAR that they are potentially
1115          * of NUMA access patterns. Therefore, even with the way we assume
1116          * hardware should work, we must keep this posting read for paranoia.
1117          */
1118         if (i != 0)
1119                 WARN_ON(readq(&gtt_entries[i-1])
1120                         != gen8_pte_encode(addr, level, true));
1121
1122 #if 0 /* TODO: Still needed on GEN8? */
1123         /* This next bit makes the above posting read even more important. We
1124          * want to flush the TLBs only after we're certain all the PTE updates
1125          * have finished.
1126          */
1127         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1128         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1129 #endif
1130 }
1131
1132 /*
1133  * Binds an object into the global gtt with the specified cache level. The object
1134  * will be accessible to the GPU via commands whose operands reference offsets
1135  * within the global GTT as well as accessible by the GPU through the GMADR
1136  * mapped BAR (dev_priv->mm.gtt->gtt).
1137  */
1138 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1139                                      struct sg_table *st,
1140                                      unsigned int first_entry,
1141                                      enum i915_cache_level level)
1142 {
1143         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1144         gen6_gtt_pte_t __iomem *gtt_entries =
1145                 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1146         int i = 0;
1147         struct sg_page_iter sg_iter;
1148         dma_addr_t addr;
1149
1150         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1151                 addr = sg_page_iter_dma_address(&sg_iter);
1152                 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
1153                 i++;
1154         }
1155
1156         /* XXX: This serves as a posting read to make sure that the PTE has
1157          * actually been updated. There is some concern that even though
1158          * registers and PTEs are within the same BAR that they are potentially
1159          * of NUMA access patterns. Therefore, even with the way we assume
1160          * hardware should work, we must keep this posting read for paranoia.
1161          */
1162         if (i != 0)
1163                 WARN_ON(readl(&gtt_entries[i-1]) !=
1164                         vm->pte_encode(addr, level, true));
1165
1166         /* This next bit makes the above posting read even more important. We
1167          * want to flush the TLBs only after we're certain all the PTE updates
1168          * have finished.
1169          */
1170         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1171         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1172 }
1173
1174 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1175                                   unsigned int first_entry,
1176                                   unsigned int num_entries,
1177                                   bool use_scratch)
1178 {
1179         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1180         gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1181                 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1182         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1183         int i;
1184
1185         if (WARN(num_entries > max_entries,
1186                  "First entry = %d; Num entries = %d (max=%d)\n",
1187                  first_entry, num_entries, max_entries))
1188                 num_entries = max_entries;
1189
1190         scratch_pte = gen8_pte_encode(vm->scratch.addr,
1191                                       I915_CACHE_LLC,
1192                                       use_scratch);
1193         for (i = 0; i < num_entries; i++)
1194                 gen8_set_pte(&gtt_base[i], scratch_pte);
1195         readl(gtt_base);
1196 }
1197
1198 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1199                                   unsigned int first_entry,
1200                                   unsigned int num_entries,
1201                                   bool use_scratch)
1202 {
1203         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1204         gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1205                 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1206         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1207         int i;
1208
1209         if (WARN(num_entries > max_entries,
1210                  "First entry = %d; Num entries = %d (max=%d)\n",
1211                  first_entry, num_entries, max_entries))
1212                 num_entries = max_entries;
1213
1214         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1215
1216         for (i = 0; i < num_entries; i++)
1217                 iowrite32(scratch_pte, &gtt_base[i]);
1218         readl(gtt_base);
1219 }
1220
1221
1222 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1223                                enum i915_cache_level cache_level,
1224                                u32 unused)
1225 {
1226         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1227         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1228                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1229
1230         BUG_ON(!i915_is_ggtt(vma->vm));
1231         intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
1232         vma->obj->has_global_gtt_mapping = 1;
1233 }
1234
1235 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1236                                   unsigned int first_entry,
1237                                   unsigned int num_entries,
1238                                   bool unused)
1239 {
1240         intel_gtt_clear_range(first_entry, num_entries);
1241 }
1242
1243 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1244 {
1245         const unsigned int first = vma->node.start >> PAGE_SHIFT;
1246         const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1247
1248         BUG_ON(!i915_is_ggtt(vma->vm));
1249         vma->obj->has_global_gtt_mapping = 0;
1250         intel_gtt_clear_range(first, size);
1251 }
1252
1253 static void ggtt_bind_vma(struct i915_vma *vma,
1254                           enum i915_cache_level cache_level,
1255                           u32 flags)
1256 {
1257         struct drm_device *dev = vma->vm->dev;
1258         struct drm_i915_private *dev_priv = dev->dev_private;
1259         struct drm_i915_gem_object *obj = vma->obj;
1260         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1261
1262         /* If there is no aliasing PPGTT, or the caller needs a global mapping,
1263          * or we have a global mapping already but the cacheability flags have
1264          * changed, set the global PTEs.
1265          *
1266          * If there is an aliasing PPGTT it is anecdotally faster, so use that
1267          * instead if none of the above hold true.
1268          *
1269          * NB: A global mapping should only be needed for special regions like
1270          * "gtt mappable", SNB errata, or if specified via special execbuf
1271          * flags. At all other times, the GPU will use the aliasing PPGTT.
1272          */
1273         if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1274                 if (!obj->has_global_gtt_mapping ||
1275                     (cache_level != obj->cache_level)) {
1276                         vma->vm->insert_entries(vma->vm, obj->pages, entry,
1277                                                 cache_level);
1278                         obj->has_global_gtt_mapping = 1;
1279                 }
1280         }
1281
1282         if (dev_priv->mm.aliasing_ppgtt &&
1283             (!obj->has_aliasing_ppgtt_mapping ||
1284              (cache_level != obj->cache_level))) {
1285                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1286                 appgtt->base.insert_entries(&appgtt->base,
1287                                             vma->obj->pages, entry, cache_level);
1288                 vma->obj->has_aliasing_ppgtt_mapping = 1;
1289         }
1290 }
1291
1292 static void ggtt_unbind_vma(struct i915_vma *vma)
1293 {
1294         struct drm_device *dev = vma->vm->dev;
1295         struct drm_i915_private *dev_priv = dev->dev_private;
1296         struct drm_i915_gem_object *obj = vma->obj;
1297         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1298
1299         if (obj->has_global_gtt_mapping) {
1300                 vma->vm->clear_range(vma->vm, entry,
1301                                      vma->obj->base.size >> PAGE_SHIFT,
1302                                      true);
1303                 obj->has_global_gtt_mapping = 0;
1304         }
1305
1306         if (obj->has_aliasing_ppgtt_mapping) {
1307                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1308                 appgtt->base.clear_range(&appgtt->base,
1309                                          entry,
1310                                          obj->base.size >> PAGE_SHIFT,
1311                                          true);
1312                 obj->has_aliasing_ppgtt_mapping = 0;
1313         }
1314 }
1315
1316 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1317 {
1318         struct drm_device *dev = obj->base.dev;
1319         struct drm_i915_private *dev_priv = dev->dev_private;
1320         bool interruptible;
1321
1322         interruptible = do_idling(dev_priv);
1323
1324         if (!obj->has_dma_mapping)
1325                 dma_unmap_sg(&dev->pdev->dev,
1326                              obj->pages->sgl, obj->pages->nents,
1327                              PCI_DMA_BIDIRECTIONAL);
1328
1329         undo_idling(dev_priv, interruptible);
1330 }
1331
1332 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1333                                   unsigned long color,
1334                                   unsigned long *start,
1335                                   unsigned long *end)
1336 {
1337         if (node->color != color)
1338                 *start += 4096;
1339
1340         if (!list_empty(&node->node_list)) {
1341                 node = list_entry(node->node_list.next,
1342                                   struct drm_mm_node,
1343                                   node_list);
1344                 if (node->allocated && node->color != color)
1345                         *end -= 4096;
1346         }
1347 }
1348
1349 void i915_gem_setup_global_gtt(struct drm_device *dev,
1350                                unsigned long start,
1351                                unsigned long mappable_end,
1352                                unsigned long end)
1353 {
1354         /* Let GEM Manage all of the aperture.
1355          *
1356          * However, leave one page at the end still bound to the scratch page.
1357          * There are a number of places where the hardware apparently prefetches
1358          * past the end of the object, and we've seen multiple hangs with the
1359          * GPU head pointer stuck in a batchbuffer bound at the last page of the
1360          * aperture.  One page should be enough to keep any prefetching inside
1361          * of the aperture.
1362          */
1363         struct drm_i915_private *dev_priv = dev->dev_private;
1364         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1365         struct drm_mm_node *entry;
1366         struct drm_i915_gem_object *obj;
1367         unsigned long hole_start, hole_end;
1368
1369         BUG_ON(mappable_end > end);
1370
1371         /* Subtract the guard page ... */
1372         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1373         if (!HAS_LLC(dev))
1374                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1375
1376         /* Mark any preallocated objects as occupied */
1377         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1378                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1379                 int ret;
1380                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1381                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
1382
1383                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1384                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1385                 if (ret)
1386                         DRM_DEBUG_KMS("Reservation failed\n");
1387                 obj->has_global_gtt_mapping = 1;
1388         }
1389
1390         dev_priv->gtt.base.start = start;
1391         dev_priv->gtt.base.total = end - start;
1392
1393         /* Clear any non-preallocated blocks */
1394         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1395                 const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
1396                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1397                               hole_start, hole_end);
1398                 ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
1399         }
1400
1401         /* And finally clear the reserved guard page */
1402         ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
1403 }
1404
1405 void i915_gem_init_global_gtt(struct drm_device *dev)
1406 {
1407         struct drm_i915_private *dev_priv = dev->dev_private;
1408         unsigned long gtt_size, mappable_size;
1409
1410         gtt_size = dev_priv->gtt.base.total;
1411         mappable_size = dev_priv->gtt.mappable_end;
1412
1413         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1414 }
1415
1416 static int setup_scratch_page(struct drm_device *dev)
1417 {
1418         struct drm_i915_private *dev_priv = dev->dev_private;
1419         struct page *page;
1420         dma_addr_t dma_addr;
1421
1422         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1423         if (page == NULL)
1424                 return -ENOMEM;
1425         get_page(page);
1426         set_pages_uc(page, 1);
1427
1428 #ifdef CONFIG_INTEL_IOMMU
1429         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1430                                 PCI_DMA_BIDIRECTIONAL);
1431         if (pci_dma_mapping_error(dev->pdev, dma_addr))
1432                 return -EINVAL;
1433 #else
1434         dma_addr = page_to_phys(page);
1435 #endif
1436         dev_priv->gtt.base.scratch.page = page;
1437         dev_priv->gtt.base.scratch.addr = dma_addr;
1438
1439         return 0;
1440 }
1441
1442 static void teardown_scratch_page(struct drm_device *dev)
1443 {
1444         struct drm_i915_private *dev_priv = dev->dev_private;
1445         struct page *page = dev_priv->gtt.base.scratch.page;
1446
1447         set_pages_wb(page, 1);
1448         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1449                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1450         put_page(page);
1451         __free_page(page);
1452 }
1453
1454 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1455 {
1456         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1457         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1458         return snb_gmch_ctl << 20;
1459 }
1460
1461 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1462 {
1463         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1464         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1465         if (bdw_gmch_ctl)
1466                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1467         if (bdw_gmch_ctl > 4) {
1468                 WARN_ON(!i915_preliminary_hw_support);
1469                 return 4<<20;
1470         }
1471
1472         return bdw_gmch_ctl << 20;
1473 }
1474
1475 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1476 {
1477         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1478         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1479         return snb_gmch_ctl << 25; /* 32 MB units */
1480 }
1481
1482 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1483 {
1484         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1485         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1486         return bdw_gmch_ctl << 25; /* 32 MB units */
1487 }
1488
1489 static int ggtt_probe_common(struct drm_device *dev,
1490                              size_t gtt_size)
1491 {
1492         struct drm_i915_private *dev_priv = dev->dev_private;
1493         phys_addr_t gtt_bus_addr;
1494         int ret;
1495
1496         /* For Modern GENs the PTEs and register space are split in the BAR */
1497         gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
1498                 (pci_resource_len(dev->pdev, 0) / 2);
1499
1500         dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
1501         if (!dev_priv->gtt.gsm) {
1502                 DRM_ERROR("Failed to map the gtt page table\n");
1503                 return -ENOMEM;
1504         }
1505
1506         ret = setup_scratch_page(dev);
1507         if (ret) {
1508                 DRM_ERROR("Scratch setup failed\n");
1509                 /* iounmap will also get called at remove, but meh */
1510                 iounmap(dev_priv->gtt.gsm);
1511         }
1512
1513         return ret;
1514 }
1515
1516 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1517  * bits. When using advanced contexts each context stores its own PAT, but
1518  * writing this data shouldn't be harmful even in those cases. */
1519 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
1520 {
1521 #define GEN8_PPAT_UC            (0<<0)
1522 #define GEN8_PPAT_WC            (1<<0)
1523 #define GEN8_PPAT_WT            (2<<0)
1524 #define GEN8_PPAT_WB            (3<<0)
1525 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
1526 /* FIXME(BDW): Bspec is completely confused about cache control bits. */
1527 #define GEN8_PPAT_LLC           (1<<2)
1528 #define GEN8_PPAT_LLCELLC       (2<<2)
1529 #define GEN8_PPAT_LLCeLLC       (3<<2)
1530 #define GEN8_PPAT_AGE(x)        (x<<4)
1531 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
1532         uint64_t pat;
1533
1534         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
1535               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1536               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1537               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
1538               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1539               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1540               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1541               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1542
1543         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1544          * write would work. */
1545         I915_WRITE(GEN8_PRIVATE_PAT, pat);
1546         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1547 }
1548
1549 static int gen8_gmch_probe(struct drm_device *dev,
1550                            size_t *gtt_total,
1551                            size_t *stolen,
1552                            phys_addr_t *mappable_base,
1553                            unsigned long *mappable_end)
1554 {
1555         struct drm_i915_private *dev_priv = dev->dev_private;
1556         unsigned int gtt_size;
1557         u16 snb_gmch_ctl;
1558         int ret;
1559
1560         /* TODO: We're not aware of mappable constraints on gen8 yet */
1561         *mappable_base = pci_resource_start(dev->pdev, 2);
1562         *mappable_end = pci_resource_len(dev->pdev, 2);
1563
1564         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1565                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1566
1567         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1568
1569         *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1570
1571         gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1572         *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1573
1574         gen8_setup_private_ppat(dev_priv);
1575
1576         ret = ggtt_probe_common(dev, gtt_size);
1577
1578         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1579         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1580
1581         return ret;
1582 }
1583
1584 static int gen6_gmch_probe(struct drm_device *dev,
1585                            size_t *gtt_total,
1586                            size_t *stolen,
1587                            phys_addr_t *mappable_base,
1588                            unsigned long *mappable_end)
1589 {
1590         struct drm_i915_private *dev_priv = dev->dev_private;
1591         unsigned int gtt_size;
1592         u16 snb_gmch_ctl;
1593         int ret;
1594
1595         *mappable_base = pci_resource_start(dev->pdev, 2);
1596         *mappable_end = pci_resource_len(dev->pdev, 2);
1597
1598         /* 64/512MB is the current min/max we actually know of, but this is just
1599          * a coarse sanity check.
1600          */
1601         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1602                 DRM_ERROR("Unknown GMADR size (%lx)\n",
1603                           dev_priv->gtt.mappable_end);
1604                 return -ENXIO;
1605         }
1606
1607         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1608                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1609         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1610
1611         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1612
1613         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1614         *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1615
1616         ret = ggtt_probe_common(dev, gtt_size);
1617
1618         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1619         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
1620
1621         return ret;
1622 }
1623
1624 static void gen6_gmch_remove(struct i915_address_space *vm)
1625 {
1626
1627         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
1628
1629         drm_mm_takedown(&vm->mm);
1630         iounmap(gtt->gsm);
1631         teardown_scratch_page(vm->dev);
1632 }
1633
1634 static int i915_gmch_probe(struct drm_device *dev,
1635                            size_t *gtt_total,
1636                            size_t *stolen,
1637                            phys_addr_t *mappable_base,
1638                            unsigned long *mappable_end)
1639 {
1640         struct drm_i915_private *dev_priv = dev->dev_private;
1641         int ret;
1642
1643         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1644         if (!ret) {
1645                 DRM_ERROR("failed to set up gmch\n");
1646                 return -EIO;
1647         }
1648
1649         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
1650
1651         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
1652         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
1653
1654         return 0;
1655 }
1656
1657 static void i915_gmch_remove(struct i915_address_space *vm)
1658 {
1659         intel_gmch_remove();
1660 }
1661
1662 int i915_gem_gtt_init(struct drm_device *dev)
1663 {
1664         struct drm_i915_private *dev_priv = dev->dev_private;
1665         struct i915_gtt *gtt = &dev_priv->gtt;
1666         int ret;
1667
1668         if (INTEL_INFO(dev)->gen <= 5) {
1669                 gtt->gtt_probe = i915_gmch_probe;
1670                 gtt->base.cleanup = i915_gmch_remove;
1671         } else if (INTEL_INFO(dev)->gen < 8) {
1672                 gtt->gtt_probe = gen6_gmch_probe;
1673                 gtt->base.cleanup = gen6_gmch_remove;
1674                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
1675                         gtt->base.pte_encode = iris_pte_encode;
1676                 else if (IS_HASWELL(dev))
1677                         gtt->base.pte_encode = hsw_pte_encode;
1678                 else if (IS_VALLEYVIEW(dev))
1679                         gtt->base.pte_encode = byt_pte_encode;
1680                 else if (INTEL_INFO(dev)->gen >= 7)
1681                         gtt->base.pte_encode = ivb_pte_encode;
1682                 else
1683                         gtt->base.pte_encode = snb_pte_encode;
1684         } else {
1685                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
1686                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
1687         }
1688
1689         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
1690                              &gtt->mappable_base, &gtt->mappable_end);
1691         if (ret)
1692                 return ret;
1693
1694         gtt->base.dev = dev;
1695
1696         /* GMADR is the PCI mmio aperture into the global GTT. */
1697         DRM_INFO("Memory usable by graphics device = %zdM\n",
1698                  gtt->base.total >> 20);
1699         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
1700         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
1701
1702         return 0;
1703 }
1704
1705 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
1706                                               struct i915_address_space *vm)
1707 {
1708         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
1709         if (vma == NULL)
1710                 return ERR_PTR(-ENOMEM);
1711
1712         INIT_LIST_HEAD(&vma->vma_link);
1713         INIT_LIST_HEAD(&vma->mm_list);
1714         INIT_LIST_HEAD(&vma->exec_list);
1715         vma->vm = vm;
1716         vma->obj = obj;
1717
1718         switch (INTEL_INFO(vm->dev)->gen) {
1719         case 8:
1720         case 7:
1721         case 6:
1722                 vma->unbind_vma = ggtt_unbind_vma;
1723                 vma->bind_vma = ggtt_bind_vma;
1724                 break;
1725         case 5:
1726         case 4:
1727         case 3:
1728         case 2:
1729                 BUG_ON(!i915_is_ggtt(vm));
1730                 vma->unbind_vma = i915_ggtt_unbind_vma;
1731                 vma->bind_vma = i915_ggtt_bind_vma;
1732                 break;
1733         default:
1734                 BUG();
1735         }
1736
1737         /* Keep GGTT vmas first to make debug easier */
1738         if (i915_is_ggtt(vm))
1739                 list_add(&vma->vma_link, &obj->vma_list);
1740         else
1741                 list_add_tail(&vma->vma_link, &obj->vma_list);
1742
1743         return vma;
1744 }
1745
1746 struct i915_vma *
1747 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
1748                                   struct i915_address_space *vm)
1749 {
1750         struct i915_vma *vma;
1751
1752         vma = i915_gem_obj_to_vma(obj, vm);
1753         if (!vma)
1754                 vma = __i915_gem_vma_create(obj, vm);
1755
1756         return vma;
1757 }