drm/i915: Start passing around i915_vma from execbuffer
[linux-block.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34
35 /**
36  * DOC: Global GTT views
37  *
38  * Background and previous state
39  *
40  * Historically objects could exists (be bound) in global GTT space only as
41  * singular instances with a view representing all of the object's backing pages
42  * in a linear fashion. This view will be called a normal view.
43  *
44  * To support multiple views of the same object, where the number of mapped
45  * pages is not equal to the backing store, or where the layout of the pages
46  * is not linear, concept of a GGTT view was added.
47  *
48  * One example of an alternative view is a stereo display driven by a single
49  * image. In this case we would have a framebuffer looking like this
50  * (2x2 pages):
51  *
52  *    12
53  *    34
54  *
55  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
56  * rendering. In contrast, fed to the display engine would be an alternative
57  * view which could look something like this:
58  *
59  *   1212
60  *   3434
61  *
62  * In this example both the size and layout of pages in the alternative view is
63  * different from the normal view.
64  *
65  * Implementation and usage
66  *
67  * GGTT views are implemented using VMAs and are distinguished via enum
68  * i915_ggtt_view_type and struct i915_ggtt_view.
69  *
70  * A new flavour of core GEM functions which work with GGTT bound objects were
71  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
72  * renaming  in large amounts of code. They take the struct i915_ggtt_view
73  * parameter encapsulating all metadata required to implement a view.
74  *
75  * As a helper for callers which are only interested in the normal view,
76  * globally const i915_ggtt_view_normal singleton instance exists. All old core
77  * GEM API functions, the ones not taking the view parameter, are operating on,
78  * or with the normal GGTT view.
79  *
80  * Code wanting to add or use a new GGTT view needs to:
81  *
82  * 1. Add a new enum with a suitable name.
83  * 2. Extend the metadata in the i915_ggtt_view structure if required.
84  * 3. Add support to i915_get_vma_pages().
85  *
86  * New views are required to build a scatter-gather table from within the
87  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
88  * exists for the lifetime of an VMA.
89  *
90  * Core API is designed to have copy semantics which means that passed in
91  * struct i915_ggtt_view does not need to be persistent (left around after
92  * calling the core API functions).
93  *
94  */
95
96 static inline struct i915_ggtt *
97 i915_vm_to_ggtt(struct i915_address_space *vm)
98 {
99         GEM_BUG_ON(!i915_is_ggtt(vm));
100         return container_of(vm, struct i915_ggtt, base);
101 }
102
103 static int
104 i915_get_ggtt_vma_pages(struct i915_vma *vma);
105
106 const struct i915_ggtt_view i915_ggtt_view_normal = {
107         .type = I915_GGTT_VIEW_NORMAL,
108 };
109 const struct i915_ggtt_view i915_ggtt_view_rotated = {
110         .type = I915_GGTT_VIEW_ROTATED,
111 };
112
113 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
114                                 int enable_ppgtt)
115 {
116         bool has_aliasing_ppgtt;
117         bool has_full_ppgtt;
118         bool has_full_48bit_ppgtt;
119
120         has_aliasing_ppgtt = INTEL_GEN(dev_priv) >= 6;
121         has_full_ppgtt = INTEL_GEN(dev_priv) >= 7;
122         has_full_48bit_ppgtt =
123                 IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9;
124
125         if (intel_vgpu_active(dev_priv))
126                 has_full_ppgtt = false; /* emulation is too hard */
127
128         if (!has_aliasing_ppgtt)
129                 return 0;
130
131         /*
132          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
133          * execlists, the sole mechanism available to submit work.
134          */
135         if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
136                 return 0;
137
138         if (enable_ppgtt == 1)
139                 return 1;
140
141         if (enable_ppgtt == 2 && has_full_ppgtt)
142                 return 2;
143
144         if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
145                 return 3;
146
147 #ifdef CONFIG_INTEL_IOMMU
148         /* Disable ppgtt on SNB if VT-d is on. */
149         if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
150                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
151                 return 0;
152         }
153 #endif
154
155         /* Early VLV doesn't have this */
156         if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
157                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
158                 return 0;
159         }
160
161         if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists)
162                 return has_full_48bit_ppgtt ? 3 : 2;
163         else
164                 return has_aliasing_ppgtt ? 1 : 0;
165 }
166
167 static int ppgtt_bind_vma(struct i915_vma *vma,
168                           enum i915_cache_level cache_level,
169                           u32 unused)
170 {
171         u32 pte_flags = 0;
172
173         /* Currently applicable only to VLV */
174         if (vma->obj->gt_ro)
175                 pte_flags |= PTE_READ_ONLY;
176
177         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
178                                 cache_level, pte_flags);
179
180         return 0;
181 }
182
183 static void ppgtt_unbind_vma(struct i915_vma *vma)
184 {
185         vma->vm->clear_range(vma->vm,
186                              vma->node.start,
187                              vma->size,
188                              true);
189 }
190
191 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
192                                   enum i915_cache_level level,
193                                   bool valid)
194 {
195         gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
196         pte |= addr;
197
198         switch (level) {
199         case I915_CACHE_NONE:
200                 pte |= PPAT_UNCACHED_INDEX;
201                 break;
202         case I915_CACHE_WT:
203                 pte |= PPAT_DISPLAY_ELLC_INDEX;
204                 break;
205         default:
206                 pte |= PPAT_CACHED_INDEX;
207                 break;
208         }
209
210         return pte;
211 }
212
213 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
214                                   const enum i915_cache_level level)
215 {
216         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
217         pde |= addr;
218         if (level != I915_CACHE_NONE)
219                 pde |= PPAT_CACHED_PDE_INDEX;
220         else
221                 pde |= PPAT_UNCACHED_INDEX;
222         return pde;
223 }
224
225 #define gen8_pdpe_encode gen8_pde_encode
226 #define gen8_pml4e_encode gen8_pde_encode
227
228 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
229                                  enum i915_cache_level level,
230                                  bool valid, u32 unused)
231 {
232         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
233         pte |= GEN6_PTE_ADDR_ENCODE(addr);
234
235         switch (level) {
236         case I915_CACHE_L3_LLC:
237         case I915_CACHE_LLC:
238                 pte |= GEN6_PTE_CACHE_LLC;
239                 break;
240         case I915_CACHE_NONE:
241                 pte |= GEN6_PTE_UNCACHED;
242                 break;
243         default:
244                 MISSING_CASE(level);
245         }
246
247         return pte;
248 }
249
250 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
251                                  enum i915_cache_level level,
252                                  bool valid, u32 unused)
253 {
254         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
255         pte |= GEN6_PTE_ADDR_ENCODE(addr);
256
257         switch (level) {
258         case I915_CACHE_L3_LLC:
259                 pte |= GEN7_PTE_CACHE_L3_LLC;
260                 break;
261         case I915_CACHE_LLC:
262                 pte |= GEN6_PTE_CACHE_LLC;
263                 break;
264         case I915_CACHE_NONE:
265                 pte |= GEN6_PTE_UNCACHED;
266                 break;
267         default:
268                 MISSING_CASE(level);
269         }
270
271         return pte;
272 }
273
274 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
275                                  enum i915_cache_level level,
276                                  bool valid, u32 flags)
277 {
278         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
279         pte |= GEN6_PTE_ADDR_ENCODE(addr);
280
281         if (!(flags & PTE_READ_ONLY))
282                 pte |= BYT_PTE_WRITEABLE;
283
284         if (level != I915_CACHE_NONE)
285                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
286
287         return pte;
288 }
289
290 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
291                                  enum i915_cache_level level,
292                                  bool valid, u32 unused)
293 {
294         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
295         pte |= HSW_PTE_ADDR_ENCODE(addr);
296
297         if (level != I915_CACHE_NONE)
298                 pte |= HSW_WB_LLC_AGE3;
299
300         return pte;
301 }
302
303 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
304                                   enum i915_cache_level level,
305                                   bool valid, u32 unused)
306 {
307         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
308         pte |= HSW_PTE_ADDR_ENCODE(addr);
309
310         switch (level) {
311         case I915_CACHE_NONE:
312                 break;
313         case I915_CACHE_WT:
314                 pte |= HSW_WT_ELLC_LLC_AGE3;
315                 break;
316         default:
317                 pte |= HSW_WB_ELLC_LLC_AGE3;
318                 break;
319         }
320
321         return pte;
322 }
323
324 static int __setup_page_dma(struct drm_device *dev,
325                             struct i915_page_dma *p, gfp_t flags)
326 {
327         struct device *device = &dev->pdev->dev;
328
329         p->page = alloc_page(flags);
330         if (!p->page)
331                 return -ENOMEM;
332
333         p->daddr = dma_map_page(device,
334                                 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
335
336         if (dma_mapping_error(device, p->daddr)) {
337                 __free_page(p->page);
338                 return -EINVAL;
339         }
340
341         return 0;
342 }
343
344 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
345 {
346         return __setup_page_dma(dev, p, GFP_KERNEL);
347 }
348
349 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
350 {
351         if (WARN_ON(!p->page))
352                 return;
353
354         dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
355         __free_page(p->page);
356         memset(p, 0, sizeof(*p));
357 }
358
359 static void *kmap_page_dma(struct i915_page_dma *p)
360 {
361         return kmap_atomic(p->page);
362 }
363
364 /* We use the flushing unmap only with ppgtt structures:
365  * page directories, page tables and scratch pages.
366  */
367 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
368 {
369         /* There are only few exceptions for gen >=6. chv and bxt.
370          * And we are not sure about the latter so play safe for now.
371          */
372         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
373                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
374
375         kunmap_atomic(vaddr);
376 }
377
378 #define kmap_px(px) kmap_page_dma(px_base(px))
379 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
380
381 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
382 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
383 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
384 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
385
386 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
387                           const uint64_t val)
388 {
389         int i;
390         uint64_t * const vaddr = kmap_page_dma(p);
391
392         for (i = 0; i < 512; i++)
393                 vaddr[i] = val;
394
395         kunmap_page_dma(dev, vaddr);
396 }
397
398 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
399                              const uint32_t val32)
400 {
401         uint64_t v = val32;
402
403         v = v << 32 | val32;
404
405         fill_page_dma(dev, p, v);
406 }
407
408 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
409 {
410         struct i915_page_scratch *sp;
411         int ret;
412
413         sp = kzalloc(sizeof(*sp), GFP_KERNEL);
414         if (sp == NULL)
415                 return ERR_PTR(-ENOMEM);
416
417         ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
418         if (ret) {
419                 kfree(sp);
420                 return ERR_PTR(ret);
421         }
422
423         set_pages_uc(px_page(sp), 1);
424
425         return sp;
426 }
427
428 static void free_scratch_page(struct drm_device *dev,
429                               struct i915_page_scratch *sp)
430 {
431         set_pages_wb(px_page(sp), 1);
432
433         cleanup_px(dev, sp);
434         kfree(sp);
435 }
436
437 static struct i915_page_table *alloc_pt(struct drm_device *dev)
438 {
439         struct i915_page_table *pt;
440         const size_t count = INTEL_INFO(dev)->gen >= 8 ?
441                 GEN8_PTES : GEN6_PTES;
442         int ret = -ENOMEM;
443
444         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
445         if (!pt)
446                 return ERR_PTR(-ENOMEM);
447
448         pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
449                                 GFP_KERNEL);
450
451         if (!pt->used_ptes)
452                 goto fail_bitmap;
453
454         ret = setup_px(dev, pt);
455         if (ret)
456                 goto fail_page_m;
457
458         return pt;
459
460 fail_page_m:
461         kfree(pt->used_ptes);
462 fail_bitmap:
463         kfree(pt);
464
465         return ERR_PTR(ret);
466 }
467
468 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
469 {
470         cleanup_px(dev, pt);
471         kfree(pt->used_ptes);
472         kfree(pt);
473 }
474
475 static void gen8_initialize_pt(struct i915_address_space *vm,
476                                struct i915_page_table *pt)
477 {
478         gen8_pte_t scratch_pte;
479
480         scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
481                                       I915_CACHE_LLC, true);
482
483         fill_px(vm->dev, pt, scratch_pte);
484 }
485
486 static void gen6_initialize_pt(struct i915_address_space *vm,
487                                struct i915_page_table *pt)
488 {
489         gen6_pte_t scratch_pte;
490
491         WARN_ON(px_dma(vm->scratch_page) == 0);
492
493         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
494                                      I915_CACHE_LLC, true, 0);
495
496         fill32_px(vm->dev, pt, scratch_pte);
497 }
498
499 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
500 {
501         struct i915_page_directory *pd;
502         int ret = -ENOMEM;
503
504         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
505         if (!pd)
506                 return ERR_PTR(-ENOMEM);
507
508         pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
509                                 sizeof(*pd->used_pdes), GFP_KERNEL);
510         if (!pd->used_pdes)
511                 goto fail_bitmap;
512
513         ret = setup_px(dev, pd);
514         if (ret)
515                 goto fail_page_m;
516
517         return pd;
518
519 fail_page_m:
520         kfree(pd->used_pdes);
521 fail_bitmap:
522         kfree(pd);
523
524         return ERR_PTR(ret);
525 }
526
527 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
528 {
529         if (px_page(pd)) {
530                 cleanup_px(dev, pd);
531                 kfree(pd->used_pdes);
532                 kfree(pd);
533         }
534 }
535
536 static void gen8_initialize_pd(struct i915_address_space *vm,
537                                struct i915_page_directory *pd)
538 {
539         gen8_pde_t scratch_pde;
540
541         scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
542
543         fill_px(vm->dev, pd, scratch_pde);
544 }
545
546 static int __pdp_init(struct drm_device *dev,
547                       struct i915_page_directory_pointer *pdp)
548 {
549         size_t pdpes = I915_PDPES_PER_PDP(dev);
550
551         pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
552                                   sizeof(unsigned long),
553                                   GFP_KERNEL);
554         if (!pdp->used_pdpes)
555                 return -ENOMEM;
556
557         pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
558                                       GFP_KERNEL);
559         if (!pdp->page_directory) {
560                 kfree(pdp->used_pdpes);
561                 /* the PDP might be the statically allocated top level. Keep it
562                  * as clean as possible */
563                 pdp->used_pdpes = NULL;
564                 return -ENOMEM;
565         }
566
567         return 0;
568 }
569
570 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
571 {
572         kfree(pdp->used_pdpes);
573         kfree(pdp->page_directory);
574         pdp->page_directory = NULL;
575 }
576
577 static struct
578 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
579 {
580         struct i915_page_directory_pointer *pdp;
581         int ret = -ENOMEM;
582
583         WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
584
585         pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
586         if (!pdp)
587                 return ERR_PTR(-ENOMEM);
588
589         ret = __pdp_init(dev, pdp);
590         if (ret)
591                 goto fail_bitmap;
592
593         ret = setup_px(dev, pdp);
594         if (ret)
595                 goto fail_page_m;
596
597         return pdp;
598
599 fail_page_m:
600         __pdp_fini(pdp);
601 fail_bitmap:
602         kfree(pdp);
603
604         return ERR_PTR(ret);
605 }
606
607 static void free_pdp(struct drm_device *dev,
608                      struct i915_page_directory_pointer *pdp)
609 {
610         __pdp_fini(pdp);
611         if (USES_FULL_48BIT_PPGTT(dev)) {
612                 cleanup_px(dev, pdp);
613                 kfree(pdp);
614         }
615 }
616
617 static void gen8_initialize_pdp(struct i915_address_space *vm,
618                                 struct i915_page_directory_pointer *pdp)
619 {
620         gen8_ppgtt_pdpe_t scratch_pdpe;
621
622         scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
623
624         fill_px(vm->dev, pdp, scratch_pdpe);
625 }
626
627 static void gen8_initialize_pml4(struct i915_address_space *vm,
628                                  struct i915_pml4 *pml4)
629 {
630         gen8_ppgtt_pml4e_t scratch_pml4e;
631
632         scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
633                                           I915_CACHE_LLC);
634
635         fill_px(vm->dev, pml4, scratch_pml4e);
636 }
637
638 static void
639 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
640                           struct i915_page_directory_pointer *pdp,
641                           struct i915_page_directory *pd,
642                           int index)
643 {
644         gen8_ppgtt_pdpe_t *page_directorypo;
645
646         if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
647                 return;
648
649         page_directorypo = kmap_px(pdp);
650         page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
651         kunmap_px(ppgtt, page_directorypo);
652 }
653
654 static void
655 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
656                                   struct i915_pml4 *pml4,
657                                   struct i915_page_directory_pointer *pdp,
658                                   int index)
659 {
660         gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
661
662         WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
663         pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
664         kunmap_px(ppgtt, pagemap);
665 }
666
667 /* Broadwell Page Directory Pointer Descriptors */
668 static int gen8_write_pdp(struct drm_i915_gem_request *req,
669                           unsigned entry,
670                           dma_addr_t addr)
671 {
672         struct intel_ring *ring = req->ring;
673         struct intel_engine_cs *engine = req->engine;
674         int ret;
675
676         BUG_ON(entry >= 4);
677
678         ret = intel_ring_begin(req, 6);
679         if (ret)
680                 return ret;
681
682         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
683         intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, entry));
684         intel_ring_emit(ring, upper_32_bits(addr));
685         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
686         intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, entry));
687         intel_ring_emit(ring, lower_32_bits(addr));
688         intel_ring_advance(ring);
689
690         return 0;
691 }
692
693 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
694                                  struct drm_i915_gem_request *req)
695 {
696         int i, ret;
697
698         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
699                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
700
701                 ret = gen8_write_pdp(req, i, pd_daddr);
702                 if (ret)
703                         return ret;
704         }
705
706         return 0;
707 }
708
709 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
710                               struct drm_i915_gem_request *req)
711 {
712         return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
713 }
714
715 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
716                                        struct i915_page_directory_pointer *pdp,
717                                        uint64_t start,
718                                        uint64_t length,
719                                        gen8_pte_t scratch_pte)
720 {
721         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
722         gen8_pte_t *pt_vaddr;
723         unsigned pdpe = gen8_pdpe_index(start);
724         unsigned pde = gen8_pde_index(start);
725         unsigned pte = gen8_pte_index(start);
726         unsigned num_entries = length >> PAGE_SHIFT;
727         unsigned last_pte, i;
728
729         if (WARN_ON(!pdp))
730                 return;
731
732         while (num_entries) {
733                 struct i915_page_directory *pd;
734                 struct i915_page_table *pt;
735
736                 if (WARN_ON(!pdp->page_directory[pdpe]))
737                         break;
738
739                 pd = pdp->page_directory[pdpe];
740
741                 if (WARN_ON(!pd->page_table[pde]))
742                         break;
743
744                 pt = pd->page_table[pde];
745
746                 if (WARN_ON(!px_page(pt)))
747                         break;
748
749                 last_pte = pte + num_entries;
750                 if (last_pte > GEN8_PTES)
751                         last_pte = GEN8_PTES;
752
753                 pt_vaddr = kmap_px(pt);
754
755                 for (i = pte; i < last_pte; i++) {
756                         pt_vaddr[i] = scratch_pte;
757                         num_entries--;
758                 }
759
760                 kunmap_px(ppgtt, pt_vaddr);
761
762                 pte = 0;
763                 if (++pde == I915_PDES) {
764                         if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
765                                 break;
766                         pde = 0;
767                 }
768         }
769 }
770
771 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
772                                    uint64_t start,
773                                    uint64_t length,
774                                    bool use_scratch)
775 {
776         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
777         gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
778                                                  I915_CACHE_LLC, use_scratch);
779
780         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
781                 gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
782                                            scratch_pte);
783         } else {
784                 uint64_t pml4e;
785                 struct i915_page_directory_pointer *pdp;
786
787                 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
788                         gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
789                                                    scratch_pte);
790                 }
791         }
792 }
793
794 static void
795 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
796                               struct i915_page_directory_pointer *pdp,
797                               struct sg_page_iter *sg_iter,
798                               uint64_t start,
799                               enum i915_cache_level cache_level)
800 {
801         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
802         gen8_pte_t *pt_vaddr;
803         unsigned pdpe = gen8_pdpe_index(start);
804         unsigned pde = gen8_pde_index(start);
805         unsigned pte = gen8_pte_index(start);
806
807         pt_vaddr = NULL;
808
809         while (__sg_page_iter_next(sg_iter)) {
810                 if (pt_vaddr == NULL) {
811                         struct i915_page_directory *pd = pdp->page_directory[pdpe];
812                         struct i915_page_table *pt = pd->page_table[pde];
813                         pt_vaddr = kmap_px(pt);
814                 }
815
816                 pt_vaddr[pte] =
817                         gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
818                                         cache_level, true);
819                 if (++pte == GEN8_PTES) {
820                         kunmap_px(ppgtt, pt_vaddr);
821                         pt_vaddr = NULL;
822                         if (++pde == I915_PDES) {
823                                 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
824                                         break;
825                                 pde = 0;
826                         }
827                         pte = 0;
828                 }
829         }
830
831         if (pt_vaddr)
832                 kunmap_px(ppgtt, pt_vaddr);
833 }
834
835 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
836                                       struct sg_table *pages,
837                                       uint64_t start,
838                                       enum i915_cache_level cache_level,
839                                       u32 unused)
840 {
841         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
842         struct sg_page_iter sg_iter;
843
844         __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
845
846         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
847                 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
848                                               cache_level);
849         } else {
850                 struct i915_page_directory_pointer *pdp;
851                 uint64_t pml4e;
852                 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
853
854                 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
855                         gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
856                                                       start, cache_level);
857                 }
858         }
859 }
860
861 static void gen8_free_page_tables(struct drm_device *dev,
862                                   struct i915_page_directory *pd)
863 {
864         int i;
865
866         if (!px_page(pd))
867                 return;
868
869         for_each_set_bit(i, pd->used_pdes, I915_PDES) {
870                 if (WARN_ON(!pd->page_table[i]))
871                         continue;
872
873                 free_pt(dev, pd->page_table[i]);
874                 pd->page_table[i] = NULL;
875         }
876 }
877
878 static int gen8_init_scratch(struct i915_address_space *vm)
879 {
880         struct drm_device *dev = vm->dev;
881         int ret;
882
883         vm->scratch_page = alloc_scratch_page(dev);
884         if (IS_ERR(vm->scratch_page))
885                 return PTR_ERR(vm->scratch_page);
886
887         vm->scratch_pt = alloc_pt(dev);
888         if (IS_ERR(vm->scratch_pt)) {
889                 ret = PTR_ERR(vm->scratch_pt);
890                 goto free_scratch_page;
891         }
892
893         vm->scratch_pd = alloc_pd(dev);
894         if (IS_ERR(vm->scratch_pd)) {
895                 ret = PTR_ERR(vm->scratch_pd);
896                 goto free_pt;
897         }
898
899         if (USES_FULL_48BIT_PPGTT(dev)) {
900                 vm->scratch_pdp = alloc_pdp(dev);
901                 if (IS_ERR(vm->scratch_pdp)) {
902                         ret = PTR_ERR(vm->scratch_pdp);
903                         goto free_pd;
904                 }
905         }
906
907         gen8_initialize_pt(vm, vm->scratch_pt);
908         gen8_initialize_pd(vm, vm->scratch_pd);
909         if (USES_FULL_48BIT_PPGTT(dev))
910                 gen8_initialize_pdp(vm, vm->scratch_pdp);
911
912         return 0;
913
914 free_pd:
915         free_pd(dev, vm->scratch_pd);
916 free_pt:
917         free_pt(dev, vm->scratch_pt);
918 free_scratch_page:
919         free_scratch_page(dev, vm->scratch_page);
920
921         return ret;
922 }
923
924 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
925 {
926         enum vgt_g2v_type msg;
927         struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
928         int i;
929
930         if (USES_FULL_48BIT_PPGTT(dev_priv)) {
931                 u64 daddr = px_dma(&ppgtt->pml4);
932
933                 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
934                 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
935
936                 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
937                                 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
938         } else {
939                 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
940                         u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
941
942                         I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
943                         I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
944                 }
945
946                 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
947                                 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
948         }
949
950         I915_WRITE(vgtif_reg(g2v_notify), msg);
951
952         return 0;
953 }
954
955 static void gen8_free_scratch(struct i915_address_space *vm)
956 {
957         struct drm_device *dev = vm->dev;
958
959         if (USES_FULL_48BIT_PPGTT(dev))
960                 free_pdp(dev, vm->scratch_pdp);
961         free_pd(dev, vm->scratch_pd);
962         free_pt(dev, vm->scratch_pt);
963         free_scratch_page(dev, vm->scratch_page);
964 }
965
966 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
967                                     struct i915_page_directory_pointer *pdp)
968 {
969         int i;
970
971         for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
972                 if (WARN_ON(!pdp->page_directory[i]))
973                         continue;
974
975                 gen8_free_page_tables(dev, pdp->page_directory[i]);
976                 free_pd(dev, pdp->page_directory[i]);
977         }
978
979         free_pdp(dev, pdp);
980 }
981
982 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
983 {
984         int i;
985
986         for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
987                 if (WARN_ON(!ppgtt->pml4.pdps[i]))
988                         continue;
989
990                 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
991         }
992
993         cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
994 }
995
996 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
997 {
998         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
999
1000         if (intel_vgpu_active(to_i915(vm->dev)))
1001                 gen8_ppgtt_notify_vgt(ppgtt, false);
1002
1003         if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
1004                 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
1005         else
1006                 gen8_ppgtt_cleanup_4lvl(ppgtt);
1007
1008         gen8_free_scratch(vm);
1009 }
1010
1011 /**
1012  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1013  * @vm: Master vm structure.
1014  * @pd: Page directory for this address range.
1015  * @start:      Starting virtual address to begin allocations.
1016  * @length:     Size of the allocations.
1017  * @new_pts:    Bitmap set by function with new allocations. Likely used by the
1018  *              caller to free on error.
1019  *
1020  * Allocate the required number of page tables. Extremely similar to
1021  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1022  * the page directory boundary (instead of the page directory pointer). That
1023  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1024  * possible, and likely that the caller will need to use multiple calls of this
1025  * function to achieve the appropriate allocation.
1026  *
1027  * Return: 0 if success; negative error code otherwise.
1028  */
1029 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1030                                      struct i915_page_directory *pd,
1031                                      uint64_t start,
1032                                      uint64_t length,
1033                                      unsigned long *new_pts)
1034 {
1035         struct drm_device *dev = vm->dev;
1036         struct i915_page_table *pt;
1037         uint32_t pde;
1038
1039         gen8_for_each_pde(pt, pd, start, length, pde) {
1040                 /* Don't reallocate page tables */
1041                 if (test_bit(pde, pd->used_pdes)) {
1042                         /* Scratch is never allocated this way */
1043                         WARN_ON(pt == vm->scratch_pt);
1044                         continue;
1045                 }
1046
1047                 pt = alloc_pt(dev);
1048                 if (IS_ERR(pt))
1049                         goto unwind_out;
1050
1051                 gen8_initialize_pt(vm, pt);
1052                 pd->page_table[pde] = pt;
1053                 __set_bit(pde, new_pts);
1054                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1055         }
1056
1057         return 0;
1058
1059 unwind_out:
1060         for_each_set_bit(pde, new_pts, I915_PDES)
1061                 free_pt(dev, pd->page_table[pde]);
1062
1063         return -ENOMEM;
1064 }
1065
1066 /**
1067  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1068  * @vm: Master vm structure.
1069  * @pdp:        Page directory pointer for this address range.
1070  * @start:      Starting virtual address to begin allocations.
1071  * @length:     Size of the allocations.
1072  * @new_pds:    Bitmap set by function with new allocations. Likely used by the
1073  *              caller to free on error.
1074  *
1075  * Allocate the required number of page directories starting at the pde index of
1076  * @start, and ending at the pde index @start + @length. This function will skip
1077  * over already allocated page directories within the range, and only allocate
1078  * new ones, setting the appropriate pointer within the pdp as well as the
1079  * correct position in the bitmap @new_pds.
1080  *
1081  * The function will only allocate the pages within the range for a give page
1082  * directory pointer. In other words, if @start + @length straddles a virtually
1083  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1084  * required by the caller, This is not currently possible, and the BUG in the
1085  * code will prevent it.
1086  *
1087  * Return: 0 if success; negative error code otherwise.
1088  */
1089 static int
1090 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1091                                   struct i915_page_directory_pointer *pdp,
1092                                   uint64_t start,
1093                                   uint64_t length,
1094                                   unsigned long *new_pds)
1095 {
1096         struct drm_device *dev = vm->dev;
1097         struct i915_page_directory *pd;
1098         uint32_t pdpe;
1099         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1100
1101         WARN_ON(!bitmap_empty(new_pds, pdpes));
1102
1103         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1104                 if (test_bit(pdpe, pdp->used_pdpes))
1105                         continue;
1106
1107                 pd = alloc_pd(dev);
1108                 if (IS_ERR(pd))
1109                         goto unwind_out;
1110
1111                 gen8_initialize_pd(vm, pd);
1112                 pdp->page_directory[pdpe] = pd;
1113                 __set_bit(pdpe, new_pds);
1114                 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1115         }
1116
1117         return 0;
1118
1119 unwind_out:
1120         for_each_set_bit(pdpe, new_pds, pdpes)
1121                 free_pd(dev, pdp->page_directory[pdpe]);
1122
1123         return -ENOMEM;
1124 }
1125
1126 /**
1127  * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1128  * @vm: Master vm structure.
1129  * @pml4:       Page map level 4 for this address range.
1130  * @start:      Starting virtual address to begin allocations.
1131  * @length:     Size of the allocations.
1132  * @new_pdps:   Bitmap set by function with new allocations. Likely used by the
1133  *              caller to free on error.
1134  *
1135  * Allocate the required number of page directory pointers. Extremely similar to
1136  * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1137  * The main difference is here we are limited by the pml4 boundary (instead of
1138  * the page directory pointer).
1139  *
1140  * Return: 0 if success; negative error code otherwise.
1141  */
1142 static int
1143 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1144                                   struct i915_pml4 *pml4,
1145                                   uint64_t start,
1146                                   uint64_t length,
1147                                   unsigned long *new_pdps)
1148 {
1149         struct drm_device *dev = vm->dev;
1150         struct i915_page_directory_pointer *pdp;
1151         uint32_t pml4e;
1152
1153         WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1154
1155         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1156                 if (!test_bit(pml4e, pml4->used_pml4es)) {
1157                         pdp = alloc_pdp(dev);
1158                         if (IS_ERR(pdp))
1159                                 goto unwind_out;
1160
1161                         gen8_initialize_pdp(vm, pdp);
1162                         pml4->pdps[pml4e] = pdp;
1163                         __set_bit(pml4e, new_pdps);
1164                         trace_i915_page_directory_pointer_entry_alloc(vm,
1165                                                                       pml4e,
1166                                                                       start,
1167                                                                       GEN8_PML4E_SHIFT);
1168                 }
1169         }
1170
1171         return 0;
1172
1173 unwind_out:
1174         for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1175                 free_pdp(dev, pml4->pdps[pml4e]);
1176
1177         return -ENOMEM;
1178 }
1179
1180 static void
1181 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1182 {
1183         kfree(new_pts);
1184         kfree(new_pds);
1185 }
1186
1187 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1188  * of these are based on the number of PDPEs in the system.
1189  */
1190 static
1191 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1192                                          unsigned long **new_pts,
1193                                          uint32_t pdpes)
1194 {
1195         unsigned long *pds;
1196         unsigned long *pts;
1197
1198         pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1199         if (!pds)
1200                 return -ENOMEM;
1201
1202         pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1203                       GFP_TEMPORARY);
1204         if (!pts)
1205                 goto err_out;
1206
1207         *new_pds = pds;
1208         *new_pts = pts;
1209
1210         return 0;
1211
1212 err_out:
1213         free_gen8_temp_bitmaps(pds, pts);
1214         return -ENOMEM;
1215 }
1216
1217 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1218  * the page table structures, we mark them dirty so that
1219  * context switching/execlist queuing code takes extra steps
1220  * to ensure that tlbs are flushed.
1221  */
1222 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1223 {
1224         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1225 }
1226
1227 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1228                                     struct i915_page_directory_pointer *pdp,
1229                                     uint64_t start,
1230                                     uint64_t length)
1231 {
1232         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1233         unsigned long *new_page_dirs, *new_page_tables;
1234         struct drm_device *dev = vm->dev;
1235         struct i915_page_directory *pd;
1236         const uint64_t orig_start = start;
1237         const uint64_t orig_length = length;
1238         uint32_t pdpe;
1239         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1240         int ret;
1241
1242         /* Wrap is never okay since we can only represent 48b, and we don't
1243          * actually use the other side of the canonical address space.
1244          */
1245         if (WARN_ON(start + length < start))
1246                 return -ENODEV;
1247
1248         if (WARN_ON(start + length > vm->total))
1249                 return -ENODEV;
1250
1251         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1252         if (ret)
1253                 return ret;
1254
1255         /* Do the allocations first so we can easily bail out */
1256         ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1257                                                 new_page_dirs);
1258         if (ret) {
1259                 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1260                 return ret;
1261         }
1262
1263         /* For every page directory referenced, allocate page tables */
1264         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1265                 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1266                                                 new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1267                 if (ret)
1268                         goto err_out;
1269         }
1270
1271         start = orig_start;
1272         length = orig_length;
1273
1274         /* Allocations have completed successfully, so set the bitmaps, and do
1275          * the mappings. */
1276         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1277                 gen8_pde_t *const page_directory = kmap_px(pd);
1278                 struct i915_page_table *pt;
1279                 uint64_t pd_len = length;
1280                 uint64_t pd_start = start;
1281                 uint32_t pde;
1282
1283                 /* Every pd should be allocated, we just did that above. */
1284                 WARN_ON(!pd);
1285
1286                 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1287                         /* Same reasoning as pd */
1288                         WARN_ON(!pt);
1289                         WARN_ON(!pd_len);
1290                         WARN_ON(!gen8_pte_count(pd_start, pd_len));
1291
1292                         /* Set our used ptes within the page table */
1293                         bitmap_set(pt->used_ptes,
1294                                    gen8_pte_index(pd_start),
1295                                    gen8_pte_count(pd_start, pd_len));
1296
1297                         /* Our pde is now pointing to the pagetable, pt */
1298                         __set_bit(pde, pd->used_pdes);
1299
1300                         /* Map the PDE to the page table */
1301                         page_directory[pde] = gen8_pde_encode(px_dma(pt),
1302                                                               I915_CACHE_LLC);
1303                         trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1304                                                         gen8_pte_index(start),
1305                                                         gen8_pte_count(start, length),
1306                                                         GEN8_PTES);
1307
1308                         /* NB: We haven't yet mapped ptes to pages. At this
1309                          * point we're still relying on insert_entries() */
1310                 }
1311
1312                 kunmap_px(ppgtt, page_directory);
1313                 __set_bit(pdpe, pdp->used_pdpes);
1314                 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1315         }
1316
1317         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1318         mark_tlbs_dirty(ppgtt);
1319         return 0;
1320
1321 err_out:
1322         while (pdpe--) {
1323                 unsigned long temp;
1324
1325                 for_each_set_bit(temp, new_page_tables + pdpe *
1326                                 BITS_TO_LONGS(I915_PDES), I915_PDES)
1327                         free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1328         }
1329
1330         for_each_set_bit(pdpe, new_page_dirs, pdpes)
1331                 free_pd(dev, pdp->page_directory[pdpe]);
1332
1333         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1334         mark_tlbs_dirty(ppgtt);
1335         return ret;
1336 }
1337
1338 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1339                                     struct i915_pml4 *pml4,
1340                                     uint64_t start,
1341                                     uint64_t length)
1342 {
1343         DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1344         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1345         struct i915_page_directory_pointer *pdp;
1346         uint64_t pml4e;
1347         int ret = 0;
1348
1349         /* Do the pml4 allocations first, so we don't need to track the newly
1350          * allocated tables below the pdp */
1351         bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1352
1353         /* The pagedirectory and pagetable allocations are done in the shared 3
1354          * and 4 level code. Just allocate the pdps.
1355          */
1356         ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1357                                                 new_pdps);
1358         if (ret)
1359                 return ret;
1360
1361         WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1362              "The allocation has spanned more than 512GB. "
1363              "It is highly likely this is incorrect.");
1364
1365         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1366                 WARN_ON(!pdp);
1367
1368                 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1369                 if (ret)
1370                         goto err_out;
1371
1372                 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1373         }
1374
1375         bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1376                   GEN8_PML4ES_PER_PML4);
1377
1378         return 0;
1379
1380 err_out:
1381         for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1382                 gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1383
1384         return ret;
1385 }
1386
1387 static int gen8_alloc_va_range(struct i915_address_space *vm,
1388                                uint64_t start, uint64_t length)
1389 {
1390         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1391
1392         if (USES_FULL_48BIT_PPGTT(vm->dev))
1393                 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1394         else
1395                 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1396 }
1397
1398 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1399                           uint64_t start, uint64_t length,
1400                           gen8_pte_t scratch_pte,
1401                           struct seq_file *m)
1402 {
1403         struct i915_page_directory *pd;
1404         uint32_t pdpe;
1405
1406         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1407                 struct i915_page_table *pt;
1408                 uint64_t pd_len = length;
1409                 uint64_t pd_start = start;
1410                 uint32_t pde;
1411
1412                 if (!test_bit(pdpe, pdp->used_pdpes))
1413                         continue;
1414
1415                 seq_printf(m, "\tPDPE #%d\n", pdpe);
1416                 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1417                         uint32_t  pte;
1418                         gen8_pte_t *pt_vaddr;
1419
1420                         if (!test_bit(pde, pd->used_pdes))
1421                                 continue;
1422
1423                         pt_vaddr = kmap_px(pt);
1424                         for (pte = 0; pte < GEN8_PTES; pte += 4) {
1425                                 uint64_t va =
1426                                         (pdpe << GEN8_PDPE_SHIFT) |
1427                                         (pde << GEN8_PDE_SHIFT) |
1428                                         (pte << GEN8_PTE_SHIFT);
1429                                 int i;
1430                                 bool found = false;
1431
1432                                 for (i = 0; i < 4; i++)
1433                                         if (pt_vaddr[pte + i] != scratch_pte)
1434                                                 found = true;
1435                                 if (!found)
1436                                         continue;
1437
1438                                 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1439                                 for (i = 0; i < 4; i++) {
1440                                         if (pt_vaddr[pte + i] != scratch_pte)
1441                                                 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1442                                         else
1443                                                 seq_puts(m, "  SCRATCH ");
1444                                 }
1445                                 seq_puts(m, "\n");
1446                         }
1447                         /* don't use kunmap_px, it could trigger
1448                          * an unnecessary flush.
1449                          */
1450                         kunmap_atomic(pt_vaddr);
1451                 }
1452         }
1453 }
1454
1455 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1456 {
1457         struct i915_address_space *vm = &ppgtt->base;
1458         uint64_t start = ppgtt->base.start;
1459         uint64_t length = ppgtt->base.total;
1460         gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1461                                                  I915_CACHE_LLC, true);
1462
1463         if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1464                 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1465         } else {
1466                 uint64_t pml4e;
1467                 struct i915_pml4 *pml4 = &ppgtt->pml4;
1468                 struct i915_page_directory_pointer *pdp;
1469
1470                 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1471                         if (!test_bit(pml4e, pml4->used_pml4es))
1472                                 continue;
1473
1474                         seq_printf(m, "    PML4E #%llu\n", pml4e);
1475                         gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1476                 }
1477         }
1478 }
1479
1480 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1481 {
1482         unsigned long *new_page_dirs, *new_page_tables;
1483         uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1484         int ret;
1485
1486         /* We allocate temp bitmap for page tables for no gain
1487          * but as this is for init only, lets keep the things simple
1488          */
1489         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1490         if (ret)
1491                 return ret;
1492
1493         /* Allocate for all pdps regardless of how the ppgtt
1494          * was defined.
1495          */
1496         ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1497                                                 0, 1ULL << 32,
1498                                                 new_page_dirs);
1499         if (!ret)
1500                 *ppgtt->pdp.used_pdpes = *new_page_dirs;
1501
1502         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1503
1504         return ret;
1505 }
1506
1507 /*
1508  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1509  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1510  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1511  * space.
1512  *
1513  */
1514 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1515 {
1516         int ret;
1517
1518         ret = gen8_init_scratch(&ppgtt->base);
1519         if (ret)
1520                 return ret;
1521
1522         ppgtt->base.start = 0;
1523         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1524         ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1525         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1526         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1527         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1528         ppgtt->base.bind_vma = ppgtt_bind_vma;
1529         ppgtt->debug_dump = gen8_dump_ppgtt;
1530
1531         if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1532                 ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1533                 if (ret)
1534                         goto free_scratch;
1535
1536                 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1537
1538                 ppgtt->base.total = 1ULL << 48;
1539                 ppgtt->switch_mm = gen8_48b_mm_switch;
1540         } else {
1541                 ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1542                 if (ret)
1543                         goto free_scratch;
1544
1545                 ppgtt->base.total = 1ULL << 32;
1546                 ppgtt->switch_mm = gen8_legacy_mm_switch;
1547                 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1548                                                               0, 0,
1549                                                               GEN8_PML4E_SHIFT);
1550
1551                 if (intel_vgpu_active(to_i915(ppgtt->base.dev))) {
1552                         ret = gen8_preallocate_top_level_pdps(ppgtt);
1553                         if (ret)
1554                                 goto free_scratch;
1555                 }
1556         }
1557
1558         if (intel_vgpu_active(to_i915(ppgtt->base.dev)))
1559                 gen8_ppgtt_notify_vgt(ppgtt, true);
1560
1561         return 0;
1562
1563 free_scratch:
1564         gen8_free_scratch(&ppgtt->base);
1565         return ret;
1566 }
1567
1568 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1569 {
1570         struct i915_address_space *vm = &ppgtt->base;
1571         struct i915_page_table *unused;
1572         gen6_pte_t scratch_pte;
1573         uint32_t pd_entry;
1574         uint32_t  pte, pde;
1575         uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1576
1577         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1578                                      I915_CACHE_LLC, true, 0);
1579
1580         gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1581                 u32 expected;
1582                 gen6_pte_t *pt_vaddr;
1583                 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1584                 pd_entry = readl(ppgtt->pd_addr + pde);
1585                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1586
1587                 if (pd_entry != expected)
1588                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1589                                    pde,
1590                                    pd_entry,
1591                                    expected);
1592                 seq_printf(m, "\tPDE: %x\n", pd_entry);
1593
1594                 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1595
1596                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1597                         unsigned long va =
1598                                 (pde * PAGE_SIZE * GEN6_PTES) +
1599                                 (pte * PAGE_SIZE);
1600                         int i;
1601                         bool found = false;
1602                         for (i = 0; i < 4; i++)
1603                                 if (pt_vaddr[pte + i] != scratch_pte)
1604                                         found = true;
1605                         if (!found)
1606                                 continue;
1607
1608                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1609                         for (i = 0; i < 4; i++) {
1610                                 if (pt_vaddr[pte + i] != scratch_pte)
1611                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
1612                                 else
1613                                         seq_puts(m, "  SCRATCH ");
1614                         }
1615                         seq_puts(m, "\n");
1616                 }
1617                 kunmap_px(ppgtt, pt_vaddr);
1618         }
1619 }
1620
1621 /* Write pde (index) from the page directory @pd to the page table @pt */
1622 static void gen6_write_pde(struct i915_page_directory *pd,
1623                             const int pde, struct i915_page_table *pt)
1624 {
1625         /* Caller needs to make sure the write completes if necessary */
1626         struct i915_hw_ppgtt *ppgtt =
1627                 container_of(pd, struct i915_hw_ppgtt, pd);
1628         u32 pd_entry;
1629
1630         pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1631         pd_entry |= GEN6_PDE_VALID;
1632
1633         writel(pd_entry, ppgtt->pd_addr + pde);
1634 }
1635
1636 /* Write all the page tables found in the ppgtt structure to incrementing page
1637  * directories. */
1638 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1639                                   struct i915_page_directory *pd,
1640                                   uint32_t start, uint32_t length)
1641 {
1642         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1643         struct i915_page_table *pt;
1644         uint32_t pde;
1645
1646         gen6_for_each_pde(pt, pd, start, length, pde)
1647                 gen6_write_pde(pd, pde, pt);
1648
1649         /* Make sure write is complete before other code can use this page
1650          * table. Also require for WC mapped PTEs */
1651         readl(ggtt->gsm);
1652 }
1653
1654 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1655 {
1656         BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1657
1658         return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1659 }
1660
1661 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1662                          struct drm_i915_gem_request *req)
1663 {
1664         struct intel_ring *ring = req->ring;
1665         struct intel_engine_cs *engine = req->engine;
1666         int ret;
1667
1668         /* NB: TLBs must be flushed and invalidated before a switch */
1669         ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1670         if (ret)
1671                 return ret;
1672
1673         ret = intel_ring_begin(req, 6);
1674         if (ret)
1675                 return ret;
1676
1677         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1678         intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1679         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1680         intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1681         intel_ring_emit(ring, get_pd_offset(ppgtt));
1682         intel_ring_emit(ring, MI_NOOP);
1683         intel_ring_advance(ring);
1684
1685         return 0;
1686 }
1687
1688 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1689                           struct drm_i915_gem_request *req)
1690 {
1691         struct intel_ring *ring = req->ring;
1692         struct intel_engine_cs *engine = req->engine;
1693         int ret;
1694
1695         /* NB: TLBs must be flushed and invalidated before a switch */
1696         ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1697         if (ret)
1698                 return ret;
1699
1700         ret = intel_ring_begin(req, 6);
1701         if (ret)
1702                 return ret;
1703
1704         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1705         intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1706         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1707         intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1708         intel_ring_emit(ring, get_pd_offset(ppgtt));
1709         intel_ring_emit(ring, MI_NOOP);
1710         intel_ring_advance(ring);
1711
1712         /* XXX: RCS is the only one to auto invalidate the TLBs? */
1713         if (engine->id != RCS) {
1714                 ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1715                 if (ret)
1716                         return ret;
1717         }
1718
1719         return 0;
1720 }
1721
1722 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1723                           struct drm_i915_gem_request *req)
1724 {
1725         struct intel_engine_cs *engine = req->engine;
1726         struct drm_i915_private *dev_priv = req->i915;
1727
1728         I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1729         I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1730         return 0;
1731 }
1732
1733 static void gen8_ppgtt_enable(struct drm_device *dev)
1734 {
1735         struct drm_i915_private *dev_priv = to_i915(dev);
1736         struct intel_engine_cs *engine;
1737
1738         for_each_engine(engine, dev_priv) {
1739                 u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1740                 I915_WRITE(RING_MODE_GEN7(engine),
1741                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1742         }
1743 }
1744
1745 static void gen7_ppgtt_enable(struct drm_device *dev)
1746 {
1747         struct drm_i915_private *dev_priv = to_i915(dev);
1748         struct intel_engine_cs *engine;
1749         uint32_t ecochk, ecobits;
1750
1751         ecobits = I915_READ(GAC_ECO_BITS);
1752         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1753
1754         ecochk = I915_READ(GAM_ECOCHK);
1755         if (IS_HASWELL(dev)) {
1756                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1757         } else {
1758                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1759                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1760         }
1761         I915_WRITE(GAM_ECOCHK, ecochk);
1762
1763         for_each_engine(engine, dev_priv) {
1764                 /* GFX_MODE is per-ring on gen7+ */
1765                 I915_WRITE(RING_MODE_GEN7(engine),
1766                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1767         }
1768 }
1769
1770 static void gen6_ppgtt_enable(struct drm_device *dev)
1771 {
1772         struct drm_i915_private *dev_priv = to_i915(dev);
1773         uint32_t ecochk, gab_ctl, ecobits;
1774
1775         ecobits = I915_READ(GAC_ECO_BITS);
1776         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1777                    ECOBITS_PPGTT_CACHE64B);
1778
1779         gab_ctl = I915_READ(GAB_CTL);
1780         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1781
1782         ecochk = I915_READ(GAM_ECOCHK);
1783         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1784
1785         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1786 }
1787
1788 /* PPGTT support for Sandybdrige/Gen6 and later */
1789 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1790                                    uint64_t start,
1791                                    uint64_t length,
1792                                    bool use_scratch)
1793 {
1794         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1795         gen6_pte_t *pt_vaddr, scratch_pte;
1796         unsigned first_entry = start >> PAGE_SHIFT;
1797         unsigned num_entries = length >> PAGE_SHIFT;
1798         unsigned act_pt = first_entry / GEN6_PTES;
1799         unsigned first_pte = first_entry % GEN6_PTES;
1800         unsigned last_pte, i;
1801
1802         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1803                                      I915_CACHE_LLC, true, 0);
1804
1805         while (num_entries) {
1806                 last_pte = first_pte + num_entries;
1807                 if (last_pte > GEN6_PTES)
1808                         last_pte = GEN6_PTES;
1809
1810                 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1811
1812                 for (i = first_pte; i < last_pte; i++)
1813                         pt_vaddr[i] = scratch_pte;
1814
1815                 kunmap_px(ppgtt, pt_vaddr);
1816
1817                 num_entries -= last_pte - first_pte;
1818                 first_pte = 0;
1819                 act_pt++;
1820         }
1821 }
1822
1823 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1824                                       struct sg_table *pages,
1825                                       uint64_t start,
1826                                       enum i915_cache_level cache_level, u32 flags)
1827 {
1828         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1829         unsigned first_entry = start >> PAGE_SHIFT;
1830         unsigned act_pt = first_entry / GEN6_PTES;
1831         unsigned act_pte = first_entry % GEN6_PTES;
1832         gen6_pte_t *pt_vaddr = NULL;
1833         struct sgt_iter sgt_iter;
1834         dma_addr_t addr;
1835
1836         for_each_sgt_dma(addr, sgt_iter, pages) {
1837                 if (pt_vaddr == NULL)
1838                         pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1839
1840                 pt_vaddr[act_pte] =
1841                         vm->pte_encode(addr, cache_level, true, flags);
1842
1843                 if (++act_pte == GEN6_PTES) {
1844                         kunmap_px(ppgtt, pt_vaddr);
1845                         pt_vaddr = NULL;
1846                         act_pt++;
1847                         act_pte = 0;
1848                 }
1849         }
1850
1851         if (pt_vaddr)
1852                 kunmap_px(ppgtt, pt_vaddr);
1853 }
1854
1855 static int gen6_alloc_va_range(struct i915_address_space *vm,
1856                                uint64_t start_in, uint64_t length_in)
1857 {
1858         DECLARE_BITMAP(new_page_tables, I915_PDES);
1859         struct drm_device *dev = vm->dev;
1860         struct drm_i915_private *dev_priv = to_i915(dev);
1861         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1862         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1863         struct i915_page_table *pt;
1864         uint32_t start, length, start_save, length_save;
1865         uint32_t pde;
1866         int ret;
1867
1868         if (WARN_ON(start_in + length_in > ppgtt->base.total))
1869                 return -ENODEV;
1870
1871         start = start_save = start_in;
1872         length = length_save = length_in;
1873
1874         bitmap_zero(new_page_tables, I915_PDES);
1875
1876         /* The allocation is done in two stages so that we can bail out with
1877          * minimal amount of pain. The first stage finds new page tables that
1878          * need allocation. The second stage marks use ptes within the page
1879          * tables.
1880          */
1881         gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1882                 if (pt != vm->scratch_pt) {
1883                         WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1884                         continue;
1885                 }
1886
1887                 /* We've already allocated a page table */
1888                 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1889
1890                 pt = alloc_pt(dev);
1891                 if (IS_ERR(pt)) {
1892                         ret = PTR_ERR(pt);
1893                         goto unwind_out;
1894                 }
1895
1896                 gen6_initialize_pt(vm, pt);
1897
1898                 ppgtt->pd.page_table[pde] = pt;
1899                 __set_bit(pde, new_page_tables);
1900                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1901         }
1902
1903         start = start_save;
1904         length = length_save;
1905
1906         gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1907                 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1908
1909                 bitmap_zero(tmp_bitmap, GEN6_PTES);
1910                 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1911                            gen6_pte_count(start, length));
1912
1913                 if (__test_and_clear_bit(pde, new_page_tables))
1914                         gen6_write_pde(&ppgtt->pd, pde, pt);
1915
1916                 trace_i915_page_table_entry_map(vm, pde, pt,
1917                                          gen6_pte_index(start),
1918                                          gen6_pte_count(start, length),
1919                                          GEN6_PTES);
1920                 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1921                                 GEN6_PTES);
1922         }
1923
1924         WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1925
1926         /* Make sure write is complete before other code can use this page
1927          * table. Also require for WC mapped PTEs */
1928         readl(ggtt->gsm);
1929
1930         mark_tlbs_dirty(ppgtt);
1931         return 0;
1932
1933 unwind_out:
1934         for_each_set_bit(pde, new_page_tables, I915_PDES) {
1935                 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1936
1937                 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1938                 free_pt(vm->dev, pt);
1939         }
1940
1941         mark_tlbs_dirty(ppgtt);
1942         return ret;
1943 }
1944
1945 static int gen6_init_scratch(struct i915_address_space *vm)
1946 {
1947         struct drm_device *dev = vm->dev;
1948
1949         vm->scratch_page = alloc_scratch_page(dev);
1950         if (IS_ERR(vm->scratch_page))
1951                 return PTR_ERR(vm->scratch_page);
1952
1953         vm->scratch_pt = alloc_pt(dev);
1954         if (IS_ERR(vm->scratch_pt)) {
1955                 free_scratch_page(dev, vm->scratch_page);
1956                 return PTR_ERR(vm->scratch_pt);
1957         }
1958
1959         gen6_initialize_pt(vm, vm->scratch_pt);
1960
1961         return 0;
1962 }
1963
1964 static void gen6_free_scratch(struct i915_address_space *vm)
1965 {
1966         struct drm_device *dev = vm->dev;
1967
1968         free_pt(dev, vm->scratch_pt);
1969         free_scratch_page(dev, vm->scratch_page);
1970 }
1971
1972 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1973 {
1974         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1975         struct i915_page_directory *pd = &ppgtt->pd;
1976         struct drm_device *dev = vm->dev;
1977         struct i915_page_table *pt;
1978         uint32_t pde;
1979
1980         drm_mm_remove_node(&ppgtt->node);
1981
1982         gen6_for_all_pdes(pt, pd, pde)
1983                 if (pt != vm->scratch_pt)
1984                         free_pt(dev, pt);
1985
1986         gen6_free_scratch(vm);
1987 }
1988
1989 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1990 {
1991         struct i915_address_space *vm = &ppgtt->base;
1992         struct drm_device *dev = ppgtt->base.dev;
1993         struct drm_i915_private *dev_priv = to_i915(dev);
1994         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1995         bool retried = false;
1996         int ret;
1997
1998         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1999          * allocator works in address space sizes, so it's multiplied by page
2000          * size. We allocate at the top of the GTT to avoid fragmentation.
2001          */
2002         BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2003
2004         ret = gen6_init_scratch(vm);
2005         if (ret)
2006                 return ret;
2007
2008 alloc:
2009         ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2010                                                   &ppgtt->node, GEN6_PD_SIZE,
2011                                                   GEN6_PD_ALIGN, 0,
2012                                                   0, ggtt->base.total,
2013                                                   DRM_MM_TOPDOWN);
2014         if (ret == -ENOSPC && !retried) {
2015                 ret = i915_gem_evict_something(&ggtt->base,
2016                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
2017                                                I915_CACHE_NONE,
2018                                                0, ggtt->base.total,
2019                                                0);
2020                 if (ret)
2021                         goto err_out;
2022
2023                 retried = true;
2024                 goto alloc;
2025         }
2026
2027         if (ret)
2028                 goto err_out;
2029
2030
2031         if (ppgtt->node.start < ggtt->mappable_end)
2032                 DRM_DEBUG("Forced to use aperture for PDEs\n");
2033
2034         return 0;
2035
2036 err_out:
2037         gen6_free_scratch(vm);
2038         return ret;
2039 }
2040
2041 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2042 {
2043         return gen6_ppgtt_allocate_page_directories(ppgtt);
2044 }
2045
2046 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2047                                   uint64_t start, uint64_t length)
2048 {
2049         struct i915_page_table *unused;
2050         uint32_t pde;
2051
2052         gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2053                 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2054 }
2055
2056 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2057 {
2058         struct drm_device *dev = ppgtt->base.dev;
2059         struct drm_i915_private *dev_priv = to_i915(dev);
2060         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2061         int ret;
2062
2063         ppgtt->base.pte_encode = ggtt->base.pte_encode;
2064         if (intel_vgpu_active(dev_priv) || IS_GEN6(dev))
2065                 ppgtt->switch_mm = gen6_mm_switch;
2066         else if (IS_HASWELL(dev))
2067                 ppgtt->switch_mm = hsw_mm_switch;
2068         else if (IS_GEN7(dev))
2069                 ppgtt->switch_mm = gen7_mm_switch;
2070         else
2071                 BUG();
2072
2073         ret = gen6_ppgtt_alloc(ppgtt);
2074         if (ret)
2075                 return ret;
2076
2077         ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2078         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2079         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2080         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2081         ppgtt->base.bind_vma = ppgtt_bind_vma;
2082         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2083         ppgtt->base.start = 0;
2084         ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2085         ppgtt->debug_dump = gen6_dump_ppgtt;
2086
2087         ppgtt->pd.base.ggtt_offset =
2088                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2089
2090         ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2091                 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2092
2093         gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2094
2095         gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2096
2097         DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2098                          ppgtt->node.size >> 20,
2099                          ppgtt->node.start / PAGE_SIZE);
2100
2101         DRM_DEBUG("Adding PPGTT at offset %x\n",
2102                   ppgtt->pd.base.ggtt_offset << 10);
2103
2104         return 0;
2105 }
2106
2107 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2108                            struct drm_i915_private *dev_priv)
2109 {
2110         ppgtt->base.dev = &dev_priv->drm;
2111
2112         if (INTEL_INFO(dev_priv)->gen < 8)
2113                 return gen6_ppgtt_init(ppgtt);
2114         else
2115                 return gen8_ppgtt_init(ppgtt);
2116 }
2117
2118 static void i915_address_space_init(struct i915_address_space *vm,
2119                                     struct drm_i915_private *dev_priv)
2120 {
2121         drm_mm_init(&vm->mm, vm->start, vm->total);
2122         INIT_LIST_HEAD(&vm->active_list);
2123         INIT_LIST_HEAD(&vm->inactive_list);
2124         INIT_LIST_HEAD(&vm->unbound_list);
2125         list_add_tail(&vm->global_link, &dev_priv->vm_list);
2126 }
2127
2128 static void gtt_write_workarounds(struct drm_device *dev)
2129 {
2130         struct drm_i915_private *dev_priv = to_i915(dev);
2131
2132         /* This function is for gtt related workarounds. This function is
2133          * called on driver load and after a GPU reset, so you can place
2134          * workarounds here even if they get overwritten by GPU reset.
2135          */
2136         /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2137         if (IS_BROADWELL(dev))
2138                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2139         else if (IS_CHERRYVIEW(dev))
2140                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2141         else if (IS_SKYLAKE(dev))
2142                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2143         else if (IS_BROXTON(dev))
2144                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2145 }
2146
2147 static int i915_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2148                            struct drm_i915_private *dev_priv,
2149                            struct drm_i915_file_private *file_priv)
2150 {
2151         int ret;
2152
2153         ret = __hw_ppgtt_init(ppgtt, dev_priv);
2154         if (ret == 0) {
2155                 kref_init(&ppgtt->ref);
2156                 i915_address_space_init(&ppgtt->base, dev_priv);
2157                 ppgtt->base.file = file_priv;
2158         }
2159
2160         return ret;
2161 }
2162
2163 int i915_ppgtt_init_hw(struct drm_device *dev)
2164 {
2165         gtt_write_workarounds(dev);
2166
2167         /* In the case of execlists, PPGTT is enabled by the context descriptor
2168          * and the PDPs are contained within the context itself.  We don't
2169          * need to do anything here. */
2170         if (i915.enable_execlists)
2171                 return 0;
2172
2173         if (!USES_PPGTT(dev))
2174                 return 0;
2175
2176         if (IS_GEN6(dev))
2177                 gen6_ppgtt_enable(dev);
2178         else if (IS_GEN7(dev))
2179                 gen7_ppgtt_enable(dev);
2180         else if (INTEL_INFO(dev)->gen >= 8)
2181                 gen8_ppgtt_enable(dev);
2182         else
2183                 MISSING_CASE(INTEL_INFO(dev)->gen);
2184
2185         return 0;
2186 }
2187
2188 struct i915_hw_ppgtt *
2189 i915_ppgtt_create(struct drm_i915_private *dev_priv,
2190                   struct drm_i915_file_private *fpriv)
2191 {
2192         struct i915_hw_ppgtt *ppgtt;
2193         int ret;
2194
2195         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2196         if (!ppgtt)
2197                 return ERR_PTR(-ENOMEM);
2198
2199         ret = i915_ppgtt_init(ppgtt, dev_priv, fpriv);
2200         if (ret) {
2201                 kfree(ppgtt);
2202                 return ERR_PTR(ret);
2203         }
2204
2205         trace_i915_ppgtt_create(&ppgtt->base);
2206
2207         return ppgtt;
2208 }
2209
2210 void  i915_ppgtt_release(struct kref *kref)
2211 {
2212         struct i915_hw_ppgtt *ppgtt =
2213                 container_of(kref, struct i915_hw_ppgtt, ref);
2214
2215         trace_i915_ppgtt_release(&ppgtt->base);
2216
2217         /* vmas should already be unbound and destroyed */
2218         WARN_ON(!list_empty(&ppgtt->base.active_list));
2219         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2220         WARN_ON(!list_empty(&ppgtt->base.unbound_list));
2221
2222         list_del(&ppgtt->base.global_link);
2223         drm_mm_takedown(&ppgtt->base.mm);
2224
2225         ppgtt->base.cleanup(&ppgtt->base);
2226         kfree(ppgtt);
2227 }
2228
2229 /* Certain Gen5 chipsets require require idling the GPU before
2230  * unmapping anything from the GTT when VT-d is enabled.
2231  */
2232 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2233 {
2234 #ifdef CONFIG_INTEL_IOMMU
2235         /* Query intel_iommu to see if we need the workaround. Presumably that
2236          * was loaded first.
2237          */
2238         if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped)
2239                 return true;
2240 #endif
2241         return false;
2242 }
2243
2244 static bool do_idling(struct drm_i915_private *dev_priv)
2245 {
2246         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2247         bool ret = dev_priv->mm.interruptible;
2248
2249         if (unlikely(ggtt->do_idle_maps)) {
2250                 dev_priv->mm.interruptible = false;
2251                 if (i915_gem_wait_for_idle(dev_priv)) {
2252                         DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2253                         /* Wait a bit, in hopes it avoids the hang */
2254                         udelay(10);
2255                 }
2256         }
2257
2258         return ret;
2259 }
2260
2261 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2262 {
2263         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2264
2265         if (unlikely(ggtt->do_idle_maps))
2266                 dev_priv->mm.interruptible = interruptible;
2267 }
2268
2269 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2270 {
2271         struct intel_engine_cs *engine;
2272
2273         if (INTEL_INFO(dev_priv)->gen < 6)
2274                 return;
2275
2276         for_each_engine(engine, dev_priv) {
2277                 u32 fault_reg;
2278                 fault_reg = I915_READ(RING_FAULT_REG(engine));
2279                 if (fault_reg & RING_FAULT_VALID) {
2280                         DRM_DEBUG_DRIVER("Unexpected fault\n"
2281                                          "\tAddr: 0x%08lx\n"
2282                                          "\tAddress space: %s\n"
2283                                          "\tSource ID: %d\n"
2284                                          "\tType: %d\n",
2285                                          fault_reg & PAGE_MASK,
2286                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2287                                          RING_FAULT_SRCID(fault_reg),
2288                                          RING_FAULT_FAULT_TYPE(fault_reg));
2289                         I915_WRITE(RING_FAULT_REG(engine),
2290                                    fault_reg & ~RING_FAULT_VALID);
2291                 }
2292         }
2293         POSTING_READ(RING_FAULT_REG(&dev_priv->engine[RCS]));
2294 }
2295
2296 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2297 {
2298         if (INTEL_INFO(dev_priv)->gen < 6) {
2299                 intel_gtt_chipset_flush();
2300         } else {
2301                 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2302                 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2303         }
2304 }
2305
2306 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2307 {
2308         struct drm_i915_private *dev_priv = to_i915(dev);
2309         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2310
2311         /* Don't bother messing with faults pre GEN6 as we have little
2312          * documentation supporting that it's a good idea.
2313          */
2314         if (INTEL_INFO(dev)->gen < 6)
2315                 return;
2316
2317         i915_check_and_clear_faults(dev_priv);
2318
2319         ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
2320                              true);
2321
2322         i915_ggtt_flush(dev_priv);
2323 }
2324
2325 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2326 {
2327         if (!dma_map_sg(&obj->base.dev->pdev->dev,
2328                         obj->pages->sgl, obj->pages->nents,
2329                         PCI_DMA_BIDIRECTIONAL))
2330                 return -ENOSPC;
2331
2332         return 0;
2333 }
2334
2335 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2336 {
2337 #ifdef writeq
2338         writeq(pte, addr);
2339 #else
2340         iowrite32((u32)pte, addr);
2341         iowrite32(pte >> 32, addr + 4);
2342 #endif
2343 }
2344
2345 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2346                                   dma_addr_t addr,
2347                                   uint64_t offset,
2348                                   enum i915_cache_level level,
2349                                   u32 unused)
2350 {
2351         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2352         gen8_pte_t __iomem *pte =
2353                 (gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
2354                 (offset >> PAGE_SHIFT);
2355         int rpm_atomic_seq;
2356
2357         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2358
2359         gen8_set_pte(pte, gen8_pte_encode(addr, level, true));
2360
2361         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2362         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2363
2364         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2365 }
2366
2367 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2368                                      struct sg_table *st,
2369                                      uint64_t start,
2370                                      enum i915_cache_level level, u32 unused)
2371 {
2372         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2373         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2374         struct sgt_iter sgt_iter;
2375         gen8_pte_t __iomem *gtt_entries;
2376         gen8_pte_t gtt_entry;
2377         dma_addr_t addr;
2378         int rpm_atomic_seq;
2379         int i = 0;
2380
2381         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2382
2383         gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2384
2385         for_each_sgt_dma(addr, sgt_iter, st) {
2386                 gtt_entry = gen8_pte_encode(addr, level, true);
2387                 gen8_set_pte(&gtt_entries[i++], gtt_entry);
2388         }
2389
2390         /*
2391          * XXX: This serves as a posting read to make sure that the PTE has
2392          * actually been updated. There is some concern that even though
2393          * registers and PTEs are within the same BAR that they are potentially
2394          * of NUMA access patterns. Therefore, even with the way we assume
2395          * hardware should work, we must keep this posting read for paranoia.
2396          */
2397         if (i != 0)
2398                 WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
2399
2400         /* This next bit makes the above posting read even more important. We
2401          * want to flush the TLBs only after we're certain all the PTE updates
2402          * have finished.
2403          */
2404         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2405         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2406
2407         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2408 }
2409
2410 struct insert_entries {
2411         struct i915_address_space *vm;
2412         struct sg_table *st;
2413         uint64_t start;
2414         enum i915_cache_level level;
2415         u32 flags;
2416 };
2417
2418 static int gen8_ggtt_insert_entries__cb(void *_arg)
2419 {
2420         struct insert_entries *arg = _arg;
2421         gen8_ggtt_insert_entries(arg->vm, arg->st,
2422                                  arg->start, arg->level, arg->flags);
2423         return 0;
2424 }
2425
2426 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2427                                           struct sg_table *st,
2428                                           uint64_t start,
2429                                           enum i915_cache_level level,
2430                                           u32 flags)
2431 {
2432         struct insert_entries arg = { vm, st, start, level, flags };
2433         stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2434 }
2435
2436 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2437                                   dma_addr_t addr,
2438                                   uint64_t offset,
2439                                   enum i915_cache_level level,
2440                                   u32 flags)
2441 {
2442         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2443         gen6_pte_t __iomem *pte =
2444                 (gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
2445                 (offset >> PAGE_SHIFT);
2446         int rpm_atomic_seq;
2447
2448         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2449
2450         iowrite32(vm->pte_encode(addr, level, true, flags), pte);
2451
2452         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2453         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2454
2455         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2456 }
2457
2458 /*
2459  * Binds an object into the global gtt with the specified cache level. The object
2460  * will be accessible to the GPU via commands whose operands reference offsets
2461  * within the global GTT as well as accessible by the GPU through the GMADR
2462  * mapped BAR (dev_priv->mm.gtt->gtt).
2463  */
2464 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2465                                      struct sg_table *st,
2466                                      uint64_t start,
2467                                      enum i915_cache_level level, u32 flags)
2468 {
2469         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2470         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2471         struct sgt_iter sgt_iter;
2472         gen6_pte_t __iomem *gtt_entries;
2473         gen6_pte_t gtt_entry;
2474         dma_addr_t addr;
2475         int rpm_atomic_seq;
2476         int i = 0;
2477
2478         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2479
2480         gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2481
2482         for_each_sgt_dma(addr, sgt_iter, st) {
2483                 gtt_entry = vm->pte_encode(addr, level, true, flags);
2484                 iowrite32(gtt_entry, &gtt_entries[i++]);
2485         }
2486
2487         /* XXX: This serves as a posting read to make sure that the PTE has
2488          * actually been updated. There is some concern that even though
2489          * registers and PTEs are within the same BAR that they are potentially
2490          * of NUMA access patterns. Therefore, even with the way we assume
2491          * hardware should work, we must keep this posting read for paranoia.
2492          */
2493         if (i != 0)
2494                 WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
2495
2496         /* This next bit makes the above posting read even more important. We
2497          * want to flush the TLBs only after we're certain all the PTE updates
2498          * have finished.
2499          */
2500         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2501         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2502
2503         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2504 }
2505
2506 static void nop_clear_range(struct i915_address_space *vm,
2507                             uint64_t start,
2508                             uint64_t length,
2509                             bool use_scratch)
2510 {
2511 }
2512
2513 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2514                                   uint64_t start,
2515                                   uint64_t length,
2516                                   bool use_scratch)
2517 {
2518         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2519         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2520         unsigned first_entry = start >> PAGE_SHIFT;
2521         unsigned num_entries = length >> PAGE_SHIFT;
2522         gen8_pte_t scratch_pte, __iomem *gtt_base =
2523                 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2524         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2525         int i;
2526         int rpm_atomic_seq;
2527
2528         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2529
2530         if (WARN(num_entries > max_entries,
2531                  "First entry = %d; Num entries = %d (max=%d)\n",
2532                  first_entry, num_entries, max_entries))
2533                 num_entries = max_entries;
2534
2535         scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2536                                       I915_CACHE_LLC,
2537                                       use_scratch);
2538         for (i = 0; i < num_entries; i++)
2539                 gen8_set_pte(&gtt_base[i], scratch_pte);
2540         readl(gtt_base);
2541
2542         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2543 }
2544
2545 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2546                                   uint64_t start,
2547                                   uint64_t length,
2548                                   bool use_scratch)
2549 {
2550         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2551         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2552         unsigned first_entry = start >> PAGE_SHIFT;
2553         unsigned num_entries = length >> PAGE_SHIFT;
2554         gen6_pte_t scratch_pte, __iomem *gtt_base =
2555                 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2556         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2557         int i;
2558         int rpm_atomic_seq;
2559
2560         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2561
2562         if (WARN(num_entries > max_entries,
2563                  "First entry = %d; Num entries = %d (max=%d)\n",
2564                  first_entry, num_entries, max_entries))
2565                 num_entries = max_entries;
2566
2567         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2568                                      I915_CACHE_LLC, use_scratch, 0);
2569
2570         for (i = 0; i < num_entries; i++)
2571                 iowrite32(scratch_pte, &gtt_base[i]);
2572         readl(gtt_base);
2573
2574         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2575 }
2576
2577 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2578                                   dma_addr_t addr,
2579                                   uint64_t offset,
2580                                   enum i915_cache_level cache_level,
2581                                   u32 unused)
2582 {
2583         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2584         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2585                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2586         int rpm_atomic_seq;
2587
2588         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2589
2590         intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2591
2592         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2593 }
2594
2595 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2596                                      struct sg_table *pages,
2597                                      uint64_t start,
2598                                      enum i915_cache_level cache_level, u32 unused)
2599 {
2600         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2601         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2602                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2603         int rpm_atomic_seq;
2604
2605         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2606
2607         intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2608
2609         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2610
2611 }
2612
2613 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2614                                   uint64_t start,
2615                                   uint64_t length,
2616                                   bool unused)
2617 {
2618         struct drm_i915_private *dev_priv = to_i915(vm->dev);
2619         unsigned first_entry = start >> PAGE_SHIFT;
2620         unsigned num_entries = length >> PAGE_SHIFT;
2621         int rpm_atomic_seq;
2622
2623         rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2624
2625         intel_gtt_clear_range(first_entry, num_entries);
2626
2627         assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2628 }
2629
2630 static int ggtt_bind_vma(struct i915_vma *vma,
2631                          enum i915_cache_level cache_level,
2632                          u32 flags)
2633 {
2634         struct drm_i915_gem_object *obj = vma->obj;
2635         u32 pte_flags = 0;
2636         int ret;
2637
2638         ret = i915_get_ggtt_vma_pages(vma);
2639         if (ret)
2640                 return ret;
2641
2642         /* Currently applicable only to VLV */
2643         if (obj->gt_ro)
2644                 pte_flags |= PTE_READ_ONLY;
2645
2646         vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2647                                 vma->node.start,
2648                                 cache_level, pte_flags);
2649
2650         /*
2651          * Without aliasing PPGTT there's no difference between
2652          * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2653          * upgrade to both bound if we bind either to avoid double-binding.
2654          */
2655         vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2656
2657         return 0;
2658 }
2659
2660 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2661                                  enum i915_cache_level cache_level,
2662                                  u32 flags)
2663 {
2664         u32 pte_flags;
2665         int ret;
2666
2667         ret = i915_get_ggtt_vma_pages(vma);
2668         if (ret)
2669                 return ret;
2670
2671         /* Currently applicable only to VLV */
2672         pte_flags = 0;
2673         if (vma->obj->gt_ro)
2674                 pte_flags |= PTE_READ_ONLY;
2675
2676
2677         if (flags & GLOBAL_BIND) {
2678                 vma->vm->insert_entries(vma->vm,
2679                                         vma->ggtt_view.pages,
2680                                         vma->node.start,
2681                                         cache_level, pte_flags);
2682         }
2683
2684         if (flags & LOCAL_BIND) {
2685                 struct i915_hw_ppgtt *appgtt =
2686                         to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2687                 appgtt->base.insert_entries(&appgtt->base,
2688                                             vma->ggtt_view.pages,
2689                                             vma->node.start,
2690                                             cache_level, pte_flags);
2691         }
2692
2693         return 0;
2694 }
2695
2696 static void ggtt_unbind_vma(struct i915_vma *vma)
2697 {
2698         struct i915_hw_ppgtt *appgtt = to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2699         const u64 size = min(vma->size, vma->node.size);
2700
2701         if (vma->bound & GLOBAL_BIND)
2702                 vma->vm->clear_range(vma->vm,
2703                                      vma->node.start, size,
2704                                      true);
2705
2706         if (vma->bound & LOCAL_BIND && appgtt)
2707                 appgtt->base.clear_range(&appgtt->base,
2708                                          vma->node.start, size,
2709                                          true);
2710 }
2711
2712 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2713 {
2714         struct drm_device *dev = obj->base.dev;
2715         struct drm_i915_private *dev_priv = to_i915(dev);
2716         bool interruptible;
2717
2718         interruptible = do_idling(dev_priv);
2719
2720         dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2721                      PCI_DMA_BIDIRECTIONAL);
2722
2723         undo_idling(dev_priv, interruptible);
2724 }
2725
2726 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2727                                   unsigned long color,
2728                                   u64 *start,
2729                                   u64 *end)
2730 {
2731         if (node->color != color)
2732                 *start += 4096;
2733
2734         node = list_first_entry_or_null(&node->node_list,
2735                                         struct drm_mm_node,
2736                                         node_list);
2737         if (node && node->allocated && node->color != color)
2738                 *end -= 4096;
2739 }
2740
2741 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2742 {
2743         /* Let GEM Manage all of the aperture.
2744          *
2745          * However, leave one page at the end still bound to the scratch page.
2746          * There are a number of places where the hardware apparently prefetches
2747          * past the end of the object, and we've seen multiple hangs with the
2748          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2749          * aperture.  One page should be enough to keep any prefetching inside
2750          * of the aperture.
2751          */
2752         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2753         unsigned long hole_start, hole_end;
2754         struct drm_mm_node *entry;
2755         int ret;
2756
2757         ret = intel_vgt_balloon(dev_priv);
2758         if (ret)
2759                 return ret;
2760
2761         /* Clear any non-preallocated blocks */
2762         drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2763                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2764                               hole_start, hole_end);
2765                 ggtt->base.clear_range(&ggtt->base, hole_start,
2766                                      hole_end - hole_start, true);
2767         }
2768
2769         /* And finally clear the reserved guard page */
2770         ggtt->base.clear_range(&ggtt->base,
2771                                ggtt->base.total - PAGE_SIZE, PAGE_SIZE,
2772                                true);
2773
2774         if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2775                 struct i915_hw_ppgtt *ppgtt;
2776
2777                 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2778                 if (!ppgtt)
2779                         return -ENOMEM;
2780
2781                 ret = __hw_ppgtt_init(ppgtt, dev_priv);
2782                 if (ret) {
2783                         kfree(ppgtt);
2784                         return ret;
2785                 }
2786
2787                 if (ppgtt->base.allocate_va_range)
2788                         ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2789                                                             ppgtt->base.total);
2790                 if (ret) {
2791                         ppgtt->base.cleanup(&ppgtt->base);
2792                         kfree(ppgtt);
2793                         return ret;
2794                 }
2795
2796                 ppgtt->base.clear_range(&ppgtt->base,
2797                                         ppgtt->base.start,
2798                                         ppgtt->base.total,
2799                                         true);
2800
2801                 dev_priv->mm.aliasing_ppgtt = ppgtt;
2802                 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2803                 ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2804         }
2805
2806         return 0;
2807 }
2808
2809 /**
2810  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2811  * @dev_priv: i915 device
2812  */
2813 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2814 {
2815         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2816
2817         if (dev_priv->mm.aliasing_ppgtt) {
2818                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2819
2820                 ppgtt->base.cleanup(&ppgtt->base);
2821         }
2822
2823         i915_gem_cleanup_stolen(&dev_priv->drm);
2824
2825         if (drm_mm_initialized(&ggtt->base.mm)) {
2826                 intel_vgt_deballoon(dev_priv);
2827
2828                 drm_mm_takedown(&ggtt->base.mm);
2829                 list_del(&ggtt->base.global_link);
2830         }
2831
2832         ggtt->base.cleanup(&ggtt->base);
2833
2834         arch_phys_wc_del(ggtt->mtrr);
2835         io_mapping_free(ggtt->mappable);
2836 }
2837
2838 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2839 {
2840         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2841         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2842         return snb_gmch_ctl << 20;
2843 }
2844
2845 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2846 {
2847         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2848         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2849         if (bdw_gmch_ctl)
2850                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2851
2852 #ifdef CONFIG_X86_32
2853         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2854         if (bdw_gmch_ctl > 4)
2855                 bdw_gmch_ctl = 4;
2856 #endif
2857
2858         return bdw_gmch_ctl << 20;
2859 }
2860
2861 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2862 {
2863         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2864         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2865
2866         if (gmch_ctrl)
2867                 return 1 << (20 + gmch_ctrl);
2868
2869         return 0;
2870 }
2871
2872 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2873 {
2874         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2875         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2876         return snb_gmch_ctl << 25; /* 32 MB units */
2877 }
2878
2879 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2880 {
2881         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2882         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2883         return bdw_gmch_ctl << 25; /* 32 MB units */
2884 }
2885
2886 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2887 {
2888         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2889         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2890
2891         /*
2892          * 0x0  to 0x10: 32MB increments starting at 0MB
2893          * 0x11 to 0x16: 4MB increments starting at 8MB
2894          * 0x17 to 0x1d: 4MB increments start at 36MB
2895          */
2896         if (gmch_ctrl < 0x11)
2897                 return gmch_ctrl << 25;
2898         else if (gmch_ctrl < 0x17)
2899                 return (gmch_ctrl - 0x11 + 2) << 22;
2900         else
2901                 return (gmch_ctrl - 0x17 + 9) << 22;
2902 }
2903
2904 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2905 {
2906         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2907         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2908
2909         if (gen9_gmch_ctl < 0xf0)
2910                 return gen9_gmch_ctl << 25; /* 32 MB units */
2911         else
2912                 /* 4MB increments starting at 0xf0 for 4MB */
2913                 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2914 }
2915
2916 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2917 {
2918         struct pci_dev *pdev = ggtt->base.dev->pdev;
2919         struct i915_page_scratch *scratch_page;
2920         phys_addr_t phys_addr;
2921
2922         /* For Modern GENs the PTEs and register space are split in the BAR */
2923         phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2924
2925         /*
2926          * On BXT writes larger than 64 bit to the GTT pagetable range will be
2927          * dropped. For WC mappings in general we have 64 byte burst writes
2928          * when the WC buffer is flushed, so we can't use it, but have to
2929          * resort to an uncached mapping. The WC issue is easily caught by the
2930          * readback check when writing GTT PTE entries.
2931          */
2932         if (IS_BROXTON(ggtt->base.dev))
2933                 ggtt->gsm = ioremap_nocache(phys_addr, size);
2934         else
2935                 ggtt->gsm = ioremap_wc(phys_addr, size);
2936         if (!ggtt->gsm) {
2937                 DRM_ERROR("Failed to map the ggtt page table\n");
2938                 return -ENOMEM;
2939         }
2940
2941         scratch_page = alloc_scratch_page(ggtt->base.dev);
2942         if (IS_ERR(scratch_page)) {
2943                 DRM_ERROR("Scratch setup failed\n");
2944                 /* iounmap will also get called at remove, but meh */
2945                 iounmap(ggtt->gsm);
2946                 return PTR_ERR(scratch_page);
2947         }
2948
2949         ggtt->base.scratch_page = scratch_page;
2950
2951         return 0;
2952 }
2953
2954 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2955  * bits. When using advanced contexts each context stores its own PAT, but
2956  * writing this data shouldn't be harmful even in those cases. */
2957 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2958 {
2959         uint64_t pat;
2960
2961         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2962               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2963               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2964               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2965               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2966               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2967               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2968               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2969
2970         if (!USES_PPGTT(dev_priv))
2971                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2972                  * so RTL will always use the value corresponding to
2973                  * pat_sel = 000".
2974                  * So let's disable cache for GGTT to avoid screen corruptions.
2975                  * MOCS still can be used though.
2976                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2977                  * before this patch, i.e. the same uncached + snooping access
2978                  * like on gen6/7 seems to be in effect.
2979                  * - So this just fixes blitter/render access. Again it looks
2980                  * like it's not just uncached access, but uncached + snooping.
2981                  * So we can still hold onto all our assumptions wrt cpu
2982                  * clflushing on LLC machines.
2983                  */
2984                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2985
2986         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2987          * write would work. */
2988         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2989         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2990 }
2991
2992 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2993 {
2994         uint64_t pat;
2995
2996         /*
2997          * Map WB on BDW to snooped on CHV.
2998          *
2999          * Only the snoop bit has meaning for CHV, the rest is
3000          * ignored.
3001          *
3002          * The hardware will never snoop for certain types of accesses:
3003          * - CPU GTT (GMADR->GGTT->no snoop->memory)
3004          * - PPGTT page tables
3005          * - some other special cycles
3006          *
3007          * As with BDW, we also need to consider the following for GT accesses:
3008          * "For GGTT, there is NO pat_sel[2:0] from the entry,
3009          * so RTL will always use the value corresponding to
3010          * pat_sel = 000".
3011          * Which means we must set the snoop bit in PAT entry 0
3012          * in order to keep the global status page working.
3013          */
3014         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3015               GEN8_PPAT(1, 0) |
3016               GEN8_PPAT(2, 0) |
3017               GEN8_PPAT(3, 0) |
3018               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3019               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3020               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3021               GEN8_PPAT(7, CHV_PPAT_SNOOP);
3022
3023         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3024         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3025 }
3026
3027 static void gen6_gmch_remove(struct i915_address_space *vm)
3028 {
3029         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3030
3031         iounmap(ggtt->gsm);
3032         free_scratch_page(vm->dev, vm->scratch_page);
3033 }
3034
3035 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3036 {
3037         struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3038         struct pci_dev *pdev = dev_priv->drm.pdev;
3039         unsigned int size;
3040         u16 snb_gmch_ctl;
3041
3042         /* TODO: We're not aware of mappable constraints on gen8 yet */
3043         ggtt->mappable_base = pci_resource_start(pdev, 2);
3044         ggtt->mappable_end = pci_resource_len(pdev, 2);
3045
3046         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39)))
3047                 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3048
3049         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3050
3051         if (INTEL_GEN(dev_priv) >= 9) {
3052                 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3053                 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3054         } else if (IS_CHERRYVIEW(dev_priv)) {
3055                 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3056                 size = chv_get_total_gtt_size(snb_gmch_ctl);
3057         } else {
3058                 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3059                 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3060         }
3061
3062         ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3063
3064         if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
3065                 chv_setup_private_ppat(dev_priv);
3066         else
3067                 bdw_setup_private_ppat(dev_priv);
3068
3069         ggtt->base.cleanup = gen6_gmch_remove;
3070         ggtt->base.bind_vma = ggtt_bind_vma;
3071         ggtt->base.unbind_vma = ggtt_unbind_vma;
3072         ggtt->base.insert_page = gen8_ggtt_insert_page;
3073         ggtt->base.clear_range = nop_clear_range;
3074         if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3075                 ggtt->base.clear_range = gen8_ggtt_clear_range;
3076
3077         ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3078         if (IS_CHERRYVIEW(dev_priv))
3079                 ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3080
3081         return ggtt_probe_common(ggtt, size);
3082 }
3083
3084 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3085 {
3086         struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3087         struct pci_dev *pdev = dev_priv->drm.pdev;
3088         unsigned int size;
3089         u16 snb_gmch_ctl;
3090
3091         ggtt->mappable_base = pci_resource_start(pdev, 2);
3092         ggtt->mappable_end = pci_resource_len(pdev, 2);
3093
3094         /* 64/512MB is the current min/max we actually know of, but this is just
3095          * a coarse sanity check.
3096          */
3097         if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3098                 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3099                 return -ENXIO;
3100         }
3101
3102         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
3103                 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3104         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3105
3106         ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3107
3108         size = gen6_get_total_gtt_size(snb_gmch_ctl);
3109         ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3110
3111         ggtt->base.clear_range = gen6_ggtt_clear_range;
3112         ggtt->base.insert_page = gen6_ggtt_insert_page;
3113         ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3114         ggtt->base.bind_vma = ggtt_bind_vma;
3115         ggtt->base.unbind_vma = ggtt_unbind_vma;
3116         ggtt->base.cleanup = gen6_gmch_remove;
3117
3118         if (HAS_EDRAM(dev_priv))
3119                 ggtt->base.pte_encode = iris_pte_encode;
3120         else if (IS_HASWELL(dev_priv))
3121                 ggtt->base.pte_encode = hsw_pte_encode;
3122         else if (IS_VALLEYVIEW(dev_priv))
3123                 ggtt->base.pte_encode = byt_pte_encode;
3124         else if (INTEL_GEN(dev_priv) >= 7)
3125                 ggtt->base.pte_encode = ivb_pte_encode;
3126         else
3127                 ggtt->base.pte_encode = snb_pte_encode;
3128
3129         return ggtt_probe_common(ggtt, size);
3130 }
3131
3132 static void i915_gmch_remove(struct i915_address_space *vm)
3133 {
3134         intel_gmch_remove();
3135 }
3136
3137 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3138 {
3139         struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3140         int ret;
3141
3142         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3143         if (!ret) {
3144                 DRM_ERROR("failed to set up gmch\n");
3145                 return -EIO;
3146         }
3147
3148         intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3149                       &ggtt->mappable_base, &ggtt->mappable_end);
3150
3151         ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3152         ggtt->base.insert_page = i915_ggtt_insert_page;
3153         ggtt->base.insert_entries = i915_ggtt_insert_entries;
3154         ggtt->base.clear_range = i915_ggtt_clear_range;
3155         ggtt->base.bind_vma = ggtt_bind_vma;
3156         ggtt->base.unbind_vma = ggtt_unbind_vma;
3157         ggtt->base.cleanup = i915_gmch_remove;
3158
3159         if (unlikely(ggtt->do_idle_maps))
3160                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3161
3162         return 0;
3163 }
3164
3165 /**
3166  * i915_ggtt_probe_hw - Probe GGTT hardware location
3167  * @dev_priv: i915 device
3168  */
3169 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3170 {
3171         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3172         int ret;
3173
3174         ggtt->base.dev = &dev_priv->drm;
3175
3176         if (INTEL_GEN(dev_priv) <= 5)
3177                 ret = i915_gmch_probe(ggtt);
3178         else if (INTEL_GEN(dev_priv) < 8)
3179                 ret = gen6_gmch_probe(ggtt);
3180         else
3181                 ret = gen8_gmch_probe(ggtt);
3182         if (ret)
3183                 return ret;
3184
3185         if ((ggtt->base.total - 1) >> 32) {
3186                 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3187                           " of address space! Found %lldM!\n",
3188                           ggtt->base.total >> 20);
3189                 ggtt->base.total = 1ULL << 32;
3190                 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3191         }
3192
3193         if (ggtt->mappable_end > ggtt->base.total) {
3194                 DRM_ERROR("mappable aperture extends past end of GGTT,"
3195                           " aperture=%llx, total=%llx\n",
3196                           ggtt->mappable_end, ggtt->base.total);
3197                 ggtt->mappable_end = ggtt->base.total;
3198         }
3199
3200         /* GMADR is the PCI mmio aperture into the global GTT. */
3201         DRM_INFO("Memory usable by graphics device = %lluM\n",
3202                  ggtt->base.total >> 20);
3203         DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3204         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3205 #ifdef CONFIG_INTEL_IOMMU
3206         if (intel_iommu_gfx_mapped)
3207                 DRM_INFO("VT-d active for gfx access\n");
3208 #endif
3209
3210         return 0;
3211 }
3212
3213 /**
3214  * i915_ggtt_init_hw - Initialize GGTT hardware
3215  * @dev_priv: i915 device
3216  */
3217 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3218 {
3219         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3220         int ret;
3221
3222         INIT_LIST_HEAD(&dev_priv->vm_list);
3223
3224         /* Subtract the guard page before address space initialization to
3225          * shrink the range used by drm_mm.
3226          */
3227         ggtt->base.total -= PAGE_SIZE;
3228         i915_address_space_init(&ggtt->base, dev_priv);
3229         ggtt->base.total += PAGE_SIZE;
3230         if (!HAS_LLC(dev_priv))
3231                 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3232
3233         ggtt->mappable =
3234                 io_mapping_create_wc(ggtt->mappable_base, ggtt->mappable_end);
3235         if (!ggtt->mappable) {
3236                 ret = -EIO;
3237                 goto out_gtt_cleanup;
3238         }
3239
3240         ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3241
3242         /*
3243          * Initialise stolen early so that we may reserve preallocated
3244          * objects for the BIOS to KMS transition.
3245          */
3246         ret = i915_gem_init_stolen(&dev_priv->drm);
3247         if (ret)
3248                 goto out_gtt_cleanup;
3249
3250         return 0;
3251
3252 out_gtt_cleanup:
3253         ggtt->base.cleanup(&ggtt->base);
3254         return ret;
3255 }
3256
3257 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3258 {
3259         if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3260                 return -EIO;
3261
3262         return 0;
3263 }
3264
3265 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3266 {
3267         struct drm_i915_private *dev_priv = to_i915(dev);
3268         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3269         struct drm_i915_gem_object *obj;
3270         struct i915_vma *vma;
3271
3272         i915_check_and_clear_faults(dev_priv);
3273
3274         /* First fill our portion of the GTT with scratch pages */
3275         ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
3276                                true);
3277
3278         /* Cache flush objects bound into GGTT and rebind them. */
3279         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3280                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3281                         if (vma->vm != &ggtt->base)
3282                                 continue;
3283
3284                         WARN_ON(i915_vma_bind(vma, obj->cache_level,
3285                                               PIN_UPDATE));
3286                 }
3287
3288                 if (obj->pin_display)
3289                         WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3290         }
3291
3292         if (INTEL_INFO(dev)->gen >= 8) {
3293                 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3294                         chv_setup_private_ppat(dev_priv);
3295                 else
3296                         bdw_setup_private_ppat(dev_priv);
3297
3298                 return;
3299         }
3300
3301         if (USES_PPGTT(dev)) {
3302                 struct i915_address_space *vm;
3303
3304                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3305                         /* TODO: Perhaps it shouldn't be gen6 specific */
3306
3307                         struct i915_hw_ppgtt *ppgtt;
3308
3309                         if (i915_is_ggtt(vm))
3310                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
3311                         else
3312                                 ppgtt = i915_vm_to_ppgtt(vm);
3313
3314                         gen6_write_page_range(dev_priv, &ppgtt->pd,
3315                                               0, ppgtt->base.total);
3316                 }
3317         }
3318
3319         i915_ggtt_flush(dev_priv);
3320 }
3321
3322 static void
3323 i915_vma_retire(struct i915_gem_active *active,
3324                 struct drm_i915_gem_request *rq)
3325 {
3326         const unsigned int idx = rq->engine->id;
3327         struct i915_vma *vma =
3328                 container_of(active, struct i915_vma, last_read[idx]);
3329
3330         GEM_BUG_ON(!i915_vma_has_active_engine(vma, idx));
3331
3332         i915_vma_clear_active(vma, idx);
3333         if (i915_vma_is_active(vma))
3334                 return;
3335
3336         list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3337         if (unlikely(vma->closed && !i915_vma_is_pinned(vma)))
3338                 WARN_ON(i915_vma_unbind(vma));
3339 }
3340
3341 void i915_vma_destroy(struct i915_vma *vma)
3342 {
3343         GEM_BUG_ON(vma->node.allocated);
3344         GEM_BUG_ON(i915_vma_is_active(vma));
3345         GEM_BUG_ON(!vma->closed);
3346
3347         list_del(&vma->vm_link);
3348         if (!vma->is_ggtt)
3349                 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
3350
3351         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
3352 }
3353
3354 void i915_vma_close(struct i915_vma *vma)
3355 {
3356         GEM_BUG_ON(vma->closed);
3357         vma->closed = true;
3358
3359         list_del_init(&vma->obj_link);
3360         if (!i915_vma_is_active(vma) && !i915_vma_is_pinned(vma))
3361                 WARN_ON(i915_vma_unbind(vma));
3362 }
3363
3364 static struct i915_vma *
3365 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
3366                       struct i915_address_space *vm,
3367                       const struct i915_ggtt_view *view)
3368 {
3369         struct i915_vma *vma;
3370         int i;
3371
3372         GEM_BUG_ON(vm->closed);
3373
3374         if (WARN_ON(i915_is_ggtt(vm) != !!view))
3375                 return ERR_PTR(-EINVAL);
3376
3377         vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3378         if (vma == NULL)
3379                 return ERR_PTR(-ENOMEM);
3380
3381         INIT_LIST_HEAD(&vma->obj_link);
3382         INIT_LIST_HEAD(&vma->exec_list);
3383         for (i = 0; i < ARRAY_SIZE(vma->last_read); i++)
3384                 init_request_active(&vma->last_read[i], i915_vma_retire);
3385         list_add(&vma->vm_link, &vm->unbound_list);
3386         vma->vm = vm;
3387         vma->obj = obj;
3388         vma->size = obj->base.size;
3389         vma->is_ggtt = i915_is_ggtt(vm);
3390
3391         if (i915_is_ggtt(vm)) {
3392                 vma->ggtt_view = *view;
3393                 if (view->type == I915_GGTT_VIEW_PARTIAL) {
3394                         vma->size = view->params.partial.size;
3395                         vma->size <<= PAGE_SHIFT;
3396                 } else if (view->type == I915_GGTT_VIEW_ROTATED) {
3397                         vma->size =
3398                                 intel_rotation_info_size(&view->params.rotated);
3399                         vma->size <<= PAGE_SHIFT;
3400                 }
3401         } else {
3402                 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3403         }
3404
3405         list_add_tail(&vma->obj_link, &obj->vma_list);
3406
3407         return vma;
3408 }
3409
3410 struct i915_vma *
3411 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3412                                   struct i915_address_space *vm)
3413 {
3414         struct i915_vma *vma;
3415
3416         vma = i915_gem_obj_to_vma(obj, vm);
3417         if (!vma)
3418                 vma = __i915_gem_vma_create(obj, vm,
3419                                             i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3420
3421         return vma;
3422 }
3423
3424 struct i915_vma *
3425 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3426                                        const struct i915_ggtt_view *view)
3427 {
3428         struct drm_device *dev = obj->base.dev;
3429         struct drm_i915_private *dev_priv = to_i915(dev);
3430         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3431         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
3432
3433         if (!vma)
3434                 vma = __i915_gem_vma_create(obj, &ggtt->base, view);
3435
3436         GEM_BUG_ON(vma->closed);
3437         return vma;
3438
3439 }
3440
3441 static struct scatterlist *
3442 rotate_pages(const dma_addr_t *in, unsigned int offset,
3443              unsigned int width, unsigned int height,
3444              unsigned int stride,
3445              struct sg_table *st, struct scatterlist *sg)
3446 {
3447         unsigned int column, row;
3448         unsigned int src_idx;
3449
3450         for (column = 0; column < width; column++) {
3451                 src_idx = stride * (height - 1) + column;
3452                 for (row = 0; row < height; row++) {
3453                         st->nents++;
3454                         /* We don't need the pages, but need to initialize
3455                          * the entries so the sg list can be happily traversed.
3456                          * The only thing we need are DMA addresses.
3457                          */
3458                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
3459                         sg_dma_address(sg) = in[offset + src_idx];
3460                         sg_dma_len(sg) = PAGE_SIZE;
3461                         sg = sg_next(sg);
3462                         src_idx -= stride;
3463                 }
3464         }
3465
3466         return sg;
3467 }
3468
3469 static struct sg_table *
3470 intel_rotate_fb_obj_pages(struct intel_rotation_info *rot_info,
3471                           struct drm_i915_gem_object *obj)
3472 {
3473         const size_t n_pages = obj->base.size / PAGE_SIZE;
3474         unsigned int size_pages = rot_info->plane[0].width * rot_info->plane[0].height;
3475         unsigned int size_pages_uv;
3476         struct sgt_iter sgt_iter;
3477         dma_addr_t dma_addr;
3478         unsigned long i;
3479         dma_addr_t *page_addr_list;
3480         struct sg_table *st;
3481         unsigned int uv_start_page;
3482         struct scatterlist *sg;
3483         int ret = -ENOMEM;
3484
3485         /* Allocate a temporary list of source pages for random access. */
3486         page_addr_list = drm_malloc_gfp(n_pages,
3487                                         sizeof(dma_addr_t),
3488                                         GFP_TEMPORARY);
3489         if (!page_addr_list)
3490                 return ERR_PTR(ret);
3491
3492         /* Account for UV plane with NV12. */
3493         if (rot_info->pixel_format == DRM_FORMAT_NV12)
3494                 size_pages_uv = rot_info->plane[1].width * rot_info->plane[1].height;
3495         else
3496                 size_pages_uv = 0;
3497
3498         /* Allocate target SG list. */
3499         st = kmalloc(sizeof(*st), GFP_KERNEL);
3500         if (!st)
3501                 goto err_st_alloc;
3502
3503         ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3504         if (ret)
3505                 goto err_sg_alloc;
3506
3507         /* Populate source page list from the object. */
3508         i = 0;
3509         for_each_sgt_dma(dma_addr, sgt_iter, obj->pages)
3510                 page_addr_list[i++] = dma_addr;
3511
3512         GEM_BUG_ON(i != n_pages);
3513         st->nents = 0;
3514         sg = st->sgl;
3515
3516         /* Rotate the pages. */
3517         sg = rotate_pages(page_addr_list, 0,
3518                           rot_info->plane[0].width, rot_info->plane[0].height,
3519                           rot_info->plane[0].width,
3520                           st, sg);
3521
3522         /* Append the UV plane if NV12. */
3523         if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3524                 uv_start_page = size_pages;
3525
3526                 /* Check for tile-row un-alignment. */
3527                 if (offset_in_page(rot_info->uv_offset))
3528                         uv_start_page--;
3529
3530                 rot_info->uv_start_page = uv_start_page;
3531
3532                 sg = rotate_pages(page_addr_list, rot_info->uv_start_page,
3533                                   rot_info->plane[1].width, rot_info->plane[1].height,
3534                                   rot_info->plane[1].width,
3535                                   st, sg);
3536         }
3537
3538         DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages (%u plane 0)).\n",
3539                       obj->base.size, rot_info->plane[0].width,
3540                       rot_info->plane[0].height, size_pages + size_pages_uv,
3541                       size_pages);
3542
3543         drm_free_large(page_addr_list);
3544
3545         return st;
3546
3547 err_sg_alloc:
3548         kfree(st);
3549 err_st_alloc:
3550         drm_free_large(page_addr_list);
3551
3552         DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%d) (%ux%u tiles, %u pages (%u plane 0))\n",
3553                       obj->base.size, ret, rot_info->plane[0].width,
3554                       rot_info->plane[0].height, size_pages + size_pages_uv,
3555                       size_pages);
3556         return ERR_PTR(ret);
3557 }
3558
3559 static struct sg_table *
3560 intel_partial_pages(const struct i915_ggtt_view *view,
3561                     struct drm_i915_gem_object *obj)
3562 {
3563         struct sg_table *st;
3564         struct scatterlist *sg;
3565         struct sg_page_iter obj_sg_iter;
3566         int ret = -ENOMEM;
3567
3568         st = kmalloc(sizeof(*st), GFP_KERNEL);
3569         if (!st)
3570                 goto err_st_alloc;
3571
3572         ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3573         if (ret)
3574                 goto err_sg_alloc;
3575
3576         sg = st->sgl;
3577         st->nents = 0;
3578         for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3579                 view->params.partial.offset)
3580         {
3581                 if (st->nents >= view->params.partial.size)
3582                         break;
3583
3584                 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3585                 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3586                 sg_dma_len(sg) = PAGE_SIZE;
3587
3588                 sg = sg_next(sg);
3589                 st->nents++;
3590         }
3591
3592         return st;
3593
3594 err_sg_alloc:
3595         kfree(st);
3596 err_st_alloc:
3597         return ERR_PTR(ret);
3598 }
3599
3600 static int
3601 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3602 {
3603         int ret = 0;
3604
3605         if (vma->ggtt_view.pages)
3606                 return 0;
3607
3608         if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3609                 vma->ggtt_view.pages = vma->obj->pages;
3610         else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3611                 vma->ggtt_view.pages =
3612                         intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3613         else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3614                 vma->ggtt_view.pages =
3615                         intel_partial_pages(&vma->ggtt_view, vma->obj);
3616         else
3617                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3618                           vma->ggtt_view.type);
3619
3620         if (!vma->ggtt_view.pages) {
3621                 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3622                           vma->ggtt_view.type);
3623                 ret = -EINVAL;
3624         } else if (IS_ERR(vma->ggtt_view.pages)) {
3625                 ret = PTR_ERR(vma->ggtt_view.pages);
3626                 vma->ggtt_view.pages = NULL;
3627                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3628                           vma->ggtt_view.type, ret);
3629         }
3630
3631         return ret;
3632 }
3633
3634 /**
3635  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3636  * @vma: VMA to map
3637  * @cache_level: mapping cache level
3638  * @flags: flags like global or local mapping
3639  *
3640  * DMA addresses are taken from the scatter-gather table of this object (or of
3641  * this VMA in case of non-default GGTT views) and PTE entries set up.
3642  * Note that DMA addresses are also the only part of the SG table we care about.
3643  */
3644 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3645                   u32 flags)
3646 {
3647         int ret;
3648         u32 bind_flags;
3649
3650         if (WARN_ON(flags == 0))
3651                 return -EINVAL;
3652
3653         bind_flags = 0;
3654         if (flags & PIN_GLOBAL)
3655                 bind_flags |= GLOBAL_BIND;
3656         if (flags & PIN_USER)
3657                 bind_flags |= LOCAL_BIND;
3658
3659         if (flags & PIN_UPDATE)
3660                 bind_flags |= vma->bound;
3661         else
3662                 bind_flags &= ~vma->bound;
3663
3664         if (bind_flags == 0)
3665                 return 0;
3666
3667         if (vma->bound == 0 && vma->vm->allocate_va_range) {
3668                 trace_i915_va_alloc(vma);
3669                 ret = vma->vm->allocate_va_range(vma->vm,
3670                                                  vma->node.start,
3671                                                  vma->node.size);
3672                 if (ret)
3673                         return ret;
3674         }
3675
3676         ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3677         if (ret)
3678                 return ret;
3679
3680         vma->bound |= bind_flags;
3681
3682         return 0;
3683 }
3684
3685 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
3686 {
3687         void __iomem *ptr;
3688
3689         lockdep_assert_held(&vma->vm->dev->struct_mutex);
3690         if (WARN_ON(!vma->obj->map_and_fenceable))
3691                 return IO_ERR_PTR(-ENODEV);
3692
3693         GEM_BUG_ON(!vma->is_ggtt);
3694         GEM_BUG_ON((vma->bound & GLOBAL_BIND) == 0);
3695
3696         ptr = vma->iomap;
3697         if (ptr == NULL) {
3698                 ptr = io_mapping_map_wc(i915_vm_to_ggtt(vma->vm)->mappable,
3699                                         vma->node.start,
3700                                         vma->node.size);
3701                 if (ptr == NULL)
3702                         return IO_ERR_PTR(-ENOMEM);
3703
3704                 vma->iomap = ptr;
3705         }
3706
3707         __i915_vma_pin(vma);
3708         return ptr;
3709 }