6abcf326b6492f8deed7fadea5639ca632d446b0
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33
34 /**
35  * DOC: Global GTT views
36  *
37  * Background and previous state
38  *
39  * Historically objects could exists (be bound) in global GTT space only as
40  * singular instances with a view representing all of the object's backing pages
41  * in a linear fashion. This view will be called a normal view.
42  *
43  * To support multiple views of the same object, where the number of mapped
44  * pages is not equal to the backing store, or where the layout of the pages
45  * is not linear, concept of a GGTT view was added.
46  *
47  * One example of an alternative view is a stereo display driven by a single
48  * image. In this case we would have a framebuffer looking like this
49  * (2x2 pages):
50  *
51  *    12
52  *    34
53  *
54  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55  * rendering. In contrast, fed to the display engine would be an alternative
56  * view which could look something like this:
57  *
58  *   1212
59  *   3434
60  *
61  * In this example both the size and layout of pages in the alternative view is
62  * different from the normal view.
63  *
64  * Implementation and usage
65  *
66  * GGTT views are implemented using VMAs and are distinguished via enum
67  * i915_ggtt_view_type and struct i915_ggtt_view.
68  *
69  * A new flavour of core GEM functions which work with GGTT bound objects were
70  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71  * renaming  in large amounts of code. They take the struct i915_ggtt_view
72  * parameter encapsulating all metadata required to implement a view.
73  *
74  * As a helper for callers which are only interested in the normal view,
75  * globally const i915_ggtt_view_normal singleton instance exists. All old core
76  * GEM API functions, the ones not taking the view parameter, are operating on,
77  * or with the normal GGTT view.
78  *
79  * Code wanting to add or use a new GGTT view needs to:
80  *
81  * 1. Add a new enum with a suitable name.
82  * 2. Extend the metadata in the i915_ggtt_view structure if required.
83  * 3. Add support to i915_get_vma_pages().
84  *
85  * New views are required to build a scatter-gather table from within the
86  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87  * exists for the lifetime of an VMA.
88  *
89  * Core API is designed to have copy semantics which means that passed in
90  * struct i915_ggtt_view does not need to be persistent (left around after
91  * calling the core API functions).
92  *
93  */
94
95 static int
96 i915_get_ggtt_vma_pages(struct i915_vma *vma);
97
98 const struct i915_ggtt_view i915_ggtt_view_normal;
99 const struct i915_ggtt_view i915_ggtt_view_rotated = {
100         .type = I915_GGTT_VIEW_ROTATED
101 };
102
103 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
104 {
105         bool has_aliasing_ppgtt;
106         bool has_full_ppgtt;
107
108         has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
109         has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
110
111         if (intel_vgpu_active(dev))
112                 has_full_ppgtt = false; /* emulation is too hard */
113
114         /*
115          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116          * execlists, the sole mechanism available to submit work.
117          */
118         if (INTEL_INFO(dev)->gen < 9 &&
119             (enable_ppgtt == 0 || !has_aliasing_ppgtt))
120                 return 0;
121
122         if (enable_ppgtt == 1)
123                 return 1;
124
125         if (enable_ppgtt == 2 && has_full_ppgtt)
126                 return 2;
127
128 #ifdef CONFIG_INTEL_IOMMU
129         /* Disable ppgtt on SNB if VT-d is on. */
130         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
131                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
132                 return 0;
133         }
134 #endif
135
136         /* Early VLV doesn't have this */
137         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
138             dev->pdev->revision < 0xb) {
139                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
140                 return 0;
141         }
142
143         if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
144                 return 2;
145         else
146                 return has_aliasing_ppgtt ? 1 : 0;
147 }
148
149 static int ppgtt_bind_vma(struct i915_vma *vma,
150                           enum i915_cache_level cache_level,
151                           u32 unused)
152 {
153         u32 pte_flags = 0;
154
155         /* Currently applicable only to VLV */
156         if (vma->obj->gt_ro)
157                 pte_flags |= PTE_READ_ONLY;
158
159         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
160                                 cache_level, pte_flags);
161
162         return 0;
163 }
164
165 static void ppgtt_unbind_vma(struct i915_vma *vma)
166 {
167         vma->vm->clear_range(vma->vm,
168                              vma->node.start,
169                              vma->obj->base.size,
170                              true);
171 }
172
173 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
174                                   enum i915_cache_level level,
175                                   bool valid)
176 {
177         gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
178         pte |= addr;
179
180         switch (level) {
181         case I915_CACHE_NONE:
182                 pte |= PPAT_UNCACHED_INDEX;
183                 break;
184         case I915_CACHE_WT:
185                 pte |= PPAT_DISPLAY_ELLC_INDEX;
186                 break;
187         default:
188                 pte |= PPAT_CACHED_INDEX;
189                 break;
190         }
191
192         return pte;
193 }
194
195 static gen8_pde_t gen8_pde_encode(struct drm_device *dev,
196                                   dma_addr_t addr,
197                                   enum i915_cache_level level)
198 {
199         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
200         pde |= addr;
201         if (level != I915_CACHE_NONE)
202                 pde |= PPAT_CACHED_PDE_INDEX;
203         else
204                 pde |= PPAT_UNCACHED_INDEX;
205         return pde;
206 }
207
208 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
209                                  enum i915_cache_level level,
210                                  bool valid, u32 unused)
211 {
212         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
213         pte |= GEN6_PTE_ADDR_ENCODE(addr);
214
215         switch (level) {
216         case I915_CACHE_L3_LLC:
217         case I915_CACHE_LLC:
218                 pte |= GEN6_PTE_CACHE_LLC;
219                 break;
220         case I915_CACHE_NONE:
221                 pte |= GEN6_PTE_UNCACHED;
222                 break;
223         default:
224                 MISSING_CASE(level);
225         }
226
227         return pte;
228 }
229
230 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
231                                  enum i915_cache_level level,
232                                  bool valid, u32 unused)
233 {
234         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
235         pte |= GEN6_PTE_ADDR_ENCODE(addr);
236
237         switch (level) {
238         case I915_CACHE_L3_LLC:
239                 pte |= GEN7_PTE_CACHE_L3_LLC;
240                 break;
241         case I915_CACHE_LLC:
242                 pte |= GEN6_PTE_CACHE_LLC;
243                 break;
244         case I915_CACHE_NONE:
245                 pte |= GEN6_PTE_UNCACHED;
246                 break;
247         default:
248                 MISSING_CASE(level);
249         }
250
251         return pte;
252 }
253
254 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
255                                  enum i915_cache_level level,
256                                  bool valid, u32 flags)
257 {
258         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
259         pte |= GEN6_PTE_ADDR_ENCODE(addr);
260
261         if (!(flags & PTE_READ_ONLY))
262                 pte |= BYT_PTE_WRITEABLE;
263
264         if (level != I915_CACHE_NONE)
265                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
266
267         return pte;
268 }
269
270 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
271                                  enum i915_cache_level level,
272                                  bool valid, u32 unused)
273 {
274         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
275         pte |= HSW_PTE_ADDR_ENCODE(addr);
276
277         if (level != I915_CACHE_NONE)
278                 pte |= HSW_WB_LLC_AGE3;
279
280         return pte;
281 }
282
283 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
284                                   enum i915_cache_level level,
285                                   bool valid, u32 unused)
286 {
287         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
288         pte |= HSW_PTE_ADDR_ENCODE(addr);
289
290         switch (level) {
291         case I915_CACHE_NONE:
292                 break;
293         case I915_CACHE_WT:
294                 pte |= HSW_WT_ELLC_LLC_AGE3;
295                 break;
296         default:
297                 pte |= HSW_WB_ELLC_LLC_AGE3;
298                 break;
299         }
300
301         return pte;
302 }
303
304 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
305 {
306         struct device *device = &dev->pdev->dev;
307
308         p->page = alloc_page(GFP_KERNEL);
309         if (!p->page)
310                 return -ENOMEM;
311
312         p->daddr = dma_map_page(device,
313                                 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
314
315         if (dma_mapping_error(device, p->daddr)) {
316                 __free_page(p->page);
317                 return -EINVAL;
318         }
319
320         return 0;
321 }
322
323 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
324 {
325         if (WARN_ON(!p->page))
326                 return;
327
328         dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
329         __free_page(p->page);
330         memset(p, 0, sizeof(*p));
331 }
332
333 static void *kmap_page_dma(struct i915_page_dma *p)
334 {
335         return kmap_atomic(p->page);
336 }
337
338 /* We use the flushing unmap only with ppgtt structures:
339  * page directories, page tables and scratch pages.
340  */
341 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
342 {
343         /* There are only few exceptions for gen >=6. chv and bxt.
344          * And we are not sure about the latter so play safe for now.
345          */
346         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
347                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
348
349         kunmap_atomic(vaddr);
350 }
351
352 #define kmap_px(px) kmap_page_dma(&(px)->base)
353 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
354
355 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
356                           const uint64_t val)
357 {
358         int i;
359         uint64_t * const vaddr = kmap_page_dma(p);
360
361         for (i = 0; i < 512; i++)
362                 vaddr[i] = val;
363
364         kunmap_page_dma(dev, vaddr);
365 }
366
367 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
368                              const uint32_t val32)
369 {
370         uint64_t v = val32;
371
372         v = v << 32 | val32;
373
374         fill_page_dma(dev, p, v);
375 }
376
377 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
378 {
379         cleanup_page_dma(dev, &pt->base);
380         kfree(pt->used_ptes);
381         kfree(pt);
382 }
383
384 static void gen8_initialize_pt(struct i915_address_space *vm,
385                                struct i915_page_table *pt)
386 {
387         gen8_pte_t scratch_pte;
388
389         scratch_pte = gen8_pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
390
391         fill_page_dma(vm->dev, &pt->base, scratch_pte);
392 }
393
394 static struct i915_page_table *alloc_pt(struct drm_device *dev)
395 {
396         struct i915_page_table *pt;
397         const size_t count = INTEL_INFO(dev)->gen >= 8 ?
398                 GEN8_PTES : GEN6_PTES;
399         int ret = -ENOMEM;
400
401         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
402         if (!pt)
403                 return ERR_PTR(-ENOMEM);
404
405         pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
406                                 GFP_KERNEL);
407
408         if (!pt->used_ptes)
409                 goto fail_bitmap;
410
411         ret = setup_page_dma(dev, &pt->base);
412         if (ret)
413                 goto fail_page_m;
414
415         return pt;
416
417 fail_page_m:
418         kfree(pt->used_ptes);
419 fail_bitmap:
420         kfree(pt);
421
422         return ERR_PTR(ret);
423 }
424
425 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
426 {
427         if (pd->base.page) {
428                 cleanup_page_dma(dev, &pd->base);
429                 kfree(pd->used_pdes);
430                 kfree(pd);
431         }
432 }
433
434 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
435 {
436         struct i915_page_directory *pd;
437         int ret = -ENOMEM;
438
439         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
440         if (!pd)
441                 return ERR_PTR(-ENOMEM);
442
443         pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
444                                 sizeof(*pd->used_pdes), GFP_KERNEL);
445         if (!pd->used_pdes)
446                 goto fail_bitmap;
447
448         ret = setup_page_dma(dev, &pd->base);
449         if (ret)
450                 goto fail_page_m;
451
452         return pd;
453
454 fail_page_m:
455         kfree(pd->used_pdes);
456 fail_bitmap:
457         kfree(pd);
458
459         return ERR_PTR(ret);
460 }
461
462 /* Broadwell Page Directory Pointer Descriptors */
463 static int gen8_write_pdp(struct drm_i915_gem_request *req,
464                           unsigned entry,
465                           dma_addr_t addr)
466 {
467         struct intel_engine_cs *ring = req->ring;
468         int ret;
469
470         BUG_ON(entry >= 4);
471
472         ret = intel_ring_begin(req, 6);
473         if (ret)
474                 return ret;
475
476         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
477         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
478         intel_ring_emit(ring, upper_32_bits(addr));
479         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
480         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
481         intel_ring_emit(ring, lower_32_bits(addr));
482         intel_ring_advance(ring);
483
484         return 0;
485 }
486
487 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
488                           struct drm_i915_gem_request *req)
489 {
490         int i, ret;
491
492         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
493                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
494
495                 ret = gen8_write_pdp(req, i, pd_daddr);
496                 if (ret)
497                         return ret;
498         }
499
500         return 0;
501 }
502
503 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
504                                    uint64_t start,
505                                    uint64_t length,
506                                    bool use_scratch)
507 {
508         struct i915_hw_ppgtt *ppgtt =
509                 container_of(vm, struct i915_hw_ppgtt, base);
510         gen8_pte_t *pt_vaddr, scratch_pte;
511         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
512         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
513         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
514         unsigned num_entries = length >> PAGE_SHIFT;
515         unsigned last_pte, i;
516
517         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
518                                       I915_CACHE_LLC, use_scratch);
519
520         while (num_entries) {
521                 struct i915_page_directory *pd;
522                 struct i915_page_table *pt;
523
524                 if (WARN_ON(!ppgtt->pdp.page_directory[pdpe]))
525                         continue;
526
527                 pd = ppgtt->pdp.page_directory[pdpe];
528
529                 if (WARN_ON(!pd->page_table[pde]))
530                         continue;
531
532                 pt = pd->page_table[pde];
533
534                 if (WARN_ON(!pt->base.page))
535                         continue;
536
537                 last_pte = pte + num_entries;
538                 if (last_pte > GEN8_PTES)
539                         last_pte = GEN8_PTES;
540
541                 pt_vaddr = kmap_px(pt);
542
543                 for (i = pte; i < last_pte; i++) {
544                         pt_vaddr[i] = scratch_pte;
545                         num_entries--;
546                 }
547
548                 kunmap_px(ppgtt, pt);
549
550                 pte = 0;
551                 if (++pde == I915_PDES) {
552                         pdpe++;
553                         pde = 0;
554                 }
555         }
556 }
557
558 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
559                                       struct sg_table *pages,
560                                       uint64_t start,
561                                       enum i915_cache_level cache_level, u32 unused)
562 {
563         struct i915_hw_ppgtt *ppgtt =
564                 container_of(vm, struct i915_hw_ppgtt, base);
565         gen8_pte_t *pt_vaddr;
566         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
567         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
568         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
569         struct sg_page_iter sg_iter;
570
571         pt_vaddr = NULL;
572
573         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
574                 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES))
575                         break;
576
577                 if (pt_vaddr == NULL) {
578                         struct i915_page_directory *pd = ppgtt->pdp.page_directory[pdpe];
579                         struct i915_page_table *pt = pd->page_table[pde];
580                         pt_vaddr = kmap_px(pt);
581                 }
582
583                 pt_vaddr[pte] =
584                         gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
585                                         cache_level, true);
586                 if (++pte == GEN8_PTES) {
587                         kunmap_px(ppgtt, pt_vaddr);
588                         pt_vaddr = NULL;
589                         if (++pde == I915_PDES) {
590                                 pdpe++;
591                                 pde = 0;
592                         }
593                         pte = 0;
594                 }
595         }
596
597         if (pt_vaddr)
598                 kunmap_px(ppgtt, pt_vaddr);
599 }
600
601 static void __gen8_do_map_pt(gen8_pde_t * const pde,
602                              struct i915_page_table *pt,
603                              struct drm_device *dev)
604 {
605         gen8_pde_t entry =
606                 gen8_pde_encode(dev, pt->base.daddr, I915_CACHE_LLC);
607         *pde = entry;
608 }
609
610 static void gen8_initialize_pd(struct i915_address_space *vm,
611                                struct i915_page_directory *pd)
612 {
613         struct i915_hw_ppgtt *ppgtt =
614                 container_of(vm, struct i915_hw_ppgtt, base);
615         gen8_pde_t scratch_pde;
616
617         scratch_pde = gen8_pde_encode(vm->dev, ppgtt->scratch_pt->base.daddr,
618                                       I915_CACHE_LLC);
619
620         fill_page_dma(vm->dev, &pd->base, scratch_pde);
621 }
622
623 static void gen8_free_page_tables(struct i915_page_directory *pd, struct drm_device *dev)
624 {
625         int i;
626
627         if (!pd->base.page)
628                 return;
629
630         for_each_set_bit(i, pd->used_pdes, I915_PDES) {
631                 if (WARN_ON(!pd->page_table[i]))
632                         continue;
633
634                 free_pt(dev, pd->page_table[i]);
635                 pd->page_table[i] = NULL;
636         }
637 }
638
639 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
640 {
641         struct i915_hw_ppgtt *ppgtt =
642                 container_of(vm, struct i915_hw_ppgtt, base);
643         int i;
644
645         for_each_set_bit(i, ppgtt->pdp.used_pdpes, GEN8_LEGACY_PDPES) {
646                 if (WARN_ON(!ppgtt->pdp.page_directory[i]))
647                         continue;
648
649                 gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
650                 free_pd(ppgtt->base.dev, ppgtt->pdp.page_directory[i]);
651         }
652
653         free_pd(ppgtt->base.dev, ppgtt->scratch_pd);
654         free_pt(ppgtt->base.dev, ppgtt->scratch_pt);
655 }
656
657 /**
658  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
659  * @ppgtt:      Master ppgtt structure.
660  * @pd:         Page directory for this address range.
661  * @start:      Starting virtual address to begin allocations.
662  * @length      Size of the allocations.
663  * @new_pts:    Bitmap set by function with new allocations. Likely used by the
664  *              caller to free on error.
665  *
666  * Allocate the required number of page tables. Extremely similar to
667  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
668  * the page directory boundary (instead of the page directory pointer). That
669  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
670  * possible, and likely that the caller will need to use multiple calls of this
671  * function to achieve the appropriate allocation.
672  *
673  * Return: 0 if success; negative error code otherwise.
674  */
675 static int gen8_ppgtt_alloc_pagetabs(struct i915_hw_ppgtt *ppgtt,
676                                      struct i915_page_directory *pd,
677                                      uint64_t start,
678                                      uint64_t length,
679                                      unsigned long *new_pts)
680 {
681         struct drm_device *dev = ppgtt->base.dev;
682         struct i915_page_table *pt;
683         uint64_t temp;
684         uint32_t pde;
685
686         gen8_for_each_pde(pt, pd, start, length, temp, pde) {
687                 /* Don't reallocate page tables */
688                 if (pt) {
689                         /* Scratch is never allocated this way */
690                         WARN_ON(pt == ppgtt->scratch_pt);
691                         continue;
692                 }
693
694                 pt = alloc_pt(dev);
695                 if (IS_ERR(pt))
696                         goto unwind_out;
697
698                 gen8_initialize_pt(&ppgtt->base, pt);
699                 pd->page_table[pde] = pt;
700                 set_bit(pde, new_pts);
701         }
702
703         return 0;
704
705 unwind_out:
706         for_each_set_bit(pde, new_pts, I915_PDES)
707                 free_pt(dev, pd->page_table[pde]);
708
709         return -ENOMEM;
710 }
711
712 /**
713  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
714  * @ppgtt:      Master ppgtt structure.
715  * @pdp:        Page directory pointer for this address range.
716  * @start:      Starting virtual address to begin allocations.
717  * @length      Size of the allocations.
718  * @new_pds     Bitmap set by function with new allocations. Likely used by the
719  *              caller to free on error.
720  *
721  * Allocate the required number of page directories starting at the pde index of
722  * @start, and ending at the pde index @start + @length. This function will skip
723  * over already allocated page directories within the range, and only allocate
724  * new ones, setting the appropriate pointer within the pdp as well as the
725  * correct position in the bitmap @new_pds.
726  *
727  * The function will only allocate the pages within the range for a give page
728  * directory pointer. In other words, if @start + @length straddles a virtually
729  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
730  * required by the caller, This is not currently possible, and the BUG in the
731  * code will prevent it.
732  *
733  * Return: 0 if success; negative error code otherwise.
734  */
735 static int gen8_ppgtt_alloc_page_directories(struct i915_hw_ppgtt *ppgtt,
736                                      struct i915_page_directory_pointer *pdp,
737                                      uint64_t start,
738                                      uint64_t length,
739                                      unsigned long *new_pds)
740 {
741         struct drm_device *dev = ppgtt->base.dev;
742         struct i915_page_directory *pd;
743         uint64_t temp;
744         uint32_t pdpe;
745
746         WARN_ON(!bitmap_empty(new_pds, GEN8_LEGACY_PDPES));
747
748         gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
749                 if (pd)
750                         continue;
751
752                 pd = alloc_pd(dev);
753                 if (IS_ERR(pd))
754                         goto unwind_out;
755
756                 gen8_initialize_pd(&ppgtt->base, pd);
757                 pdp->page_directory[pdpe] = pd;
758                 set_bit(pdpe, new_pds);
759         }
760
761         return 0;
762
763 unwind_out:
764         for_each_set_bit(pdpe, new_pds, GEN8_LEGACY_PDPES)
765                 free_pd(dev, pdp->page_directory[pdpe]);
766
767         return -ENOMEM;
768 }
769
770 static void
771 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long **new_pts)
772 {
773         int i;
774
775         for (i = 0; i < GEN8_LEGACY_PDPES; i++)
776                 kfree(new_pts[i]);
777         kfree(new_pts);
778         kfree(new_pds);
779 }
780
781 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
782  * of these are based on the number of PDPEs in the system.
783  */
784 static
785 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
786                                          unsigned long ***new_pts)
787 {
788         int i;
789         unsigned long *pds;
790         unsigned long **pts;
791
792         pds = kcalloc(BITS_TO_LONGS(GEN8_LEGACY_PDPES), sizeof(unsigned long), GFP_KERNEL);
793         if (!pds)
794                 return -ENOMEM;
795
796         pts = kcalloc(GEN8_LEGACY_PDPES, sizeof(unsigned long *), GFP_KERNEL);
797         if (!pts) {
798                 kfree(pds);
799                 return -ENOMEM;
800         }
801
802         for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
803                 pts[i] = kcalloc(BITS_TO_LONGS(I915_PDES),
804                                  sizeof(unsigned long), GFP_KERNEL);
805                 if (!pts[i])
806                         goto err_out;
807         }
808
809         *new_pds = pds;
810         *new_pts = pts;
811
812         return 0;
813
814 err_out:
815         free_gen8_temp_bitmaps(pds, pts);
816         return -ENOMEM;
817 }
818
819 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
820  * the page table structures, we mark them dirty so that
821  * context switching/execlist queuing code takes extra steps
822  * to ensure that tlbs are flushed.
823  */
824 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
825 {
826         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
827 }
828
829 static int gen8_alloc_va_range(struct i915_address_space *vm,
830                                uint64_t start,
831                                uint64_t length)
832 {
833         struct i915_hw_ppgtt *ppgtt =
834                 container_of(vm, struct i915_hw_ppgtt, base);
835         unsigned long *new_page_dirs, **new_page_tables;
836         struct i915_page_directory *pd;
837         const uint64_t orig_start = start;
838         const uint64_t orig_length = length;
839         uint64_t temp;
840         uint32_t pdpe;
841         int ret;
842
843         /* Wrap is never okay since we can only represent 48b, and we don't
844          * actually use the other side of the canonical address space.
845          */
846         if (WARN_ON(start + length < start))
847                 return -ENODEV;
848
849         if (WARN_ON(start + length > ppgtt->base.total))
850                 return -ENODEV;
851
852         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables);
853         if (ret)
854                 return ret;
855
856         /* Do the allocations first so we can easily bail out */
857         ret = gen8_ppgtt_alloc_page_directories(ppgtt, &ppgtt->pdp, start, length,
858                                         new_page_dirs);
859         if (ret) {
860                 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
861                 return ret;
862         }
863
864         /* For every page directory referenced, allocate page tables */
865         gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
866                 ret = gen8_ppgtt_alloc_pagetabs(ppgtt, pd, start, length,
867                                                 new_page_tables[pdpe]);
868                 if (ret)
869                         goto err_out;
870         }
871
872         start = orig_start;
873         length = orig_length;
874
875         /* Allocations have completed successfully, so set the bitmaps, and do
876          * the mappings. */
877         gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
878                 gen8_pde_t *const page_directory = kmap_px(pd);
879                 struct i915_page_table *pt;
880                 uint64_t pd_len = gen8_clamp_pd(start, length);
881                 uint64_t pd_start = start;
882                 uint32_t pde;
883
884                 /* Every pd should be allocated, we just did that above. */
885                 WARN_ON(!pd);
886
887                 gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
888                         /* Same reasoning as pd */
889                         WARN_ON(!pt);
890                         WARN_ON(!pd_len);
891                         WARN_ON(!gen8_pte_count(pd_start, pd_len));
892
893                         /* Set our used ptes within the page table */
894                         bitmap_set(pt->used_ptes,
895                                    gen8_pte_index(pd_start),
896                                    gen8_pte_count(pd_start, pd_len));
897
898                         /* Our pde is now pointing to the pagetable, pt */
899                         set_bit(pde, pd->used_pdes);
900
901                         /* Map the PDE to the page table */
902                         __gen8_do_map_pt(page_directory + pde, pt, vm->dev);
903
904                         /* NB: We haven't yet mapped ptes to pages. At this
905                          * point we're still relying on insert_entries() */
906                 }
907
908                 kunmap_px(ppgtt, page_directory);
909
910                 set_bit(pdpe, ppgtt->pdp.used_pdpes);
911         }
912
913         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
914         mark_tlbs_dirty(ppgtt);
915         return 0;
916
917 err_out:
918         while (pdpe--) {
919                 for_each_set_bit(temp, new_page_tables[pdpe], I915_PDES)
920                         free_pt(vm->dev, ppgtt->pdp.page_directory[pdpe]->page_table[temp]);
921         }
922
923         for_each_set_bit(pdpe, new_page_dirs, GEN8_LEGACY_PDPES)
924                 free_pd(vm->dev, ppgtt->pdp.page_directory[pdpe]);
925
926         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
927         mark_tlbs_dirty(ppgtt);
928         return ret;
929 }
930
931 /*
932  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
933  * with a net effect resembling a 2-level page table in normal x86 terms. Each
934  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
935  * space.
936  *
937  */
938 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
939 {
940         ppgtt->scratch_pt = alloc_pt(ppgtt->base.dev);
941         if (IS_ERR(ppgtt->scratch_pt))
942                 return PTR_ERR(ppgtt->scratch_pt);
943
944         ppgtt->scratch_pd = alloc_pd(ppgtt->base.dev);
945         if (IS_ERR(ppgtt->scratch_pd))
946                 return PTR_ERR(ppgtt->scratch_pd);
947
948         gen8_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
949         gen8_initialize_pd(&ppgtt->base, ppgtt->scratch_pd);
950
951         ppgtt->base.start = 0;
952         ppgtt->base.total = 1ULL << 32;
953         if (IS_ENABLED(CONFIG_X86_32))
954                 /* While we have a proliferation of size_t variables
955                  * we cannot represent the full ppgtt size on 32bit,
956                  * so limit it to the same size as the GGTT (currently
957                  * 2GiB).
958                  */
959                 ppgtt->base.total = to_i915(ppgtt->base.dev)->gtt.base.total;
960         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
961         ppgtt->base.allocate_va_range = gen8_alloc_va_range;
962         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
963         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
964         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
965         ppgtt->base.bind_vma = ppgtt_bind_vma;
966
967         ppgtt->switch_mm = gen8_mm_switch;
968
969         return 0;
970 }
971
972 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
973 {
974         struct i915_address_space *vm = &ppgtt->base;
975         struct i915_page_table *unused;
976         gen6_pte_t scratch_pte;
977         uint32_t pd_entry;
978         uint32_t  pte, pde, temp;
979         uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
980
981         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
982
983         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
984                 u32 expected;
985                 gen6_pte_t *pt_vaddr;
986                 dma_addr_t pt_addr = ppgtt->pd.page_table[pde]->base.daddr;
987                 pd_entry = readl(ppgtt->pd_addr + pde);
988                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
989
990                 if (pd_entry != expected)
991                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
992                                    pde,
993                                    pd_entry,
994                                    expected);
995                 seq_printf(m, "\tPDE: %x\n", pd_entry);
996
997                 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
998
999                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1000                         unsigned long va =
1001                                 (pde * PAGE_SIZE * GEN6_PTES) +
1002                                 (pte * PAGE_SIZE);
1003                         int i;
1004                         bool found = false;
1005                         for (i = 0; i < 4; i++)
1006                                 if (pt_vaddr[pte + i] != scratch_pte)
1007                                         found = true;
1008                         if (!found)
1009                                 continue;
1010
1011                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1012                         for (i = 0; i < 4; i++) {
1013                                 if (pt_vaddr[pte + i] != scratch_pte)
1014                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
1015                                 else
1016                                         seq_puts(m, "  SCRATCH ");
1017                         }
1018                         seq_puts(m, "\n");
1019                 }
1020                 kunmap_px(ppgtt, pt_vaddr);
1021         }
1022 }
1023
1024 /* Write pde (index) from the page directory @pd to the page table @pt */
1025 static void gen6_write_pde(struct i915_page_directory *pd,
1026                             const int pde, struct i915_page_table *pt)
1027 {
1028         /* Caller needs to make sure the write completes if necessary */
1029         struct i915_hw_ppgtt *ppgtt =
1030                 container_of(pd, struct i915_hw_ppgtt, pd);
1031         u32 pd_entry;
1032
1033         pd_entry = GEN6_PDE_ADDR_ENCODE(pt->base.daddr);
1034         pd_entry |= GEN6_PDE_VALID;
1035
1036         writel(pd_entry, ppgtt->pd_addr + pde);
1037 }
1038
1039 /* Write all the page tables found in the ppgtt structure to incrementing page
1040  * directories. */
1041 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1042                                   struct i915_page_directory *pd,
1043                                   uint32_t start, uint32_t length)
1044 {
1045         struct i915_page_table *pt;
1046         uint32_t pde, temp;
1047
1048         gen6_for_each_pde(pt, pd, start, length, temp, pde)
1049                 gen6_write_pde(pd, pde, pt);
1050
1051         /* Make sure write is complete before other code can use this page
1052          * table. Also require for WC mapped PTEs */
1053         readl(dev_priv->gtt.gsm);
1054 }
1055
1056 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1057 {
1058         BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1059
1060         return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1061 }
1062
1063 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1064                          struct drm_i915_gem_request *req)
1065 {
1066         struct intel_engine_cs *ring = req->ring;
1067         int ret;
1068
1069         /* NB: TLBs must be flushed and invalidated before a switch */
1070         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1071         if (ret)
1072                 return ret;
1073
1074         ret = intel_ring_begin(req, 6);
1075         if (ret)
1076                 return ret;
1077
1078         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1079         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1080         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1081         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1082         intel_ring_emit(ring, get_pd_offset(ppgtt));
1083         intel_ring_emit(ring, MI_NOOP);
1084         intel_ring_advance(ring);
1085
1086         return 0;
1087 }
1088
1089 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1090                           struct drm_i915_gem_request *req)
1091 {
1092         struct intel_engine_cs *ring = req->ring;
1093         struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1094
1095         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1096         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1097         return 0;
1098 }
1099
1100 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1101                           struct drm_i915_gem_request *req)
1102 {
1103         struct intel_engine_cs *ring = req->ring;
1104         int ret;
1105
1106         /* NB: TLBs must be flushed and invalidated before a switch */
1107         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1108         if (ret)
1109                 return ret;
1110
1111         ret = intel_ring_begin(req, 6);
1112         if (ret)
1113                 return ret;
1114
1115         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1116         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1117         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1118         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1119         intel_ring_emit(ring, get_pd_offset(ppgtt));
1120         intel_ring_emit(ring, MI_NOOP);
1121         intel_ring_advance(ring);
1122
1123         /* XXX: RCS is the only one to auto invalidate the TLBs? */
1124         if (ring->id != RCS) {
1125                 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1126                 if (ret)
1127                         return ret;
1128         }
1129
1130         return 0;
1131 }
1132
1133 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1134                           struct drm_i915_gem_request *req)
1135 {
1136         struct intel_engine_cs *ring = req->ring;
1137         struct drm_device *dev = ppgtt->base.dev;
1138         struct drm_i915_private *dev_priv = dev->dev_private;
1139
1140
1141         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1142         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1143
1144         POSTING_READ(RING_PP_DIR_DCLV(ring));
1145
1146         return 0;
1147 }
1148
1149 static void gen8_ppgtt_enable(struct drm_device *dev)
1150 {
1151         struct drm_i915_private *dev_priv = dev->dev_private;
1152         struct intel_engine_cs *ring;
1153         int j;
1154
1155         for_each_ring(ring, dev_priv, j) {
1156                 I915_WRITE(RING_MODE_GEN7(ring),
1157                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1158         }
1159 }
1160
1161 static void gen7_ppgtt_enable(struct drm_device *dev)
1162 {
1163         struct drm_i915_private *dev_priv = dev->dev_private;
1164         struct intel_engine_cs *ring;
1165         uint32_t ecochk, ecobits;
1166         int i;
1167
1168         ecobits = I915_READ(GAC_ECO_BITS);
1169         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1170
1171         ecochk = I915_READ(GAM_ECOCHK);
1172         if (IS_HASWELL(dev)) {
1173                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1174         } else {
1175                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1176                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1177         }
1178         I915_WRITE(GAM_ECOCHK, ecochk);
1179
1180         for_each_ring(ring, dev_priv, i) {
1181                 /* GFX_MODE is per-ring on gen7+ */
1182                 I915_WRITE(RING_MODE_GEN7(ring),
1183                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1184         }
1185 }
1186
1187 static void gen6_ppgtt_enable(struct drm_device *dev)
1188 {
1189         struct drm_i915_private *dev_priv = dev->dev_private;
1190         uint32_t ecochk, gab_ctl, ecobits;
1191
1192         ecobits = I915_READ(GAC_ECO_BITS);
1193         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1194                    ECOBITS_PPGTT_CACHE64B);
1195
1196         gab_ctl = I915_READ(GAB_CTL);
1197         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1198
1199         ecochk = I915_READ(GAM_ECOCHK);
1200         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1201
1202         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1203 }
1204
1205 /* PPGTT support for Sandybdrige/Gen6 and later */
1206 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1207                                    uint64_t start,
1208                                    uint64_t length,
1209                                    bool use_scratch)
1210 {
1211         struct i915_hw_ppgtt *ppgtt =
1212                 container_of(vm, struct i915_hw_ppgtt, base);
1213         gen6_pte_t *pt_vaddr, scratch_pte;
1214         unsigned first_entry = start >> PAGE_SHIFT;
1215         unsigned num_entries = length >> PAGE_SHIFT;
1216         unsigned act_pt = first_entry / GEN6_PTES;
1217         unsigned first_pte = first_entry % GEN6_PTES;
1218         unsigned last_pte, i;
1219
1220         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
1221
1222         while (num_entries) {
1223                 last_pte = first_pte + num_entries;
1224                 if (last_pte > GEN6_PTES)
1225                         last_pte = GEN6_PTES;
1226
1227                 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1228
1229                 for (i = first_pte; i < last_pte; i++)
1230                         pt_vaddr[i] = scratch_pte;
1231
1232                 kunmap_px(ppgtt, pt_vaddr);
1233
1234                 num_entries -= last_pte - first_pte;
1235                 first_pte = 0;
1236                 act_pt++;
1237         }
1238 }
1239
1240 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1241                                       struct sg_table *pages,
1242                                       uint64_t start,
1243                                       enum i915_cache_level cache_level, u32 flags)
1244 {
1245         struct i915_hw_ppgtt *ppgtt =
1246                 container_of(vm, struct i915_hw_ppgtt, base);
1247         gen6_pte_t *pt_vaddr;
1248         unsigned first_entry = start >> PAGE_SHIFT;
1249         unsigned act_pt = first_entry / GEN6_PTES;
1250         unsigned act_pte = first_entry % GEN6_PTES;
1251         struct sg_page_iter sg_iter;
1252
1253         pt_vaddr = NULL;
1254         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1255                 if (pt_vaddr == NULL)
1256                         pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1257
1258                 pt_vaddr[act_pte] =
1259                         vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1260                                        cache_level, true, flags);
1261
1262                 if (++act_pte == GEN6_PTES) {
1263                         kunmap_px(ppgtt, pt_vaddr);
1264                         pt_vaddr = NULL;
1265                         act_pt++;
1266                         act_pte = 0;
1267                 }
1268         }
1269         if (pt_vaddr)
1270                 kunmap_px(ppgtt, pt_vaddr);
1271 }
1272
1273 static void gen6_initialize_pt(struct i915_address_space *vm,
1274                                struct i915_page_table *pt)
1275 {
1276         gen6_pte_t scratch_pte;
1277
1278         WARN_ON(vm->scratch.addr == 0);
1279
1280         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
1281
1282         fill_page_dma_32(vm->dev, &pt->base, scratch_pte);
1283 }
1284
1285 static int gen6_alloc_va_range(struct i915_address_space *vm,
1286                                uint64_t start_in, uint64_t length_in)
1287 {
1288         DECLARE_BITMAP(new_page_tables, I915_PDES);
1289         struct drm_device *dev = vm->dev;
1290         struct drm_i915_private *dev_priv = dev->dev_private;
1291         struct i915_hw_ppgtt *ppgtt =
1292                                 container_of(vm, struct i915_hw_ppgtt, base);
1293         struct i915_page_table *pt;
1294         uint32_t start, length, start_save, length_save;
1295         uint32_t pde, temp;
1296         int ret;
1297
1298         if (WARN_ON(start_in + length_in > ppgtt->base.total))
1299                 return -ENODEV;
1300
1301         start = start_save = start_in;
1302         length = length_save = length_in;
1303
1304         bitmap_zero(new_page_tables, I915_PDES);
1305
1306         /* The allocation is done in two stages so that we can bail out with
1307          * minimal amount of pain. The first stage finds new page tables that
1308          * need allocation. The second stage marks use ptes within the page
1309          * tables.
1310          */
1311         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1312                 if (pt != ppgtt->scratch_pt) {
1313                         WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1314                         continue;
1315                 }
1316
1317                 /* We've already allocated a page table */
1318                 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1319
1320                 pt = alloc_pt(dev);
1321                 if (IS_ERR(pt)) {
1322                         ret = PTR_ERR(pt);
1323                         goto unwind_out;
1324                 }
1325
1326                 gen6_initialize_pt(vm, pt);
1327
1328                 ppgtt->pd.page_table[pde] = pt;
1329                 set_bit(pde, new_page_tables);
1330                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1331         }
1332
1333         start = start_save;
1334         length = length_save;
1335
1336         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1337                 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1338
1339                 bitmap_zero(tmp_bitmap, GEN6_PTES);
1340                 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1341                            gen6_pte_count(start, length));
1342
1343                 if (test_and_clear_bit(pde, new_page_tables))
1344                         gen6_write_pde(&ppgtt->pd, pde, pt);
1345
1346                 trace_i915_page_table_entry_map(vm, pde, pt,
1347                                          gen6_pte_index(start),
1348                                          gen6_pte_count(start, length),
1349                                          GEN6_PTES);
1350                 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1351                                 GEN6_PTES);
1352         }
1353
1354         WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1355
1356         /* Make sure write is complete before other code can use this page
1357          * table. Also require for WC mapped PTEs */
1358         readl(dev_priv->gtt.gsm);
1359
1360         mark_tlbs_dirty(ppgtt);
1361         return 0;
1362
1363 unwind_out:
1364         for_each_set_bit(pde, new_page_tables, I915_PDES) {
1365                 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1366
1367                 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1368                 free_pt(vm->dev, pt);
1369         }
1370
1371         mark_tlbs_dirty(ppgtt);
1372         return ret;
1373 }
1374
1375 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1376 {
1377         struct i915_hw_ppgtt *ppgtt =
1378                 container_of(vm, struct i915_hw_ppgtt, base);
1379         struct i915_page_table *pt;
1380         uint32_t pde;
1381
1382
1383         drm_mm_remove_node(&ppgtt->node);
1384
1385         gen6_for_all_pdes(pt, ppgtt, pde) {
1386                 if (pt != ppgtt->scratch_pt)
1387                         free_pt(ppgtt->base.dev, pt);
1388         }
1389
1390         free_pt(ppgtt->base.dev, ppgtt->scratch_pt);
1391 }
1392
1393 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1394 {
1395         struct drm_device *dev = ppgtt->base.dev;
1396         struct drm_i915_private *dev_priv = dev->dev_private;
1397         bool retried = false;
1398         int ret;
1399
1400         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1401          * allocator works in address space sizes, so it's multiplied by page
1402          * size. We allocate at the top of the GTT to avoid fragmentation.
1403          */
1404         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1405         ppgtt->scratch_pt = alloc_pt(ppgtt->base.dev);
1406         if (IS_ERR(ppgtt->scratch_pt))
1407                 return PTR_ERR(ppgtt->scratch_pt);
1408
1409         gen6_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
1410
1411 alloc:
1412         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1413                                                   &ppgtt->node, GEN6_PD_SIZE,
1414                                                   GEN6_PD_ALIGN, 0,
1415                                                   0, dev_priv->gtt.base.total,
1416                                                   DRM_MM_TOPDOWN);
1417         if (ret == -ENOSPC && !retried) {
1418                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1419                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
1420                                                I915_CACHE_NONE,
1421                                                0, dev_priv->gtt.base.total,
1422                                                0);
1423                 if (ret)
1424                         goto err_out;
1425
1426                 retried = true;
1427                 goto alloc;
1428         }
1429
1430         if (ret)
1431                 goto err_out;
1432
1433
1434         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1435                 DRM_DEBUG("Forced to use aperture for PDEs\n");
1436
1437         return 0;
1438
1439 err_out:
1440         free_pt(ppgtt->base.dev, ppgtt->scratch_pt);
1441         return ret;
1442 }
1443
1444 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1445 {
1446         return gen6_ppgtt_allocate_page_directories(ppgtt);
1447 }
1448
1449 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1450                                   uint64_t start, uint64_t length)
1451 {
1452         struct i915_page_table *unused;
1453         uint32_t pde, temp;
1454
1455         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
1456                 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1457 }
1458
1459 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1460 {
1461         struct drm_device *dev = ppgtt->base.dev;
1462         struct drm_i915_private *dev_priv = dev->dev_private;
1463         int ret;
1464
1465         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1466         if (IS_GEN6(dev)) {
1467                 ppgtt->switch_mm = gen6_mm_switch;
1468         } else if (IS_HASWELL(dev)) {
1469                 ppgtt->switch_mm = hsw_mm_switch;
1470         } else if (IS_GEN7(dev)) {
1471                 ppgtt->switch_mm = gen7_mm_switch;
1472         } else
1473                 BUG();
1474
1475         if (intel_vgpu_active(dev))
1476                 ppgtt->switch_mm = vgpu_mm_switch;
1477
1478         ret = gen6_ppgtt_alloc(ppgtt);
1479         if (ret)
1480                 return ret;
1481
1482         ppgtt->base.allocate_va_range = gen6_alloc_va_range;
1483         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1484         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1485         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1486         ppgtt->base.bind_vma = ppgtt_bind_vma;
1487         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1488         ppgtt->base.start = 0;
1489         ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1490         ppgtt->debug_dump = gen6_dump_ppgtt;
1491
1492         ppgtt->pd.base.ggtt_offset =
1493                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1494
1495         ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
1496                 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
1497
1498         gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1499
1500         gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
1501
1502         DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1503                          ppgtt->node.size >> 20,
1504                          ppgtt->node.start / PAGE_SIZE);
1505
1506         DRM_DEBUG("Adding PPGTT at offset %x\n",
1507                   ppgtt->pd.base.ggtt_offset << 10);
1508
1509         return 0;
1510 }
1511
1512 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1513 {
1514         struct drm_i915_private *dev_priv = dev->dev_private;
1515
1516         ppgtt->base.dev = dev;
1517         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1518
1519         if (INTEL_INFO(dev)->gen < 8)
1520                 return gen6_ppgtt_init(ppgtt);
1521         else
1522                 return gen8_ppgtt_init(ppgtt);
1523 }
1524 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1525 {
1526         struct drm_i915_private *dev_priv = dev->dev_private;
1527         int ret = 0;
1528
1529         ret = __hw_ppgtt_init(dev, ppgtt);
1530         if (ret == 0) {
1531                 kref_init(&ppgtt->ref);
1532                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1533                             ppgtt->base.total);
1534                 i915_init_vm(dev_priv, &ppgtt->base);
1535         }
1536
1537         return ret;
1538 }
1539
1540 int i915_ppgtt_init_hw(struct drm_device *dev)
1541 {
1542         /* In the case of execlists, PPGTT is enabled by the context descriptor
1543          * and the PDPs are contained within the context itself.  We don't
1544          * need to do anything here. */
1545         if (i915.enable_execlists)
1546                 return 0;
1547
1548         if (!USES_PPGTT(dev))
1549                 return 0;
1550
1551         if (IS_GEN6(dev))
1552                 gen6_ppgtt_enable(dev);
1553         else if (IS_GEN7(dev))
1554                 gen7_ppgtt_enable(dev);
1555         else if (INTEL_INFO(dev)->gen >= 8)
1556                 gen8_ppgtt_enable(dev);
1557         else
1558                 MISSING_CASE(INTEL_INFO(dev)->gen);
1559
1560         return 0;
1561 }
1562
1563 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
1564 {
1565         struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
1566         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1567
1568         if (i915.enable_execlists)
1569                 return 0;
1570
1571         if (!ppgtt)
1572                 return 0;
1573
1574         return ppgtt->switch_mm(ppgtt, req);
1575 }
1576
1577 struct i915_hw_ppgtt *
1578 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1579 {
1580         struct i915_hw_ppgtt *ppgtt;
1581         int ret;
1582
1583         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1584         if (!ppgtt)
1585                 return ERR_PTR(-ENOMEM);
1586
1587         ret = i915_ppgtt_init(dev, ppgtt);
1588         if (ret) {
1589                 kfree(ppgtt);
1590                 return ERR_PTR(ret);
1591         }
1592
1593         ppgtt->file_priv = fpriv;
1594
1595         trace_i915_ppgtt_create(&ppgtt->base);
1596
1597         return ppgtt;
1598 }
1599
1600 void  i915_ppgtt_release(struct kref *kref)
1601 {
1602         struct i915_hw_ppgtt *ppgtt =
1603                 container_of(kref, struct i915_hw_ppgtt, ref);
1604
1605         trace_i915_ppgtt_release(&ppgtt->base);
1606
1607         /* vmas should already be unbound */
1608         WARN_ON(!list_empty(&ppgtt->base.active_list));
1609         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1610
1611         list_del(&ppgtt->base.global_link);
1612         drm_mm_takedown(&ppgtt->base.mm);
1613
1614         ppgtt->base.cleanup(&ppgtt->base);
1615         kfree(ppgtt);
1616 }
1617
1618 extern int intel_iommu_gfx_mapped;
1619 /* Certain Gen5 chipsets require require idling the GPU before
1620  * unmapping anything from the GTT when VT-d is enabled.
1621  */
1622 static bool needs_idle_maps(struct drm_device *dev)
1623 {
1624 #ifdef CONFIG_INTEL_IOMMU
1625         /* Query intel_iommu to see if we need the workaround. Presumably that
1626          * was loaded first.
1627          */
1628         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1629                 return true;
1630 #endif
1631         return false;
1632 }
1633
1634 static bool do_idling(struct drm_i915_private *dev_priv)
1635 {
1636         bool ret = dev_priv->mm.interruptible;
1637
1638         if (unlikely(dev_priv->gtt.do_idle_maps)) {
1639                 dev_priv->mm.interruptible = false;
1640                 if (i915_gpu_idle(dev_priv->dev)) {
1641                         DRM_ERROR("Couldn't idle GPU\n");
1642                         /* Wait a bit, in hopes it avoids the hang */
1643                         udelay(10);
1644                 }
1645         }
1646
1647         return ret;
1648 }
1649
1650 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1651 {
1652         if (unlikely(dev_priv->gtt.do_idle_maps))
1653                 dev_priv->mm.interruptible = interruptible;
1654 }
1655
1656 void i915_check_and_clear_faults(struct drm_device *dev)
1657 {
1658         struct drm_i915_private *dev_priv = dev->dev_private;
1659         struct intel_engine_cs *ring;
1660         int i;
1661
1662         if (INTEL_INFO(dev)->gen < 6)
1663                 return;
1664
1665         for_each_ring(ring, dev_priv, i) {
1666                 u32 fault_reg;
1667                 fault_reg = I915_READ(RING_FAULT_REG(ring));
1668                 if (fault_reg & RING_FAULT_VALID) {
1669                         DRM_DEBUG_DRIVER("Unexpected fault\n"
1670                                          "\tAddr: 0x%08lx\n"
1671                                          "\tAddress space: %s\n"
1672                                          "\tSource ID: %d\n"
1673                                          "\tType: %d\n",
1674                                          fault_reg & PAGE_MASK,
1675                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1676                                          RING_FAULT_SRCID(fault_reg),
1677                                          RING_FAULT_FAULT_TYPE(fault_reg));
1678                         I915_WRITE(RING_FAULT_REG(ring),
1679                                    fault_reg & ~RING_FAULT_VALID);
1680                 }
1681         }
1682         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1683 }
1684
1685 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1686 {
1687         if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1688                 intel_gtt_chipset_flush();
1689         } else {
1690                 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1691                 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1692         }
1693 }
1694
1695 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1696 {
1697         struct drm_i915_private *dev_priv = dev->dev_private;
1698
1699         /* Don't bother messing with faults pre GEN6 as we have little
1700          * documentation supporting that it's a good idea.
1701          */
1702         if (INTEL_INFO(dev)->gen < 6)
1703                 return;
1704
1705         i915_check_and_clear_faults(dev);
1706
1707         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1708                                        dev_priv->gtt.base.start,
1709                                        dev_priv->gtt.base.total,
1710                                        true);
1711
1712         i915_ggtt_flush(dev_priv);
1713 }
1714
1715 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1716 {
1717         if (obj->has_dma_mapping)
1718                 return 0;
1719
1720         if (!dma_map_sg(&obj->base.dev->pdev->dev,
1721                         obj->pages->sgl, obj->pages->nents,
1722                         PCI_DMA_BIDIRECTIONAL))
1723                 return -ENOSPC;
1724
1725         return 0;
1726 }
1727
1728 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
1729 {
1730 #ifdef writeq
1731         writeq(pte, addr);
1732 #else
1733         iowrite32((u32)pte, addr);
1734         iowrite32(pte >> 32, addr + 4);
1735 #endif
1736 }
1737
1738 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1739                                      struct sg_table *st,
1740                                      uint64_t start,
1741                                      enum i915_cache_level level, u32 unused)
1742 {
1743         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1744         unsigned first_entry = start >> PAGE_SHIFT;
1745         gen8_pte_t __iomem *gtt_entries =
1746                 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1747         int i = 0;
1748         struct sg_page_iter sg_iter;
1749         dma_addr_t addr = 0; /* shut up gcc */
1750
1751         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1752                 addr = sg_dma_address(sg_iter.sg) +
1753                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
1754                 gen8_set_pte(&gtt_entries[i],
1755                              gen8_pte_encode(addr, level, true));
1756                 i++;
1757         }
1758
1759         /*
1760          * XXX: This serves as a posting read to make sure that the PTE has
1761          * actually been updated. There is some concern that even though
1762          * registers and PTEs are within the same BAR that they are potentially
1763          * of NUMA access patterns. Therefore, even with the way we assume
1764          * hardware should work, we must keep this posting read for paranoia.
1765          */
1766         if (i != 0)
1767                 WARN_ON(readq(&gtt_entries[i-1])
1768                         != gen8_pte_encode(addr, level, true));
1769
1770         /* This next bit makes the above posting read even more important. We
1771          * want to flush the TLBs only after we're certain all the PTE updates
1772          * have finished.
1773          */
1774         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1775         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1776 }
1777
1778 /*
1779  * Binds an object into the global gtt with the specified cache level. The object
1780  * will be accessible to the GPU via commands whose operands reference offsets
1781  * within the global GTT as well as accessible by the GPU through the GMADR
1782  * mapped BAR (dev_priv->mm.gtt->gtt).
1783  */
1784 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1785                                      struct sg_table *st,
1786                                      uint64_t start,
1787                                      enum i915_cache_level level, u32 flags)
1788 {
1789         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1790         unsigned first_entry = start >> PAGE_SHIFT;
1791         gen6_pte_t __iomem *gtt_entries =
1792                 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1793         int i = 0;
1794         struct sg_page_iter sg_iter;
1795         dma_addr_t addr = 0;
1796
1797         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1798                 addr = sg_page_iter_dma_address(&sg_iter);
1799                 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1800                 i++;
1801         }
1802
1803         /* XXX: This serves as a posting read to make sure that the PTE has
1804          * actually been updated. There is some concern that even though
1805          * registers and PTEs are within the same BAR that they are potentially
1806          * of NUMA access patterns. Therefore, even with the way we assume
1807          * hardware should work, we must keep this posting read for paranoia.
1808          */
1809         if (i != 0) {
1810                 unsigned long gtt = readl(&gtt_entries[i-1]);
1811                 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1812         }
1813
1814         /* This next bit makes the above posting read even more important. We
1815          * want to flush the TLBs only after we're certain all the PTE updates
1816          * have finished.
1817          */
1818         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1819         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1820 }
1821
1822 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1823                                   uint64_t start,
1824                                   uint64_t length,
1825                                   bool use_scratch)
1826 {
1827         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1828         unsigned first_entry = start >> PAGE_SHIFT;
1829         unsigned num_entries = length >> PAGE_SHIFT;
1830         gen8_pte_t scratch_pte, __iomem *gtt_base =
1831                 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1832         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1833         int i;
1834
1835         if (WARN(num_entries > max_entries,
1836                  "First entry = %d; Num entries = %d (max=%d)\n",
1837                  first_entry, num_entries, max_entries))
1838                 num_entries = max_entries;
1839
1840         scratch_pte = gen8_pte_encode(vm->scratch.addr,
1841                                       I915_CACHE_LLC,
1842                                       use_scratch);
1843         for (i = 0; i < num_entries; i++)
1844                 gen8_set_pte(&gtt_base[i], scratch_pte);
1845         readl(gtt_base);
1846 }
1847
1848 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1849                                   uint64_t start,
1850                                   uint64_t length,
1851                                   bool use_scratch)
1852 {
1853         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1854         unsigned first_entry = start >> PAGE_SHIFT;
1855         unsigned num_entries = length >> PAGE_SHIFT;
1856         gen6_pte_t scratch_pte, __iomem *gtt_base =
1857                 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1858         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1859         int i;
1860
1861         if (WARN(num_entries > max_entries,
1862                  "First entry = %d; Num entries = %d (max=%d)\n",
1863                  first_entry, num_entries, max_entries))
1864                 num_entries = max_entries;
1865
1866         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
1867
1868         for (i = 0; i < num_entries; i++)
1869                 iowrite32(scratch_pte, &gtt_base[i]);
1870         readl(gtt_base);
1871 }
1872
1873 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
1874                                      struct sg_table *pages,
1875                                      uint64_t start,
1876                                      enum i915_cache_level cache_level, u32 unused)
1877 {
1878         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1879                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1880
1881         intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
1882
1883 }
1884
1885 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1886                                   uint64_t start,
1887                                   uint64_t length,
1888                                   bool unused)
1889 {
1890         unsigned first_entry = start >> PAGE_SHIFT;
1891         unsigned num_entries = length >> PAGE_SHIFT;
1892         intel_gtt_clear_range(first_entry, num_entries);
1893 }
1894
1895 static int ggtt_bind_vma(struct i915_vma *vma,
1896                          enum i915_cache_level cache_level,
1897                          u32 flags)
1898 {
1899         struct drm_device *dev = vma->vm->dev;
1900         struct drm_i915_private *dev_priv = dev->dev_private;
1901         struct drm_i915_gem_object *obj = vma->obj;
1902         struct sg_table *pages = obj->pages;
1903         u32 pte_flags = 0;
1904         int ret;
1905
1906         ret = i915_get_ggtt_vma_pages(vma);
1907         if (ret)
1908                 return ret;
1909         pages = vma->ggtt_view.pages;
1910
1911         /* Currently applicable only to VLV */
1912         if (obj->gt_ro)
1913                 pte_flags |= PTE_READ_ONLY;
1914
1915
1916         if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1917                 vma->vm->insert_entries(vma->vm, pages,
1918                                         vma->node.start,
1919                                         cache_level, pte_flags);
1920         }
1921
1922         if (dev_priv->mm.aliasing_ppgtt && flags & LOCAL_BIND) {
1923                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1924                 appgtt->base.insert_entries(&appgtt->base, pages,
1925                                             vma->node.start,
1926                                             cache_level, pte_flags);
1927         }
1928
1929         return 0;
1930 }
1931
1932 static void ggtt_unbind_vma(struct i915_vma *vma)
1933 {
1934         struct drm_device *dev = vma->vm->dev;
1935         struct drm_i915_private *dev_priv = dev->dev_private;
1936         struct drm_i915_gem_object *obj = vma->obj;
1937         const uint64_t size = min_t(uint64_t,
1938                                     obj->base.size,
1939                                     vma->node.size);
1940
1941         if (vma->bound & GLOBAL_BIND) {
1942                 vma->vm->clear_range(vma->vm,
1943                                      vma->node.start,
1944                                      size,
1945                                      true);
1946         }
1947
1948         if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
1949                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1950
1951                 appgtt->base.clear_range(&appgtt->base,
1952                                          vma->node.start,
1953                                          size,
1954                                          true);
1955         }
1956 }
1957
1958 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1959 {
1960         struct drm_device *dev = obj->base.dev;
1961         struct drm_i915_private *dev_priv = dev->dev_private;
1962         bool interruptible;
1963
1964         interruptible = do_idling(dev_priv);
1965
1966         if (!obj->has_dma_mapping)
1967                 dma_unmap_sg(&dev->pdev->dev,
1968                              obj->pages->sgl, obj->pages->nents,
1969                              PCI_DMA_BIDIRECTIONAL);
1970
1971         undo_idling(dev_priv, interruptible);
1972 }
1973
1974 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1975                                   unsigned long color,
1976                                   u64 *start,
1977                                   u64 *end)
1978 {
1979         if (node->color != color)
1980                 *start += 4096;
1981
1982         if (!list_empty(&node->node_list)) {
1983                 node = list_entry(node->node_list.next,
1984                                   struct drm_mm_node,
1985                                   node_list);
1986                 if (node->allocated && node->color != color)
1987                         *end -= 4096;
1988         }
1989 }
1990
1991 static int i915_gem_setup_global_gtt(struct drm_device *dev,
1992                                      unsigned long start,
1993                                      unsigned long mappable_end,
1994                                      unsigned long end)
1995 {
1996         /* Let GEM Manage all of the aperture.
1997          *
1998          * However, leave one page at the end still bound to the scratch page.
1999          * There are a number of places where the hardware apparently prefetches
2000          * past the end of the object, and we've seen multiple hangs with the
2001          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2002          * aperture.  One page should be enough to keep any prefetching inside
2003          * of the aperture.
2004          */
2005         struct drm_i915_private *dev_priv = dev->dev_private;
2006         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2007         struct drm_mm_node *entry;
2008         struct drm_i915_gem_object *obj;
2009         unsigned long hole_start, hole_end;
2010         int ret;
2011
2012         BUG_ON(mappable_end > end);
2013
2014         /* Subtract the guard page ... */
2015         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
2016
2017         dev_priv->gtt.base.start = start;
2018         dev_priv->gtt.base.total = end - start;
2019
2020         if (intel_vgpu_active(dev)) {
2021                 ret = intel_vgt_balloon(dev);
2022                 if (ret)
2023                         return ret;
2024         }
2025
2026         if (!HAS_LLC(dev))
2027                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
2028
2029         /* Mark any preallocated objects as occupied */
2030         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2031                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2032
2033                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
2034                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
2035
2036                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2037                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2038                 if (ret) {
2039                         DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2040                         return ret;
2041                 }
2042                 vma->bound |= GLOBAL_BIND;
2043         }
2044
2045         /* Clear any non-preallocated blocks */
2046         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2047                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2048                               hole_start, hole_end);
2049                 ggtt_vm->clear_range(ggtt_vm, hole_start,
2050                                      hole_end - hole_start, true);
2051         }
2052
2053         /* And finally clear the reserved guard page */
2054         ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2055
2056         if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2057                 struct i915_hw_ppgtt *ppgtt;
2058
2059                 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2060                 if (!ppgtt)
2061                         return -ENOMEM;
2062
2063                 ret = __hw_ppgtt_init(dev, ppgtt);
2064                 if (ret) {
2065                         ppgtt->base.cleanup(&ppgtt->base);
2066                         kfree(ppgtt);
2067                         return ret;
2068                 }
2069
2070                 if (ppgtt->base.allocate_va_range)
2071                         ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2072                                                             ppgtt->base.total);
2073                 if (ret) {
2074                         ppgtt->base.cleanup(&ppgtt->base);
2075                         kfree(ppgtt);
2076                         return ret;
2077                 }
2078
2079                 ppgtt->base.clear_range(&ppgtt->base,
2080                                         ppgtt->base.start,
2081                                         ppgtt->base.total,
2082                                         true);
2083
2084                 dev_priv->mm.aliasing_ppgtt = ppgtt;
2085         }
2086
2087         return 0;
2088 }
2089
2090 void i915_gem_init_global_gtt(struct drm_device *dev)
2091 {
2092         struct drm_i915_private *dev_priv = dev->dev_private;
2093         u64 gtt_size, mappable_size;
2094
2095         gtt_size = dev_priv->gtt.base.total;
2096         mappable_size = dev_priv->gtt.mappable_end;
2097
2098         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2099 }
2100
2101 void i915_global_gtt_cleanup(struct drm_device *dev)
2102 {
2103         struct drm_i915_private *dev_priv = dev->dev_private;
2104         struct i915_address_space *vm = &dev_priv->gtt.base;
2105
2106         if (dev_priv->mm.aliasing_ppgtt) {
2107                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2108
2109                 ppgtt->base.cleanup(&ppgtt->base);
2110         }
2111
2112         if (drm_mm_initialized(&vm->mm)) {
2113                 if (intel_vgpu_active(dev))
2114                         intel_vgt_deballoon();
2115
2116                 drm_mm_takedown(&vm->mm);
2117                 list_del(&vm->global_link);
2118         }
2119
2120         vm->cleanup(vm);
2121 }
2122
2123 static int setup_scratch_page(struct drm_device *dev)
2124 {
2125         struct drm_i915_private *dev_priv = dev->dev_private;
2126         struct page *page;
2127         dma_addr_t dma_addr;
2128
2129         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
2130         if (page == NULL)
2131                 return -ENOMEM;
2132         set_pages_uc(page, 1);
2133
2134 #ifdef CONFIG_INTEL_IOMMU
2135         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
2136                                 PCI_DMA_BIDIRECTIONAL);
2137         if (pci_dma_mapping_error(dev->pdev, dma_addr)) {
2138                 __free_page(page);
2139                 return -EINVAL;
2140         }
2141 #else
2142         dma_addr = page_to_phys(page);
2143 #endif
2144         dev_priv->gtt.base.scratch.page = page;
2145         dev_priv->gtt.base.scratch.addr = dma_addr;
2146
2147         return 0;
2148 }
2149
2150 static void teardown_scratch_page(struct drm_device *dev)
2151 {
2152         struct drm_i915_private *dev_priv = dev->dev_private;
2153         struct page *page = dev_priv->gtt.base.scratch.page;
2154
2155         set_pages_wb(page, 1);
2156         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
2157                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
2158         __free_page(page);
2159 }
2160
2161 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2162 {
2163         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2164         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2165         return snb_gmch_ctl << 20;
2166 }
2167
2168 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2169 {
2170         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2171         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2172         if (bdw_gmch_ctl)
2173                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2174
2175 #ifdef CONFIG_X86_32
2176         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2177         if (bdw_gmch_ctl > 4)
2178                 bdw_gmch_ctl = 4;
2179 #endif
2180
2181         return bdw_gmch_ctl << 20;
2182 }
2183
2184 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2185 {
2186         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2187         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2188
2189         if (gmch_ctrl)
2190                 return 1 << (20 + gmch_ctrl);
2191
2192         return 0;
2193 }
2194
2195 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2196 {
2197         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2198         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2199         return snb_gmch_ctl << 25; /* 32 MB units */
2200 }
2201
2202 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2203 {
2204         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2205         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2206         return bdw_gmch_ctl << 25; /* 32 MB units */
2207 }
2208
2209 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2210 {
2211         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2212         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2213
2214         /*
2215          * 0x0  to 0x10: 32MB increments starting at 0MB
2216          * 0x11 to 0x16: 4MB increments starting at 8MB
2217          * 0x17 to 0x1d: 4MB increments start at 36MB
2218          */
2219         if (gmch_ctrl < 0x11)
2220                 return gmch_ctrl << 25;
2221         else if (gmch_ctrl < 0x17)
2222                 return (gmch_ctrl - 0x11 + 2) << 22;
2223         else
2224                 return (gmch_ctrl - 0x17 + 9) << 22;
2225 }
2226
2227 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2228 {
2229         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2230         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2231
2232         if (gen9_gmch_ctl < 0xf0)
2233                 return gen9_gmch_ctl << 25; /* 32 MB units */
2234         else
2235                 /* 4MB increments starting at 0xf0 for 4MB */
2236                 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2237 }
2238
2239 static int ggtt_probe_common(struct drm_device *dev,
2240                              size_t gtt_size)
2241 {
2242         struct drm_i915_private *dev_priv = dev->dev_private;
2243         phys_addr_t gtt_phys_addr;
2244         int ret;
2245
2246         /* For Modern GENs the PTEs and register space are split in the BAR */
2247         gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2248                 (pci_resource_len(dev->pdev, 0) / 2);
2249
2250         /*
2251          * On BXT writes larger than 64 bit to the GTT pagetable range will be
2252          * dropped. For WC mappings in general we have 64 byte burst writes
2253          * when the WC buffer is flushed, so we can't use it, but have to
2254          * resort to an uncached mapping. The WC issue is easily caught by the
2255          * readback check when writing GTT PTE entries.
2256          */
2257         if (IS_BROXTON(dev))
2258                 dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2259         else
2260                 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2261         if (!dev_priv->gtt.gsm) {
2262                 DRM_ERROR("Failed to map the gtt page table\n");
2263                 return -ENOMEM;
2264         }
2265
2266         ret = setup_scratch_page(dev);
2267         if (ret) {
2268                 DRM_ERROR("Scratch setup failed\n");
2269                 /* iounmap will also get called at remove, but meh */
2270                 iounmap(dev_priv->gtt.gsm);
2271         }
2272
2273         return ret;
2274 }
2275
2276 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2277  * bits. When using advanced contexts each context stores its own PAT, but
2278  * writing this data shouldn't be harmful even in those cases. */
2279 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2280 {
2281         uint64_t pat;
2282
2283         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2284               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2285               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2286               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2287               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2288               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2289               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2290               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2291
2292         if (!USES_PPGTT(dev_priv->dev))
2293                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2294                  * so RTL will always use the value corresponding to
2295                  * pat_sel = 000".
2296                  * So let's disable cache for GGTT to avoid screen corruptions.
2297                  * MOCS still can be used though.
2298                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2299                  * before this patch, i.e. the same uncached + snooping access
2300                  * like on gen6/7 seems to be in effect.
2301                  * - So this just fixes blitter/render access. Again it looks
2302                  * like it's not just uncached access, but uncached + snooping.
2303                  * So we can still hold onto all our assumptions wrt cpu
2304                  * clflushing on LLC machines.
2305                  */
2306                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2307
2308         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2309          * write would work. */
2310         I915_WRITE(GEN8_PRIVATE_PAT, pat);
2311         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2312 }
2313
2314 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2315 {
2316         uint64_t pat;
2317
2318         /*
2319          * Map WB on BDW to snooped on CHV.
2320          *
2321          * Only the snoop bit has meaning for CHV, the rest is
2322          * ignored.
2323          *
2324          * The hardware will never snoop for certain types of accesses:
2325          * - CPU GTT (GMADR->GGTT->no snoop->memory)
2326          * - PPGTT page tables
2327          * - some other special cycles
2328          *
2329          * As with BDW, we also need to consider the following for GT accesses:
2330          * "For GGTT, there is NO pat_sel[2:0] from the entry,
2331          * so RTL will always use the value corresponding to
2332          * pat_sel = 000".
2333          * Which means we must set the snoop bit in PAT entry 0
2334          * in order to keep the global status page working.
2335          */
2336         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2337               GEN8_PPAT(1, 0) |
2338               GEN8_PPAT(2, 0) |
2339               GEN8_PPAT(3, 0) |
2340               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2341               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2342               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2343               GEN8_PPAT(7, CHV_PPAT_SNOOP);
2344
2345         I915_WRITE(GEN8_PRIVATE_PAT, pat);
2346         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2347 }
2348
2349 static int gen8_gmch_probe(struct drm_device *dev,
2350                            u64 *gtt_total,
2351                            size_t *stolen,
2352                            phys_addr_t *mappable_base,
2353                            u64 *mappable_end)
2354 {
2355         struct drm_i915_private *dev_priv = dev->dev_private;
2356         u64 gtt_size;
2357         u16 snb_gmch_ctl;
2358         int ret;
2359
2360         /* TODO: We're not aware of mappable constraints on gen8 yet */
2361         *mappable_base = pci_resource_start(dev->pdev, 2);
2362         *mappable_end = pci_resource_len(dev->pdev, 2);
2363
2364         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2365                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2366
2367         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2368
2369         if (INTEL_INFO(dev)->gen >= 9) {
2370                 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
2371                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2372         } else if (IS_CHERRYVIEW(dev)) {
2373                 *stolen = chv_get_stolen_size(snb_gmch_ctl);
2374                 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2375         } else {
2376                 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
2377                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2378         }
2379
2380         *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2381
2382         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2383                 chv_setup_private_ppat(dev_priv);
2384         else
2385                 bdw_setup_private_ppat(dev_priv);
2386
2387         ret = ggtt_probe_common(dev, gtt_size);
2388
2389         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2390         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2391         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2392         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2393
2394         return ret;
2395 }
2396
2397 static int gen6_gmch_probe(struct drm_device *dev,
2398                            u64 *gtt_total,
2399                            size_t *stolen,
2400                            phys_addr_t *mappable_base,
2401                            u64 *mappable_end)
2402 {
2403         struct drm_i915_private *dev_priv = dev->dev_private;
2404         unsigned int gtt_size;
2405         u16 snb_gmch_ctl;
2406         int ret;
2407
2408         *mappable_base = pci_resource_start(dev->pdev, 2);
2409         *mappable_end = pci_resource_len(dev->pdev, 2);
2410
2411         /* 64/512MB is the current min/max we actually know of, but this is just
2412          * a coarse sanity check.
2413          */
2414         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2415                 DRM_ERROR("Unknown GMADR size (%llx)\n",
2416                           dev_priv->gtt.mappable_end);
2417                 return -ENXIO;
2418         }
2419
2420         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2421                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2422         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2423
2424         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
2425
2426         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2427         *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2428
2429         ret = ggtt_probe_common(dev, gtt_size);
2430
2431         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2432         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2433         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2434         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2435
2436         return ret;
2437 }
2438
2439 static void gen6_gmch_remove(struct i915_address_space *vm)
2440 {
2441
2442         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2443
2444         iounmap(gtt->gsm);
2445         teardown_scratch_page(vm->dev);
2446 }
2447
2448 static int i915_gmch_probe(struct drm_device *dev,
2449                            u64 *gtt_total,
2450                            size_t *stolen,
2451                            phys_addr_t *mappable_base,
2452                            u64 *mappable_end)
2453 {
2454         struct drm_i915_private *dev_priv = dev->dev_private;
2455         int ret;
2456
2457         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2458         if (!ret) {
2459                 DRM_ERROR("failed to set up gmch\n");
2460                 return -EIO;
2461         }
2462
2463         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2464
2465         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2466         dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
2467         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2468         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2469         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2470
2471         if (unlikely(dev_priv->gtt.do_idle_maps))
2472                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2473
2474         return 0;
2475 }
2476
2477 static void i915_gmch_remove(struct i915_address_space *vm)
2478 {
2479         intel_gmch_remove();
2480 }
2481
2482 int i915_gem_gtt_init(struct drm_device *dev)
2483 {
2484         struct drm_i915_private *dev_priv = dev->dev_private;
2485         struct i915_gtt *gtt = &dev_priv->gtt;
2486         int ret;
2487
2488         if (INTEL_INFO(dev)->gen <= 5) {
2489                 gtt->gtt_probe = i915_gmch_probe;
2490                 gtt->base.cleanup = i915_gmch_remove;
2491         } else if (INTEL_INFO(dev)->gen < 8) {
2492                 gtt->gtt_probe = gen6_gmch_probe;
2493                 gtt->base.cleanup = gen6_gmch_remove;
2494                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2495                         gtt->base.pte_encode = iris_pte_encode;
2496                 else if (IS_HASWELL(dev))
2497                         gtt->base.pte_encode = hsw_pte_encode;
2498                 else if (IS_VALLEYVIEW(dev))
2499                         gtt->base.pte_encode = byt_pte_encode;
2500                 else if (INTEL_INFO(dev)->gen >= 7)
2501                         gtt->base.pte_encode = ivb_pte_encode;
2502                 else
2503                         gtt->base.pte_encode = snb_pte_encode;
2504         } else {
2505                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2506                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2507         }
2508
2509         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2510                              &gtt->mappable_base, &gtt->mappable_end);
2511         if (ret)
2512                 return ret;
2513
2514         gtt->base.dev = dev;
2515
2516         /* GMADR is the PCI mmio aperture into the global GTT. */
2517         DRM_INFO("Memory usable by graphics device = %lluM\n",
2518                  gtt->base.total >> 20);
2519         DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
2520         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2521 #ifdef CONFIG_INTEL_IOMMU
2522         if (intel_iommu_gfx_mapped)
2523                 DRM_INFO("VT-d active for gfx access\n");
2524 #endif
2525         /*
2526          * i915.enable_ppgtt is read-only, so do an early pass to validate the
2527          * user's requested state against the hardware/driver capabilities.  We
2528          * do this now so that we can print out any log messages once rather
2529          * than every time we check intel_enable_ppgtt().
2530          */
2531         i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2532         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2533
2534         return 0;
2535 }
2536
2537 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
2538 {
2539         struct drm_i915_private *dev_priv = dev->dev_private;
2540         struct drm_i915_gem_object *obj;
2541         struct i915_address_space *vm;
2542
2543         i915_check_and_clear_faults(dev);
2544
2545         /* First fill our portion of the GTT with scratch pages */
2546         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2547                                        dev_priv->gtt.base.start,
2548                                        dev_priv->gtt.base.total,
2549                                        true);
2550
2551         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2552                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
2553                                                            &dev_priv->gtt.base);
2554                 if (!vma)
2555                         continue;
2556
2557                 i915_gem_clflush_object(obj, obj->pin_display);
2558                 WARN_ON(i915_vma_bind(vma, obj->cache_level, PIN_UPDATE));
2559         }
2560
2561
2562         if (INTEL_INFO(dev)->gen >= 8) {
2563                 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2564                         chv_setup_private_ppat(dev_priv);
2565                 else
2566                         bdw_setup_private_ppat(dev_priv);
2567
2568                 return;
2569         }
2570
2571         if (USES_PPGTT(dev)) {
2572                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2573                         /* TODO: Perhaps it shouldn't be gen6 specific */
2574
2575                         struct i915_hw_ppgtt *ppgtt =
2576                                         container_of(vm, struct i915_hw_ppgtt,
2577                                                      base);
2578
2579                         if (i915_is_ggtt(vm))
2580                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2581
2582                         gen6_write_page_range(dev_priv, &ppgtt->pd,
2583                                               0, ppgtt->base.total);
2584                 }
2585         }
2586
2587         i915_ggtt_flush(dev_priv);
2588 }
2589
2590 static struct i915_vma *
2591 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
2592                       struct i915_address_space *vm,
2593                       const struct i915_ggtt_view *ggtt_view)
2594 {
2595         struct i915_vma *vma;
2596
2597         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
2598                 return ERR_PTR(-EINVAL);
2599
2600         vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
2601         if (vma == NULL)
2602                 return ERR_PTR(-ENOMEM);
2603
2604         INIT_LIST_HEAD(&vma->vma_link);
2605         INIT_LIST_HEAD(&vma->mm_list);
2606         INIT_LIST_HEAD(&vma->exec_list);
2607         vma->vm = vm;
2608         vma->obj = obj;
2609
2610         if (i915_is_ggtt(vm))
2611                 vma->ggtt_view = *ggtt_view;
2612
2613         list_add_tail(&vma->vma_link, &obj->vma_list);
2614         if (!i915_is_ggtt(vm))
2615                 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2616
2617         return vma;
2618 }
2619
2620 struct i915_vma *
2621 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2622                                   struct i915_address_space *vm)
2623 {
2624         struct i915_vma *vma;
2625
2626         vma = i915_gem_obj_to_vma(obj, vm);
2627         if (!vma)
2628                 vma = __i915_gem_vma_create(obj, vm,
2629                                             i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
2630
2631         return vma;
2632 }
2633
2634 struct i915_vma *
2635 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
2636                                        const struct i915_ggtt_view *view)
2637 {
2638         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
2639         struct i915_vma *vma;
2640
2641         if (WARN_ON(!view))
2642                 return ERR_PTR(-EINVAL);
2643
2644         vma = i915_gem_obj_to_ggtt_view(obj, view);
2645
2646         if (IS_ERR(vma))
2647                 return vma;
2648
2649         if (!vma)
2650                 vma = __i915_gem_vma_create(obj, ggtt, view);
2651
2652         return vma;
2653
2654 }
2655
2656 static void
2657 rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height,
2658              struct sg_table *st)
2659 {
2660         unsigned int column, row;
2661         unsigned int src_idx;
2662         struct scatterlist *sg = st->sgl;
2663
2664         st->nents = 0;
2665
2666         for (column = 0; column < width; column++) {
2667                 src_idx = width * (height - 1) + column;
2668                 for (row = 0; row < height; row++) {
2669                         st->nents++;
2670                         /* We don't need the pages, but need to initialize
2671                          * the entries so the sg list can be happily traversed.
2672                          * The only thing we need are DMA addresses.
2673                          */
2674                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
2675                         sg_dma_address(sg) = in[src_idx];
2676                         sg_dma_len(sg) = PAGE_SIZE;
2677                         sg = sg_next(sg);
2678                         src_idx -= width;
2679                 }
2680         }
2681 }
2682
2683 static struct sg_table *
2684 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
2685                           struct drm_i915_gem_object *obj)
2686 {
2687         struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
2688         unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
2689         struct sg_page_iter sg_iter;
2690         unsigned long i;
2691         dma_addr_t *page_addr_list;
2692         struct sg_table *st;
2693         int ret = -ENOMEM;
2694
2695         /* Allocate a temporary list of source pages for random access. */
2696         page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
2697                                        sizeof(dma_addr_t));
2698         if (!page_addr_list)
2699                 return ERR_PTR(ret);
2700
2701         /* Allocate target SG list. */
2702         st = kmalloc(sizeof(*st), GFP_KERNEL);
2703         if (!st)
2704                 goto err_st_alloc;
2705
2706         ret = sg_alloc_table(st, size_pages, GFP_KERNEL);
2707         if (ret)
2708                 goto err_sg_alloc;
2709
2710         /* Populate source page list from the object. */
2711         i = 0;
2712         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2713                 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
2714                 i++;
2715         }
2716
2717         /* Rotate the pages. */
2718         rotate_pages(page_addr_list,
2719                      rot_info->width_pages, rot_info->height_pages,
2720                      st);
2721
2722         DRM_DEBUG_KMS(
2723                       "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages).\n",
2724                       obj->base.size, rot_info->pitch, rot_info->height,
2725                       rot_info->pixel_format, rot_info->width_pages,
2726                       rot_info->height_pages, size_pages);
2727
2728         drm_free_large(page_addr_list);
2729
2730         return st;
2731
2732 err_sg_alloc:
2733         kfree(st);
2734 err_st_alloc:
2735         drm_free_large(page_addr_list);
2736
2737         DRM_DEBUG_KMS(
2738                       "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages)\n",
2739                       obj->base.size, ret, rot_info->pitch, rot_info->height,
2740                       rot_info->pixel_format, rot_info->width_pages,
2741                       rot_info->height_pages, size_pages);
2742         return ERR_PTR(ret);
2743 }
2744
2745 static struct sg_table *
2746 intel_partial_pages(const struct i915_ggtt_view *view,
2747                     struct drm_i915_gem_object *obj)
2748 {
2749         struct sg_table *st;
2750         struct scatterlist *sg;
2751         struct sg_page_iter obj_sg_iter;
2752         int ret = -ENOMEM;
2753
2754         st = kmalloc(sizeof(*st), GFP_KERNEL);
2755         if (!st)
2756                 goto err_st_alloc;
2757
2758         ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
2759         if (ret)
2760                 goto err_sg_alloc;
2761
2762         sg = st->sgl;
2763         st->nents = 0;
2764         for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
2765                 view->params.partial.offset)
2766         {
2767                 if (st->nents >= view->params.partial.size)
2768                         break;
2769
2770                 sg_set_page(sg, NULL, PAGE_SIZE, 0);
2771                 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
2772                 sg_dma_len(sg) = PAGE_SIZE;
2773
2774                 sg = sg_next(sg);
2775                 st->nents++;
2776         }
2777
2778         return st;
2779
2780 err_sg_alloc:
2781         kfree(st);
2782 err_st_alloc:
2783         return ERR_PTR(ret);
2784 }
2785
2786 static int
2787 i915_get_ggtt_vma_pages(struct i915_vma *vma)
2788 {
2789         int ret = 0;
2790
2791         if (vma->ggtt_view.pages)
2792                 return 0;
2793
2794         if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
2795                 vma->ggtt_view.pages = vma->obj->pages;
2796         else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
2797                 vma->ggtt_view.pages =
2798                         intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
2799         else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
2800                 vma->ggtt_view.pages =
2801                         intel_partial_pages(&vma->ggtt_view, vma->obj);
2802         else
2803                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
2804                           vma->ggtt_view.type);
2805
2806         if (!vma->ggtt_view.pages) {
2807                 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
2808                           vma->ggtt_view.type);
2809                 ret = -EINVAL;
2810         } else if (IS_ERR(vma->ggtt_view.pages)) {
2811                 ret = PTR_ERR(vma->ggtt_view.pages);
2812                 vma->ggtt_view.pages = NULL;
2813                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
2814                           vma->ggtt_view.type, ret);
2815         }
2816
2817         return ret;
2818 }
2819
2820 /**
2821  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
2822  * @vma: VMA to map
2823  * @cache_level: mapping cache level
2824  * @flags: flags like global or local mapping
2825  *
2826  * DMA addresses are taken from the scatter-gather table of this object (or of
2827  * this VMA in case of non-default GGTT views) and PTE entries set up.
2828  * Note that DMA addresses are also the only part of the SG table we care about.
2829  */
2830 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2831                   u32 flags)
2832 {
2833         int ret;
2834         u32 bind_flags;
2835
2836         if (WARN_ON(flags == 0))
2837                 return -EINVAL;
2838
2839         bind_flags = 0;
2840         if (flags & PIN_GLOBAL)
2841                 bind_flags |= GLOBAL_BIND;
2842         if (flags & PIN_USER)
2843                 bind_flags |= LOCAL_BIND;
2844
2845         if (flags & PIN_UPDATE)
2846                 bind_flags |= vma->bound;
2847         else
2848                 bind_flags &= ~vma->bound;
2849
2850         if (bind_flags == 0)
2851                 return 0;
2852
2853         if (vma->bound == 0 && vma->vm->allocate_va_range) {
2854                 trace_i915_va_alloc(vma->vm,
2855                                     vma->node.start,
2856                                     vma->node.size,
2857                                     VM_TO_TRACE_NAME(vma->vm));
2858
2859                 ret = vma->vm->allocate_va_range(vma->vm,
2860                                                  vma->node.start,
2861                                                  vma->node.size);
2862                 if (ret)
2863                         return ret;
2864         }
2865
2866         ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
2867         if (ret)
2868                 return ret;
2869
2870         vma->bound |= bind_flags;
2871
2872         return 0;
2873 }
2874
2875 /**
2876  * i915_ggtt_view_size - Get the size of a GGTT view.
2877  * @obj: Object the view is of.
2878  * @view: The view in question.
2879  *
2880  * @return The size of the GGTT view in bytes.
2881  */
2882 size_t
2883 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
2884                     const struct i915_ggtt_view *view)
2885 {
2886         if (view->type == I915_GGTT_VIEW_NORMAL) {
2887                 return obj->base.size;
2888         } else if (view->type == I915_GGTT_VIEW_ROTATED) {
2889                 return view->rotation_info.size;
2890         } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
2891                 return view->params.partial.size << PAGE_SHIFT;
2892         } else {
2893                 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
2894                 return obj->base.size;
2895         }
2896 }