6817b072fac4c13d77f99d482a4a777a8419064a
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33
34 /**
35  * DOC: Global GTT views
36  *
37  * Background and previous state
38  *
39  * Historically objects could exists (be bound) in global GTT space only as
40  * singular instances with a view representing all of the object's backing pages
41  * in a linear fashion. This view will be called a normal view.
42  *
43  * To support multiple views of the same object, where the number of mapped
44  * pages is not equal to the backing store, or where the layout of the pages
45  * is not linear, concept of a GGTT view was added.
46  *
47  * One example of an alternative view is a stereo display driven by a single
48  * image. In this case we would have a framebuffer looking like this
49  * (2x2 pages):
50  *
51  *    12
52  *    34
53  *
54  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55  * rendering. In contrast, fed to the display engine would be an alternative
56  * view which could look something like this:
57  *
58  *   1212
59  *   3434
60  *
61  * In this example both the size and layout of pages in the alternative view is
62  * different from the normal view.
63  *
64  * Implementation and usage
65  *
66  * GGTT views are implemented using VMAs and are distinguished via enum
67  * i915_ggtt_view_type and struct i915_ggtt_view.
68  *
69  * A new flavour of core GEM functions which work with GGTT bound objects were
70  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71  * renaming  in large amounts of code. They take the struct i915_ggtt_view
72  * parameter encapsulating all metadata required to implement a view.
73  *
74  * As a helper for callers which are only interested in the normal view,
75  * globally const i915_ggtt_view_normal singleton instance exists. All old core
76  * GEM API functions, the ones not taking the view parameter, are operating on,
77  * or with the normal GGTT view.
78  *
79  * Code wanting to add or use a new GGTT view needs to:
80  *
81  * 1. Add a new enum with a suitable name.
82  * 2. Extend the metadata in the i915_ggtt_view structure if required.
83  * 3. Add support to i915_get_vma_pages().
84  *
85  * New views are required to build a scatter-gather table from within the
86  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87  * exists for the lifetime of an VMA.
88  *
89  * Core API is designed to have copy semantics which means that passed in
90  * struct i915_ggtt_view does not need to be persistent (left around after
91  * calling the core API functions).
92  *
93  */
94
95 static int
96 i915_get_ggtt_vma_pages(struct i915_vma *vma);
97
98 const struct i915_ggtt_view i915_ggtt_view_normal;
99 const struct i915_ggtt_view i915_ggtt_view_rotated = {
100         .type = I915_GGTT_VIEW_ROTATED
101 };
102
103 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
104 {
105         bool has_aliasing_ppgtt;
106         bool has_full_ppgtt;
107
108         has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
109         has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
110
111         if (intel_vgpu_active(dev))
112                 has_full_ppgtt = false; /* emulation is too hard */
113
114         /*
115          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116          * execlists, the sole mechanism available to submit work.
117          */
118         if (INTEL_INFO(dev)->gen < 9 &&
119             (enable_ppgtt == 0 || !has_aliasing_ppgtt))
120                 return 0;
121
122         if (enable_ppgtt == 1)
123                 return 1;
124
125         if (enable_ppgtt == 2 && has_full_ppgtt)
126                 return 2;
127
128 #ifdef CONFIG_INTEL_IOMMU
129         /* Disable ppgtt on SNB if VT-d is on. */
130         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
131                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
132                 return 0;
133         }
134 #endif
135
136         /* Early VLV doesn't have this */
137         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
138             dev->pdev->revision < 0xb) {
139                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
140                 return 0;
141         }
142
143         if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
144                 return 2;
145         else
146                 return has_aliasing_ppgtt ? 1 : 0;
147 }
148
149 static int ppgtt_bind_vma(struct i915_vma *vma,
150                           enum i915_cache_level cache_level,
151                           u32 unused)
152 {
153         u32 pte_flags = 0;
154
155         /* Currently applicable only to VLV */
156         if (vma->obj->gt_ro)
157                 pte_flags |= PTE_READ_ONLY;
158
159         vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
160                                 cache_level, pte_flags);
161
162         return 0;
163 }
164
165 static void ppgtt_unbind_vma(struct i915_vma *vma)
166 {
167         vma->vm->clear_range(vma->vm,
168                              vma->node.start,
169                              vma->obj->base.size,
170                              true);
171 }
172
173 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
174                                   enum i915_cache_level level,
175                                   bool valid)
176 {
177         gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
178         pte |= addr;
179
180         switch (level) {
181         case I915_CACHE_NONE:
182                 pte |= PPAT_UNCACHED_INDEX;
183                 break;
184         case I915_CACHE_WT:
185                 pte |= PPAT_DISPLAY_ELLC_INDEX;
186                 break;
187         default:
188                 pte |= PPAT_CACHED_INDEX;
189                 break;
190         }
191
192         return pte;
193 }
194
195 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
196                                   const enum i915_cache_level level)
197 {
198         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
199         pde |= addr;
200         if (level != I915_CACHE_NONE)
201                 pde |= PPAT_CACHED_PDE_INDEX;
202         else
203                 pde |= PPAT_UNCACHED_INDEX;
204         return pde;
205 }
206
207 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
208                                  enum i915_cache_level level,
209                                  bool valid, u32 unused)
210 {
211         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
212         pte |= GEN6_PTE_ADDR_ENCODE(addr);
213
214         switch (level) {
215         case I915_CACHE_L3_LLC:
216         case I915_CACHE_LLC:
217                 pte |= GEN6_PTE_CACHE_LLC;
218                 break;
219         case I915_CACHE_NONE:
220                 pte |= GEN6_PTE_UNCACHED;
221                 break;
222         default:
223                 MISSING_CASE(level);
224         }
225
226         return pte;
227 }
228
229 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
230                                  enum i915_cache_level level,
231                                  bool valid, u32 unused)
232 {
233         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
234         pte |= GEN6_PTE_ADDR_ENCODE(addr);
235
236         switch (level) {
237         case I915_CACHE_L3_LLC:
238                 pte |= GEN7_PTE_CACHE_L3_LLC;
239                 break;
240         case I915_CACHE_LLC:
241                 pte |= GEN6_PTE_CACHE_LLC;
242                 break;
243         case I915_CACHE_NONE:
244                 pte |= GEN6_PTE_UNCACHED;
245                 break;
246         default:
247                 MISSING_CASE(level);
248         }
249
250         return pte;
251 }
252
253 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
254                                  enum i915_cache_level level,
255                                  bool valid, u32 flags)
256 {
257         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
258         pte |= GEN6_PTE_ADDR_ENCODE(addr);
259
260         if (!(flags & PTE_READ_ONLY))
261                 pte |= BYT_PTE_WRITEABLE;
262
263         if (level != I915_CACHE_NONE)
264                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
265
266         return pte;
267 }
268
269 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
270                                  enum i915_cache_level level,
271                                  bool valid, u32 unused)
272 {
273         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
274         pte |= HSW_PTE_ADDR_ENCODE(addr);
275
276         if (level != I915_CACHE_NONE)
277                 pte |= HSW_WB_LLC_AGE3;
278
279         return pte;
280 }
281
282 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
283                                   enum i915_cache_level level,
284                                   bool valid, u32 unused)
285 {
286         gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
287         pte |= HSW_PTE_ADDR_ENCODE(addr);
288
289         switch (level) {
290         case I915_CACHE_NONE:
291                 break;
292         case I915_CACHE_WT:
293                 pte |= HSW_WT_ELLC_LLC_AGE3;
294                 break;
295         default:
296                 pte |= HSW_WB_ELLC_LLC_AGE3;
297                 break;
298         }
299
300         return pte;
301 }
302
303 static int __setup_page_dma(struct drm_device *dev,
304                             struct i915_page_dma *p, gfp_t flags)
305 {
306         struct device *device = &dev->pdev->dev;
307
308         p->page = alloc_page(flags);
309         if (!p->page)
310                 return -ENOMEM;
311
312         p->daddr = dma_map_page(device,
313                                 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
314
315         if (dma_mapping_error(device, p->daddr)) {
316                 __free_page(p->page);
317                 return -EINVAL;
318         }
319
320         return 0;
321 }
322
323 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
324 {
325         return __setup_page_dma(dev, p, GFP_KERNEL);
326 }
327
328 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
329 {
330         if (WARN_ON(!p->page))
331                 return;
332
333         dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
334         __free_page(p->page);
335         memset(p, 0, sizeof(*p));
336 }
337
338 static void *kmap_page_dma(struct i915_page_dma *p)
339 {
340         return kmap_atomic(p->page);
341 }
342
343 /* We use the flushing unmap only with ppgtt structures:
344  * page directories, page tables and scratch pages.
345  */
346 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
347 {
348         /* There are only few exceptions for gen >=6. chv and bxt.
349          * And we are not sure about the latter so play safe for now.
350          */
351         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
352                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
353
354         kunmap_atomic(vaddr);
355 }
356
357 #define kmap_px(px) kmap_page_dma(px_base(px))
358 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
359
360 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
361 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
362 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
363 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
364
365 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
366                           const uint64_t val)
367 {
368         int i;
369         uint64_t * const vaddr = kmap_page_dma(p);
370
371         for (i = 0; i < 512; i++)
372                 vaddr[i] = val;
373
374         kunmap_page_dma(dev, vaddr);
375 }
376
377 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
378                              const uint32_t val32)
379 {
380         uint64_t v = val32;
381
382         v = v << 32 | val32;
383
384         fill_page_dma(dev, p, v);
385 }
386
387 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
388 {
389         cleanup_px(dev, pt);
390         kfree(pt->used_ptes);
391         kfree(pt);
392 }
393
394 static void gen8_initialize_pt(struct i915_address_space *vm,
395                                struct i915_page_table *pt)
396 {
397         gen8_pte_t scratch_pte;
398
399         scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
400                                       I915_CACHE_LLC, true);
401
402         fill_px(vm->dev, pt, scratch_pte);
403 }
404
405 static struct i915_page_table *alloc_pt(struct drm_device *dev)
406 {
407         struct i915_page_table *pt;
408         const size_t count = INTEL_INFO(dev)->gen >= 8 ?
409                 GEN8_PTES : GEN6_PTES;
410         int ret = -ENOMEM;
411
412         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
413         if (!pt)
414                 return ERR_PTR(-ENOMEM);
415
416         pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
417                                 GFP_KERNEL);
418
419         if (!pt->used_ptes)
420                 goto fail_bitmap;
421
422         ret = setup_px(dev, pt);
423         if (ret)
424                 goto fail_page_m;
425
426         return pt;
427
428 fail_page_m:
429         kfree(pt->used_ptes);
430 fail_bitmap:
431         kfree(pt);
432
433         return ERR_PTR(ret);
434 }
435
436 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
437 {
438         if (px_page(pd)) {
439                 cleanup_px(dev, pd);
440                 kfree(pd->used_pdes);
441                 kfree(pd);
442         }
443 }
444
445 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
446 {
447         struct i915_page_directory *pd;
448         int ret = -ENOMEM;
449
450         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
451         if (!pd)
452                 return ERR_PTR(-ENOMEM);
453
454         pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
455                                 sizeof(*pd->used_pdes), GFP_KERNEL);
456         if (!pd->used_pdes)
457                 goto fail_bitmap;
458
459         ret = setup_px(dev, pd);
460         if (ret)
461                 goto fail_page_m;
462
463         return pd;
464
465 fail_page_m:
466         kfree(pd->used_pdes);
467 fail_bitmap:
468         kfree(pd);
469
470         return ERR_PTR(ret);
471 }
472
473 /* Broadwell Page Directory Pointer Descriptors */
474 static int gen8_write_pdp(struct drm_i915_gem_request *req,
475                           unsigned entry,
476                           dma_addr_t addr)
477 {
478         struct intel_engine_cs *ring = req->ring;
479         int ret;
480
481         BUG_ON(entry >= 4);
482
483         ret = intel_ring_begin(req, 6);
484         if (ret)
485                 return ret;
486
487         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
488         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
489         intel_ring_emit(ring, upper_32_bits(addr));
490         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
491         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
492         intel_ring_emit(ring, lower_32_bits(addr));
493         intel_ring_advance(ring);
494
495         return 0;
496 }
497
498 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
499                           struct drm_i915_gem_request *req)
500 {
501         int i, ret;
502
503         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
504                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
505
506                 ret = gen8_write_pdp(req, i, pd_daddr);
507                 if (ret)
508                         return ret;
509         }
510
511         return 0;
512 }
513
514 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
515                                    uint64_t start,
516                                    uint64_t length,
517                                    bool use_scratch)
518 {
519         struct i915_hw_ppgtt *ppgtt =
520                 container_of(vm, struct i915_hw_ppgtt, base);
521         gen8_pte_t *pt_vaddr, scratch_pte;
522         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
523         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
524         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
525         unsigned num_entries = length >> PAGE_SHIFT;
526         unsigned last_pte, i;
527
528         scratch_pte = gen8_pte_encode(px_dma(ppgtt->base.scratch_page),
529                                       I915_CACHE_LLC, use_scratch);
530
531         while (num_entries) {
532                 struct i915_page_directory *pd;
533                 struct i915_page_table *pt;
534
535                 if (WARN_ON(!ppgtt->pdp.page_directory[pdpe]))
536                         continue;
537
538                 pd = ppgtt->pdp.page_directory[pdpe];
539
540                 if (WARN_ON(!pd->page_table[pde]))
541                         continue;
542
543                 pt = pd->page_table[pde];
544
545                 if (WARN_ON(!px_page(pt)))
546                         continue;
547
548                 last_pte = pte + num_entries;
549                 if (last_pte > GEN8_PTES)
550                         last_pte = GEN8_PTES;
551
552                 pt_vaddr = kmap_px(pt);
553
554                 for (i = pte; i < last_pte; i++) {
555                         pt_vaddr[i] = scratch_pte;
556                         num_entries--;
557                 }
558
559                 kunmap_px(ppgtt, pt);
560
561                 pte = 0;
562                 if (++pde == I915_PDES) {
563                         pdpe++;
564                         pde = 0;
565                 }
566         }
567 }
568
569 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
570                                       struct sg_table *pages,
571                                       uint64_t start,
572                                       enum i915_cache_level cache_level, u32 unused)
573 {
574         struct i915_hw_ppgtt *ppgtt =
575                 container_of(vm, struct i915_hw_ppgtt, base);
576         gen8_pte_t *pt_vaddr;
577         unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
578         unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
579         unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
580         struct sg_page_iter sg_iter;
581
582         pt_vaddr = NULL;
583
584         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
585                 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES))
586                         break;
587
588                 if (pt_vaddr == NULL) {
589                         struct i915_page_directory *pd = ppgtt->pdp.page_directory[pdpe];
590                         struct i915_page_table *pt = pd->page_table[pde];
591                         pt_vaddr = kmap_px(pt);
592                 }
593
594                 pt_vaddr[pte] =
595                         gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
596                                         cache_level, true);
597                 if (++pte == GEN8_PTES) {
598                         kunmap_px(ppgtt, pt_vaddr);
599                         pt_vaddr = NULL;
600                         if (++pde == I915_PDES) {
601                                 pdpe++;
602                                 pde = 0;
603                         }
604                         pte = 0;
605                 }
606         }
607
608         if (pt_vaddr)
609                 kunmap_px(ppgtt, pt_vaddr);
610 }
611
612 static void gen8_initialize_pd(struct i915_address_space *vm,
613                                struct i915_page_directory *pd)
614 {
615         struct i915_hw_ppgtt *ppgtt =
616                 container_of(vm, struct i915_hw_ppgtt, base);
617         gen8_pde_t scratch_pde;
618
619         scratch_pde = gen8_pde_encode(px_dma(ppgtt->scratch_pt),
620                                       I915_CACHE_LLC);
621
622         fill_px(vm->dev, pd, scratch_pde);
623 }
624
625 static void gen8_free_page_tables(struct i915_page_directory *pd, struct drm_device *dev)
626 {
627         int i;
628
629         if (!px_page(pd))
630                 return;
631
632         for_each_set_bit(i, pd->used_pdes, I915_PDES) {
633                 if (WARN_ON(!pd->page_table[i]))
634                         continue;
635
636                 free_pt(dev, pd->page_table[i]);
637                 pd->page_table[i] = NULL;
638         }
639 }
640
641 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
642 {
643         struct i915_hw_ppgtt *ppgtt =
644                 container_of(vm, struct i915_hw_ppgtt, base);
645         int i;
646
647         for_each_set_bit(i, ppgtt->pdp.used_pdpes, GEN8_LEGACY_PDPES) {
648                 if (WARN_ON(!ppgtt->pdp.page_directory[i]))
649                         continue;
650
651                 gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
652                 free_pd(ppgtt->base.dev, ppgtt->pdp.page_directory[i]);
653         }
654
655         free_pd(ppgtt->base.dev, ppgtt->scratch_pd);
656         free_pt(ppgtt->base.dev, ppgtt->scratch_pt);
657 }
658
659 /**
660  * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
661  * @ppgtt:      Master ppgtt structure.
662  * @pd:         Page directory for this address range.
663  * @start:      Starting virtual address to begin allocations.
664  * @length      Size of the allocations.
665  * @new_pts:    Bitmap set by function with new allocations. Likely used by the
666  *              caller to free on error.
667  *
668  * Allocate the required number of page tables. Extremely similar to
669  * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
670  * the page directory boundary (instead of the page directory pointer). That
671  * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
672  * possible, and likely that the caller will need to use multiple calls of this
673  * function to achieve the appropriate allocation.
674  *
675  * Return: 0 if success; negative error code otherwise.
676  */
677 static int gen8_ppgtt_alloc_pagetabs(struct i915_hw_ppgtt *ppgtt,
678                                      struct i915_page_directory *pd,
679                                      uint64_t start,
680                                      uint64_t length,
681                                      unsigned long *new_pts)
682 {
683         struct drm_device *dev = ppgtt->base.dev;
684         struct i915_page_table *pt;
685         uint64_t temp;
686         uint32_t pde;
687
688         gen8_for_each_pde(pt, pd, start, length, temp, pde) {
689                 /* Don't reallocate page tables */
690                 if (pt) {
691                         /* Scratch is never allocated this way */
692                         WARN_ON(pt == ppgtt->scratch_pt);
693                         continue;
694                 }
695
696                 pt = alloc_pt(dev);
697                 if (IS_ERR(pt))
698                         goto unwind_out;
699
700                 gen8_initialize_pt(&ppgtt->base, pt);
701                 pd->page_table[pde] = pt;
702                 set_bit(pde, new_pts);
703         }
704
705         return 0;
706
707 unwind_out:
708         for_each_set_bit(pde, new_pts, I915_PDES)
709                 free_pt(dev, pd->page_table[pde]);
710
711         return -ENOMEM;
712 }
713
714 /**
715  * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
716  * @ppgtt:      Master ppgtt structure.
717  * @pdp:        Page directory pointer for this address range.
718  * @start:      Starting virtual address to begin allocations.
719  * @length      Size of the allocations.
720  * @new_pds     Bitmap set by function with new allocations. Likely used by the
721  *              caller to free on error.
722  *
723  * Allocate the required number of page directories starting at the pde index of
724  * @start, and ending at the pde index @start + @length. This function will skip
725  * over already allocated page directories within the range, and only allocate
726  * new ones, setting the appropriate pointer within the pdp as well as the
727  * correct position in the bitmap @new_pds.
728  *
729  * The function will only allocate the pages within the range for a give page
730  * directory pointer. In other words, if @start + @length straddles a virtually
731  * addressed PDP boundary (512GB for 4k pages), there will be more allocations
732  * required by the caller, This is not currently possible, and the BUG in the
733  * code will prevent it.
734  *
735  * Return: 0 if success; negative error code otherwise.
736  */
737 static int gen8_ppgtt_alloc_page_directories(struct i915_hw_ppgtt *ppgtt,
738                                      struct i915_page_directory_pointer *pdp,
739                                      uint64_t start,
740                                      uint64_t length,
741                                      unsigned long *new_pds)
742 {
743         struct drm_device *dev = ppgtt->base.dev;
744         struct i915_page_directory *pd;
745         uint64_t temp;
746         uint32_t pdpe;
747
748         WARN_ON(!bitmap_empty(new_pds, GEN8_LEGACY_PDPES));
749
750         gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
751                 if (pd)
752                         continue;
753
754                 pd = alloc_pd(dev);
755                 if (IS_ERR(pd))
756                         goto unwind_out;
757
758                 gen8_initialize_pd(&ppgtt->base, pd);
759                 pdp->page_directory[pdpe] = pd;
760                 set_bit(pdpe, new_pds);
761         }
762
763         return 0;
764
765 unwind_out:
766         for_each_set_bit(pdpe, new_pds, GEN8_LEGACY_PDPES)
767                 free_pd(dev, pdp->page_directory[pdpe]);
768
769         return -ENOMEM;
770 }
771
772 static void
773 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long **new_pts)
774 {
775         int i;
776
777         for (i = 0; i < GEN8_LEGACY_PDPES; i++)
778                 kfree(new_pts[i]);
779         kfree(new_pts);
780         kfree(new_pds);
781 }
782
783 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
784  * of these are based on the number of PDPEs in the system.
785  */
786 static
787 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
788                                          unsigned long ***new_pts)
789 {
790         int i;
791         unsigned long *pds;
792         unsigned long **pts;
793
794         pds = kcalloc(BITS_TO_LONGS(GEN8_LEGACY_PDPES), sizeof(unsigned long), GFP_KERNEL);
795         if (!pds)
796                 return -ENOMEM;
797
798         pts = kcalloc(GEN8_LEGACY_PDPES, sizeof(unsigned long *), GFP_KERNEL);
799         if (!pts) {
800                 kfree(pds);
801                 return -ENOMEM;
802         }
803
804         for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
805                 pts[i] = kcalloc(BITS_TO_LONGS(I915_PDES),
806                                  sizeof(unsigned long), GFP_KERNEL);
807                 if (!pts[i])
808                         goto err_out;
809         }
810
811         *new_pds = pds;
812         *new_pts = pts;
813
814         return 0;
815
816 err_out:
817         free_gen8_temp_bitmaps(pds, pts);
818         return -ENOMEM;
819 }
820
821 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
822  * the page table structures, we mark them dirty so that
823  * context switching/execlist queuing code takes extra steps
824  * to ensure that tlbs are flushed.
825  */
826 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
827 {
828         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
829 }
830
831 static int gen8_alloc_va_range(struct i915_address_space *vm,
832                                uint64_t start,
833                                uint64_t length)
834 {
835         struct i915_hw_ppgtt *ppgtt =
836                 container_of(vm, struct i915_hw_ppgtt, base);
837         unsigned long *new_page_dirs, **new_page_tables;
838         struct i915_page_directory *pd;
839         const uint64_t orig_start = start;
840         const uint64_t orig_length = length;
841         uint64_t temp;
842         uint32_t pdpe;
843         int ret;
844
845         /* Wrap is never okay since we can only represent 48b, and we don't
846          * actually use the other side of the canonical address space.
847          */
848         if (WARN_ON(start + length < start))
849                 return -ENODEV;
850
851         if (WARN_ON(start + length > ppgtt->base.total))
852                 return -ENODEV;
853
854         ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables);
855         if (ret)
856                 return ret;
857
858         /* Do the allocations first so we can easily bail out */
859         ret = gen8_ppgtt_alloc_page_directories(ppgtt, &ppgtt->pdp, start, length,
860                                         new_page_dirs);
861         if (ret) {
862                 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
863                 return ret;
864         }
865
866         /* For every page directory referenced, allocate page tables */
867         gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
868                 ret = gen8_ppgtt_alloc_pagetabs(ppgtt, pd, start, length,
869                                                 new_page_tables[pdpe]);
870                 if (ret)
871                         goto err_out;
872         }
873
874         start = orig_start;
875         length = orig_length;
876
877         /* Allocations have completed successfully, so set the bitmaps, and do
878          * the mappings. */
879         gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
880                 gen8_pde_t *const page_directory = kmap_px(pd);
881                 struct i915_page_table *pt;
882                 uint64_t pd_len = gen8_clamp_pd(start, length);
883                 uint64_t pd_start = start;
884                 uint32_t pde;
885
886                 /* Every pd should be allocated, we just did that above. */
887                 WARN_ON(!pd);
888
889                 gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
890                         /* Same reasoning as pd */
891                         WARN_ON(!pt);
892                         WARN_ON(!pd_len);
893                         WARN_ON(!gen8_pte_count(pd_start, pd_len));
894
895                         /* Set our used ptes within the page table */
896                         bitmap_set(pt->used_ptes,
897                                    gen8_pte_index(pd_start),
898                                    gen8_pte_count(pd_start, pd_len));
899
900                         /* Our pde is now pointing to the pagetable, pt */
901                         set_bit(pde, pd->used_pdes);
902
903                         /* Map the PDE to the page table */
904                         page_directory[pde] = gen8_pde_encode(px_dma(pt),
905                                                               I915_CACHE_LLC);
906
907                         /* NB: We haven't yet mapped ptes to pages. At this
908                          * point we're still relying on insert_entries() */
909                 }
910
911                 kunmap_px(ppgtt, page_directory);
912
913                 set_bit(pdpe, ppgtt->pdp.used_pdpes);
914         }
915
916         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
917         mark_tlbs_dirty(ppgtt);
918         return 0;
919
920 err_out:
921         while (pdpe--) {
922                 for_each_set_bit(temp, new_page_tables[pdpe], I915_PDES)
923                         free_pt(vm->dev, ppgtt->pdp.page_directory[pdpe]->page_table[temp]);
924         }
925
926         for_each_set_bit(pdpe, new_page_dirs, GEN8_LEGACY_PDPES)
927                 free_pd(vm->dev, ppgtt->pdp.page_directory[pdpe]);
928
929         free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
930         mark_tlbs_dirty(ppgtt);
931         return ret;
932 }
933
934 /*
935  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
936  * with a net effect resembling a 2-level page table in normal x86 terms. Each
937  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
938  * space.
939  *
940  */
941 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
942 {
943         ppgtt->scratch_pt = alloc_pt(ppgtt->base.dev);
944         if (IS_ERR(ppgtt->scratch_pt))
945                 return PTR_ERR(ppgtt->scratch_pt);
946
947         ppgtt->scratch_pd = alloc_pd(ppgtt->base.dev);
948         if (IS_ERR(ppgtt->scratch_pd))
949                 return PTR_ERR(ppgtt->scratch_pd);
950
951         gen8_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
952         gen8_initialize_pd(&ppgtt->base, ppgtt->scratch_pd);
953
954         ppgtt->base.start = 0;
955         ppgtt->base.total = 1ULL << 32;
956         if (IS_ENABLED(CONFIG_X86_32))
957                 /* While we have a proliferation of size_t variables
958                  * we cannot represent the full ppgtt size on 32bit,
959                  * so limit it to the same size as the GGTT (currently
960                  * 2GiB).
961                  */
962                 ppgtt->base.total = to_i915(ppgtt->base.dev)->gtt.base.total;
963         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
964         ppgtt->base.allocate_va_range = gen8_alloc_va_range;
965         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
966         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
967         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
968         ppgtt->base.bind_vma = ppgtt_bind_vma;
969
970         ppgtt->switch_mm = gen8_mm_switch;
971
972         return 0;
973 }
974
975 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
976 {
977         struct i915_address_space *vm = &ppgtt->base;
978         struct i915_page_table *unused;
979         gen6_pte_t scratch_pte;
980         uint32_t pd_entry;
981         uint32_t  pte, pde, temp;
982         uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
983
984         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page), I915_CACHE_LLC, true, 0);
985
986         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
987                 u32 expected;
988                 gen6_pte_t *pt_vaddr;
989                 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
990                 pd_entry = readl(ppgtt->pd_addr + pde);
991                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
992
993                 if (pd_entry != expected)
994                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
995                                    pde,
996                                    pd_entry,
997                                    expected);
998                 seq_printf(m, "\tPDE: %x\n", pd_entry);
999
1000                 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1001
1002                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1003                         unsigned long va =
1004                                 (pde * PAGE_SIZE * GEN6_PTES) +
1005                                 (pte * PAGE_SIZE);
1006                         int i;
1007                         bool found = false;
1008                         for (i = 0; i < 4; i++)
1009                                 if (pt_vaddr[pte + i] != scratch_pte)
1010                                         found = true;
1011                         if (!found)
1012                                 continue;
1013
1014                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1015                         for (i = 0; i < 4; i++) {
1016                                 if (pt_vaddr[pte + i] != scratch_pte)
1017                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
1018                                 else
1019                                         seq_puts(m, "  SCRATCH ");
1020                         }
1021                         seq_puts(m, "\n");
1022                 }
1023                 kunmap_px(ppgtt, pt_vaddr);
1024         }
1025 }
1026
1027 /* Write pde (index) from the page directory @pd to the page table @pt */
1028 static void gen6_write_pde(struct i915_page_directory *pd,
1029                             const int pde, struct i915_page_table *pt)
1030 {
1031         /* Caller needs to make sure the write completes if necessary */
1032         struct i915_hw_ppgtt *ppgtt =
1033                 container_of(pd, struct i915_hw_ppgtt, pd);
1034         u32 pd_entry;
1035
1036         pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1037         pd_entry |= GEN6_PDE_VALID;
1038
1039         writel(pd_entry, ppgtt->pd_addr + pde);
1040 }
1041
1042 /* Write all the page tables found in the ppgtt structure to incrementing page
1043  * directories. */
1044 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1045                                   struct i915_page_directory *pd,
1046                                   uint32_t start, uint32_t length)
1047 {
1048         struct i915_page_table *pt;
1049         uint32_t pde, temp;
1050
1051         gen6_for_each_pde(pt, pd, start, length, temp, pde)
1052                 gen6_write_pde(pd, pde, pt);
1053
1054         /* Make sure write is complete before other code can use this page
1055          * table. Also require for WC mapped PTEs */
1056         readl(dev_priv->gtt.gsm);
1057 }
1058
1059 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1060 {
1061         BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1062
1063         return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1064 }
1065
1066 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1067                          struct drm_i915_gem_request *req)
1068 {
1069         struct intel_engine_cs *ring = req->ring;
1070         int ret;
1071
1072         /* NB: TLBs must be flushed and invalidated before a switch */
1073         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1074         if (ret)
1075                 return ret;
1076
1077         ret = intel_ring_begin(req, 6);
1078         if (ret)
1079                 return ret;
1080
1081         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1082         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1083         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1084         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1085         intel_ring_emit(ring, get_pd_offset(ppgtt));
1086         intel_ring_emit(ring, MI_NOOP);
1087         intel_ring_advance(ring);
1088
1089         return 0;
1090 }
1091
1092 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1093                           struct drm_i915_gem_request *req)
1094 {
1095         struct intel_engine_cs *ring = req->ring;
1096         struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1097
1098         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1099         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1100         return 0;
1101 }
1102
1103 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1104                           struct drm_i915_gem_request *req)
1105 {
1106         struct intel_engine_cs *ring = req->ring;
1107         int ret;
1108
1109         /* NB: TLBs must be flushed and invalidated before a switch */
1110         ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1111         if (ret)
1112                 return ret;
1113
1114         ret = intel_ring_begin(req, 6);
1115         if (ret)
1116                 return ret;
1117
1118         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1119         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1120         intel_ring_emit(ring, PP_DIR_DCLV_2G);
1121         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1122         intel_ring_emit(ring, get_pd_offset(ppgtt));
1123         intel_ring_emit(ring, MI_NOOP);
1124         intel_ring_advance(ring);
1125
1126         /* XXX: RCS is the only one to auto invalidate the TLBs? */
1127         if (ring->id != RCS) {
1128                 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1129                 if (ret)
1130                         return ret;
1131         }
1132
1133         return 0;
1134 }
1135
1136 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1137                           struct drm_i915_gem_request *req)
1138 {
1139         struct intel_engine_cs *ring = req->ring;
1140         struct drm_device *dev = ppgtt->base.dev;
1141         struct drm_i915_private *dev_priv = dev->dev_private;
1142
1143
1144         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1145         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1146
1147         POSTING_READ(RING_PP_DIR_DCLV(ring));
1148
1149         return 0;
1150 }
1151
1152 static void gen8_ppgtt_enable(struct drm_device *dev)
1153 {
1154         struct drm_i915_private *dev_priv = dev->dev_private;
1155         struct intel_engine_cs *ring;
1156         int j;
1157
1158         for_each_ring(ring, dev_priv, j) {
1159                 I915_WRITE(RING_MODE_GEN7(ring),
1160                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1161         }
1162 }
1163
1164 static void gen7_ppgtt_enable(struct drm_device *dev)
1165 {
1166         struct drm_i915_private *dev_priv = dev->dev_private;
1167         struct intel_engine_cs *ring;
1168         uint32_t ecochk, ecobits;
1169         int i;
1170
1171         ecobits = I915_READ(GAC_ECO_BITS);
1172         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1173
1174         ecochk = I915_READ(GAM_ECOCHK);
1175         if (IS_HASWELL(dev)) {
1176                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1177         } else {
1178                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1179                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1180         }
1181         I915_WRITE(GAM_ECOCHK, ecochk);
1182
1183         for_each_ring(ring, dev_priv, i) {
1184                 /* GFX_MODE is per-ring on gen7+ */
1185                 I915_WRITE(RING_MODE_GEN7(ring),
1186                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1187         }
1188 }
1189
1190 static void gen6_ppgtt_enable(struct drm_device *dev)
1191 {
1192         struct drm_i915_private *dev_priv = dev->dev_private;
1193         uint32_t ecochk, gab_ctl, ecobits;
1194
1195         ecobits = I915_READ(GAC_ECO_BITS);
1196         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1197                    ECOBITS_PPGTT_CACHE64B);
1198
1199         gab_ctl = I915_READ(GAB_CTL);
1200         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1201
1202         ecochk = I915_READ(GAM_ECOCHK);
1203         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1204
1205         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1206 }
1207
1208 /* PPGTT support for Sandybdrige/Gen6 and later */
1209 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1210                                    uint64_t start,
1211                                    uint64_t length,
1212                                    bool use_scratch)
1213 {
1214         struct i915_hw_ppgtt *ppgtt =
1215                 container_of(vm, struct i915_hw_ppgtt, base);
1216         gen6_pte_t *pt_vaddr, scratch_pte;
1217         unsigned first_entry = start >> PAGE_SHIFT;
1218         unsigned num_entries = length >> PAGE_SHIFT;
1219         unsigned act_pt = first_entry / GEN6_PTES;
1220         unsigned first_pte = first_entry % GEN6_PTES;
1221         unsigned last_pte, i;
1222
1223         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1224                                      I915_CACHE_LLC, true, 0);
1225
1226         while (num_entries) {
1227                 last_pte = first_pte + num_entries;
1228                 if (last_pte > GEN6_PTES)
1229                         last_pte = GEN6_PTES;
1230
1231                 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1232
1233                 for (i = first_pte; i < last_pte; i++)
1234                         pt_vaddr[i] = scratch_pte;
1235
1236                 kunmap_px(ppgtt, pt_vaddr);
1237
1238                 num_entries -= last_pte - first_pte;
1239                 first_pte = 0;
1240                 act_pt++;
1241         }
1242 }
1243
1244 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1245                                       struct sg_table *pages,
1246                                       uint64_t start,
1247                                       enum i915_cache_level cache_level, u32 flags)
1248 {
1249         struct i915_hw_ppgtt *ppgtt =
1250                 container_of(vm, struct i915_hw_ppgtt, base);
1251         gen6_pte_t *pt_vaddr;
1252         unsigned first_entry = start >> PAGE_SHIFT;
1253         unsigned act_pt = first_entry / GEN6_PTES;
1254         unsigned act_pte = first_entry % GEN6_PTES;
1255         struct sg_page_iter sg_iter;
1256
1257         pt_vaddr = NULL;
1258         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1259                 if (pt_vaddr == NULL)
1260                         pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1261
1262                 pt_vaddr[act_pte] =
1263                         vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1264                                        cache_level, true, flags);
1265
1266                 if (++act_pte == GEN6_PTES) {
1267                         kunmap_px(ppgtt, pt_vaddr);
1268                         pt_vaddr = NULL;
1269                         act_pt++;
1270                         act_pte = 0;
1271                 }
1272         }
1273         if (pt_vaddr)
1274                 kunmap_px(ppgtt, pt_vaddr);
1275 }
1276
1277 static void gen6_initialize_pt(struct i915_address_space *vm,
1278                                struct i915_page_table *pt)
1279 {
1280         gen6_pte_t scratch_pte;
1281
1282         WARN_ON(px_dma(vm->scratch_page) == 0);
1283
1284         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1285                                      I915_CACHE_LLC, true, 0);
1286
1287         fill32_px(vm->dev, pt, scratch_pte);
1288 }
1289
1290 static int gen6_alloc_va_range(struct i915_address_space *vm,
1291                                uint64_t start_in, uint64_t length_in)
1292 {
1293         DECLARE_BITMAP(new_page_tables, I915_PDES);
1294         struct drm_device *dev = vm->dev;
1295         struct drm_i915_private *dev_priv = dev->dev_private;
1296         struct i915_hw_ppgtt *ppgtt =
1297                                 container_of(vm, struct i915_hw_ppgtt, base);
1298         struct i915_page_table *pt;
1299         uint32_t start, length, start_save, length_save;
1300         uint32_t pde, temp;
1301         int ret;
1302
1303         if (WARN_ON(start_in + length_in > ppgtt->base.total))
1304                 return -ENODEV;
1305
1306         start = start_save = start_in;
1307         length = length_save = length_in;
1308
1309         bitmap_zero(new_page_tables, I915_PDES);
1310
1311         /* The allocation is done in two stages so that we can bail out with
1312          * minimal amount of pain. The first stage finds new page tables that
1313          * need allocation. The second stage marks use ptes within the page
1314          * tables.
1315          */
1316         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1317                 if (pt != ppgtt->scratch_pt) {
1318                         WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1319                         continue;
1320                 }
1321
1322                 /* We've already allocated a page table */
1323                 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1324
1325                 pt = alloc_pt(dev);
1326                 if (IS_ERR(pt)) {
1327                         ret = PTR_ERR(pt);
1328                         goto unwind_out;
1329                 }
1330
1331                 gen6_initialize_pt(vm, pt);
1332
1333                 ppgtt->pd.page_table[pde] = pt;
1334                 set_bit(pde, new_page_tables);
1335                 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1336         }
1337
1338         start = start_save;
1339         length = length_save;
1340
1341         gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1342                 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1343
1344                 bitmap_zero(tmp_bitmap, GEN6_PTES);
1345                 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1346                            gen6_pte_count(start, length));
1347
1348                 if (test_and_clear_bit(pde, new_page_tables))
1349                         gen6_write_pde(&ppgtt->pd, pde, pt);
1350
1351                 trace_i915_page_table_entry_map(vm, pde, pt,
1352                                          gen6_pte_index(start),
1353                                          gen6_pte_count(start, length),
1354                                          GEN6_PTES);
1355                 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1356                                 GEN6_PTES);
1357         }
1358
1359         WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1360
1361         /* Make sure write is complete before other code can use this page
1362          * table. Also require for WC mapped PTEs */
1363         readl(dev_priv->gtt.gsm);
1364
1365         mark_tlbs_dirty(ppgtt);
1366         return 0;
1367
1368 unwind_out:
1369         for_each_set_bit(pde, new_page_tables, I915_PDES) {
1370                 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1371
1372                 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1373                 free_pt(vm->dev, pt);
1374         }
1375
1376         mark_tlbs_dirty(ppgtt);
1377         return ret;
1378 }
1379
1380 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1381 {
1382         struct i915_hw_ppgtt *ppgtt =
1383                 container_of(vm, struct i915_hw_ppgtt, base);
1384         struct i915_page_table *pt;
1385         uint32_t pde;
1386
1387
1388         drm_mm_remove_node(&ppgtt->node);
1389
1390         gen6_for_all_pdes(pt, ppgtt, pde) {
1391                 if (pt != ppgtt->scratch_pt)
1392                         free_pt(ppgtt->base.dev, pt);
1393         }
1394
1395         free_pt(ppgtt->base.dev, ppgtt->scratch_pt);
1396 }
1397
1398 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1399 {
1400         struct drm_device *dev = ppgtt->base.dev;
1401         struct drm_i915_private *dev_priv = dev->dev_private;
1402         bool retried = false;
1403         int ret;
1404
1405         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1406          * allocator works in address space sizes, so it's multiplied by page
1407          * size. We allocate at the top of the GTT to avoid fragmentation.
1408          */
1409         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1410         ppgtt->scratch_pt = alloc_pt(ppgtt->base.dev);
1411         if (IS_ERR(ppgtt->scratch_pt))
1412                 return PTR_ERR(ppgtt->scratch_pt);
1413
1414         gen6_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
1415
1416 alloc:
1417         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1418                                                   &ppgtt->node, GEN6_PD_SIZE,
1419                                                   GEN6_PD_ALIGN, 0,
1420                                                   0, dev_priv->gtt.base.total,
1421                                                   DRM_MM_TOPDOWN);
1422         if (ret == -ENOSPC && !retried) {
1423                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1424                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
1425                                                I915_CACHE_NONE,
1426                                                0, dev_priv->gtt.base.total,
1427                                                0);
1428                 if (ret)
1429                         goto err_out;
1430
1431                 retried = true;
1432                 goto alloc;
1433         }
1434
1435         if (ret)
1436                 goto err_out;
1437
1438
1439         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1440                 DRM_DEBUG("Forced to use aperture for PDEs\n");
1441
1442         return 0;
1443
1444 err_out:
1445         free_pt(ppgtt->base.dev, ppgtt->scratch_pt);
1446         return ret;
1447 }
1448
1449 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1450 {
1451         return gen6_ppgtt_allocate_page_directories(ppgtt);
1452 }
1453
1454 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1455                                   uint64_t start, uint64_t length)
1456 {
1457         struct i915_page_table *unused;
1458         uint32_t pde, temp;
1459
1460         gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
1461                 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1462 }
1463
1464 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1465 {
1466         struct drm_device *dev = ppgtt->base.dev;
1467         struct drm_i915_private *dev_priv = dev->dev_private;
1468         int ret;
1469
1470         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1471         if (IS_GEN6(dev)) {
1472                 ppgtt->switch_mm = gen6_mm_switch;
1473         } else if (IS_HASWELL(dev)) {
1474                 ppgtt->switch_mm = hsw_mm_switch;
1475         } else if (IS_GEN7(dev)) {
1476                 ppgtt->switch_mm = gen7_mm_switch;
1477         } else
1478                 BUG();
1479
1480         if (intel_vgpu_active(dev))
1481                 ppgtt->switch_mm = vgpu_mm_switch;
1482
1483         ret = gen6_ppgtt_alloc(ppgtt);
1484         if (ret)
1485                 return ret;
1486
1487         ppgtt->base.allocate_va_range = gen6_alloc_va_range;
1488         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1489         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1490         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1491         ppgtt->base.bind_vma = ppgtt_bind_vma;
1492         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1493         ppgtt->base.start = 0;
1494         ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1495         ppgtt->debug_dump = gen6_dump_ppgtt;
1496
1497         ppgtt->pd.base.ggtt_offset =
1498                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1499
1500         ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
1501                 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
1502
1503         gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1504
1505         gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
1506
1507         DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1508                          ppgtt->node.size >> 20,
1509                          ppgtt->node.start / PAGE_SIZE);
1510
1511         DRM_DEBUG("Adding PPGTT at offset %x\n",
1512                   ppgtt->pd.base.ggtt_offset << 10);
1513
1514         return 0;
1515 }
1516
1517 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1518 {
1519         struct drm_i915_private *dev_priv = dev->dev_private;
1520
1521         ppgtt->base.dev = dev;
1522         ppgtt->base.scratch_page = dev_priv->gtt.base.scratch_page;
1523
1524         if (INTEL_INFO(dev)->gen < 8)
1525                 return gen6_ppgtt_init(ppgtt);
1526         else
1527                 return gen8_ppgtt_init(ppgtt);
1528 }
1529
1530 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1531 {
1532         struct drm_i915_private *dev_priv = dev->dev_private;
1533         int ret = 0;
1534
1535         ret = __hw_ppgtt_init(dev, ppgtt);
1536         if (ret == 0) {
1537                 kref_init(&ppgtt->ref);
1538                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1539                             ppgtt->base.total);
1540                 i915_init_vm(dev_priv, &ppgtt->base);
1541         }
1542
1543         return ret;
1544 }
1545
1546 int i915_ppgtt_init_hw(struct drm_device *dev)
1547 {
1548         /* In the case of execlists, PPGTT is enabled by the context descriptor
1549          * and the PDPs are contained within the context itself.  We don't
1550          * need to do anything here. */
1551         if (i915.enable_execlists)
1552                 return 0;
1553
1554         if (!USES_PPGTT(dev))
1555                 return 0;
1556
1557         if (IS_GEN6(dev))
1558                 gen6_ppgtt_enable(dev);
1559         else if (IS_GEN7(dev))
1560                 gen7_ppgtt_enable(dev);
1561         else if (INTEL_INFO(dev)->gen >= 8)
1562                 gen8_ppgtt_enable(dev);
1563         else
1564                 MISSING_CASE(INTEL_INFO(dev)->gen);
1565
1566         return 0;
1567 }
1568
1569 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
1570 {
1571         struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
1572         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1573
1574         if (i915.enable_execlists)
1575                 return 0;
1576
1577         if (!ppgtt)
1578                 return 0;
1579
1580         return ppgtt->switch_mm(ppgtt, req);
1581 }
1582
1583 struct i915_hw_ppgtt *
1584 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1585 {
1586         struct i915_hw_ppgtt *ppgtt;
1587         int ret;
1588
1589         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1590         if (!ppgtt)
1591                 return ERR_PTR(-ENOMEM);
1592
1593         ret = i915_ppgtt_init(dev, ppgtt);
1594         if (ret) {
1595                 kfree(ppgtt);
1596                 return ERR_PTR(ret);
1597         }
1598
1599         ppgtt->file_priv = fpriv;
1600
1601         trace_i915_ppgtt_create(&ppgtt->base);
1602
1603         return ppgtt;
1604 }
1605
1606 void  i915_ppgtt_release(struct kref *kref)
1607 {
1608         struct i915_hw_ppgtt *ppgtt =
1609                 container_of(kref, struct i915_hw_ppgtt, ref);
1610
1611         trace_i915_ppgtt_release(&ppgtt->base);
1612
1613         /* vmas should already be unbound */
1614         WARN_ON(!list_empty(&ppgtt->base.active_list));
1615         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1616
1617         list_del(&ppgtt->base.global_link);
1618         drm_mm_takedown(&ppgtt->base.mm);
1619
1620         ppgtt->base.cleanup(&ppgtt->base);
1621         kfree(ppgtt);
1622 }
1623
1624 extern int intel_iommu_gfx_mapped;
1625 /* Certain Gen5 chipsets require require idling the GPU before
1626  * unmapping anything from the GTT when VT-d is enabled.
1627  */
1628 static bool needs_idle_maps(struct drm_device *dev)
1629 {
1630 #ifdef CONFIG_INTEL_IOMMU
1631         /* Query intel_iommu to see if we need the workaround. Presumably that
1632          * was loaded first.
1633          */
1634         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1635                 return true;
1636 #endif
1637         return false;
1638 }
1639
1640 static bool do_idling(struct drm_i915_private *dev_priv)
1641 {
1642         bool ret = dev_priv->mm.interruptible;
1643
1644         if (unlikely(dev_priv->gtt.do_idle_maps)) {
1645                 dev_priv->mm.interruptible = false;
1646                 if (i915_gpu_idle(dev_priv->dev)) {
1647                         DRM_ERROR("Couldn't idle GPU\n");
1648                         /* Wait a bit, in hopes it avoids the hang */
1649                         udelay(10);
1650                 }
1651         }
1652
1653         return ret;
1654 }
1655
1656 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1657 {
1658         if (unlikely(dev_priv->gtt.do_idle_maps))
1659                 dev_priv->mm.interruptible = interruptible;
1660 }
1661
1662 void i915_check_and_clear_faults(struct drm_device *dev)
1663 {
1664         struct drm_i915_private *dev_priv = dev->dev_private;
1665         struct intel_engine_cs *ring;
1666         int i;
1667
1668         if (INTEL_INFO(dev)->gen < 6)
1669                 return;
1670
1671         for_each_ring(ring, dev_priv, i) {
1672                 u32 fault_reg;
1673                 fault_reg = I915_READ(RING_FAULT_REG(ring));
1674                 if (fault_reg & RING_FAULT_VALID) {
1675                         DRM_DEBUG_DRIVER("Unexpected fault\n"
1676                                          "\tAddr: 0x%08lx\n"
1677                                          "\tAddress space: %s\n"
1678                                          "\tSource ID: %d\n"
1679                                          "\tType: %d\n",
1680                                          fault_reg & PAGE_MASK,
1681                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1682                                          RING_FAULT_SRCID(fault_reg),
1683                                          RING_FAULT_FAULT_TYPE(fault_reg));
1684                         I915_WRITE(RING_FAULT_REG(ring),
1685                                    fault_reg & ~RING_FAULT_VALID);
1686                 }
1687         }
1688         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1689 }
1690
1691 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1692 {
1693         if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1694                 intel_gtt_chipset_flush();
1695         } else {
1696                 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1697                 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1698         }
1699 }
1700
1701 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1702 {
1703         struct drm_i915_private *dev_priv = dev->dev_private;
1704
1705         /* Don't bother messing with faults pre GEN6 as we have little
1706          * documentation supporting that it's a good idea.
1707          */
1708         if (INTEL_INFO(dev)->gen < 6)
1709                 return;
1710
1711         i915_check_and_clear_faults(dev);
1712
1713         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1714                                        dev_priv->gtt.base.start,
1715                                        dev_priv->gtt.base.total,
1716                                        true);
1717
1718         i915_ggtt_flush(dev_priv);
1719 }
1720
1721 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1722 {
1723         if (obj->has_dma_mapping)
1724                 return 0;
1725
1726         if (!dma_map_sg(&obj->base.dev->pdev->dev,
1727                         obj->pages->sgl, obj->pages->nents,
1728                         PCI_DMA_BIDIRECTIONAL))
1729                 return -ENOSPC;
1730
1731         return 0;
1732 }
1733
1734 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
1735 {
1736 #ifdef writeq
1737         writeq(pte, addr);
1738 #else
1739         iowrite32((u32)pte, addr);
1740         iowrite32(pte >> 32, addr + 4);
1741 #endif
1742 }
1743
1744 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1745                                      struct sg_table *st,
1746                                      uint64_t start,
1747                                      enum i915_cache_level level, u32 unused)
1748 {
1749         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1750         unsigned first_entry = start >> PAGE_SHIFT;
1751         gen8_pte_t __iomem *gtt_entries =
1752                 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1753         int i = 0;
1754         struct sg_page_iter sg_iter;
1755         dma_addr_t addr = 0; /* shut up gcc */
1756
1757         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1758                 addr = sg_dma_address(sg_iter.sg) +
1759                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
1760                 gen8_set_pte(&gtt_entries[i],
1761                              gen8_pte_encode(addr, level, true));
1762                 i++;
1763         }
1764
1765         /*
1766          * XXX: This serves as a posting read to make sure that the PTE has
1767          * actually been updated. There is some concern that even though
1768          * registers and PTEs are within the same BAR that they are potentially
1769          * of NUMA access patterns. Therefore, even with the way we assume
1770          * hardware should work, we must keep this posting read for paranoia.
1771          */
1772         if (i != 0)
1773                 WARN_ON(readq(&gtt_entries[i-1])
1774                         != gen8_pte_encode(addr, level, true));
1775
1776         /* This next bit makes the above posting read even more important. We
1777          * want to flush the TLBs only after we're certain all the PTE updates
1778          * have finished.
1779          */
1780         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1781         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1782 }
1783
1784 /*
1785  * Binds an object into the global gtt with the specified cache level. The object
1786  * will be accessible to the GPU via commands whose operands reference offsets
1787  * within the global GTT as well as accessible by the GPU through the GMADR
1788  * mapped BAR (dev_priv->mm.gtt->gtt).
1789  */
1790 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1791                                      struct sg_table *st,
1792                                      uint64_t start,
1793                                      enum i915_cache_level level, u32 flags)
1794 {
1795         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1796         unsigned first_entry = start >> PAGE_SHIFT;
1797         gen6_pte_t __iomem *gtt_entries =
1798                 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1799         int i = 0;
1800         struct sg_page_iter sg_iter;
1801         dma_addr_t addr = 0;
1802
1803         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1804                 addr = sg_page_iter_dma_address(&sg_iter);
1805                 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1806                 i++;
1807         }
1808
1809         /* XXX: This serves as a posting read to make sure that the PTE has
1810          * actually been updated. There is some concern that even though
1811          * registers and PTEs are within the same BAR that they are potentially
1812          * of NUMA access patterns. Therefore, even with the way we assume
1813          * hardware should work, we must keep this posting read for paranoia.
1814          */
1815         if (i != 0) {
1816                 unsigned long gtt = readl(&gtt_entries[i-1]);
1817                 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1818         }
1819
1820         /* This next bit makes the above posting read even more important. We
1821          * want to flush the TLBs only after we're certain all the PTE updates
1822          * have finished.
1823          */
1824         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1825         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1826 }
1827
1828 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1829                                   uint64_t start,
1830                                   uint64_t length,
1831                                   bool use_scratch)
1832 {
1833         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1834         unsigned first_entry = start >> PAGE_SHIFT;
1835         unsigned num_entries = length >> PAGE_SHIFT;
1836         gen8_pte_t scratch_pte, __iomem *gtt_base =
1837                 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1838         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1839         int i;
1840
1841         if (WARN(num_entries > max_entries,
1842                  "First entry = %d; Num entries = %d (max=%d)\n",
1843                  first_entry, num_entries, max_entries))
1844                 num_entries = max_entries;
1845
1846         scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1847                                       I915_CACHE_LLC,
1848                                       use_scratch);
1849         for (i = 0; i < num_entries; i++)
1850                 gen8_set_pte(&gtt_base[i], scratch_pte);
1851         readl(gtt_base);
1852 }
1853
1854 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1855                                   uint64_t start,
1856                                   uint64_t length,
1857                                   bool use_scratch)
1858 {
1859         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1860         unsigned first_entry = start >> PAGE_SHIFT;
1861         unsigned num_entries = length >> PAGE_SHIFT;
1862         gen6_pte_t scratch_pte, __iomem *gtt_base =
1863                 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1864         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1865         int i;
1866
1867         if (WARN(num_entries > max_entries,
1868                  "First entry = %d; Num entries = %d (max=%d)\n",
1869                  first_entry, num_entries, max_entries))
1870                 num_entries = max_entries;
1871
1872         scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1873                                      I915_CACHE_LLC, use_scratch, 0);
1874
1875         for (i = 0; i < num_entries; i++)
1876                 iowrite32(scratch_pte, &gtt_base[i]);
1877         readl(gtt_base);
1878 }
1879
1880 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
1881                                      struct sg_table *pages,
1882                                      uint64_t start,
1883                                      enum i915_cache_level cache_level, u32 unused)
1884 {
1885         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1886                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1887
1888         intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
1889
1890 }
1891
1892 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1893                                   uint64_t start,
1894                                   uint64_t length,
1895                                   bool unused)
1896 {
1897         unsigned first_entry = start >> PAGE_SHIFT;
1898         unsigned num_entries = length >> PAGE_SHIFT;
1899         intel_gtt_clear_range(first_entry, num_entries);
1900 }
1901
1902 static int ggtt_bind_vma(struct i915_vma *vma,
1903                          enum i915_cache_level cache_level,
1904                          u32 flags)
1905 {
1906         struct drm_device *dev = vma->vm->dev;
1907         struct drm_i915_private *dev_priv = dev->dev_private;
1908         struct drm_i915_gem_object *obj = vma->obj;
1909         struct sg_table *pages = obj->pages;
1910         u32 pte_flags = 0;
1911         int ret;
1912
1913         ret = i915_get_ggtt_vma_pages(vma);
1914         if (ret)
1915                 return ret;
1916         pages = vma->ggtt_view.pages;
1917
1918         /* Currently applicable only to VLV */
1919         if (obj->gt_ro)
1920                 pte_flags |= PTE_READ_ONLY;
1921
1922
1923         if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1924                 vma->vm->insert_entries(vma->vm, pages,
1925                                         vma->node.start,
1926                                         cache_level, pte_flags);
1927         }
1928
1929         if (dev_priv->mm.aliasing_ppgtt && flags & LOCAL_BIND) {
1930                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1931                 appgtt->base.insert_entries(&appgtt->base, pages,
1932                                             vma->node.start,
1933                                             cache_level, pte_flags);
1934         }
1935
1936         return 0;
1937 }
1938
1939 static void ggtt_unbind_vma(struct i915_vma *vma)
1940 {
1941         struct drm_device *dev = vma->vm->dev;
1942         struct drm_i915_private *dev_priv = dev->dev_private;
1943         struct drm_i915_gem_object *obj = vma->obj;
1944         const uint64_t size = min_t(uint64_t,
1945                                     obj->base.size,
1946                                     vma->node.size);
1947
1948         if (vma->bound & GLOBAL_BIND) {
1949                 vma->vm->clear_range(vma->vm,
1950                                      vma->node.start,
1951                                      size,
1952                                      true);
1953         }
1954
1955         if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
1956                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1957
1958                 appgtt->base.clear_range(&appgtt->base,
1959                                          vma->node.start,
1960                                          size,
1961                                          true);
1962         }
1963 }
1964
1965 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1966 {
1967         struct drm_device *dev = obj->base.dev;
1968         struct drm_i915_private *dev_priv = dev->dev_private;
1969         bool interruptible;
1970
1971         interruptible = do_idling(dev_priv);
1972
1973         if (!obj->has_dma_mapping)
1974                 dma_unmap_sg(&dev->pdev->dev,
1975                              obj->pages->sgl, obj->pages->nents,
1976                              PCI_DMA_BIDIRECTIONAL);
1977
1978         undo_idling(dev_priv, interruptible);
1979 }
1980
1981 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1982                                   unsigned long color,
1983                                   u64 *start,
1984                                   u64 *end)
1985 {
1986         if (node->color != color)
1987                 *start += 4096;
1988
1989         if (!list_empty(&node->node_list)) {
1990                 node = list_entry(node->node_list.next,
1991                                   struct drm_mm_node,
1992                                   node_list);
1993                 if (node->allocated && node->color != color)
1994                         *end -= 4096;
1995         }
1996 }
1997
1998 static int i915_gem_setup_global_gtt(struct drm_device *dev,
1999                                      unsigned long start,
2000                                      unsigned long mappable_end,
2001                                      unsigned long end)
2002 {
2003         /* Let GEM Manage all of the aperture.
2004          *
2005          * However, leave one page at the end still bound to the scratch page.
2006          * There are a number of places where the hardware apparently prefetches
2007          * past the end of the object, and we've seen multiple hangs with the
2008          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2009          * aperture.  One page should be enough to keep any prefetching inside
2010          * of the aperture.
2011          */
2012         struct drm_i915_private *dev_priv = dev->dev_private;
2013         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2014         struct drm_mm_node *entry;
2015         struct drm_i915_gem_object *obj;
2016         unsigned long hole_start, hole_end;
2017         int ret;
2018
2019         BUG_ON(mappable_end > end);
2020
2021         /* Subtract the guard page ... */
2022         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
2023
2024         dev_priv->gtt.base.start = start;
2025         dev_priv->gtt.base.total = end - start;
2026
2027         if (intel_vgpu_active(dev)) {
2028                 ret = intel_vgt_balloon(dev);
2029                 if (ret)
2030                         return ret;
2031         }
2032
2033         if (!HAS_LLC(dev))
2034                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
2035
2036         /* Mark any preallocated objects as occupied */
2037         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2038                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2039
2040                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
2041                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
2042
2043                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2044                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2045                 if (ret) {
2046                         DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2047                         return ret;
2048                 }
2049                 vma->bound |= GLOBAL_BIND;
2050         }
2051
2052         /* Clear any non-preallocated blocks */
2053         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2054                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2055                               hole_start, hole_end);
2056                 ggtt_vm->clear_range(ggtt_vm, hole_start,
2057                                      hole_end - hole_start, true);
2058         }
2059
2060         /* And finally clear the reserved guard page */
2061         ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2062
2063         if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2064                 struct i915_hw_ppgtt *ppgtt;
2065
2066                 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2067                 if (!ppgtt)
2068                         return -ENOMEM;
2069
2070                 ret = __hw_ppgtt_init(dev, ppgtt);
2071                 if (ret) {
2072                         ppgtt->base.cleanup(&ppgtt->base);
2073                         kfree(ppgtt);
2074                         return ret;
2075                 }
2076
2077                 if (ppgtt->base.allocate_va_range)
2078                         ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2079                                                             ppgtt->base.total);
2080                 if (ret) {
2081                         ppgtt->base.cleanup(&ppgtt->base);
2082                         kfree(ppgtt);
2083                         return ret;
2084                 }
2085
2086                 ppgtt->base.clear_range(&ppgtt->base,
2087                                         ppgtt->base.start,
2088                                         ppgtt->base.total,
2089                                         true);
2090
2091                 dev_priv->mm.aliasing_ppgtt = ppgtt;
2092         }
2093
2094         return 0;
2095 }
2096
2097 void i915_gem_init_global_gtt(struct drm_device *dev)
2098 {
2099         struct drm_i915_private *dev_priv = dev->dev_private;
2100         u64 gtt_size, mappable_size;
2101
2102         gtt_size = dev_priv->gtt.base.total;
2103         mappable_size = dev_priv->gtt.mappable_end;
2104
2105         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2106 }
2107
2108 void i915_global_gtt_cleanup(struct drm_device *dev)
2109 {
2110         struct drm_i915_private *dev_priv = dev->dev_private;
2111         struct i915_address_space *vm = &dev_priv->gtt.base;
2112
2113         if (dev_priv->mm.aliasing_ppgtt) {
2114                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2115
2116                 ppgtt->base.cleanup(&ppgtt->base);
2117         }
2118
2119         if (drm_mm_initialized(&vm->mm)) {
2120                 if (intel_vgpu_active(dev))
2121                         intel_vgt_deballoon();
2122
2123                 drm_mm_takedown(&vm->mm);
2124                 list_del(&vm->global_link);
2125         }
2126
2127         vm->cleanup(vm);
2128 }
2129
2130 static int alloc_scratch_page(struct i915_address_space *vm)
2131 {
2132         struct i915_page_scratch *sp;
2133         int ret;
2134
2135         WARN_ON(vm->scratch_page);
2136
2137         sp = kzalloc(sizeof(*sp), GFP_KERNEL);
2138         if (sp == NULL)
2139                 return -ENOMEM;
2140
2141         ret = __setup_page_dma(vm->dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
2142         if (ret) {
2143                 kfree(sp);
2144                 return ret;
2145         }
2146
2147         set_pages_uc(px_page(sp), 1);
2148
2149         vm->scratch_page = sp;
2150
2151         return 0;
2152 }
2153
2154 static void free_scratch_page(struct i915_address_space *vm)
2155 {
2156         struct i915_page_scratch *sp = vm->scratch_page;
2157
2158         set_pages_wb(px_page(sp), 1);
2159
2160         cleanup_px(vm->dev, sp);
2161         kfree(sp);
2162
2163         vm->scratch_page = NULL;
2164 }
2165
2166 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2167 {
2168         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2169         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2170         return snb_gmch_ctl << 20;
2171 }
2172
2173 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2174 {
2175         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2176         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2177         if (bdw_gmch_ctl)
2178                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2179
2180 #ifdef CONFIG_X86_32
2181         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2182         if (bdw_gmch_ctl > 4)
2183                 bdw_gmch_ctl = 4;
2184 #endif
2185
2186         return bdw_gmch_ctl << 20;
2187 }
2188
2189 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2190 {
2191         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2192         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2193
2194         if (gmch_ctrl)
2195                 return 1 << (20 + gmch_ctrl);
2196
2197         return 0;
2198 }
2199
2200 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2201 {
2202         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2203         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2204         return snb_gmch_ctl << 25; /* 32 MB units */
2205 }
2206
2207 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2208 {
2209         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2210         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2211         return bdw_gmch_ctl << 25; /* 32 MB units */
2212 }
2213
2214 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2215 {
2216         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2217         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2218
2219         /*
2220          * 0x0  to 0x10: 32MB increments starting at 0MB
2221          * 0x11 to 0x16: 4MB increments starting at 8MB
2222          * 0x17 to 0x1d: 4MB increments start at 36MB
2223          */
2224         if (gmch_ctrl < 0x11)
2225                 return gmch_ctrl << 25;
2226         else if (gmch_ctrl < 0x17)
2227                 return (gmch_ctrl - 0x11 + 2) << 22;
2228         else
2229                 return (gmch_ctrl - 0x17 + 9) << 22;
2230 }
2231
2232 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2233 {
2234         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2235         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2236
2237         if (gen9_gmch_ctl < 0xf0)
2238                 return gen9_gmch_ctl << 25; /* 32 MB units */
2239         else
2240                 /* 4MB increments starting at 0xf0 for 4MB */
2241                 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2242 }
2243
2244 static int ggtt_probe_common(struct drm_device *dev,
2245                              size_t gtt_size)
2246 {
2247         struct drm_i915_private *dev_priv = dev->dev_private;
2248         phys_addr_t gtt_phys_addr;
2249         int ret;
2250
2251         /* For Modern GENs the PTEs and register space are split in the BAR */
2252         gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2253                 (pci_resource_len(dev->pdev, 0) / 2);
2254
2255         /*
2256          * On BXT writes larger than 64 bit to the GTT pagetable range will be
2257          * dropped. For WC mappings in general we have 64 byte burst writes
2258          * when the WC buffer is flushed, so we can't use it, but have to
2259          * resort to an uncached mapping. The WC issue is easily caught by the
2260          * readback check when writing GTT PTE entries.
2261          */
2262         if (IS_BROXTON(dev))
2263                 dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2264         else
2265                 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2266         if (!dev_priv->gtt.gsm) {
2267                 DRM_ERROR("Failed to map the gtt page table\n");
2268                 return -ENOMEM;
2269         }
2270
2271         ret = alloc_scratch_page(&dev_priv->gtt.base);
2272         if (ret) {
2273                 DRM_ERROR("Scratch setup failed\n");
2274                 /* iounmap will also get called at remove, but meh */
2275                 iounmap(dev_priv->gtt.gsm);
2276         }
2277
2278         return ret;
2279 }
2280
2281 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2282  * bits. When using advanced contexts each context stores its own PAT, but
2283  * writing this data shouldn't be harmful even in those cases. */
2284 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2285 {
2286         uint64_t pat;
2287
2288         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2289               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2290               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2291               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2292               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2293               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2294               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2295               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2296
2297         if (!USES_PPGTT(dev_priv->dev))
2298                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2299                  * so RTL will always use the value corresponding to
2300                  * pat_sel = 000".
2301                  * So let's disable cache for GGTT to avoid screen corruptions.
2302                  * MOCS still can be used though.
2303                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2304                  * before this patch, i.e. the same uncached + snooping access
2305                  * like on gen6/7 seems to be in effect.
2306                  * - So this just fixes blitter/render access. Again it looks
2307                  * like it's not just uncached access, but uncached + snooping.
2308                  * So we can still hold onto all our assumptions wrt cpu
2309                  * clflushing on LLC machines.
2310                  */
2311                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2312
2313         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2314          * write would work. */
2315         I915_WRITE(GEN8_PRIVATE_PAT, pat);
2316         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2317 }
2318
2319 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2320 {
2321         uint64_t pat;
2322
2323         /*
2324          * Map WB on BDW to snooped on CHV.
2325          *
2326          * Only the snoop bit has meaning for CHV, the rest is
2327          * ignored.
2328          *
2329          * The hardware will never snoop for certain types of accesses:
2330          * - CPU GTT (GMADR->GGTT->no snoop->memory)
2331          * - PPGTT page tables
2332          * - some other special cycles
2333          *
2334          * As with BDW, we also need to consider the following for GT accesses:
2335          * "For GGTT, there is NO pat_sel[2:0] from the entry,
2336          * so RTL will always use the value corresponding to
2337          * pat_sel = 000".
2338          * Which means we must set the snoop bit in PAT entry 0
2339          * in order to keep the global status page working.
2340          */
2341         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2342               GEN8_PPAT(1, 0) |
2343               GEN8_PPAT(2, 0) |
2344               GEN8_PPAT(3, 0) |
2345               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2346               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2347               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2348               GEN8_PPAT(7, CHV_PPAT_SNOOP);
2349
2350         I915_WRITE(GEN8_PRIVATE_PAT, pat);
2351         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2352 }
2353
2354 static int gen8_gmch_probe(struct drm_device *dev,
2355                            u64 *gtt_total,
2356                            size_t *stolen,
2357                            phys_addr_t *mappable_base,
2358                            u64 *mappable_end)
2359 {
2360         struct drm_i915_private *dev_priv = dev->dev_private;
2361         u64 gtt_size;
2362         u16 snb_gmch_ctl;
2363         int ret;
2364
2365         /* TODO: We're not aware of mappable constraints on gen8 yet */
2366         *mappable_base = pci_resource_start(dev->pdev, 2);
2367         *mappable_end = pci_resource_len(dev->pdev, 2);
2368
2369         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2370                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2371
2372         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2373
2374         if (INTEL_INFO(dev)->gen >= 9) {
2375                 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
2376                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2377         } else if (IS_CHERRYVIEW(dev)) {
2378                 *stolen = chv_get_stolen_size(snb_gmch_ctl);
2379                 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2380         } else {
2381                 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
2382                 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2383         }
2384
2385         *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2386
2387         if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2388                 chv_setup_private_ppat(dev_priv);
2389         else
2390                 bdw_setup_private_ppat(dev_priv);
2391
2392         ret = ggtt_probe_common(dev, gtt_size);
2393
2394         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2395         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2396         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2397         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2398
2399         return ret;
2400 }
2401
2402 static int gen6_gmch_probe(struct drm_device *dev,
2403                            u64 *gtt_total,
2404                            size_t *stolen,
2405                            phys_addr_t *mappable_base,
2406                            u64 *mappable_end)
2407 {
2408         struct drm_i915_private *dev_priv = dev->dev_private;
2409         unsigned int gtt_size;
2410         u16 snb_gmch_ctl;
2411         int ret;
2412
2413         *mappable_base = pci_resource_start(dev->pdev, 2);
2414         *mappable_end = pci_resource_len(dev->pdev, 2);
2415
2416         /* 64/512MB is the current min/max we actually know of, but this is just
2417          * a coarse sanity check.
2418          */
2419         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2420                 DRM_ERROR("Unknown GMADR size (%llx)\n",
2421                           dev_priv->gtt.mappable_end);
2422                 return -ENXIO;
2423         }
2424
2425         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2426                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2427         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2428
2429         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
2430
2431         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2432         *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2433
2434         ret = ggtt_probe_common(dev, gtt_size);
2435
2436         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2437         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2438         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2439         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2440
2441         return ret;
2442 }
2443
2444 static void gen6_gmch_remove(struct i915_address_space *vm)
2445 {
2446
2447         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2448
2449         iounmap(gtt->gsm);
2450         free_scratch_page(vm);
2451 }
2452
2453 static int i915_gmch_probe(struct drm_device *dev,
2454                            u64 *gtt_total,
2455                            size_t *stolen,
2456                            phys_addr_t *mappable_base,
2457                            u64 *mappable_end)
2458 {
2459         struct drm_i915_private *dev_priv = dev->dev_private;
2460         int ret;
2461
2462         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2463         if (!ret) {
2464                 DRM_ERROR("failed to set up gmch\n");
2465                 return -EIO;
2466         }
2467
2468         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2469
2470         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2471         dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
2472         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2473         dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2474         dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2475
2476         if (unlikely(dev_priv->gtt.do_idle_maps))
2477                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2478
2479         return 0;
2480 }
2481
2482 static void i915_gmch_remove(struct i915_address_space *vm)
2483 {
2484         intel_gmch_remove();
2485 }
2486
2487 int i915_gem_gtt_init(struct drm_device *dev)
2488 {
2489         struct drm_i915_private *dev_priv = dev->dev_private;
2490         struct i915_gtt *gtt = &dev_priv->gtt;
2491         int ret;
2492
2493         if (INTEL_INFO(dev)->gen <= 5) {
2494                 gtt->gtt_probe = i915_gmch_probe;
2495                 gtt->base.cleanup = i915_gmch_remove;
2496         } else if (INTEL_INFO(dev)->gen < 8) {
2497                 gtt->gtt_probe = gen6_gmch_probe;
2498                 gtt->base.cleanup = gen6_gmch_remove;
2499                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2500                         gtt->base.pte_encode = iris_pte_encode;
2501                 else if (IS_HASWELL(dev))
2502                         gtt->base.pte_encode = hsw_pte_encode;
2503                 else if (IS_VALLEYVIEW(dev))
2504                         gtt->base.pte_encode = byt_pte_encode;
2505                 else if (INTEL_INFO(dev)->gen >= 7)
2506                         gtt->base.pte_encode = ivb_pte_encode;
2507                 else
2508                         gtt->base.pte_encode = snb_pte_encode;
2509         } else {
2510                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2511                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2512         }
2513
2514         gtt->base.dev = dev;
2515
2516         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2517                              &gtt->mappable_base, &gtt->mappable_end);
2518         if (ret)
2519                 return ret;
2520
2521         /* GMADR is the PCI mmio aperture into the global GTT. */
2522         DRM_INFO("Memory usable by graphics device = %lluM\n",
2523                  gtt->base.total >> 20);
2524         DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
2525         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2526 #ifdef CONFIG_INTEL_IOMMU
2527         if (intel_iommu_gfx_mapped)
2528                 DRM_INFO("VT-d active for gfx access\n");
2529 #endif
2530         /*
2531          * i915.enable_ppgtt is read-only, so do an early pass to validate the
2532          * user's requested state against the hardware/driver capabilities.  We
2533          * do this now so that we can print out any log messages once rather
2534          * than every time we check intel_enable_ppgtt().
2535          */
2536         i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2537         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2538
2539         return 0;
2540 }
2541
2542 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
2543 {
2544         struct drm_i915_private *dev_priv = dev->dev_private;
2545         struct drm_i915_gem_object *obj;
2546         struct i915_address_space *vm;
2547
2548         i915_check_and_clear_faults(dev);
2549
2550         /* First fill our portion of the GTT with scratch pages */
2551         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2552                                        dev_priv->gtt.base.start,
2553                                        dev_priv->gtt.base.total,
2554                                        true);
2555
2556         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2557                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
2558                                                            &dev_priv->gtt.base);
2559                 if (!vma)
2560                         continue;
2561
2562                 i915_gem_clflush_object(obj, obj->pin_display);
2563                 WARN_ON(i915_vma_bind(vma, obj->cache_level, PIN_UPDATE));
2564         }
2565
2566
2567         if (INTEL_INFO(dev)->gen >= 8) {
2568                 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2569                         chv_setup_private_ppat(dev_priv);
2570                 else
2571                         bdw_setup_private_ppat(dev_priv);
2572
2573                 return;
2574         }
2575
2576         if (USES_PPGTT(dev)) {
2577                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2578                         /* TODO: Perhaps it shouldn't be gen6 specific */
2579
2580                         struct i915_hw_ppgtt *ppgtt =
2581                                         container_of(vm, struct i915_hw_ppgtt,
2582                                                      base);
2583
2584                         if (i915_is_ggtt(vm))
2585                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
2586
2587                         gen6_write_page_range(dev_priv, &ppgtt->pd,
2588                                               0, ppgtt->base.total);
2589                 }
2590         }
2591
2592         i915_ggtt_flush(dev_priv);
2593 }
2594
2595 static struct i915_vma *
2596 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
2597                       struct i915_address_space *vm,
2598                       const struct i915_ggtt_view *ggtt_view)
2599 {
2600         struct i915_vma *vma;
2601
2602         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
2603                 return ERR_PTR(-EINVAL);
2604
2605         vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
2606         if (vma == NULL)
2607                 return ERR_PTR(-ENOMEM);
2608
2609         INIT_LIST_HEAD(&vma->vma_link);
2610         INIT_LIST_HEAD(&vma->mm_list);
2611         INIT_LIST_HEAD(&vma->exec_list);
2612         vma->vm = vm;
2613         vma->obj = obj;
2614
2615         if (i915_is_ggtt(vm))
2616                 vma->ggtt_view = *ggtt_view;
2617
2618         list_add_tail(&vma->vma_link, &obj->vma_list);
2619         if (!i915_is_ggtt(vm))
2620                 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2621
2622         return vma;
2623 }
2624
2625 struct i915_vma *
2626 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2627                                   struct i915_address_space *vm)
2628 {
2629         struct i915_vma *vma;
2630
2631         vma = i915_gem_obj_to_vma(obj, vm);
2632         if (!vma)
2633                 vma = __i915_gem_vma_create(obj, vm,
2634                                             i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
2635
2636         return vma;
2637 }
2638
2639 struct i915_vma *
2640 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
2641                                        const struct i915_ggtt_view *view)
2642 {
2643         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
2644         struct i915_vma *vma;
2645
2646         if (WARN_ON(!view))
2647                 return ERR_PTR(-EINVAL);
2648
2649         vma = i915_gem_obj_to_ggtt_view(obj, view);
2650
2651         if (IS_ERR(vma))
2652                 return vma;
2653
2654         if (!vma)
2655                 vma = __i915_gem_vma_create(obj, ggtt, view);
2656
2657         return vma;
2658
2659 }
2660
2661 static void
2662 rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height,
2663              struct sg_table *st)
2664 {
2665         unsigned int column, row;
2666         unsigned int src_idx;
2667         struct scatterlist *sg = st->sgl;
2668
2669         st->nents = 0;
2670
2671         for (column = 0; column < width; column++) {
2672                 src_idx = width * (height - 1) + column;
2673                 for (row = 0; row < height; row++) {
2674                         st->nents++;
2675                         /* We don't need the pages, but need to initialize
2676                          * the entries so the sg list can be happily traversed.
2677                          * The only thing we need are DMA addresses.
2678                          */
2679                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
2680                         sg_dma_address(sg) = in[src_idx];
2681                         sg_dma_len(sg) = PAGE_SIZE;
2682                         sg = sg_next(sg);
2683                         src_idx -= width;
2684                 }
2685         }
2686 }
2687
2688 static struct sg_table *
2689 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
2690                           struct drm_i915_gem_object *obj)
2691 {
2692         struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
2693         unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
2694         struct sg_page_iter sg_iter;
2695         unsigned long i;
2696         dma_addr_t *page_addr_list;
2697         struct sg_table *st;
2698         int ret = -ENOMEM;
2699
2700         /* Allocate a temporary list of source pages for random access. */
2701         page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
2702                                        sizeof(dma_addr_t));
2703         if (!page_addr_list)
2704                 return ERR_PTR(ret);
2705
2706         /* Allocate target SG list. */
2707         st = kmalloc(sizeof(*st), GFP_KERNEL);
2708         if (!st)
2709                 goto err_st_alloc;
2710
2711         ret = sg_alloc_table(st, size_pages, GFP_KERNEL);
2712         if (ret)
2713                 goto err_sg_alloc;
2714
2715         /* Populate source page list from the object. */
2716         i = 0;
2717         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2718                 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
2719                 i++;
2720         }
2721
2722         /* Rotate the pages. */
2723         rotate_pages(page_addr_list,
2724                      rot_info->width_pages, rot_info->height_pages,
2725                      st);
2726
2727         DRM_DEBUG_KMS(
2728                       "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages).\n",
2729                       obj->base.size, rot_info->pitch, rot_info->height,
2730                       rot_info->pixel_format, rot_info->width_pages,
2731                       rot_info->height_pages, size_pages);
2732
2733         drm_free_large(page_addr_list);
2734
2735         return st;
2736
2737 err_sg_alloc:
2738         kfree(st);
2739 err_st_alloc:
2740         drm_free_large(page_addr_list);
2741
2742         DRM_DEBUG_KMS(
2743                       "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages)\n",
2744                       obj->base.size, ret, rot_info->pitch, rot_info->height,
2745                       rot_info->pixel_format, rot_info->width_pages,
2746                       rot_info->height_pages, size_pages);
2747         return ERR_PTR(ret);
2748 }
2749
2750 static struct sg_table *
2751 intel_partial_pages(const struct i915_ggtt_view *view,
2752                     struct drm_i915_gem_object *obj)
2753 {
2754         struct sg_table *st;
2755         struct scatterlist *sg;
2756         struct sg_page_iter obj_sg_iter;
2757         int ret = -ENOMEM;
2758
2759         st = kmalloc(sizeof(*st), GFP_KERNEL);
2760         if (!st)
2761                 goto err_st_alloc;
2762
2763         ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
2764         if (ret)
2765                 goto err_sg_alloc;
2766
2767         sg = st->sgl;
2768         st->nents = 0;
2769         for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
2770                 view->params.partial.offset)
2771         {
2772                 if (st->nents >= view->params.partial.size)
2773                         break;
2774
2775                 sg_set_page(sg, NULL, PAGE_SIZE, 0);
2776                 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
2777                 sg_dma_len(sg) = PAGE_SIZE;
2778
2779                 sg = sg_next(sg);
2780                 st->nents++;
2781         }
2782
2783         return st;
2784
2785 err_sg_alloc:
2786         kfree(st);
2787 err_st_alloc:
2788         return ERR_PTR(ret);
2789 }
2790
2791 static int
2792 i915_get_ggtt_vma_pages(struct i915_vma *vma)
2793 {
2794         int ret = 0;
2795
2796         if (vma->ggtt_view.pages)
2797                 return 0;
2798
2799         if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
2800                 vma->ggtt_view.pages = vma->obj->pages;
2801         else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
2802                 vma->ggtt_view.pages =
2803                         intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
2804         else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
2805                 vma->ggtt_view.pages =
2806                         intel_partial_pages(&vma->ggtt_view, vma->obj);
2807         else
2808                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
2809                           vma->ggtt_view.type);
2810
2811         if (!vma->ggtt_view.pages) {
2812                 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
2813                           vma->ggtt_view.type);
2814                 ret = -EINVAL;
2815         } else if (IS_ERR(vma->ggtt_view.pages)) {
2816                 ret = PTR_ERR(vma->ggtt_view.pages);
2817                 vma->ggtt_view.pages = NULL;
2818                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
2819                           vma->ggtt_view.type, ret);
2820         }
2821
2822         return ret;
2823 }
2824
2825 /**
2826  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
2827  * @vma: VMA to map
2828  * @cache_level: mapping cache level
2829  * @flags: flags like global or local mapping
2830  *
2831  * DMA addresses are taken from the scatter-gather table of this object (or of
2832  * this VMA in case of non-default GGTT views) and PTE entries set up.
2833  * Note that DMA addresses are also the only part of the SG table we care about.
2834  */
2835 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2836                   u32 flags)
2837 {
2838         int ret;
2839         u32 bind_flags;
2840
2841         if (WARN_ON(flags == 0))
2842                 return -EINVAL;
2843
2844         bind_flags = 0;
2845         if (flags & PIN_GLOBAL)
2846                 bind_flags |= GLOBAL_BIND;
2847         if (flags & PIN_USER)
2848                 bind_flags |= LOCAL_BIND;
2849
2850         if (flags & PIN_UPDATE)
2851                 bind_flags |= vma->bound;
2852         else
2853                 bind_flags &= ~vma->bound;
2854
2855         if (bind_flags == 0)
2856                 return 0;
2857
2858         if (vma->bound == 0 && vma->vm->allocate_va_range) {
2859                 trace_i915_va_alloc(vma->vm,
2860                                     vma->node.start,
2861                                     vma->node.size,
2862                                     VM_TO_TRACE_NAME(vma->vm));
2863
2864                 /* XXX: i915_vma_pin() will fix this +- hack */
2865                 vma->pin_count++;
2866                 ret = vma->vm->allocate_va_range(vma->vm,
2867                                                  vma->node.start,
2868                                                  vma->node.size);
2869                 vma->pin_count--;
2870                 if (ret)
2871                         return ret;
2872         }
2873
2874         ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
2875         if (ret)
2876                 return ret;
2877
2878         vma->bound |= bind_flags;
2879
2880         return 0;
2881 }
2882
2883 /**
2884  * i915_ggtt_view_size - Get the size of a GGTT view.
2885  * @obj: Object the view is of.
2886  * @view: The view in question.
2887  *
2888  * @return The size of the GGTT view in bytes.
2889  */
2890 size_t
2891 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
2892                     const struct i915_ggtt_view *view)
2893 {
2894         if (view->type == I915_GGTT_VIEW_NORMAL) {
2895                 return obj->base.size;
2896         } else if (view->type == I915_GGTT_VIEW_ROTATED) {
2897                 return view->rotation_info.size;
2898         } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
2899                 return view->params.partial.size << PAGE_SHIFT;
2900         } else {
2901                 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
2902                 return obj->base.size;
2903         }
2904 }