Merge tag 'exynos-drm-next-for-v4.15' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33
34 #include <asm/set_memory.h>
35
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44
45 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
46
47 /**
48  * DOC: Global GTT views
49  *
50  * Background and previous state
51  *
52  * Historically objects could exists (be bound) in global GTT space only as
53  * singular instances with a view representing all of the object's backing pages
54  * in a linear fashion. This view will be called a normal view.
55  *
56  * To support multiple views of the same object, where the number of mapped
57  * pages is not equal to the backing store, or where the layout of the pages
58  * is not linear, concept of a GGTT view was added.
59  *
60  * One example of an alternative view is a stereo display driven by a single
61  * image. In this case we would have a framebuffer looking like this
62  * (2x2 pages):
63  *
64  *    12
65  *    34
66  *
67  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68  * rendering. In contrast, fed to the display engine would be an alternative
69  * view which could look something like this:
70  *
71  *   1212
72  *   3434
73  *
74  * In this example both the size and layout of pages in the alternative view is
75  * different from the normal view.
76  *
77  * Implementation and usage
78  *
79  * GGTT views are implemented using VMAs and are distinguished via enum
80  * i915_ggtt_view_type and struct i915_ggtt_view.
81  *
82  * A new flavour of core GEM functions which work with GGTT bound objects were
83  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84  * renaming  in large amounts of code. They take the struct i915_ggtt_view
85  * parameter encapsulating all metadata required to implement a view.
86  *
87  * As a helper for callers which are only interested in the normal view,
88  * globally const i915_ggtt_view_normal singleton instance exists. All old core
89  * GEM API functions, the ones not taking the view parameter, are operating on,
90  * or with the normal GGTT view.
91  *
92  * Code wanting to add or use a new GGTT view needs to:
93  *
94  * 1. Add a new enum with a suitable name.
95  * 2. Extend the metadata in the i915_ggtt_view structure if required.
96  * 3. Add support to i915_get_vma_pages().
97  *
98  * New views are required to build a scatter-gather table from within the
99  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100  * exists for the lifetime of an VMA.
101  *
102  * Core API is designed to have copy semantics which means that passed in
103  * struct i915_ggtt_view does not need to be persistent (left around after
104  * calling the core API functions).
105  *
106  */
107
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113         /* Note that as an uncached mmio write, this should flush the
114          * WCB of the writes into the GGTT before it triggers the invalidate.
115          */
116         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
117 }
118
119 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
120 {
121         gen6_ggtt_invalidate(dev_priv);
122         I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
123 }
124
125 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
126 {
127         intel_gtt_chipset_flush();
128 }
129
130 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
131 {
132         i915->ggtt.invalidate(i915);
133 }
134
135 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
136                                 int enable_ppgtt)
137 {
138         bool has_full_ppgtt;
139         bool has_full_48bit_ppgtt;
140
141         if (!dev_priv->info.has_aliasing_ppgtt)
142                 return 0;
143
144         has_full_ppgtt = dev_priv->info.has_full_ppgtt;
145         has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
146
147         if (intel_vgpu_active(dev_priv)) {
148                 /* GVT-g has no support for 32bit ppgtt */
149                 has_full_ppgtt = false;
150                 has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
151         }
152
153         /*
154          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
155          * execlists, the sole mechanism available to submit work.
156          */
157         if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
158                 return 0;
159
160         if (enable_ppgtt == 1)
161                 return 1;
162
163         if (enable_ppgtt == 2 && has_full_ppgtt)
164                 return 2;
165
166         if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
167                 return 3;
168
169         /* Disable ppgtt on SNB if VT-d is on. */
170         if (IS_GEN6(dev_priv) && intel_vtd_active()) {
171                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
172                 return 0;
173         }
174
175         /* Early VLV doesn't have this */
176         if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
177                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
178                 return 0;
179         }
180
181         if (INTEL_GEN(dev_priv) >= 8 && i915_modparams.enable_execlists) {
182                 if (has_full_48bit_ppgtt)
183                         return 3;
184
185                 if (has_full_ppgtt)
186                         return 2;
187         }
188
189         return 1;
190 }
191
192 static int ppgtt_bind_vma(struct i915_vma *vma,
193                           enum i915_cache_level cache_level,
194                           u32 unused)
195 {
196         u32 pte_flags;
197         int ret;
198
199         if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
200                 ret = vma->vm->allocate_va_range(vma->vm, vma->node.start,
201                                                  vma->size);
202                 if (ret)
203                         return ret;
204         }
205
206         /* Currently applicable only to VLV */
207         pte_flags = 0;
208         if (vma->obj->gt_ro)
209                 pte_flags |= PTE_READ_ONLY;
210
211         vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
212
213         return 0;
214 }
215
216 static void ppgtt_unbind_vma(struct i915_vma *vma)
217 {
218         vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
219 }
220
221 static int ppgtt_set_pages(struct i915_vma *vma)
222 {
223         GEM_BUG_ON(vma->pages);
224
225         vma->pages = vma->obj->mm.pages;
226
227         vma->page_sizes = vma->obj->mm.page_sizes;
228
229         return 0;
230 }
231
232 static void clear_pages(struct i915_vma *vma)
233 {
234         GEM_BUG_ON(!vma->pages);
235
236         if (vma->pages != vma->obj->mm.pages) {
237                 sg_free_table(vma->pages);
238                 kfree(vma->pages);
239         }
240         vma->pages = NULL;
241
242         memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
243 }
244
245 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
246                                   enum i915_cache_level level)
247 {
248         gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
249         pte |= addr;
250
251         switch (level) {
252         case I915_CACHE_NONE:
253                 pte |= PPAT_UNCACHED;
254                 break;
255         case I915_CACHE_WT:
256                 pte |= PPAT_DISPLAY_ELLC;
257                 break;
258         default:
259                 pte |= PPAT_CACHED;
260                 break;
261         }
262
263         return pte;
264 }
265
266 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
267                                   const enum i915_cache_level level)
268 {
269         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
270         pde |= addr;
271         if (level != I915_CACHE_NONE)
272                 pde |= PPAT_CACHED_PDE;
273         else
274                 pde |= PPAT_UNCACHED;
275         return pde;
276 }
277
278 #define gen8_pdpe_encode gen8_pde_encode
279 #define gen8_pml4e_encode gen8_pde_encode
280
281 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
282                                  enum i915_cache_level level,
283                                  u32 unused)
284 {
285         gen6_pte_t pte = GEN6_PTE_VALID;
286         pte |= GEN6_PTE_ADDR_ENCODE(addr);
287
288         switch (level) {
289         case I915_CACHE_L3_LLC:
290         case I915_CACHE_LLC:
291                 pte |= GEN6_PTE_CACHE_LLC;
292                 break;
293         case I915_CACHE_NONE:
294                 pte |= GEN6_PTE_UNCACHED;
295                 break;
296         default:
297                 MISSING_CASE(level);
298         }
299
300         return pte;
301 }
302
303 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
304                                  enum i915_cache_level level,
305                                  u32 unused)
306 {
307         gen6_pte_t pte = GEN6_PTE_VALID;
308         pte |= GEN6_PTE_ADDR_ENCODE(addr);
309
310         switch (level) {
311         case I915_CACHE_L3_LLC:
312                 pte |= GEN7_PTE_CACHE_L3_LLC;
313                 break;
314         case I915_CACHE_LLC:
315                 pte |= GEN6_PTE_CACHE_LLC;
316                 break;
317         case I915_CACHE_NONE:
318                 pte |= GEN6_PTE_UNCACHED;
319                 break;
320         default:
321                 MISSING_CASE(level);
322         }
323
324         return pte;
325 }
326
327 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
328                                  enum i915_cache_level level,
329                                  u32 flags)
330 {
331         gen6_pte_t pte = GEN6_PTE_VALID;
332         pte |= GEN6_PTE_ADDR_ENCODE(addr);
333
334         if (!(flags & PTE_READ_ONLY))
335                 pte |= BYT_PTE_WRITEABLE;
336
337         if (level != I915_CACHE_NONE)
338                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
339
340         return pte;
341 }
342
343 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
344                                  enum i915_cache_level level,
345                                  u32 unused)
346 {
347         gen6_pte_t pte = GEN6_PTE_VALID;
348         pte |= HSW_PTE_ADDR_ENCODE(addr);
349
350         if (level != I915_CACHE_NONE)
351                 pte |= HSW_WB_LLC_AGE3;
352
353         return pte;
354 }
355
356 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
357                                   enum i915_cache_level level,
358                                   u32 unused)
359 {
360         gen6_pte_t pte = GEN6_PTE_VALID;
361         pte |= HSW_PTE_ADDR_ENCODE(addr);
362
363         switch (level) {
364         case I915_CACHE_NONE:
365                 break;
366         case I915_CACHE_WT:
367                 pte |= HSW_WT_ELLC_LLC_AGE3;
368                 break;
369         default:
370                 pte |= HSW_WB_ELLC_LLC_AGE3;
371                 break;
372         }
373
374         return pte;
375 }
376
377 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
378 {
379         struct pagevec *pvec = &vm->free_pages;
380
381         if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
382                 i915_gem_shrink_all(vm->i915);
383
384         if (likely(pvec->nr))
385                 return pvec->pages[--pvec->nr];
386
387         if (!vm->pt_kmap_wc)
388                 return alloc_page(gfp);
389
390         /* A placeholder for a specific mutex to guard the WC stash */
391         lockdep_assert_held(&vm->i915->drm.struct_mutex);
392
393         /* Look in our global stash of WC pages... */
394         pvec = &vm->i915->mm.wc_stash;
395         if (likely(pvec->nr))
396                 return pvec->pages[--pvec->nr];
397
398         /* Otherwise batch allocate pages to amoritize cost of set_pages_wc. */
399         do {
400                 struct page *page;
401
402                 page = alloc_page(gfp);
403                 if (unlikely(!page))
404                         break;
405
406                 pvec->pages[pvec->nr++] = page;
407         } while (pagevec_space(pvec));
408
409         if (unlikely(!pvec->nr))
410                 return NULL;
411
412         set_pages_array_wc(pvec->pages, pvec->nr);
413
414         return pvec->pages[--pvec->nr];
415 }
416
417 static void vm_free_pages_release(struct i915_address_space *vm,
418                                   bool immediate)
419 {
420         struct pagevec *pvec = &vm->free_pages;
421
422         GEM_BUG_ON(!pagevec_count(pvec));
423
424         if (vm->pt_kmap_wc) {
425                 struct pagevec *stash = &vm->i915->mm.wc_stash;
426
427                 /* When we use WC, first fill up the global stash and then
428                  * only if full immediately free the overflow.
429                  */
430
431                 lockdep_assert_held(&vm->i915->drm.struct_mutex);
432                 if (pagevec_space(stash)) {
433                         do {
434                                 stash->pages[stash->nr++] =
435                                         pvec->pages[--pvec->nr];
436                                 if (!pvec->nr)
437                                         return;
438                         } while (pagevec_space(stash));
439
440                         /* As we have made some room in the VM's free_pages,
441                          * we can wait for it to fill again. Unless we are
442                          * inside i915_address_space_fini() and must
443                          * immediately release the pages!
444                          */
445                         if (!immediate)
446                                 return;
447                 }
448
449                 set_pages_array_wb(pvec->pages, pvec->nr);
450         }
451
452         __pagevec_release(pvec);
453 }
454
455 static void vm_free_page(struct i915_address_space *vm, struct page *page)
456 {
457         if (!pagevec_add(&vm->free_pages, page))
458                 vm_free_pages_release(vm, false);
459 }
460
461 static int __setup_page_dma(struct i915_address_space *vm,
462                             struct i915_page_dma *p,
463                             gfp_t gfp)
464 {
465         p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY);
466         if (unlikely(!p->page))
467                 return -ENOMEM;
468
469         p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
470                                 PCI_DMA_BIDIRECTIONAL);
471         if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
472                 vm_free_page(vm, p->page);
473                 return -ENOMEM;
474         }
475
476         return 0;
477 }
478
479 static int setup_page_dma(struct i915_address_space *vm,
480                           struct i915_page_dma *p)
481 {
482         return __setup_page_dma(vm, p, I915_GFP_DMA);
483 }
484
485 static void cleanup_page_dma(struct i915_address_space *vm,
486                              struct i915_page_dma *p)
487 {
488         dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
489         vm_free_page(vm, p->page);
490 }
491
492 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
493
494 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
495 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
496 #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v))
497 #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v))
498
499 static void fill_page_dma(struct i915_address_space *vm,
500                           struct i915_page_dma *p,
501                           const u64 val)
502 {
503         u64 * const vaddr = kmap_atomic(p->page);
504
505         memset64(vaddr, val, PAGE_SIZE / sizeof(val));
506
507         kunmap_atomic(vaddr);
508 }
509
510 static void fill_page_dma_32(struct i915_address_space *vm,
511                              struct i915_page_dma *p,
512                              const u32 v)
513 {
514         fill_page_dma(vm, p, (u64)v << 32 | v);
515 }
516
517 static int
518 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
519 {
520         struct page *page = NULL;
521         dma_addr_t addr;
522         int order;
523
524         /*
525          * In order to utilize 64K pages for an object with a size < 2M, we will
526          * need to support a 64K scratch page, given that every 16th entry for a
527          * page-table operating in 64K mode must point to a properly aligned 64K
528          * region, including any PTEs which happen to point to scratch.
529          *
530          * This is only relevant for the 48b PPGTT where we support
531          * huge-gtt-pages, see also i915_vma_insert().
532          *
533          * TODO: we should really consider write-protecting the scratch-page and
534          * sharing between ppgtt
535          */
536         if (i915_vm_is_48bit(vm) &&
537             HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
538                 order = get_order(I915_GTT_PAGE_SIZE_64K);
539                 page = alloc_pages(gfp | __GFP_ZERO | __GFP_NOWARN, order);
540                 if (page) {
541                         addr = dma_map_page(vm->dma, page, 0,
542                                             I915_GTT_PAGE_SIZE_64K,
543                                             PCI_DMA_BIDIRECTIONAL);
544                         if (unlikely(dma_mapping_error(vm->dma, addr))) {
545                                 __free_pages(page, order);
546                                 page = NULL;
547                         }
548
549                         if (!IS_ALIGNED(addr, I915_GTT_PAGE_SIZE_64K)) {
550                                 dma_unmap_page(vm->dma, addr,
551                                                I915_GTT_PAGE_SIZE_64K,
552                                                PCI_DMA_BIDIRECTIONAL);
553                                 __free_pages(page, order);
554                                 page = NULL;
555                         }
556                 }
557         }
558
559         if (!page) {
560                 order = 0;
561                 page = alloc_page(gfp | __GFP_ZERO);
562                 if (unlikely(!page))
563                         return -ENOMEM;
564
565                 addr = dma_map_page(vm->dma, page, 0, PAGE_SIZE,
566                                     PCI_DMA_BIDIRECTIONAL);
567                 if (unlikely(dma_mapping_error(vm->dma, addr))) {
568                         __free_page(page);
569                         return -ENOMEM;
570                 }
571         }
572
573         vm->scratch_page.page = page;
574         vm->scratch_page.daddr = addr;
575         vm->scratch_page.order = order;
576
577         return 0;
578 }
579
580 static void cleanup_scratch_page(struct i915_address_space *vm)
581 {
582         struct i915_page_dma *p = &vm->scratch_page;
583
584         dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
585                        PCI_DMA_BIDIRECTIONAL);
586         __free_pages(p->page, p->order);
587 }
588
589 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
590 {
591         struct i915_page_table *pt;
592
593         pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN);
594         if (unlikely(!pt))
595                 return ERR_PTR(-ENOMEM);
596
597         if (unlikely(setup_px(vm, pt))) {
598                 kfree(pt);
599                 return ERR_PTR(-ENOMEM);
600         }
601
602         pt->used_ptes = 0;
603         return pt;
604 }
605
606 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
607 {
608         cleanup_px(vm, pt);
609         kfree(pt);
610 }
611
612 static void gen8_initialize_pt(struct i915_address_space *vm,
613                                struct i915_page_table *pt)
614 {
615         fill_px(vm, pt,
616                 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
617 }
618
619 static void gen6_initialize_pt(struct i915_address_space *vm,
620                                struct i915_page_table *pt)
621 {
622         fill32_px(vm, pt,
623                   vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
624 }
625
626 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
627 {
628         struct i915_page_directory *pd;
629
630         pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN);
631         if (unlikely(!pd))
632                 return ERR_PTR(-ENOMEM);
633
634         if (unlikely(setup_px(vm, pd))) {
635                 kfree(pd);
636                 return ERR_PTR(-ENOMEM);
637         }
638
639         pd->used_pdes = 0;
640         return pd;
641 }
642
643 static void free_pd(struct i915_address_space *vm,
644                     struct i915_page_directory *pd)
645 {
646         cleanup_px(vm, pd);
647         kfree(pd);
648 }
649
650 static void gen8_initialize_pd(struct i915_address_space *vm,
651                                struct i915_page_directory *pd)
652 {
653         unsigned int i;
654
655         fill_px(vm, pd,
656                 gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
657         for (i = 0; i < I915_PDES; i++)
658                 pd->page_table[i] = vm->scratch_pt;
659 }
660
661 static int __pdp_init(struct i915_address_space *vm,
662                       struct i915_page_directory_pointer *pdp)
663 {
664         const unsigned int pdpes = i915_pdpes_per_pdp(vm);
665         unsigned int i;
666
667         pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
668                                             GFP_KERNEL | __GFP_NOWARN);
669         if (unlikely(!pdp->page_directory))
670                 return -ENOMEM;
671
672         for (i = 0; i < pdpes; i++)
673                 pdp->page_directory[i] = vm->scratch_pd;
674
675         return 0;
676 }
677
678 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
679 {
680         kfree(pdp->page_directory);
681         pdp->page_directory = NULL;
682 }
683
684 static inline bool use_4lvl(const struct i915_address_space *vm)
685 {
686         return i915_vm_is_48bit(vm);
687 }
688
689 static struct i915_page_directory_pointer *
690 alloc_pdp(struct i915_address_space *vm)
691 {
692         struct i915_page_directory_pointer *pdp;
693         int ret = -ENOMEM;
694
695         WARN_ON(!use_4lvl(vm));
696
697         pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
698         if (!pdp)
699                 return ERR_PTR(-ENOMEM);
700
701         ret = __pdp_init(vm, pdp);
702         if (ret)
703                 goto fail_bitmap;
704
705         ret = setup_px(vm, pdp);
706         if (ret)
707                 goto fail_page_m;
708
709         return pdp;
710
711 fail_page_m:
712         __pdp_fini(pdp);
713 fail_bitmap:
714         kfree(pdp);
715
716         return ERR_PTR(ret);
717 }
718
719 static void free_pdp(struct i915_address_space *vm,
720                      struct i915_page_directory_pointer *pdp)
721 {
722         __pdp_fini(pdp);
723
724         if (!use_4lvl(vm))
725                 return;
726
727         cleanup_px(vm, pdp);
728         kfree(pdp);
729 }
730
731 static void gen8_initialize_pdp(struct i915_address_space *vm,
732                                 struct i915_page_directory_pointer *pdp)
733 {
734         gen8_ppgtt_pdpe_t scratch_pdpe;
735
736         scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
737
738         fill_px(vm, pdp, scratch_pdpe);
739 }
740
741 static void gen8_initialize_pml4(struct i915_address_space *vm,
742                                  struct i915_pml4 *pml4)
743 {
744         unsigned int i;
745
746         fill_px(vm, pml4,
747                 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
748         for (i = 0; i < GEN8_PML4ES_PER_PML4; i++)
749                 pml4->pdps[i] = vm->scratch_pdp;
750 }
751
752 /* Broadwell Page Directory Pointer Descriptors */
753 static int gen8_write_pdp(struct drm_i915_gem_request *req,
754                           unsigned entry,
755                           dma_addr_t addr)
756 {
757         struct intel_engine_cs *engine = req->engine;
758         u32 *cs;
759
760         BUG_ON(entry >= 4);
761
762         cs = intel_ring_begin(req, 6);
763         if (IS_ERR(cs))
764                 return PTR_ERR(cs);
765
766         *cs++ = MI_LOAD_REGISTER_IMM(1);
767         *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry));
768         *cs++ = upper_32_bits(addr);
769         *cs++ = MI_LOAD_REGISTER_IMM(1);
770         *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry));
771         *cs++ = lower_32_bits(addr);
772         intel_ring_advance(req, cs);
773
774         return 0;
775 }
776
777 static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt,
778                                struct drm_i915_gem_request *req)
779 {
780         int i, ret;
781
782         for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
783                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
784
785                 ret = gen8_write_pdp(req, i, pd_daddr);
786                 if (ret)
787                         return ret;
788         }
789
790         return 0;
791 }
792
793 static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt,
794                                struct drm_i915_gem_request *req)
795 {
796         return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
797 }
798
799 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
800  * the page table structures, we mark them dirty so that
801  * context switching/execlist queuing code takes extra steps
802  * to ensure that tlbs are flushed.
803  */
804 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
805 {
806         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
807 }
808
809 /* Removes entries from a single page table, releasing it if it's empty.
810  * Caller can use the return value to update higher-level entries.
811  */
812 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
813                                 struct i915_page_table *pt,
814                                 u64 start, u64 length)
815 {
816         unsigned int num_entries = gen8_pte_count(start, length);
817         unsigned int pte = gen8_pte_index(start);
818         unsigned int pte_end = pte + num_entries;
819         const gen8_pte_t scratch_pte =
820                 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
821         gen8_pte_t *vaddr;
822
823         GEM_BUG_ON(num_entries > pt->used_ptes);
824
825         pt->used_ptes -= num_entries;
826         if (!pt->used_ptes)
827                 return true;
828
829         vaddr = kmap_atomic_px(pt);
830         while (pte < pte_end)
831                 vaddr[pte++] = scratch_pte;
832         kunmap_atomic(vaddr);
833
834         return false;
835 }
836
837 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
838                                struct i915_page_directory *pd,
839                                struct i915_page_table *pt,
840                                unsigned int pde)
841 {
842         gen8_pde_t *vaddr;
843
844         pd->page_table[pde] = pt;
845
846         vaddr = kmap_atomic_px(pd);
847         vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
848         kunmap_atomic(vaddr);
849 }
850
851 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
852                                 struct i915_page_directory *pd,
853                                 u64 start, u64 length)
854 {
855         struct i915_page_table *pt;
856         u32 pde;
857
858         gen8_for_each_pde(pt, pd, start, length, pde) {
859                 GEM_BUG_ON(pt == vm->scratch_pt);
860
861                 if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
862                         continue;
863
864                 gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
865                 GEM_BUG_ON(!pd->used_pdes);
866                 pd->used_pdes--;
867
868                 free_pt(vm, pt);
869         }
870
871         return !pd->used_pdes;
872 }
873
874 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
875                                 struct i915_page_directory_pointer *pdp,
876                                 struct i915_page_directory *pd,
877                                 unsigned int pdpe)
878 {
879         gen8_ppgtt_pdpe_t *vaddr;
880
881         pdp->page_directory[pdpe] = pd;
882         if (!use_4lvl(vm))
883                 return;
884
885         vaddr = kmap_atomic_px(pdp);
886         vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
887         kunmap_atomic(vaddr);
888 }
889
890 /* Removes entries from a single page dir pointer, releasing it if it's empty.
891  * Caller can use the return value to update higher-level entries
892  */
893 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
894                                  struct i915_page_directory_pointer *pdp,
895                                  u64 start, u64 length)
896 {
897         struct i915_page_directory *pd;
898         unsigned int pdpe;
899
900         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
901                 GEM_BUG_ON(pd == vm->scratch_pd);
902
903                 if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
904                         continue;
905
906                 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
907                 GEM_BUG_ON(!pdp->used_pdpes);
908                 pdp->used_pdpes--;
909
910                 free_pd(vm, pd);
911         }
912
913         return !pdp->used_pdpes;
914 }
915
916 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
917                                   u64 start, u64 length)
918 {
919         gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
920 }
921
922 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
923                                  struct i915_page_directory_pointer *pdp,
924                                  unsigned int pml4e)
925 {
926         gen8_ppgtt_pml4e_t *vaddr;
927
928         pml4->pdps[pml4e] = pdp;
929
930         vaddr = kmap_atomic_px(pml4);
931         vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
932         kunmap_atomic(vaddr);
933 }
934
935 /* Removes entries from a single pml4.
936  * This is the top-level structure in 4-level page tables used on gen8+.
937  * Empty entries are always scratch pml4e.
938  */
939 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
940                                   u64 start, u64 length)
941 {
942         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
943         struct i915_pml4 *pml4 = &ppgtt->pml4;
944         struct i915_page_directory_pointer *pdp;
945         unsigned int pml4e;
946
947         GEM_BUG_ON(!use_4lvl(vm));
948
949         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
950                 GEM_BUG_ON(pdp == vm->scratch_pdp);
951
952                 if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
953                         continue;
954
955                 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
956
957                 free_pdp(vm, pdp);
958         }
959 }
960
961 struct sgt_dma {
962         struct scatterlist *sg;
963         dma_addr_t dma, max;
964 };
965
966 struct gen8_insert_pte {
967         u16 pml4e;
968         u16 pdpe;
969         u16 pde;
970         u16 pte;
971 };
972
973 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
974 {
975         return (struct gen8_insert_pte) {
976                  gen8_pml4e_index(start),
977                  gen8_pdpe_index(start),
978                  gen8_pde_index(start),
979                  gen8_pte_index(start),
980         };
981 }
982
983 static __always_inline bool
984 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
985                               struct i915_page_directory_pointer *pdp,
986                               struct sgt_dma *iter,
987                               struct gen8_insert_pte *idx,
988                               enum i915_cache_level cache_level)
989 {
990         struct i915_page_directory *pd;
991         const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
992         gen8_pte_t *vaddr;
993         bool ret;
994
995         GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
996         pd = pdp->page_directory[idx->pdpe];
997         vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
998         do {
999                 vaddr[idx->pte] = pte_encode | iter->dma;
1000
1001                 iter->dma += PAGE_SIZE;
1002                 if (iter->dma >= iter->max) {
1003                         iter->sg = __sg_next(iter->sg);
1004                         if (!iter->sg) {
1005                                 ret = false;
1006                                 break;
1007                         }
1008
1009                         iter->dma = sg_dma_address(iter->sg);
1010                         iter->max = iter->dma + iter->sg->length;
1011                 }
1012
1013                 if (++idx->pte == GEN8_PTES) {
1014                         idx->pte = 0;
1015
1016                         if (++idx->pde == I915_PDES) {
1017                                 idx->pde = 0;
1018
1019                                 /* Limited by sg length for 3lvl */
1020                                 if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
1021                                         idx->pdpe = 0;
1022                                         ret = true;
1023                                         break;
1024                                 }
1025
1026                                 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
1027                                 pd = pdp->page_directory[idx->pdpe];
1028                         }
1029
1030                         kunmap_atomic(vaddr);
1031                         vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1032                 }
1033         } while (1);
1034         kunmap_atomic(vaddr);
1035
1036         return ret;
1037 }
1038
1039 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1040                                    struct i915_vma *vma,
1041                                    enum i915_cache_level cache_level,
1042                                    u32 unused)
1043 {
1044         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1045         struct sgt_dma iter = {
1046                 .sg = vma->pages->sgl,
1047                 .dma = sg_dma_address(iter.sg),
1048                 .max = iter.dma + iter.sg->length,
1049         };
1050         struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1051
1052         gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1053                                       cache_level);
1054
1055         vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1056 }
1057
1058 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1059                                            struct i915_page_directory_pointer **pdps,
1060                                            struct sgt_dma *iter,
1061                                            enum i915_cache_level cache_level)
1062 {
1063         const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
1064         u64 start = vma->node.start;
1065         dma_addr_t rem = iter->sg->length;
1066
1067         do {
1068                 struct gen8_insert_pte idx = gen8_insert_pte(start);
1069                 struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
1070                 struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
1071                 unsigned int page_size;
1072                 bool maybe_64K = false;
1073                 gen8_pte_t encode = pte_encode;
1074                 gen8_pte_t *vaddr;
1075                 u16 index, max;
1076
1077                 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1078                     IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1079                     rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
1080                         index = idx.pde;
1081                         max = I915_PDES;
1082                         page_size = I915_GTT_PAGE_SIZE_2M;
1083
1084                         encode |= GEN8_PDE_PS_2M;
1085
1086                         vaddr = kmap_atomic_px(pd);
1087                 } else {
1088                         struct i915_page_table *pt = pd->page_table[idx.pde];
1089
1090                         index = idx.pte;
1091                         max = GEN8_PTES;
1092                         page_size = I915_GTT_PAGE_SIZE;
1093
1094                         if (!index &&
1095                             vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1096                             IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1097                             (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1098                              rem >= (max - index) << PAGE_SHIFT))
1099                                 maybe_64K = true;
1100
1101                         vaddr = kmap_atomic_px(pt);
1102                 }
1103
1104                 do {
1105                         GEM_BUG_ON(iter->sg->length < page_size);
1106                         vaddr[index++] = encode | iter->dma;
1107
1108                         start += page_size;
1109                         iter->dma += page_size;
1110                         rem -= page_size;
1111                         if (iter->dma >= iter->max) {
1112                                 iter->sg = __sg_next(iter->sg);
1113                                 if (!iter->sg)
1114                                         break;
1115
1116                                 rem = iter->sg->length;
1117                                 iter->dma = sg_dma_address(iter->sg);
1118                                 iter->max = iter->dma + rem;
1119
1120                                 if (maybe_64K && index < max &&
1121                                     !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1122                                       (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1123                                        rem >= (max - index) << PAGE_SHIFT)))
1124                                         maybe_64K = false;
1125
1126                                 if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1127                                         break;
1128                         }
1129                 } while (rem >= page_size && index < max);
1130
1131                 kunmap_atomic(vaddr);
1132
1133                 /*
1134                  * Is it safe to mark the 2M block as 64K? -- Either we have
1135                  * filled whole page-table with 64K entries, or filled part of
1136                  * it and have reached the end of the sg table and we have
1137                  * enough padding.
1138                  */
1139                 if (maybe_64K &&
1140                     (index == max ||
1141                      (i915_vm_has_scratch_64K(vma->vm) &&
1142                       !iter->sg && IS_ALIGNED(vma->node.start +
1143                                               vma->node.size,
1144                                               I915_GTT_PAGE_SIZE_2M)))) {
1145                         vaddr = kmap_atomic_px(pd);
1146                         vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
1147                         kunmap_atomic(vaddr);
1148                         page_size = I915_GTT_PAGE_SIZE_64K;
1149                 }
1150
1151                 vma->page_sizes.gtt |= page_size;
1152         } while (iter->sg);
1153 }
1154
1155 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1156                                    struct i915_vma *vma,
1157                                    enum i915_cache_level cache_level,
1158                                    u32 unused)
1159 {
1160         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1161         struct sgt_dma iter = {
1162                 .sg = vma->pages->sgl,
1163                 .dma = sg_dma_address(iter.sg),
1164                 .max = iter.dma + iter.sg->length,
1165         };
1166         struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1167
1168         if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1169                 gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level);
1170         } else {
1171                 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1172
1173                 while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1174                                                      &iter, &idx, cache_level))
1175                         GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1176
1177                 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1178         }
1179 }
1180
1181 static void gen8_free_page_tables(struct i915_address_space *vm,
1182                                   struct i915_page_directory *pd)
1183 {
1184         int i;
1185
1186         if (!px_page(pd))
1187                 return;
1188
1189         for (i = 0; i < I915_PDES; i++) {
1190                 if (pd->page_table[i] != vm->scratch_pt)
1191                         free_pt(vm, pd->page_table[i]);
1192         }
1193 }
1194
1195 static int gen8_init_scratch(struct i915_address_space *vm)
1196 {
1197         int ret;
1198
1199         ret = setup_scratch_page(vm, I915_GFP_DMA);
1200         if (ret)
1201                 return ret;
1202
1203         vm->scratch_pt = alloc_pt(vm);
1204         if (IS_ERR(vm->scratch_pt)) {
1205                 ret = PTR_ERR(vm->scratch_pt);
1206                 goto free_scratch_page;
1207         }
1208
1209         vm->scratch_pd = alloc_pd(vm);
1210         if (IS_ERR(vm->scratch_pd)) {
1211                 ret = PTR_ERR(vm->scratch_pd);
1212                 goto free_pt;
1213         }
1214
1215         if (use_4lvl(vm)) {
1216                 vm->scratch_pdp = alloc_pdp(vm);
1217                 if (IS_ERR(vm->scratch_pdp)) {
1218                         ret = PTR_ERR(vm->scratch_pdp);
1219                         goto free_pd;
1220                 }
1221         }
1222
1223         gen8_initialize_pt(vm, vm->scratch_pt);
1224         gen8_initialize_pd(vm, vm->scratch_pd);
1225         if (use_4lvl(vm))
1226                 gen8_initialize_pdp(vm, vm->scratch_pdp);
1227
1228         return 0;
1229
1230 free_pd:
1231         free_pd(vm, vm->scratch_pd);
1232 free_pt:
1233         free_pt(vm, vm->scratch_pt);
1234 free_scratch_page:
1235         cleanup_scratch_page(vm);
1236
1237         return ret;
1238 }
1239
1240 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1241 {
1242         struct i915_address_space *vm = &ppgtt->base;
1243         struct drm_i915_private *dev_priv = vm->i915;
1244         enum vgt_g2v_type msg;
1245         int i;
1246
1247         if (use_4lvl(vm)) {
1248                 const u64 daddr = px_dma(&ppgtt->pml4);
1249
1250                 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1251                 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1252
1253                 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1254                                 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1255         } else {
1256                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1257                         const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1258
1259                         I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1260                         I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1261                 }
1262
1263                 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1264                                 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1265         }
1266
1267         I915_WRITE(vgtif_reg(g2v_notify), msg);
1268
1269         return 0;
1270 }
1271
1272 static void gen8_free_scratch(struct i915_address_space *vm)
1273 {
1274         if (use_4lvl(vm))
1275                 free_pdp(vm, vm->scratch_pdp);
1276         free_pd(vm, vm->scratch_pd);
1277         free_pt(vm, vm->scratch_pt);
1278         cleanup_scratch_page(vm);
1279 }
1280
1281 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1282                                     struct i915_page_directory_pointer *pdp)
1283 {
1284         const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1285         int i;
1286
1287         for (i = 0; i < pdpes; i++) {
1288                 if (pdp->page_directory[i] == vm->scratch_pd)
1289                         continue;
1290
1291                 gen8_free_page_tables(vm, pdp->page_directory[i]);
1292                 free_pd(vm, pdp->page_directory[i]);
1293         }
1294
1295         free_pdp(vm, pdp);
1296 }
1297
1298 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1299 {
1300         int i;
1301
1302         for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1303                 if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp)
1304                         continue;
1305
1306                 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]);
1307         }
1308
1309         cleanup_px(&ppgtt->base, &ppgtt->pml4);
1310 }
1311
1312 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1313 {
1314         struct drm_i915_private *dev_priv = vm->i915;
1315         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1316
1317         if (intel_vgpu_active(dev_priv))
1318                 gen8_ppgtt_notify_vgt(ppgtt, false);
1319
1320         if (use_4lvl(vm))
1321                 gen8_ppgtt_cleanup_4lvl(ppgtt);
1322         else
1323                 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp);
1324
1325         gen8_free_scratch(vm);
1326 }
1327
1328 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1329                                struct i915_page_directory *pd,
1330                                u64 start, u64 length)
1331 {
1332         struct i915_page_table *pt;
1333         u64 from = start;
1334         unsigned int pde;
1335
1336         gen8_for_each_pde(pt, pd, start, length, pde) {
1337                 int count = gen8_pte_count(start, length);
1338
1339                 if (pt == vm->scratch_pt) {
1340                         pt = alloc_pt(vm);
1341                         if (IS_ERR(pt))
1342                                 goto unwind;
1343
1344                         if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1345                                 gen8_initialize_pt(vm, pt);
1346
1347                         gen8_ppgtt_set_pde(vm, pd, pt, pde);
1348                         pd->used_pdes++;
1349                         GEM_BUG_ON(pd->used_pdes > I915_PDES);
1350                 }
1351
1352                 pt->used_ptes += count;
1353         }
1354         return 0;
1355
1356 unwind:
1357         gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1358         return -ENOMEM;
1359 }
1360
1361 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1362                                 struct i915_page_directory_pointer *pdp,
1363                                 u64 start, u64 length)
1364 {
1365         struct i915_page_directory *pd;
1366         u64 from = start;
1367         unsigned int pdpe;
1368         int ret;
1369
1370         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1371                 if (pd == vm->scratch_pd) {
1372                         pd = alloc_pd(vm);
1373                         if (IS_ERR(pd))
1374                                 goto unwind;
1375
1376                         gen8_initialize_pd(vm, pd);
1377                         gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1378                         pdp->used_pdpes++;
1379                         GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1380
1381                         mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1382                 }
1383
1384                 ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1385                 if (unlikely(ret))
1386                         goto unwind_pd;
1387         }
1388
1389         return 0;
1390
1391 unwind_pd:
1392         if (!pd->used_pdes) {
1393                 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1394                 GEM_BUG_ON(!pdp->used_pdpes);
1395                 pdp->used_pdpes--;
1396                 free_pd(vm, pd);
1397         }
1398 unwind:
1399         gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1400         return -ENOMEM;
1401 }
1402
1403 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1404                                  u64 start, u64 length)
1405 {
1406         return gen8_ppgtt_alloc_pdp(vm,
1407                                     &i915_vm_to_ppgtt(vm)->pdp, start, length);
1408 }
1409
1410 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1411                                  u64 start, u64 length)
1412 {
1413         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1414         struct i915_pml4 *pml4 = &ppgtt->pml4;
1415         struct i915_page_directory_pointer *pdp;
1416         u64 from = start;
1417         u32 pml4e;
1418         int ret;
1419
1420         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1421                 if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1422                         pdp = alloc_pdp(vm);
1423                         if (IS_ERR(pdp))
1424                                 goto unwind;
1425
1426                         gen8_initialize_pdp(vm, pdp);
1427                         gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1428                 }
1429
1430                 ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1431                 if (unlikely(ret))
1432                         goto unwind_pdp;
1433         }
1434
1435         return 0;
1436
1437 unwind_pdp:
1438         if (!pdp->used_pdpes) {
1439                 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1440                 free_pdp(vm, pdp);
1441         }
1442 unwind:
1443         gen8_ppgtt_clear_4lvl(vm, from, start - from);
1444         return -ENOMEM;
1445 }
1446
1447 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1448                           struct i915_page_directory_pointer *pdp,
1449                           u64 start, u64 length,
1450                           gen8_pte_t scratch_pte,
1451                           struct seq_file *m)
1452 {
1453         struct i915_address_space *vm = &ppgtt->base;
1454         struct i915_page_directory *pd;
1455         u32 pdpe;
1456
1457         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1458                 struct i915_page_table *pt;
1459                 u64 pd_len = length;
1460                 u64 pd_start = start;
1461                 u32 pde;
1462
1463                 if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd)
1464                         continue;
1465
1466                 seq_printf(m, "\tPDPE #%d\n", pdpe);
1467                 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1468                         u32 pte;
1469                         gen8_pte_t *pt_vaddr;
1470
1471                         if (pd->page_table[pde] == ppgtt->base.scratch_pt)
1472                                 continue;
1473
1474                         pt_vaddr = kmap_atomic_px(pt);
1475                         for (pte = 0; pte < GEN8_PTES; pte += 4) {
1476                                 u64 va = (pdpe << GEN8_PDPE_SHIFT |
1477                                           pde << GEN8_PDE_SHIFT |
1478                                           pte << GEN8_PTE_SHIFT);
1479                                 int i;
1480                                 bool found = false;
1481
1482                                 for (i = 0; i < 4; i++)
1483                                         if (pt_vaddr[pte + i] != scratch_pte)
1484                                                 found = true;
1485                                 if (!found)
1486                                         continue;
1487
1488                                 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1489                                 for (i = 0; i < 4; i++) {
1490                                         if (pt_vaddr[pte + i] != scratch_pte)
1491                                                 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1492                                         else
1493                                                 seq_puts(m, "  SCRATCH ");
1494                                 }
1495                                 seq_puts(m, "\n");
1496                         }
1497                         kunmap_atomic(pt_vaddr);
1498                 }
1499         }
1500 }
1501
1502 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1503 {
1504         struct i915_address_space *vm = &ppgtt->base;
1505         const gen8_pte_t scratch_pte =
1506                 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1507         u64 start = 0, length = ppgtt->base.total;
1508
1509         if (use_4lvl(vm)) {
1510                 u64 pml4e;
1511                 struct i915_pml4 *pml4 = &ppgtt->pml4;
1512                 struct i915_page_directory_pointer *pdp;
1513
1514                 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1515                         if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp)
1516                                 continue;
1517
1518                         seq_printf(m, "    PML4E #%llu\n", pml4e);
1519                         gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1520                 }
1521         } else {
1522                 gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1523         }
1524 }
1525
1526 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1527 {
1528         struct i915_address_space *vm = &ppgtt->base;
1529         struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1530         struct i915_page_directory *pd;
1531         u64 start = 0, length = ppgtt->base.total;
1532         u64 from = start;
1533         unsigned int pdpe;
1534
1535         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1536                 pd = alloc_pd(vm);
1537                 if (IS_ERR(pd))
1538                         goto unwind;
1539
1540                 gen8_initialize_pd(vm, pd);
1541                 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1542                 pdp->used_pdpes++;
1543         }
1544
1545         pdp->used_pdpes++; /* never remove */
1546         return 0;
1547
1548 unwind:
1549         start -= from;
1550         gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1551                 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1552                 free_pd(vm, pd);
1553         }
1554         pdp->used_pdpes = 0;
1555         return -ENOMEM;
1556 }
1557
1558 /*
1559  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1560  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1561  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1562  * space.
1563  *
1564  */
1565 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1566 {
1567         struct i915_address_space *vm = &ppgtt->base;
1568         struct drm_i915_private *dev_priv = vm->i915;
1569         int ret;
1570
1571         ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ?
1572                 1ULL << 48 :
1573                 1ULL << 32;
1574
1575         /* There are only few exceptions for gen >=6. chv and bxt.
1576          * And we are not sure about the latter so play safe for now.
1577          */
1578         if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
1579                 ppgtt->base.pt_kmap_wc = true;
1580
1581         ret = gen8_init_scratch(&ppgtt->base);
1582         if (ret) {
1583                 ppgtt->base.total = 0;
1584                 return ret;
1585         }
1586
1587         if (use_4lvl(vm)) {
1588                 ret = setup_px(&ppgtt->base, &ppgtt->pml4);
1589                 if (ret)
1590                         goto free_scratch;
1591
1592                 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1593
1594                 ppgtt->switch_mm = gen8_mm_switch_4lvl;
1595                 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1596                 ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl;
1597                 ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl;
1598         } else {
1599                 ret = __pdp_init(&ppgtt->base, &ppgtt->pdp);
1600                 if (ret)
1601                         goto free_scratch;
1602
1603                 if (intel_vgpu_active(dev_priv)) {
1604                         ret = gen8_preallocate_top_level_pdp(ppgtt);
1605                         if (ret) {
1606                                 __pdp_fini(&ppgtt->pdp);
1607                                 goto free_scratch;
1608                         }
1609                 }
1610
1611                 ppgtt->switch_mm = gen8_mm_switch_3lvl;
1612                 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1613                 ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl;
1614                 ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl;
1615         }
1616
1617         if (intel_vgpu_active(dev_priv))
1618                 gen8_ppgtt_notify_vgt(ppgtt, true);
1619
1620         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1621         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1622         ppgtt->base.bind_vma = ppgtt_bind_vma;
1623         ppgtt->base.set_pages = ppgtt_set_pages;
1624         ppgtt->base.clear_pages = clear_pages;
1625         ppgtt->debug_dump = gen8_dump_ppgtt;
1626
1627         return 0;
1628
1629 free_scratch:
1630         gen8_free_scratch(&ppgtt->base);
1631         return ret;
1632 }
1633
1634 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1635 {
1636         struct i915_address_space *vm = &ppgtt->base;
1637         struct i915_page_table *unused;
1638         gen6_pte_t scratch_pte;
1639         u32 pd_entry, pte, pde;
1640         u32 start = 0, length = ppgtt->base.total;
1641
1642         scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1643                                      I915_CACHE_LLC, 0);
1644
1645         gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1646                 u32 expected;
1647                 gen6_pte_t *pt_vaddr;
1648                 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1649                 pd_entry = readl(ppgtt->pd_addr + pde);
1650                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1651
1652                 if (pd_entry != expected)
1653                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1654                                    pde,
1655                                    pd_entry,
1656                                    expected);
1657                 seq_printf(m, "\tPDE: %x\n", pd_entry);
1658
1659                 pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]);
1660
1661                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1662                         unsigned long va =
1663                                 (pde * PAGE_SIZE * GEN6_PTES) +
1664                                 (pte * PAGE_SIZE);
1665                         int i;
1666                         bool found = false;
1667                         for (i = 0; i < 4; i++)
1668                                 if (pt_vaddr[pte + i] != scratch_pte)
1669                                         found = true;
1670                         if (!found)
1671                                 continue;
1672
1673                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1674                         for (i = 0; i < 4; i++) {
1675                                 if (pt_vaddr[pte + i] != scratch_pte)
1676                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
1677                                 else
1678                                         seq_puts(m, "  SCRATCH ");
1679                         }
1680                         seq_puts(m, "\n");
1681                 }
1682                 kunmap_atomic(pt_vaddr);
1683         }
1684 }
1685
1686 /* Write pde (index) from the page directory @pd to the page table @pt */
1687 static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt,
1688                                   const unsigned int pde,
1689                                   const struct i915_page_table *pt)
1690 {
1691         /* Caller needs to make sure the write completes if necessary */
1692         writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1693                        ppgtt->pd_addr + pde);
1694 }
1695
1696 /* Write all the page tables found in the ppgtt structure to incrementing page
1697  * directories. */
1698 static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt,
1699                                   u32 start, u32 length)
1700 {
1701         struct i915_page_table *pt;
1702         unsigned int pde;
1703
1704         gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde)
1705                 gen6_write_pde(ppgtt, pde, pt);
1706
1707         mark_tlbs_dirty(ppgtt);
1708         wmb();
1709 }
1710
1711 static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1712 {
1713         GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1714         return ppgtt->pd.base.ggtt_offset << 10;
1715 }
1716
1717 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1718                          struct drm_i915_gem_request *req)
1719 {
1720         struct intel_engine_cs *engine = req->engine;
1721         u32 *cs;
1722
1723         /* NB: TLBs must be flushed and invalidated before a switch */
1724         cs = intel_ring_begin(req, 6);
1725         if (IS_ERR(cs))
1726                 return PTR_ERR(cs);
1727
1728         *cs++ = MI_LOAD_REGISTER_IMM(2);
1729         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1730         *cs++ = PP_DIR_DCLV_2G;
1731         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1732         *cs++ = get_pd_offset(ppgtt);
1733         *cs++ = MI_NOOP;
1734         intel_ring_advance(req, cs);
1735
1736         return 0;
1737 }
1738
1739 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1740                           struct drm_i915_gem_request *req)
1741 {
1742         struct intel_engine_cs *engine = req->engine;
1743         u32 *cs;
1744
1745         /* NB: TLBs must be flushed and invalidated before a switch */
1746         cs = intel_ring_begin(req, 6);
1747         if (IS_ERR(cs))
1748                 return PTR_ERR(cs);
1749
1750         *cs++ = MI_LOAD_REGISTER_IMM(2);
1751         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1752         *cs++ = PP_DIR_DCLV_2G;
1753         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1754         *cs++ = get_pd_offset(ppgtt);
1755         *cs++ = MI_NOOP;
1756         intel_ring_advance(req, cs);
1757
1758         return 0;
1759 }
1760
1761 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1762                           struct drm_i915_gem_request *req)
1763 {
1764         struct intel_engine_cs *engine = req->engine;
1765         struct drm_i915_private *dev_priv = req->i915;
1766
1767         I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1768         I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1769         return 0;
1770 }
1771
1772 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1773 {
1774         struct intel_engine_cs *engine;
1775         enum intel_engine_id id;
1776
1777         for_each_engine(engine, dev_priv, id) {
1778                 u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1779                                  GEN8_GFX_PPGTT_48B : 0;
1780                 I915_WRITE(RING_MODE_GEN7(engine),
1781                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1782         }
1783 }
1784
1785 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1786 {
1787         struct intel_engine_cs *engine;
1788         u32 ecochk, ecobits;
1789         enum intel_engine_id id;
1790
1791         ecobits = I915_READ(GAC_ECO_BITS);
1792         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1793
1794         ecochk = I915_READ(GAM_ECOCHK);
1795         if (IS_HASWELL(dev_priv)) {
1796                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1797         } else {
1798                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1799                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1800         }
1801         I915_WRITE(GAM_ECOCHK, ecochk);
1802
1803         for_each_engine(engine, dev_priv, id) {
1804                 /* GFX_MODE is per-ring on gen7+ */
1805                 I915_WRITE(RING_MODE_GEN7(engine),
1806                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1807         }
1808 }
1809
1810 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1811 {
1812         u32 ecochk, gab_ctl, ecobits;
1813
1814         ecobits = I915_READ(GAC_ECO_BITS);
1815         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1816                    ECOBITS_PPGTT_CACHE64B);
1817
1818         gab_ctl = I915_READ(GAB_CTL);
1819         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1820
1821         ecochk = I915_READ(GAM_ECOCHK);
1822         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1823
1824         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1825 }
1826
1827 /* PPGTT support for Sandybdrige/Gen6 and later */
1828 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1829                                    u64 start, u64 length)
1830 {
1831         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1832         unsigned int first_entry = start >> PAGE_SHIFT;
1833         unsigned int pde = first_entry / GEN6_PTES;
1834         unsigned int pte = first_entry % GEN6_PTES;
1835         unsigned int num_entries = length >> PAGE_SHIFT;
1836         gen6_pte_t scratch_pte =
1837                 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1838
1839         while (num_entries) {
1840                 struct i915_page_table *pt = ppgtt->pd.page_table[pde++];
1841                 unsigned int end = min(pte + num_entries, GEN6_PTES);
1842                 gen6_pte_t *vaddr;
1843
1844                 num_entries -= end - pte;
1845
1846                 /* Note that the hw doesn't support removing PDE on the fly
1847                  * (they are cached inside the context with no means to
1848                  * invalidate the cache), so we can only reset the PTE
1849                  * entries back to scratch.
1850                  */
1851
1852                 vaddr = kmap_atomic_px(pt);
1853                 do {
1854                         vaddr[pte++] = scratch_pte;
1855                 } while (pte < end);
1856                 kunmap_atomic(vaddr);
1857
1858                 pte = 0;
1859         }
1860 }
1861
1862 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1863                                       struct i915_vma *vma,
1864                                       enum i915_cache_level cache_level,
1865                                       u32 flags)
1866 {
1867         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1868         unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1869         unsigned act_pt = first_entry / GEN6_PTES;
1870         unsigned act_pte = first_entry % GEN6_PTES;
1871         const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1872         struct sgt_dma iter;
1873         gen6_pte_t *vaddr;
1874
1875         vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1876         iter.sg = vma->pages->sgl;
1877         iter.dma = sg_dma_address(iter.sg);
1878         iter.max = iter.dma + iter.sg->length;
1879         do {
1880                 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1881
1882                 iter.dma += PAGE_SIZE;
1883                 if (iter.dma == iter.max) {
1884                         iter.sg = __sg_next(iter.sg);
1885                         if (!iter.sg)
1886                                 break;
1887
1888                         iter.dma = sg_dma_address(iter.sg);
1889                         iter.max = iter.dma + iter.sg->length;
1890                 }
1891
1892                 if (++act_pte == GEN6_PTES) {
1893                         kunmap_atomic(vaddr);
1894                         vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1895                         act_pte = 0;
1896                 }
1897         } while (1);
1898         kunmap_atomic(vaddr);
1899
1900         vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1901 }
1902
1903 static int gen6_alloc_va_range(struct i915_address_space *vm,
1904                                u64 start, u64 length)
1905 {
1906         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1907         struct i915_page_table *pt;
1908         u64 from = start;
1909         unsigned int pde;
1910         bool flush = false;
1911
1912         gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1913                 if (pt == vm->scratch_pt) {
1914                         pt = alloc_pt(vm);
1915                         if (IS_ERR(pt))
1916                                 goto unwind_out;
1917
1918                         gen6_initialize_pt(vm, pt);
1919                         ppgtt->pd.page_table[pde] = pt;
1920                         gen6_write_pde(ppgtt, pde, pt);
1921                         flush = true;
1922                 }
1923         }
1924
1925         if (flush) {
1926                 mark_tlbs_dirty(ppgtt);
1927                 wmb();
1928         }
1929
1930         return 0;
1931
1932 unwind_out:
1933         gen6_ppgtt_clear_range(vm, from, start);
1934         return -ENOMEM;
1935 }
1936
1937 static int gen6_init_scratch(struct i915_address_space *vm)
1938 {
1939         int ret;
1940
1941         ret = setup_scratch_page(vm, I915_GFP_DMA);
1942         if (ret)
1943                 return ret;
1944
1945         vm->scratch_pt = alloc_pt(vm);
1946         if (IS_ERR(vm->scratch_pt)) {
1947                 cleanup_scratch_page(vm);
1948                 return PTR_ERR(vm->scratch_pt);
1949         }
1950
1951         gen6_initialize_pt(vm, vm->scratch_pt);
1952
1953         return 0;
1954 }
1955
1956 static void gen6_free_scratch(struct i915_address_space *vm)
1957 {
1958         free_pt(vm, vm->scratch_pt);
1959         cleanup_scratch_page(vm);
1960 }
1961
1962 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1963 {
1964         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1965         struct i915_page_directory *pd = &ppgtt->pd;
1966         struct i915_page_table *pt;
1967         u32 pde;
1968
1969         drm_mm_remove_node(&ppgtt->node);
1970
1971         gen6_for_all_pdes(pt, pd, pde)
1972                 if (pt != vm->scratch_pt)
1973                         free_pt(vm, pt);
1974
1975         gen6_free_scratch(vm);
1976 }
1977
1978 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1979 {
1980         struct i915_address_space *vm = &ppgtt->base;
1981         struct drm_i915_private *dev_priv = ppgtt->base.i915;
1982         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1983         int ret;
1984
1985         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1986          * allocator works in address space sizes, so it's multiplied by page
1987          * size. We allocate at the top of the GTT to avoid fragmentation.
1988          */
1989         BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
1990
1991         ret = gen6_init_scratch(vm);
1992         if (ret)
1993                 return ret;
1994
1995         ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node,
1996                                   GEN6_PD_SIZE, GEN6_PD_ALIGN,
1997                                   I915_COLOR_UNEVICTABLE,
1998                                   0, ggtt->base.total,
1999                                   PIN_HIGH);
2000         if (ret)
2001                 goto err_out;
2002
2003         if (ppgtt->node.start < ggtt->mappable_end)
2004                 DRM_DEBUG("Forced to use aperture for PDEs\n");
2005
2006         ppgtt->pd.base.ggtt_offset =
2007                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2008
2009         ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2010                 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2011
2012         return 0;
2013
2014 err_out:
2015         gen6_free_scratch(vm);
2016         return ret;
2017 }
2018
2019 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2020 {
2021         return gen6_ppgtt_allocate_page_directories(ppgtt);
2022 }
2023
2024 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2025                                   u64 start, u64 length)
2026 {
2027         struct i915_page_table *unused;
2028         u32 pde;
2029
2030         gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2031                 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2032 }
2033
2034 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2035 {
2036         struct drm_i915_private *dev_priv = ppgtt->base.i915;
2037         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2038         int ret;
2039
2040         ppgtt->base.pte_encode = ggtt->base.pte_encode;
2041         if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
2042                 ppgtt->switch_mm = gen6_mm_switch;
2043         else if (IS_HASWELL(dev_priv))
2044                 ppgtt->switch_mm = hsw_mm_switch;
2045         else if (IS_GEN7(dev_priv))
2046                 ppgtt->switch_mm = gen7_mm_switch;
2047         else
2048                 BUG();
2049
2050         ret = gen6_ppgtt_alloc(ppgtt);
2051         if (ret)
2052                 return ret;
2053
2054         ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2055
2056         gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2057         gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
2058
2059         ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total);
2060         if (ret) {
2061                 gen6_ppgtt_cleanup(&ppgtt->base);
2062                 return ret;
2063         }
2064
2065         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2066         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2067         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2068         ppgtt->base.bind_vma = ppgtt_bind_vma;
2069         ppgtt->base.set_pages = ppgtt_set_pages;
2070         ppgtt->base.clear_pages = clear_pages;
2071         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2072         ppgtt->debug_dump = gen6_dump_ppgtt;
2073
2074         DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2075                          ppgtt->node.size >> 20,
2076                          ppgtt->node.start / PAGE_SIZE);
2077
2078         DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n",
2079                          ppgtt->pd.base.ggtt_offset << 10);
2080
2081         return 0;
2082 }
2083
2084 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2085                            struct drm_i915_private *dev_priv)
2086 {
2087         ppgtt->base.i915 = dev_priv;
2088         ppgtt->base.dma = &dev_priv->drm.pdev->dev;
2089
2090         if (INTEL_INFO(dev_priv)->gen < 8)
2091                 return gen6_ppgtt_init(ppgtt);
2092         else
2093                 return gen8_ppgtt_init(ppgtt);
2094 }
2095
2096 static void i915_address_space_init(struct i915_address_space *vm,
2097                                     struct drm_i915_private *dev_priv,
2098                                     const char *name)
2099 {
2100         i915_gem_timeline_init(dev_priv, &vm->timeline, name);
2101
2102         drm_mm_init(&vm->mm, 0, vm->total);
2103         vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
2104
2105         INIT_LIST_HEAD(&vm->active_list);
2106         INIT_LIST_HEAD(&vm->inactive_list);
2107         INIT_LIST_HEAD(&vm->unbound_list);
2108
2109         list_add_tail(&vm->global_link, &dev_priv->vm_list);
2110         pagevec_init(&vm->free_pages, false);
2111 }
2112
2113 static void i915_address_space_fini(struct i915_address_space *vm)
2114 {
2115         if (pagevec_count(&vm->free_pages))
2116                 vm_free_pages_release(vm, true);
2117
2118         i915_gem_timeline_fini(&vm->timeline);
2119         drm_mm_takedown(&vm->mm);
2120         list_del(&vm->global_link);
2121 }
2122
2123 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2124 {
2125         /* This function is for gtt related workarounds. This function is
2126          * called on driver load and after a GPU reset, so you can place
2127          * workarounds here even if they get overwritten by GPU reset.
2128          */
2129         /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl */
2130         if (IS_BROADWELL(dev_priv))
2131                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2132         else if (IS_CHERRYVIEW(dev_priv))
2133                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2134         else if (IS_GEN9_BC(dev_priv) || IS_GEN10(dev_priv))
2135                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2136         else if (IS_GEN9_LP(dev_priv))
2137                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2138
2139         /*
2140          * To support 64K PTEs we need to first enable the use of the
2141          * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2142          * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2143          * shouldn't be needed after GEN10.
2144          *
2145          * 64K pages were first introduced from BDW+, although technically they
2146          * only *work* from gen9+. For pre-BDW we instead have the option for
2147          * 32K pages, but we don't currently have any support for it in our
2148          * driver.
2149          */
2150         if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
2151             INTEL_GEN(dev_priv) <= 10)
2152                 I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
2153                            I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
2154                            GAMW_ECO_ENABLE_64K_IPS_FIELD);
2155 }
2156
2157 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2158 {
2159         gtt_write_workarounds(dev_priv);
2160
2161         /* In the case of execlists, PPGTT is enabled by the context descriptor
2162          * and the PDPs are contained within the context itself.  We don't
2163          * need to do anything here. */
2164         if (i915_modparams.enable_execlists)
2165                 return 0;
2166
2167         if (!USES_PPGTT(dev_priv))
2168                 return 0;
2169
2170         if (IS_GEN6(dev_priv))
2171                 gen6_ppgtt_enable(dev_priv);
2172         else if (IS_GEN7(dev_priv))
2173                 gen7_ppgtt_enable(dev_priv);
2174         else if (INTEL_GEN(dev_priv) >= 8)
2175                 gen8_ppgtt_enable(dev_priv);
2176         else
2177                 MISSING_CASE(INTEL_GEN(dev_priv));
2178
2179         return 0;
2180 }
2181
2182 struct i915_hw_ppgtt *
2183 i915_ppgtt_create(struct drm_i915_private *dev_priv,
2184                   struct drm_i915_file_private *fpriv,
2185                   const char *name)
2186 {
2187         struct i915_hw_ppgtt *ppgtt;
2188         int ret;
2189
2190         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2191         if (!ppgtt)
2192                 return ERR_PTR(-ENOMEM);
2193
2194         ret = __hw_ppgtt_init(ppgtt, dev_priv);
2195         if (ret) {
2196                 kfree(ppgtt);
2197                 return ERR_PTR(ret);
2198         }
2199
2200         kref_init(&ppgtt->ref);
2201         i915_address_space_init(&ppgtt->base, dev_priv, name);
2202         ppgtt->base.file = fpriv;
2203
2204         trace_i915_ppgtt_create(&ppgtt->base);
2205
2206         return ppgtt;
2207 }
2208
2209 void i915_ppgtt_close(struct i915_address_space *vm)
2210 {
2211         struct list_head *phases[] = {
2212                 &vm->active_list,
2213                 &vm->inactive_list,
2214                 &vm->unbound_list,
2215                 NULL,
2216         }, **phase;
2217
2218         GEM_BUG_ON(vm->closed);
2219         vm->closed = true;
2220
2221         for (phase = phases; *phase; phase++) {
2222                 struct i915_vma *vma, *vn;
2223
2224                 list_for_each_entry_safe(vma, vn, *phase, vm_link)
2225                         if (!i915_vma_is_closed(vma))
2226                                 i915_vma_close(vma);
2227         }
2228 }
2229
2230 void i915_ppgtt_release(struct kref *kref)
2231 {
2232         struct i915_hw_ppgtt *ppgtt =
2233                 container_of(kref, struct i915_hw_ppgtt, ref);
2234
2235         trace_i915_ppgtt_release(&ppgtt->base);
2236
2237         /* vmas should already be unbound and destroyed */
2238         WARN_ON(!list_empty(&ppgtt->base.active_list));
2239         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2240         WARN_ON(!list_empty(&ppgtt->base.unbound_list));
2241
2242         ppgtt->base.cleanup(&ppgtt->base);
2243         i915_address_space_fini(&ppgtt->base);
2244         kfree(ppgtt);
2245 }
2246
2247 /* Certain Gen5 chipsets require require idling the GPU before
2248  * unmapping anything from the GTT when VT-d is enabled.
2249  */
2250 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2251 {
2252         /* Query intel_iommu to see if we need the workaround. Presumably that
2253          * was loaded first.
2254          */
2255         return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2256 }
2257
2258 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2259 {
2260         struct intel_engine_cs *engine;
2261         enum intel_engine_id id;
2262
2263         if (INTEL_INFO(dev_priv)->gen < 6)
2264                 return;
2265
2266         for_each_engine(engine, dev_priv, id) {
2267                 u32 fault_reg;
2268                 fault_reg = I915_READ(RING_FAULT_REG(engine));
2269                 if (fault_reg & RING_FAULT_VALID) {
2270                         DRM_DEBUG_DRIVER("Unexpected fault\n"
2271                                          "\tAddr: 0x%08lx\n"
2272                                          "\tAddress space: %s\n"
2273                                          "\tSource ID: %d\n"
2274                                          "\tType: %d\n",
2275                                          fault_reg & PAGE_MASK,
2276                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2277                                          RING_FAULT_SRCID(fault_reg),
2278                                          RING_FAULT_FAULT_TYPE(fault_reg));
2279                         I915_WRITE(RING_FAULT_REG(engine),
2280                                    fault_reg & ~RING_FAULT_VALID);
2281                 }
2282         }
2283
2284         /* Engine specific init may not have been done till this point. */
2285         if (dev_priv->engine[RCS])
2286                 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2287 }
2288
2289 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2290 {
2291         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2292
2293         /* Don't bother messing with faults pre GEN6 as we have little
2294          * documentation supporting that it's a good idea.
2295          */
2296         if (INTEL_GEN(dev_priv) < 6)
2297                 return;
2298
2299         i915_check_and_clear_faults(dev_priv);
2300
2301         ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
2302
2303         i915_ggtt_invalidate(dev_priv);
2304 }
2305
2306 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2307                                struct sg_table *pages)
2308 {
2309         do {
2310                 if (dma_map_sg(&obj->base.dev->pdev->dev,
2311                                pages->sgl, pages->nents,
2312                                PCI_DMA_BIDIRECTIONAL))
2313                         return 0;
2314
2315                 /* If the DMA remap fails, one cause can be that we have
2316                  * too many objects pinned in a small remapping table,
2317                  * such as swiotlb. Incrementally purge all other objects and
2318                  * try again - if there are no more pages to remove from
2319                  * the DMA remapper, i915_gem_shrink will return 0.
2320                  */
2321                 GEM_BUG_ON(obj->mm.pages == pages);
2322         } while (i915_gem_shrink(to_i915(obj->base.dev),
2323                                  obj->base.size >> PAGE_SHIFT, NULL,
2324                                  I915_SHRINK_BOUND |
2325                                  I915_SHRINK_UNBOUND |
2326                                  I915_SHRINK_ACTIVE));
2327
2328         return -ENOSPC;
2329 }
2330
2331 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2332 {
2333         writeq(pte, addr);
2334 }
2335
2336 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2337                                   dma_addr_t addr,
2338                                   u64 offset,
2339                                   enum i915_cache_level level,
2340                                   u32 unused)
2341 {
2342         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2343         gen8_pte_t __iomem *pte =
2344                 (gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2345
2346         gen8_set_pte(pte, gen8_pte_encode(addr, level));
2347
2348         ggtt->invalidate(vm->i915);
2349 }
2350
2351 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2352                                      struct i915_vma *vma,
2353                                      enum i915_cache_level level,
2354                                      u32 unused)
2355 {
2356         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2357         struct sgt_iter sgt_iter;
2358         gen8_pte_t __iomem *gtt_entries;
2359         const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2360         dma_addr_t addr;
2361
2362         gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2363         gtt_entries += vma->node.start >> PAGE_SHIFT;
2364         for_each_sgt_dma(addr, sgt_iter, vma->pages)
2365                 gen8_set_pte(gtt_entries++, pte_encode | addr);
2366
2367         wmb();
2368
2369         /* This next bit makes the above posting read even more important. We
2370          * want to flush the TLBs only after we're certain all the PTE updates
2371          * have finished.
2372          */
2373         ggtt->invalidate(vm->i915);
2374 }
2375
2376 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2377                                   dma_addr_t addr,
2378                                   u64 offset,
2379                                   enum i915_cache_level level,
2380                                   u32 flags)
2381 {
2382         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2383         gen6_pte_t __iomem *pte =
2384                 (gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2385
2386         iowrite32(vm->pte_encode(addr, level, flags), pte);
2387
2388         ggtt->invalidate(vm->i915);
2389 }
2390
2391 /*
2392  * Binds an object into the global gtt with the specified cache level. The object
2393  * will be accessible to the GPU via commands whose operands reference offsets
2394  * within the global GTT as well as accessible by the GPU through the GMADR
2395  * mapped BAR (dev_priv->mm.gtt->gtt).
2396  */
2397 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2398                                      struct i915_vma *vma,
2399                                      enum i915_cache_level level,
2400                                      u32 flags)
2401 {
2402         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2403         gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2404         unsigned int i = vma->node.start >> PAGE_SHIFT;
2405         struct sgt_iter iter;
2406         dma_addr_t addr;
2407         for_each_sgt_dma(addr, iter, vma->pages)
2408                 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2409         wmb();
2410
2411         /* This next bit makes the above posting read even more important. We
2412          * want to flush the TLBs only after we're certain all the PTE updates
2413          * have finished.
2414          */
2415         ggtt->invalidate(vm->i915);
2416 }
2417
2418 static void nop_clear_range(struct i915_address_space *vm,
2419                             u64 start, u64 length)
2420 {
2421 }
2422
2423 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2424                                   u64 start, u64 length)
2425 {
2426         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2427         unsigned first_entry = start >> PAGE_SHIFT;
2428         unsigned num_entries = length >> PAGE_SHIFT;
2429         const gen8_pte_t scratch_pte =
2430                 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
2431         gen8_pte_t __iomem *gtt_base =
2432                 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2433         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2434         int i;
2435
2436         if (WARN(num_entries > max_entries,
2437                  "First entry = %d; Num entries = %d (max=%d)\n",
2438                  first_entry, num_entries, max_entries))
2439                 num_entries = max_entries;
2440
2441         for (i = 0; i < num_entries; i++)
2442                 gen8_set_pte(&gtt_base[i], scratch_pte);
2443 }
2444
2445 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2446 {
2447         struct drm_i915_private *dev_priv = vm->i915;
2448
2449         /*
2450          * Make sure the internal GAM fifo has been cleared of all GTT
2451          * writes before exiting stop_machine(). This guarantees that
2452          * any aperture accesses waiting to start in another process
2453          * cannot back up behind the GTT writes causing a hang.
2454          * The register can be any arbitrary GAM register.
2455          */
2456         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2457 }
2458
2459 struct insert_page {
2460         struct i915_address_space *vm;
2461         dma_addr_t addr;
2462         u64 offset;
2463         enum i915_cache_level level;
2464 };
2465
2466 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2467 {
2468         struct insert_page *arg = _arg;
2469
2470         gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2471         bxt_vtd_ggtt_wa(arg->vm);
2472
2473         return 0;
2474 }
2475
2476 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2477                                           dma_addr_t addr,
2478                                           u64 offset,
2479                                           enum i915_cache_level level,
2480                                           u32 unused)
2481 {
2482         struct insert_page arg = { vm, addr, offset, level };
2483
2484         stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2485 }
2486
2487 struct insert_entries {
2488         struct i915_address_space *vm;
2489         struct i915_vma *vma;
2490         enum i915_cache_level level;
2491 };
2492
2493 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2494 {
2495         struct insert_entries *arg = _arg;
2496
2497         gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, 0);
2498         bxt_vtd_ggtt_wa(arg->vm);
2499
2500         return 0;
2501 }
2502
2503 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2504                                              struct i915_vma *vma,
2505                                              enum i915_cache_level level,
2506                                              u32 unused)
2507 {
2508         struct insert_entries arg = { vm, vma, level };
2509
2510         stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2511 }
2512
2513 struct clear_range {
2514         struct i915_address_space *vm;
2515         u64 start;
2516         u64 length;
2517 };
2518
2519 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2520 {
2521         struct clear_range *arg = _arg;
2522
2523         gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2524         bxt_vtd_ggtt_wa(arg->vm);
2525
2526         return 0;
2527 }
2528
2529 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2530                                           u64 start,
2531                                           u64 length)
2532 {
2533         struct clear_range arg = { vm, start, length };
2534
2535         stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2536 }
2537
2538 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2539                                   u64 start, u64 length)
2540 {
2541         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2542         unsigned first_entry = start >> PAGE_SHIFT;
2543         unsigned num_entries = length >> PAGE_SHIFT;
2544         gen6_pte_t scratch_pte, __iomem *gtt_base =
2545                 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2546         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2547         int i;
2548
2549         if (WARN(num_entries > max_entries,
2550                  "First entry = %d; Num entries = %d (max=%d)\n",
2551                  first_entry, num_entries, max_entries))
2552                 num_entries = max_entries;
2553
2554         scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2555                                      I915_CACHE_LLC, 0);
2556
2557         for (i = 0; i < num_entries; i++)
2558                 iowrite32(scratch_pte, &gtt_base[i]);
2559 }
2560
2561 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2562                                   dma_addr_t addr,
2563                                   u64 offset,
2564                                   enum i915_cache_level cache_level,
2565                                   u32 unused)
2566 {
2567         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2568                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2569
2570         intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2571 }
2572
2573 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2574                                      struct i915_vma *vma,
2575                                      enum i915_cache_level cache_level,
2576                                      u32 unused)
2577 {
2578         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2579                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2580
2581         intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2582                                     flags);
2583 }
2584
2585 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2586                                   u64 start, u64 length)
2587 {
2588         intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2589 }
2590
2591 static int ggtt_bind_vma(struct i915_vma *vma,
2592                          enum i915_cache_level cache_level,
2593                          u32 flags)
2594 {
2595         struct drm_i915_private *i915 = vma->vm->i915;
2596         struct drm_i915_gem_object *obj = vma->obj;
2597         u32 pte_flags;
2598
2599         /* Currently applicable only to VLV */
2600         pte_flags = 0;
2601         if (obj->gt_ro)
2602                 pte_flags |= PTE_READ_ONLY;
2603
2604         intel_runtime_pm_get(i915);
2605         vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2606         intel_runtime_pm_put(i915);
2607
2608         vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2609
2610         /*
2611          * Without aliasing PPGTT there's no difference between
2612          * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2613          * upgrade to both bound if we bind either to avoid double-binding.
2614          */
2615         vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2616
2617         return 0;
2618 }
2619
2620 static void ggtt_unbind_vma(struct i915_vma *vma)
2621 {
2622         struct drm_i915_private *i915 = vma->vm->i915;
2623
2624         intel_runtime_pm_get(i915);
2625         vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2626         intel_runtime_pm_put(i915);
2627 }
2628
2629 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2630                                  enum i915_cache_level cache_level,
2631                                  u32 flags)
2632 {
2633         struct drm_i915_private *i915 = vma->vm->i915;
2634         u32 pte_flags;
2635         int ret;
2636
2637         /* Currently applicable only to VLV */
2638         pte_flags = 0;
2639         if (vma->obj->gt_ro)
2640                 pte_flags |= PTE_READ_ONLY;
2641
2642         if (flags & I915_VMA_LOCAL_BIND) {
2643                 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2644
2645                 if (!(vma->flags & I915_VMA_LOCAL_BIND) &&
2646                     appgtt->base.allocate_va_range) {
2647                         ret = appgtt->base.allocate_va_range(&appgtt->base,
2648                                                              vma->node.start,
2649                                                              vma->size);
2650                         if (ret)
2651                                 return ret;
2652                 }
2653
2654                 appgtt->base.insert_entries(&appgtt->base, vma, cache_level,
2655                                             pte_flags);
2656         }
2657
2658         if (flags & I915_VMA_GLOBAL_BIND) {
2659                 intel_runtime_pm_get(i915);
2660                 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2661                 intel_runtime_pm_put(i915);
2662         }
2663
2664         return 0;
2665 }
2666
2667 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2668 {
2669         struct drm_i915_private *i915 = vma->vm->i915;
2670
2671         if (vma->flags & I915_VMA_GLOBAL_BIND) {
2672                 intel_runtime_pm_get(i915);
2673                 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2674                 intel_runtime_pm_put(i915);
2675         }
2676
2677         if (vma->flags & I915_VMA_LOCAL_BIND) {
2678                 struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base;
2679
2680                 vm->clear_range(vm, vma->node.start, vma->size);
2681         }
2682 }
2683
2684 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2685                                struct sg_table *pages)
2686 {
2687         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2688         struct device *kdev = &dev_priv->drm.pdev->dev;
2689         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2690
2691         if (unlikely(ggtt->do_idle_maps)) {
2692                 if (i915_gem_wait_for_idle(dev_priv, 0)) {
2693                         DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2694                         /* Wait a bit, in hopes it avoids the hang */
2695                         udelay(10);
2696                 }
2697         }
2698
2699         dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2700 }
2701
2702 static int ggtt_set_pages(struct i915_vma *vma)
2703 {
2704         int ret;
2705
2706         GEM_BUG_ON(vma->pages);
2707
2708         ret = i915_get_ggtt_vma_pages(vma);
2709         if (ret)
2710                 return ret;
2711
2712         vma->page_sizes = vma->obj->mm.page_sizes;
2713
2714         return 0;
2715 }
2716
2717 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2718                                   unsigned long color,
2719                                   u64 *start,
2720                                   u64 *end)
2721 {
2722         if (node->allocated && node->color != color)
2723                 *start += I915_GTT_PAGE_SIZE;
2724
2725         /* Also leave a space between the unallocated reserved node after the
2726          * GTT and any objects within the GTT, i.e. we use the color adjustment
2727          * to insert a guard page to prevent prefetches crossing over the
2728          * GTT boundary.
2729          */
2730         node = list_next_entry(node, node_list);
2731         if (node->color != color)
2732                 *end -= I915_GTT_PAGE_SIZE;
2733 }
2734
2735 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2736 {
2737         struct i915_ggtt *ggtt = &i915->ggtt;
2738         struct i915_hw_ppgtt *ppgtt;
2739         int err;
2740
2741         ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2742         if (IS_ERR(ppgtt))
2743                 return PTR_ERR(ppgtt);
2744
2745         if (WARN_ON(ppgtt->base.total < ggtt->base.total)) {
2746                 err = -ENODEV;
2747                 goto err_ppgtt;
2748         }
2749
2750         if (ppgtt->base.allocate_va_range) {
2751                 /* Note we only pre-allocate as far as the end of the global
2752                  * GTT. On 48b / 4-level page-tables, the difference is very,
2753                  * very significant! We have to preallocate as GVT/vgpu does
2754                  * not like the page directory disappearing.
2755                  */
2756                 err = ppgtt->base.allocate_va_range(&ppgtt->base,
2757                                                     0, ggtt->base.total);
2758                 if (err)
2759                         goto err_ppgtt;
2760         }
2761
2762         i915->mm.aliasing_ppgtt = ppgtt;
2763
2764         WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2765         ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2766
2767         WARN_ON(ggtt->base.unbind_vma != ggtt_unbind_vma);
2768         ggtt->base.unbind_vma = aliasing_gtt_unbind_vma;
2769
2770         return 0;
2771
2772 err_ppgtt:
2773         i915_ppgtt_put(ppgtt);
2774         return err;
2775 }
2776
2777 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2778 {
2779         struct i915_ggtt *ggtt = &i915->ggtt;
2780         struct i915_hw_ppgtt *ppgtt;
2781
2782         ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2783         if (!ppgtt)
2784                 return;
2785
2786         i915_ppgtt_put(ppgtt);
2787
2788         ggtt->base.bind_vma = ggtt_bind_vma;
2789         ggtt->base.unbind_vma = ggtt_unbind_vma;
2790 }
2791
2792 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2793 {
2794         /* Let GEM Manage all of the aperture.
2795          *
2796          * However, leave one page at the end still bound to the scratch page.
2797          * There are a number of places where the hardware apparently prefetches
2798          * past the end of the object, and we've seen multiple hangs with the
2799          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2800          * aperture.  One page should be enough to keep any prefetching inside
2801          * of the aperture.
2802          */
2803         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2804         unsigned long hole_start, hole_end;
2805         struct drm_mm_node *entry;
2806         int ret;
2807
2808         ret = intel_vgt_balloon(dev_priv);
2809         if (ret)
2810                 return ret;
2811
2812         /* Reserve a mappable slot for our lockless error capture */
2813         ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture,
2814                                           PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2815                                           0, ggtt->mappable_end,
2816                                           DRM_MM_INSERT_LOW);
2817         if (ret)
2818                 return ret;
2819
2820         /* Clear any non-preallocated blocks */
2821         drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2822                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2823                               hole_start, hole_end);
2824                 ggtt->base.clear_range(&ggtt->base, hole_start,
2825                                        hole_end - hole_start);
2826         }
2827
2828         /* And finally clear the reserved guard page */
2829         ggtt->base.clear_range(&ggtt->base,
2830                                ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2831
2832         if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2833                 ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2834                 if (ret)
2835                         goto err;
2836         }
2837
2838         return 0;
2839
2840 err:
2841         drm_mm_remove_node(&ggtt->error_capture);
2842         return ret;
2843 }
2844
2845 /**
2846  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2847  * @dev_priv: i915 device
2848  */
2849 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2850 {
2851         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2852         struct i915_vma *vma, *vn;
2853         struct pagevec *pvec;
2854
2855         ggtt->base.closed = true;
2856
2857         mutex_lock(&dev_priv->drm.struct_mutex);
2858         WARN_ON(!list_empty(&ggtt->base.active_list));
2859         list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link)
2860                 WARN_ON(i915_vma_unbind(vma));
2861         mutex_unlock(&dev_priv->drm.struct_mutex);
2862
2863         i915_gem_cleanup_stolen(&dev_priv->drm);
2864
2865         mutex_lock(&dev_priv->drm.struct_mutex);
2866         i915_gem_fini_aliasing_ppgtt(dev_priv);
2867
2868         if (drm_mm_node_allocated(&ggtt->error_capture))
2869                 drm_mm_remove_node(&ggtt->error_capture);
2870
2871         if (drm_mm_initialized(&ggtt->base.mm)) {
2872                 intel_vgt_deballoon(dev_priv);
2873                 i915_address_space_fini(&ggtt->base);
2874         }
2875
2876         ggtt->base.cleanup(&ggtt->base);
2877
2878         pvec = &dev_priv->mm.wc_stash;
2879         if (pvec->nr) {
2880                 set_pages_array_wb(pvec->pages, pvec->nr);
2881                 __pagevec_release(pvec);
2882         }
2883
2884         mutex_unlock(&dev_priv->drm.struct_mutex);
2885
2886         arch_phys_wc_del(ggtt->mtrr);
2887         io_mapping_fini(&ggtt->mappable);
2888 }
2889
2890 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2891 {
2892         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2893         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2894         return snb_gmch_ctl << 20;
2895 }
2896
2897 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2898 {
2899         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2900         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2901         if (bdw_gmch_ctl)
2902                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2903
2904 #ifdef CONFIG_X86_32
2905         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2906         if (bdw_gmch_ctl > 4)
2907                 bdw_gmch_ctl = 4;
2908 #endif
2909
2910         return bdw_gmch_ctl << 20;
2911 }
2912
2913 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2914 {
2915         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2916         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2917
2918         if (gmch_ctrl)
2919                 return 1 << (20 + gmch_ctrl);
2920
2921         return 0;
2922 }
2923
2924 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2925 {
2926         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2927         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2928         return (size_t)snb_gmch_ctl << 25; /* 32 MB units */
2929 }
2930
2931 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2932 {
2933         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2934         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2935         return (size_t)bdw_gmch_ctl << 25; /* 32 MB units */
2936 }
2937
2938 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2939 {
2940         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2941         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2942
2943         /*
2944          * 0x0  to 0x10: 32MB increments starting at 0MB
2945          * 0x11 to 0x16: 4MB increments starting at 8MB
2946          * 0x17 to 0x1d: 4MB increments start at 36MB
2947          */
2948         if (gmch_ctrl < 0x11)
2949                 return (size_t)gmch_ctrl << 25;
2950         else if (gmch_ctrl < 0x17)
2951                 return (size_t)(gmch_ctrl - 0x11 + 2) << 22;
2952         else
2953                 return (size_t)(gmch_ctrl - 0x17 + 9) << 22;
2954 }
2955
2956 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2957 {
2958         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2959         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2960
2961         if (gen9_gmch_ctl < 0xf0)
2962                 return (size_t)gen9_gmch_ctl << 25; /* 32 MB units */
2963         else
2964                 /* 4MB increments starting at 0xf0 for 4MB */
2965                 return (size_t)(gen9_gmch_ctl - 0xf0 + 1) << 22;
2966 }
2967
2968 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2969 {
2970         struct drm_i915_private *dev_priv = ggtt->base.i915;
2971         struct pci_dev *pdev = dev_priv->drm.pdev;
2972         phys_addr_t phys_addr;
2973         int ret;
2974
2975         /* For Modern GENs the PTEs and register space are split in the BAR */
2976         phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2977
2978         /*
2979          * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
2980          * will be dropped. For WC mappings in general we have 64 byte burst
2981          * writes when the WC buffer is flushed, so we can't use it, but have to
2982          * resort to an uncached mapping. The WC issue is easily caught by the
2983          * readback check when writing GTT PTE entries.
2984          */
2985         if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2986                 ggtt->gsm = ioremap_nocache(phys_addr, size);
2987         else
2988                 ggtt->gsm = ioremap_wc(phys_addr, size);
2989         if (!ggtt->gsm) {
2990                 DRM_ERROR("Failed to map the ggtt page table\n");
2991                 return -ENOMEM;
2992         }
2993
2994         ret = setup_scratch_page(&ggtt->base, GFP_DMA32);
2995         if (ret) {
2996                 DRM_ERROR("Scratch setup failed\n");
2997                 /* iounmap will also get called at remove, but meh */
2998                 iounmap(ggtt->gsm);
2999                 return ret;
3000         }
3001
3002         return 0;
3003 }
3004
3005 static struct intel_ppat_entry *
3006 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
3007 {
3008         struct intel_ppat_entry *entry = &ppat->entries[index];
3009
3010         GEM_BUG_ON(index >= ppat->max_entries);
3011         GEM_BUG_ON(test_bit(index, ppat->used));
3012
3013         entry->ppat = ppat;
3014         entry->value = value;
3015         kref_init(&entry->ref);
3016         set_bit(index, ppat->used);
3017         set_bit(index, ppat->dirty);
3018
3019         return entry;
3020 }
3021
3022 static void __free_ppat_entry(struct intel_ppat_entry *entry)
3023 {
3024         struct intel_ppat *ppat = entry->ppat;
3025         unsigned int index = entry - ppat->entries;
3026
3027         GEM_BUG_ON(index >= ppat->max_entries);
3028         GEM_BUG_ON(!test_bit(index, ppat->used));
3029
3030         entry->value = ppat->clear_value;
3031         clear_bit(index, ppat->used);
3032         set_bit(index, ppat->dirty);
3033 }
3034
3035 /**
3036  * intel_ppat_get - get a usable PPAT entry
3037  * @i915: i915 device instance
3038  * @value: the PPAT value required by the caller
3039  *
3040  * The function tries to search if there is an existing PPAT entry which
3041  * matches with the required value. If perfectly matched, the existing PPAT
3042  * entry will be used. If only partially matched, it will try to check if
3043  * there is any available PPAT index. If yes, it will allocate a new PPAT
3044  * index for the required entry and update the HW. If not, the partially
3045  * matched entry will be used.
3046  */
3047 const struct intel_ppat_entry *
3048 intel_ppat_get(struct drm_i915_private *i915, u8 value)
3049 {
3050         struct intel_ppat *ppat = &i915->ppat;
3051         struct intel_ppat_entry *entry;
3052         unsigned int scanned, best_score;
3053         int i;
3054
3055         GEM_BUG_ON(!ppat->max_entries);
3056
3057         scanned = best_score = 0;
3058         for_each_set_bit(i, ppat->used, ppat->max_entries) {
3059                 unsigned int score;
3060
3061                 score = ppat->match(ppat->entries[i].value, value);
3062                 if (score > best_score) {
3063                         entry = &ppat->entries[i];
3064                         if (score == INTEL_PPAT_PERFECT_MATCH) {
3065                                 kref_get(&entry->ref);
3066                                 return entry;
3067                         }
3068                         best_score = score;
3069                 }
3070                 scanned++;
3071         }
3072
3073         if (scanned == ppat->max_entries) {
3074                 if (!best_score)
3075                         return ERR_PTR(-ENOSPC);
3076
3077                 kref_get(&entry->ref);
3078                 return entry;
3079         }
3080
3081         i = find_first_zero_bit(ppat->used, ppat->max_entries);
3082         entry = __alloc_ppat_entry(ppat, i, value);
3083         ppat->update_hw(i915);
3084         return entry;
3085 }
3086
3087 static void release_ppat(struct kref *kref)
3088 {
3089         struct intel_ppat_entry *entry =
3090                 container_of(kref, struct intel_ppat_entry, ref);
3091         struct drm_i915_private *i915 = entry->ppat->i915;
3092
3093         __free_ppat_entry(entry);
3094         entry->ppat->update_hw(i915);
3095 }
3096
3097 /**
3098  * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
3099  * @entry: an intel PPAT entry
3100  *
3101  * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
3102  * entry is dynamically allocated, its reference count will be decreased. Once
3103  * the reference count becomes into zero, the PPAT index becomes free again.
3104  */
3105 void intel_ppat_put(const struct intel_ppat_entry *entry)
3106 {
3107         struct intel_ppat *ppat = entry->ppat;
3108         unsigned int index = entry - ppat->entries;
3109
3110         GEM_BUG_ON(!ppat->max_entries);
3111
3112         kref_put(&ppat->entries[index].ref, release_ppat);
3113 }
3114
3115 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
3116 {
3117         struct intel_ppat *ppat = &dev_priv->ppat;
3118         int i;
3119
3120         for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
3121                 I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
3122                 clear_bit(i, ppat->dirty);
3123         }
3124 }
3125
3126 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
3127 {
3128         struct intel_ppat *ppat = &dev_priv->ppat;
3129         u64 pat = 0;
3130         int i;
3131
3132         for (i = 0; i < ppat->max_entries; i++)
3133                 pat |= GEN8_PPAT(i, ppat->entries[i].value);
3134
3135         bitmap_clear(ppat->dirty, 0, ppat->max_entries);
3136
3137         I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
3138         I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
3139 }
3140
3141 static unsigned int bdw_private_pat_match(u8 src, u8 dst)
3142 {
3143         unsigned int score = 0;
3144         enum {
3145                 AGE_MATCH = BIT(0),
3146                 TC_MATCH = BIT(1),
3147                 CA_MATCH = BIT(2),
3148         };
3149
3150         /* Cache attribute has to be matched. */
3151         if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3152                 return 0;
3153
3154         score |= CA_MATCH;
3155
3156         if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
3157                 score |= TC_MATCH;
3158
3159         if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
3160                 score |= AGE_MATCH;
3161
3162         if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
3163                 return INTEL_PPAT_PERFECT_MATCH;
3164
3165         return score;
3166 }
3167
3168 static unsigned int chv_private_pat_match(u8 src, u8 dst)
3169 {
3170         return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
3171                 INTEL_PPAT_PERFECT_MATCH : 0;
3172 }
3173
3174 static void cnl_setup_private_ppat(struct intel_ppat *ppat)
3175 {
3176         ppat->max_entries = 8;
3177         ppat->update_hw = cnl_private_pat_update_hw;
3178         ppat->match = bdw_private_pat_match;
3179         ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3180
3181         /* XXX: spec is unclear if this is still needed for CNL+ */
3182         if (!USES_PPGTT(ppat->i915)) {
3183                 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3184                 return;
3185         }
3186
3187         __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
3188         __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
3189         __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
3190         __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
3191         __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3192         __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3193         __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3194         __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3195 }
3196
3197 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3198  * bits. When using advanced contexts each context stores its own PAT, but
3199  * writing this data shouldn't be harmful even in those cases. */
3200 static void bdw_setup_private_ppat(struct intel_ppat *ppat)
3201 {
3202         ppat->max_entries = 8;
3203         ppat->update_hw = bdw_private_pat_update_hw;
3204         ppat->match = bdw_private_pat_match;
3205         ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3206
3207         if (!USES_PPGTT(ppat->i915)) {
3208                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3209                  * so RTL will always use the value corresponding to
3210                  * pat_sel = 000".
3211                  * So let's disable cache for GGTT to avoid screen corruptions.
3212                  * MOCS still can be used though.
3213                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3214                  * before this patch, i.e. the same uncached + snooping access
3215                  * like on gen6/7 seems to be in effect.
3216                  * - So this just fixes blitter/render access. Again it looks
3217                  * like it's not just uncached access, but uncached + snooping.
3218                  * So we can still hold onto all our assumptions wrt cpu
3219                  * clflushing on LLC machines.
3220                  */
3221                 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3222                 return;
3223         }
3224
3225         __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
3226         __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
3227         __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
3228         __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
3229         __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3230         __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3231         __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3232         __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3233 }
3234
3235 static void chv_setup_private_ppat(struct intel_ppat *ppat)
3236 {
3237         ppat->max_entries = 8;
3238         ppat->update_hw = bdw_private_pat_update_hw;
3239         ppat->match = chv_private_pat_match;
3240         ppat->clear_value = CHV_PPAT_SNOOP;
3241
3242         /*
3243          * Map WB on BDW to snooped on CHV.
3244          *
3245          * Only the snoop bit has meaning for CHV, the rest is
3246          * ignored.
3247          *
3248          * The hardware will never snoop for certain types of accesses:
3249          * - CPU GTT (GMADR->GGTT->no snoop->memory)
3250          * - PPGTT page tables
3251          * - some other special cycles
3252          *
3253          * As with BDW, we also need to consider the following for GT accesses:
3254          * "For GGTT, there is NO pat_sel[2:0] from the entry,
3255          * so RTL will always use the value corresponding to
3256          * pat_sel = 000".
3257          * Which means we must set the snoop bit in PAT entry 0
3258          * in order to keep the global status page working.
3259          */
3260
3261         __alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
3262         __alloc_ppat_entry(ppat, 1, 0);
3263         __alloc_ppat_entry(ppat, 2, 0);
3264         __alloc_ppat_entry(ppat, 3, 0);
3265         __alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
3266         __alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
3267         __alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
3268         __alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3269 }
3270
3271 static void gen6_gmch_remove(struct i915_address_space *vm)
3272 {
3273         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3274
3275         iounmap(ggtt->gsm);
3276         cleanup_scratch_page(vm);
3277 }
3278
3279 static void setup_private_pat(struct drm_i915_private *dev_priv)
3280 {
3281         struct intel_ppat *ppat = &dev_priv->ppat;
3282         int i;
3283
3284         ppat->i915 = dev_priv;
3285
3286         if (INTEL_GEN(dev_priv) >= 10)
3287                 cnl_setup_private_ppat(ppat);
3288         else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3289                 chv_setup_private_ppat(ppat);
3290         else
3291                 bdw_setup_private_ppat(ppat);
3292
3293         GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
3294
3295         for_each_clear_bit(i, ppat->used, ppat->max_entries) {
3296                 ppat->entries[i].value = ppat->clear_value;
3297                 ppat->entries[i].ppat = ppat;
3298                 set_bit(i, ppat->dirty);
3299         }
3300
3301         ppat->update_hw(dev_priv);
3302 }
3303
3304 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3305 {
3306         struct drm_i915_private *dev_priv = ggtt->base.i915;
3307         struct pci_dev *pdev = dev_priv->drm.pdev;
3308         unsigned int size;
3309         u16 snb_gmch_ctl;
3310         int err;
3311
3312         /* TODO: We're not aware of mappable constraints on gen8 yet */
3313         ggtt->mappable_base = pci_resource_start(pdev, 2);
3314         ggtt->mappable_end = pci_resource_len(pdev, 2);
3315
3316         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3317         if (!err)
3318                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3319         if (err)
3320                 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3321
3322         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3323
3324         if (INTEL_GEN(dev_priv) >= 9) {
3325                 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3326                 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3327         } else if (IS_CHERRYVIEW(dev_priv)) {
3328                 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3329                 size = chv_get_total_gtt_size(snb_gmch_ctl);
3330         } else {
3331                 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3332                 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3333         }
3334
3335         ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3336         ggtt->base.cleanup = gen6_gmch_remove;
3337         ggtt->base.bind_vma = ggtt_bind_vma;
3338         ggtt->base.unbind_vma = ggtt_unbind_vma;
3339         ggtt->base.set_pages = ggtt_set_pages;
3340         ggtt->base.clear_pages = clear_pages;
3341         ggtt->base.insert_page = gen8_ggtt_insert_page;
3342         ggtt->base.clear_range = nop_clear_range;
3343         if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3344                 ggtt->base.clear_range = gen8_ggtt_clear_range;
3345
3346         ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3347
3348         /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3349         if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3350                 ggtt->base.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3351                 ggtt->base.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3352                 if (ggtt->base.clear_range != nop_clear_range)
3353                         ggtt->base.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3354         }
3355
3356         ggtt->invalidate = gen6_ggtt_invalidate;
3357
3358         setup_private_pat(dev_priv);
3359
3360         return ggtt_probe_common(ggtt, size);
3361 }
3362
3363 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3364 {
3365         struct drm_i915_private *dev_priv = ggtt->base.i915;
3366         struct pci_dev *pdev = dev_priv->drm.pdev;
3367         unsigned int size;
3368         u16 snb_gmch_ctl;
3369         int err;
3370
3371         ggtt->mappable_base = pci_resource_start(pdev, 2);
3372         ggtt->mappable_end = pci_resource_len(pdev, 2);
3373
3374         /* 64/512MB is the current min/max we actually know of, but this is just
3375          * a coarse sanity check.
3376          */
3377         if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3378                 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3379                 return -ENXIO;
3380         }
3381
3382         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3383         if (!err)
3384                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3385         if (err)
3386                 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3387         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3388
3389         ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3390
3391         size = gen6_get_total_gtt_size(snb_gmch_ctl);
3392         ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3393
3394         ggtt->base.clear_range = gen6_ggtt_clear_range;
3395         ggtt->base.insert_page = gen6_ggtt_insert_page;
3396         ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3397         ggtt->base.bind_vma = ggtt_bind_vma;
3398         ggtt->base.unbind_vma = ggtt_unbind_vma;
3399         ggtt->base.set_pages = ggtt_set_pages;
3400         ggtt->base.clear_pages = clear_pages;
3401         ggtt->base.cleanup = gen6_gmch_remove;
3402
3403         ggtt->invalidate = gen6_ggtt_invalidate;
3404
3405         if (HAS_EDRAM(dev_priv))
3406                 ggtt->base.pte_encode = iris_pte_encode;
3407         else if (IS_HASWELL(dev_priv))
3408                 ggtt->base.pte_encode = hsw_pte_encode;
3409         else if (IS_VALLEYVIEW(dev_priv))
3410                 ggtt->base.pte_encode = byt_pte_encode;
3411         else if (INTEL_GEN(dev_priv) >= 7)
3412                 ggtt->base.pte_encode = ivb_pte_encode;
3413         else
3414                 ggtt->base.pte_encode = snb_pte_encode;
3415
3416         return ggtt_probe_common(ggtt, size);
3417 }
3418
3419 static void i915_gmch_remove(struct i915_address_space *vm)
3420 {
3421         intel_gmch_remove();
3422 }
3423
3424 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3425 {
3426         struct drm_i915_private *dev_priv = ggtt->base.i915;
3427         int ret;
3428
3429         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3430         if (!ret) {
3431                 DRM_ERROR("failed to set up gmch\n");
3432                 return -EIO;
3433         }
3434
3435         intel_gtt_get(&ggtt->base.total,
3436                       &ggtt->stolen_size,
3437                       &ggtt->mappable_base,
3438                       &ggtt->mappable_end);
3439
3440         ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3441         ggtt->base.insert_page = i915_ggtt_insert_page;
3442         ggtt->base.insert_entries = i915_ggtt_insert_entries;
3443         ggtt->base.clear_range = i915_ggtt_clear_range;
3444         ggtt->base.bind_vma = ggtt_bind_vma;
3445         ggtt->base.unbind_vma = ggtt_unbind_vma;
3446         ggtt->base.set_pages = ggtt_set_pages;
3447         ggtt->base.clear_pages = clear_pages;
3448         ggtt->base.cleanup = i915_gmch_remove;
3449
3450         ggtt->invalidate = gmch_ggtt_invalidate;
3451
3452         if (unlikely(ggtt->do_idle_maps))
3453                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3454
3455         return 0;
3456 }
3457
3458 /**
3459  * i915_ggtt_probe_hw - Probe GGTT hardware location
3460  * @dev_priv: i915 device
3461  */
3462 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3463 {
3464         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3465         int ret;
3466
3467         ggtt->base.i915 = dev_priv;
3468         ggtt->base.dma = &dev_priv->drm.pdev->dev;
3469
3470         if (INTEL_GEN(dev_priv) <= 5)
3471                 ret = i915_gmch_probe(ggtt);
3472         else if (INTEL_GEN(dev_priv) < 8)
3473                 ret = gen6_gmch_probe(ggtt);
3474         else
3475                 ret = gen8_gmch_probe(ggtt);
3476         if (ret)
3477                 return ret;
3478
3479         /* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3480          * This is easier than doing range restriction on the fly, as we
3481          * currently don't have any bits spare to pass in this upper
3482          * restriction!
3483          */
3484         if (HAS_GUC(dev_priv) && i915_modparams.enable_guc_loading) {
3485                 ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
3486                 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3487         }
3488
3489         if ((ggtt->base.total - 1) >> 32) {
3490                 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3491                           " of address space! Found %lldM!\n",
3492                           ggtt->base.total >> 20);
3493                 ggtt->base.total = 1ULL << 32;
3494                 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3495         }
3496
3497         if (ggtt->mappable_end > ggtt->base.total) {
3498                 DRM_ERROR("mappable aperture extends past end of GGTT,"
3499                           " aperture=%llx, total=%llx\n",
3500                           ggtt->mappable_end, ggtt->base.total);
3501                 ggtt->mappable_end = ggtt->base.total;
3502         }
3503
3504         /* GMADR is the PCI mmio aperture into the global GTT. */
3505         DRM_INFO("Memory usable by graphics device = %lluM\n",
3506                  ggtt->base.total >> 20);
3507         DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3508         DRM_DEBUG_DRIVER("GTT stolen size = %uM\n", ggtt->stolen_size >> 20);
3509         if (intel_vtd_active())
3510                 DRM_INFO("VT-d active for gfx access\n");
3511
3512         return 0;
3513 }
3514
3515 /**
3516  * i915_ggtt_init_hw - Initialize GGTT hardware
3517  * @dev_priv: i915 device
3518  */
3519 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3520 {
3521         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3522         int ret;
3523
3524         INIT_LIST_HEAD(&dev_priv->vm_list);
3525
3526         /* Note that we use page colouring to enforce a guard page at the
3527          * end of the address space. This is required as the CS may prefetch
3528          * beyond the end of the batch buffer, across the page boundary,
3529          * and beyond the end of the GTT if we do not provide a guard.
3530          */
3531         mutex_lock(&dev_priv->drm.struct_mutex);
3532         i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3533         if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3534                 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3535         mutex_unlock(&dev_priv->drm.struct_mutex);
3536
3537         if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
3538                                 dev_priv->ggtt.mappable_base,
3539                                 dev_priv->ggtt.mappable_end)) {
3540                 ret = -EIO;
3541                 goto out_gtt_cleanup;
3542         }
3543
3544         ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3545
3546         /*
3547          * Initialise stolen early so that we may reserve preallocated
3548          * objects for the BIOS to KMS transition.
3549          */
3550         ret = i915_gem_init_stolen(dev_priv);
3551         if (ret)
3552                 goto out_gtt_cleanup;
3553
3554         return 0;
3555
3556 out_gtt_cleanup:
3557         ggtt->base.cleanup(&ggtt->base);
3558         return ret;
3559 }
3560
3561 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3562 {
3563         if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3564                 return -EIO;
3565
3566         return 0;
3567 }
3568
3569 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3570 {
3571         GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3572
3573         i915->ggtt.invalidate = guc_ggtt_invalidate;
3574 }
3575
3576 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3577 {
3578         /* We should only be called after i915_ggtt_enable_guc() */
3579         GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3580
3581         i915->ggtt.invalidate = gen6_ggtt_invalidate;
3582 }
3583
3584 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3585 {
3586         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3587         struct drm_i915_gem_object *obj, *on;
3588
3589         i915_check_and_clear_faults(dev_priv);
3590
3591         /* First fill our portion of the GTT with scratch pages */
3592         ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
3593
3594         ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3595
3596         /* clflush objects bound into the GGTT and rebind them. */
3597         list_for_each_entry_safe(obj, on, &dev_priv->mm.bound_list, mm.link) {
3598                 bool ggtt_bound = false;
3599                 struct i915_vma *vma;
3600
3601                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3602                         if (vma->vm != &ggtt->base)
3603                                 continue;
3604
3605                         if (!i915_vma_unbind(vma))
3606                                 continue;
3607
3608                         WARN_ON(i915_vma_bind(vma, obj->cache_level,
3609                                               PIN_UPDATE));
3610                         ggtt_bound = true;
3611                 }
3612
3613                 if (ggtt_bound)
3614                         WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3615         }
3616
3617         ggtt->base.closed = false;
3618
3619         if (INTEL_GEN(dev_priv) >= 8) {
3620                 struct intel_ppat *ppat = &dev_priv->ppat;
3621
3622                 bitmap_set(ppat->dirty, 0, ppat->max_entries);
3623                 dev_priv->ppat.update_hw(dev_priv);
3624                 return;
3625         }
3626
3627         if (USES_PPGTT(dev_priv)) {
3628                 struct i915_address_space *vm;
3629
3630                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3631                         struct i915_hw_ppgtt *ppgtt;
3632
3633                         if (i915_is_ggtt(vm))
3634                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
3635                         else
3636                                 ppgtt = i915_vm_to_ppgtt(vm);
3637
3638                         gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
3639                 }
3640         }
3641
3642         i915_ggtt_invalidate(dev_priv);
3643 }
3644
3645 static struct scatterlist *
3646 rotate_pages(const dma_addr_t *in, unsigned int offset,
3647              unsigned int width, unsigned int height,
3648              unsigned int stride,
3649              struct sg_table *st, struct scatterlist *sg)
3650 {
3651         unsigned int column, row;
3652         unsigned int src_idx;
3653
3654         for (column = 0; column < width; column++) {
3655                 src_idx = stride * (height - 1) + column;
3656                 for (row = 0; row < height; row++) {
3657                         st->nents++;
3658                         /* We don't need the pages, but need to initialize
3659                          * the entries so the sg list can be happily traversed.
3660                          * The only thing we need are DMA addresses.
3661                          */
3662                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
3663                         sg_dma_address(sg) = in[offset + src_idx];
3664                         sg_dma_len(sg) = PAGE_SIZE;
3665                         sg = sg_next(sg);
3666                         src_idx -= stride;
3667                 }
3668         }
3669
3670         return sg;
3671 }
3672
3673 static noinline struct sg_table *
3674 intel_rotate_pages(struct intel_rotation_info *rot_info,
3675                    struct drm_i915_gem_object *obj)
3676 {
3677         const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3678         unsigned int size = intel_rotation_info_size(rot_info);
3679         struct sgt_iter sgt_iter;
3680         dma_addr_t dma_addr;
3681         unsigned long i;
3682         dma_addr_t *page_addr_list;
3683         struct sg_table *st;
3684         struct scatterlist *sg;
3685         int ret = -ENOMEM;
3686
3687         /* Allocate a temporary list of source pages for random access. */
3688         page_addr_list = kvmalloc_array(n_pages,
3689                                         sizeof(dma_addr_t),
3690                                         GFP_KERNEL);
3691         if (!page_addr_list)
3692                 return ERR_PTR(ret);
3693
3694         /* Allocate target SG list. */
3695         st = kmalloc(sizeof(*st), GFP_KERNEL);
3696         if (!st)
3697                 goto err_st_alloc;
3698
3699         ret = sg_alloc_table(st, size, GFP_KERNEL);
3700         if (ret)
3701                 goto err_sg_alloc;
3702
3703         /* Populate source page list from the object. */
3704         i = 0;
3705         for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3706                 page_addr_list[i++] = dma_addr;
3707
3708         GEM_BUG_ON(i != n_pages);
3709         st->nents = 0;
3710         sg = st->sgl;
3711
3712         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3713                 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3714                                   rot_info->plane[i].width, rot_info->plane[i].height,
3715                                   rot_info->plane[i].stride, st, sg);
3716         }
3717
3718         DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3719                       obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3720
3721         kvfree(page_addr_list);
3722
3723         return st;
3724
3725 err_sg_alloc:
3726         kfree(st);
3727 err_st_alloc:
3728         kvfree(page_addr_list);
3729
3730         DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3731                       obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3732
3733         return ERR_PTR(ret);
3734 }
3735
3736 static noinline struct sg_table *
3737 intel_partial_pages(const struct i915_ggtt_view *view,
3738                     struct drm_i915_gem_object *obj)
3739 {
3740         struct sg_table *st;
3741         struct scatterlist *sg, *iter;
3742         unsigned int count = view->partial.size;
3743         unsigned int offset;
3744         int ret = -ENOMEM;
3745
3746         st = kmalloc(sizeof(*st), GFP_KERNEL);
3747         if (!st)
3748                 goto err_st_alloc;
3749
3750         ret = sg_alloc_table(st, count, GFP_KERNEL);
3751         if (ret)
3752                 goto err_sg_alloc;
3753
3754         iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3755         GEM_BUG_ON(!iter);
3756
3757         sg = st->sgl;
3758         st->nents = 0;
3759         do {
3760                 unsigned int len;
3761
3762                 len = min(iter->length - (offset << PAGE_SHIFT),
3763                           count << PAGE_SHIFT);
3764                 sg_set_page(sg, NULL, len, 0);
3765                 sg_dma_address(sg) =
3766                         sg_dma_address(iter) + (offset << PAGE_SHIFT);
3767                 sg_dma_len(sg) = len;
3768
3769                 st->nents++;
3770                 count -= len >> PAGE_SHIFT;
3771                 if (count == 0) {
3772                         sg_mark_end(sg);
3773                         return st;
3774                 }
3775
3776                 sg = __sg_next(sg);
3777                 iter = __sg_next(iter);
3778                 offset = 0;
3779         } while (1);
3780
3781 err_sg_alloc:
3782         kfree(st);
3783 err_st_alloc:
3784         return ERR_PTR(ret);
3785 }
3786
3787 static int
3788 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3789 {
3790         int ret;
3791
3792         /* The vma->pages are only valid within the lifespan of the borrowed
3793          * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3794          * must be the vma->pages. A simple rule is that vma->pages must only
3795          * be accessed when the obj->mm.pages are pinned.
3796          */
3797         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3798
3799         switch (vma->ggtt_view.type) {
3800         case I915_GGTT_VIEW_NORMAL:
3801                 vma->pages = vma->obj->mm.pages;
3802                 return 0;
3803
3804         case I915_GGTT_VIEW_ROTATED:
3805                 vma->pages =
3806                         intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3807                 break;
3808
3809         case I915_GGTT_VIEW_PARTIAL:
3810                 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3811                 break;
3812
3813         default:
3814                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3815                           vma->ggtt_view.type);
3816                 return -EINVAL;
3817         }
3818
3819         ret = 0;
3820         if (unlikely(IS_ERR(vma->pages))) {
3821                 ret = PTR_ERR(vma->pages);
3822                 vma->pages = NULL;
3823                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3824                           vma->ggtt_view.type, ret);
3825         }
3826         return ret;
3827 }
3828
3829 /**
3830  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3831  * @vm: the &struct i915_address_space
3832  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3833  * @size: how much space to allocate inside the GTT,
3834  *        must be #I915_GTT_PAGE_SIZE aligned
3835  * @offset: where to insert inside the GTT,
3836  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3837  *          (@offset + @size) must fit within the address space
3838  * @color: color to apply to node, if this node is not from a VMA,
3839  *         color must be #I915_COLOR_UNEVICTABLE
3840  * @flags: control search and eviction behaviour
3841  *
3842  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3843  * the address space (using @size and @color). If the @node does not fit, it
3844  * tries to evict any overlapping nodes from the GTT, including any
3845  * neighbouring nodes if the colors do not match (to ensure guard pages between
3846  * differing domains). See i915_gem_evict_for_node() for the gory details
3847  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3848  * evicting active overlapping objects, and any overlapping node that is pinned
3849  * or marked as unevictable will also result in failure.
3850  *
3851  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3852  * asked to wait for eviction and interrupted.
3853  */
3854 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3855                          struct drm_mm_node *node,
3856                          u64 size, u64 offset, unsigned long color,
3857                          unsigned int flags)
3858 {
3859         int err;
3860
3861         GEM_BUG_ON(!size);
3862         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3863         GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3864         GEM_BUG_ON(range_overflows(offset, size, vm->total));
3865         GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3866         GEM_BUG_ON(drm_mm_node_allocated(node));
3867
3868         node->size = size;
3869         node->start = offset;
3870         node->color = color;
3871
3872         err = drm_mm_reserve_node(&vm->mm, node);
3873         if (err != -ENOSPC)
3874                 return err;
3875
3876         if (flags & PIN_NOEVICT)
3877                 return -ENOSPC;
3878
3879         err = i915_gem_evict_for_node(vm, node, flags);
3880         if (err == 0)
3881                 err = drm_mm_reserve_node(&vm->mm, node);
3882
3883         return err;
3884 }
3885
3886 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3887 {
3888         u64 range, addr;
3889
3890         GEM_BUG_ON(range_overflows(start, len, end));
3891         GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3892
3893         range = round_down(end - len, align) - round_up(start, align);
3894         if (range) {
3895                 if (sizeof(unsigned long) == sizeof(u64)) {
3896                         addr = get_random_long();
3897                 } else {
3898                         addr = get_random_int();
3899                         if (range > U32_MAX) {
3900                                 addr <<= 32;
3901                                 addr |= get_random_int();
3902                         }
3903                 }
3904                 div64_u64_rem(addr, range, &addr);
3905                 start += addr;
3906         }
3907
3908         return round_up(start, align);
3909 }
3910
3911 /**
3912  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3913  * @vm: the &struct i915_address_space
3914  * @node: the &struct drm_mm_node (typically i915_vma.node)
3915  * @size: how much space to allocate inside the GTT,
3916  *        must be #I915_GTT_PAGE_SIZE aligned
3917  * @alignment: required alignment of starting offset, may be 0 but
3918  *             if specified, this must be a power-of-two and at least
3919  *             #I915_GTT_MIN_ALIGNMENT
3920  * @color: color to apply to node
3921  * @start: start of any range restriction inside GTT (0 for all),
3922  *         must be #I915_GTT_PAGE_SIZE aligned
3923  * @end: end of any range restriction inside GTT (U64_MAX for all),
3924  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3925  * @flags: control search and eviction behaviour
3926  *
3927  * i915_gem_gtt_insert() first searches for an available hole into which
3928  * is can insert the node. The hole address is aligned to @alignment and
3929  * its @size must then fit entirely within the [@start, @end] bounds. The
3930  * nodes on either side of the hole must match @color, or else a guard page
3931  * will be inserted between the two nodes (or the node evicted). If no
3932  * suitable hole is found, first a victim is randomly selected and tested
3933  * for eviction, otherwise then the LRU list of objects within the GTT
3934  * is scanned to find the first set of replacement nodes to create the hole.
3935  * Those old overlapping nodes are evicted from the GTT (and so must be
3936  * rebound before any future use). Any node that is currently pinned cannot
3937  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3938  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3939  * searching for an eviction candidate. See i915_gem_evict_something() for
3940  * the gory details on the eviction algorithm.
3941  *
3942  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3943  * asked to wait for eviction and interrupted.
3944  */
3945 int i915_gem_gtt_insert(struct i915_address_space *vm,
3946                         struct drm_mm_node *node,
3947                         u64 size, u64 alignment, unsigned long color,
3948                         u64 start, u64 end, unsigned int flags)
3949 {
3950         enum drm_mm_insert_mode mode;
3951         u64 offset;
3952         int err;
3953
3954         lockdep_assert_held(&vm->i915->drm.struct_mutex);
3955         GEM_BUG_ON(!size);
3956         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3957         GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3958         GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3959         GEM_BUG_ON(start >= end);
3960         GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3961         GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3962         GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3963         GEM_BUG_ON(drm_mm_node_allocated(node));
3964
3965         if (unlikely(range_overflows(start, size, end)))
3966                 return -ENOSPC;
3967
3968         if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3969                 return -ENOSPC;
3970
3971         mode = DRM_MM_INSERT_BEST;
3972         if (flags & PIN_HIGH)
3973                 mode = DRM_MM_INSERT_HIGH;
3974         if (flags & PIN_MAPPABLE)
3975                 mode = DRM_MM_INSERT_LOW;
3976
3977         /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3978          * so we know that we always have a minimum alignment of 4096.
3979          * The drm_mm range manager is optimised to return results
3980          * with zero alignment, so where possible use the optimal
3981          * path.
3982          */
3983         BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3984         if (alignment <= I915_GTT_MIN_ALIGNMENT)
3985                 alignment = 0;
3986
3987         err = drm_mm_insert_node_in_range(&vm->mm, node,
3988                                           size, alignment, color,
3989                                           start, end, mode);
3990         if (err != -ENOSPC)
3991                 return err;
3992
3993         if (flags & PIN_NOEVICT)
3994                 return -ENOSPC;
3995
3996         /* No free space, pick a slot at random.
3997          *
3998          * There is a pathological case here using a GTT shared between
3999          * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
4000          *
4001          *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
4002          *         (64k objects)             (448k objects)
4003          *
4004          * Now imagine that the eviction LRU is ordered top-down (just because
4005          * pathology meets real life), and that we need to evict an object to
4006          * make room inside the aperture. The eviction scan then has to walk
4007          * the 448k list before it finds one within range. And now imagine that
4008          * it has to search for a new hole between every byte inside the memcpy,
4009          * for several simultaneous clients.
4010          *
4011          * On a full-ppgtt system, if we have run out of available space, there
4012          * will be lots and lots of objects in the eviction list! Again,
4013          * searching that LRU list may be slow if we are also applying any
4014          * range restrictions (e.g. restriction to low 4GiB) and so, for
4015          * simplicity and similarilty between different GTT, try the single
4016          * random replacement first.
4017          */
4018         offset = random_offset(start, end,
4019                                size, alignment ?: I915_GTT_MIN_ALIGNMENT);
4020         err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
4021         if (err != -ENOSPC)
4022                 return err;
4023
4024         /* Randomly selected placement is pinned, do a search */
4025         err = i915_gem_evict_something(vm, size, alignment, color,
4026                                        start, end, flags);
4027         if (err)
4028                 return err;
4029
4030         return drm_mm_insert_node_in_range(&vm->mm, node,
4031                                            size, alignment, color,
4032                                            start, end, DRM_MM_INSERT_EVICT);
4033 }
4034
4035 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4036 #include "selftests/mock_gtt.c"
4037 #include "selftests/i915_gem_gtt.c"
4038 #endif