drm/i915: Move low-level swizzling code to i915_gem_fence.c
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_gem_fence.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include <drm/drmP.h>
25 #include <drm/i915_drm.h>
26 #include "i915_drv.h"
27
28 /**
29  * DOC: fence register handling
30  *
31  * Important to avoid confusions: "fences" in the i915 driver are not execution
32  * fences used to track command completion but hardware detiler objects which
33  * wrap a given range of the global GTT. Each platform has only a fairly limited
34  * set of these objects.
35  *
36  * Fences are used to detile GTT memory mappings. They're also connected to the
37  * hardware frontbuffer render tracking and hence interract with frontbuffer
38  * conmpression. Furthermore on older platforms fences are required for tiled
39  * objects used by the display engine. They can also be used by the render
40  * engine - they're required for blitter commands and are optional for render
41  * commands. But on gen4+ both display (with the exception of fbc) and rendering
42  * have their own tiling state bits and don't need fences.
43  *
44  * Also note that fences only support X and Y tiling and hence can't be used for
45  * the fancier new tiling formats like W, Ys and Yf.
46  *
47  * Finally note that because fences are such a restricted resource they're
48  * dynamically associated with objects. Furthermore fence state is committed to
49  * the hardware lazily to avoid unecessary stalls on gen2/3. Therefore code must
50  * explictly call i915_gem_object_get_fence() to synchronize fencing status
51  * for cpu access. Also note that some code wants an unfenced view, for those
52  * cases the fence can be removed forcefully with i915_gem_object_put_fence().
53  *
54  * Internally these functions will synchronize with userspace access by removing
55  * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
56  */
57
58 static void i965_write_fence_reg(struct drm_device *dev, int reg,
59                                  struct drm_i915_gem_object *obj)
60 {
61         struct drm_i915_private *dev_priv = dev->dev_private;
62         int fence_reg;
63         int fence_pitch_shift;
64
65         if (INTEL_INFO(dev)->gen >= 6) {
66                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
67                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
68         } else {
69                 fence_reg = FENCE_REG_965_0;
70                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
71         }
72
73         fence_reg += reg * 8;
74
75         /* To w/a incoherency with non-atomic 64-bit register updates,
76          * we split the 64-bit update into two 32-bit writes. In order
77          * for a partial fence not to be evaluated between writes, we
78          * precede the update with write to turn off the fence register,
79          * and only enable the fence as the last step.
80          *
81          * For extra levels of paranoia, we make sure each step lands
82          * before applying the next step.
83          */
84         I915_WRITE(fence_reg, 0);
85         POSTING_READ(fence_reg);
86
87         if (obj) {
88                 u32 size = i915_gem_obj_ggtt_size(obj);
89                 uint64_t val;
90
91                 /* Adjust fence size to match tiled area */
92                 if (obj->tiling_mode != I915_TILING_NONE) {
93                         uint32_t row_size = obj->stride *
94                                 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
95                         size = (size / row_size) * row_size;
96                 }
97
98                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
99                                  0xfffff000) << 32;
100                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
101                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
102                 if (obj->tiling_mode == I915_TILING_Y)
103                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
104                 val |= I965_FENCE_REG_VALID;
105
106                 I915_WRITE(fence_reg + 4, val >> 32);
107                 POSTING_READ(fence_reg + 4);
108
109                 I915_WRITE(fence_reg + 0, val);
110                 POSTING_READ(fence_reg);
111         } else {
112                 I915_WRITE(fence_reg + 4, 0);
113                 POSTING_READ(fence_reg + 4);
114         }
115 }
116
117 static void i915_write_fence_reg(struct drm_device *dev, int reg,
118                                  struct drm_i915_gem_object *obj)
119 {
120         struct drm_i915_private *dev_priv = dev->dev_private;
121         u32 val;
122
123         if (obj) {
124                 u32 size = i915_gem_obj_ggtt_size(obj);
125                 int pitch_val;
126                 int tile_width;
127
128                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
129                      (size & -size) != size ||
130                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
131                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
132                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
133
134                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
135                         tile_width = 128;
136                 else
137                         tile_width = 512;
138
139                 /* Note: pitch better be a power of two tile widths */
140                 pitch_val = obj->stride / tile_width;
141                 pitch_val = ffs(pitch_val) - 1;
142
143                 val = i915_gem_obj_ggtt_offset(obj);
144                 if (obj->tiling_mode == I915_TILING_Y)
145                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
146                 val |= I915_FENCE_SIZE_BITS(size);
147                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
148                 val |= I830_FENCE_REG_VALID;
149         } else
150                 val = 0;
151
152         if (reg < 8)
153                 reg = FENCE_REG_830_0 + reg * 4;
154         else
155                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
156
157         I915_WRITE(reg, val);
158         POSTING_READ(reg);
159 }
160
161 static void i830_write_fence_reg(struct drm_device *dev, int reg,
162                                 struct drm_i915_gem_object *obj)
163 {
164         struct drm_i915_private *dev_priv = dev->dev_private;
165         uint32_t val;
166
167         if (obj) {
168                 u32 size = i915_gem_obj_ggtt_size(obj);
169                 uint32_t pitch_val;
170
171                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
172                      (size & -size) != size ||
173                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
174                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
175                      i915_gem_obj_ggtt_offset(obj), size);
176
177                 pitch_val = obj->stride / 128;
178                 pitch_val = ffs(pitch_val) - 1;
179
180                 val = i915_gem_obj_ggtt_offset(obj);
181                 if (obj->tiling_mode == I915_TILING_Y)
182                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
183                 val |= I830_FENCE_SIZE_BITS(size);
184                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
185                 val |= I830_FENCE_REG_VALID;
186         } else
187                 val = 0;
188
189         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
190         POSTING_READ(FENCE_REG_830_0 + reg * 4);
191 }
192
193 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
194 {
195         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
196 }
197
198 static void i915_gem_write_fence(struct drm_device *dev, int reg,
199                                  struct drm_i915_gem_object *obj)
200 {
201         struct drm_i915_private *dev_priv = dev->dev_private;
202
203         /* Ensure that all CPU reads are completed before installing a fence
204          * and all writes before removing the fence.
205          */
206         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
207                 mb();
208
209         WARN(obj && (!obj->stride || !obj->tiling_mode),
210              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
211              obj->stride, obj->tiling_mode);
212
213         if (IS_GEN2(dev))
214                 i830_write_fence_reg(dev, reg, obj);
215         else if (IS_GEN3(dev))
216                 i915_write_fence_reg(dev, reg, obj);
217         else if (INTEL_INFO(dev)->gen >= 4)
218                 i965_write_fence_reg(dev, reg, obj);
219
220         /* And similarly be paranoid that no direct access to this region
221          * is reordered to before the fence is installed.
222          */
223         if (i915_gem_object_needs_mb(obj))
224                 mb();
225 }
226
227 static inline int fence_number(struct drm_i915_private *dev_priv,
228                                struct drm_i915_fence_reg *fence)
229 {
230         return fence - dev_priv->fence_regs;
231 }
232
233 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
234                                          struct drm_i915_fence_reg *fence,
235                                          bool enable)
236 {
237         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
238         int reg = fence_number(dev_priv, fence);
239
240         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
241
242         if (enable) {
243                 obj->fence_reg = reg;
244                 fence->obj = obj;
245                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
246         } else {
247                 obj->fence_reg = I915_FENCE_REG_NONE;
248                 fence->obj = NULL;
249                 list_del_init(&fence->lru_list);
250         }
251         obj->fence_dirty = false;
252 }
253
254 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
255 {
256         if (obj->tiling_mode)
257                 i915_gem_release_mmap(obj);
258
259         /* As we do not have an associated fence register, we will force
260          * a tiling change if we ever need to acquire one.
261          */
262         obj->fence_dirty = false;
263         obj->fence_reg = I915_FENCE_REG_NONE;
264 }
265
266 static int
267 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
268 {
269         if (obj->last_fenced_req) {
270                 int ret = i915_wait_request(obj->last_fenced_req);
271                 if (ret)
272                         return ret;
273
274                 i915_gem_request_assign(&obj->last_fenced_req, NULL);
275         }
276
277         return 0;
278 }
279
280 /**
281  * i915_gem_object_put_fence - force-remove fence for an object
282  * @obj: object to map through a fence reg
283  *
284  * This function force-removes any fence from the given object, which is useful
285  * if the kernel wants to do untiled GTT access.
286  *
287  * Returns:
288  *
289  * 0 on success, negative error code on failure.
290  */
291 int
292 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
293 {
294         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
295         struct drm_i915_fence_reg *fence;
296         int ret;
297
298         ret = i915_gem_object_wait_fence(obj);
299         if (ret)
300                 return ret;
301
302         if (obj->fence_reg == I915_FENCE_REG_NONE)
303                 return 0;
304
305         fence = &dev_priv->fence_regs[obj->fence_reg];
306
307         if (WARN_ON(fence->pin_count))
308                 return -EBUSY;
309
310         i915_gem_object_fence_lost(obj);
311         i915_gem_object_update_fence(obj, fence, false);
312
313         return 0;
314 }
315
316 static struct drm_i915_fence_reg *
317 i915_find_fence_reg(struct drm_device *dev)
318 {
319         struct drm_i915_private *dev_priv = dev->dev_private;
320         struct drm_i915_fence_reg *reg, *avail;
321         int i;
322
323         /* First try to find a free reg */
324         avail = NULL;
325         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
326                 reg = &dev_priv->fence_regs[i];
327                 if (!reg->obj)
328                         return reg;
329
330                 if (!reg->pin_count)
331                         avail = reg;
332         }
333
334         if (avail == NULL)
335                 goto deadlock;
336
337         /* None available, try to steal one or wait for a user to finish */
338         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
339                 if (reg->pin_count)
340                         continue;
341
342                 return reg;
343         }
344
345 deadlock:
346         /* Wait for completion of pending flips which consume fences */
347         if (intel_has_pending_fb_unpin(dev))
348                 return ERR_PTR(-EAGAIN);
349
350         return ERR_PTR(-EDEADLK);
351 }
352
353 /**
354  * i915_gem_object_get_fence - set up fencing for an object
355  * @obj: object to map through a fence reg
356  *
357  * When mapping objects through the GTT, userspace wants to be able to write
358  * to them without having to worry about swizzling if the object is tiled.
359  * This function walks the fence regs looking for a free one for @obj,
360  * stealing one if it can't find any.
361  *
362  * It then sets up the reg based on the object's properties: address, pitch
363  * and tiling format.
364  *
365  * For an untiled surface, this removes any existing fence.
366  *
367  * Returns:
368  *
369  * 0 on success, negative error code on failure.
370  */
371 int
372 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
373 {
374         struct drm_device *dev = obj->base.dev;
375         struct drm_i915_private *dev_priv = dev->dev_private;
376         bool enable = obj->tiling_mode != I915_TILING_NONE;
377         struct drm_i915_fence_reg *reg;
378         int ret;
379
380         /* Have we updated the tiling parameters upon the object and so
381          * will need to serialise the write to the associated fence register?
382          */
383         if (obj->fence_dirty) {
384                 ret = i915_gem_object_wait_fence(obj);
385                 if (ret)
386                         return ret;
387         }
388
389         /* Just update our place in the LRU if our fence is getting reused. */
390         if (obj->fence_reg != I915_FENCE_REG_NONE) {
391                 reg = &dev_priv->fence_regs[obj->fence_reg];
392                 if (!obj->fence_dirty) {
393                         list_move_tail(&reg->lru_list,
394                                        &dev_priv->mm.fence_list);
395                         return 0;
396                 }
397         } else if (enable) {
398                 if (WARN_ON(!obj->map_and_fenceable))
399                         return -EINVAL;
400
401                 reg = i915_find_fence_reg(dev);
402                 if (IS_ERR(reg))
403                         return PTR_ERR(reg);
404
405                 if (reg->obj) {
406                         struct drm_i915_gem_object *old = reg->obj;
407
408                         ret = i915_gem_object_wait_fence(old);
409                         if (ret)
410                                 return ret;
411
412                         i915_gem_object_fence_lost(old);
413                 }
414         } else
415                 return 0;
416
417         i915_gem_object_update_fence(obj, reg, enable);
418
419         return 0;
420 }
421
422 /**
423  * i915_gem_object_pin_fence - pin fencing state
424  * @obj: object to pin fencing for
425  *
426  * This pins the fencing state (whether tiled or untiled) to make sure the
427  * object is ready to be used as a scanout target. Fencing status must be
428  * synchronize first by calling i915_gem_object_get_fence():
429  *
430  * The resulting fence pin reference must be released again with
431  * i915_gem_object_unpin_fence().
432  *
433  * Returns:
434  *
435  * True if the object has a fence, false otherwise.
436  */
437 bool
438 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
439 {
440         if (obj->fence_reg != I915_FENCE_REG_NONE) {
441                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
442                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
443
444                 WARN_ON(!ggtt_vma ||
445                         dev_priv->fence_regs[obj->fence_reg].pin_count >
446                         ggtt_vma->pin_count);
447                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
448                 return true;
449         } else
450                 return false;
451 }
452
453 /**
454  * i915_gem_object_unpin_fence - unpin fencing state
455  * @obj: object to unpin fencing for
456  *
457  * This releases the fence pin reference acquired through
458  * i915_gem_object_pin_fence. It will handle both objects with and without an
459  * attached fence correctly, callers do not need to distinguish this.
460  */
461 void
462 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
463 {
464         if (obj->fence_reg != I915_FENCE_REG_NONE) {
465                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
466                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
467                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
468         }
469 }
470
471 /**
472  * i915_gem_restore_fences - restore fence state
473  * @dev: DRM device
474  *
475  * Restore the hw fence state to match the software tracking again, to be called
476  * after a gpu reset and on resume.
477  */
478 void i915_gem_restore_fences(struct drm_device *dev)
479 {
480         struct drm_i915_private *dev_priv = dev->dev_private;
481         int i;
482
483         for (i = 0; i < dev_priv->num_fence_regs; i++) {
484                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
485
486                 /*
487                  * Commit delayed tiling changes if we have an object still
488                  * attached to the fence, otherwise just clear the fence.
489                  */
490                 if (reg->obj) {
491                         i915_gem_object_update_fence(reg->obj, reg,
492                                                      reg->obj->tiling_mode);
493                 } else {
494                         i915_gem_write_fence(dev, i, NULL);
495                 }
496         }
497 }
498
499 /**
500  *
501  * Support for managing tiling state of buffer objects.
502  *
503  * The idea behind tiling is to increase cache hit rates by rearranging
504  * pixel data so that a group of pixel accesses are in the same cacheline.
505  * Performance improvement from doing this on the back/depth buffer are on
506  * the order of 30%.
507  *
508  * Intel architectures make this somewhat more complicated, though, by
509  * adjustments made to addressing of data when the memory is in interleaved
510  * mode (matched pairs of DIMMS) to improve memory bandwidth.
511  * For interleaved memory, the CPU sends every sequential 64 bytes
512  * to an alternate memory channel so it can get the bandwidth from both.
513  *
514  * The GPU also rearranges its accesses for increased bandwidth to interleaved
515  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
516  * it does it a little differently, since one walks addresses not just in the
517  * X direction but also Y.  So, along with alternating channels when bit
518  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
519  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
520  * are common to both the 915 and 965-class hardware.
521  *
522  * The CPU also sometimes XORs in higher bits as well, to improve
523  * bandwidth doing strided access like we do so frequently in graphics.  This
524  * is called "Channel XOR Randomization" in the MCH documentation.  The result
525  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
526  * decode.
527  *
528  * All of this bit 6 XORing has an effect on our memory management,
529  * as we need to make sure that the 3d driver can correctly address object
530  * contents.
531  *
532  * If we don't have interleaved memory, all tiling is safe and no swizzling is
533  * required.
534  *
535  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
536  * 17 is not just a page offset, so as we page an objet out and back in,
537  * individual pages in it will have different bit 17 addresses, resulting in
538  * each 64 bytes being swapped with its neighbor!
539  *
540  * Otherwise, if interleaved, we have to tell the 3d driver what the address
541  * swizzling it needs to do is, since it's writing with the CPU to the pages
542  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
543  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
544  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
545  * to match what the GPU expects.
546  */
547
548 /**
549  * Detects bit 6 swizzling of address lookup between IGD access and CPU
550  * access through main memory.
551  */
552 void
553 i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
554 {
555         struct drm_i915_private *dev_priv = dev->dev_private;
556         uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
557         uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
558
559         if (INTEL_INFO(dev)->gen >= 8 || IS_VALLEYVIEW(dev)) {
560                 /*
561                  * On BDW+, swizzling is not used. We leave the CPU memory
562                  * controller in charge of optimizing memory accesses without
563                  * the extra address manipulation GPU side.
564                  *
565                  * VLV and CHV don't have GPU swizzling.
566                  */
567                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
568                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
569         } else if (INTEL_INFO(dev)->gen >= 6) {
570                 if (dev_priv->preserve_bios_swizzle) {
571                         if (I915_READ(DISP_ARB_CTL) &
572                             DISP_TILE_SURFACE_SWIZZLING) {
573                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
574                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
575                         } else {
576                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
577                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
578                         }
579                 } else {
580                         uint32_t dimm_c0, dimm_c1;
581                         dimm_c0 = I915_READ(MAD_DIMM_C0);
582                         dimm_c1 = I915_READ(MAD_DIMM_C1);
583                         dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
584                         dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
585                         /* Enable swizzling when the channels are populated
586                          * with identically sized dimms. We don't need to check
587                          * the 3rd channel because no cpu with gpu attached
588                          * ships in that configuration. Also, swizzling only
589                          * makes sense for 2 channels anyway. */
590                         if (dimm_c0 == dimm_c1) {
591                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
592                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
593                         } else {
594                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
595                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
596                         }
597                 }
598         } else if (IS_GEN5(dev)) {
599                 /* On Ironlake whatever DRAM config, GPU always do
600                  * same swizzling setup.
601                  */
602                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
603                 swizzle_y = I915_BIT_6_SWIZZLE_9;
604         } else if (IS_GEN2(dev)) {
605                 /* As far as we know, the 865 doesn't have these bit 6
606                  * swizzling issues.
607                  */
608                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
609                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
610         } else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
611                 uint32_t dcc;
612
613                 /* On 9xx chipsets, channel interleave by the CPU is
614                  * determined by DCC.  For single-channel, neither the CPU
615                  * nor the GPU do swizzling.  For dual channel interleaved,
616                  * the GPU's interleave is bit 9 and 10 for X tiled, and bit
617                  * 9 for Y tiled.  The CPU's interleave is independent, and
618                  * can be based on either bit 11 (haven't seen this yet) or
619                  * bit 17 (common).
620                  */
621                 dcc = I915_READ(DCC);
622                 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
623                 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
624                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
625                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
626                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
627                         break;
628                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
629                         if (dcc & DCC_CHANNEL_XOR_DISABLE) {
630                                 /* This is the base swizzling by the GPU for
631                                  * tiled buffers.
632                                  */
633                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
634                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
635                         } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
636                                 /* Bit 11 swizzling by the CPU in addition. */
637                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
638                                 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
639                         } else {
640                                 /* Bit 17 swizzling by the CPU in addition. */
641                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
642                                 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
643                         }
644                         break;
645                 }
646
647                 /* check for L-shaped memory aka modified enhanced addressing */
648                 if (IS_GEN4(dev)) {
649                         uint32_t ddc2 = I915_READ(DCC2);
650
651                         if (!(ddc2 & DCC2_MODIFIED_ENHANCED_DISABLE))
652                                 dev_priv->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
653                 }
654
655                 if (dcc == 0xffffffff) {
656                         DRM_ERROR("Couldn't read from MCHBAR.  "
657                                   "Disabling tiling.\n");
658                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
659                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
660                 }
661         } else {
662                 /* The 965, G33, and newer, have a very flexible memory
663                  * configuration.  It will enable dual-channel mode
664                  * (interleaving) on as much memory as it can, and the GPU
665                  * will additionally sometimes enable different bit 6
666                  * swizzling for tiled objects from the CPU.
667                  *
668                  * Here's what I found on the G965:
669                  *    slot fill         memory size  swizzling
670                  * 0A   0B   1A   1B    1-ch   2-ch
671                  * 512  0    0    0     512    0     O
672                  * 512  0    512  0     16     1008  X
673                  * 512  0    0    512   16     1008  X
674                  * 0    512  0    512   16     1008  X
675                  * 1024 1024 1024 0     2048   1024  O
676                  *
677                  * We could probably detect this based on either the DRB
678                  * matching, which was the case for the swizzling required in
679                  * the table above, or from the 1-ch value being less than
680                  * the minimum size of a rank.
681                  */
682                 if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
683                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
684                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
685                 } else {
686                         swizzle_x = I915_BIT_6_SWIZZLE_9_10;
687                         swizzle_y = I915_BIT_6_SWIZZLE_9;
688                 }
689         }
690
691         dev_priv->mm.bit_6_swizzle_x = swizzle_x;
692         dev_priv->mm.bit_6_swizzle_y = swizzle_y;
693 }
694
695 /**
696  * Swap every 64 bytes of this page around, to account for it having a new
697  * bit 17 of its physical address and therefore being interpreted differently
698  * by the GPU.
699  */
700 static void
701 i915_gem_swizzle_page(struct page *page)
702 {
703         char temp[64];
704         char *vaddr;
705         int i;
706
707         vaddr = kmap(page);
708
709         for (i = 0; i < PAGE_SIZE; i += 128) {
710                 memcpy(temp, &vaddr[i], 64);
711                 memcpy(&vaddr[i], &vaddr[i + 64], 64);
712                 memcpy(&vaddr[i + 64], temp, 64);
713         }
714
715         kunmap(page);
716 }
717
718 void
719 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
720 {
721         struct sg_page_iter sg_iter;
722         int i;
723
724         if (obj->bit_17 == NULL)
725                 return;
726
727         i = 0;
728         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
729                 struct page *page = sg_page_iter_page(&sg_iter);
730                 char new_bit_17 = page_to_phys(page) >> 17;
731                 if ((new_bit_17 & 0x1) !=
732                     (test_bit(i, obj->bit_17) != 0)) {
733                         i915_gem_swizzle_page(page);
734                         set_page_dirty(page);
735                 }
736                 i++;
737         }
738 }
739
740 void
741 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
742 {
743         struct sg_page_iter sg_iter;
744         int page_count = obj->base.size >> PAGE_SHIFT;
745         int i;
746
747         if (obj->bit_17 == NULL) {
748                 obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
749                                       sizeof(long), GFP_KERNEL);
750                 if (obj->bit_17 == NULL) {
751                         DRM_ERROR("Failed to allocate memory for bit 17 "
752                                   "record\n");
753                         return;
754                 }
755         }
756
757         i = 0;
758         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
759                 if (page_to_phys(sg_page_iter_page(&sg_iter)) & (1 << 17))
760                         __set_bit(i, obj->bit_17);
761                 else
762                         __clear_bit(i, obj->bit_17);
763                 i++;
764         }
765 }