UAPI: (Scripted) Convert #include "..." to #include <path/...> in drivers/gpu/
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
1 /*
2  * Copyright © 2008,2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Chris Wilson <chris@chris-wilson.co.uk>
26  *
27  */
28
29 #include <drm/drmP.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/dma_remapping.h>
35
36 struct change_domains {
37         uint32_t invalidate_domains;
38         uint32_t flush_domains;
39         uint32_t flush_rings;
40         uint32_t flips;
41 };
42
43 /*
44  * Set the next domain for the specified object. This
45  * may not actually perform the necessary flushing/invaliding though,
46  * as that may want to be batched with other set_domain operations
47  *
48  * This is (we hope) the only really tricky part of gem. The goal
49  * is fairly simple -- track which caches hold bits of the object
50  * and make sure they remain coherent. A few concrete examples may
51  * help to explain how it works. For shorthand, we use the notation
52  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
53  * a pair of read and write domain masks.
54  *
55  * Case 1: the batch buffer
56  *
57  *      1. Allocated
58  *      2. Written by CPU
59  *      3. Mapped to GTT
60  *      4. Read by GPU
61  *      5. Unmapped from GTT
62  *      6. Freed
63  *
64  *      Let's take these a step at a time
65  *
66  *      1. Allocated
67  *              Pages allocated from the kernel may still have
68  *              cache contents, so we set them to (CPU, CPU) always.
69  *      2. Written by CPU (using pwrite)
70  *              The pwrite function calls set_domain (CPU, CPU) and
71  *              this function does nothing (as nothing changes)
72  *      3. Mapped by GTT
73  *              This function asserts that the object is not
74  *              currently in any GPU-based read or write domains
75  *      4. Read by GPU
76  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
77  *              As write_domain is zero, this function adds in the
78  *              current read domains (CPU+COMMAND, 0).
79  *              flush_domains is set to CPU.
80  *              invalidate_domains is set to COMMAND
81  *              clflush is run to get data out of the CPU caches
82  *              then i915_dev_set_domain calls i915_gem_flush to
83  *              emit an MI_FLUSH and drm_agp_chipset_flush
84  *      5. Unmapped from GTT
85  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
86  *              flush_domains and invalidate_domains end up both zero
87  *              so no flushing/invalidating happens
88  *      6. Freed
89  *              yay, done
90  *
91  * Case 2: The shared render buffer
92  *
93  *      1. Allocated
94  *      2. Mapped to GTT
95  *      3. Read/written by GPU
96  *      4. set_domain to (CPU,CPU)
97  *      5. Read/written by CPU
98  *      6. Read/written by GPU
99  *
100  *      1. Allocated
101  *              Same as last example, (CPU, CPU)
102  *      2. Mapped to GTT
103  *              Nothing changes (assertions find that it is not in the GPU)
104  *      3. Read/written by GPU
105  *              execbuffer calls set_domain (RENDER, RENDER)
106  *              flush_domains gets CPU
107  *              invalidate_domains gets GPU
108  *              clflush (obj)
109  *              MI_FLUSH and drm_agp_chipset_flush
110  *      4. set_domain (CPU, CPU)
111  *              flush_domains gets GPU
112  *              invalidate_domains gets CPU
113  *              wait_rendering (obj) to make sure all drawing is complete.
114  *              This will include an MI_FLUSH to get the data from GPU
115  *              to memory
116  *              clflush (obj) to invalidate the CPU cache
117  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
118  *      5. Read/written by CPU
119  *              cache lines are loaded and dirtied
120  *      6. Read written by GPU
121  *              Same as last GPU access
122  *
123  * Case 3: The constant buffer
124  *
125  *      1. Allocated
126  *      2. Written by CPU
127  *      3. Read by GPU
128  *      4. Updated (written) by CPU again
129  *      5. Read by GPU
130  *
131  *      1. Allocated
132  *              (CPU, CPU)
133  *      2. Written by CPU
134  *              (CPU, CPU)
135  *      3. Read by GPU
136  *              (CPU+RENDER, 0)
137  *              flush_domains = CPU
138  *              invalidate_domains = RENDER
139  *              clflush (obj)
140  *              MI_FLUSH
141  *              drm_agp_chipset_flush
142  *      4. Updated (written) by CPU again
143  *              (CPU, CPU)
144  *              flush_domains = 0 (no previous write domain)
145  *              invalidate_domains = 0 (no new read domains)
146  *      5. Read by GPU
147  *              (CPU+RENDER, 0)
148  *              flush_domains = CPU
149  *              invalidate_domains = RENDER
150  *              clflush (obj)
151  *              MI_FLUSH
152  *              drm_agp_chipset_flush
153  */
154 static void
155 i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
156                                   struct intel_ring_buffer *ring,
157                                   struct change_domains *cd)
158 {
159         uint32_t invalidate_domains = 0, flush_domains = 0;
160
161         /*
162          * If the object isn't moving to a new write domain,
163          * let the object stay in multiple read domains
164          */
165         if (obj->base.pending_write_domain == 0)
166                 obj->base.pending_read_domains |= obj->base.read_domains;
167
168         /*
169          * Flush the current write domain if
170          * the new read domains don't match. Invalidate
171          * any read domains which differ from the old
172          * write domain
173          */
174         if (obj->base.write_domain &&
175             (((obj->base.write_domain != obj->base.pending_read_domains ||
176                obj->ring != ring)) ||
177              (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
178                 flush_domains |= obj->base.write_domain;
179                 invalidate_domains |=
180                         obj->base.pending_read_domains & ~obj->base.write_domain;
181         }
182         /*
183          * Invalidate any read caches which may have
184          * stale data. That is, any new read domains.
185          */
186         invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
187         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
188                 i915_gem_clflush_object(obj);
189
190         if (obj->base.pending_write_domain)
191                 cd->flips |= atomic_read(&obj->pending_flip);
192
193         /* The actual obj->write_domain will be updated with
194          * pending_write_domain after we emit the accumulated flush for all
195          * of our domain changes in execbuffers (which clears objects'
196          * write_domains).  So if we have a current write domain that we
197          * aren't changing, set pending_write_domain to that.
198          */
199         if (flush_domains == 0 && obj->base.pending_write_domain == 0)
200                 obj->base.pending_write_domain = obj->base.write_domain;
201
202         cd->invalidate_domains |= invalidate_domains;
203         cd->flush_domains |= flush_domains;
204         if (flush_domains & I915_GEM_GPU_DOMAINS)
205                 cd->flush_rings |= intel_ring_flag(obj->ring);
206         if (invalidate_domains & I915_GEM_GPU_DOMAINS)
207                 cd->flush_rings |= intel_ring_flag(ring);
208 }
209
210 struct eb_objects {
211         int and;
212         struct hlist_head buckets[0];
213 };
214
215 static struct eb_objects *
216 eb_create(int size)
217 {
218         struct eb_objects *eb;
219         int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
220         while (count > size)
221                 count >>= 1;
222         eb = kzalloc(count*sizeof(struct hlist_head) +
223                      sizeof(struct eb_objects),
224                      GFP_KERNEL);
225         if (eb == NULL)
226                 return eb;
227
228         eb->and = count - 1;
229         return eb;
230 }
231
232 static void
233 eb_reset(struct eb_objects *eb)
234 {
235         memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
236 }
237
238 static void
239 eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
240 {
241         hlist_add_head(&obj->exec_node,
242                        &eb->buckets[obj->exec_handle & eb->and]);
243 }
244
245 static struct drm_i915_gem_object *
246 eb_get_object(struct eb_objects *eb, unsigned long handle)
247 {
248         struct hlist_head *head;
249         struct hlist_node *node;
250         struct drm_i915_gem_object *obj;
251
252         head = &eb->buckets[handle & eb->and];
253         hlist_for_each(node, head) {
254                 obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
255                 if (obj->exec_handle == handle)
256                         return obj;
257         }
258
259         return NULL;
260 }
261
262 static void
263 eb_destroy(struct eb_objects *eb)
264 {
265         kfree(eb);
266 }
267
268 static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
269 {
270         return (obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
271                 obj->cache_level != I915_CACHE_NONE);
272 }
273
274 static int
275 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
276                                    struct eb_objects *eb,
277                                    struct drm_i915_gem_relocation_entry *reloc)
278 {
279         struct drm_device *dev = obj->base.dev;
280         struct drm_gem_object *target_obj;
281         struct drm_i915_gem_object *target_i915_obj;
282         uint32_t target_offset;
283         int ret = -EINVAL;
284
285         /* we've already hold a reference to all valid objects */
286         target_obj = &eb_get_object(eb, reloc->target_handle)->base;
287         if (unlikely(target_obj == NULL))
288                 return -ENOENT;
289
290         target_i915_obj = to_intel_bo(target_obj);
291         target_offset = target_i915_obj->gtt_offset;
292
293         /* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
294          * pipe_control writes because the gpu doesn't properly redirect them
295          * through the ppgtt for non_secure batchbuffers. */
296         if (unlikely(IS_GEN6(dev) &&
297             reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
298             !target_i915_obj->has_global_gtt_mapping)) {
299                 i915_gem_gtt_bind_object(target_i915_obj,
300                                          target_i915_obj->cache_level);
301         }
302
303         /* The target buffer should have appeared before us in the
304          * exec_object list, so it should have a GTT space bound by now.
305          */
306         if (unlikely(target_offset == 0)) {
307                 DRM_DEBUG("No GTT space found for object %d\n",
308                           reloc->target_handle);
309                 return ret;
310         }
311
312         /* Validate that the target is in a valid r/w GPU domain */
313         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
314                 DRM_DEBUG("reloc with multiple write domains: "
315                           "obj %p target %d offset %d "
316                           "read %08x write %08x",
317                           obj, reloc->target_handle,
318                           (int) reloc->offset,
319                           reloc->read_domains,
320                           reloc->write_domain);
321                 return ret;
322         }
323         if (unlikely((reloc->write_domain | reloc->read_domains)
324                      & ~I915_GEM_GPU_DOMAINS)) {
325                 DRM_DEBUG("reloc with read/write non-GPU domains: "
326                           "obj %p target %d offset %d "
327                           "read %08x write %08x",
328                           obj, reloc->target_handle,
329                           (int) reloc->offset,
330                           reloc->read_domains,
331                           reloc->write_domain);
332                 return ret;
333         }
334         if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
335                      reloc->write_domain != target_obj->pending_write_domain)) {
336                 DRM_DEBUG("Write domain conflict: "
337                           "obj %p target %d offset %d "
338                           "new %08x old %08x\n",
339                           obj, reloc->target_handle,
340                           (int) reloc->offset,
341                           reloc->write_domain,
342                           target_obj->pending_write_domain);
343                 return ret;
344         }
345
346         target_obj->pending_read_domains |= reloc->read_domains;
347         target_obj->pending_write_domain |= reloc->write_domain;
348
349         /* If the relocation already has the right value in it, no
350          * more work needs to be done.
351          */
352         if (target_offset == reloc->presumed_offset)
353                 return 0;
354
355         /* Check that the relocation address is valid... */
356         if (unlikely(reloc->offset > obj->base.size - 4)) {
357                 DRM_DEBUG("Relocation beyond object bounds: "
358                           "obj %p target %d offset %d size %d.\n",
359                           obj, reloc->target_handle,
360                           (int) reloc->offset,
361                           (int) obj->base.size);
362                 return ret;
363         }
364         if (unlikely(reloc->offset & 3)) {
365                 DRM_DEBUG("Relocation not 4-byte aligned: "
366                           "obj %p target %d offset %d.\n",
367                           obj, reloc->target_handle,
368                           (int) reloc->offset);
369                 return ret;
370         }
371
372         /* We can't wait for rendering with pagefaults disabled */
373         if (obj->active && in_atomic())
374                 return -EFAULT;
375
376         reloc->delta += target_offset;
377         if (use_cpu_reloc(obj)) {
378                 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
379                 char *vaddr;
380
381                 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
382                 if (ret)
383                         return ret;
384
385                 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
386                 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
387                 kunmap_atomic(vaddr);
388         } else {
389                 struct drm_i915_private *dev_priv = dev->dev_private;
390                 uint32_t __iomem *reloc_entry;
391                 void __iomem *reloc_page;
392
393                 ret = i915_gem_object_set_to_gtt_domain(obj, true);
394                 if (ret)
395                         return ret;
396
397                 ret = i915_gem_object_put_fence(obj);
398                 if (ret)
399                         return ret;
400
401                 /* Map the page containing the relocation we're going to perform.  */
402                 reloc->offset += obj->gtt_offset;
403                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
404                                                       reloc->offset & PAGE_MASK);
405                 reloc_entry = (uint32_t __iomem *)
406                         (reloc_page + (reloc->offset & ~PAGE_MASK));
407                 iowrite32(reloc->delta, reloc_entry);
408                 io_mapping_unmap_atomic(reloc_page);
409         }
410
411         /* and update the user's relocation entry */
412         reloc->presumed_offset = target_offset;
413
414         return 0;
415 }
416
417 static int
418 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
419                                     struct eb_objects *eb)
420 {
421 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
422         struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
423         struct drm_i915_gem_relocation_entry __user *user_relocs;
424         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
425         int remain, ret;
426
427         user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
428
429         remain = entry->relocation_count;
430         while (remain) {
431                 struct drm_i915_gem_relocation_entry *r = stack_reloc;
432                 int count = remain;
433                 if (count > ARRAY_SIZE(stack_reloc))
434                         count = ARRAY_SIZE(stack_reloc);
435                 remain -= count;
436
437                 if (__copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0])))
438                         return -EFAULT;
439
440                 do {
441                         u64 offset = r->presumed_offset;
442
443                         ret = i915_gem_execbuffer_relocate_entry(obj, eb, r);
444                         if (ret)
445                                 return ret;
446
447                         if (r->presumed_offset != offset &&
448                             __copy_to_user_inatomic(&user_relocs->presumed_offset,
449                                                     &r->presumed_offset,
450                                                     sizeof(r->presumed_offset))) {
451                                 return -EFAULT;
452                         }
453
454                         user_relocs++;
455                         r++;
456                 } while (--count);
457         }
458
459         return 0;
460 #undef N_RELOC
461 }
462
463 static int
464 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
465                                          struct eb_objects *eb,
466                                          struct drm_i915_gem_relocation_entry *relocs)
467 {
468         const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
469         int i, ret;
470
471         for (i = 0; i < entry->relocation_count; i++) {
472                 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
473                 if (ret)
474                         return ret;
475         }
476
477         return 0;
478 }
479
480 static int
481 i915_gem_execbuffer_relocate(struct drm_device *dev,
482                              struct eb_objects *eb,
483                              struct list_head *objects)
484 {
485         struct drm_i915_gem_object *obj;
486         int ret = 0;
487
488         /* This is the fast path and we cannot handle a pagefault whilst
489          * holding the struct mutex lest the user pass in the relocations
490          * contained within a mmaped bo. For in such a case we, the page
491          * fault handler would call i915_gem_fault() and we would try to
492          * acquire the struct mutex again. Obviously this is bad and so
493          * lockdep complains vehemently.
494          */
495         pagefault_disable();
496         list_for_each_entry(obj, objects, exec_list) {
497                 ret = i915_gem_execbuffer_relocate_object(obj, eb);
498                 if (ret)
499                         break;
500         }
501         pagefault_enable();
502
503         return ret;
504 }
505
506 #define  __EXEC_OBJECT_HAS_FENCE (1<<31)
507
508 static int
509 need_reloc_mappable(struct drm_i915_gem_object *obj)
510 {
511         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
512         return entry->relocation_count && !use_cpu_reloc(obj);
513 }
514
515 static int
516 pin_and_fence_object(struct drm_i915_gem_object *obj,
517                      struct intel_ring_buffer *ring)
518 {
519         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
520         bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
521         bool need_fence, need_mappable;
522         int ret;
523
524         need_fence =
525                 has_fenced_gpu_access &&
526                 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
527                 obj->tiling_mode != I915_TILING_NONE;
528         need_mappable = need_fence || need_reloc_mappable(obj);
529
530         ret = i915_gem_object_pin(obj, entry->alignment, need_mappable);
531         if (ret)
532                 return ret;
533
534         if (has_fenced_gpu_access) {
535                 if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
536                         ret = i915_gem_object_get_fence(obj);
537                         if (ret)
538                                 goto err_unpin;
539
540                         if (i915_gem_object_pin_fence(obj))
541                                 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
542
543                         obj->pending_fenced_gpu_access = true;
544                 }
545         }
546
547         entry->offset = obj->gtt_offset;
548         return 0;
549
550 err_unpin:
551         i915_gem_object_unpin(obj);
552         return ret;
553 }
554
555 static int
556 i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
557                             struct drm_file *file,
558                             struct list_head *objects)
559 {
560         drm_i915_private_t *dev_priv = ring->dev->dev_private;
561         struct drm_i915_gem_object *obj;
562         int ret, retry;
563         bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
564         struct list_head ordered_objects;
565
566         INIT_LIST_HEAD(&ordered_objects);
567         while (!list_empty(objects)) {
568                 struct drm_i915_gem_exec_object2 *entry;
569                 bool need_fence, need_mappable;
570
571                 obj = list_first_entry(objects,
572                                        struct drm_i915_gem_object,
573                                        exec_list);
574                 entry = obj->exec_entry;
575
576                 need_fence =
577                         has_fenced_gpu_access &&
578                         entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
579                         obj->tiling_mode != I915_TILING_NONE;
580                 need_mappable = need_fence || need_reloc_mappable(obj);
581
582                 if (need_mappable)
583                         list_move(&obj->exec_list, &ordered_objects);
584                 else
585                         list_move_tail(&obj->exec_list, &ordered_objects);
586
587                 obj->base.pending_read_domains = 0;
588                 obj->base.pending_write_domain = 0;
589         }
590         list_splice(&ordered_objects, objects);
591
592         /* Attempt to pin all of the buffers into the GTT.
593          * This is done in 3 phases:
594          *
595          * 1a. Unbind all objects that do not match the GTT constraints for
596          *     the execbuffer (fenceable, mappable, alignment etc).
597          * 1b. Increment pin count for already bound objects.
598          * 2.  Bind new objects.
599          * 3.  Decrement pin count.
600          *
601          * This avoid unnecessary unbinding of later objects in order to makr
602          * room for the earlier objects *unless* we need to defragment.
603          */
604         retry = 0;
605         do {
606                 ret = 0;
607
608                 /* Unbind any ill-fitting objects or pin. */
609                 list_for_each_entry(obj, objects, exec_list) {
610                         struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
611                         bool need_fence, need_mappable;
612
613                         if (!obj->gtt_space)
614                                 continue;
615
616                         need_fence =
617                                 has_fenced_gpu_access &&
618                                 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
619                                 obj->tiling_mode != I915_TILING_NONE;
620                         need_mappable = need_fence || need_reloc_mappable(obj);
621
622                         if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
623                             (need_mappable && !obj->map_and_fenceable))
624                                 ret = i915_gem_object_unbind(obj);
625                         else
626                                 ret = pin_and_fence_object(obj, ring);
627                         if (ret)
628                                 goto err;
629                 }
630
631                 /* Bind fresh objects */
632                 list_for_each_entry(obj, objects, exec_list) {
633                         if (obj->gtt_space)
634                                 continue;
635
636                         ret = pin_and_fence_object(obj, ring);
637                         if (ret) {
638                                 int ret_ignore;
639
640                                 /* This can potentially raise a harmless
641                                  * -EINVAL if we failed to bind in the above
642                                  * call. It cannot raise -EINTR since we know
643                                  * that the bo is freshly bound and so will
644                                  * not need to be flushed or waited upon.
645                                  */
646                                 ret_ignore = i915_gem_object_unbind(obj);
647                                 (void)ret_ignore;
648                                 WARN_ON(obj->gtt_space);
649                                 break;
650                         }
651                 }
652
653                 /* Decrement pin count for bound objects */
654                 list_for_each_entry(obj, objects, exec_list) {
655                         struct drm_i915_gem_exec_object2 *entry;
656
657                         if (!obj->gtt_space)
658                                 continue;
659
660                         entry = obj->exec_entry;
661                         if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
662                                 i915_gem_object_unpin_fence(obj);
663                                 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
664                         }
665
666                         i915_gem_object_unpin(obj);
667
668                         /* ... and ensure ppgtt mapping exist if needed. */
669                         if (dev_priv->mm.aliasing_ppgtt && !obj->has_aliasing_ppgtt_mapping) {
670                                 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
671                                                        obj, obj->cache_level);
672
673                                 obj->has_aliasing_ppgtt_mapping = 1;
674                         }
675                 }
676
677                 if (ret != -ENOSPC || retry > 1)
678                         return ret;
679
680                 /* First attempt, just clear anything that is purgeable.
681                  * Second attempt, clear the entire GTT.
682                  */
683                 ret = i915_gem_evict_everything(ring->dev, retry == 0);
684                 if (ret)
685                         return ret;
686
687                 retry++;
688         } while (1);
689
690 err:
691         list_for_each_entry_continue_reverse(obj, objects, exec_list) {
692                 struct drm_i915_gem_exec_object2 *entry;
693
694                 if (!obj->gtt_space)
695                         continue;
696
697                 entry = obj->exec_entry;
698                 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
699                         i915_gem_object_unpin_fence(obj);
700                         entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
701                 }
702
703                 i915_gem_object_unpin(obj);
704         }
705
706         return ret;
707 }
708
709 static int
710 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
711                                   struct drm_file *file,
712                                   struct intel_ring_buffer *ring,
713                                   struct list_head *objects,
714                                   struct eb_objects *eb,
715                                   struct drm_i915_gem_exec_object2 *exec,
716                                   int count)
717 {
718         struct drm_i915_gem_relocation_entry *reloc;
719         struct drm_i915_gem_object *obj;
720         int *reloc_offset;
721         int i, total, ret;
722
723         /* We may process another execbuffer during the unlock... */
724         while (!list_empty(objects)) {
725                 obj = list_first_entry(objects,
726                                        struct drm_i915_gem_object,
727                                        exec_list);
728                 list_del_init(&obj->exec_list);
729                 drm_gem_object_unreference(&obj->base);
730         }
731
732         mutex_unlock(&dev->struct_mutex);
733
734         total = 0;
735         for (i = 0; i < count; i++)
736                 total += exec[i].relocation_count;
737
738         reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
739         reloc = drm_malloc_ab(total, sizeof(*reloc));
740         if (reloc == NULL || reloc_offset == NULL) {
741                 drm_free_large(reloc);
742                 drm_free_large(reloc_offset);
743                 mutex_lock(&dev->struct_mutex);
744                 return -ENOMEM;
745         }
746
747         total = 0;
748         for (i = 0; i < count; i++) {
749                 struct drm_i915_gem_relocation_entry __user *user_relocs;
750
751                 user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
752
753                 if (copy_from_user(reloc+total, user_relocs,
754                                    exec[i].relocation_count * sizeof(*reloc))) {
755                         ret = -EFAULT;
756                         mutex_lock(&dev->struct_mutex);
757                         goto err;
758                 }
759
760                 reloc_offset[i] = total;
761                 total += exec[i].relocation_count;
762         }
763
764         ret = i915_mutex_lock_interruptible(dev);
765         if (ret) {
766                 mutex_lock(&dev->struct_mutex);
767                 goto err;
768         }
769
770         /* reacquire the objects */
771         eb_reset(eb);
772         for (i = 0; i < count; i++) {
773                 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
774                                                         exec[i].handle));
775                 if (&obj->base == NULL) {
776                         DRM_DEBUG("Invalid object handle %d at index %d\n",
777                                    exec[i].handle, i);
778                         ret = -ENOENT;
779                         goto err;
780                 }
781
782                 list_add_tail(&obj->exec_list, objects);
783                 obj->exec_handle = exec[i].handle;
784                 obj->exec_entry = &exec[i];
785                 eb_add_object(eb, obj);
786         }
787
788         ret = i915_gem_execbuffer_reserve(ring, file, objects);
789         if (ret)
790                 goto err;
791
792         list_for_each_entry(obj, objects, exec_list) {
793                 int offset = obj->exec_entry - exec;
794                 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
795                                                                reloc + reloc_offset[offset]);
796                 if (ret)
797                         goto err;
798         }
799
800         /* Leave the user relocations as are, this is the painfully slow path,
801          * and we want to avoid the complication of dropping the lock whilst
802          * having buffers reserved in the aperture and so causing spurious
803          * ENOSPC for random operations.
804          */
805
806 err:
807         drm_free_large(reloc);
808         drm_free_large(reloc_offset);
809         return ret;
810 }
811
812 static void
813 i915_gem_execbuffer_flush(struct drm_device *dev,
814                           uint32_t invalidate_domains,
815                           uint32_t flush_domains)
816 {
817         if (flush_domains & I915_GEM_DOMAIN_CPU)
818                 intel_gtt_chipset_flush();
819
820         if (flush_domains & I915_GEM_DOMAIN_GTT)
821                 wmb();
822 }
823
824 static int
825 i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
826 {
827         u32 plane, flip_mask;
828         int ret;
829
830         /* Check for any pending flips. As we only maintain a flip queue depth
831          * of 1, we can simply insert a WAIT for the next display flip prior
832          * to executing the batch and avoid stalling the CPU.
833          */
834
835         for (plane = 0; flips >> plane; plane++) {
836                 if (((flips >> plane) & 1) == 0)
837                         continue;
838
839                 if (plane)
840                         flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
841                 else
842                         flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
843
844                 ret = intel_ring_begin(ring, 2);
845                 if (ret)
846                         return ret;
847
848                 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
849                 intel_ring_emit(ring, MI_NOOP);
850                 intel_ring_advance(ring);
851         }
852
853         return 0;
854 }
855
856
857 static int
858 i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
859                                 struct list_head *objects)
860 {
861         struct drm_i915_gem_object *obj;
862         struct change_domains cd;
863         int ret;
864
865         memset(&cd, 0, sizeof(cd));
866         list_for_each_entry(obj, objects, exec_list)
867                 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
868
869         if (cd.invalidate_domains | cd.flush_domains) {
870                 i915_gem_execbuffer_flush(ring->dev,
871                                           cd.invalidate_domains,
872                                           cd.flush_domains);
873         }
874
875         if (cd.flips) {
876                 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
877                 if (ret)
878                         return ret;
879         }
880
881         list_for_each_entry(obj, objects, exec_list) {
882                 ret = i915_gem_object_sync(obj, ring);
883                 if (ret)
884                         return ret;
885         }
886
887         /* Unconditionally invalidate gpu caches and ensure that we do flush
888          * any residual writes from the previous batch.
889          */
890         ret = i915_gem_flush_ring(ring,
891                                   I915_GEM_GPU_DOMAINS,
892                                   ring->gpu_caches_dirty ? I915_GEM_GPU_DOMAINS : 0);
893         if (ret)
894                 return ret;
895
896         ring->gpu_caches_dirty = false;
897         return 0;
898 }
899
900 static bool
901 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
902 {
903         return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
904 }
905
906 static int
907 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
908                    int count)
909 {
910         int i;
911
912         for (i = 0; i < count; i++) {
913                 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
914                 int length; /* limited by fault_in_pages_readable() */
915
916                 /* First check for malicious input causing overflow */
917                 if (exec[i].relocation_count >
918                     INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
919                         return -EINVAL;
920
921                 length = exec[i].relocation_count *
922                         sizeof(struct drm_i915_gem_relocation_entry);
923                 if (!access_ok(VERIFY_READ, ptr, length))
924                         return -EFAULT;
925
926                 /* we may also need to update the presumed offsets */
927                 if (!access_ok(VERIFY_WRITE, ptr, length))
928                         return -EFAULT;
929
930                 if (fault_in_multipages_readable(ptr, length))
931                         return -EFAULT;
932         }
933
934         return 0;
935 }
936
937 static void
938 i915_gem_execbuffer_move_to_active(struct list_head *objects,
939                                    struct intel_ring_buffer *ring,
940                                    u32 seqno)
941 {
942         struct drm_i915_gem_object *obj;
943
944         list_for_each_entry(obj, objects, exec_list) {
945                   u32 old_read = obj->base.read_domains;
946                   u32 old_write = obj->base.write_domain;
947
948
949                 obj->base.read_domains = obj->base.pending_read_domains;
950                 obj->base.write_domain = obj->base.pending_write_domain;
951                 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
952
953                 i915_gem_object_move_to_active(obj, ring, seqno);
954                 if (obj->base.write_domain) {
955                         obj->dirty = 1;
956                         obj->pending_gpu_write = true;
957                         list_move_tail(&obj->gpu_write_list,
958                                        &ring->gpu_write_list);
959                         if (obj->pin_count) /* check for potential scanout */
960                                 intel_mark_busy(ring->dev, obj);
961                 }
962
963                 trace_i915_gem_object_change_domain(obj, old_read, old_write);
964         }
965
966         intel_mark_busy(ring->dev, NULL);
967 }
968
969 static void
970 i915_gem_execbuffer_retire_commands(struct drm_device *dev,
971                                     struct drm_file *file,
972                                     struct intel_ring_buffer *ring)
973 {
974         struct drm_i915_gem_request *request;
975
976         /* Unconditionally force add_request to emit a full flush. */
977         ring->gpu_caches_dirty = true;
978
979         /* Add a breadcrumb for the completion of the batch buffer */
980         request = kzalloc(sizeof(*request), GFP_KERNEL);
981         if (request == NULL || i915_add_request(ring, file, request)) {
982                 kfree(request);
983         }
984 }
985
986 static int
987 i915_reset_gen7_sol_offsets(struct drm_device *dev,
988                             struct intel_ring_buffer *ring)
989 {
990         drm_i915_private_t *dev_priv = dev->dev_private;
991         int ret, i;
992
993         if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS])
994                 return 0;
995
996         ret = intel_ring_begin(ring, 4 * 3);
997         if (ret)
998                 return ret;
999
1000         for (i = 0; i < 4; i++) {
1001                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1002                 intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
1003                 intel_ring_emit(ring, 0);
1004         }
1005
1006         intel_ring_advance(ring);
1007
1008         return 0;
1009 }
1010
1011 static int
1012 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1013                        struct drm_file *file,
1014                        struct drm_i915_gem_execbuffer2 *args,
1015                        struct drm_i915_gem_exec_object2 *exec)
1016 {
1017         drm_i915_private_t *dev_priv = dev->dev_private;
1018         struct list_head objects;
1019         struct eb_objects *eb;
1020         struct drm_i915_gem_object *batch_obj;
1021         struct drm_clip_rect *cliprects = NULL;
1022         struct intel_ring_buffer *ring;
1023         u32 ctx_id = i915_execbuffer2_get_context_id(*args);
1024         u32 exec_start, exec_len;
1025         u32 seqno;
1026         u32 mask;
1027         int ret, mode, i;
1028
1029         if (!i915_gem_check_execbuffer(args)) {
1030                 DRM_DEBUG("execbuf with invalid offset/length\n");
1031                 return -EINVAL;
1032         }
1033
1034         ret = validate_exec_list(exec, args->buffer_count);
1035         if (ret)
1036                 return ret;
1037
1038         switch (args->flags & I915_EXEC_RING_MASK) {
1039         case I915_EXEC_DEFAULT:
1040         case I915_EXEC_RENDER:
1041                 ring = &dev_priv->ring[RCS];
1042                 break;
1043         case I915_EXEC_BSD:
1044                 ring = &dev_priv->ring[VCS];
1045                 if (ctx_id != 0) {
1046                         DRM_DEBUG("Ring %s doesn't support contexts\n",
1047                                   ring->name);
1048                         return -EPERM;
1049                 }
1050                 break;
1051         case I915_EXEC_BLT:
1052                 ring = &dev_priv->ring[BCS];
1053                 if (ctx_id != 0) {
1054                         DRM_DEBUG("Ring %s doesn't support contexts\n",
1055                                   ring->name);
1056                         return -EPERM;
1057                 }
1058                 break;
1059         default:
1060                 DRM_DEBUG("execbuf with unknown ring: %d\n",
1061                           (int)(args->flags & I915_EXEC_RING_MASK));
1062                 return -EINVAL;
1063         }
1064         if (!intel_ring_initialized(ring)) {
1065                 DRM_DEBUG("execbuf with invalid ring: %d\n",
1066                           (int)(args->flags & I915_EXEC_RING_MASK));
1067                 return -EINVAL;
1068         }
1069
1070         mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1071         mask = I915_EXEC_CONSTANTS_MASK;
1072         switch (mode) {
1073         case I915_EXEC_CONSTANTS_REL_GENERAL:
1074         case I915_EXEC_CONSTANTS_ABSOLUTE:
1075         case I915_EXEC_CONSTANTS_REL_SURFACE:
1076                 if (ring == &dev_priv->ring[RCS] &&
1077                     mode != dev_priv->relative_constants_mode) {
1078                         if (INTEL_INFO(dev)->gen < 4)
1079                                 return -EINVAL;
1080
1081                         if (INTEL_INFO(dev)->gen > 5 &&
1082                             mode == I915_EXEC_CONSTANTS_REL_SURFACE)
1083                                 return -EINVAL;
1084
1085                         /* The HW changed the meaning on this bit on gen6 */
1086                         if (INTEL_INFO(dev)->gen >= 6)
1087                                 mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1088                 }
1089                 break;
1090         default:
1091                 DRM_DEBUG("execbuf with unknown constants: %d\n", mode);
1092                 return -EINVAL;
1093         }
1094
1095         if (args->buffer_count < 1) {
1096                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1097                 return -EINVAL;
1098         }
1099
1100         if (args->num_cliprects != 0) {
1101                 if (ring != &dev_priv->ring[RCS]) {
1102                         DRM_DEBUG("clip rectangles are only valid with the render ring\n");
1103                         return -EINVAL;
1104                 }
1105
1106                 if (INTEL_INFO(dev)->gen >= 5) {
1107                         DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
1108                         return -EINVAL;
1109                 }
1110
1111                 if (args->num_cliprects > UINT_MAX / sizeof(*cliprects)) {
1112                         DRM_DEBUG("execbuf with %u cliprects\n",
1113                                   args->num_cliprects);
1114                         return -EINVAL;
1115                 }
1116
1117                 cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1118                                     GFP_KERNEL);
1119                 if (cliprects == NULL) {
1120                         ret = -ENOMEM;
1121                         goto pre_mutex_err;
1122                 }
1123
1124                 if (copy_from_user(cliprects,
1125                                      (struct drm_clip_rect __user *)(uintptr_t)
1126                                      args->cliprects_ptr,
1127                                      sizeof(*cliprects)*args->num_cliprects)) {
1128                         ret = -EFAULT;
1129                         goto pre_mutex_err;
1130                 }
1131         }
1132
1133         ret = i915_mutex_lock_interruptible(dev);
1134         if (ret)
1135                 goto pre_mutex_err;
1136
1137         if (dev_priv->mm.suspended) {
1138                 mutex_unlock(&dev->struct_mutex);
1139                 ret = -EBUSY;
1140                 goto pre_mutex_err;
1141         }
1142
1143         eb = eb_create(args->buffer_count);
1144         if (eb == NULL) {
1145                 mutex_unlock(&dev->struct_mutex);
1146                 ret = -ENOMEM;
1147                 goto pre_mutex_err;
1148         }
1149
1150         /* Look up object handles */
1151         INIT_LIST_HEAD(&objects);
1152         for (i = 0; i < args->buffer_count; i++) {
1153                 struct drm_i915_gem_object *obj;
1154
1155                 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1156                                                         exec[i].handle));
1157                 if (&obj->base == NULL) {
1158                         DRM_DEBUG("Invalid object handle %d at index %d\n",
1159                                    exec[i].handle, i);
1160                         /* prevent error path from reading uninitialized data */
1161                         ret = -ENOENT;
1162                         goto err;
1163                 }
1164
1165                 if (!list_empty(&obj->exec_list)) {
1166                         DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
1167                                    obj, exec[i].handle, i);
1168                         ret = -EINVAL;
1169                         goto err;
1170                 }
1171
1172                 list_add_tail(&obj->exec_list, &objects);
1173                 obj->exec_handle = exec[i].handle;
1174                 obj->exec_entry = &exec[i];
1175                 eb_add_object(eb, obj);
1176         }
1177
1178         /* take note of the batch buffer before we might reorder the lists */
1179         batch_obj = list_entry(objects.prev,
1180                                struct drm_i915_gem_object,
1181                                exec_list);
1182
1183         /* Move the objects en-masse into the GTT, evicting if necessary. */
1184         ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1185         if (ret)
1186                 goto err;
1187
1188         /* The objects are in their final locations, apply the relocations. */
1189         ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1190         if (ret) {
1191                 if (ret == -EFAULT) {
1192                         ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1193                                                                 &objects, eb,
1194                                                                 exec,
1195                                                                 args->buffer_count);
1196                         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1197                 }
1198                 if (ret)
1199                         goto err;
1200         }
1201
1202         /* Set the pending read domains for the batch buffer to COMMAND */
1203         if (batch_obj->base.pending_write_domain) {
1204                 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1205                 ret = -EINVAL;
1206                 goto err;
1207         }
1208         batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1209
1210         ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1211         if (ret)
1212                 goto err;
1213
1214         seqno = i915_gem_next_request_seqno(ring);
1215         for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1216                 if (seqno < ring->sync_seqno[i]) {
1217                         /* The GPU can not handle its semaphore value wrapping,
1218                          * so every billion or so execbuffers, we need to stall
1219                          * the GPU in order to reset the counters.
1220                          */
1221                         ret = i915_gpu_idle(dev);
1222                         if (ret)
1223                                 goto err;
1224                         i915_gem_retire_requests(dev);
1225
1226                         BUG_ON(ring->sync_seqno[i]);
1227                 }
1228         }
1229
1230         ret = i915_switch_context(ring, file, ctx_id);
1231         if (ret)
1232                 goto err;
1233
1234         if (ring == &dev_priv->ring[RCS] &&
1235             mode != dev_priv->relative_constants_mode) {
1236                 ret = intel_ring_begin(ring, 4);
1237                 if (ret)
1238                                 goto err;
1239
1240                 intel_ring_emit(ring, MI_NOOP);
1241                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1242                 intel_ring_emit(ring, INSTPM);
1243                 intel_ring_emit(ring, mask << 16 | mode);
1244                 intel_ring_advance(ring);
1245
1246                 dev_priv->relative_constants_mode = mode;
1247         }
1248
1249         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1250                 ret = i915_reset_gen7_sol_offsets(dev, ring);
1251                 if (ret)
1252                         goto err;
1253         }
1254
1255         trace_i915_gem_ring_dispatch(ring, seqno);
1256
1257         exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1258         exec_len = args->batch_len;
1259         if (cliprects) {
1260                 for (i = 0; i < args->num_cliprects; i++) {
1261                         ret = i915_emit_box(dev, &cliprects[i],
1262                                             args->DR1, args->DR4);
1263                         if (ret)
1264                                 goto err;
1265
1266                         ret = ring->dispatch_execbuffer(ring,
1267                                                         exec_start, exec_len);
1268                         if (ret)
1269                                 goto err;
1270                 }
1271         } else {
1272                 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1273                 if (ret)
1274                         goto err;
1275         }
1276
1277         i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1278         i915_gem_execbuffer_retire_commands(dev, file, ring);
1279
1280 err:
1281         eb_destroy(eb);
1282         while (!list_empty(&objects)) {
1283                 struct drm_i915_gem_object *obj;
1284
1285                 obj = list_first_entry(&objects,
1286                                        struct drm_i915_gem_object,
1287                                        exec_list);
1288                 list_del_init(&obj->exec_list);
1289                 drm_gem_object_unreference(&obj->base);
1290         }
1291
1292         mutex_unlock(&dev->struct_mutex);
1293
1294 pre_mutex_err:
1295         kfree(cliprects);
1296         return ret;
1297 }
1298
1299 /*
1300  * Legacy execbuffer just creates an exec2 list from the original exec object
1301  * list array and passes it to the real function.
1302  */
1303 int
1304 i915_gem_execbuffer(struct drm_device *dev, void *data,
1305                     struct drm_file *file)
1306 {
1307         struct drm_i915_gem_execbuffer *args = data;
1308         struct drm_i915_gem_execbuffer2 exec2;
1309         struct drm_i915_gem_exec_object *exec_list = NULL;
1310         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1311         int ret, i;
1312
1313         if (args->buffer_count < 1) {
1314                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1315                 return -EINVAL;
1316         }
1317
1318         /* Copy in the exec list from userland */
1319         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1320         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1321         if (exec_list == NULL || exec2_list == NULL) {
1322                 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1323                           args->buffer_count);
1324                 drm_free_large(exec_list);
1325                 drm_free_large(exec2_list);
1326                 return -ENOMEM;
1327         }
1328         ret = copy_from_user(exec_list,
1329                              (struct drm_i915_relocation_entry __user *)
1330                              (uintptr_t) args->buffers_ptr,
1331                              sizeof(*exec_list) * args->buffer_count);
1332         if (ret != 0) {
1333                 DRM_DEBUG("copy %d exec entries failed %d\n",
1334                           args->buffer_count, ret);
1335                 drm_free_large(exec_list);
1336                 drm_free_large(exec2_list);
1337                 return -EFAULT;
1338         }
1339
1340         for (i = 0; i < args->buffer_count; i++) {
1341                 exec2_list[i].handle = exec_list[i].handle;
1342                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1343                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1344                 exec2_list[i].alignment = exec_list[i].alignment;
1345                 exec2_list[i].offset = exec_list[i].offset;
1346                 if (INTEL_INFO(dev)->gen < 4)
1347                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1348                 else
1349                         exec2_list[i].flags = 0;
1350         }
1351
1352         exec2.buffers_ptr = args->buffers_ptr;
1353         exec2.buffer_count = args->buffer_count;
1354         exec2.batch_start_offset = args->batch_start_offset;
1355         exec2.batch_len = args->batch_len;
1356         exec2.DR1 = args->DR1;
1357         exec2.DR4 = args->DR4;
1358         exec2.num_cliprects = args->num_cliprects;
1359         exec2.cliprects_ptr = args->cliprects_ptr;
1360         exec2.flags = I915_EXEC_RENDER;
1361         i915_execbuffer2_set_context_id(exec2, 0);
1362
1363         ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1364         if (!ret) {
1365                 /* Copy the new buffer offsets back to the user's exec list. */
1366                 for (i = 0; i < args->buffer_count; i++)
1367                         exec_list[i].offset = exec2_list[i].offset;
1368                 /* ... and back out to userspace */
1369                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1370                                    (uintptr_t) args->buffers_ptr,
1371                                    exec_list,
1372                                    sizeof(*exec_list) * args->buffer_count);
1373                 if (ret) {
1374                         ret = -EFAULT;
1375                         DRM_DEBUG("failed to copy %d exec entries "
1376                                   "back to user (%d)\n",
1377                                   args->buffer_count, ret);
1378                 }
1379         }
1380
1381         drm_free_large(exec_list);
1382         drm_free_large(exec2_list);
1383         return ret;
1384 }
1385
1386 int
1387 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1388                      struct drm_file *file)
1389 {
1390         struct drm_i915_gem_execbuffer2 *args = data;
1391         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1392         int ret;
1393
1394         if (args->buffer_count < 1 ||
1395             args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
1396                 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1397                 return -EINVAL;
1398         }
1399
1400         exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
1401                              GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
1402         if (exec2_list == NULL)
1403                 exec2_list = drm_malloc_ab(sizeof(*exec2_list),
1404                                            args->buffer_count);
1405         if (exec2_list == NULL) {
1406                 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1407                           args->buffer_count);
1408                 return -ENOMEM;
1409         }
1410         ret = copy_from_user(exec2_list,
1411                              (struct drm_i915_relocation_entry __user *)
1412                              (uintptr_t) args->buffers_ptr,
1413                              sizeof(*exec2_list) * args->buffer_count);
1414         if (ret != 0) {
1415                 DRM_DEBUG("copy %d exec entries failed %d\n",
1416                           args->buffer_count, ret);
1417                 drm_free_large(exec2_list);
1418                 return -EFAULT;
1419         }
1420
1421         ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1422         if (!ret) {
1423                 /* Copy the new buffer offsets back to the user's exec list. */
1424                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1425                                    (uintptr_t) args->buffers_ptr,
1426                                    exec2_list,
1427                                    sizeof(*exec2_list) * args->buffer_count);
1428                 if (ret) {
1429                         ret = -EFAULT;
1430                         DRM_DEBUG("failed to copy %d exec entries "
1431                                   "back to user (%d)\n",
1432                                   args->buffer_count, ret);
1433                 }
1434         }
1435
1436         drm_free_large(exec2_list);
1437         return ret;
1438 }