drm/i915: dev_priv and a small cascade of cleanups in i915_gem.c
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_frontbuffer.h"
36 #include "intel_mocs.h"
37 #include <linux/dma-fence-array.h>
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/pci.h>
43 #include <linux/dma-buf.h>
44
45 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
46 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
47 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
48
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50                                   enum i915_cache_level level)
51 {
52         return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
53 }
54
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58                 return false;
59
60         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61                 return true;
62
63         return obj->pin_display;
64 }
65
66 static int
67 insert_mappable_node(struct i915_ggtt *ggtt,
68                      struct drm_mm_node *node, u32 size)
69 {
70         memset(node, 0, sizeof(*node));
71         return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
72                                                    size, 0, -1,
73                                                    0, ggtt->mappable_end,
74                                                    DRM_MM_SEARCH_DEFAULT,
75                                                    DRM_MM_CREATE_DEFAULT);
76 }
77
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81         drm_mm_remove_node(node);
82 }
83
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86                                   u64 size)
87 {
88         spin_lock(&dev_priv->mm.object_stat_lock);
89         dev_priv->mm.object_count++;
90         dev_priv->mm.object_memory += size;
91         spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95                                      u64 size)
96 {
97         spin_lock(&dev_priv->mm.object_stat_lock);
98         dev_priv->mm.object_count--;
99         dev_priv->mm.object_memory -= size;
100         spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106         int ret;
107
108         might_sleep();
109
110         if (!i915_reset_in_progress(error))
111                 return 0;
112
113         /*
114          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
115          * userspace. If it takes that long something really bad is going on and
116          * we should simply try to bail out and fail as gracefully as possible.
117          */
118         ret = wait_event_interruptible_timeout(error->reset_queue,
119                                                !i915_reset_in_progress(error),
120                                                I915_RESET_TIMEOUT);
121         if (ret == 0) {
122                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
123                 return -EIO;
124         } else if (ret < 0) {
125                 return ret;
126         } else {
127                 return 0;
128         }
129 }
130
131 int i915_mutex_lock_interruptible(struct drm_device *dev)
132 {
133         struct drm_i915_private *dev_priv = to_i915(dev);
134         int ret;
135
136         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137         if (ret)
138                 return ret;
139
140         ret = mutex_lock_interruptible(&dev->struct_mutex);
141         if (ret)
142                 return ret;
143
144         return 0;
145 }
146
147 int
148 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
149                             struct drm_file *file)
150 {
151         struct drm_i915_private *dev_priv = to_i915(dev);
152         struct i915_ggtt *ggtt = &dev_priv->ggtt;
153         struct drm_i915_gem_get_aperture *args = data;
154         struct i915_vma *vma;
155         size_t pinned;
156
157         pinned = 0;
158         mutex_lock(&dev->struct_mutex);
159         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
160                 if (i915_vma_is_pinned(vma))
161                         pinned += vma->node.size;
162         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
163                 if (i915_vma_is_pinned(vma))
164                         pinned += vma->node.size;
165         mutex_unlock(&dev->struct_mutex);
166
167         args->aper_size = ggtt->base.total;
168         args->aper_available_size = args->aper_size - pinned;
169
170         return 0;
171 }
172
173 static struct sg_table *
174 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
175 {
176         struct address_space *mapping = obj->base.filp->f_mapping;
177         char *vaddr = obj->phys_handle->vaddr;
178         struct sg_table *st;
179         struct scatterlist *sg;
180         int i;
181
182         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
183                 return ERR_PTR(-EINVAL);
184
185         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
186                 struct page *page;
187                 char *src;
188
189                 page = shmem_read_mapping_page(mapping, i);
190                 if (IS_ERR(page))
191                         return ERR_CAST(page);
192
193                 src = kmap_atomic(page);
194                 memcpy(vaddr, src, PAGE_SIZE);
195                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
196                 kunmap_atomic(src);
197
198                 put_page(page);
199                 vaddr += PAGE_SIZE;
200         }
201
202         i915_gem_chipset_flush(to_i915(obj->base.dev));
203
204         st = kmalloc(sizeof(*st), GFP_KERNEL);
205         if (st == NULL)
206                 return ERR_PTR(-ENOMEM);
207
208         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
209                 kfree(st);
210                 return ERR_PTR(-ENOMEM);
211         }
212
213         sg = st->sgl;
214         sg->offset = 0;
215         sg->length = obj->base.size;
216
217         sg_dma_address(sg) = obj->phys_handle->busaddr;
218         sg_dma_len(sg) = obj->base.size;
219
220         return st;
221 }
222
223 static void
224 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
225                                 struct sg_table *pages)
226 {
227         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
228
229         if (obj->mm.madv == I915_MADV_DONTNEED)
230                 obj->mm.dirty = false;
231
232         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
233                 drm_clflush_sg(pages);
234
235         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
236         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
237 }
238
239 static void
240 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
241                                struct sg_table *pages)
242 {
243         __i915_gem_object_release_shmem(obj, pages);
244
245         if (obj->mm.dirty) {
246                 struct address_space *mapping = obj->base.filp->f_mapping;
247                 char *vaddr = obj->phys_handle->vaddr;
248                 int i;
249
250                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
251                         struct page *page;
252                         char *dst;
253
254                         page = shmem_read_mapping_page(mapping, i);
255                         if (IS_ERR(page))
256                                 continue;
257
258                         dst = kmap_atomic(page);
259                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
260                         memcpy(dst, vaddr, PAGE_SIZE);
261                         kunmap_atomic(dst);
262
263                         set_page_dirty(page);
264                         if (obj->mm.madv == I915_MADV_WILLNEED)
265                                 mark_page_accessed(page);
266                         put_page(page);
267                         vaddr += PAGE_SIZE;
268                 }
269                 obj->mm.dirty = false;
270         }
271
272         sg_free_table(pages);
273         kfree(pages);
274 }
275
276 static void
277 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
278 {
279         drm_pci_free(obj->base.dev, obj->phys_handle);
280         i915_gem_object_unpin_pages(obj);
281 }
282
283 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
284         .get_pages = i915_gem_object_get_pages_phys,
285         .put_pages = i915_gem_object_put_pages_phys,
286         .release = i915_gem_object_release_phys,
287 };
288
289 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
290 {
291         struct i915_vma *vma;
292         LIST_HEAD(still_in_list);
293         int ret;
294
295         lockdep_assert_held(&obj->base.dev->struct_mutex);
296
297         /* Closed vma are removed from the obj->vma_list - but they may
298          * still have an active binding on the object. To remove those we
299          * must wait for all rendering to complete to the object (as unbinding
300          * must anyway), and retire the requests.
301          */
302         ret = i915_gem_object_wait(obj,
303                                    I915_WAIT_INTERRUPTIBLE |
304                                    I915_WAIT_LOCKED |
305                                    I915_WAIT_ALL,
306                                    MAX_SCHEDULE_TIMEOUT,
307                                    NULL);
308         if (ret)
309                 return ret;
310
311         i915_gem_retire_requests(to_i915(obj->base.dev));
312
313         while ((vma = list_first_entry_or_null(&obj->vma_list,
314                                                struct i915_vma,
315                                                obj_link))) {
316                 list_move_tail(&vma->obj_link, &still_in_list);
317                 ret = i915_vma_unbind(vma);
318                 if (ret)
319                         break;
320         }
321         list_splice(&still_in_list, &obj->vma_list);
322
323         return ret;
324 }
325
326 static long
327 i915_gem_object_wait_fence(struct dma_fence *fence,
328                            unsigned int flags,
329                            long timeout,
330                            struct intel_rps_client *rps)
331 {
332         struct drm_i915_gem_request *rq;
333
334         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
335
336         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
337                 return timeout;
338
339         if (!dma_fence_is_i915(fence))
340                 return dma_fence_wait_timeout(fence,
341                                               flags & I915_WAIT_INTERRUPTIBLE,
342                                               timeout);
343
344         rq = to_request(fence);
345         if (i915_gem_request_completed(rq))
346                 goto out;
347
348         /* This client is about to stall waiting for the GPU. In many cases
349          * this is undesirable and limits the throughput of the system, as
350          * many clients cannot continue processing user input/output whilst
351          * blocked. RPS autotuning may take tens of milliseconds to respond
352          * to the GPU load and thus incurs additional latency for the client.
353          * We can circumvent that by promoting the GPU frequency to maximum
354          * before we wait. This makes the GPU throttle up much more quickly
355          * (good for benchmarks and user experience, e.g. window animations),
356          * but at a cost of spending more power processing the workload
357          * (bad for battery). Not all clients even want their results
358          * immediately and for them we should just let the GPU select its own
359          * frequency to maximise efficiency. To prevent a single client from
360          * forcing the clocks too high for the whole system, we only allow
361          * each client to waitboost once in a busy period.
362          */
363         if (rps) {
364                 if (INTEL_GEN(rq->i915) >= 6)
365                         gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
366                 else
367                         rps = NULL;
368         }
369
370         timeout = i915_wait_request(rq, flags, timeout);
371
372 out:
373         if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
374                 i915_gem_request_retire_upto(rq);
375
376         if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
377                 /* The GPU is now idle and this client has stalled.
378                  * Since no other client has submitted a request in the
379                  * meantime, assume that this client is the only one
380                  * supplying work to the GPU but is unable to keep that
381                  * work supplied because it is waiting. Since the GPU is
382                  * then never kept fully busy, RPS autoclocking will
383                  * keep the clocks relatively low, causing further delays.
384                  * Compensate by giving the synchronous client credit for
385                  * a waitboost next time.
386                  */
387                 spin_lock(&rq->i915->rps.client_lock);
388                 list_del_init(&rps->link);
389                 spin_unlock(&rq->i915->rps.client_lock);
390         }
391
392         return timeout;
393 }
394
395 static long
396 i915_gem_object_wait_reservation(struct reservation_object *resv,
397                                  unsigned int flags,
398                                  long timeout,
399                                  struct intel_rps_client *rps)
400 {
401         struct dma_fence *excl;
402
403         if (flags & I915_WAIT_ALL) {
404                 struct dma_fence **shared;
405                 unsigned int count, i;
406                 int ret;
407
408                 ret = reservation_object_get_fences_rcu(resv,
409                                                         &excl, &count, &shared);
410                 if (ret)
411                         return ret;
412
413                 for (i = 0; i < count; i++) {
414                         timeout = i915_gem_object_wait_fence(shared[i],
415                                                              flags, timeout,
416                                                              rps);
417                         if (timeout <= 0)
418                                 break;
419
420                         dma_fence_put(shared[i]);
421                 }
422
423                 for (; i < count; i++)
424                         dma_fence_put(shared[i]);
425                 kfree(shared);
426         } else {
427                 excl = reservation_object_get_excl_rcu(resv);
428         }
429
430         if (excl && timeout > 0)
431                 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
432
433         dma_fence_put(excl);
434
435         return timeout;
436 }
437
438 static void __fence_set_priority(struct dma_fence *fence, int prio)
439 {
440         struct drm_i915_gem_request *rq;
441         struct intel_engine_cs *engine;
442
443         if (!dma_fence_is_i915(fence))
444                 return;
445
446         rq = to_request(fence);
447         engine = rq->engine;
448         if (!engine->schedule)
449                 return;
450
451         engine->schedule(rq, prio);
452 }
453
454 static void fence_set_priority(struct dma_fence *fence, int prio)
455 {
456         /* Recurse once into a fence-array */
457         if (dma_fence_is_array(fence)) {
458                 struct dma_fence_array *array = to_dma_fence_array(fence);
459                 int i;
460
461                 for (i = 0; i < array->num_fences; i++)
462                         __fence_set_priority(array->fences[i], prio);
463         } else {
464                 __fence_set_priority(fence, prio);
465         }
466 }
467
468 int
469 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
470                               unsigned int flags,
471                               int prio)
472 {
473         struct dma_fence *excl;
474
475         if (flags & I915_WAIT_ALL) {
476                 struct dma_fence **shared;
477                 unsigned int count, i;
478                 int ret;
479
480                 ret = reservation_object_get_fences_rcu(obj->resv,
481                                                         &excl, &count, &shared);
482                 if (ret)
483                         return ret;
484
485                 for (i = 0; i < count; i++) {
486                         fence_set_priority(shared[i], prio);
487                         dma_fence_put(shared[i]);
488                 }
489
490                 kfree(shared);
491         } else {
492                 excl = reservation_object_get_excl_rcu(obj->resv);
493         }
494
495         if (excl) {
496                 fence_set_priority(excl, prio);
497                 dma_fence_put(excl);
498         }
499         return 0;
500 }
501
502 /**
503  * Waits for rendering to the object to be completed
504  * @obj: i915 gem object
505  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
506  * @timeout: how long to wait
507  * @rps: client (user process) to charge for any waitboosting
508  */
509 int
510 i915_gem_object_wait(struct drm_i915_gem_object *obj,
511                      unsigned int flags,
512                      long timeout,
513                      struct intel_rps_client *rps)
514 {
515         might_sleep();
516 #if IS_ENABLED(CONFIG_LOCKDEP)
517         GEM_BUG_ON(debug_locks &&
518                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
519                    !!(flags & I915_WAIT_LOCKED));
520 #endif
521         GEM_BUG_ON(timeout < 0);
522
523         timeout = i915_gem_object_wait_reservation(obj->resv,
524                                                    flags, timeout,
525                                                    rps);
526         return timeout < 0 ? timeout : 0;
527 }
528
529 static struct intel_rps_client *to_rps_client(struct drm_file *file)
530 {
531         struct drm_i915_file_private *fpriv = file->driver_priv;
532
533         return &fpriv->rps;
534 }
535
536 int
537 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
538                             int align)
539 {
540         drm_dma_handle_t *phys;
541         int ret;
542
543         if (obj->phys_handle) {
544                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
545                         return -EBUSY;
546
547                 return 0;
548         }
549
550         if (obj->mm.madv != I915_MADV_WILLNEED)
551                 return -EFAULT;
552
553         if (obj->base.filp == NULL)
554                 return -EINVAL;
555
556         ret = i915_gem_object_unbind(obj);
557         if (ret)
558                 return ret;
559
560         __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
561         if (obj->mm.pages)
562                 return -EBUSY;
563
564         /* create a new object */
565         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
566         if (!phys)
567                 return -ENOMEM;
568
569         obj->phys_handle = phys;
570         obj->ops = &i915_gem_phys_ops;
571
572         return i915_gem_object_pin_pages(obj);
573 }
574
575 static int
576 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
577                      struct drm_i915_gem_pwrite *args,
578                      struct drm_file *file)
579 {
580         struct drm_device *dev = obj->base.dev;
581         void *vaddr = obj->phys_handle->vaddr + args->offset;
582         char __user *user_data = u64_to_user_ptr(args->data_ptr);
583         int ret;
584
585         /* We manually control the domain here and pretend that it
586          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
587          */
588         lockdep_assert_held(&obj->base.dev->struct_mutex);
589         ret = i915_gem_object_wait(obj,
590                                    I915_WAIT_INTERRUPTIBLE |
591                                    I915_WAIT_LOCKED |
592                                    I915_WAIT_ALL,
593                                    MAX_SCHEDULE_TIMEOUT,
594                                    to_rps_client(file));
595         if (ret)
596                 return ret;
597
598         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
599         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
600                 unsigned long unwritten;
601
602                 /* The physical object once assigned is fixed for the lifetime
603                  * of the obj, so we can safely drop the lock and continue
604                  * to access vaddr.
605                  */
606                 mutex_unlock(&dev->struct_mutex);
607                 unwritten = copy_from_user(vaddr, user_data, args->size);
608                 mutex_lock(&dev->struct_mutex);
609                 if (unwritten) {
610                         ret = -EFAULT;
611                         goto out;
612                 }
613         }
614
615         drm_clflush_virt_range(vaddr, args->size);
616         i915_gem_chipset_flush(to_i915(dev));
617
618 out:
619         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
620         return ret;
621 }
622
623 void *i915_gem_object_alloc(struct drm_device *dev)
624 {
625         struct drm_i915_private *dev_priv = to_i915(dev);
626         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
627 }
628
629 void i915_gem_object_free(struct drm_i915_gem_object *obj)
630 {
631         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
632         kmem_cache_free(dev_priv->objects, obj);
633 }
634
635 static int
636 i915_gem_create(struct drm_file *file,
637                 struct drm_device *dev,
638                 uint64_t size,
639                 uint32_t *handle_p)
640 {
641         struct drm_i915_gem_object *obj;
642         int ret;
643         u32 handle;
644
645         size = roundup(size, PAGE_SIZE);
646         if (size == 0)
647                 return -EINVAL;
648
649         /* Allocate the new object */
650         obj = i915_gem_object_create(dev, size);
651         if (IS_ERR(obj))
652                 return PTR_ERR(obj);
653
654         ret = drm_gem_handle_create(file, &obj->base, &handle);
655         /* drop reference from allocate - handle holds it now */
656         i915_gem_object_put(obj);
657         if (ret)
658                 return ret;
659
660         *handle_p = handle;
661         return 0;
662 }
663
664 int
665 i915_gem_dumb_create(struct drm_file *file,
666                      struct drm_device *dev,
667                      struct drm_mode_create_dumb *args)
668 {
669         /* have to work out size/pitch and return them */
670         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
671         args->size = args->pitch * args->height;
672         return i915_gem_create(file, dev,
673                                args->size, &args->handle);
674 }
675
676 /**
677  * Creates a new mm object and returns a handle to it.
678  * @dev: drm device pointer
679  * @data: ioctl data blob
680  * @file: drm file pointer
681  */
682 int
683 i915_gem_create_ioctl(struct drm_device *dev, void *data,
684                       struct drm_file *file)
685 {
686         struct drm_i915_gem_create *args = data;
687
688         i915_gem_flush_free_objects(to_i915(dev));
689
690         return i915_gem_create(file, dev,
691                                args->size, &args->handle);
692 }
693
694 static inline int
695 __copy_to_user_swizzled(char __user *cpu_vaddr,
696                         const char *gpu_vaddr, int gpu_offset,
697                         int length)
698 {
699         int ret, cpu_offset = 0;
700
701         while (length > 0) {
702                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
703                 int this_length = min(cacheline_end - gpu_offset, length);
704                 int swizzled_gpu_offset = gpu_offset ^ 64;
705
706                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
707                                      gpu_vaddr + swizzled_gpu_offset,
708                                      this_length);
709                 if (ret)
710                         return ret + length;
711
712                 cpu_offset += this_length;
713                 gpu_offset += this_length;
714                 length -= this_length;
715         }
716
717         return 0;
718 }
719
720 static inline int
721 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
722                           const char __user *cpu_vaddr,
723                           int length)
724 {
725         int ret, cpu_offset = 0;
726
727         while (length > 0) {
728                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
729                 int this_length = min(cacheline_end - gpu_offset, length);
730                 int swizzled_gpu_offset = gpu_offset ^ 64;
731
732                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
733                                        cpu_vaddr + cpu_offset,
734                                        this_length);
735                 if (ret)
736                         return ret + length;
737
738                 cpu_offset += this_length;
739                 gpu_offset += this_length;
740                 length -= this_length;
741         }
742
743         return 0;
744 }
745
746 /*
747  * Pins the specified object's pages and synchronizes the object with
748  * GPU accesses. Sets needs_clflush to non-zero if the caller should
749  * flush the object from the CPU cache.
750  */
751 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
752                                     unsigned int *needs_clflush)
753 {
754         int ret;
755
756         lockdep_assert_held(&obj->base.dev->struct_mutex);
757
758         *needs_clflush = 0;
759         if (!i915_gem_object_has_struct_page(obj))
760                 return -ENODEV;
761
762         ret = i915_gem_object_wait(obj,
763                                    I915_WAIT_INTERRUPTIBLE |
764                                    I915_WAIT_LOCKED,
765                                    MAX_SCHEDULE_TIMEOUT,
766                                    NULL);
767         if (ret)
768                 return ret;
769
770         ret = i915_gem_object_pin_pages(obj);
771         if (ret)
772                 return ret;
773
774         i915_gem_object_flush_gtt_write_domain(obj);
775
776         /* If we're not in the cpu read domain, set ourself into the gtt
777          * read domain and manually flush cachelines (if required). This
778          * optimizes for the case when the gpu will dirty the data
779          * anyway again before the next pread happens.
780          */
781         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
782                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
783                                                         obj->cache_level);
784
785         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
786                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
787                 if (ret)
788                         goto err_unpin;
789
790                 *needs_clflush = 0;
791         }
792
793         /* return with the pages pinned */
794         return 0;
795
796 err_unpin:
797         i915_gem_object_unpin_pages(obj);
798         return ret;
799 }
800
801 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
802                                      unsigned int *needs_clflush)
803 {
804         int ret;
805
806         lockdep_assert_held(&obj->base.dev->struct_mutex);
807
808         *needs_clflush = 0;
809         if (!i915_gem_object_has_struct_page(obj))
810                 return -ENODEV;
811
812         ret = i915_gem_object_wait(obj,
813                                    I915_WAIT_INTERRUPTIBLE |
814                                    I915_WAIT_LOCKED |
815                                    I915_WAIT_ALL,
816                                    MAX_SCHEDULE_TIMEOUT,
817                                    NULL);
818         if (ret)
819                 return ret;
820
821         ret = i915_gem_object_pin_pages(obj);
822         if (ret)
823                 return ret;
824
825         i915_gem_object_flush_gtt_write_domain(obj);
826
827         /* If we're not in the cpu write domain, set ourself into the
828          * gtt write domain and manually flush cachelines (as required).
829          * This optimizes for the case when the gpu will use the data
830          * right away and we therefore have to clflush anyway.
831          */
832         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
833                 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
834
835         /* Same trick applies to invalidate partially written cachelines read
836          * before writing.
837          */
838         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
839                 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
840                                                          obj->cache_level);
841
842         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
843                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
844                 if (ret)
845                         goto err_unpin;
846
847                 *needs_clflush = 0;
848         }
849
850         if ((*needs_clflush & CLFLUSH_AFTER) == 0)
851                 obj->cache_dirty = true;
852
853         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
854         obj->mm.dirty = true;
855         /* return with the pages pinned */
856         return 0;
857
858 err_unpin:
859         i915_gem_object_unpin_pages(obj);
860         return ret;
861 }
862
863 static void
864 shmem_clflush_swizzled_range(char *addr, unsigned long length,
865                              bool swizzled)
866 {
867         if (unlikely(swizzled)) {
868                 unsigned long start = (unsigned long) addr;
869                 unsigned long end = (unsigned long) addr + length;
870
871                 /* For swizzling simply ensure that we always flush both
872                  * channels. Lame, but simple and it works. Swizzled
873                  * pwrite/pread is far from a hotpath - current userspace
874                  * doesn't use it at all. */
875                 start = round_down(start, 128);
876                 end = round_up(end, 128);
877
878                 drm_clflush_virt_range((void *)start, end - start);
879         } else {
880                 drm_clflush_virt_range(addr, length);
881         }
882
883 }
884
885 /* Only difference to the fast-path function is that this can handle bit17
886  * and uses non-atomic copy and kmap functions. */
887 static int
888 shmem_pread_slow(struct page *page, int offset, int length,
889                  char __user *user_data,
890                  bool page_do_bit17_swizzling, bool needs_clflush)
891 {
892         char *vaddr;
893         int ret;
894
895         vaddr = kmap(page);
896         if (needs_clflush)
897                 shmem_clflush_swizzled_range(vaddr + offset, length,
898                                              page_do_bit17_swizzling);
899
900         if (page_do_bit17_swizzling)
901                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
902         else
903                 ret = __copy_to_user(user_data, vaddr + offset, length);
904         kunmap(page);
905
906         return ret ? - EFAULT : 0;
907 }
908
909 static int
910 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
911             bool page_do_bit17_swizzling, bool needs_clflush)
912 {
913         int ret;
914
915         ret = -ENODEV;
916         if (!page_do_bit17_swizzling) {
917                 char *vaddr = kmap_atomic(page);
918
919                 if (needs_clflush)
920                         drm_clflush_virt_range(vaddr + offset, length);
921                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
922                 kunmap_atomic(vaddr);
923         }
924         if (ret == 0)
925                 return 0;
926
927         return shmem_pread_slow(page, offset, length, user_data,
928                                 page_do_bit17_swizzling, needs_clflush);
929 }
930
931 static int
932 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
933                      struct drm_i915_gem_pread *args)
934 {
935         char __user *user_data;
936         u64 remain;
937         unsigned int obj_do_bit17_swizzling;
938         unsigned int needs_clflush;
939         unsigned int idx, offset;
940         int ret;
941
942         obj_do_bit17_swizzling = 0;
943         if (i915_gem_object_needs_bit17_swizzle(obj))
944                 obj_do_bit17_swizzling = BIT(17);
945
946         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
947         if (ret)
948                 return ret;
949
950         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
951         mutex_unlock(&obj->base.dev->struct_mutex);
952         if (ret)
953                 return ret;
954
955         remain = args->size;
956         user_data = u64_to_user_ptr(args->data_ptr);
957         offset = offset_in_page(args->offset);
958         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
959                 struct page *page = i915_gem_object_get_page(obj, idx);
960                 int length;
961
962                 length = remain;
963                 if (offset + length > PAGE_SIZE)
964                         length = PAGE_SIZE - offset;
965
966                 ret = shmem_pread(page, offset, length, user_data,
967                                   page_to_phys(page) & obj_do_bit17_swizzling,
968                                   needs_clflush);
969                 if (ret)
970                         break;
971
972                 remain -= length;
973                 user_data += length;
974                 offset = 0;
975         }
976
977         i915_gem_obj_finish_shmem_access(obj);
978         return ret;
979 }
980
981 static inline bool
982 gtt_user_read(struct io_mapping *mapping,
983               loff_t base, int offset,
984               char __user *user_data, int length)
985 {
986         void *vaddr;
987         unsigned long unwritten;
988
989         /* We can use the cpu mem copy function because this is X86. */
990         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
991         unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
992         io_mapping_unmap_atomic(vaddr);
993         if (unwritten) {
994                 vaddr = (void __force *)
995                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
996                 unwritten = copy_to_user(user_data, vaddr + offset, length);
997                 io_mapping_unmap(vaddr);
998         }
999         return unwritten;
1000 }
1001
1002 static int
1003 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1004                    const struct drm_i915_gem_pread *args)
1005 {
1006         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1007         struct i915_ggtt *ggtt = &i915->ggtt;
1008         struct drm_mm_node node;
1009         struct i915_vma *vma;
1010         void __user *user_data;
1011         u64 remain, offset;
1012         int ret;
1013
1014         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1015         if (ret)
1016                 return ret;
1017
1018         intel_runtime_pm_get(i915);
1019         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1020                                        PIN_MAPPABLE | PIN_NONBLOCK);
1021         if (!IS_ERR(vma)) {
1022                 node.start = i915_ggtt_offset(vma);
1023                 node.allocated = false;
1024                 ret = i915_vma_put_fence(vma);
1025                 if (ret) {
1026                         i915_vma_unpin(vma);
1027                         vma = ERR_PTR(ret);
1028                 }
1029         }
1030         if (IS_ERR(vma)) {
1031                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1032                 if (ret)
1033                         goto out_unlock;
1034                 GEM_BUG_ON(!node.allocated);
1035         }
1036
1037         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1038         if (ret)
1039                 goto out_unpin;
1040
1041         mutex_unlock(&i915->drm.struct_mutex);
1042
1043         user_data = u64_to_user_ptr(args->data_ptr);
1044         remain = args->size;
1045         offset = args->offset;
1046
1047         while (remain > 0) {
1048                 /* Operation in this page
1049                  *
1050                  * page_base = page offset within aperture
1051                  * page_offset = offset within page
1052                  * page_length = bytes to copy for this page
1053                  */
1054                 u32 page_base = node.start;
1055                 unsigned page_offset = offset_in_page(offset);
1056                 unsigned page_length = PAGE_SIZE - page_offset;
1057                 page_length = remain < page_length ? remain : page_length;
1058                 if (node.allocated) {
1059                         wmb();
1060                         ggtt->base.insert_page(&ggtt->base,
1061                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1062                                                node.start, I915_CACHE_NONE, 0);
1063                         wmb();
1064                 } else {
1065                         page_base += offset & PAGE_MASK;
1066                 }
1067
1068                 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1069                                   user_data, page_length)) {
1070                         ret = -EFAULT;
1071                         break;
1072                 }
1073
1074                 remain -= page_length;
1075                 user_data += page_length;
1076                 offset += page_length;
1077         }
1078
1079         mutex_lock(&i915->drm.struct_mutex);
1080 out_unpin:
1081         if (node.allocated) {
1082                 wmb();
1083                 ggtt->base.clear_range(&ggtt->base,
1084                                        node.start, node.size);
1085                 remove_mappable_node(&node);
1086         } else {
1087                 i915_vma_unpin(vma);
1088         }
1089 out_unlock:
1090         intel_runtime_pm_put(i915);
1091         mutex_unlock(&i915->drm.struct_mutex);
1092
1093         return ret;
1094 }
1095
1096 /**
1097  * Reads data from the object referenced by handle.
1098  * @dev: drm device pointer
1099  * @data: ioctl data blob
1100  * @file: drm file pointer
1101  *
1102  * On error, the contents of *data are undefined.
1103  */
1104 int
1105 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1106                      struct drm_file *file)
1107 {
1108         struct drm_i915_gem_pread *args = data;
1109         struct drm_i915_gem_object *obj;
1110         int ret;
1111
1112         if (args->size == 0)
1113                 return 0;
1114
1115         if (!access_ok(VERIFY_WRITE,
1116                        u64_to_user_ptr(args->data_ptr),
1117                        args->size))
1118                 return -EFAULT;
1119
1120         obj = i915_gem_object_lookup(file, args->handle);
1121         if (!obj)
1122                 return -ENOENT;
1123
1124         /* Bounds check source.  */
1125         if (args->offset > obj->base.size ||
1126             args->size > obj->base.size - args->offset) {
1127                 ret = -EINVAL;
1128                 goto out;
1129         }
1130
1131         trace_i915_gem_object_pread(obj, args->offset, args->size);
1132
1133         ret = i915_gem_object_wait(obj,
1134                                    I915_WAIT_INTERRUPTIBLE,
1135                                    MAX_SCHEDULE_TIMEOUT,
1136                                    to_rps_client(file));
1137         if (ret)
1138                 goto out;
1139
1140         ret = i915_gem_object_pin_pages(obj);
1141         if (ret)
1142                 goto out;
1143
1144         ret = i915_gem_shmem_pread(obj, args);
1145         if (ret == -EFAULT || ret == -ENODEV)
1146                 ret = i915_gem_gtt_pread(obj, args);
1147
1148         i915_gem_object_unpin_pages(obj);
1149 out:
1150         i915_gem_object_put(obj);
1151         return ret;
1152 }
1153
1154 /* This is the fast write path which cannot handle
1155  * page faults in the source data
1156  */
1157
1158 static inline bool
1159 ggtt_write(struct io_mapping *mapping,
1160            loff_t base, int offset,
1161            char __user *user_data, int length)
1162 {
1163         void *vaddr;
1164         unsigned long unwritten;
1165
1166         /* We can use the cpu mem copy function because this is X86. */
1167         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1168         unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1169                                                       user_data, length);
1170         io_mapping_unmap_atomic(vaddr);
1171         if (unwritten) {
1172                 vaddr = (void __force *)
1173                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1174                 unwritten = copy_from_user(vaddr + offset, user_data, length);
1175                 io_mapping_unmap(vaddr);
1176         }
1177
1178         return unwritten;
1179 }
1180
1181 /**
1182  * This is the fast pwrite path, where we copy the data directly from the
1183  * user into the GTT, uncached.
1184  * @obj: i915 GEM object
1185  * @args: pwrite arguments structure
1186  */
1187 static int
1188 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1189                          const struct drm_i915_gem_pwrite *args)
1190 {
1191         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1192         struct i915_ggtt *ggtt = &i915->ggtt;
1193         struct drm_mm_node node;
1194         struct i915_vma *vma;
1195         u64 remain, offset;
1196         void __user *user_data;
1197         int ret;
1198
1199         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1200         if (ret)
1201                 return ret;
1202
1203         intel_runtime_pm_get(i915);
1204         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1205                                        PIN_MAPPABLE | PIN_NONBLOCK);
1206         if (!IS_ERR(vma)) {
1207                 node.start = i915_ggtt_offset(vma);
1208                 node.allocated = false;
1209                 ret = i915_vma_put_fence(vma);
1210                 if (ret) {
1211                         i915_vma_unpin(vma);
1212                         vma = ERR_PTR(ret);
1213                 }
1214         }
1215         if (IS_ERR(vma)) {
1216                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1217                 if (ret)
1218                         goto out_unlock;
1219                 GEM_BUG_ON(!node.allocated);
1220         }
1221
1222         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1223         if (ret)
1224                 goto out_unpin;
1225
1226         mutex_unlock(&i915->drm.struct_mutex);
1227
1228         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1229
1230         user_data = u64_to_user_ptr(args->data_ptr);
1231         offset = args->offset;
1232         remain = args->size;
1233         while (remain) {
1234                 /* Operation in this page
1235                  *
1236                  * page_base = page offset within aperture
1237                  * page_offset = offset within page
1238                  * page_length = bytes to copy for this page
1239                  */
1240                 u32 page_base = node.start;
1241                 unsigned int page_offset = offset_in_page(offset);
1242                 unsigned int page_length = PAGE_SIZE - page_offset;
1243                 page_length = remain < page_length ? remain : page_length;
1244                 if (node.allocated) {
1245                         wmb(); /* flush the write before we modify the GGTT */
1246                         ggtt->base.insert_page(&ggtt->base,
1247                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1248                                                node.start, I915_CACHE_NONE, 0);
1249                         wmb(); /* flush modifications to the GGTT (insert_page) */
1250                 } else {
1251                         page_base += offset & PAGE_MASK;
1252                 }
1253                 /* If we get a fault while copying data, then (presumably) our
1254                  * source page isn't available.  Return the error and we'll
1255                  * retry in the slow path.
1256                  * If the object is non-shmem backed, we retry again with the
1257                  * path that handles page fault.
1258                  */
1259                 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1260                                user_data, page_length)) {
1261                         ret = -EFAULT;
1262                         break;
1263                 }
1264
1265                 remain -= page_length;
1266                 user_data += page_length;
1267                 offset += page_length;
1268         }
1269         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1270
1271         mutex_lock(&i915->drm.struct_mutex);
1272 out_unpin:
1273         if (node.allocated) {
1274                 wmb();
1275                 ggtt->base.clear_range(&ggtt->base,
1276                                        node.start, node.size);
1277                 remove_mappable_node(&node);
1278         } else {
1279                 i915_vma_unpin(vma);
1280         }
1281 out_unlock:
1282         intel_runtime_pm_put(i915);
1283         mutex_unlock(&i915->drm.struct_mutex);
1284         return ret;
1285 }
1286
1287 static int
1288 shmem_pwrite_slow(struct page *page, int offset, int length,
1289                   char __user *user_data,
1290                   bool page_do_bit17_swizzling,
1291                   bool needs_clflush_before,
1292                   bool needs_clflush_after)
1293 {
1294         char *vaddr;
1295         int ret;
1296
1297         vaddr = kmap(page);
1298         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1299                 shmem_clflush_swizzled_range(vaddr + offset, length,
1300                                              page_do_bit17_swizzling);
1301         if (page_do_bit17_swizzling)
1302                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1303                                                 length);
1304         else
1305                 ret = __copy_from_user(vaddr + offset, user_data, length);
1306         if (needs_clflush_after)
1307                 shmem_clflush_swizzled_range(vaddr + offset, length,
1308                                              page_do_bit17_swizzling);
1309         kunmap(page);
1310
1311         return ret ? -EFAULT : 0;
1312 }
1313
1314 /* Per-page copy function for the shmem pwrite fastpath.
1315  * Flushes invalid cachelines before writing to the target if
1316  * needs_clflush_before is set and flushes out any written cachelines after
1317  * writing if needs_clflush is set.
1318  */
1319 static int
1320 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1321              bool page_do_bit17_swizzling,
1322              bool needs_clflush_before,
1323              bool needs_clflush_after)
1324 {
1325         int ret;
1326
1327         ret = -ENODEV;
1328         if (!page_do_bit17_swizzling) {
1329                 char *vaddr = kmap_atomic(page);
1330
1331                 if (needs_clflush_before)
1332                         drm_clflush_virt_range(vaddr + offset, len);
1333                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1334                 if (needs_clflush_after)
1335                         drm_clflush_virt_range(vaddr + offset, len);
1336
1337                 kunmap_atomic(vaddr);
1338         }
1339         if (ret == 0)
1340                 return ret;
1341
1342         return shmem_pwrite_slow(page, offset, len, user_data,
1343                                  page_do_bit17_swizzling,
1344                                  needs_clflush_before,
1345                                  needs_clflush_after);
1346 }
1347
1348 static int
1349 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1350                       const struct drm_i915_gem_pwrite *args)
1351 {
1352         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1353         void __user *user_data;
1354         u64 remain;
1355         unsigned int obj_do_bit17_swizzling;
1356         unsigned int partial_cacheline_write;
1357         unsigned int needs_clflush;
1358         unsigned int offset, idx;
1359         int ret;
1360
1361         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1362         if (ret)
1363                 return ret;
1364
1365         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1366         mutex_unlock(&i915->drm.struct_mutex);
1367         if (ret)
1368                 return ret;
1369
1370         obj_do_bit17_swizzling = 0;
1371         if (i915_gem_object_needs_bit17_swizzle(obj))
1372                 obj_do_bit17_swizzling = BIT(17);
1373
1374         /* If we don't overwrite a cacheline completely we need to be
1375          * careful to have up-to-date data by first clflushing. Don't
1376          * overcomplicate things and flush the entire patch.
1377          */
1378         partial_cacheline_write = 0;
1379         if (needs_clflush & CLFLUSH_BEFORE)
1380                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1381
1382         user_data = u64_to_user_ptr(args->data_ptr);
1383         remain = args->size;
1384         offset = offset_in_page(args->offset);
1385         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1386                 struct page *page = i915_gem_object_get_page(obj, idx);
1387                 int length;
1388
1389                 length = remain;
1390                 if (offset + length > PAGE_SIZE)
1391                         length = PAGE_SIZE - offset;
1392
1393                 ret = shmem_pwrite(page, offset, length, user_data,
1394                                    page_to_phys(page) & obj_do_bit17_swizzling,
1395                                    (offset | length) & partial_cacheline_write,
1396                                    needs_clflush & CLFLUSH_AFTER);
1397                 if (ret)
1398                         break;
1399
1400                 remain -= length;
1401                 user_data += length;
1402                 offset = 0;
1403         }
1404
1405         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1406         i915_gem_obj_finish_shmem_access(obj);
1407         return ret;
1408 }
1409
1410 /**
1411  * Writes data to the object referenced by handle.
1412  * @dev: drm device
1413  * @data: ioctl data blob
1414  * @file: drm file
1415  *
1416  * On error, the contents of the buffer that were to be modified are undefined.
1417  */
1418 int
1419 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1420                       struct drm_file *file)
1421 {
1422         struct drm_i915_gem_pwrite *args = data;
1423         struct drm_i915_gem_object *obj;
1424         int ret;
1425
1426         if (args->size == 0)
1427                 return 0;
1428
1429         if (!access_ok(VERIFY_READ,
1430                        u64_to_user_ptr(args->data_ptr),
1431                        args->size))
1432                 return -EFAULT;
1433
1434         obj = i915_gem_object_lookup(file, args->handle);
1435         if (!obj)
1436                 return -ENOENT;
1437
1438         /* Bounds check destination. */
1439         if (args->offset > obj->base.size ||
1440             args->size > obj->base.size - args->offset) {
1441                 ret = -EINVAL;
1442                 goto err;
1443         }
1444
1445         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1446
1447         ret = i915_gem_object_wait(obj,
1448                                    I915_WAIT_INTERRUPTIBLE |
1449                                    I915_WAIT_ALL,
1450                                    MAX_SCHEDULE_TIMEOUT,
1451                                    to_rps_client(file));
1452         if (ret)
1453                 goto err;
1454
1455         ret = i915_gem_object_pin_pages(obj);
1456         if (ret)
1457                 goto err;
1458
1459         ret = -EFAULT;
1460         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1461          * it would end up going through the fenced access, and we'll get
1462          * different detiling behavior between reading and writing.
1463          * pread/pwrite currently are reading and writing from the CPU
1464          * perspective, requiring manual detiling by the client.
1465          */
1466         if (!i915_gem_object_has_struct_page(obj) ||
1467             cpu_write_needs_clflush(obj))
1468                 /* Note that the gtt paths might fail with non-page-backed user
1469                  * pointers (e.g. gtt mappings when moving data between
1470                  * textures). Fallback to the shmem path in that case.
1471                  */
1472                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1473
1474         if (ret == -EFAULT || ret == -ENOSPC) {
1475                 if (obj->phys_handle)
1476                         ret = i915_gem_phys_pwrite(obj, args, file);
1477                 else
1478                         ret = i915_gem_shmem_pwrite(obj, args);
1479         }
1480
1481         i915_gem_object_unpin_pages(obj);
1482 err:
1483         i915_gem_object_put(obj);
1484         return ret;
1485 }
1486
1487 static inline enum fb_op_origin
1488 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1489 {
1490         return (domain == I915_GEM_DOMAIN_GTT ?
1491                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1492 }
1493
1494 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1495 {
1496         struct drm_i915_private *i915;
1497         struct list_head *list;
1498         struct i915_vma *vma;
1499
1500         list_for_each_entry(vma, &obj->vma_list, obj_link) {
1501                 if (!i915_vma_is_ggtt(vma))
1502                         continue;
1503
1504                 if (i915_vma_is_active(vma))
1505                         continue;
1506
1507                 if (!drm_mm_node_allocated(&vma->node))
1508                         continue;
1509
1510                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1511         }
1512
1513         i915 = to_i915(obj->base.dev);
1514         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1515         list_move_tail(&obj->global_link, list);
1516 }
1517
1518 /**
1519  * Called when user space prepares to use an object with the CPU, either
1520  * through the mmap ioctl's mapping or a GTT mapping.
1521  * @dev: drm device
1522  * @data: ioctl data blob
1523  * @file: drm file
1524  */
1525 int
1526 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1527                           struct drm_file *file)
1528 {
1529         struct drm_i915_gem_set_domain *args = data;
1530         struct drm_i915_gem_object *obj;
1531         uint32_t read_domains = args->read_domains;
1532         uint32_t write_domain = args->write_domain;
1533         int err;
1534
1535         /* Only handle setting domains to types used by the CPU. */
1536         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1537                 return -EINVAL;
1538
1539         /* Having something in the write domain implies it's in the read
1540          * domain, and only that read domain.  Enforce that in the request.
1541          */
1542         if (write_domain != 0 && read_domains != write_domain)
1543                 return -EINVAL;
1544
1545         obj = i915_gem_object_lookup(file, args->handle);
1546         if (!obj)
1547                 return -ENOENT;
1548
1549         /* Try to flush the object off the GPU without holding the lock.
1550          * We will repeat the flush holding the lock in the normal manner
1551          * to catch cases where we are gazumped.
1552          */
1553         err = i915_gem_object_wait(obj,
1554                                    I915_WAIT_INTERRUPTIBLE |
1555                                    (write_domain ? I915_WAIT_ALL : 0),
1556                                    MAX_SCHEDULE_TIMEOUT,
1557                                    to_rps_client(file));
1558         if (err)
1559                 goto out;
1560
1561         /* Flush and acquire obj->pages so that we are coherent through
1562          * direct access in memory with previous cached writes through
1563          * shmemfs and that our cache domain tracking remains valid.
1564          * For example, if the obj->filp was moved to swap without us
1565          * being notified and releasing the pages, we would mistakenly
1566          * continue to assume that the obj remained out of the CPU cached
1567          * domain.
1568          */
1569         err = i915_gem_object_pin_pages(obj);
1570         if (err)
1571                 goto out;
1572
1573         err = i915_mutex_lock_interruptible(dev);
1574         if (err)
1575                 goto out_unpin;
1576
1577         if (read_domains & I915_GEM_DOMAIN_GTT)
1578                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1579         else
1580                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1581
1582         /* And bump the LRU for this access */
1583         i915_gem_object_bump_inactive_ggtt(obj);
1584
1585         mutex_unlock(&dev->struct_mutex);
1586
1587         if (write_domain != 0)
1588                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1589
1590 out_unpin:
1591         i915_gem_object_unpin_pages(obj);
1592 out:
1593         i915_gem_object_put(obj);
1594         return err;
1595 }
1596
1597 /**
1598  * Called when user space has done writes to this buffer
1599  * @dev: drm device
1600  * @data: ioctl data blob
1601  * @file: drm file
1602  */
1603 int
1604 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1605                          struct drm_file *file)
1606 {
1607         struct drm_i915_gem_sw_finish *args = data;
1608         struct drm_i915_gem_object *obj;
1609         int err = 0;
1610
1611         obj = i915_gem_object_lookup(file, args->handle);
1612         if (!obj)
1613                 return -ENOENT;
1614
1615         /* Pinned buffers may be scanout, so flush the cache */
1616         if (READ_ONCE(obj->pin_display)) {
1617                 err = i915_mutex_lock_interruptible(dev);
1618                 if (!err) {
1619                         i915_gem_object_flush_cpu_write_domain(obj);
1620                         mutex_unlock(&dev->struct_mutex);
1621                 }
1622         }
1623
1624         i915_gem_object_put(obj);
1625         return err;
1626 }
1627
1628 /**
1629  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1630  *                       it is mapped to.
1631  * @dev: drm device
1632  * @data: ioctl data blob
1633  * @file: drm file
1634  *
1635  * While the mapping holds a reference on the contents of the object, it doesn't
1636  * imply a ref on the object itself.
1637  *
1638  * IMPORTANT:
1639  *
1640  * DRM driver writers who look a this function as an example for how to do GEM
1641  * mmap support, please don't implement mmap support like here. The modern way
1642  * to implement DRM mmap support is with an mmap offset ioctl (like
1643  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1644  * That way debug tooling like valgrind will understand what's going on, hiding
1645  * the mmap call in a driver private ioctl will break that. The i915 driver only
1646  * does cpu mmaps this way because we didn't know better.
1647  */
1648 int
1649 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1650                     struct drm_file *file)
1651 {
1652         struct drm_i915_gem_mmap *args = data;
1653         struct drm_i915_gem_object *obj;
1654         unsigned long addr;
1655
1656         if (args->flags & ~(I915_MMAP_WC))
1657                 return -EINVAL;
1658
1659         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1660                 return -ENODEV;
1661
1662         obj = i915_gem_object_lookup(file, args->handle);
1663         if (!obj)
1664                 return -ENOENT;
1665
1666         /* prime objects have no backing filp to GEM mmap
1667          * pages from.
1668          */
1669         if (!obj->base.filp) {
1670                 i915_gem_object_put(obj);
1671                 return -EINVAL;
1672         }
1673
1674         addr = vm_mmap(obj->base.filp, 0, args->size,
1675                        PROT_READ | PROT_WRITE, MAP_SHARED,
1676                        args->offset);
1677         if (args->flags & I915_MMAP_WC) {
1678                 struct mm_struct *mm = current->mm;
1679                 struct vm_area_struct *vma;
1680
1681                 if (down_write_killable(&mm->mmap_sem)) {
1682                         i915_gem_object_put(obj);
1683                         return -EINTR;
1684                 }
1685                 vma = find_vma(mm, addr);
1686                 if (vma)
1687                         vma->vm_page_prot =
1688                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1689                 else
1690                         addr = -ENOMEM;
1691                 up_write(&mm->mmap_sem);
1692
1693                 /* This may race, but that's ok, it only gets set */
1694                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1695         }
1696         i915_gem_object_put(obj);
1697         if (IS_ERR((void *)addr))
1698                 return addr;
1699
1700         args->addr_ptr = (uint64_t) addr;
1701
1702         return 0;
1703 }
1704
1705 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1706 {
1707         u64 size;
1708
1709         size = i915_gem_object_get_stride(obj);
1710         size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1711
1712         return size >> PAGE_SHIFT;
1713 }
1714
1715 /**
1716  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1717  *
1718  * A history of the GTT mmap interface:
1719  *
1720  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1721  *     aligned and suitable for fencing, and still fit into the available
1722  *     mappable space left by the pinned display objects. A classic problem
1723  *     we called the page-fault-of-doom where we would ping-pong between
1724  *     two objects that could not fit inside the GTT and so the memcpy
1725  *     would page one object in at the expense of the other between every
1726  *     single byte.
1727  *
1728  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1729  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1730  *     object is too large for the available space (or simply too large
1731  *     for the mappable aperture!), a view is created instead and faulted
1732  *     into userspace. (This view is aligned and sized appropriately for
1733  *     fenced access.)
1734  *
1735  * Restrictions:
1736  *
1737  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1738  *    hangs on some architectures, corruption on others. An attempt to service
1739  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1740  *
1741  *  * the object must be able to fit into RAM (physical memory, though no
1742  *    limited to the mappable aperture).
1743  *
1744  *
1745  * Caveats:
1746  *
1747  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1748  *    all data to system memory. Subsequent access will not be synchronized.
1749  *
1750  *  * all mappings are revoked on runtime device suspend.
1751  *
1752  *  * there are only 8, 16 or 32 fence registers to share between all users
1753  *    (older machines require fence register for display and blitter access
1754  *    as well). Contention of the fence registers will cause the previous users
1755  *    to be unmapped and any new access will generate new page faults.
1756  *
1757  *  * running out of memory while servicing a fault may generate a SIGBUS,
1758  *    rather than the expected SIGSEGV.
1759  */
1760 int i915_gem_mmap_gtt_version(void)
1761 {
1762         return 1;
1763 }
1764
1765 /**
1766  * i915_gem_fault - fault a page into the GTT
1767  * @area: CPU VMA in question
1768  * @vmf: fault info
1769  *
1770  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1771  * from userspace.  The fault handler takes care of binding the object to
1772  * the GTT (if needed), allocating and programming a fence register (again,
1773  * only if needed based on whether the old reg is still valid or the object
1774  * is tiled) and inserting a new PTE into the faulting process.
1775  *
1776  * Note that the faulting process may involve evicting existing objects
1777  * from the GTT and/or fence registers to make room.  So performance may
1778  * suffer if the GTT working set is large or there are few fence registers
1779  * left.
1780  *
1781  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1782  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1783  */
1784 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1785 {
1786 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1787         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1788         struct drm_device *dev = obj->base.dev;
1789         struct drm_i915_private *dev_priv = to_i915(dev);
1790         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1791         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1792         struct i915_vma *vma;
1793         pgoff_t page_offset;
1794         unsigned int flags;
1795         int ret;
1796
1797         /* We don't use vmf->pgoff since that has the fake offset */
1798         page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1799                 PAGE_SHIFT;
1800
1801         trace_i915_gem_object_fault(obj, page_offset, true, write);
1802
1803         /* Try to flush the object off the GPU first without holding the lock.
1804          * Upon acquiring the lock, we will perform our sanity checks and then
1805          * repeat the flush holding the lock in the normal manner to catch cases
1806          * where we are gazumped.
1807          */
1808         ret = i915_gem_object_wait(obj,
1809                                    I915_WAIT_INTERRUPTIBLE,
1810                                    MAX_SCHEDULE_TIMEOUT,
1811                                    NULL);
1812         if (ret)
1813                 goto err;
1814
1815         ret = i915_gem_object_pin_pages(obj);
1816         if (ret)
1817                 goto err;
1818
1819         intel_runtime_pm_get(dev_priv);
1820
1821         ret = i915_mutex_lock_interruptible(dev);
1822         if (ret)
1823                 goto err_rpm;
1824
1825         /* Access to snoopable pages through the GTT is incoherent. */
1826         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1827                 ret = -EFAULT;
1828                 goto err_unlock;
1829         }
1830
1831         /* If the object is smaller than a couple of partial vma, it is
1832          * not worth only creating a single partial vma - we may as well
1833          * clear enough space for the full object.
1834          */
1835         flags = PIN_MAPPABLE;
1836         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1837                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1838
1839         /* Now pin it into the GTT as needed */
1840         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1841         if (IS_ERR(vma)) {
1842                 struct i915_ggtt_view view;
1843                 unsigned int chunk_size;
1844
1845                 /* Use a partial view if it is bigger than available space */
1846                 chunk_size = MIN_CHUNK_PAGES;
1847                 if (i915_gem_object_is_tiled(obj))
1848                         chunk_size = roundup(chunk_size, tile_row_pages(obj));
1849
1850                 memset(&view, 0, sizeof(view));
1851                 view.type = I915_GGTT_VIEW_PARTIAL;
1852                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1853                 view.params.partial.size =
1854                         min_t(unsigned int, chunk_size,
1855                               vma_pages(area) - view.params.partial.offset);
1856
1857                 /* If the partial covers the entire object, just create a
1858                  * normal VMA.
1859                  */
1860                 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1861                         view.type = I915_GGTT_VIEW_NORMAL;
1862
1863                 /* Userspace is now writing through an untracked VMA, abandon
1864                  * all hope that the hardware is able to track future writes.
1865                  */
1866                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1867
1868                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1869         }
1870         if (IS_ERR(vma)) {
1871                 ret = PTR_ERR(vma);
1872                 goto err_unlock;
1873         }
1874
1875         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1876         if (ret)
1877                 goto err_unpin;
1878
1879         ret = i915_vma_get_fence(vma);
1880         if (ret)
1881                 goto err_unpin;
1882
1883         /* Mark as being mmapped into userspace for later revocation */
1884         assert_rpm_wakelock_held(dev_priv);
1885         if (list_empty(&obj->userfault_link))
1886                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1887
1888         /* Finally, remap it using the new GTT offset */
1889         ret = remap_io_mapping(area,
1890                                area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1891                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1892                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1893                                &ggtt->mappable);
1894
1895 err_unpin:
1896         __i915_vma_unpin(vma);
1897 err_unlock:
1898         mutex_unlock(&dev->struct_mutex);
1899 err_rpm:
1900         intel_runtime_pm_put(dev_priv);
1901         i915_gem_object_unpin_pages(obj);
1902 err:
1903         switch (ret) {
1904         case -EIO:
1905                 /*
1906                  * We eat errors when the gpu is terminally wedged to avoid
1907                  * userspace unduly crashing (gl has no provisions for mmaps to
1908                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1909                  * and so needs to be reported.
1910                  */
1911                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1912                         ret = VM_FAULT_SIGBUS;
1913                         break;
1914                 }
1915         case -EAGAIN:
1916                 /*
1917                  * EAGAIN means the gpu is hung and we'll wait for the error
1918                  * handler to reset everything when re-faulting in
1919                  * i915_mutex_lock_interruptible.
1920                  */
1921         case 0:
1922         case -ERESTARTSYS:
1923         case -EINTR:
1924         case -EBUSY:
1925                 /*
1926                  * EBUSY is ok: this just means that another thread
1927                  * already did the job.
1928                  */
1929                 ret = VM_FAULT_NOPAGE;
1930                 break;
1931         case -ENOMEM:
1932                 ret = VM_FAULT_OOM;
1933                 break;
1934         case -ENOSPC:
1935         case -EFAULT:
1936                 ret = VM_FAULT_SIGBUS;
1937                 break;
1938         default:
1939                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1940                 ret = VM_FAULT_SIGBUS;
1941                 break;
1942         }
1943         return ret;
1944 }
1945
1946 /**
1947  * i915_gem_release_mmap - remove physical page mappings
1948  * @obj: obj in question
1949  *
1950  * Preserve the reservation of the mmapping with the DRM core code, but
1951  * relinquish ownership of the pages back to the system.
1952  *
1953  * It is vital that we remove the page mapping if we have mapped a tiled
1954  * object through the GTT and then lose the fence register due to
1955  * resource pressure. Similarly if the object has been moved out of the
1956  * aperture, than pages mapped into userspace must be revoked. Removing the
1957  * mapping will then trigger a page fault on the next user access, allowing
1958  * fixup by i915_gem_fault().
1959  */
1960 void
1961 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1962 {
1963         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1964
1965         /* Serialisation between user GTT access and our code depends upon
1966          * revoking the CPU's PTE whilst the mutex is held. The next user
1967          * pagefault then has to wait until we release the mutex.
1968          *
1969          * Note that RPM complicates somewhat by adding an additional
1970          * requirement that operations to the GGTT be made holding the RPM
1971          * wakeref.
1972          */
1973         lockdep_assert_held(&i915->drm.struct_mutex);
1974         intel_runtime_pm_get(i915);
1975
1976         if (list_empty(&obj->userfault_link))
1977                 goto out;
1978
1979         list_del_init(&obj->userfault_link);
1980         drm_vma_node_unmap(&obj->base.vma_node,
1981                            obj->base.dev->anon_inode->i_mapping);
1982
1983         /* Ensure that the CPU's PTE are revoked and there are not outstanding
1984          * memory transactions from userspace before we return. The TLB
1985          * flushing implied above by changing the PTE above *should* be
1986          * sufficient, an extra barrier here just provides us with a bit
1987          * of paranoid documentation about our requirement to serialise
1988          * memory writes before touching registers / GSM.
1989          */
1990         wmb();
1991
1992 out:
1993         intel_runtime_pm_put(i915);
1994 }
1995
1996 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1997 {
1998         struct drm_i915_gem_object *obj, *on;
1999         int i;
2000
2001         /*
2002          * Only called during RPM suspend. All users of the userfault_list
2003          * must be holding an RPM wakeref to ensure that this can not
2004          * run concurrently with themselves (and use the struct_mutex for
2005          * protection between themselves).
2006          */
2007
2008         list_for_each_entry_safe(obj, on,
2009                                  &dev_priv->mm.userfault_list, userfault_link) {
2010                 list_del_init(&obj->userfault_link);
2011                 drm_vma_node_unmap(&obj->base.vma_node,
2012                                    obj->base.dev->anon_inode->i_mapping);
2013         }
2014
2015         /* The fence will be lost when the device powers down. If any were
2016          * in use by hardware (i.e. they are pinned), we should not be powering
2017          * down! All other fences will be reacquired by the user upon waking.
2018          */
2019         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2020                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2021
2022                 if (WARN_ON(reg->pin_count))
2023                         continue;
2024
2025                 if (!reg->vma)
2026                         continue;
2027
2028                 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2029                 reg->dirty = true;
2030         }
2031 }
2032
2033 /**
2034  * i915_gem_get_ggtt_size - return required global GTT size for an object
2035  * @dev_priv: i915 device
2036  * @size: object size
2037  * @tiling_mode: tiling mode
2038  *
2039  * Return the required global GTT size for an object, taking into account
2040  * potential fence register mapping.
2041  */
2042 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
2043                            u64 size, int tiling_mode)
2044 {
2045         u64 ggtt_size;
2046
2047         GEM_BUG_ON(size == 0);
2048
2049         if (INTEL_GEN(dev_priv) >= 4 ||
2050             tiling_mode == I915_TILING_NONE)
2051                 return size;
2052
2053         /* Previous chips need a power-of-two fence region when tiling */
2054         if (IS_GEN3(dev_priv))
2055                 ggtt_size = 1024*1024;
2056         else
2057                 ggtt_size = 512*1024;
2058
2059         while (ggtt_size < size)
2060                 ggtt_size <<= 1;
2061
2062         return ggtt_size;
2063 }
2064
2065 /**
2066  * i915_gem_get_ggtt_alignment - return required global GTT alignment
2067  * @dev_priv: i915 device
2068  * @size: object size
2069  * @tiling_mode: tiling mode
2070  * @fenced: is fenced alignment required or not
2071  *
2072  * Return the required global GTT alignment for an object, taking into account
2073  * potential fence register mapping.
2074  */
2075 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2076                                 int tiling_mode, bool fenced)
2077 {
2078         GEM_BUG_ON(size == 0);
2079
2080         /*
2081          * Minimum alignment is 4k (GTT page size), but might be greater
2082          * if a fence register is needed for the object.
2083          */
2084         if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2085             tiling_mode == I915_TILING_NONE)
2086                 return 4096;
2087
2088         /*
2089          * Previous chips need to be aligned to the size of the smallest
2090          * fence register that can contain the object.
2091          */
2092         return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2093 }
2094
2095 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2096 {
2097         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2098         int err;
2099
2100         err = drm_gem_create_mmap_offset(&obj->base);
2101         if (!err)
2102                 return 0;
2103
2104         /* We can idle the GPU locklessly to flush stale objects, but in order
2105          * to claim that space for ourselves, we need to take the big
2106          * struct_mutex to free the requests+objects and allocate our slot.
2107          */
2108         err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2109         if (err)
2110                 return err;
2111
2112         err = i915_mutex_lock_interruptible(&dev_priv->drm);
2113         if (!err) {
2114                 i915_gem_retire_requests(dev_priv);
2115                 err = drm_gem_create_mmap_offset(&obj->base);
2116                 mutex_unlock(&dev_priv->drm.struct_mutex);
2117         }
2118
2119         return err;
2120 }
2121
2122 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2123 {
2124         drm_gem_free_mmap_offset(&obj->base);
2125 }
2126
2127 int
2128 i915_gem_mmap_gtt(struct drm_file *file,
2129                   struct drm_device *dev,
2130                   uint32_t handle,
2131                   uint64_t *offset)
2132 {
2133         struct drm_i915_gem_object *obj;
2134         int ret;
2135
2136         obj = i915_gem_object_lookup(file, handle);
2137         if (!obj)
2138                 return -ENOENT;
2139
2140         ret = i915_gem_object_create_mmap_offset(obj);
2141         if (ret == 0)
2142                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2143
2144         i915_gem_object_put(obj);
2145         return ret;
2146 }
2147
2148 /**
2149  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2150  * @dev: DRM device
2151  * @data: GTT mapping ioctl data
2152  * @file: GEM object info
2153  *
2154  * Simply returns the fake offset to userspace so it can mmap it.
2155  * The mmap call will end up in drm_gem_mmap(), which will set things
2156  * up so we can get faults in the handler above.
2157  *
2158  * The fault handler will take care of binding the object into the GTT
2159  * (since it may have been evicted to make room for something), allocating
2160  * a fence register, and mapping the appropriate aperture address into
2161  * userspace.
2162  */
2163 int
2164 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2165                         struct drm_file *file)
2166 {
2167         struct drm_i915_gem_mmap_gtt *args = data;
2168
2169         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2170 }
2171
2172 /* Immediately discard the backing storage */
2173 static void
2174 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2175 {
2176         i915_gem_object_free_mmap_offset(obj);
2177
2178         if (obj->base.filp == NULL)
2179                 return;
2180
2181         /* Our goal here is to return as much of the memory as
2182          * is possible back to the system as we are called from OOM.
2183          * To do this we must instruct the shmfs to drop all of its
2184          * backing pages, *now*.
2185          */
2186         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2187         obj->mm.madv = __I915_MADV_PURGED;
2188 }
2189
2190 /* Try to discard unwanted pages */
2191 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2192 {
2193         struct address_space *mapping;
2194
2195         lockdep_assert_held(&obj->mm.lock);
2196         GEM_BUG_ON(obj->mm.pages);
2197
2198         switch (obj->mm.madv) {
2199         case I915_MADV_DONTNEED:
2200                 i915_gem_object_truncate(obj);
2201         case __I915_MADV_PURGED:
2202                 return;
2203         }
2204
2205         if (obj->base.filp == NULL)
2206                 return;
2207
2208         mapping = obj->base.filp->f_mapping,
2209         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2210 }
2211
2212 static void
2213 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2214                               struct sg_table *pages)
2215 {
2216         struct sgt_iter sgt_iter;
2217         struct page *page;
2218
2219         __i915_gem_object_release_shmem(obj, pages);
2220
2221         i915_gem_gtt_finish_pages(obj, pages);
2222
2223         if (i915_gem_object_needs_bit17_swizzle(obj))
2224                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2225
2226         for_each_sgt_page(page, sgt_iter, pages) {
2227                 if (obj->mm.dirty)
2228                         set_page_dirty(page);
2229
2230                 if (obj->mm.madv == I915_MADV_WILLNEED)
2231                         mark_page_accessed(page);
2232
2233                 put_page(page);
2234         }
2235         obj->mm.dirty = false;
2236
2237         sg_free_table(pages);
2238         kfree(pages);
2239 }
2240
2241 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2242 {
2243         struct radix_tree_iter iter;
2244         void **slot;
2245
2246         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2247                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2248 }
2249
2250 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2251                                  enum i915_mm_subclass subclass)
2252 {
2253         struct sg_table *pages;
2254
2255         if (i915_gem_object_has_pinned_pages(obj))
2256                 return;
2257
2258         GEM_BUG_ON(obj->bind_count);
2259         if (!READ_ONCE(obj->mm.pages))
2260                 return;
2261
2262         /* May be called by shrinker from within get_pages() (on another bo) */
2263         mutex_lock_nested(&obj->mm.lock, subclass);
2264         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2265                 goto unlock;
2266
2267         /* ->put_pages might need to allocate memory for the bit17 swizzle
2268          * array, hence protect them from being reaped by removing them from gtt
2269          * lists early. */
2270         pages = fetch_and_zero(&obj->mm.pages);
2271         GEM_BUG_ON(!pages);
2272
2273         if (obj->mm.mapping) {
2274                 void *ptr;
2275
2276                 ptr = ptr_mask_bits(obj->mm.mapping);
2277                 if (is_vmalloc_addr(ptr))
2278                         vunmap(ptr);
2279                 else
2280                         kunmap(kmap_to_page(ptr));
2281
2282                 obj->mm.mapping = NULL;
2283         }
2284
2285         __i915_gem_object_reset_page_iter(obj);
2286
2287         obj->ops->put_pages(obj, pages);
2288 unlock:
2289         mutex_unlock(&obj->mm.lock);
2290 }
2291
2292 static unsigned int swiotlb_max_size(void)
2293 {
2294 #if IS_ENABLED(CONFIG_SWIOTLB)
2295         return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
2296 #else
2297         return 0;
2298 #endif
2299 }
2300
2301 static void i915_sg_trim(struct sg_table *orig_st)
2302 {
2303         struct sg_table new_st;
2304         struct scatterlist *sg, *new_sg;
2305         unsigned int i;
2306
2307         if (orig_st->nents == orig_st->orig_nents)
2308                 return;
2309
2310         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL))
2311                 return;
2312
2313         new_sg = new_st.sgl;
2314         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2315                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2316                 /* called before being DMA mapped, no need to copy sg->dma_* */
2317                 new_sg = sg_next(new_sg);
2318         }
2319
2320         sg_free_table(orig_st);
2321
2322         *orig_st = new_st;
2323 }
2324
2325 static struct sg_table *
2326 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2327 {
2328         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2329         int page_count, i;
2330         struct address_space *mapping;
2331         struct sg_table *st;
2332         struct scatterlist *sg;
2333         struct sgt_iter sgt_iter;
2334         struct page *page;
2335         unsigned long last_pfn = 0;     /* suppress gcc warning */
2336         unsigned int max_segment;
2337         int ret;
2338         gfp_t gfp;
2339
2340         /* Assert that the object is not currently in any GPU domain. As it
2341          * wasn't in the GTT, there shouldn't be any way it could have been in
2342          * a GPU cache
2343          */
2344         GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2345         GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2346
2347         max_segment = swiotlb_max_size();
2348         if (!max_segment)
2349                 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2350
2351         st = kmalloc(sizeof(*st), GFP_KERNEL);
2352         if (st == NULL)
2353                 return ERR_PTR(-ENOMEM);
2354
2355         page_count = obj->base.size / PAGE_SIZE;
2356         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2357                 kfree(st);
2358                 return ERR_PTR(-ENOMEM);
2359         }
2360
2361         /* Get the list of pages out of our struct file.  They'll be pinned
2362          * at this point until we release them.
2363          *
2364          * Fail silently without starting the shrinker
2365          */
2366         mapping = obj->base.filp->f_mapping;
2367         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2368         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2369         sg = st->sgl;
2370         st->nents = 0;
2371         for (i = 0; i < page_count; i++) {
2372                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2373                 if (IS_ERR(page)) {
2374                         i915_gem_shrink(dev_priv,
2375                                         page_count,
2376                                         I915_SHRINK_BOUND |
2377                                         I915_SHRINK_UNBOUND |
2378                                         I915_SHRINK_PURGEABLE);
2379                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2380                 }
2381                 if (IS_ERR(page)) {
2382                         /* We've tried hard to allocate the memory by reaping
2383                          * our own buffer, now let the real VM do its job and
2384                          * go down in flames if truly OOM.
2385                          */
2386                         page = shmem_read_mapping_page(mapping, i);
2387                         if (IS_ERR(page)) {
2388                                 ret = PTR_ERR(page);
2389                                 goto err_pages;
2390                         }
2391                 }
2392                 if (!i ||
2393                     sg->length >= max_segment ||
2394                     page_to_pfn(page) != last_pfn + 1) {
2395                         if (i)
2396                                 sg = sg_next(sg);
2397                         st->nents++;
2398                         sg_set_page(sg, page, PAGE_SIZE, 0);
2399                 } else {
2400                         sg->length += PAGE_SIZE;
2401                 }
2402                 last_pfn = page_to_pfn(page);
2403
2404                 /* Check that the i965g/gm workaround works. */
2405                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2406         }
2407         if (sg) /* loop terminated early; short sg table */
2408                 sg_mark_end(sg);
2409
2410         /* Trim unused sg entries to avoid wasting memory. */
2411         i915_sg_trim(st);
2412
2413         ret = i915_gem_gtt_prepare_pages(obj, st);
2414         if (ret)
2415                 goto err_pages;
2416
2417         if (i915_gem_object_needs_bit17_swizzle(obj))
2418                 i915_gem_object_do_bit_17_swizzle(obj, st);
2419
2420         return st;
2421
2422 err_pages:
2423         sg_mark_end(sg);
2424         for_each_sgt_page(page, sgt_iter, st)
2425                 put_page(page);
2426         sg_free_table(st);
2427         kfree(st);
2428
2429         /* shmemfs first checks if there is enough memory to allocate the page
2430          * and reports ENOSPC should there be insufficient, along with the usual
2431          * ENOMEM for a genuine allocation failure.
2432          *
2433          * We use ENOSPC in our driver to mean that we have run out of aperture
2434          * space and so want to translate the error from shmemfs back to our
2435          * usual understanding of ENOMEM.
2436          */
2437         if (ret == -ENOSPC)
2438                 ret = -ENOMEM;
2439
2440         return ERR_PTR(ret);
2441 }
2442
2443 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2444                                  struct sg_table *pages)
2445 {
2446         lockdep_assert_held(&obj->mm.lock);
2447
2448         obj->mm.get_page.sg_pos = pages->sgl;
2449         obj->mm.get_page.sg_idx = 0;
2450
2451         obj->mm.pages = pages;
2452
2453         if (i915_gem_object_is_tiled(obj) &&
2454             to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2455                 GEM_BUG_ON(obj->mm.quirked);
2456                 __i915_gem_object_pin_pages(obj);
2457                 obj->mm.quirked = true;
2458         }
2459 }
2460
2461 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2462 {
2463         struct sg_table *pages;
2464
2465         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2466
2467         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2468                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2469                 return -EFAULT;
2470         }
2471
2472         pages = obj->ops->get_pages(obj);
2473         if (unlikely(IS_ERR(pages)))
2474                 return PTR_ERR(pages);
2475
2476         __i915_gem_object_set_pages(obj, pages);
2477         return 0;
2478 }
2479
2480 /* Ensure that the associated pages are gathered from the backing storage
2481  * and pinned into our object. i915_gem_object_pin_pages() may be called
2482  * multiple times before they are released by a single call to
2483  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2484  * either as a result of memory pressure (reaping pages under the shrinker)
2485  * or as the object is itself released.
2486  */
2487 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2488 {
2489         int err;
2490
2491         err = mutex_lock_interruptible(&obj->mm.lock);
2492         if (err)
2493                 return err;
2494
2495         if (unlikely(!obj->mm.pages)) {
2496                 err = ____i915_gem_object_get_pages(obj);
2497                 if (err)
2498                         goto unlock;
2499
2500                 smp_mb__before_atomic();
2501         }
2502         atomic_inc(&obj->mm.pages_pin_count);
2503
2504 unlock:
2505         mutex_unlock(&obj->mm.lock);
2506         return err;
2507 }
2508
2509 /* The 'mapping' part of i915_gem_object_pin_map() below */
2510 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2511                                  enum i915_map_type type)
2512 {
2513         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2514         struct sg_table *sgt = obj->mm.pages;
2515         struct sgt_iter sgt_iter;
2516         struct page *page;
2517         struct page *stack_pages[32];
2518         struct page **pages = stack_pages;
2519         unsigned long i = 0;
2520         pgprot_t pgprot;
2521         void *addr;
2522
2523         /* A single page can always be kmapped */
2524         if (n_pages == 1 && type == I915_MAP_WB)
2525                 return kmap(sg_page(sgt->sgl));
2526
2527         if (n_pages > ARRAY_SIZE(stack_pages)) {
2528                 /* Too big for stack -- allocate temporary array instead */
2529                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2530                 if (!pages)
2531                         return NULL;
2532         }
2533
2534         for_each_sgt_page(page, sgt_iter, sgt)
2535                 pages[i++] = page;
2536
2537         /* Check that we have the expected number of pages */
2538         GEM_BUG_ON(i != n_pages);
2539
2540         switch (type) {
2541         case I915_MAP_WB:
2542                 pgprot = PAGE_KERNEL;
2543                 break;
2544         case I915_MAP_WC:
2545                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2546                 break;
2547         }
2548         addr = vmap(pages, n_pages, 0, pgprot);
2549
2550         if (pages != stack_pages)
2551                 drm_free_large(pages);
2552
2553         return addr;
2554 }
2555
2556 /* get, pin, and map the pages of the object into kernel space */
2557 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2558                               enum i915_map_type type)
2559 {
2560         enum i915_map_type has_type;
2561         bool pinned;
2562         void *ptr;
2563         int ret;
2564
2565         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2566
2567         ret = mutex_lock_interruptible(&obj->mm.lock);
2568         if (ret)
2569                 return ERR_PTR(ret);
2570
2571         pinned = true;
2572         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2573                 if (unlikely(!obj->mm.pages)) {
2574                         ret = ____i915_gem_object_get_pages(obj);
2575                         if (ret)
2576                                 goto err_unlock;
2577
2578                         smp_mb__before_atomic();
2579                 }
2580                 atomic_inc(&obj->mm.pages_pin_count);
2581                 pinned = false;
2582         }
2583         GEM_BUG_ON(!obj->mm.pages);
2584
2585         ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2586         if (ptr && has_type != type) {
2587                 if (pinned) {
2588                         ret = -EBUSY;
2589                         goto err_unpin;
2590                 }
2591
2592                 if (is_vmalloc_addr(ptr))
2593                         vunmap(ptr);
2594                 else
2595                         kunmap(kmap_to_page(ptr));
2596
2597                 ptr = obj->mm.mapping = NULL;
2598         }
2599
2600         if (!ptr) {
2601                 ptr = i915_gem_object_map(obj, type);
2602                 if (!ptr) {
2603                         ret = -ENOMEM;
2604                         goto err_unpin;
2605                 }
2606
2607                 obj->mm.mapping = ptr_pack_bits(ptr, type);
2608         }
2609
2610 out_unlock:
2611         mutex_unlock(&obj->mm.lock);
2612         return ptr;
2613
2614 err_unpin:
2615         atomic_dec(&obj->mm.pages_pin_count);
2616 err_unlock:
2617         ptr = ERR_PTR(ret);
2618         goto out_unlock;
2619 }
2620
2621 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2622 {
2623         unsigned long elapsed;
2624
2625         if (ctx->hang_stats.banned)
2626                 return true;
2627
2628         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2629         if (ctx->hang_stats.ban_period_seconds &&
2630             elapsed <= ctx->hang_stats.ban_period_seconds) {
2631                 DRM_DEBUG("context hanging too fast, banning!\n");
2632                 return true;
2633         }
2634
2635         return false;
2636 }
2637
2638 static void i915_set_reset_status(struct i915_gem_context *ctx,
2639                                   const bool guilty)
2640 {
2641         struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2642
2643         if (guilty) {
2644                 hs->banned = i915_context_is_banned(ctx);
2645                 hs->batch_active++;
2646                 hs->guilty_ts = get_seconds();
2647         } else {
2648                 hs->batch_pending++;
2649         }
2650 }
2651
2652 struct drm_i915_gem_request *
2653 i915_gem_find_active_request(struct intel_engine_cs *engine)
2654 {
2655         struct drm_i915_gem_request *request;
2656
2657         /* We are called by the error capture and reset at a random
2658          * point in time. In particular, note that neither is crucially
2659          * ordered with an interrupt. After a hang, the GPU is dead and we
2660          * assume that no more writes can happen (we waited long enough for
2661          * all writes that were in transaction to be flushed) - adding an
2662          * extra delay for a recent interrupt is pointless. Hence, we do
2663          * not need an engine->irq_seqno_barrier() before the seqno reads.
2664          */
2665         list_for_each_entry(request, &engine->timeline->requests, link) {
2666                 if (__i915_gem_request_completed(request))
2667                         continue;
2668
2669                 return request;
2670         }
2671
2672         return NULL;
2673 }
2674
2675 static void reset_request(struct drm_i915_gem_request *request)
2676 {
2677         void *vaddr = request->ring->vaddr;
2678         u32 head;
2679
2680         /* As this request likely depends on state from the lost
2681          * context, clear out all the user operations leaving the
2682          * breadcrumb at the end (so we get the fence notifications).
2683          */
2684         head = request->head;
2685         if (request->postfix < head) {
2686                 memset(vaddr + head, 0, request->ring->size - head);
2687                 head = 0;
2688         }
2689         memset(vaddr + head, 0, request->postfix - head);
2690 }
2691
2692 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2693 {
2694         struct drm_i915_gem_request *request;
2695         struct i915_gem_context *incomplete_ctx;
2696         struct intel_timeline *timeline;
2697         bool ring_hung;
2698
2699         if (engine->irq_seqno_barrier)
2700                 engine->irq_seqno_barrier(engine);
2701
2702         request = i915_gem_find_active_request(engine);
2703         if (!request)
2704                 return;
2705
2706         ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2707         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
2708                 ring_hung = false;
2709
2710         i915_set_reset_status(request->ctx, ring_hung);
2711         if (!ring_hung)
2712                 return;
2713
2714         DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2715                          engine->name, request->global_seqno);
2716
2717         /* Setup the CS to resume from the breadcrumb of the hung request */
2718         engine->reset_hw(engine, request);
2719
2720         /* Users of the default context do not rely on logical state
2721          * preserved between batches. They have to emit full state on
2722          * every batch and so it is safe to execute queued requests following
2723          * the hang.
2724          *
2725          * Other contexts preserve state, now corrupt. We want to skip all
2726          * queued requests that reference the corrupt context.
2727          */
2728         incomplete_ctx = request->ctx;
2729         if (i915_gem_context_is_default(incomplete_ctx))
2730                 return;
2731
2732         list_for_each_entry_continue(request, &engine->timeline->requests, link)
2733                 if (request->ctx == incomplete_ctx)
2734                         reset_request(request);
2735
2736         timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
2737         list_for_each_entry(request, &timeline->requests, link)
2738                 reset_request(request);
2739 }
2740
2741 void i915_gem_reset(struct drm_i915_private *dev_priv)
2742 {
2743         struct intel_engine_cs *engine;
2744         enum intel_engine_id id;
2745
2746         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2747
2748         i915_gem_retire_requests(dev_priv);
2749
2750         for_each_engine(engine, dev_priv, id)
2751                 i915_gem_reset_engine(engine);
2752
2753         i915_gem_restore_fences(&dev_priv->drm);
2754
2755         if (dev_priv->gt.awake) {
2756                 intel_sanitize_gt_powersave(dev_priv);
2757                 intel_enable_gt_powersave(dev_priv);
2758                 if (INTEL_GEN(dev_priv) >= 6)
2759                         gen6_rps_busy(dev_priv);
2760         }
2761 }
2762
2763 static void nop_submit_request(struct drm_i915_gem_request *request)
2764 {
2765 }
2766
2767 static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2768 {
2769         engine->submit_request = nop_submit_request;
2770
2771         /* Mark all pending requests as complete so that any concurrent
2772          * (lockless) lookup doesn't try and wait upon the request as we
2773          * reset it.
2774          */
2775         intel_engine_init_global_seqno(engine,
2776                                        intel_engine_last_submit(engine));
2777
2778         /*
2779          * Clear the execlists queue up before freeing the requests, as those
2780          * are the ones that keep the context and ringbuffer backing objects
2781          * pinned in place.
2782          */
2783
2784         if (i915.enable_execlists) {
2785                 unsigned long flags;
2786
2787                 spin_lock_irqsave(&engine->timeline->lock, flags);
2788
2789                 i915_gem_request_put(engine->execlist_port[0].request);
2790                 i915_gem_request_put(engine->execlist_port[1].request);
2791                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2792                 engine->execlist_queue = RB_ROOT;
2793                 engine->execlist_first = NULL;
2794
2795                 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2796         }
2797 }
2798
2799 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2800 {
2801         struct intel_engine_cs *engine;
2802         enum intel_engine_id id;
2803
2804         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2805         set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2806
2807         i915_gem_context_lost(dev_priv);
2808         for_each_engine(engine, dev_priv, id)
2809                 i915_gem_cleanup_engine(engine);
2810         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2811
2812         i915_gem_retire_requests(dev_priv);
2813 }
2814
2815 static void
2816 i915_gem_retire_work_handler(struct work_struct *work)
2817 {
2818         struct drm_i915_private *dev_priv =
2819                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2820         struct drm_device *dev = &dev_priv->drm;
2821
2822         /* Come back later if the device is busy... */
2823         if (mutex_trylock(&dev->struct_mutex)) {
2824                 i915_gem_retire_requests(dev_priv);
2825                 mutex_unlock(&dev->struct_mutex);
2826         }
2827
2828         /* Keep the retire handler running until we are finally idle.
2829          * We do not need to do this test under locking as in the worst-case
2830          * we queue the retire worker once too often.
2831          */
2832         if (READ_ONCE(dev_priv->gt.awake)) {
2833                 i915_queue_hangcheck(dev_priv);
2834                 queue_delayed_work(dev_priv->wq,
2835                                    &dev_priv->gt.retire_work,
2836                                    round_jiffies_up_relative(HZ));
2837         }
2838 }
2839
2840 static void
2841 i915_gem_idle_work_handler(struct work_struct *work)
2842 {
2843         struct drm_i915_private *dev_priv =
2844                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2845         struct drm_device *dev = &dev_priv->drm;
2846         struct intel_engine_cs *engine;
2847         enum intel_engine_id id;
2848         bool rearm_hangcheck;
2849
2850         if (!READ_ONCE(dev_priv->gt.awake))
2851                 return;
2852
2853         /*
2854          * Wait for last execlists context complete, but bail out in case a
2855          * new request is submitted.
2856          */
2857         wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2858                  intel_execlists_idle(dev_priv), 10);
2859
2860         if (READ_ONCE(dev_priv->gt.active_requests))
2861                 return;
2862
2863         rearm_hangcheck =
2864                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2865
2866         if (!mutex_trylock(&dev->struct_mutex)) {
2867                 /* Currently busy, come back later */
2868                 mod_delayed_work(dev_priv->wq,
2869                                  &dev_priv->gt.idle_work,
2870                                  msecs_to_jiffies(50));
2871                 goto out_rearm;
2872         }
2873
2874         /*
2875          * New request retired after this work handler started, extend active
2876          * period until next instance of the work.
2877          */
2878         if (work_pending(work))
2879                 goto out_unlock;
2880
2881         if (dev_priv->gt.active_requests)
2882                 goto out_unlock;
2883
2884         if (wait_for(intel_execlists_idle(dev_priv), 10))
2885                 DRM_ERROR("Timeout waiting for engines to idle\n");
2886
2887         for_each_engine(engine, dev_priv, id)
2888                 i915_gem_batch_pool_fini(&engine->batch_pool);
2889
2890         GEM_BUG_ON(!dev_priv->gt.awake);
2891         dev_priv->gt.awake = false;
2892         rearm_hangcheck = false;
2893
2894         if (INTEL_GEN(dev_priv) >= 6)
2895                 gen6_rps_idle(dev_priv);
2896         intel_runtime_pm_put(dev_priv);
2897 out_unlock:
2898         mutex_unlock(&dev->struct_mutex);
2899
2900 out_rearm:
2901         if (rearm_hangcheck) {
2902                 GEM_BUG_ON(!dev_priv->gt.awake);
2903                 i915_queue_hangcheck(dev_priv);
2904         }
2905 }
2906
2907 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2908 {
2909         struct drm_i915_gem_object *obj = to_intel_bo(gem);
2910         struct drm_i915_file_private *fpriv = file->driver_priv;
2911         struct i915_vma *vma, *vn;
2912
2913         mutex_lock(&obj->base.dev->struct_mutex);
2914         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2915                 if (vma->vm->file == fpriv)
2916                         i915_vma_close(vma);
2917
2918         if (i915_gem_object_is_active(obj) &&
2919             !i915_gem_object_has_active_reference(obj)) {
2920                 i915_gem_object_set_active_reference(obj);
2921                 i915_gem_object_get(obj);
2922         }
2923         mutex_unlock(&obj->base.dev->struct_mutex);
2924 }
2925
2926 static unsigned long to_wait_timeout(s64 timeout_ns)
2927 {
2928         if (timeout_ns < 0)
2929                 return MAX_SCHEDULE_TIMEOUT;
2930
2931         if (timeout_ns == 0)
2932                 return 0;
2933
2934         return nsecs_to_jiffies_timeout(timeout_ns);
2935 }
2936
2937 /**
2938  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2939  * @dev: drm device pointer
2940  * @data: ioctl data blob
2941  * @file: drm file pointer
2942  *
2943  * Returns 0 if successful, else an error is returned with the remaining time in
2944  * the timeout parameter.
2945  *  -ETIME: object is still busy after timeout
2946  *  -ERESTARTSYS: signal interrupted the wait
2947  *  -ENONENT: object doesn't exist
2948  * Also possible, but rare:
2949  *  -EAGAIN: GPU wedged
2950  *  -ENOMEM: damn
2951  *  -ENODEV: Internal IRQ fail
2952  *  -E?: The add request failed
2953  *
2954  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2955  * non-zero timeout parameter the wait ioctl will wait for the given number of
2956  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2957  * without holding struct_mutex the object may become re-busied before this
2958  * function completes. A similar but shorter * race condition exists in the busy
2959  * ioctl
2960  */
2961 int
2962 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2963 {
2964         struct drm_i915_gem_wait *args = data;
2965         struct drm_i915_gem_object *obj;
2966         ktime_t start;
2967         long ret;
2968
2969         if (args->flags != 0)
2970                 return -EINVAL;
2971
2972         obj = i915_gem_object_lookup(file, args->bo_handle);
2973         if (!obj)
2974                 return -ENOENT;
2975
2976         start = ktime_get();
2977
2978         ret = i915_gem_object_wait(obj,
2979                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
2980                                    to_wait_timeout(args->timeout_ns),
2981                                    to_rps_client(file));
2982
2983         if (args->timeout_ns > 0) {
2984                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
2985                 if (args->timeout_ns < 0)
2986                         args->timeout_ns = 0;
2987         }
2988
2989         i915_gem_object_put(obj);
2990         return ret;
2991 }
2992
2993 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
2994 {
2995         int ret, i;
2996
2997         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
2998                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
2999                 if (ret)
3000                         return ret;
3001         }
3002
3003         return 0;
3004 }
3005
3006 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3007 {
3008         int ret;
3009
3010         if (flags & I915_WAIT_LOCKED) {
3011                 struct i915_gem_timeline *tl;
3012
3013                 lockdep_assert_held(&i915->drm.struct_mutex);
3014
3015                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3016                         ret = wait_for_timeline(tl, flags);
3017                         if (ret)
3018                                 return ret;
3019                 }
3020         } else {
3021                 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3022                 if (ret)
3023                         return ret;
3024         }
3025
3026         return 0;
3027 }
3028
3029 void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3030                              bool force)
3031 {
3032         /* If we don't have a page list set up, then we're not pinned
3033          * to GPU, and we can ignore the cache flush because it'll happen
3034          * again at bind time.
3035          */
3036         if (!obj->mm.pages)
3037                 return;
3038
3039         /*
3040          * Stolen memory is always coherent with the GPU as it is explicitly
3041          * marked as wc by the system, or the system is cache-coherent.
3042          */
3043         if (obj->stolen || obj->phys_handle)
3044                 return;
3045
3046         /* If the GPU is snooping the contents of the CPU cache,
3047          * we do not need to manually clear the CPU cache lines.  However,
3048          * the caches are only snooped when the render cache is
3049          * flushed/invalidated.  As we always have to emit invalidations
3050          * and flushes when moving into and out of the RENDER domain, correct
3051          * snooping behaviour occurs naturally as the result of our domain
3052          * tracking.
3053          */
3054         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3055                 obj->cache_dirty = true;
3056                 return;
3057         }
3058
3059         trace_i915_gem_object_clflush(obj);
3060         drm_clflush_sg(obj->mm.pages);
3061         obj->cache_dirty = false;
3062 }
3063
3064 /** Flushes the GTT write domain for the object if it's dirty. */
3065 static void
3066 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3067 {
3068         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3069
3070         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3071                 return;
3072
3073         /* No actual flushing is required for the GTT write domain.  Writes
3074          * to it "immediately" go to main memory as far as we know, so there's
3075          * no chipset flush.  It also doesn't land in render cache.
3076          *
3077          * However, we do have to enforce the order so that all writes through
3078          * the GTT land before any writes to the device, such as updates to
3079          * the GATT itself.
3080          *
3081          * We also have to wait a bit for the writes to land from the GTT.
3082          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3083          * timing. This issue has only been observed when switching quickly
3084          * between GTT writes and CPU reads from inside the kernel on recent hw,
3085          * and it appears to only affect discrete GTT blocks (i.e. on LLC
3086          * system agents we cannot reproduce this behaviour).
3087          */
3088         wmb();
3089         if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3090                 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3091
3092         intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3093
3094         obj->base.write_domain = 0;
3095         trace_i915_gem_object_change_domain(obj,
3096                                             obj->base.read_domains,
3097                                             I915_GEM_DOMAIN_GTT);
3098 }
3099
3100 /** Flushes the CPU write domain for the object if it's dirty. */
3101 static void
3102 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3103 {
3104         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3105                 return;
3106
3107         i915_gem_clflush_object(obj, obj->pin_display);
3108         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3109
3110         obj->base.write_domain = 0;
3111         trace_i915_gem_object_change_domain(obj,
3112                                             obj->base.read_domains,
3113                                             I915_GEM_DOMAIN_CPU);
3114 }
3115
3116 /**
3117  * Moves a single object to the GTT read, and possibly write domain.
3118  * @obj: object to act on
3119  * @write: ask for write access or read only
3120  *
3121  * This function returns when the move is complete, including waiting on
3122  * flushes to occur.
3123  */
3124 int
3125 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3126 {
3127         uint32_t old_write_domain, old_read_domains;
3128         int ret;
3129
3130         lockdep_assert_held(&obj->base.dev->struct_mutex);
3131
3132         ret = i915_gem_object_wait(obj,
3133                                    I915_WAIT_INTERRUPTIBLE |
3134                                    I915_WAIT_LOCKED |
3135                                    (write ? I915_WAIT_ALL : 0),
3136                                    MAX_SCHEDULE_TIMEOUT,
3137                                    NULL);
3138         if (ret)
3139                 return ret;
3140
3141         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3142                 return 0;
3143
3144         /* Flush and acquire obj->pages so that we are coherent through
3145          * direct access in memory with previous cached writes through
3146          * shmemfs and that our cache domain tracking remains valid.
3147          * For example, if the obj->filp was moved to swap without us
3148          * being notified and releasing the pages, we would mistakenly
3149          * continue to assume that the obj remained out of the CPU cached
3150          * domain.
3151          */
3152         ret = i915_gem_object_pin_pages(obj);
3153         if (ret)
3154                 return ret;
3155
3156         i915_gem_object_flush_cpu_write_domain(obj);
3157
3158         /* Serialise direct access to this object with the barriers for
3159          * coherent writes from the GPU, by effectively invalidating the
3160          * GTT domain upon first access.
3161          */
3162         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3163                 mb();
3164
3165         old_write_domain = obj->base.write_domain;
3166         old_read_domains = obj->base.read_domains;
3167
3168         /* It should now be out of any other write domains, and we can update
3169          * the domain values for our changes.
3170          */
3171         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3172         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3173         if (write) {
3174                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3175                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3176                 obj->mm.dirty = true;
3177         }
3178
3179         trace_i915_gem_object_change_domain(obj,
3180                                             old_read_domains,
3181                                             old_write_domain);
3182
3183         i915_gem_object_unpin_pages(obj);
3184         return 0;
3185 }
3186
3187 /**
3188  * Changes the cache-level of an object across all VMA.
3189  * @obj: object to act on
3190  * @cache_level: new cache level to set for the object
3191  *
3192  * After this function returns, the object will be in the new cache-level
3193  * across all GTT and the contents of the backing storage will be coherent,
3194  * with respect to the new cache-level. In order to keep the backing storage
3195  * coherent for all users, we only allow a single cache level to be set
3196  * globally on the object and prevent it from being changed whilst the
3197  * hardware is reading from the object. That is if the object is currently
3198  * on the scanout it will be set to uncached (or equivalent display
3199  * cache coherency) and all non-MOCS GPU access will also be uncached so
3200  * that all direct access to the scanout remains coherent.
3201  */
3202 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3203                                     enum i915_cache_level cache_level)
3204 {
3205         struct i915_vma *vma;
3206         int ret = 0;
3207
3208         lockdep_assert_held(&obj->base.dev->struct_mutex);
3209
3210         if (obj->cache_level == cache_level)
3211                 goto out;
3212
3213         /* Inspect the list of currently bound VMA and unbind any that would
3214          * be invalid given the new cache-level. This is principally to
3215          * catch the issue of the CS prefetch crossing page boundaries and
3216          * reading an invalid PTE on older architectures.
3217          */
3218 restart:
3219         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3220                 if (!drm_mm_node_allocated(&vma->node))
3221                         continue;
3222
3223                 if (i915_vma_is_pinned(vma)) {
3224                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3225                         return -EBUSY;
3226                 }
3227
3228                 if (i915_gem_valid_gtt_space(vma, cache_level))
3229                         continue;
3230
3231                 ret = i915_vma_unbind(vma);
3232                 if (ret)
3233                         return ret;
3234
3235                 /* As unbinding may affect other elements in the
3236                  * obj->vma_list (due to side-effects from retiring
3237                  * an active vma), play safe and restart the iterator.
3238                  */
3239                 goto restart;
3240         }
3241
3242         /* We can reuse the existing drm_mm nodes but need to change the
3243          * cache-level on the PTE. We could simply unbind them all and
3244          * rebind with the correct cache-level on next use. However since
3245          * we already have a valid slot, dma mapping, pages etc, we may as
3246          * rewrite the PTE in the belief that doing so tramples upon less
3247          * state and so involves less work.
3248          */
3249         if (obj->bind_count) {
3250                 /* Before we change the PTE, the GPU must not be accessing it.
3251                  * If we wait upon the object, we know that all the bound
3252                  * VMA are no longer active.
3253                  */
3254                 ret = i915_gem_object_wait(obj,
3255                                            I915_WAIT_INTERRUPTIBLE |
3256                                            I915_WAIT_LOCKED |
3257                                            I915_WAIT_ALL,
3258                                            MAX_SCHEDULE_TIMEOUT,
3259                                            NULL);
3260                 if (ret)
3261                         return ret;
3262
3263                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3264                     cache_level != I915_CACHE_NONE) {
3265                         /* Access to snoopable pages through the GTT is
3266                          * incoherent and on some machines causes a hard
3267                          * lockup. Relinquish the CPU mmaping to force
3268                          * userspace to refault in the pages and we can
3269                          * then double check if the GTT mapping is still
3270                          * valid for that pointer access.
3271                          */
3272                         i915_gem_release_mmap(obj);
3273
3274                         /* As we no longer need a fence for GTT access,
3275                          * we can relinquish it now (and so prevent having
3276                          * to steal a fence from someone else on the next
3277                          * fence request). Note GPU activity would have
3278                          * dropped the fence as all snoopable access is
3279                          * supposed to be linear.
3280                          */
3281                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3282                                 ret = i915_vma_put_fence(vma);
3283                                 if (ret)
3284                                         return ret;
3285                         }
3286                 } else {
3287                         /* We either have incoherent backing store and
3288                          * so no GTT access or the architecture is fully
3289                          * coherent. In such cases, existing GTT mmaps
3290                          * ignore the cache bit in the PTE and we can
3291                          * rewrite it without confusing the GPU or having
3292                          * to force userspace to fault back in its mmaps.
3293                          */
3294                 }
3295
3296                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3297                         if (!drm_mm_node_allocated(&vma->node))
3298                                 continue;
3299
3300                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3301                         if (ret)
3302                                 return ret;
3303                 }
3304         }
3305
3306         list_for_each_entry(vma, &obj->vma_list, obj_link)
3307                 vma->node.color = cache_level;
3308         obj->cache_level = cache_level;
3309
3310 out:
3311         /* Flush the dirty CPU caches to the backing storage so that the
3312          * object is now coherent at its new cache level (with respect
3313          * to the access domain).
3314          */
3315         if (obj->cache_dirty && cpu_write_needs_clflush(obj))
3316                 i915_gem_clflush_object(obj, true);
3317
3318         return 0;
3319 }
3320
3321 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3322                                struct drm_file *file)
3323 {
3324         struct drm_i915_gem_caching *args = data;
3325         struct drm_i915_gem_object *obj;
3326         int err = 0;
3327
3328         rcu_read_lock();
3329         obj = i915_gem_object_lookup_rcu(file, args->handle);
3330         if (!obj) {
3331                 err = -ENOENT;
3332                 goto out;
3333         }
3334
3335         switch (obj->cache_level) {
3336         case I915_CACHE_LLC:
3337         case I915_CACHE_L3_LLC:
3338                 args->caching = I915_CACHING_CACHED;
3339                 break;
3340
3341         case I915_CACHE_WT:
3342                 args->caching = I915_CACHING_DISPLAY;
3343                 break;
3344
3345         default:
3346                 args->caching = I915_CACHING_NONE;
3347                 break;
3348         }
3349 out:
3350         rcu_read_unlock();
3351         return err;
3352 }
3353
3354 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3355                                struct drm_file *file)
3356 {
3357         struct drm_i915_private *i915 = to_i915(dev);
3358         struct drm_i915_gem_caching *args = data;
3359         struct drm_i915_gem_object *obj;
3360         enum i915_cache_level level;
3361         int ret;
3362
3363         switch (args->caching) {
3364         case I915_CACHING_NONE:
3365                 level = I915_CACHE_NONE;
3366                 break;
3367         case I915_CACHING_CACHED:
3368                 /*
3369                  * Due to a HW issue on BXT A stepping, GPU stores via a
3370                  * snooped mapping may leave stale data in a corresponding CPU
3371                  * cacheline, whereas normally such cachelines would get
3372                  * invalidated.
3373                  */
3374                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3375                         return -ENODEV;
3376
3377                 level = I915_CACHE_LLC;
3378                 break;
3379         case I915_CACHING_DISPLAY:
3380                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3381                 break;
3382         default:
3383                 return -EINVAL;
3384         }
3385
3386         ret = i915_mutex_lock_interruptible(dev);
3387         if (ret)
3388                 return ret;
3389
3390         obj = i915_gem_object_lookup(file, args->handle);
3391         if (!obj) {
3392                 ret = -ENOENT;
3393                 goto unlock;
3394         }
3395
3396         ret = i915_gem_object_set_cache_level(obj, level);
3397         i915_gem_object_put(obj);
3398 unlock:
3399         mutex_unlock(&dev->struct_mutex);
3400         return ret;
3401 }
3402
3403 /*
3404  * Prepare buffer for display plane (scanout, cursors, etc).
3405  * Can be called from an uninterruptible phase (modesetting) and allows
3406  * any flushes to be pipelined (for pageflips).
3407  */
3408 struct i915_vma *
3409 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3410                                      u32 alignment,
3411                                      const struct i915_ggtt_view *view)
3412 {
3413         struct i915_vma *vma;
3414         u32 old_read_domains, old_write_domain;
3415         int ret;
3416
3417         lockdep_assert_held(&obj->base.dev->struct_mutex);
3418
3419         /* Mark the pin_display early so that we account for the
3420          * display coherency whilst setting up the cache domains.
3421          */
3422         obj->pin_display++;
3423
3424         /* The display engine is not coherent with the LLC cache on gen6.  As
3425          * a result, we make sure that the pinning that is about to occur is
3426          * done with uncached PTEs. This is lowest common denominator for all
3427          * chipsets.
3428          *
3429          * However for gen6+, we could do better by using the GFDT bit instead
3430          * of uncaching, which would allow us to flush all the LLC-cached data
3431          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3432          */
3433         ret = i915_gem_object_set_cache_level(obj,
3434                                               HAS_WT(to_i915(obj->base.dev)) ?
3435                                               I915_CACHE_WT : I915_CACHE_NONE);
3436         if (ret) {
3437                 vma = ERR_PTR(ret);
3438                 goto err_unpin_display;
3439         }
3440
3441         /* As the user may map the buffer once pinned in the display plane
3442          * (e.g. libkms for the bootup splash), we have to ensure that we
3443          * always use map_and_fenceable for all scanout buffers. However,
3444          * it may simply be too big to fit into mappable, in which case
3445          * put it anyway and hope that userspace can cope (but always first
3446          * try to preserve the existing ABI).
3447          */
3448         vma = ERR_PTR(-ENOSPC);
3449         if (view->type == I915_GGTT_VIEW_NORMAL)
3450                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3451                                                PIN_MAPPABLE | PIN_NONBLOCK);
3452         if (IS_ERR(vma)) {
3453                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3454                 unsigned int flags;
3455
3456                 /* Valleyview is definitely limited to scanning out the first
3457                  * 512MiB. Lets presume this behaviour was inherited from the
3458                  * g4x display engine and that all earlier gen are similarly
3459                  * limited. Testing suggests that it is a little more
3460                  * complicated than this. For example, Cherryview appears quite
3461                  * happy to scanout from anywhere within its global aperture.
3462                  */
3463                 flags = 0;
3464                 if (HAS_GMCH_DISPLAY(i915))
3465                         flags = PIN_MAPPABLE;
3466                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3467         }
3468         if (IS_ERR(vma))
3469                 goto err_unpin_display;
3470
3471         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3472
3473         i915_gem_object_flush_cpu_write_domain(obj);
3474
3475         old_write_domain = obj->base.write_domain;
3476         old_read_domains = obj->base.read_domains;
3477
3478         /* It should now be out of any other write domains, and we can update
3479          * the domain values for our changes.
3480          */
3481         obj->base.write_domain = 0;
3482         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3483
3484         trace_i915_gem_object_change_domain(obj,
3485                                             old_read_domains,
3486                                             old_write_domain);
3487
3488         return vma;
3489
3490 err_unpin_display:
3491         obj->pin_display--;
3492         return vma;
3493 }
3494
3495 void
3496 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3497 {
3498         lockdep_assert_held(&vma->vm->dev->struct_mutex);
3499
3500         if (WARN_ON(vma->obj->pin_display == 0))
3501                 return;
3502
3503         if (--vma->obj->pin_display == 0)
3504                 vma->display_alignment = 0;
3505
3506         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3507         if (!i915_vma_is_active(vma))
3508                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3509
3510         i915_vma_unpin(vma);
3511 }
3512
3513 /**
3514  * Moves a single object to the CPU read, and possibly write domain.
3515  * @obj: object to act on
3516  * @write: requesting write or read-only access
3517  *
3518  * This function returns when the move is complete, including waiting on
3519  * flushes to occur.
3520  */
3521 int
3522 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3523 {
3524         uint32_t old_write_domain, old_read_domains;
3525         int ret;
3526
3527         lockdep_assert_held(&obj->base.dev->struct_mutex);
3528
3529         ret = i915_gem_object_wait(obj,
3530                                    I915_WAIT_INTERRUPTIBLE |
3531                                    I915_WAIT_LOCKED |
3532                                    (write ? I915_WAIT_ALL : 0),
3533                                    MAX_SCHEDULE_TIMEOUT,
3534                                    NULL);
3535         if (ret)
3536                 return ret;
3537
3538         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3539                 return 0;
3540
3541         i915_gem_object_flush_gtt_write_domain(obj);
3542
3543         old_write_domain = obj->base.write_domain;
3544         old_read_domains = obj->base.read_domains;
3545
3546         /* Flush the CPU cache if it's still invalid. */
3547         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3548                 i915_gem_clflush_object(obj, false);
3549
3550                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3551         }
3552
3553         /* It should now be out of any other write domains, and we can update
3554          * the domain values for our changes.
3555          */
3556         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3557
3558         /* If we're writing through the CPU, then the GPU read domains will
3559          * need to be invalidated at next use.
3560          */
3561         if (write) {
3562                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3563                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3564         }
3565
3566         trace_i915_gem_object_change_domain(obj,
3567                                             old_read_domains,
3568                                             old_write_domain);
3569
3570         return 0;
3571 }
3572
3573 /* Throttle our rendering by waiting until the ring has completed our requests
3574  * emitted over 20 msec ago.
3575  *
3576  * Note that if we were to use the current jiffies each time around the loop,
3577  * we wouldn't escape the function with any frames outstanding if the time to
3578  * render a frame was over 20ms.
3579  *
3580  * This should get us reasonable parallelism between CPU and GPU but also
3581  * relatively low latency when blocking on a particular request to finish.
3582  */
3583 static int
3584 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3585 {
3586         struct drm_i915_private *dev_priv = to_i915(dev);
3587         struct drm_i915_file_private *file_priv = file->driver_priv;
3588         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3589         struct drm_i915_gem_request *request, *target = NULL;
3590         long ret;
3591
3592         /* ABI: return -EIO if already wedged */
3593         if (i915_terminally_wedged(&dev_priv->gpu_error))
3594                 return -EIO;
3595
3596         spin_lock(&file_priv->mm.lock);
3597         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3598                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3599                         break;
3600
3601                 /*
3602                  * Note that the request might not have been submitted yet.
3603                  * In which case emitted_jiffies will be zero.
3604                  */
3605                 if (!request->emitted_jiffies)
3606                         continue;
3607
3608                 target = request;
3609         }
3610         if (target)
3611                 i915_gem_request_get(target);
3612         spin_unlock(&file_priv->mm.lock);
3613
3614         if (target == NULL)
3615                 return 0;
3616
3617         ret = i915_wait_request(target,
3618                                 I915_WAIT_INTERRUPTIBLE,
3619                                 MAX_SCHEDULE_TIMEOUT);
3620         i915_gem_request_put(target);
3621
3622         return ret < 0 ? ret : 0;
3623 }
3624
3625 struct i915_vma *
3626 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3627                          const struct i915_ggtt_view *view,
3628                          u64 size,
3629                          u64 alignment,
3630                          u64 flags)
3631 {
3632         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3633         struct i915_address_space *vm = &dev_priv->ggtt.base;
3634         struct i915_vma *vma;
3635         int ret;
3636
3637         lockdep_assert_held(&obj->base.dev->struct_mutex);
3638
3639         vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3640         if (IS_ERR(vma))
3641                 return vma;
3642
3643         if (i915_vma_misplaced(vma, size, alignment, flags)) {
3644                 if (flags & PIN_NONBLOCK &&
3645                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3646                         return ERR_PTR(-ENOSPC);
3647
3648                 if (flags & PIN_MAPPABLE) {
3649                         u32 fence_size;
3650
3651                         fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3652                                                             i915_gem_object_get_tiling(obj));
3653                         /* If the required space is larger than the available
3654                          * aperture, we will not able to find a slot for the
3655                          * object and unbinding the object now will be in
3656                          * vain. Worse, doing so may cause us to ping-pong
3657                          * the object in and out of the Global GTT and
3658                          * waste a lot of cycles under the mutex.
3659                          */
3660                         if (fence_size > dev_priv->ggtt.mappable_end)
3661                                 return ERR_PTR(-E2BIG);
3662
3663                         /* If NONBLOCK is set the caller is optimistically
3664                          * trying to cache the full object within the mappable
3665                          * aperture, and *must* have a fallback in place for
3666                          * situations where we cannot bind the object. We
3667                          * can be a little more lax here and use the fallback
3668                          * more often to avoid costly migrations of ourselves
3669                          * and other objects within the aperture.
3670                          *
3671                          * Half-the-aperture is used as a simple heuristic.
3672                          * More interesting would to do search for a free
3673                          * block prior to making the commitment to unbind.
3674                          * That caters for the self-harm case, and with a
3675                          * little more heuristics (e.g. NOFAULT, NOEVICT)
3676                          * we could try to minimise harm to others.
3677                          */
3678                         if (flags & PIN_NONBLOCK &&
3679                             fence_size > dev_priv->ggtt.mappable_end / 2)
3680                                 return ERR_PTR(-ENOSPC);
3681                 }
3682
3683                 WARN(i915_vma_is_pinned(vma),
3684                      "bo is already pinned in ggtt with incorrect alignment:"
3685                      " offset=%08x, req.alignment=%llx,"
3686                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3687                      i915_ggtt_offset(vma), alignment,
3688                      !!(flags & PIN_MAPPABLE),
3689                      i915_vma_is_map_and_fenceable(vma));
3690                 ret = i915_vma_unbind(vma);
3691                 if (ret)
3692                         return ERR_PTR(ret);
3693         }
3694
3695         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3696         if (ret)
3697                 return ERR_PTR(ret);
3698
3699         return vma;
3700 }
3701
3702 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3703 {
3704         /* Note that we could alias engines in the execbuf API, but
3705          * that would be very unwise as it prevents userspace from
3706          * fine control over engine selection. Ahem.
3707          *
3708          * This should be something like EXEC_MAX_ENGINE instead of
3709          * I915_NUM_ENGINES.
3710          */
3711         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3712         return 0x10000 << id;
3713 }
3714
3715 static __always_inline unsigned int __busy_write_id(unsigned int id)
3716 {
3717         /* The uABI guarantees an active writer is also amongst the read
3718          * engines. This would be true if we accessed the activity tracking
3719          * under the lock, but as we perform the lookup of the object and
3720          * its activity locklessly we can not guarantee that the last_write
3721          * being active implies that we have set the same engine flag from
3722          * last_read - hence we always set both read and write busy for
3723          * last_write.
3724          */
3725         return id | __busy_read_flag(id);
3726 }
3727
3728 static __always_inline unsigned int
3729 __busy_set_if_active(const struct dma_fence *fence,
3730                      unsigned int (*flag)(unsigned int id))
3731 {
3732         struct drm_i915_gem_request *rq;
3733
3734         /* We have to check the current hw status of the fence as the uABI
3735          * guarantees forward progress. We could rely on the idle worker
3736          * to eventually flush us, but to minimise latency just ask the
3737          * hardware.
3738          *
3739          * Note we only report on the status of native fences.
3740          */
3741         if (!dma_fence_is_i915(fence))
3742                 return 0;
3743
3744         /* opencode to_request() in order to avoid const warnings */
3745         rq = container_of(fence, struct drm_i915_gem_request, fence);
3746         if (i915_gem_request_completed(rq))
3747                 return 0;
3748
3749         return flag(rq->engine->exec_id);
3750 }
3751
3752 static __always_inline unsigned int
3753 busy_check_reader(const struct dma_fence *fence)
3754 {
3755         return __busy_set_if_active(fence, __busy_read_flag);
3756 }
3757
3758 static __always_inline unsigned int
3759 busy_check_writer(const struct dma_fence *fence)
3760 {
3761         if (!fence)
3762                 return 0;
3763
3764         return __busy_set_if_active(fence, __busy_write_id);
3765 }
3766
3767 int
3768 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3769                     struct drm_file *file)
3770 {
3771         struct drm_i915_gem_busy *args = data;
3772         struct drm_i915_gem_object *obj;
3773         struct reservation_object_list *list;
3774         unsigned int seq;
3775         int err;
3776
3777         err = -ENOENT;
3778         rcu_read_lock();
3779         obj = i915_gem_object_lookup_rcu(file, args->handle);
3780         if (!obj)
3781                 goto out;
3782
3783         /* A discrepancy here is that we do not report the status of
3784          * non-i915 fences, i.e. even though we may report the object as idle,
3785          * a call to set-domain may still stall waiting for foreign rendering.
3786          * This also means that wait-ioctl may report an object as busy,
3787          * where busy-ioctl considers it idle.
3788          *
3789          * We trade the ability to warn of foreign fences to report on which
3790          * i915 engines are active for the object.
3791          *
3792          * Alternatively, we can trade that extra information on read/write
3793          * activity with
3794          *      args->busy =
3795          *              !reservation_object_test_signaled_rcu(obj->resv, true);
3796          * to report the overall busyness. This is what the wait-ioctl does.
3797          *
3798          */
3799 retry:
3800         seq = raw_read_seqcount(&obj->resv->seq);
3801
3802         /* Translate the exclusive fence to the READ *and* WRITE engine */
3803         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3804
3805         /* Translate shared fences to READ set of engines */
3806         list = rcu_dereference(obj->resv->fence);
3807         if (list) {
3808                 unsigned int shared_count = list->shared_count, i;
3809
3810                 for (i = 0; i < shared_count; ++i) {
3811                         struct dma_fence *fence =
3812                                 rcu_dereference(list->shared[i]);
3813
3814                         args->busy |= busy_check_reader(fence);
3815                 }
3816         }
3817
3818         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3819                 goto retry;
3820
3821         err = 0;
3822 out:
3823         rcu_read_unlock();
3824         return err;
3825 }
3826
3827 int
3828 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3829                         struct drm_file *file_priv)
3830 {
3831         return i915_gem_ring_throttle(dev, file_priv);
3832 }
3833
3834 int
3835 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3836                        struct drm_file *file_priv)
3837 {
3838         struct drm_i915_private *dev_priv = to_i915(dev);
3839         struct drm_i915_gem_madvise *args = data;
3840         struct drm_i915_gem_object *obj;
3841         int err;
3842
3843         switch (args->madv) {
3844         case I915_MADV_DONTNEED:
3845         case I915_MADV_WILLNEED:
3846             break;
3847         default:
3848             return -EINVAL;
3849         }
3850
3851         obj = i915_gem_object_lookup(file_priv, args->handle);
3852         if (!obj)
3853                 return -ENOENT;
3854
3855         err = mutex_lock_interruptible(&obj->mm.lock);
3856         if (err)
3857                 goto out;
3858
3859         if (obj->mm.pages &&
3860             i915_gem_object_is_tiled(obj) &&
3861             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3862                 if (obj->mm.madv == I915_MADV_WILLNEED) {
3863                         GEM_BUG_ON(!obj->mm.quirked);
3864                         __i915_gem_object_unpin_pages(obj);
3865                         obj->mm.quirked = false;
3866                 }
3867                 if (args->madv == I915_MADV_WILLNEED) {
3868                         GEM_BUG_ON(obj->mm.quirked);
3869                         __i915_gem_object_pin_pages(obj);
3870                         obj->mm.quirked = true;
3871                 }
3872         }
3873
3874         if (obj->mm.madv != __I915_MADV_PURGED)
3875                 obj->mm.madv = args->madv;
3876
3877         /* if the object is no longer attached, discard its backing storage */
3878         if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3879                 i915_gem_object_truncate(obj);
3880
3881         args->retained = obj->mm.madv != __I915_MADV_PURGED;
3882         mutex_unlock(&obj->mm.lock);
3883
3884 out:
3885         i915_gem_object_put(obj);
3886         return err;
3887 }
3888
3889 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3890                           const struct drm_i915_gem_object_ops *ops)
3891 {
3892         mutex_init(&obj->mm.lock);
3893
3894         INIT_LIST_HEAD(&obj->global_link);
3895         INIT_LIST_HEAD(&obj->userfault_link);
3896         INIT_LIST_HEAD(&obj->obj_exec_link);
3897         INIT_LIST_HEAD(&obj->vma_list);
3898         INIT_LIST_HEAD(&obj->batch_pool_link);
3899
3900         obj->ops = ops;
3901
3902         reservation_object_init(&obj->__builtin_resv);
3903         obj->resv = &obj->__builtin_resv;
3904
3905         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3906
3907         obj->mm.madv = I915_MADV_WILLNEED;
3908         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3909         mutex_init(&obj->mm.get_page.lock);
3910
3911         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3912 }
3913
3914 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3915         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3916                  I915_GEM_OBJECT_IS_SHRINKABLE,
3917         .get_pages = i915_gem_object_get_pages_gtt,
3918         .put_pages = i915_gem_object_put_pages_gtt,
3919 };
3920
3921 /* Note we don't consider signbits :| */
3922 #define overflows_type(x, T) \
3923         (sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
3924
3925 struct drm_i915_gem_object *
3926 i915_gem_object_create(struct drm_device *dev, u64 size)
3927 {
3928         struct drm_i915_private *dev_priv = to_i915(dev);
3929         struct drm_i915_gem_object *obj;
3930         struct address_space *mapping;
3931         gfp_t mask;
3932         int ret;
3933
3934         /* There is a prevalence of the assumption that we fit the object's
3935          * page count inside a 32bit _signed_ variable. Let's document this and
3936          * catch if we ever need to fix it. In the meantime, if you do spot
3937          * such a local variable, please consider fixing!
3938          */
3939         if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
3940                 return ERR_PTR(-E2BIG);
3941
3942         if (overflows_type(size, obj->base.size))
3943                 return ERR_PTR(-E2BIG);
3944
3945         obj = i915_gem_object_alloc(dev);
3946         if (obj == NULL)
3947                 return ERR_PTR(-ENOMEM);
3948
3949         ret = drm_gem_object_init(dev, &obj->base, size);
3950         if (ret)
3951                 goto fail;
3952
3953         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3954         if (IS_CRESTLINE(dev_priv) || IS_BROADWATER(dev_priv)) {
3955                 /* 965gm cannot relocate objects above 4GiB. */
3956                 mask &= ~__GFP_HIGHMEM;
3957                 mask |= __GFP_DMA32;
3958         }
3959
3960         mapping = obj->base.filp->f_mapping;
3961         mapping_set_gfp_mask(mapping, mask);
3962
3963         i915_gem_object_init(obj, &i915_gem_object_ops);
3964
3965         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3966         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3967
3968         if (HAS_LLC(dev_priv)) {
3969                 /* On some devices, we can have the GPU use the LLC (the CPU
3970                  * cache) for about a 10% performance improvement
3971                  * compared to uncached.  Graphics requests other than
3972                  * display scanout are coherent with the CPU in
3973                  * accessing this cache.  This means in this mode we
3974                  * don't need to clflush on the CPU side, and on the
3975                  * GPU side we only need to flush internal caches to
3976                  * get data visible to the CPU.
3977                  *
3978                  * However, we maintain the display planes as UC, and so
3979                  * need to rebind when first used as such.
3980                  */
3981                 obj->cache_level = I915_CACHE_LLC;
3982         } else
3983                 obj->cache_level = I915_CACHE_NONE;
3984
3985         trace_i915_gem_object_create(obj);
3986
3987         return obj;
3988
3989 fail:
3990         i915_gem_object_free(obj);
3991         return ERR_PTR(ret);
3992 }
3993
3994 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
3995 {
3996         /* If we are the last user of the backing storage (be it shmemfs
3997          * pages or stolen etc), we know that the pages are going to be
3998          * immediately released. In this case, we can then skip copying
3999          * back the contents from the GPU.
4000          */
4001
4002         if (obj->mm.madv != I915_MADV_WILLNEED)
4003                 return false;
4004
4005         if (obj->base.filp == NULL)
4006                 return true;
4007
4008         /* At first glance, this looks racy, but then again so would be
4009          * userspace racing mmap against close. However, the first external
4010          * reference to the filp can only be obtained through the
4011          * i915_gem_mmap_ioctl() which safeguards us against the user
4012          * acquiring such a reference whilst we are in the middle of
4013          * freeing the object.
4014          */
4015         return atomic_long_read(&obj->base.filp->f_count) == 1;
4016 }
4017
4018 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4019                                     struct llist_node *freed)
4020 {
4021         struct drm_i915_gem_object *obj, *on;
4022
4023         mutex_lock(&i915->drm.struct_mutex);
4024         intel_runtime_pm_get(i915);
4025         llist_for_each_entry(obj, freed, freed) {
4026                 struct i915_vma *vma, *vn;
4027
4028                 trace_i915_gem_object_destroy(obj);
4029
4030                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4031                 list_for_each_entry_safe(vma, vn,
4032                                          &obj->vma_list, obj_link) {
4033                         GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4034                         GEM_BUG_ON(i915_vma_is_active(vma));
4035                         vma->flags &= ~I915_VMA_PIN_MASK;
4036                         i915_vma_close(vma);
4037                 }
4038                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4039                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4040
4041                 list_del(&obj->global_link);
4042         }
4043         intel_runtime_pm_put(i915);
4044         mutex_unlock(&i915->drm.struct_mutex);
4045
4046         llist_for_each_entry_safe(obj, on, freed, freed) {
4047                 GEM_BUG_ON(obj->bind_count);
4048                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4049
4050                 if (obj->ops->release)
4051                         obj->ops->release(obj);
4052
4053                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4054                         atomic_set(&obj->mm.pages_pin_count, 0);
4055                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4056                 GEM_BUG_ON(obj->mm.pages);
4057
4058                 if (obj->base.import_attach)
4059                         drm_prime_gem_destroy(&obj->base, NULL);
4060
4061                 reservation_object_fini(&obj->__builtin_resv);
4062                 drm_gem_object_release(&obj->base);
4063                 i915_gem_info_remove_obj(i915, obj->base.size);
4064
4065                 kfree(obj->bit_17);
4066                 i915_gem_object_free(obj);
4067         }
4068 }
4069
4070 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4071 {
4072         struct llist_node *freed;
4073
4074         freed = llist_del_all(&i915->mm.free_list);
4075         if (unlikely(freed))
4076                 __i915_gem_free_objects(i915, freed);
4077 }
4078
4079 static void __i915_gem_free_work(struct work_struct *work)
4080 {
4081         struct drm_i915_private *i915 =
4082                 container_of(work, struct drm_i915_private, mm.free_work);
4083         struct llist_node *freed;
4084
4085         /* All file-owned VMA should have been released by this point through
4086          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4087          * However, the object may also be bound into the global GTT (e.g.
4088          * older GPUs without per-process support, or for direct access through
4089          * the GTT either for the user or for scanout). Those VMA still need to
4090          * unbound now.
4091          */
4092
4093         while ((freed = llist_del_all(&i915->mm.free_list)))
4094                 __i915_gem_free_objects(i915, freed);
4095 }
4096
4097 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4098 {
4099         struct drm_i915_gem_object *obj =
4100                 container_of(head, typeof(*obj), rcu);
4101         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4102
4103         /* We can't simply use call_rcu() from i915_gem_free_object()
4104          * as we need to block whilst unbinding, and the call_rcu
4105          * task may be called from softirq context. So we take a
4106          * detour through a worker.
4107          */
4108         if (llist_add(&obj->freed, &i915->mm.free_list))
4109                 schedule_work(&i915->mm.free_work);
4110 }
4111
4112 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4113 {
4114         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4115
4116         if (obj->mm.quirked)
4117                 __i915_gem_object_unpin_pages(obj);
4118
4119         if (discard_backing_storage(obj))
4120                 obj->mm.madv = I915_MADV_DONTNEED;
4121
4122         /* Before we free the object, make sure any pure RCU-only
4123          * read-side critical sections are complete, e.g.
4124          * i915_gem_busy_ioctl(). For the corresponding synchronized
4125          * lookup see i915_gem_object_lookup_rcu().
4126          */
4127         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4128 }
4129
4130 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4131 {
4132         lockdep_assert_held(&obj->base.dev->struct_mutex);
4133
4134         GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4135         if (i915_gem_object_is_active(obj))
4136                 i915_gem_object_set_active_reference(obj);
4137         else
4138                 i915_gem_object_put(obj);
4139 }
4140
4141 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4142 {
4143         struct intel_engine_cs *engine;
4144         enum intel_engine_id id;
4145
4146         for_each_engine(engine, dev_priv, id)
4147                 GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
4148 }
4149
4150 int i915_gem_suspend(struct drm_device *dev)
4151 {
4152         struct drm_i915_private *dev_priv = to_i915(dev);
4153         int ret;
4154
4155         intel_suspend_gt_powersave(dev_priv);
4156
4157         mutex_lock(&dev->struct_mutex);
4158
4159         /* We have to flush all the executing contexts to main memory so
4160          * that they can saved in the hibernation image. To ensure the last
4161          * context image is coherent, we have to switch away from it. That
4162          * leaves the dev_priv->kernel_context still active when
4163          * we actually suspend, and its image in memory may not match the GPU
4164          * state. Fortunately, the kernel_context is disposable and we do
4165          * not rely on its state.
4166          */
4167         ret = i915_gem_switch_to_kernel_context(dev_priv);
4168         if (ret)
4169                 goto err;
4170
4171         ret = i915_gem_wait_for_idle(dev_priv,
4172                                      I915_WAIT_INTERRUPTIBLE |
4173                                      I915_WAIT_LOCKED);
4174         if (ret)
4175                 goto err;
4176
4177         i915_gem_retire_requests(dev_priv);
4178         GEM_BUG_ON(dev_priv->gt.active_requests);
4179
4180         assert_kernel_context_is_current(dev_priv);
4181         i915_gem_context_lost(dev_priv);
4182         mutex_unlock(&dev->struct_mutex);
4183
4184         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4185         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4186         flush_delayed_work(&dev_priv->gt.idle_work);
4187         flush_work(&dev_priv->mm.free_work);
4188
4189         /* Assert that we sucessfully flushed all the work and
4190          * reset the GPU back to its idle, low power state.
4191          */
4192         WARN_ON(dev_priv->gt.awake);
4193         WARN_ON(!intel_execlists_idle(dev_priv));
4194
4195         /*
4196          * Neither the BIOS, ourselves or any other kernel
4197          * expects the system to be in execlists mode on startup,
4198          * so we need to reset the GPU back to legacy mode. And the only
4199          * known way to disable logical contexts is through a GPU reset.
4200          *
4201          * So in order to leave the system in a known default configuration,
4202          * always reset the GPU upon unload and suspend. Afterwards we then
4203          * clean up the GEM state tracking, flushing off the requests and
4204          * leaving the system in a known idle state.
4205          *
4206          * Note that is of the upmost importance that the GPU is idle and
4207          * all stray writes are flushed *before* we dismantle the backing
4208          * storage for the pinned objects.
4209          *
4210          * However, since we are uncertain that resetting the GPU on older
4211          * machines is a good idea, we don't - just in case it leaves the
4212          * machine in an unusable condition.
4213          */
4214         if (HAS_HW_CONTEXTS(dev_priv)) {
4215                 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4216                 WARN_ON(reset && reset != -ENODEV);
4217         }
4218
4219         return 0;
4220
4221 err:
4222         mutex_unlock(&dev->struct_mutex);
4223         return ret;
4224 }
4225
4226 void i915_gem_resume(struct drm_device *dev)
4227 {
4228         struct drm_i915_private *dev_priv = to_i915(dev);
4229
4230         WARN_ON(dev_priv->gt.awake);
4231
4232         mutex_lock(&dev->struct_mutex);
4233         i915_gem_restore_gtt_mappings(dev);
4234
4235         /* As we didn't flush the kernel context before suspend, we cannot
4236          * guarantee that the context image is complete. So let's just reset
4237          * it and start again.
4238          */
4239         dev_priv->gt.resume(dev_priv);
4240
4241         mutex_unlock(&dev->struct_mutex);
4242 }
4243
4244 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4245 {
4246         if (INTEL_GEN(dev_priv) < 5 ||
4247             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4248                 return;
4249
4250         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4251                                  DISP_TILE_SURFACE_SWIZZLING);
4252
4253         if (IS_GEN5(dev_priv))
4254                 return;
4255
4256         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4257         if (IS_GEN6(dev_priv))
4258                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4259         else if (IS_GEN7(dev_priv))
4260                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4261         else if (IS_GEN8(dev_priv))
4262                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4263         else
4264                 BUG();
4265 }
4266
4267 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4268 {
4269         I915_WRITE(RING_CTL(base), 0);
4270         I915_WRITE(RING_HEAD(base), 0);
4271         I915_WRITE(RING_TAIL(base), 0);
4272         I915_WRITE(RING_START(base), 0);
4273 }
4274
4275 static void init_unused_rings(struct drm_i915_private *dev_priv)
4276 {
4277         if (IS_I830(dev_priv)) {
4278                 init_unused_ring(dev_priv, PRB1_BASE);
4279                 init_unused_ring(dev_priv, SRB0_BASE);
4280                 init_unused_ring(dev_priv, SRB1_BASE);
4281                 init_unused_ring(dev_priv, SRB2_BASE);
4282                 init_unused_ring(dev_priv, SRB3_BASE);
4283         } else if (IS_GEN2(dev_priv)) {
4284                 init_unused_ring(dev_priv, SRB0_BASE);
4285                 init_unused_ring(dev_priv, SRB1_BASE);
4286         } else if (IS_GEN3(dev_priv)) {
4287                 init_unused_ring(dev_priv, PRB1_BASE);
4288                 init_unused_ring(dev_priv, PRB2_BASE);
4289         }
4290 }
4291
4292 int
4293 i915_gem_init_hw(struct drm_device *dev)
4294 {
4295         struct drm_i915_private *dev_priv = to_i915(dev);
4296         struct intel_engine_cs *engine;
4297         enum intel_engine_id id;
4298         int ret;
4299
4300         dev_priv->gt.last_init_time = ktime_get();
4301
4302         /* Double layer security blanket, see i915_gem_init() */
4303         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4304
4305         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4306                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4307
4308         if (IS_HASWELL(dev_priv))
4309                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4310                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4311
4312         if (HAS_PCH_NOP(dev_priv)) {
4313                 if (IS_IVYBRIDGE(dev_priv)) {
4314                         u32 temp = I915_READ(GEN7_MSG_CTL);
4315                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4316                         I915_WRITE(GEN7_MSG_CTL, temp);
4317                 } else if (INTEL_GEN(dev_priv) >= 7) {
4318                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4319                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4320                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4321                 }
4322         }
4323
4324         i915_gem_init_swizzling(dev_priv);
4325
4326         /*
4327          * At least 830 can leave some of the unused rings
4328          * "active" (ie. head != tail) after resume which
4329          * will prevent c3 entry. Makes sure all unused rings
4330          * are totally idle.
4331          */
4332         init_unused_rings(dev_priv);
4333
4334         BUG_ON(!dev_priv->kernel_context);
4335
4336         ret = i915_ppgtt_init_hw(dev_priv);
4337         if (ret) {
4338                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4339                 goto out;
4340         }
4341
4342         /* Need to do basic initialisation of all rings first: */
4343         for_each_engine(engine, dev_priv, id) {
4344                 ret = engine->init_hw(engine);
4345                 if (ret)
4346                         goto out;
4347         }
4348
4349         intel_mocs_init_l3cc_table(dev);
4350
4351         /* We can't enable contexts until all firmware is loaded */
4352         ret = intel_guc_setup(dev);
4353         if (ret)
4354                 goto out;
4355
4356 out:
4357         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4358         return ret;
4359 }
4360
4361 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4362 {
4363         if (INTEL_INFO(dev_priv)->gen < 6)
4364                 return false;
4365
4366         /* TODO: make semaphores and Execlists play nicely together */
4367         if (i915.enable_execlists)
4368                 return false;
4369
4370         if (value >= 0)
4371                 return value;
4372
4373 #ifdef CONFIG_INTEL_IOMMU
4374         /* Enable semaphores on SNB when IO remapping is off */
4375         if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4376                 return false;
4377 #endif
4378
4379         return true;
4380 }
4381
4382 int i915_gem_init(struct drm_device *dev)
4383 {
4384         struct drm_i915_private *dev_priv = to_i915(dev);
4385         int ret;
4386
4387         mutex_lock(&dev->struct_mutex);
4388
4389         if (!i915.enable_execlists) {
4390                 dev_priv->gt.resume = intel_legacy_submission_resume;
4391                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4392         } else {
4393                 dev_priv->gt.resume = intel_lr_context_resume;
4394                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4395         }
4396
4397         /* This is just a security blanket to placate dragons.
4398          * On some systems, we very sporadically observe that the first TLBs
4399          * used by the CS may be stale, despite us poking the TLB reset. If
4400          * we hold the forcewake during initialisation these problems
4401          * just magically go away.
4402          */
4403         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4404
4405         i915_gem_init_userptr(dev_priv);
4406
4407         ret = i915_gem_init_ggtt(dev_priv);
4408         if (ret)
4409                 goto out_unlock;
4410
4411         ret = i915_gem_context_init(dev);
4412         if (ret)
4413                 goto out_unlock;
4414
4415         ret = intel_engines_init(dev);
4416         if (ret)
4417                 goto out_unlock;
4418
4419         ret = i915_gem_init_hw(dev);
4420         if (ret == -EIO) {
4421                 /* Allow engine initialisation to fail by marking the GPU as
4422                  * wedged. But we only want to do this where the GPU is angry,
4423                  * for all other failure, such as an allocation failure, bail.
4424                  */
4425                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4426                 i915_gem_set_wedged(dev_priv);
4427                 ret = 0;
4428         }
4429
4430 out_unlock:
4431         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4432         mutex_unlock(&dev->struct_mutex);
4433
4434         return ret;
4435 }
4436
4437 void
4438 i915_gem_cleanup_engines(struct drm_device *dev)
4439 {
4440         struct drm_i915_private *dev_priv = to_i915(dev);
4441         struct intel_engine_cs *engine;
4442         enum intel_engine_id id;
4443
4444         for_each_engine(engine, dev_priv, id)
4445                 dev_priv->gt.cleanup_engine(engine);
4446 }
4447
4448 void
4449 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4450 {
4451         struct drm_device *dev = &dev_priv->drm;
4452         int i;
4453
4454         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4455             !IS_CHERRYVIEW(dev_priv))
4456                 dev_priv->num_fence_regs = 32;
4457         else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4458                  IS_I945GM(dev_priv) || IS_G33(dev_priv))
4459                 dev_priv->num_fence_regs = 16;
4460         else
4461                 dev_priv->num_fence_regs = 8;
4462
4463         if (intel_vgpu_active(dev_priv))
4464                 dev_priv->num_fence_regs =
4465                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4466
4467         /* Initialize fence registers to zero */
4468         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4469                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4470
4471                 fence->i915 = dev_priv;
4472                 fence->id = i;
4473                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4474         }
4475         i915_gem_restore_fences(dev);
4476
4477         i915_gem_detect_bit_6_swizzle(dev);
4478 }
4479
4480 int
4481 i915_gem_load_init(struct drm_device *dev)
4482 {
4483         struct drm_i915_private *dev_priv = to_i915(dev);
4484         int err = -ENOMEM;
4485
4486         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4487         if (!dev_priv->objects)
4488                 goto err_out;
4489
4490         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4491         if (!dev_priv->vmas)
4492                 goto err_objects;
4493
4494         dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4495                                         SLAB_HWCACHE_ALIGN |
4496                                         SLAB_RECLAIM_ACCOUNT |
4497                                         SLAB_DESTROY_BY_RCU);
4498         if (!dev_priv->requests)
4499                 goto err_vmas;
4500
4501         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4502                                             SLAB_HWCACHE_ALIGN |
4503                                             SLAB_RECLAIM_ACCOUNT);
4504         if (!dev_priv->dependencies)
4505                 goto err_requests;
4506
4507         mutex_lock(&dev_priv->drm.struct_mutex);
4508         INIT_LIST_HEAD(&dev_priv->gt.timelines);
4509         err = i915_gem_timeline_init__global(dev_priv);
4510         mutex_unlock(&dev_priv->drm.struct_mutex);
4511         if (err)
4512                 goto err_dependencies;
4513
4514         INIT_LIST_HEAD(&dev_priv->context_list);
4515         INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4516         init_llist_head(&dev_priv->mm.free_list);
4517         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4518         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4519         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4520         INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4521         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4522                           i915_gem_retire_work_handler);
4523         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4524                           i915_gem_idle_work_handler);
4525         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4526         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4527
4528         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4529
4530         init_waitqueue_head(&dev_priv->pending_flip_queue);
4531
4532         dev_priv->mm.interruptible = true;
4533
4534         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4535
4536         spin_lock_init(&dev_priv->fb_tracking.lock);
4537
4538         return 0;
4539
4540 err_dependencies:
4541         kmem_cache_destroy(dev_priv->dependencies);
4542 err_requests:
4543         kmem_cache_destroy(dev_priv->requests);
4544 err_vmas:
4545         kmem_cache_destroy(dev_priv->vmas);
4546 err_objects:
4547         kmem_cache_destroy(dev_priv->objects);
4548 err_out:
4549         return err;
4550 }
4551
4552 void i915_gem_load_cleanup(struct drm_device *dev)
4553 {
4554         struct drm_i915_private *dev_priv = to_i915(dev);
4555
4556         WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4557
4558         kmem_cache_destroy(dev_priv->dependencies);
4559         kmem_cache_destroy(dev_priv->requests);
4560         kmem_cache_destroy(dev_priv->vmas);
4561         kmem_cache_destroy(dev_priv->objects);
4562
4563         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4564         rcu_barrier();
4565 }
4566
4567 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4568 {
4569         intel_runtime_pm_get(dev_priv);
4570
4571         mutex_lock(&dev_priv->drm.struct_mutex);
4572         i915_gem_shrink_all(dev_priv);
4573         mutex_unlock(&dev_priv->drm.struct_mutex);
4574
4575         intel_runtime_pm_put(dev_priv);
4576
4577         return 0;
4578 }
4579
4580 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4581 {
4582         struct drm_i915_gem_object *obj;
4583         struct list_head *phases[] = {
4584                 &dev_priv->mm.unbound_list,
4585                 &dev_priv->mm.bound_list,
4586                 NULL
4587         }, **p;
4588
4589         /* Called just before we write the hibernation image.
4590          *
4591          * We need to update the domain tracking to reflect that the CPU
4592          * will be accessing all the pages to create and restore from the
4593          * hibernation, and so upon restoration those pages will be in the
4594          * CPU domain.
4595          *
4596          * To make sure the hibernation image contains the latest state,
4597          * we update that state just before writing out the image.
4598          *
4599          * To try and reduce the hibernation image, we manually shrink
4600          * the objects as well.
4601          */
4602
4603         mutex_lock(&dev_priv->drm.struct_mutex);
4604         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4605
4606         for (p = phases; *p; p++) {
4607                 list_for_each_entry(obj, *p, global_link) {
4608                         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4609                         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4610                 }
4611         }
4612         mutex_unlock(&dev_priv->drm.struct_mutex);
4613
4614         return 0;
4615 }
4616
4617 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4618 {
4619         struct drm_i915_file_private *file_priv = file->driver_priv;
4620         struct drm_i915_gem_request *request;
4621
4622         /* Clean up our request list when the client is going away, so that
4623          * later retire_requests won't dereference our soon-to-be-gone
4624          * file_priv.
4625          */
4626         spin_lock(&file_priv->mm.lock);
4627         list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4628                 request->file_priv = NULL;
4629         spin_unlock(&file_priv->mm.lock);
4630
4631         if (!list_empty(&file_priv->rps.link)) {
4632                 spin_lock(&to_i915(dev)->rps.client_lock);
4633                 list_del(&file_priv->rps.link);
4634                 spin_unlock(&to_i915(dev)->rps.client_lock);
4635         }
4636 }
4637
4638 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4639 {
4640         struct drm_i915_file_private *file_priv;
4641         int ret;
4642
4643         DRM_DEBUG_DRIVER("\n");
4644
4645         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4646         if (!file_priv)
4647                 return -ENOMEM;
4648
4649         file->driver_priv = file_priv;
4650         file_priv->dev_priv = to_i915(dev);
4651         file_priv->file = file;
4652         INIT_LIST_HEAD(&file_priv->rps.link);
4653
4654         spin_lock_init(&file_priv->mm.lock);
4655         INIT_LIST_HEAD(&file_priv->mm.request_list);
4656
4657         file_priv->bsd_engine = -1;
4658
4659         ret = i915_gem_context_open(dev, file);
4660         if (ret)
4661                 kfree(file_priv);
4662
4663         return ret;
4664 }
4665
4666 /**
4667  * i915_gem_track_fb - update frontbuffer tracking
4668  * @old: current GEM buffer for the frontbuffer slots
4669  * @new: new GEM buffer for the frontbuffer slots
4670  * @frontbuffer_bits: bitmask of frontbuffer slots
4671  *
4672  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4673  * from @old and setting them in @new. Both @old and @new can be NULL.
4674  */
4675 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4676                        struct drm_i915_gem_object *new,
4677                        unsigned frontbuffer_bits)
4678 {
4679         /* Control of individual bits within the mask are guarded by
4680          * the owning plane->mutex, i.e. we can never see concurrent
4681          * manipulation of individual bits. But since the bitfield as a whole
4682          * is updated using RMW, we need to use atomics in order to update
4683          * the bits.
4684          */
4685         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4686                      sizeof(atomic_t) * BITS_PER_BYTE);
4687
4688         if (old) {
4689                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4690                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4691         }
4692
4693         if (new) {
4694                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4695                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4696         }
4697 }
4698
4699 /* Allocate a new GEM object and fill it with the supplied data */
4700 struct drm_i915_gem_object *
4701 i915_gem_object_create_from_data(struct drm_device *dev,
4702                                  const void *data, size_t size)
4703 {
4704         struct drm_i915_gem_object *obj;
4705         struct sg_table *sg;
4706         size_t bytes;
4707         int ret;
4708
4709         obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4710         if (IS_ERR(obj))
4711                 return obj;
4712
4713         ret = i915_gem_object_set_to_cpu_domain(obj, true);
4714         if (ret)
4715                 goto fail;
4716
4717         ret = i915_gem_object_pin_pages(obj);
4718         if (ret)
4719                 goto fail;
4720
4721         sg = obj->mm.pages;
4722         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4723         obj->mm.dirty = true; /* Backing store is now out of date */
4724         i915_gem_object_unpin_pages(obj);
4725
4726         if (WARN_ON(bytes != size)) {
4727                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4728                 ret = -EFAULT;
4729                 goto fail;
4730         }
4731
4732         return obj;
4733
4734 fail:
4735         i915_gem_object_put(obj);
4736         return ERR_PTR(ret);
4737 }
4738
4739 struct scatterlist *
4740 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4741                        unsigned int n,
4742                        unsigned int *offset)
4743 {
4744         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4745         struct scatterlist *sg;
4746         unsigned int idx, count;
4747
4748         might_sleep();
4749         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4750         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4751
4752         /* As we iterate forward through the sg, we record each entry in a
4753          * radixtree for quick repeated (backwards) lookups. If we have seen
4754          * this index previously, we will have an entry for it.
4755          *
4756          * Initial lookup is O(N), but this is amortized to O(1) for
4757          * sequential page access (where each new request is consecutive
4758          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4759          * i.e. O(1) with a large constant!
4760          */
4761         if (n < READ_ONCE(iter->sg_idx))
4762                 goto lookup;
4763
4764         mutex_lock(&iter->lock);
4765
4766         /* We prefer to reuse the last sg so that repeated lookup of this
4767          * (or the subsequent) sg are fast - comparing against the last
4768          * sg is faster than going through the radixtree.
4769          */
4770
4771         sg = iter->sg_pos;
4772         idx = iter->sg_idx;
4773         count = __sg_page_count(sg);
4774
4775         while (idx + count <= n) {
4776                 unsigned long exception, i;
4777                 int ret;
4778
4779                 /* If we cannot allocate and insert this entry, or the
4780                  * individual pages from this range, cancel updating the
4781                  * sg_idx so that on this lookup we are forced to linearly
4782                  * scan onwards, but on future lookups we will try the
4783                  * insertion again (in which case we need to be careful of
4784                  * the error return reporting that we have already inserted
4785                  * this index).
4786                  */
4787                 ret = radix_tree_insert(&iter->radix, idx, sg);
4788                 if (ret && ret != -EEXIST)
4789                         goto scan;
4790
4791                 exception =
4792                         RADIX_TREE_EXCEPTIONAL_ENTRY |
4793                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4794                 for (i = 1; i < count; i++) {
4795                         ret = radix_tree_insert(&iter->radix, idx + i,
4796                                                 (void *)exception);
4797                         if (ret && ret != -EEXIST)
4798                                 goto scan;
4799                 }
4800
4801                 idx += count;
4802                 sg = ____sg_next(sg);
4803                 count = __sg_page_count(sg);
4804         }
4805
4806 scan:
4807         iter->sg_pos = sg;
4808         iter->sg_idx = idx;
4809
4810         mutex_unlock(&iter->lock);
4811
4812         if (unlikely(n < idx)) /* insertion completed by another thread */
4813                 goto lookup;
4814
4815         /* In case we failed to insert the entry into the radixtree, we need
4816          * to look beyond the current sg.
4817          */
4818         while (idx + count <= n) {
4819                 idx += count;
4820                 sg = ____sg_next(sg);
4821                 count = __sg_page_count(sg);
4822         }
4823
4824         *offset = n - idx;
4825         return sg;
4826
4827 lookup:
4828         rcu_read_lock();
4829
4830         sg = radix_tree_lookup(&iter->radix, n);
4831         GEM_BUG_ON(!sg);
4832
4833         /* If this index is in the middle of multi-page sg entry,
4834          * the radixtree will contain an exceptional entry that points
4835          * to the start of that range. We will return the pointer to
4836          * the base page and the offset of this page within the
4837          * sg entry's range.
4838          */
4839         *offset = 0;
4840         if (unlikely(radix_tree_exception(sg))) {
4841                 unsigned long base =
4842                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4843
4844                 sg = radix_tree_lookup(&iter->radix, base);
4845                 GEM_BUG_ON(!sg);
4846
4847                 *offset = n - base;
4848         }
4849
4850         rcu_read_unlock();
4851
4852         return sg;
4853 }
4854
4855 struct page *
4856 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4857 {
4858         struct scatterlist *sg;
4859         unsigned int offset;
4860
4861         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4862
4863         sg = i915_gem_object_get_sg(obj, n, &offset);
4864         return nth_page(sg_page(sg), offset);
4865 }
4866
4867 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4868 struct page *
4869 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4870                                unsigned int n)
4871 {
4872         struct page *page;
4873
4874         page = i915_gem_object_get_page(obj, n);
4875         if (!obj->mm.dirty)
4876                 set_page_dirty(page);
4877
4878         return page;
4879 }
4880
4881 dma_addr_t
4882 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4883                                 unsigned long n)
4884 {
4885         struct scatterlist *sg;
4886         unsigned int offset;
4887
4888         sg = i915_gem_object_get_sg(obj, n, &offset);
4889         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
4890 }