drm/i915: Add i915_vma_unbind_unlocked, and take obj lock for i915_vma_unbind, v2.
[linux-block.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drm_vma_manager.h>
29 #include <linux/dma-fence-array.h>
30 #include <linux/kthread.h>
31 #include <linux/dma-resv.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/slab.h>
34 #include <linux/stop_machine.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 #include <linux/mman.h>
39
40 #include "display/intel_display.h"
41 #include "display/intel_frontbuffer.h"
42
43 #include "gem/i915_gem_clflush.h"
44 #include "gem/i915_gem_context.h"
45 #include "gem/i915_gem_ioctls.h"
46 #include "gem/i915_gem_mman.h"
47 #include "gem/i915_gem_region.h"
48 #include "gt/intel_engine_user.h"
49 #include "gt/intel_gt.h"
50 #include "gt/intel_gt_pm.h"
51 #include "gt/intel_workarounds.h"
52
53 #include "i915_drv.h"
54 #include "i915_trace.h"
55 #include "i915_vgpu.h"
56
57 #include "intel_pm.h"
58
59 static int
60 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
61 {
62         int err;
63
64         err = mutex_lock_interruptible(&ggtt->vm.mutex);
65         if (err)
66                 return err;
67
68         memset(node, 0, sizeof(*node));
69         err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
70                                           size, 0, I915_COLOR_UNEVICTABLE,
71                                           0, ggtt->mappable_end,
72                                           DRM_MM_INSERT_LOW);
73
74         mutex_unlock(&ggtt->vm.mutex);
75
76         return err;
77 }
78
79 static void
80 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
81 {
82         mutex_lock(&ggtt->vm.mutex);
83         drm_mm_remove_node(node);
84         mutex_unlock(&ggtt->vm.mutex);
85 }
86
87 int
88 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
89                             struct drm_file *file)
90 {
91         struct drm_i915_private *i915 = to_i915(dev);
92         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
93         struct drm_i915_gem_get_aperture *args = data;
94         struct i915_vma *vma;
95         u64 pinned;
96
97         if (mutex_lock_interruptible(&ggtt->vm.mutex))
98                 return -EINTR;
99
100         pinned = ggtt->vm.reserved;
101         list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
102                 if (i915_vma_is_pinned(vma))
103                         pinned += vma->node.size;
104
105         mutex_unlock(&ggtt->vm.mutex);
106
107         args->aper_size = ggtt->vm.total;
108         args->aper_available_size = args->aper_size - pinned;
109
110         return 0;
111 }
112
113 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
114                            unsigned long flags)
115 {
116         struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
117         LIST_HEAD(still_in_list);
118         intel_wakeref_t wakeref;
119         struct i915_vma *vma;
120         int ret;
121
122         assert_object_held(obj);
123
124         if (list_empty(&obj->vma.list))
125                 return 0;
126
127         /*
128          * As some machines use ACPI to handle runtime-resume callbacks, and
129          * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
130          * as they are required by the shrinker. Ergo, we wake the device up
131          * first just in case.
132          */
133         wakeref = intel_runtime_pm_get(rpm);
134
135 try_again:
136         ret = 0;
137         spin_lock(&obj->vma.lock);
138         while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
139                                                        struct i915_vma,
140                                                        obj_link))) {
141                 struct i915_address_space *vm = vma->vm;
142
143                 list_move_tail(&vma->obj_link, &still_in_list);
144                 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
145                         continue;
146
147                 if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
148                         ret = -EBUSY;
149                         break;
150                 }
151
152                 ret = -EAGAIN;
153                 if (!i915_vm_tryopen(vm))
154                         break;
155
156                 /* Prevent vma being freed by i915_vma_parked as we unbind */
157                 vma = __i915_vma_get(vma);
158                 spin_unlock(&obj->vma.lock);
159
160                 if (vma) {
161                         bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK);
162                         ret = -EBUSY;
163                         if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) {
164                                 assert_object_held(vma->obj);
165                                 ret = i915_vma_unbind_async(vma, vm_trylock);
166                         }
167
168                         if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
169                                               !i915_vma_is_active(vma))) {
170                                 if (vm_trylock) {
171                                         if (mutex_trylock(&vma->vm->mutex)) {
172                                                 ret = __i915_vma_unbind(vma);
173                                                 mutex_unlock(&vma->vm->mutex);
174                                         } else {
175                                                 ret = -EBUSY;
176                                         }
177                                 } else {
178                                         ret = i915_vma_unbind(vma);
179                                 }
180                         }
181
182                         __i915_vma_put(vma);
183                 }
184
185                 i915_vm_close(vm);
186                 spin_lock(&obj->vma.lock);
187         }
188         list_splice_init(&still_in_list, &obj->vma.list);
189         spin_unlock(&obj->vma.lock);
190
191         if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
192                 rcu_barrier(); /* flush the i915_vm_release() */
193                 goto try_again;
194         }
195
196         intel_runtime_pm_put(rpm, wakeref);
197
198         return ret;
199 }
200
201 static int
202 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
203             bool needs_clflush)
204 {
205         char *vaddr;
206         int ret;
207
208         vaddr = kmap(page);
209
210         if (needs_clflush)
211                 drm_clflush_virt_range(vaddr + offset, len);
212
213         ret = __copy_to_user(user_data, vaddr + offset, len);
214
215         kunmap(page);
216
217         return ret ? -EFAULT : 0;
218 }
219
220 static int
221 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
222                      struct drm_i915_gem_pread *args)
223 {
224         unsigned int needs_clflush;
225         unsigned int idx, offset;
226         char __user *user_data;
227         u64 remain;
228         int ret;
229
230         ret = i915_gem_object_lock_interruptible(obj, NULL);
231         if (ret)
232                 return ret;
233
234         ret = i915_gem_object_pin_pages(obj);
235         if (ret)
236                 goto err_unlock;
237
238         ret = i915_gem_object_prepare_read(obj, &needs_clflush);
239         if (ret)
240                 goto err_unpin;
241
242         i915_gem_object_finish_access(obj);
243         i915_gem_object_unlock(obj);
244
245         remain = args->size;
246         user_data = u64_to_user_ptr(args->data_ptr);
247         offset = offset_in_page(args->offset);
248         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
249                 struct page *page = i915_gem_object_get_page(obj, idx);
250                 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
251
252                 ret = shmem_pread(page, offset, length, user_data,
253                                   needs_clflush);
254                 if (ret)
255                         break;
256
257                 remain -= length;
258                 user_data += length;
259                 offset = 0;
260         }
261
262         i915_gem_object_unpin_pages(obj);
263         return ret;
264
265 err_unpin:
266         i915_gem_object_unpin_pages(obj);
267 err_unlock:
268         i915_gem_object_unlock(obj);
269         return ret;
270 }
271
272 static inline bool
273 gtt_user_read(struct io_mapping *mapping,
274               loff_t base, int offset,
275               char __user *user_data, int length)
276 {
277         void __iomem *vaddr;
278         unsigned long unwritten;
279
280         /* We can use the cpu mem copy function because this is X86. */
281         vaddr = io_mapping_map_atomic_wc(mapping, base);
282         unwritten = __copy_to_user_inatomic(user_data,
283                                             (void __force *)vaddr + offset,
284                                             length);
285         io_mapping_unmap_atomic(vaddr);
286         if (unwritten) {
287                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
288                 unwritten = copy_to_user(user_data,
289                                          (void __force *)vaddr + offset,
290                                          length);
291                 io_mapping_unmap(vaddr);
292         }
293         return unwritten;
294 }
295
296 static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
297                                              struct drm_mm_node *node,
298                                              bool write)
299 {
300         struct drm_i915_private *i915 = to_i915(obj->base.dev);
301         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
302         struct i915_vma *vma;
303         struct i915_gem_ww_ctx ww;
304         int ret;
305
306         i915_gem_ww_ctx_init(&ww, true);
307 retry:
308         vma = ERR_PTR(-ENODEV);
309         ret = i915_gem_object_lock(obj, &ww);
310         if (ret)
311                 goto err_ww;
312
313         ret = i915_gem_object_set_to_gtt_domain(obj, write);
314         if (ret)
315                 goto err_ww;
316
317         if (!i915_gem_object_is_tiled(obj))
318                 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
319                                                   PIN_MAPPABLE |
320                                                   PIN_NONBLOCK /* NOWARN */ |
321                                                   PIN_NOEVICT);
322         if (vma == ERR_PTR(-EDEADLK)) {
323                 ret = -EDEADLK;
324                 goto err_ww;
325         } else if (!IS_ERR(vma)) {
326                 node->start = i915_ggtt_offset(vma);
327                 node->flags = 0;
328         } else {
329                 ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
330                 if (ret)
331                         goto err_ww;
332                 GEM_BUG_ON(!drm_mm_node_allocated(node));
333                 vma = NULL;
334         }
335
336         ret = i915_gem_object_pin_pages(obj);
337         if (ret) {
338                 if (drm_mm_node_allocated(node)) {
339                         ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
340                         remove_mappable_node(ggtt, node);
341                 } else {
342                         i915_vma_unpin(vma);
343                 }
344         }
345
346 err_ww:
347         if (ret == -EDEADLK) {
348                 ret = i915_gem_ww_ctx_backoff(&ww);
349                 if (!ret)
350                         goto retry;
351         }
352         i915_gem_ww_ctx_fini(&ww);
353
354         return ret ? ERR_PTR(ret) : vma;
355 }
356
357 static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
358                                  struct drm_mm_node *node,
359                                  struct i915_vma *vma)
360 {
361         struct drm_i915_private *i915 = to_i915(obj->base.dev);
362         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
363
364         i915_gem_object_unpin_pages(obj);
365         if (drm_mm_node_allocated(node)) {
366                 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
367                 remove_mappable_node(ggtt, node);
368         } else {
369                 i915_vma_unpin(vma);
370         }
371 }
372
373 static int
374 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
375                    const struct drm_i915_gem_pread *args)
376 {
377         struct drm_i915_private *i915 = to_i915(obj->base.dev);
378         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
379         intel_wakeref_t wakeref;
380         struct drm_mm_node node;
381         void __user *user_data;
382         struct i915_vma *vma;
383         u64 remain, offset;
384         int ret = 0;
385
386         wakeref = intel_runtime_pm_get(&i915->runtime_pm);
387
388         vma = i915_gem_gtt_prepare(obj, &node, false);
389         if (IS_ERR(vma)) {
390                 ret = PTR_ERR(vma);
391                 goto out_rpm;
392         }
393
394         user_data = u64_to_user_ptr(args->data_ptr);
395         remain = args->size;
396         offset = args->offset;
397
398         while (remain > 0) {
399                 /* Operation in this page
400                  *
401                  * page_base = page offset within aperture
402                  * page_offset = offset within page
403                  * page_length = bytes to copy for this page
404                  */
405                 u32 page_base = node.start;
406                 unsigned page_offset = offset_in_page(offset);
407                 unsigned page_length = PAGE_SIZE - page_offset;
408                 page_length = remain < page_length ? remain : page_length;
409                 if (drm_mm_node_allocated(&node)) {
410                         ggtt->vm.insert_page(&ggtt->vm,
411                                              i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
412                                              node.start, I915_CACHE_NONE, 0);
413                 } else {
414                         page_base += offset & PAGE_MASK;
415                 }
416
417                 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
418                                   user_data, page_length)) {
419                         ret = -EFAULT;
420                         break;
421                 }
422
423                 remain -= page_length;
424                 user_data += page_length;
425                 offset += page_length;
426         }
427
428         i915_gem_gtt_cleanup(obj, &node, vma);
429 out_rpm:
430         intel_runtime_pm_put(&i915->runtime_pm, wakeref);
431         return ret;
432 }
433
434 /**
435  * Reads data from the object referenced by handle.
436  * @dev: drm device pointer
437  * @data: ioctl data blob
438  * @file: drm file pointer
439  *
440  * On error, the contents of *data are undefined.
441  */
442 int
443 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
444                      struct drm_file *file)
445 {
446         struct drm_i915_private *i915 = to_i915(dev);
447         struct drm_i915_gem_pread *args = data;
448         struct drm_i915_gem_object *obj;
449         int ret;
450
451         /* PREAD is disallowed for all platforms after TGL-LP.  This also
452          * covers all platforms with local memory.
453          */
454         if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
455                 return -EOPNOTSUPP;
456
457         if (args->size == 0)
458                 return 0;
459
460         if (!access_ok(u64_to_user_ptr(args->data_ptr),
461                        args->size))
462                 return -EFAULT;
463
464         obj = i915_gem_object_lookup(file, args->handle);
465         if (!obj)
466                 return -ENOENT;
467
468         /* Bounds check source.  */
469         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
470                 ret = -EINVAL;
471                 goto out;
472         }
473
474         trace_i915_gem_object_pread(obj, args->offset, args->size);
475         ret = -ENODEV;
476         if (obj->ops->pread)
477                 ret = obj->ops->pread(obj, args);
478         if (ret != -ENODEV)
479                 goto out;
480
481         ret = i915_gem_object_wait(obj,
482                                    I915_WAIT_INTERRUPTIBLE,
483                                    MAX_SCHEDULE_TIMEOUT);
484         if (ret)
485                 goto out;
486
487         ret = i915_gem_shmem_pread(obj, args);
488         if (ret == -EFAULT || ret == -ENODEV)
489                 ret = i915_gem_gtt_pread(obj, args);
490
491 out:
492         i915_gem_object_put(obj);
493         return ret;
494 }
495
496 /* This is the fast write path which cannot handle
497  * page faults in the source data
498  */
499
500 static inline bool
501 ggtt_write(struct io_mapping *mapping,
502            loff_t base, int offset,
503            char __user *user_data, int length)
504 {
505         void __iomem *vaddr;
506         unsigned long unwritten;
507
508         /* We can use the cpu mem copy function because this is X86. */
509         vaddr = io_mapping_map_atomic_wc(mapping, base);
510         unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
511                                                       user_data, length);
512         io_mapping_unmap_atomic(vaddr);
513         if (unwritten) {
514                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
515                 unwritten = copy_from_user((void __force *)vaddr + offset,
516                                            user_data, length);
517                 io_mapping_unmap(vaddr);
518         }
519
520         return unwritten;
521 }
522
523 /**
524  * This is the fast pwrite path, where we copy the data directly from the
525  * user into the GTT, uncached.
526  * @obj: i915 GEM object
527  * @args: pwrite arguments structure
528  */
529 static int
530 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
531                          const struct drm_i915_gem_pwrite *args)
532 {
533         struct drm_i915_private *i915 = to_i915(obj->base.dev);
534         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
535         struct intel_runtime_pm *rpm = &i915->runtime_pm;
536         intel_wakeref_t wakeref;
537         struct drm_mm_node node;
538         struct i915_vma *vma;
539         u64 remain, offset;
540         void __user *user_data;
541         int ret = 0;
542
543         if (i915_gem_object_has_struct_page(obj)) {
544                 /*
545                  * Avoid waking the device up if we can fallback, as
546                  * waking/resuming is very slow (worst-case 10-100 ms
547                  * depending on PCI sleeps and our own resume time).
548                  * This easily dwarfs any performance advantage from
549                  * using the cache bypass of indirect GGTT access.
550                  */
551                 wakeref = intel_runtime_pm_get_if_in_use(rpm);
552                 if (!wakeref)
553                         return -EFAULT;
554         } else {
555                 /* No backing pages, no fallback, we must force GGTT access */
556                 wakeref = intel_runtime_pm_get(rpm);
557         }
558
559         vma = i915_gem_gtt_prepare(obj, &node, true);
560         if (IS_ERR(vma)) {
561                 ret = PTR_ERR(vma);
562                 goto out_rpm;
563         }
564
565         i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
566
567         user_data = u64_to_user_ptr(args->data_ptr);
568         offset = args->offset;
569         remain = args->size;
570         while (remain) {
571                 /* Operation in this page
572                  *
573                  * page_base = page offset within aperture
574                  * page_offset = offset within page
575                  * page_length = bytes to copy for this page
576                  */
577                 u32 page_base = node.start;
578                 unsigned int page_offset = offset_in_page(offset);
579                 unsigned int page_length = PAGE_SIZE - page_offset;
580                 page_length = remain < page_length ? remain : page_length;
581                 if (drm_mm_node_allocated(&node)) {
582                         /* flush the write before we modify the GGTT */
583                         intel_gt_flush_ggtt_writes(ggtt->vm.gt);
584                         ggtt->vm.insert_page(&ggtt->vm,
585                                              i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
586                                              node.start, I915_CACHE_NONE, 0);
587                         wmb(); /* flush modifications to the GGTT (insert_page) */
588                 } else {
589                         page_base += offset & PAGE_MASK;
590                 }
591                 /* If we get a fault while copying data, then (presumably) our
592                  * source page isn't available.  Return the error and we'll
593                  * retry in the slow path.
594                  * If the object is non-shmem backed, we retry again with the
595                  * path that handles page fault.
596                  */
597                 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
598                                user_data, page_length)) {
599                         ret = -EFAULT;
600                         break;
601                 }
602
603                 remain -= page_length;
604                 user_data += page_length;
605                 offset += page_length;
606         }
607
608         intel_gt_flush_ggtt_writes(ggtt->vm.gt);
609         i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
610
611         i915_gem_gtt_cleanup(obj, &node, vma);
612 out_rpm:
613         intel_runtime_pm_put(rpm, wakeref);
614         return ret;
615 }
616
617 /* Per-page copy function for the shmem pwrite fastpath.
618  * Flushes invalid cachelines before writing to the target if
619  * needs_clflush_before is set and flushes out any written cachelines after
620  * writing if needs_clflush is set.
621  */
622 static int
623 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
624              bool needs_clflush_before,
625              bool needs_clflush_after)
626 {
627         char *vaddr;
628         int ret;
629
630         vaddr = kmap(page);
631
632         if (needs_clflush_before)
633                 drm_clflush_virt_range(vaddr + offset, len);
634
635         ret = __copy_from_user(vaddr + offset, user_data, len);
636         if (!ret && needs_clflush_after)
637                 drm_clflush_virt_range(vaddr + offset, len);
638
639         kunmap(page);
640
641         return ret ? -EFAULT : 0;
642 }
643
644 static int
645 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
646                       const struct drm_i915_gem_pwrite *args)
647 {
648         unsigned int partial_cacheline_write;
649         unsigned int needs_clflush;
650         unsigned int offset, idx;
651         void __user *user_data;
652         u64 remain;
653         int ret;
654
655         ret = i915_gem_object_lock_interruptible(obj, NULL);
656         if (ret)
657                 return ret;
658
659         ret = i915_gem_object_pin_pages(obj);
660         if (ret)
661                 goto err_unlock;
662
663         ret = i915_gem_object_prepare_write(obj, &needs_clflush);
664         if (ret)
665                 goto err_unpin;
666
667         i915_gem_object_finish_access(obj);
668         i915_gem_object_unlock(obj);
669
670         /* If we don't overwrite a cacheline completely we need to be
671          * careful to have up-to-date data by first clflushing. Don't
672          * overcomplicate things and flush the entire patch.
673          */
674         partial_cacheline_write = 0;
675         if (needs_clflush & CLFLUSH_BEFORE)
676                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
677
678         user_data = u64_to_user_ptr(args->data_ptr);
679         remain = args->size;
680         offset = offset_in_page(args->offset);
681         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
682                 struct page *page = i915_gem_object_get_page(obj, idx);
683                 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
684
685                 ret = shmem_pwrite(page, offset, length, user_data,
686                                    (offset | length) & partial_cacheline_write,
687                                    needs_clflush & CLFLUSH_AFTER);
688                 if (ret)
689                         break;
690
691                 remain -= length;
692                 user_data += length;
693                 offset = 0;
694         }
695
696         i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
697
698         i915_gem_object_unpin_pages(obj);
699         return ret;
700
701 err_unpin:
702         i915_gem_object_unpin_pages(obj);
703 err_unlock:
704         i915_gem_object_unlock(obj);
705         return ret;
706 }
707
708 /**
709  * Writes data to the object referenced by handle.
710  * @dev: drm device
711  * @data: ioctl data blob
712  * @file: drm file
713  *
714  * On error, the contents of the buffer that were to be modified are undefined.
715  */
716 int
717 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
718                       struct drm_file *file)
719 {
720         struct drm_i915_private *i915 = to_i915(dev);
721         struct drm_i915_gem_pwrite *args = data;
722         struct drm_i915_gem_object *obj;
723         int ret;
724
725         /* PWRITE is disallowed for all platforms after TGL-LP.  This also
726          * covers all platforms with local memory.
727          */
728         if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
729                 return -EOPNOTSUPP;
730
731         if (args->size == 0)
732                 return 0;
733
734         if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
735                 return -EFAULT;
736
737         obj = i915_gem_object_lookup(file, args->handle);
738         if (!obj)
739                 return -ENOENT;
740
741         /* Bounds check destination. */
742         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
743                 ret = -EINVAL;
744                 goto err;
745         }
746
747         /* Writes not allowed into this read-only object */
748         if (i915_gem_object_is_readonly(obj)) {
749                 ret = -EINVAL;
750                 goto err;
751         }
752
753         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
754
755         ret = -ENODEV;
756         if (obj->ops->pwrite)
757                 ret = obj->ops->pwrite(obj, args);
758         if (ret != -ENODEV)
759                 goto err;
760
761         ret = i915_gem_object_wait(obj,
762                                    I915_WAIT_INTERRUPTIBLE |
763                                    I915_WAIT_ALL,
764                                    MAX_SCHEDULE_TIMEOUT);
765         if (ret)
766                 goto err;
767
768         ret = -EFAULT;
769         /* We can only do the GTT pwrite on untiled buffers, as otherwise
770          * it would end up going through the fenced access, and we'll get
771          * different detiling behavior between reading and writing.
772          * pread/pwrite currently are reading and writing from the CPU
773          * perspective, requiring manual detiling by the client.
774          */
775         if (!i915_gem_object_has_struct_page(obj) ||
776             i915_gem_cpu_write_needs_clflush(obj))
777                 /* Note that the gtt paths might fail with non-page-backed user
778                  * pointers (e.g. gtt mappings when moving data between
779                  * textures). Fallback to the shmem path in that case.
780                  */
781                 ret = i915_gem_gtt_pwrite_fast(obj, args);
782
783         if (ret == -EFAULT || ret == -ENOSPC) {
784                 if (i915_gem_object_has_struct_page(obj))
785                         ret = i915_gem_shmem_pwrite(obj, args);
786         }
787
788 err:
789         i915_gem_object_put(obj);
790         return ret;
791 }
792
793 /**
794  * Called when user space has done writes to this buffer
795  * @dev: drm device
796  * @data: ioctl data blob
797  * @file: drm file
798  */
799 int
800 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
801                          struct drm_file *file)
802 {
803         struct drm_i915_gem_sw_finish *args = data;
804         struct drm_i915_gem_object *obj;
805
806         obj = i915_gem_object_lookup(file, args->handle);
807         if (!obj)
808                 return -ENOENT;
809
810         /*
811          * Proxy objects are barred from CPU access, so there is no
812          * need to ban sw_finish as it is a nop.
813          */
814
815         /* Pinned buffers may be scanout, so flush the cache */
816         i915_gem_object_flush_if_display(obj);
817         i915_gem_object_put(obj);
818
819         return 0;
820 }
821
822 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
823 {
824         struct drm_i915_gem_object *obj, *on;
825         int i;
826
827         /*
828          * Only called during RPM suspend. All users of the userfault_list
829          * must be holding an RPM wakeref to ensure that this can not
830          * run concurrently with themselves (and use the struct_mutex for
831          * protection between themselves).
832          */
833
834         list_for_each_entry_safe(obj, on,
835                                  &to_gt(i915)->ggtt->userfault_list, userfault_link)
836                 __i915_gem_object_release_mmap_gtt(obj);
837
838         /*
839          * The fence will be lost when the device powers down. If any were
840          * in use by hardware (i.e. they are pinned), we should not be powering
841          * down! All other fences will be reacquired by the user upon waking.
842          */
843         for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) {
844                 struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i];
845
846                 /*
847                  * Ideally we want to assert that the fence register is not
848                  * live at this point (i.e. that no piece of code will be
849                  * trying to write through fence + GTT, as that both violates
850                  * our tracking of activity and associated locking/barriers,
851                  * but also is illegal given that the hw is powered down).
852                  *
853                  * Previously we used reg->pin_count as a "liveness" indicator.
854                  * That is not sufficient, and we need a more fine-grained
855                  * tool if we want to have a sanity check here.
856                  */
857
858                 if (!reg->vma)
859                         continue;
860
861                 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
862                 reg->dirty = true;
863         }
864 }
865
866 static void discard_ggtt_vma(struct i915_vma *vma)
867 {
868         struct drm_i915_gem_object *obj = vma->obj;
869
870         spin_lock(&obj->vma.lock);
871         if (!RB_EMPTY_NODE(&vma->obj_node)) {
872                 rb_erase(&vma->obj_node, &obj->vma.tree);
873                 RB_CLEAR_NODE(&vma->obj_node);
874         }
875         spin_unlock(&obj->vma.lock);
876 }
877
878 struct i915_vma *
879 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
880                             struct i915_gem_ww_ctx *ww,
881                             const struct i915_ggtt_view *view,
882                             u64 size, u64 alignment, u64 flags)
883 {
884         struct drm_i915_private *i915 = to_i915(obj->base.dev);
885         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
886         struct i915_vma *vma;
887         int ret;
888
889         GEM_WARN_ON(!ww);
890
891         if (flags & PIN_MAPPABLE &&
892             (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
893                 /*
894                  * If the required space is larger than the available
895                  * aperture, we will not able to find a slot for the
896                  * object and unbinding the object now will be in
897                  * vain. Worse, doing so may cause us to ping-pong
898                  * the object in and out of the Global GTT and
899                  * waste a lot of cycles under the mutex.
900                  */
901                 if (obj->base.size > ggtt->mappable_end)
902                         return ERR_PTR(-E2BIG);
903
904                 /*
905                  * If NONBLOCK is set the caller is optimistically
906                  * trying to cache the full object within the mappable
907                  * aperture, and *must* have a fallback in place for
908                  * situations where we cannot bind the object. We
909                  * can be a little more lax here and use the fallback
910                  * more often to avoid costly migrations of ourselves
911                  * and other objects within the aperture.
912                  *
913                  * Half-the-aperture is used as a simple heuristic.
914                  * More interesting would to do search for a free
915                  * block prior to making the commitment to unbind.
916                  * That caters for the self-harm case, and with a
917                  * little more heuristics (e.g. NOFAULT, NOEVICT)
918                  * we could try to minimise harm to others.
919                  */
920                 if (flags & PIN_NONBLOCK &&
921                     obj->base.size > ggtt->mappable_end / 2)
922                         return ERR_PTR(-ENOSPC);
923         }
924
925 new_vma:
926         vma = i915_vma_instance(obj, &ggtt->vm, view);
927         if (IS_ERR(vma))
928                 return vma;
929
930         if (i915_vma_misplaced(vma, size, alignment, flags)) {
931                 if (flags & PIN_NONBLOCK) {
932                         if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
933                                 return ERR_PTR(-ENOSPC);
934
935                         if (flags & PIN_MAPPABLE &&
936                             vma->fence_size > ggtt->mappable_end / 2)
937                                 return ERR_PTR(-ENOSPC);
938                 }
939
940                 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
941                         discard_ggtt_vma(vma);
942                         goto new_vma;
943                 }
944
945                 ret = i915_vma_unbind(vma);
946                 if (ret)
947                         return ERR_PTR(ret);
948         }
949
950         ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
951
952         if (ret)
953                 return ERR_PTR(ret);
954
955         if (vma->fence && !i915_gem_object_is_tiled(obj)) {
956                 mutex_lock(&ggtt->vm.mutex);
957                 i915_vma_revoke_fence(vma);
958                 mutex_unlock(&ggtt->vm.mutex);
959         }
960
961         ret = i915_vma_wait_for_bind(vma);
962         if (ret) {
963                 i915_vma_unpin(vma);
964                 return ERR_PTR(ret);
965         }
966
967         return vma;
968 }
969
970 struct i915_vma * __must_check
971 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
972                          const struct i915_ggtt_view *view,
973                          u64 size, u64 alignment, u64 flags)
974 {
975         struct i915_gem_ww_ctx ww;
976         struct i915_vma *ret;
977         int err;
978
979         for_i915_gem_ww(&ww, err, true) {
980                 err = i915_gem_object_lock(obj, &ww);
981                 if (err)
982                         continue;
983
984                 ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size,
985                                                   alignment, flags);
986                 if (IS_ERR(ret))
987                         err = PTR_ERR(ret);
988         }
989
990         return err ? ERR_PTR(err) : ret;
991 }
992
993 int
994 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
995                        struct drm_file *file_priv)
996 {
997         struct drm_i915_private *i915 = to_i915(dev);
998         struct drm_i915_gem_madvise *args = data;
999         struct drm_i915_gem_object *obj;
1000         int err;
1001
1002         switch (args->madv) {
1003         case I915_MADV_DONTNEED:
1004         case I915_MADV_WILLNEED:
1005             break;
1006         default:
1007             return -EINVAL;
1008         }
1009
1010         obj = i915_gem_object_lookup(file_priv, args->handle);
1011         if (!obj)
1012                 return -ENOENT;
1013
1014         err = i915_gem_object_lock_interruptible(obj, NULL);
1015         if (err)
1016                 goto out;
1017
1018         if (i915_gem_object_has_pages(obj) &&
1019             i915_gem_object_is_tiled(obj) &&
1020             i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1021                 if (obj->mm.madv == I915_MADV_WILLNEED) {
1022                         GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1023                         i915_gem_object_clear_tiling_quirk(obj);
1024                         i915_gem_object_make_shrinkable(obj);
1025                 }
1026                 if (args->madv == I915_MADV_WILLNEED) {
1027                         GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1028                         i915_gem_object_make_unshrinkable(obj);
1029                         i915_gem_object_set_tiling_quirk(obj);
1030                 }
1031         }
1032
1033         if (obj->mm.madv != __I915_MADV_PURGED) {
1034                 obj->mm.madv = args->madv;
1035                 if (obj->ops->adjust_lru)
1036                         obj->ops->adjust_lru(obj);
1037         }
1038
1039         if (i915_gem_object_has_pages(obj) ||
1040             i915_gem_object_has_self_managed_shrink_list(obj)) {
1041                 unsigned long flags;
1042
1043                 spin_lock_irqsave(&i915->mm.obj_lock, flags);
1044                 if (!list_empty(&obj->mm.link)) {
1045                         struct list_head *list;
1046
1047                         if (obj->mm.madv != I915_MADV_WILLNEED)
1048                                 list = &i915->mm.purge_list;
1049                         else
1050                                 list = &i915->mm.shrink_list;
1051                         list_move_tail(&obj->mm.link, list);
1052
1053                 }
1054                 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1055         }
1056
1057         /* if the object is no longer attached, discard its backing storage */
1058         if (obj->mm.madv == I915_MADV_DONTNEED &&
1059             !i915_gem_object_has_pages(obj))
1060                 i915_gem_object_truncate(obj);
1061
1062         args->retained = obj->mm.madv != __I915_MADV_PURGED;
1063
1064         i915_gem_object_unlock(obj);
1065 out:
1066         i915_gem_object_put(obj);
1067         return err;
1068 }
1069
1070 int i915_gem_init(struct drm_i915_private *dev_priv)
1071 {
1072         int ret;
1073
1074         /* We need to fallback to 4K pages if host doesn't support huge gtt. */
1075         if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1076                 mkwrite_device_info(dev_priv)->page_sizes =
1077                         I915_GTT_PAGE_SIZE_4K;
1078
1079         ret = i915_gem_init_userptr(dev_priv);
1080         if (ret)
1081                 return ret;
1082
1083         intel_uc_fetch_firmwares(&to_gt(dev_priv)->uc);
1084         intel_wopcm_init(&dev_priv->wopcm);
1085
1086         ret = i915_init_ggtt(dev_priv);
1087         if (ret) {
1088                 GEM_BUG_ON(ret == -EIO);
1089                 goto err_unlock;
1090         }
1091
1092         /*
1093          * Despite its name intel_init_clock_gating applies both display
1094          * clock gating workarounds; GT mmio workarounds and the occasional
1095          * GT power context workaround. Worse, sometimes it includes a context
1096          * register workaround which we need to apply before we record the
1097          * default HW state for all contexts.
1098          *
1099          * FIXME: break up the workarounds and apply them at the right time!
1100          */
1101         intel_init_clock_gating(dev_priv);
1102
1103         ret = intel_gt_init(to_gt(dev_priv));
1104         if (ret)
1105                 goto err_unlock;
1106
1107         return 0;
1108
1109         /*
1110          * Unwinding is complicated by that we want to handle -EIO to mean
1111          * disable GPU submission but keep KMS alive. We want to mark the
1112          * HW as irrevisibly wedged, but keep enough state around that the
1113          * driver doesn't explode during runtime.
1114          */
1115 err_unlock:
1116         i915_gem_drain_workqueue(dev_priv);
1117
1118         if (ret != -EIO)
1119                 intel_uc_cleanup_firmwares(&to_gt(dev_priv)->uc);
1120
1121         if (ret == -EIO) {
1122                 /*
1123                  * Allow engines or uC initialisation to fail by marking the GPU
1124                  * as wedged. But we only want to do this when the GPU is angry,
1125                  * for all other failure, such as an allocation failure, bail.
1126                  */
1127                 if (!intel_gt_is_wedged(to_gt(dev_priv))) {
1128                         i915_probe_error(dev_priv,
1129                                          "Failed to initialize GPU, declaring it wedged!\n");
1130                         intel_gt_set_wedged(to_gt(dev_priv));
1131                 }
1132
1133                 /* Minimal basic recovery for KMS */
1134                 ret = i915_ggtt_enable_hw(dev_priv);
1135                 i915_ggtt_resume(to_gt(dev_priv)->ggtt);
1136                 intel_init_clock_gating(dev_priv);
1137         }
1138
1139         i915_gem_drain_freed_objects(dev_priv);
1140
1141         return ret;
1142 }
1143
1144 void i915_gem_driver_register(struct drm_i915_private *i915)
1145 {
1146         i915_gem_driver_register__shrinker(i915);
1147
1148         intel_engines_driver_register(i915);
1149 }
1150
1151 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1152 {
1153         i915_gem_driver_unregister__shrinker(i915);
1154 }
1155
1156 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1157 {
1158         intel_wakeref_auto_fini(&to_gt(dev_priv)->ggtt->userfault_wakeref);
1159
1160         i915_gem_suspend_late(dev_priv);
1161         intel_gt_driver_remove(to_gt(dev_priv));
1162         dev_priv->uabi_engines = RB_ROOT;
1163
1164         /* Flush any outstanding unpin_work. */
1165         i915_gem_drain_workqueue(dev_priv);
1166
1167         i915_gem_drain_freed_objects(dev_priv);
1168 }
1169
1170 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1171 {
1172         intel_gt_driver_release(to_gt(dev_priv));
1173
1174         intel_uc_cleanup_firmwares(&to_gt(dev_priv)->uc);
1175
1176         i915_gem_drain_freed_objects(dev_priv);
1177
1178         drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1179 }
1180
1181 static void i915_gem_init__mm(struct drm_i915_private *i915)
1182 {
1183         spin_lock_init(&i915->mm.obj_lock);
1184
1185         init_llist_head(&i915->mm.free_list);
1186
1187         INIT_LIST_HEAD(&i915->mm.purge_list);
1188         INIT_LIST_HEAD(&i915->mm.shrink_list);
1189
1190         i915_gem_init__objects(i915);
1191 }
1192
1193 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1194 {
1195         i915_gem_init__mm(dev_priv);
1196         i915_gem_init__contexts(dev_priv);
1197
1198         spin_lock_init(&dev_priv->fb_tracking.lock);
1199 }
1200
1201 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1202 {
1203         i915_gem_drain_freed_objects(dev_priv);
1204         GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1205         GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1206         drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1207 }
1208
1209 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1210 {
1211         struct drm_i915_file_private *file_priv;
1212         int ret;
1213
1214         DRM_DEBUG("\n");
1215
1216         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1217         if (!file_priv)
1218                 return -ENOMEM;
1219
1220         file->driver_priv = file_priv;
1221         file_priv->dev_priv = i915;
1222         file_priv->file = file;
1223
1224         file_priv->bsd_engine = -1;
1225         file_priv->hang_timestamp = jiffies;
1226
1227         ret = i915_gem_context_open(i915, file);
1228         if (ret)
1229                 kfree(file_priv);
1230
1231         return ret;
1232 }
1233
1234 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1235 #include "selftests/mock_gem_device.c"
1236 #include "selftests/i915_gem.c"
1237 #endif