Merge tag 'drm-intel-next-2014-04-16' of git://anongit.freedesktop.org/drm-intel...
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42                                                    bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45                                bool readonly);
46 static int i915_gem_phys_pwrite(struct drm_device *dev,
47                                 struct drm_i915_gem_object *obj,
48                                 struct drm_i915_gem_pwrite *args,
49                                 struct drm_file *file);
50
51 static void i915_gem_write_fence(struct drm_device *dev, int reg,
52                                  struct drm_i915_gem_object *obj);
53 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54                                          struct drm_i915_fence_reg *fence,
55                                          bool enable);
56
57 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
58                                              struct shrink_control *sc);
59 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
60                                             struct shrink_control *sc);
61 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
62 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
63 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
64 static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
65
66 static bool cpu_cache_is_coherent(struct drm_device *dev,
67                                   enum i915_cache_level level)
68 {
69         return HAS_LLC(dev) || level != I915_CACHE_NONE;
70 }
71
72 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73 {
74         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75                 return true;
76
77         return obj->pin_display;
78 }
79
80 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81 {
82         if (obj->tiling_mode)
83                 i915_gem_release_mmap(obj);
84
85         /* As we do not have an associated fence register, we will force
86          * a tiling change if we ever need to acquire one.
87          */
88         obj->fence_dirty = false;
89         obj->fence_reg = I915_FENCE_REG_NONE;
90 }
91
92 /* some bookkeeping */
93 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94                                   size_t size)
95 {
96         spin_lock(&dev_priv->mm.object_stat_lock);
97         dev_priv->mm.object_count++;
98         dev_priv->mm.object_memory += size;
99         spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103                                      size_t size)
104 {
105         spin_lock(&dev_priv->mm.object_stat_lock);
106         dev_priv->mm.object_count--;
107         dev_priv->mm.object_memory -= size;
108         spin_unlock(&dev_priv->mm.object_stat_lock);
109 }
110
111 static int
112 i915_gem_wait_for_error(struct i915_gpu_error *error)
113 {
114         int ret;
115
116 #define EXIT_COND (!i915_reset_in_progress(error) || \
117                    i915_terminally_wedged(error))
118         if (EXIT_COND)
119                 return 0;
120
121         /*
122          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123          * userspace. If it takes that long something really bad is going on and
124          * we should simply try to bail out and fail as gracefully as possible.
125          */
126         ret = wait_event_interruptible_timeout(error->reset_queue,
127                                                EXIT_COND,
128                                                10*HZ);
129         if (ret == 0) {
130                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131                 return -EIO;
132         } else if (ret < 0) {
133                 return ret;
134         }
135 #undef EXIT_COND
136
137         return 0;
138 }
139
140 int i915_mutex_lock_interruptible(struct drm_device *dev)
141 {
142         struct drm_i915_private *dev_priv = dev->dev_private;
143         int ret;
144
145         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
146         if (ret)
147                 return ret;
148
149         ret = mutex_lock_interruptible(&dev->struct_mutex);
150         if (ret)
151                 return ret;
152
153         WARN_ON(i915_verify_lists(dev));
154         return 0;
155 }
156
157 static inline bool
158 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
159 {
160         return i915_gem_obj_bound_any(obj) && !obj->active;
161 }
162
163 int
164 i915_gem_init_ioctl(struct drm_device *dev, void *data,
165                     struct drm_file *file)
166 {
167         struct drm_i915_private *dev_priv = dev->dev_private;
168         struct drm_i915_gem_init *args = data;
169
170         if (drm_core_check_feature(dev, DRIVER_MODESET))
171                 return -ENODEV;
172
173         if (args->gtt_start >= args->gtt_end ||
174             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175                 return -EINVAL;
176
177         /* GEM with user mode setting was never supported on ilk and later. */
178         if (INTEL_INFO(dev)->gen >= 5)
179                 return -ENODEV;
180
181         mutex_lock(&dev->struct_mutex);
182         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183                                   args->gtt_end);
184         dev_priv->gtt.mappable_end = args->gtt_end;
185         mutex_unlock(&dev->struct_mutex);
186
187         return 0;
188 }
189
190 int
191 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
192                             struct drm_file *file)
193 {
194         struct drm_i915_private *dev_priv = dev->dev_private;
195         struct drm_i915_gem_get_aperture *args = data;
196         struct drm_i915_gem_object *obj;
197         size_t pinned;
198
199         pinned = 0;
200         mutex_lock(&dev->struct_mutex);
201         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
202                 if (i915_gem_obj_is_pinned(obj))
203                         pinned += i915_gem_obj_ggtt_size(obj);
204         mutex_unlock(&dev->struct_mutex);
205
206         args->aper_size = dev_priv->gtt.base.total;
207         args->aper_available_size = args->aper_size - pinned;
208
209         return 0;
210 }
211
212 void *i915_gem_object_alloc(struct drm_device *dev)
213 {
214         struct drm_i915_private *dev_priv = dev->dev_private;
215         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
216 }
217
218 void i915_gem_object_free(struct drm_i915_gem_object *obj)
219 {
220         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
221         kmem_cache_free(dev_priv->slab, obj);
222 }
223
224 static int
225 i915_gem_create(struct drm_file *file,
226                 struct drm_device *dev,
227                 uint64_t size,
228                 uint32_t *handle_p)
229 {
230         struct drm_i915_gem_object *obj;
231         int ret;
232         u32 handle;
233
234         size = roundup(size, PAGE_SIZE);
235         if (size == 0)
236                 return -EINVAL;
237
238         /* Allocate the new object */
239         obj = i915_gem_alloc_object(dev, size);
240         if (obj == NULL)
241                 return -ENOMEM;
242
243         ret = drm_gem_handle_create(file, &obj->base, &handle);
244         /* drop reference from allocate - handle holds it now */
245         drm_gem_object_unreference_unlocked(&obj->base);
246         if (ret)
247                 return ret;
248
249         *handle_p = handle;
250         return 0;
251 }
252
253 int
254 i915_gem_dumb_create(struct drm_file *file,
255                      struct drm_device *dev,
256                      struct drm_mode_create_dumb *args)
257 {
258         /* have to work out size/pitch and return them */
259         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
260         args->size = args->pitch * args->height;
261         return i915_gem_create(file, dev,
262                                args->size, &args->handle);
263 }
264
265 /**
266  * Creates a new mm object and returns a handle to it.
267  */
268 int
269 i915_gem_create_ioctl(struct drm_device *dev, void *data,
270                       struct drm_file *file)
271 {
272         struct drm_i915_gem_create *args = data;
273
274         return i915_gem_create(file, dev,
275                                args->size, &args->handle);
276 }
277
278 static inline int
279 __copy_to_user_swizzled(char __user *cpu_vaddr,
280                         const char *gpu_vaddr, int gpu_offset,
281                         int length)
282 {
283         int ret, cpu_offset = 0;
284
285         while (length > 0) {
286                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
287                 int this_length = min(cacheline_end - gpu_offset, length);
288                 int swizzled_gpu_offset = gpu_offset ^ 64;
289
290                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
291                                      gpu_vaddr + swizzled_gpu_offset,
292                                      this_length);
293                 if (ret)
294                         return ret + length;
295
296                 cpu_offset += this_length;
297                 gpu_offset += this_length;
298                 length -= this_length;
299         }
300
301         return 0;
302 }
303
304 static inline int
305 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
306                           const char __user *cpu_vaddr,
307                           int length)
308 {
309         int ret, cpu_offset = 0;
310
311         while (length > 0) {
312                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
313                 int this_length = min(cacheline_end - gpu_offset, length);
314                 int swizzled_gpu_offset = gpu_offset ^ 64;
315
316                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
317                                        cpu_vaddr + cpu_offset,
318                                        this_length);
319                 if (ret)
320                         return ret + length;
321
322                 cpu_offset += this_length;
323                 gpu_offset += this_length;
324                 length -= this_length;
325         }
326
327         return 0;
328 }
329
330 /*
331  * Pins the specified object's pages and synchronizes the object with
332  * GPU accesses. Sets needs_clflush to non-zero if the caller should
333  * flush the object from the CPU cache.
334  */
335 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
336                                     int *needs_clflush)
337 {
338         int ret;
339
340         *needs_clflush = 0;
341
342         if (!obj->base.filp)
343                 return -EINVAL;
344
345         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
346                 /* If we're not in the cpu read domain, set ourself into the gtt
347                  * read domain and manually flush cachelines (if required). This
348                  * optimizes for the case when the gpu will dirty the data
349                  * anyway again before the next pread happens. */
350                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
351                                                         obj->cache_level);
352                 ret = i915_gem_object_wait_rendering(obj, true);
353                 if (ret)
354                         return ret;
355         }
356
357         ret = i915_gem_object_get_pages(obj);
358         if (ret)
359                 return ret;
360
361         i915_gem_object_pin_pages(obj);
362
363         return ret;
364 }
365
366 /* Per-page copy function for the shmem pread fastpath.
367  * Flushes invalid cachelines before reading the target if
368  * needs_clflush is set. */
369 static int
370 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
371                  char __user *user_data,
372                  bool page_do_bit17_swizzling, bool needs_clflush)
373 {
374         char *vaddr;
375         int ret;
376
377         if (unlikely(page_do_bit17_swizzling))
378                 return -EINVAL;
379
380         vaddr = kmap_atomic(page);
381         if (needs_clflush)
382                 drm_clflush_virt_range(vaddr + shmem_page_offset,
383                                        page_length);
384         ret = __copy_to_user_inatomic(user_data,
385                                       vaddr + shmem_page_offset,
386                                       page_length);
387         kunmap_atomic(vaddr);
388
389         return ret ? -EFAULT : 0;
390 }
391
392 static void
393 shmem_clflush_swizzled_range(char *addr, unsigned long length,
394                              bool swizzled)
395 {
396         if (unlikely(swizzled)) {
397                 unsigned long start = (unsigned long) addr;
398                 unsigned long end = (unsigned long) addr + length;
399
400                 /* For swizzling simply ensure that we always flush both
401                  * channels. Lame, but simple and it works. Swizzled
402                  * pwrite/pread is far from a hotpath - current userspace
403                  * doesn't use it at all. */
404                 start = round_down(start, 128);
405                 end = round_up(end, 128);
406
407                 drm_clflush_virt_range((void *)start, end - start);
408         } else {
409                 drm_clflush_virt_range(addr, length);
410         }
411
412 }
413
414 /* Only difference to the fast-path function is that this can handle bit17
415  * and uses non-atomic copy and kmap functions. */
416 static int
417 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
418                  char __user *user_data,
419                  bool page_do_bit17_swizzling, bool needs_clflush)
420 {
421         char *vaddr;
422         int ret;
423
424         vaddr = kmap(page);
425         if (needs_clflush)
426                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
427                                              page_length,
428                                              page_do_bit17_swizzling);
429
430         if (page_do_bit17_swizzling)
431                 ret = __copy_to_user_swizzled(user_data,
432                                               vaddr, shmem_page_offset,
433                                               page_length);
434         else
435                 ret = __copy_to_user(user_data,
436                                      vaddr + shmem_page_offset,
437                                      page_length);
438         kunmap(page);
439
440         return ret ? - EFAULT : 0;
441 }
442
443 static int
444 i915_gem_shmem_pread(struct drm_device *dev,
445                      struct drm_i915_gem_object *obj,
446                      struct drm_i915_gem_pread *args,
447                      struct drm_file *file)
448 {
449         char __user *user_data;
450         ssize_t remain;
451         loff_t offset;
452         int shmem_page_offset, page_length, ret = 0;
453         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
454         int prefaulted = 0;
455         int needs_clflush = 0;
456         struct sg_page_iter sg_iter;
457
458         user_data = to_user_ptr(args->data_ptr);
459         remain = args->size;
460
461         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
462
463         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
464         if (ret)
465                 return ret;
466
467         offset = args->offset;
468
469         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
470                          offset >> PAGE_SHIFT) {
471                 struct page *page = sg_page_iter_page(&sg_iter);
472
473                 if (remain <= 0)
474                         break;
475
476                 /* Operation in this page
477                  *
478                  * shmem_page_offset = offset within page in shmem file
479                  * page_length = bytes to copy for this page
480                  */
481                 shmem_page_offset = offset_in_page(offset);
482                 page_length = remain;
483                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
484                         page_length = PAGE_SIZE - shmem_page_offset;
485
486                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
487                         (page_to_phys(page) & (1 << 17)) != 0;
488
489                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
490                                        user_data, page_do_bit17_swizzling,
491                                        needs_clflush);
492                 if (ret == 0)
493                         goto next_page;
494
495                 mutex_unlock(&dev->struct_mutex);
496
497                 if (likely(!i915.prefault_disable) && !prefaulted) {
498                         ret = fault_in_multipages_writeable(user_data, remain);
499                         /* Userspace is tricking us, but we've already clobbered
500                          * its pages with the prefault and promised to write the
501                          * data up to the first fault. Hence ignore any errors
502                          * and just continue. */
503                         (void)ret;
504                         prefaulted = 1;
505                 }
506
507                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
508                                        user_data, page_do_bit17_swizzling,
509                                        needs_clflush);
510
511                 mutex_lock(&dev->struct_mutex);
512
513                 if (ret)
514                         goto out;
515
516 next_page:
517                 remain -= page_length;
518                 user_data += page_length;
519                 offset += page_length;
520         }
521
522 out:
523         i915_gem_object_unpin_pages(obj);
524
525         return ret;
526 }
527
528 /**
529  * Reads data from the object referenced by handle.
530  *
531  * On error, the contents of *data are undefined.
532  */
533 int
534 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
535                      struct drm_file *file)
536 {
537         struct drm_i915_gem_pread *args = data;
538         struct drm_i915_gem_object *obj;
539         int ret = 0;
540
541         if (args->size == 0)
542                 return 0;
543
544         if (!access_ok(VERIFY_WRITE,
545                        to_user_ptr(args->data_ptr),
546                        args->size))
547                 return -EFAULT;
548
549         ret = i915_mutex_lock_interruptible(dev);
550         if (ret)
551                 return ret;
552
553         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
554         if (&obj->base == NULL) {
555                 ret = -ENOENT;
556                 goto unlock;
557         }
558
559         /* Bounds check source.  */
560         if (args->offset > obj->base.size ||
561             args->size > obj->base.size - args->offset) {
562                 ret = -EINVAL;
563                 goto out;
564         }
565
566         /* prime objects have no backing filp to GEM pread/pwrite
567          * pages from.
568          */
569         if (!obj->base.filp) {
570                 ret = -EINVAL;
571                 goto out;
572         }
573
574         trace_i915_gem_object_pread(obj, args->offset, args->size);
575
576         ret = i915_gem_shmem_pread(dev, obj, args, file);
577
578 out:
579         drm_gem_object_unreference(&obj->base);
580 unlock:
581         mutex_unlock(&dev->struct_mutex);
582         return ret;
583 }
584
585 /* This is the fast write path which cannot handle
586  * page faults in the source data
587  */
588
589 static inline int
590 fast_user_write(struct io_mapping *mapping,
591                 loff_t page_base, int page_offset,
592                 char __user *user_data,
593                 int length)
594 {
595         void __iomem *vaddr_atomic;
596         void *vaddr;
597         unsigned long unwritten;
598
599         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
600         /* We can use the cpu mem copy function because this is X86. */
601         vaddr = (void __force*)vaddr_atomic + page_offset;
602         unwritten = __copy_from_user_inatomic_nocache(vaddr,
603                                                       user_data, length);
604         io_mapping_unmap_atomic(vaddr_atomic);
605         return unwritten;
606 }
607
608 /**
609  * This is the fast pwrite path, where we copy the data directly from the
610  * user into the GTT, uncached.
611  */
612 static int
613 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
614                          struct drm_i915_gem_object *obj,
615                          struct drm_i915_gem_pwrite *args,
616                          struct drm_file *file)
617 {
618         struct drm_i915_private *dev_priv = dev->dev_private;
619         ssize_t remain;
620         loff_t offset, page_base;
621         char __user *user_data;
622         int page_offset, page_length, ret;
623
624         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
625         if (ret)
626                 goto out;
627
628         ret = i915_gem_object_set_to_gtt_domain(obj, true);
629         if (ret)
630                 goto out_unpin;
631
632         ret = i915_gem_object_put_fence(obj);
633         if (ret)
634                 goto out_unpin;
635
636         user_data = to_user_ptr(args->data_ptr);
637         remain = args->size;
638
639         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
640
641         while (remain > 0) {
642                 /* Operation in this page
643                  *
644                  * page_base = page offset within aperture
645                  * page_offset = offset within page
646                  * page_length = bytes to copy for this page
647                  */
648                 page_base = offset & PAGE_MASK;
649                 page_offset = offset_in_page(offset);
650                 page_length = remain;
651                 if ((page_offset + remain) > PAGE_SIZE)
652                         page_length = PAGE_SIZE - page_offset;
653
654                 /* If we get a fault while copying data, then (presumably) our
655                  * source page isn't available.  Return the error and we'll
656                  * retry in the slow path.
657                  */
658                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
659                                     page_offset, user_data, page_length)) {
660                         ret = -EFAULT;
661                         goto out_unpin;
662                 }
663
664                 remain -= page_length;
665                 user_data += page_length;
666                 offset += page_length;
667         }
668
669 out_unpin:
670         i915_gem_object_ggtt_unpin(obj);
671 out:
672         return ret;
673 }
674
675 /* Per-page copy function for the shmem pwrite fastpath.
676  * Flushes invalid cachelines before writing to the target if
677  * needs_clflush_before is set and flushes out any written cachelines after
678  * writing if needs_clflush is set. */
679 static int
680 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
681                   char __user *user_data,
682                   bool page_do_bit17_swizzling,
683                   bool needs_clflush_before,
684                   bool needs_clflush_after)
685 {
686         char *vaddr;
687         int ret;
688
689         if (unlikely(page_do_bit17_swizzling))
690                 return -EINVAL;
691
692         vaddr = kmap_atomic(page);
693         if (needs_clflush_before)
694                 drm_clflush_virt_range(vaddr + shmem_page_offset,
695                                        page_length);
696         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
697                                         user_data, page_length);
698         if (needs_clflush_after)
699                 drm_clflush_virt_range(vaddr + shmem_page_offset,
700                                        page_length);
701         kunmap_atomic(vaddr);
702
703         return ret ? -EFAULT : 0;
704 }
705
706 /* Only difference to the fast-path function is that this can handle bit17
707  * and uses non-atomic copy and kmap functions. */
708 static int
709 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
710                   char __user *user_data,
711                   bool page_do_bit17_swizzling,
712                   bool needs_clflush_before,
713                   bool needs_clflush_after)
714 {
715         char *vaddr;
716         int ret;
717
718         vaddr = kmap(page);
719         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
720                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
721                                              page_length,
722                                              page_do_bit17_swizzling);
723         if (page_do_bit17_swizzling)
724                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
725                                                 user_data,
726                                                 page_length);
727         else
728                 ret = __copy_from_user(vaddr + shmem_page_offset,
729                                        user_data,
730                                        page_length);
731         if (needs_clflush_after)
732                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
733                                              page_length,
734                                              page_do_bit17_swizzling);
735         kunmap(page);
736
737         return ret ? -EFAULT : 0;
738 }
739
740 static int
741 i915_gem_shmem_pwrite(struct drm_device *dev,
742                       struct drm_i915_gem_object *obj,
743                       struct drm_i915_gem_pwrite *args,
744                       struct drm_file *file)
745 {
746         ssize_t remain;
747         loff_t offset;
748         char __user *user_data;
749         int shmem_page_offset, page_length, ret = 0;
750         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
751         int hit_slowpath = 0;
752         int needs_clflush_after = 0;
753         int needs_clflush_before = 0;
754         struct sg_page_iter sg_iter;
755
756         user_data = to_user_ptr(args->data_ptr);
757         remain = args->size;
758
759         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
760
761         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
762                 /* If we're not in the cpu write domain, set ourself into the gtt
763                  * write domain and manually flush cachelines (if required). This
764                  * optimizes for the case when the gpu will use the data
765                  * right away and we therefore have to clflush anyway. */
766                 needs_clflush_after = cpu_write_needs_clflush(obj);
767                 ret = i915_gem_object_wait_rendering(obj, false);
768                 if (ret)
769                         return ret;
770         }
771         /* Same trick applies to invalidate partially written cachelines read
772          * before writing. */
773         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
774                 needs_clflush_before =
775                         !cpu_cache_is_coherent(dev, obj->cache_level);
776
777         ret = i915_gem_object_get_pages(obj);
778         if (ret)
779                 return ret;
780
781         i915_gem_object_pin_pages(obj);
782
783         offset = args->offset;
784         obj->dirty = 1;
785
786         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
787                          offset >> PAGE_SHIFT) {
788                 struct page *page = sg_page_iter_page(&sg_iter);
789                 int partial_cacheline_write;
790
791                 if (remain <= 0)
792                         break;
793
794                 /* Operation in this page
795                  *
796                  * shmem_page_offset = offset within page in shmem file
797                  * page_length = bytes to copy for this page
798                  */
799                 shmem_page_offset = offset_in_page(offset);
800
801                 page_length = remain;
802                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
803                         page_length = PAGE_SIZE - shmem_page_offset;
804
805                 /* If we don't overwrite a cacheline completely we need to be
806                  * careful to have up-to-date data by first clflushing. Don't
807                  * overcomplicate things and flush the entire patch. */
808                 partial_cacheline_write = needs_clflush_before &&
809                         ((shmem_page_offset | page_length)
810                                 & (boot_cpu_data.x86_clflush_size - 1));
811
812                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
813                         (page_to_phys(page) & (1 << 17)) != 0;
814
815                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
816                                         user_data, page_do_bit17_swizzling,
817                                         partial_cacheline_write,
818                                         needs_clflush_after);
819                 if (ret == 0)
820                         goto next_page;
821
822                 hit_slowpath = 1;
823                 mutex_unlock(&dev->struct_mutex);
824                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
825                                         user_data, page_do_bit17_swizzling,
826                                         partial_cacheline_write,
827                                         needs_clflush_after);
828
829                 mutex_lock(&dev->struct_mutex);
830
831                 if (ret)
832                         goto out;
833
834 next_page:
835                 remain -= page_length;
836                 user_data += page_length;
837                 offset += page_length;
838         }
839
840 out:
841         i915_gem_object_unpin_pages(obj);
842
843         if (hit_slowpath) {
844                 /*
845                  * Fixup: Flush cpu caches in case we didn't flush the dirty
846                  * cachelines in-line while writing and the object moved
847                  * out of the cpu write domain while we've dropped the lock.
848                  */
849                 if (!needs_clflush_after &&
850                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
851                         if (i915_gem_clflush_object(obj, obj->pin_display))
852                                 i915_gem_chipset_flush(dev);
853                 }
854         }
855
856         if (needs_clflush_after)
857                 i915_gem_chipset_flush(dev);
858
859         return ret;
860 }
861
862 /**
863  * Writes data to the object referenced by handle.
864  *
865  * On error, the contents of the buffer that were to be modified are undefined.
866  */
867 int
868 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
869                       struct drm_file *file)
870 {
871         struct drm_i915_gem_pwrite *args = data;
872         struct drm_i915_gem_object *obj;
873         int ret;
874
875         if (args->size == 0)
876                 return 0;
877
878         if (!access_ok(VERIFY_READ,
879                        to_user_ptr(args->data_ptr),
880                        args->size))
881                 return -EFAULT;
882
883         if (likely(!i915.prefault_disable)) {
884                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
885                                                    args->size);
886                 if (ret)
887                         return -EFAULT;
888         }
889
890         ret = i915_mutex_lock_interruptible(dev);
891         if (ret)
892                 return ret;
893
894         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
895         if (&obj->base == NULL) {
896                 ret = -ENOENT;
897                 goto unlock;
898         }
899
900         /* Bounds check destination. */
901         if (args->offset > obj->base.size ||
902             args->size > obj->base.size - args->offset) {
903                 ret = -EINVAL;
904                 goto out;
905         }
906
907         /* prime objects have no backing filp to GEM pread/pwrite
908          * pages from.
909          */
910         if (!obj->base.filp) {
911                 ret = -EINVAL;
912                 goto out;
913         }
914
915         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
916
917         ret = -EFAULT;
918         /* We can only do the GTT pwrite on untiled buffers, as otherwise
919          * it would end up going through the fenced access, and we'll get
920          * different detiling behavior between reading and writing.
921          * pread/pwrite currently are reading and writing from the CPU
922          * perspective, requiring manual detiling by the client.
923          */
924         if (obj->phys_obj) {
925                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
926                 goto out;
927         }
928
929         if (obj->tiling_mode == I915_TILING_NONE &&
930             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
931             cpu_write_needs_clflush(obj)) {
932                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
933                 /* Note that the gtt paths might fail with non-page-backed user
934                  * pointers (e.g. gtt mappings when moving data between
935                  * textures). Fallback to the shmem path in that case. */
936         }
937
938         if (ret == -EFAULT || ret == -ENOSPC)
939                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
940
941 out:
942         drm_gem_object_unreference(&obj->base);
943 unlock:
944         mutex_unlock(&dev->struct_mutex);
945         return ret;
946 }
947
948 int
949 i915_gem_check_wedge(struct i915_gpu_error *error,
950                      bool interruptible)
951 {
952         if (i915_reset_in_progress(error)) {
953                 /* Non-interruptible callers can't handle -EAGAIN, hence return
954                  * -EIO unconditionally for these. */
955                 if (!interruptible)
956                         return -EIO;
957
958                 /* Recovery complete, but the reset failed ... */
959                 if (i915_terminally_wedged(error))
960                         return -EIO;
961
962                 return -EAGAIN;
963         }
964
965         return 0;
966 }
967
968 /*
969  * Compare seqno against outstanding lazy request. Emit a request if they are
970  * equal.
971  */
972 static int
973 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
974 {
975         int ret;
976
977         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
978
979         ret = 0;
980         if (seqno == ring->outstanding_lazy_seqno)
981                 ret = i915_add_request(ring, NULL);
982
983         return ret;
984 }
985
986 static void fake_irq(unsigned long data)
987 {
988         wake_up_process((struct task_struct *)data);
989 }
990
991 static bool missed_irq(struct drm_i915_private *dev_priv,
992                        struct intel_ring_buffer *ring)
993 {
994         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
995 }
996
997 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
998 {
999         if (file_priv == NULL)
1000                 return true;
1001
1002         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1003 }
1004
1005 /**
1006  * __wait_seqno - wait until execution of seqno has finished
1007  * @ring: the ring expected to report seqno
1008  * @seqno: duh!
1009  * @reset_counter: reset sequence associated with the given seqno
1010  * @interruptible: do an interruptible wait (normally yes)
1011  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1012  *
1013  * Note: It is of utmost importance that the passed in seqno and reset_counter
1014  * values have been read by the caller in an smp safe manner. Where read-side
1015  * locks are involved, it is sufficient to read the reset_counter before
1016  * unlocking the lock that protects the seqno. For lockless tricks, the
1017  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1018  * inserted.
1019  *
1020  * Returns 0 if the seqno was found within the alloted time. Else returns the
1021  * errno with remaining time filled in timeout argument.
1022  */
1023 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1024                         unsigned reset_counter,
1025                         bool interruptible,
1026                         struct timespec *timeout,
1027                         struct drm_i915_file_private *file_priv)
1028 {
1029         struct drm_device *dev = ring->dev;
1030         struct drm_i915_private *dev_priv = dev->dev_private;
1031         const bool irq_test_in_progress =
1032                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1033         struct timespec before, now;
1034         DEFINE_WAIT(wait);
1035         unsigned long timeout_expire;
1036         int ret;
1037
1038         WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1039
1040         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1041                 return 0;
1042
1043         timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1044
1045         if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1046                 gen6_rps_boost(dev_priv);
1047                 if (file_priv)
1048                         mod_delayed_work(dev_priv->wq,
1049                                          &file_priv->mm.idle_work,
1050                                          msecs_to_jiffies(100));
1051         }
1052
1053         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1054                 return -ENODEV;
1055
1056         /* Record current time in case interrupted by signal, or wedged */
1057         trace_i915_gem_request_wait_begin(ring, seqno);
1058         getrawmonotonic(&before);
1059         for (;;) {
1060                 struct timer_list timer;
1061
1062                 prepare_to_wait(&ring->irq_queue, &wait,
1063                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1064
1065                 /* We need to check whether any gpu reset happened in between
1066                  * the caller grabbing the seqno and now ... */
1067                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1068                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1069                          * is truely gone. */
1070                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1071                         if (ret == 0)
1072                                 ret = -EAGAIN;
1073                         break;
1074                 }
1075
1076                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1077                         ret = 0;
1078                         break;
1079                 }
1080
1081                 if (interruptible && signal_pending(current)) {
1082                         ret = -ERESTARTSYS;
1083                         break;
1084                 }
1085
1086                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1087                         ret = -ETIME;
1088                         break;
1089                 }
1090
1091                 timer.function = NULL;
1092                 if (timeout || missed_irq(dev_priv, ring)) {
1093                         unsigned long expire;
1094
1095                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1096                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1097                         mod_timer(&timer, expire);
1098                 }
1099
1100                 io_schedule();
1101
1102                 if (timer.function) {
1103                         del_singleshot_timer_sync(&timer);
1104                         destroy_timer_on_stack(&timer);
1105                 }
1106         }
1107         getrawmonotonic(&now);
1108         trace_i915_gem_request_wait_end(ring, seqno);
1109
1110         if (!irq_test_in_progress)
1111                 ring->irq_put(ring);
1112
1113         finish_wait(&ring->irq_queue, &wait);
1114
1115         if (timeout) {
1116                 struct timespec sleep_time = timespec_sub(now, before);
1117                 *timeout = timespec_sub(*timeout, sleep_time);
1118                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1119                         set_normalized_timespec(timeout, 0, 0);
1120         }
1121
1122         return ret;
1123 }
1124
1125 /**
1126  * Waits for a sequence number to be signaled, and cleans up the
1127  * request and object lists appropriately for that event.
1128  */
1129 int
1130 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1131 {
1132         struct drm_device *dev = ring->dev;
1133         struct drm_i915_private *dev_priv = dev->dev_private;
1134         bool interruptible = dev_priv->mm.interruptible;
1135         int ret;
1136
1137         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1138         BUG_ON(seqno == 0);
1139
1140         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1141         if (ret)
1142                 return ret;
1143
1144         ret = i915_gem_check_olr(ring, seqno);
1145         if (ret)
1146                 return ret;
1147
1148         return __wait_seqno(ring, seqno,
1149                             atomic_read(&dev_priv->gpu_error.reset_counter),
1150                             interruptible, NULL, NULL);
1151 }
1152
1153 static int
1154 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1155                                      struct intel_ring_buffer *ring)
1156 {
1157         i915_gem_retire_requests_ring(ring);
1158
1159         /* Manually manage the write flush as we may have not yet
1160          * retired the buffer.
1161          *
1162          * Note that the last_write_seqno is always the earlier of
1163          * the two (read/write) seqno, so if we haved successfully waited,
1164          * we know we have passed the last write.
1165          */
1166         obj->last_write_seqno = 0;
1167         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1168
1169         return 0;
1170 }
1171
1172 /**
1173  * Ensures that all rendering to the object has completed and the object is
1174  * safe to unbind from the GTT or access from the CPU.
1175  */
1176 static __must_check int
1177 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1178                                bool readonly)
1179 {
1180         struct intel_ring_buffer *ring = obj->ring;
1181         u32 seqno;
1182         int ret;
1183
1184         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1185         if (seqno == 0)
1186                 return 0;
1187
1188         ret = i915_wait_seqno(ring, seqno);
1189         if (ret)
1190                 return ret;
1191
1192         return i915_gem_object_wait_rendering__tail(obj, ring);
1193 }
1194
1195 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1196  * as the object state may change during this call.
1197  */
1198 static __must_check int
1199 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1200                                             struct drm_i915_file_private *file_priv,
1201                                             bool readonly)
1202 {
1203         struct drm_device *dev = obj->base.dev;
1204         struct drm_i915_private *dev_priv = dev->dev_private;
1205         struct intel_ring_buffer *ring = obj->ring;
1206         unsigned reset_counter;
1207         u32 seqno;
1208         int ret;
1209
1210         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1211         BUG_ON(!dev_priv->mm.interruptible);
1212
1213         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1214         if (seqno == 0)
1215                 return 0;
1216
1217         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1218         if (ret)
1219                 return ret;
1220
1221         ret = i915_gem_check_olr(ring, seqno);
1222         if (ret)
1223                 return ret;
1224
1225         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1226         mutex_unlock(&dev->struct_mutex);
1227         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1228         mutex_lock(&dev->struct_mutex);
1229         if (ret)
1230                 return ret;
1231
1232         return i915_gem_object_wait_rendering__tail(obj, ring);
1233 }
1234
1235 /**
1236  * Called when user space prepares to use an object with the CPU, either
1237  * through the mmap ioctl's mapping or a GTT mapping.
1238  */
1239 int
1240 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1241                           struct drm_file *file)
1242 {
1243         struct drm_i915_gem_set_domain *args = data;
1244         struct drm_i915_gem_object *obj;
1245         uint32_t read_domains = args->read_domains;
1246         uint32_t write_domain = args->write_domain;
1247         int ret;
1248
1249         /* Only handle setting domains to types used by the CPU. */
1250         if (write_domain & I915_GEM_GPU_DOMAINS)
1251                 return -EINVAL;
1252
1253         if (read_domains & I915_GEM_GPU_DOMAINS)
1254                 return -EINVAL;
1255
1256         /* Having something in the write domain implies it's in the read
1257          * domain, and only that read domain.  Enforce that in the request.
1258          */
1259         if (write_domain != 0 && read_domains != write_domain)
1260                 return -EINVAL;
1261
1262         ret = i915_mutex_lock_interruptible(dev);
1263         if (ret)
1264                 return ret;
1265
1266         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1267         if (&obj->base == NULL) {
1268                 ret = -ENOENT;
1269                 goto unlock;
1270         }
1271
1272         /* Try to flush the object off the GPU without holding the lock.
1273          * We will repeat the flush holding the lock in the normal manner
1274          * to catch cases where we are gazumped.
1275          */
1276         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1277                                                           file->driver_priv,
1278                                                           !write_domain);
1279         if (ret)
1280                 goto unref;
1281
1282         if (read_domains & I915_GEM_DOMAIN_GTT) {
1283                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1284
1285                 /* Silently promote "you're not bound, there was nothing to do"
1286                  * to success, since the client was just asking us to
1287                  * make sure everything was done.
1288                  */
1289                 if (ret == -EINVAL)
1290                         ret = 0;
1291         } else {
1292                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1293         }
1294
1295 unref:
1296         drm_gem_object_unreference(&obj->base);
1297 unlock:
1298         mutex_unlock(&dev->struct_mutex);
1299         return ret;
1300 }
1301
1302 /**
1303  * Called when user space has done writes to this buffer
1304  */
1305 int
1306 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1307                          struct drm_file *file)
1308 {
1309         struct drm_i915_gem_sw_finish *args = data;
1310         struct drm_i915_gem_object *obj;
1311         int ret = 0;
1312
1313         ret = i915_mutex_lock_interruptible(dev);
1314         if (ret)
1315                 return ret;
1316
1317         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1318         if (&obj->base == NULL) {
1319                 ret = -ENOENT;
1320                 goto unlock;
1321         }
1322
1323         /* Pinned buffers may be scanout, so flush the cache */
1324         if (obj->pin_display)
1325                 i915_gem_object_flush_cpu_write_domain(obj, true);
1326
1327         drm_gem_object_unreference(&obj->base);
1328 unlock:
1329         mutex_unlock(&dev->struct_mutex);
1330         return ret;
1331 }
1332
1333 /**
1334  * Maps the contents of an object, returning the address it is mapped
1335  * into.
1336  *
1337  * While the mapping holds a reference on the contents of the object, it doesn't
1338  * imply a ref on the object itself.
1339  */
1340 int
1341 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1342                     struct drm_file *file)
1343 {
1344         struct drm_i915_gem_mmap *args = data;
1345         struct drm_gem_object *obj;
1346         unsigned long addr;
1347
1348         obj = drm_gem_object_lookup(dev, file, args->handle);
1349         if (obj == NULL)
1350                 return -ENOENT;
1351
1352         /* prime objects have no backing filp to GEM mmap
1353          * pages from.
1354          */
1355         if (!obj->filp) {
1356                 drm_gem_object_unreference_unlocked(obj);
1357                 return -EINVAL;
1358         }
1359
1360         addr = vm_mmap(obj->filp, 0, args->size,
1361                        PROT_READ | PROT_WRITE, MAP_SHARED,
1362                        args->offset);
1363         drm_gem_object_unreference_unlocked(obj);
1364         if (IS_ERR((void *)addr))
1365                 return addr;
1366
1367         args->addr_ptr = (uint64_t) addr;
1368
1369         return 0;
1370 }
1371
1372 /**
1373  * i915_gem_fault - fault a page into the GTT
1374  * vma: VMA in question
1375  * vmf: fault info
1376  *
1377  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1378  * from userspace.  The fault handler takes care of binding the object to
1379  * the GTT (if needed), allocating and programming a fence register (again,
1380  * only if needed based on whether the old reg is still valid or the object
1381  * is tiled) and inserting a new PTE into the faulting process.
1382  *
1383  * Note that the faulting process may involve evicting existing objects
1384  * from the GTT and/or fence registers to make room.  So performance may
1385  * suffer if the GTT working set is large or there are few fence registers
1386  * left.
1387  */
1388 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1389 {
1390         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1391         struct drm_device *dev = obj->base.dev;
1392         struct drm_i915_private *dev_priv = dev->dev_private;
1393         pgoff_t page_offset;
1394         unsigned long pfn;
1395         int ret = 0;
1396         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1397
1398         intel_runtime_pm_get(dev_priv);
1399
1400         /* We don't use vmf->pgoff since that has the fake offset */
1401         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1402                 PAGE_SHIFT;
1403
1404         ret = i915_mutex_lock_interruptible(dev);
1405         if (ret)
1406                 goto out;
1407
1408         trace_i915_gem_object_fault(obj, page_offset, true, write);
1409
1410         /* Try to flush the object off the GPU first without holding the lock.
1411          * Upon reacquiring the lock, we will perform our sanity checks and then
1412          * repeat the flush holding the lock in the normal manner to catch cases
1413          * where we are gazumped.
1414          */
1415         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1416         if (ret)
1417                 goto unlock;
1418
1419         /* Access to snoopable pages through the GTT is incoherent. */
1420         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1421                 ret = -EINVAL;
1422                 goto unlock;
1423         }
1424
1425         /* Now bind it into the GTT if needed */
1426         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1427         if (ret)
1428                 goto unlock;
1429
1430         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1431         if (ret)
1432                 goto unpin;
1433
1434         ret = i915_gem_object_get_fence(obj);
1435         if (ret)
1436                 goto unpin;
1437
1438         obj->fault_mappable = true;
1439
1440         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1441         pfn >>= PAGE_SHIFT;
1442         pfn += page_offset;
1443
1444         /* Finally, remap it using the new GTT offset */
1445         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1446 unpin:
1447         i915_gem_object_ggtt_unpin(obj);
1448 unlock:
1449         mutex_unlock(&dev->struct_mutex);
1450 out:
1451         switch (ret) {
1452         case -EIO:
1453                 /* If this -EIO is due to a gpu hang, give the reset code a
1454                  * chance to clean up the mess. Otherwise return the proper
1455                  * SIGBUS. */
1456                 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1457                         ret = VM_FAULT_SIGBUS;
1458                         break;
1459                 }
1460         case -EAGAIN:
1461                 /*
1462                  * EAGAIN means the gpu is hung and we'll wait for the error
1463                  * handler to reset everything when re-faulting in
1464                  * i915_mutex_lock_interruptible.
1465                  */
1466         case 0:
1467         case -ERESTARTSYS:
1468         case -EINTR:
1469         case -EBUSY:
1470                 /*
1471                  * EBUSY is ok: this just means that another thread
1472                  * already did the job.
1473                  */
1474                 ret = VM_FAULT_NOPAGE;
1475                 break;
1476         case -ENOMEM:
1477                 ret = VM_FAULT_OOM;
1478                 break;
1479         case -ENOSPC:
1480         case -EFAULT:
1481                 ret = VM_FAULT_SIGBUS;
1482                 break;
1483         default:
1484                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1485                 ret = VM_FAULT_SIGBUS;
1486                 break;
1487         }
1488
1489         intel_runtime_pm_put(dev_priv);
1490         return ret;
1491 }
1492
1493 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1494 {
1495         struct i915_vma *vma;
1496
1497         /*
1498          * Only the global gtt is relevant for gtt memory mappings, so restrict
1499          * list traversal to objects bound into the global address space. Note
1500          * that the active list should be empty, but better safe than sorry.
1501          */
1502         WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1503         list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1504                 i915_gem_release_mmap(vma->obj);
1505         list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1506                 i915_gem_release_mmap(vma->obj);
1507 }
1508
1509 /**
1510  * i915_gem_release_mmap - remove physical page mappings
1511  * @obj: obj in question
1512  *
1513  * Preserve the reservation of the mmapping with the DRM core code, but
1514  * relinquish ownership of the pages back to the system.
1515  *
1516  * It is vital that we remove the page mapping if we have mapped a tiled
1517  * object through the GTT and then lose the fence register due to
1518  * resource pressure. Similarly if the object has been moved out of the
1519  * aperture, than pages mapped into userspace must be revoked. Removing the
1520  * mapping will then trigger a page fault on the next user access, allowing
1521  * fixup by i915_gem_fault().
1522  */
1523 void
1524 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1525 {
1526         if (!obj->fault_mappable)
1527                 return;
1528
1529         drm_vma_node_unmap(&obj->base.vma_node,
1530                            obj->base.dev->anon_inode->i_mapping);
1531         obj->fault_mappable = false;
1532 }
1533
1534 uint32_t
1535 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1536 {
1537         uint32_t gtt_size;
1538
1539         if (INTEL_INFO(dev)->gen >= 4 ||
1540             tiling_mode == I915_TILING_NONE)
1541                 return size;
1542
1543         /* Previous chips need a power-of-two fence region when tiling */
1544         if (INTEL_INFO(dev)->gen == 3)
1545                 gtt_size = 1024*1024;
1546         else
1547                 gtt_size = 512*1024;
1548
1549         while (gtt_size < size)
1550                 gtt_size <<= 1;
1551
1552         return gtt_size;
1553 }
1554
1555 /**
1556  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1557  * @obj: object to check
1558  *
1559  * Return the required GTT alignment for an object, taking into account
1560  * potential fence register mapping.
1561  */
1562 uint32_t
1563 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1564                            int tiling_mode, bool fenced)
1565 {
1566         /*
1567          * Minimum alignment is 4k (GTT page size), but might be greater
1568          * if a fence register is needed for the object.
1569          */
1570         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1571             tiling_mode == I915_TILING_NONE)
1572                 return 4096;
1573
1574         /*
1575          * Previous chips need to be aligned to the size of the smallest
1576          * fence register that can contain the object.
1577          */
1578         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1579 }
1580
1581 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1582 {
1583         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1584         int ret;
1585
1586         if (drm_vma_node_has_offset(&obj->base.vma_node))
1587                 return 0;
1588
1589         dev_priv->mm.shrinker_no_lock_stealing = true;
1590
1591         ret = drm_gem_create_mmap_offset(&obj->base);
1592         if (ret != -ENOSPC)
1593                 goto out;
1594
1595         /* Badly fragmented mmap space? The only way we can recover
1596          * space is by destroying unwanted objects. We can't randomly release
1597          * mmap_offsets as userspace expects them to be persistent for the
1598          * lifetime of the objects. The closest we can is to release the
1599          * offsets on purgeable objects by truncating it and marking it purged,
1600          * which prevents userspace from ever using that object again.
1601          */
1602         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1603         ret = drm_gem_create_mmap_offset(&obj->base);
1604         if (ret != -ENOSPC)
1605                 goto out;
1606
1607         i915_gem_shrink_all(dev_priv);
1608         ret = drm_gem_create_mmap_offset(&obj->base);
1609 out:
1610         dev_priv->mm.shrinker_no_lock_stealing = false;
1611
1612         return ret;
1613 }
1614
1615 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1616 {
1617         drm_gem_free_mmap_offset(&obj->base);
1618 }
1619
1620 int
1621 i915_gem_mmap_gtt(struct drm_file *file,
1622                   struct drm_device *dev,
1623                   uint32_t handle,
1624                   uint64_t *offset)
1625 {
1626         struct drm_i915_private *dev_priv = dev->dev_private;
1627         struct drm_i915_gem_object *obj;
1628         int ret;
1629
1630         ret = i915_mutex_lock_interruptible(dev);
1631         if (ret)
1632                 return ret;
1633
1634         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1635         if (&obj->base == NULL) {
1636                 ret = -ENOENT;
1637                 goto unlock;
1638         }
1639
1640         if (obj->base.size > dev_priv->gtt.mappable_end) {
1641                 ret = -E2BIG;
1642                 goto out;
1643         }
1644
1645         if (obj->madv != I915_MADV_WILLNEED) {
1646                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1647                 ret = -EFAULT;
1648                 goto out;
1649         }
1650
1651         ret = i915_gem_object_create_mmap_offset(obj);
1652         if (ret)
1653                 goto out;
1654
1655         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1656
1657 out:
1658         drm_gem_object_unreference(&obj->base);
1659 unlock:
1660         mutex_unlock(&dev->struct_mutex);
1661         return ret;
1662 }
1663
1664 /**
1665  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1666  * @dev: DRM device
1667  * @data: GTT mapping ioctl data
1668  * @file: GEM object info
1669  *
1670  * Simply returns the fake offset to userspace so it can mmap it.
1671  * The mmap call will end up in drm_gem_mmap(), which will set things
1672  * up so we can get faults in the handler above.
1673  *
1674  * The fault handler will take care of binding the object into the GTT
1675  * (since it may have been evicted to make room for something), allocating
1676  * a fence register, and mapping the appropriate aperture address into
1677  * userspace.
1678  */
1679 int
1680 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1681                         struct drm_file *file)
1682 {
1683         struct drm_i915_gem_mmap_gtt *args = data;
1684
1685         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1686 }
1687
1688 /* Immediately discard the backing storage */
1689 static void
1690 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1691 {
1692         struct inode *inode;
1693
1694         i915_gem_object_free_mmap_offset(obj);
1695
1696         if (obj->base.filp == NULL)
1697                 return;
1698
1699         /* Our goal here is to return as much of the memory as
1700          * is possible back to the system as we are called from OOM.
1701          * To do this we must instruct the shmfs to drop all of its
1702          * backing pages, *now*.
1703          */
1704         inode = file_inode(obj->base.filp);
1705         shmem_truncate_range(inode, 0, (loff_t)-1);
1706
1707         obj->madv = __I915_MADV_PURGED;
1708 }
1709
1710 static inline int
1711 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1712 {
1713         return obj->madv == I915_MADV_DONTNEED;
1714 }
1715
1716 static void
1717 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1718 {
1719         struct sg_page_iter sg_iter;
1720         int ret;
1721
1722         BUG_ON(obj->madv == __I915_MADV_PURGED);
1723
1724         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1725         if (ret) {
1726                 /* In the event of a disaster, abandon all caches and
1727                  * hope for the best.
1728                  */
1729                 WARN_ON(ret != -EIO);
1730                 i915_gem_clflush_object(obj, true);
1731                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1732         }
1733
1734         if (i915_gem_object_needs_bit17_swizzle(obj))
1735                 i915_gem_object_save_bit_17_swizzle(obj);
1736
1737         if (obj->madv == I915_MADV_DONTNEED)
1738                 obj->dirty = 0;
1739
1740         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1741                 struct page *page = sg_page_iter_page(&sg_iter);
1742
1743                 if (obj->dirty)
1744                         set_page_dirty(page);
1745
1746                 if (obj->madv == I915_MADV_WILLNEED)
1747                         mark_page_accessed(page);
1748
1749                 page_cache_release(page);
1750         }
1751         obj->dirty = 0;
1752
1753         sg_free_table(obj->pages);
1754         kfree(obj->pages);
1755 }
1756
1757 int
1758 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1759 {
1760         const struct drm_i915_gem_object_ops *ops = obj->ops;
1761
1762         if (obj->pages == NULL)
1763                 return 0;
1764
1765         if (obj->pages_pin_count)
1766                 return -EBUSY;
1767
1768         BUG_ON(i915_gem_obj_bound_any(obj));
1769
1770         /* ->put_pages might need to allocate memory for the bit17 swizzle
1771          * array, hence protect them from being reaped by removing them from gtt
1772          * lists early. */
1773         list_del(&obj->global_list);
1774
1775         ops->put_pages(obj);
1776         obj->pages = NULL;
1777
1778         if (i915_gem_object_is_purgeable(obj))
1779                 i915_gem_object_truncate(obj);
1780
1781         return 0;
1782 }
1783
1784 static unsigned long
1785 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1786                   bool purgeable_only)
1787 {
1788         struct list_head still_bound_list;
1789         struct drm_i915_gem_object *obj, *next;
1790         unsigned long count = 0;
1791
1792         list_for_each_entry_safe(obj, next,
1793                                  &dev_priv->mm.unbound_list,
1794                                  global_list) {
1795                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1796                     i915_gem_object_put_pages(obj) == 0) {
1797                         count += obj->base.size >> PAGE_SHIFT;
1798                         if (count >= target)
1799                                 return count;
1800                 }
1801         }
1802
1803         /*
1804          * As we may completely rewrite the bound list whilst unbinding
1805          * (due to retiring requests) we have to strictly process only
1806          * one element of the list at the time, and recheck the list
1807          * on every iteration.
1808          */
1809         INIT_LIST_HEAD(&still_bound_list);
1810         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1811                 struct i915_vma *vma, *v;
1812
1813                 obj = list_first_entry(&dev_priv->mm.bound_list,
1814                                        typeof(*obj), global_list);
1815                 list_move_tail(&obj->global_list, &still_bound_list);
1816
1817                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1818                         continue;
1819
1820                 /*
1821                  * Hold a reference whilst we unbind this object, as we may
1822                  * end up waiting for and retiring requests. This might
1823                  * release the final reference (held by the active list)
1824                  * and result in the object being freed from under us.
1825                  * in this object being freed.
1826                  *
1827                  * Note 1: Shrinking the bound list is special since only active
1828                  * (and hence bound objects) can contain such limbo objects, so
1829                  * we don't need special tricks for shrinking the unbound list.
1830                  * The only other place where we have to be careful with active
1831                  * objects suddenly disappearing due to retiring requests is the
1832                  * eviction code.
1833                  *
1834                  * Note 2: Even though the bound list doesn't hold a reference
1835                  * to the object we can safely grab one here: The final object
1836                  * unreferencing and the bound_list are both protected by the
1837                  * dev->struct_mutex and so we won't ever be able to observe an
1838                  * object on the bound_list with a reference count equals 0.
1839                  */
1840                 drm_gem_object_reference(&obj->base);
1841
1842                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1843                         if (i915_vma_unbind(vma))
1844                                 break;
1845
1846                 if (i915_gem_object_put_pages(obj) == 0)
1847                         count += obj->base.size >> PAGE_SHIFT;
1848
1849                 drm_gem_object_unreference(&obj->base);
1850         }
1851         list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1852
1853         return count;
1854 }
1855
1856 static unsigned long
1857 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1858 {
1859         return __i915_gem_shrink(dev_priv, target, true);
1860 }
1861
1862 static unsigned long
1863 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1864 {
1865         struct drm_i915_gem_object *obj, *next;
1866         long freed = 0;
1867
1868         i915_gem_evict_everything(dev_priv->dev);
1869
1870         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1871                                  global_list) {
1872                 if (i915_gem_object_put_pages(obj) == 0)
1873                         freed += obj->base.size >> PAGE_SHIFT;
1874         }
1875         return freed;
1876 }
1877
1878 static int
1879 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1880 {
1881         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1882         int page_count, i;
1883         struct address_space *mapping;
1884         struct sg_table *st;
1885         struct scatterlist *sg;
1886         struct sg_page_iter sg_iter;
1887         struct page *page;
1888         unsigned long last_pfn = 0;     /* suppress gcc warning */
1889         gfp_t gfp;
1890
1891         /* Assert that the object is not currently in any GPU domain. As it
1892          * wasn't in the GTT, there shouldn't be any way it could have been in
1893          * a GPU cache
1894          */
1895         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1896         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1897
1898         st = kmalloc(sizeof(*st), GFP_KERNEL);
1899         if (st == NULL)
1900                 return -ENOMEM;
1901
1902         page_count = obj->base.size / PAGE_SIZE;
1903         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1904                 kfree(st);
1905                 return -ENOMEM;
1906         }
1907
1908         /* Get the list of pages out of our struct file.  They'll be pinned
1909          * at this point until we release them.
1910          *
1911          * Fail silently without starting the shrinker
1912          */
1913         mapping = file_inode(obj->base.filp)->i_mapping;
1914         gfp = mapping_gfp_mask(mapping);
1915         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1916         gfp &= ~(__GFP_IO | __GFP_WAIT);
1917         sg = st->sgl;
1918         st->nents = 0;
1919         for (i = 0; i < page_count; i++) {
1920                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1921                 if (IS_ERR(page)) {
1922                         i915_gem_purge(dev_priv, page_count);
1923                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1924                 }
1925                 if (IS_ERR(page)) {
1926                         /* We've tried hard to allocate the memory by reaping
1927                          * our own buffer, now let the real VM do its job and
1928                          * go down in flames if truly OOM.
1929                          */
1930                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1931                         gfp |= __GFP_IO | __GFP_WAIT;
1932
1933                         i915_gem_shrink_all(dev_priv);
1934                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1935                         if (IS_ERR(page))
1936                                 goto err_pages;
1937
1938                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1939                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1940                 }
1941 #ifdef CONFIG_SWIOTLB
1942                 if (swiotlb_nr_tbl()) {
1943                         st->nents++;
1944                         sg_set_page(sg, page, PAGE_SIZE, 0);
1945                         sg = sg_next(sg);
1946                         continue;
1947                 }
1948 #endif
1949                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1950                         if (i)
1951                                 sg = sg_next(sg);
1952                         st->nents++;
1953                         sg_set_page(sg, page, PAGE_SIZE, 0);
1954                 } else {
1955                         sg->length += PAGE_SIZE;
1956                 }
1957                 last_pfn = page_to_pfn(page);
1958
1959                 /* Check that the i965g/gm workaround works. */
1960                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1961         }
1962 #ifdef CONFIG_SWIOTLB
1963         if (!swiotlb_nr_tbl())
1964 #endif
1965                 sg_mark_end(sg);
1966         obj->pages = st;
1967
1968         if (i915_gem_object_needs_bit17_swizzle(obj))
1969                 i915_gem_object_do_bit_17_swizzle(obj);
1970
1971         return 0;
1972
1973 err_pages:
1974         sg_mark_end(sg);
1975         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1976                 page_cache_release(sg_page_iter_page(&sg_iter));
1977         sg_free_table(st);
1978         kfree(st);
1979         return PTR_ERR(page);
1980 }
1981
1982 /* Ensure that the associated pages are gathered from the backing storage
1983  * and pinned into our object. i915_gem_object_get_pages() may be called
1984  * multiple times before they are released by a single call to
1985  * i915_gem_object_put_pages() - once the pages are no longer referenced
1986  * either as a result of memory pressure (reaping pages under the shrinker)
1987  * or as the object is itself released.
1988  */
1989 int
1990 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1991 {
1992         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1993         const struct drm_i915_gem_object_ops *ops = obj->ops;
1994         int ret;
1995
1996         if (obj->pages)
1997                 return 0;
1998
1999         if (obj->madv != I915_MADV_WILLNEED) {
2000                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2001                 return -EFAULT;
2002         }
2003
2004         BUG_ON(obj->pages_pin_count);
2005
2006         ret = ops->get_pages(obj);
2007         if (ret)
2008                 return ret;
2009
2010         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2011         return 0;
2012 }
2013
2014 static void
2015 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2016                                struct intel_ring_buffer *ring)
2017 {
2018         struct drm_device *dev = obj->base.dev;
2019         struct drm_i915_private *dev_priv = dev->dev_private;
2020         u32 seqno = intel_ring_get_seqno(ring);
2021
2022         BUG_ON(ring == NULL);
2023         if (obj->ring != ring && obj->last_write_seqno) {
2024                 /* Keep the seqno relative to the current ring */
2025                 obj->last_write_seqno = seqno;
2026         }
2027         obj->ring = ring;
2028
2029         /* Add a reference if we're newly entering the active list. */
2030         if (!obj->active) {
2031                 drm_gem_object_reference(&obj->base);
2032                 obj->active = 1;
2033         }
2034
2035         list_move_tail(&obj->ring_list, &ring->active_list);
2036
2037         obj->last_read_seqno = seqno;
2038
2039         if (obj->fenced_gpu_access) {
2040                 obj->last_fenced_seqno = seqno;
2041
2042                 /* Bump MRU to take account of the delayed flush */
2043                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2044                         struct drm_i915_fence_reg *reg;
2045
2046                         reg = &dev_priv->fence_regs[obj->fence_reg];
2047                         list_move_tail(&reg->lru_list,
2048                                        &dev_priv->mm.fence_list);
2049                 }
2050         }
2051 }
2052
2053 void i915_vma_move_to_active(struct i915_vma *vma,
2054                              struct intel_ring_buffer *ring)
2055 {
2056         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2057         return i915_gem_object_move_to_active(vma->obj, ring);
2058 }
2059
2060 static void
2061 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2062 {
2063         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2064         struct i915_address_space *vm;
2065         struct i915_vma *vma;
2066
2067         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2068         BUG_ON(!obj->active);
2069
2070         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2071                 vma = i915_gem_obj_to_vma(obj, vm);
2072                 if (vma && !list_empty(&vma->mm_list))
2073                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2074         }
2075
2076         list_del_init(&obj->ring_list);
2077         obj->ring = NULL;
2078
2079         obj->last_read_seqno = 0;
2080         obj->last_write_seqno = 0;
2081         obj->base.write_domain = 0;
2082
2083         obj->last_fenced_seqno = 0;
2084         obj->fenced_gpu_access = false;
2085
2086         obj->active = 0;
2087         drm_gem_object_unreference(&obj->base);
2088
2089         WARN_ON(i915_verify_lists(dev));
2090 }
2091
2092 static int
2093 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2094 {
2095         struct drm_i915_private *dev_priv = dev->dev_private;
2096         struct intel_ring_buffer *ring;
2097         int ret, i, j;
2098
2099         /* Carefully retire all requests without writing to the rings */
2100         for_each_ring(ring, dev_priv, i) {
2101                 ret = intel_ring_idle(ring);
2102                 if (ret)
2103                         return ret;
2104         }
2105         i915_gem_retire_requests(dev);
2106
2107         /* Finally reset hw state */
2108         for_each_ring(ring, dev_priv, i) {
2109                 intel_ring_init_seqno(ring, seqno);
2110
2111                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2112                         ring->sync_seqno[j] = 0;
2113         }
2114
2115         return 0;
2116 }
2117
2118 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2119 {
2120         struct drm_i915_private *dev_priv = dev->dev_private;
2121         int ret;
2122
2123         if (seqno == 0)
2124                 return -EINVAL;
2125
2126         /* HWS page needs to be set less than what we
2127          * will inject to ring
2128          */
2129         ret = i915_gem_init_seqno(dev, seqno - 1);
2130         if (ret)
2131                 return ret;
2132
2133         /* Carefully set the last_seqno value so that wrap
2134          * detection still works
2135          */
2136         dev_priv->next_seqno = seqno;
2137         dev_priv->last_seqno = seqno - 1;
2138         if (dev_priv->last_seqno == 0)
2139                 dev_priv->last_seqno--;
2140
2141         return 0;
2142 }
2143
2144 int
2145 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2146 {
2147         struct drm_i915_private *dev_priv = dev->dev_private;
2148
2149         /* reserve 0 for non-seqno */
2150         if (dev_priv->next_seqno == 0) {
2151                 int ret = i915_gem_init_seqno(dev, 0);
2152                 if (ret)
2153                         return ret;
2154
2155                 dev_priv->next_seqno = 1;
2156         }
2157
2158         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2159         return 0;
2160 }
2161
2162 int __i915_add_request(struct intel_ring_buffer *ring,
2163                        struct drm_file *file,
2164                        struct drm_i915_gem_object *obj,
2165                        u32 *out_seqno)
2166 {
2167         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2168         struct drm_i915_gem_request *request;
2169         u32 request_ring_position, request_start;
2170         int ret;
2171
2172         request_start = intel_ring_get_tail(ring);
2173         /*
2174          * Emit any outstanding flushes - execbuf can fail to emit the flush
2175          * after having emitted the batchbuffer command. Hence we need to fix
2176          * things up similar to emitting the lazy request. The difference here
2177          * is that the flush _must_ happen before the next request, no matter
2178          * what.
2179          */
2180         ret = intel_ring_flush_all_caches(ring);
2181         if (ret)
2182                 return ret;
2183
2184         request = ring->preallocated_lazy_request;
2185         if (WARN_ON(request == NULL))
2186                 return -ENOMEM;
2187
2188         /* Record the position of the start of the request so that
2189          * should we detect the updated seqno part-way through the
2190          * GPU processing the request, we never over-estimate the
2191          * position of the head.
2192          */
2193         request_ring_position = intel_ring_get_tail(ring);
2194
2195         ret = ring->add_request(ring);
2196         if (ret)
2197                 return ret;
2198
2199         request->seqno = intel_ring_get_seqno(ring);
2200         request->ring = ring;
2201         request->head = request_start;
2202         request->tail = request_ring_position;
2203
2204         /* Whilst this request exists, batch_obj will be on the
2205          * active_list, and so will hold the active reference. Only when this
2206          * request is retired will the the batch_obj be moved onto the
2207          * inactive_list and lose its active reference. Hence we do not need
2208          * to explicitly hold another reference here.
2209          */
2210         request->batch_obj = obj;
2211
2212         /* Hold a reference to the current context so that we can inspect
2213          * it later in case a hangcheck error event fires.
2214          */
2215         request->ctx = ring->last_context;
2216         if (request->ctx)
2217                 i915_gem_context_reference(request->ctx);
2218
2219         request->emitted_jiffies = jiffies;
2220         list_add_tail(&request->list, &ring->request_list);
2221         request->file_priv = NULL;
2222
2223         if (file) {
2224                 struct drm_i915_file_private *file_priv = file->driver_priv;
2225
2226                 spin_lock(&file_priv->mm.lock);
2227                 request->file_priv = file_priv;
2228                 list_add_tail(&request->client_list,
2229                               &file_priv->mm.request_list);
2230                 spin_unlock(&file_priv->mm.lock);
2231         }
2232
2233         trace_i915_gem_request_add(ring, request->seqno);
2234         ring->outstanding_lazy_seqno = 0;
2235         ring->preallocated_lazy_request = NULL;
2236
2237         if (!dev_priv->ums.mm_suspended) {
2238                 i915_queue_hangcheck(ring->dev);
2239
2240                 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2241                 queue_delayed_work(dev_priv->wq,
2242                                    &dev_priv->mm.retire_work,
2243                                    round_jiffies_up_relative(HZ));
2244                 intel_mark_busy(dev_priv->dev);
2245         }
2246
2247         if (out_seqno)
2248                 *out_seqno = request->seqno;
2249         return 0;
2250 }
2251
2252 static inline void
2253 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2254 {
2255         struct drm_i915_file_private *file_priv = request->file_priv;
2256
2257         if (!file_priv)
2258                 return;
2259
2260         spin_lock(&file_priv->mm.lock);
2261         list_del(&request->client_list);
2262         request->file_priv = NULL;
2263         spin_unlock(&file_priv->mm.lock);
2264 }
2265
2266 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2267                                    const struct i915_hw_context *ctx)
2268 {
2269         unsigned long elapsed;
2270
2271         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2272
2273         if (ctx->hang_stats.banned)
2274                 return true;
2275
2276         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2277                 if (!i915_gem_context_is_default(ctx)) {
2278                         DRM_DEBUG("context hanging too fast, banning!\n");
2279                         return true;
2280                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2281                         if (i915_stop_ring_allow_warn(dev_priv))
2282                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2283                         return true;
2284                 }
2285         }
2286
2287         return false;
2288 }
2289
2290 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2291                                   struct i915_hw_context *ctx,
2292                                   const bool guilty)
2293 {
2294         struct i915_ctx_hang_stats *hs;
2295
2296         if (WARN_ON(!ctx))
2297                 return;
2298
2299         hs = &ctx->hang_stats;
2300
2301         if (guilty) {
2302                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2303                 hs->batch_active++;
2304                 hs->guilty_ts = get_seconds();
2305         } else {
2306                 hs->batch_pending++;
2307         }
2308 }
2309
2310 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2311 {
2312         list_del(&request->list);
2313         i915_gem_request_remove_from_client(request);
2314
2315         if (request->ctx)
2316                 i915_gem_context_unreference(request->ctx);
2317
2318         kfree(request);
2319 }
2320
2321 struct drm_i915_gem_request *
2322 i915_gem_find_active_request(struct intel_ring_buffer *ring)
2323 {
2324         struct drm_i915_gem_request *request;
2325         u32 completed_seqno;
2326
2327         completed_seqno = ring->get_seqno(ring, false);
2328
2329         list_for_each_entry(request, &ring->request_list, list) {
2330                 if (i915_seqno_passed(completed_seqno, request->seqno))
2331                         continue;
2332
2333                 return request;
2334         }
2335
2336         return NULL;
2337 }
2338
2339 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2340                                        struct intel_ring_buffer *ring)
2341 {
2342         struct drm_i915_gem_request *request;
2343         bool ring_hung;
2344
2345         request = i915_gem_find_active_request(ring);
2346
2347         if (request == NULL)
2348                 return;
2349
2350         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2351
2352         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2353
2354         list_for_each_entry_continue(request, &ring->request_list, list)
2355                 i915_set_reset_status(dev_priv, request->ctx, false);
2356 }
2357
2358 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2359                                         struct intel_ring_buffer *ring)
2360 {
2361         while (!list_empty(&ring->active_list)) {
2362                 struct drm_i915_gem_object *obj;
2363
2364                 obj = list_first_entry(&ring->active_list,
2365                                        struct drm_i915_gem_object,
2366                                        ring_list);
2367
2368                 i915_gem_object_move_to_inactive(obj);
2369         }
2370
2371         /*
2372          * We must free the requests after all the corresponding objects have
2373          * been moved off active lists. Which is the same order as the normal
2374          * retire_requests function does. This is important if object hold
2375          * implicit references on things like e.g. ppgtt address spaces through
2376          * the request.
2377          */
2378         while (!list_empty(&ring->request_list)) {
2379                 struct drm_i915_gem_request *request;
2380
2381                 request = list_first_entry(&ring->request_list,
2382                                            struct drm_i915_gem_request,
2383                                            list);
2384
2385                 i915_gem_free_request(request);
2386         }
2387 }
2388
2389 void i915_gem_restore_fences(struct drm_device *dev)
2390 {
2391         struct drm_i915_private *dev_priv = dev->dev_private;
2392         int i;
2393
2394         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2395                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2396
2397                 /*
2398                  * Commit delayed tiling changes if we have an object still
2399                  * attached to the fence, otherwise just clear the fence.
2400                  */
2401                 if (reg->obj) {
2402                         i915_gem_object_update_fence(reg->obj, reg,
2403                                                      reg->obj->tiling_mode);
2404                 } else {
2405                         i915_gem_write_fence(dev, i, NULL);
2406                 }
2407         }
2408 }
2409
2410 void i915_gem_reset(struct drm_device *dev)
2411 {
2412         struct drm_i915_private *dev_priv = dev->dev_private;
2413         struct intel_ring_buffer *ring;
2414         int i;
2415
2416         /*
2417          * Before we free the objects from the requests, we need to inspect
2418          * them for finding the guilty party. As the requests only borrow
2419          * their reference to the objects, the inspection must be done first.
2420          */
2421         for_each_ring(ring, dev_priv, i)
2422                 i915_gem_reset_ring_status(dev_priv, ring);
2423
2424         for_each_ring(ring, dev_priv, i)
2425                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2426
2427         i915_gem_cleanup_ringbuffer(dev);
2428
2429         i915_gem_context_reset(dev);
2430
2431         i915_gem_restore_fences(dev);
2432 }
2433
2434 /**
2435  * This function clears the request list as sequence numbers are passed.
2436  */
2437 static void
2438 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2439 {
2440         uint32_t seqno;
2441
2442         if (list_empty(&ring->request_list))
2443                 return;
2444
2445         WARN_ON(i915_verify_lists(ring->dev));
2446
2447         seqno = ring->get_seqno(ring, true);
2448
2449         /* Move any buffers on the active list that are no longer referenced
2450          * by the ringbuffer to the flushing/inactive lists as appropriate,
2451          * before we free the context associated with the requests.
2452          */
2453         while (!list_empty(&ring->active_list)) {
2454                 struct drm_i915_gem_object *obj;
2455
2456                 obj = list_first_entry(&ring->active_list,
2457                                       struct drm_i915_gem_object,
2458                                       ring_list);
2459
2460                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2461                         break;
2462
2463                 i915_gem_object_move_to_inactive(obj);
2464         }
2465
2466
2467         while (!list_empty(&ring->request_list)) {
2468                 struct drm_i915_gem_request *request;
2469
2470                 request = list_first_entry(&ring->request_list,
2471                                            struct drm_i915_gem_request,
2472                                            list);
2473
2474                 if (!i915_seqno_passed(seqno, request->seqno))
2475                         break;
2476
2477                 trace_i915_gem_request_retire(ring, request->seqno);
2478                 /* We know the GPU must have read the request to have
2479                  * sent us the seqno + interrupt, so use the position
2480                  * of tail of the request to update the last known position
2481                  * of the GPU head.
2482                  */
2483                 ring->last_retired_head = request->tail;
2484
2485                 i915_gem_free_request(request);
2486         }
2487
2488         if (unlikely(ring->trace_irq_seqno &&
2489                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2490                 ring->irq_put(ring);
2491                 ring->trace_irq_seqno = 0;
2492         }
2493
2494         WARN_ON(i915_verify_lists(ring->dev));
2495 }
2496
2497 bool
2498 i915_gem_retire_requests(struct drm_device *dev)
2499 {
2500         struct drm_i915_private *dev_priv = dev->dev_private;
2501         struct intel_ring_buffer *ring;
2502         bool idle = true;
2503         int i;
2504
2505         for_each_ring(ring, dev_priv, i) {
2506                 i915_gem_retire_requests_ring(ring);
2507                 idle &= list_empty(&ring->request_list);
2508         }
2509
2510         if (idle)
2511                 mod_delayed_work(dev_priv->wq,
2512                                    &dev_priv->mm.idle_work,
2513                                    msecs_to_jiffies(100));
2514
2515         return idle;
2516 }
2517
2518 static void
2519 i915_gem_retire_work_handler(struct work_struct *work)
2520 {
2521         struct drm_i915_private *dev_priv =
2522                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2523         struct drm_device *dev = dev_priv->dev;
2524         bool idle;
2525
2526         /* Come back later if the device is busy... */
2527         idle = false;
2528         if (mutex_trylock(&dev->struct_mutex)) {
2529                 idle = i915_gem_retire_requests(dev);
2530                 mutex_unlock(&dev->struct_mutex);
2531         }
2532         if (!idle)
2533                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2534                                    round_jiffies_up_relative(HZ));
2535 }
2536
2537 static void
2538 i915_gem_idle_work_handler(struct work_struct *work)
2539 {
2540         struct drm_i915_private *dev_priv =
2541                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2542
2543         intel_mark_idle(dev_priv->dev);
2544 }
2545
2546 /**
2547  * Ensures that an object will eventually get non-busy by flushing any required
2548  * write domains, emitting any outstanding lazy request and retiring and
2549  * completed requests.
2550  */
2551 static int
2552 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2553 {
2554         int ret;
2555
2556         if (obj->active) {
2557                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2558                 if (ret)
2559                         return ret;
2560
2561                 i915_gem_retire_requests_ring(obj->ring);
2562         }
2563
2564         return 0;
2565 }
2566
2567 /**
2568  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2569  * @DRM_IOCTL_ARGS: standard ioctl arguments
2570  *
2571  * Returns 0 if successful, else an error is returned with the remaining time in
2572  * the timeout parameter.
2573  *  -ETIME: object is still busy after timeout
2574  *  -ERESTARTSYS: signal interrupted the wait
2575  *  -ENONENT: object doesn't exist
2576  * Also possible, but rare:
2577  *  -EAGAIN: GPU wedged
2578  *  -ENOMEM: damn
2579  *  -ENODEV: Internal IRQ fail
2580  *  -E?: The add request failed
2581  *
2582  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2583  * non-zero timeout parameter the wait ioctl will wait for the given number of
2584  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2585  * without holding struct_mutex the object may become re-busied before this
2586  * function completes. A similar but shorter * race condition exists in the busy
2587  * ioctl
2588  */
2589 int
2590 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2591 {
2592         struct drm_i915_private *dev_priv = dev->dev_private;
2593         struct drm_i915_gem_wait *args = data;
2594         struct drm_i915_gem_object *obj;
2595         struct intel_ring_buffer *ring = NULL;
2596         struct timespec timeout_stack, *timeout = NULL;
2597         unsigned reset_counter;
2598         u32 seqno = 0;
2599         int ret = 0;
2600
2601         if (args->timeout_ns >= 0) {
2602                 timeout_stack = ns_to_timespec(args->timeout_ns);
2603                 timeout = &timeout_stack;
2604         }
2605
2606         ret = i915_mutex_lock_interruptible(dev);
2607         if (ret)
2608                 return ret;
2609
2610         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2611         if (&obj->base == NULL) {
2612                 mutex_unlock(&dev->struct_mutex);
2613                 return -ENOENT;
2614         }
2615
2616         /* Need to make sure the object gets inactive eventually. */
2617         ret = i915_gem_object_flush_active(obj);
2618         if (ret)
2619                 goto out;
2620
2621         if (obj->active) {
2622                 seqno = obj->last_read_seqno;
2623                 ring = obj->ring;
2624         }
2625
2626         if (seqno == 0)
2627                  goto out;
2628
2629         /* Do this after OLR check to make sure we make forward progress polling
2630          * on this IOCTL with a 0 timeout (like busy ioctl)
2631          */
2632         if (!args->timeout_ns) {
2633                 ret = -ETIME;
2634                 goto out;
2635         }
2636
2637         drm_gem_object_unreference(&obj->base);
2638         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2639         mutex_unlock(&dev->struct_mutex);
2640
2641         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2642         if (timeout)
2643                 args->timeout_ns = timespec_to_ns(timeout);
2644         return ret;
2645
2646 out:
2647         drm_gem_object_unreference(&obj->base);
2648         mutex_unlock(&dev->struct_mutex);
2649         return ret;
2650 }
2651
2652 /**
2653  * i915_gem_object_sync - sync an object to a ring.
2654  *
2655  * @obj: object which may be in use on another ring.
2656  * @to: ring we wish to use the object on. May be NULL.
2657  *
2658  * This code is meant to abstract object synchronization with the GPU.
2659  * Calling with NULL implies synchronizing the object with the CPU
2660  * rather than a particular GPU ring.
2661  *
2662  * Returns 0 if successful, else propagates up the lower layer error.
2663  */
2664 int
2665 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2666                      struct intel_ring_buffer *to)
2667 {
2668         struct intel_ring_buffer *from = obj->ring;
2669         u32 seqno;
2670         int ret, idx;
2671
2672         if (from == NULL || to == from)
2673                 return 0;
2674
2675         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2676                 return i915_gem_object_wait_rendering(obj, false);
2677
2678         idx = intel_ring_sync_index(from, to);
2679
2680         seqno = obj->last_read_seqno;
2681         if (seqno <= from->sync_seqno[idx])
2682                 return 0;
2683
2684         ret = i915_gem_check_olr(obj->ring, seqno);
2685         if (ret)
2686                 return ret;
2687
2688         trace_i915_gem_ring_sync_to(from, to, seqno);
2689         ret = to->sync_to(to, from, seqno);
2690         if (!ret)
2691                 /* We use last_read_seqno because sync_to()
2692                  * might have just caused seqno wrap under
2693                  * the radar.
2694                  */
2695                 from->sync_seqno[idx] = obj->last_read_seqno;
2696
2697         return ret;
2698 }
2699
2700 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2701 {
2702         u32 old_write_domain, old_read_domains;
2703
2704         /* Force a pagefault for domain tracking on next user access */
2705         i915_gem_release_mmap(obj);
2706
2707         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2708                 return;
2709
2710         /* Wait for any direct GTT access to complete */
2711         mb();
2712
2713         old_read_domains = obj->base.read_domains;
2714         old_write_domain = obj->base.write_domain;
2715
2716         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2717         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2718
2719         trace_i915_gem_object_change_domain(obj,
2720                                             old_read_domains,
2721                                             old_write_domain);
2722 }
2723
2724 int i915_vma_unbind(struct i915_vma *vma)
2725 {
2726         struct drm_i915_gem_object *obj = vma->obj;
2727         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2728         int ret;
2729
2730         if (list_empty(&vma->vma_link))
2731                 return 0;
2732
2733         if (!drm_mm_node_allocated(&vma->node)) {
2734                 i915_gem_vma_destroy(vma);
2735                 return 0;
2736         }
2737
2738         if (vma->pin_count)
2739                 return -EBUSY;
2740
2741         BUG_ON(obj->pages == NULL);
2742
2743         ret = i915_gem_object_finish_gpu(obj);
2744         if (ret)
2745                 return ret;
2746         /* Continue on if we fail due to EIO, the GPU is hung so we
2747          * should be safe and we need to cleanup or else we might
2748          * cause memory corruption through use-after-free.
2749          */
2750
2751         i915_gem_object_finish_gtt(obj);
2752
2753         /* release the fence reg _after_ flushing */
2754         ret = i915_gem_object_put_fence(obj);
2755         if (ret)
2756                 return ret;
2757
2758         trace_i915_vma_unbind(vma);
2759
2760         vma->unbind_vma(vma);
2761
2762         i915_gem_gtt_finish_object(obj);
2763
2764         list_del_init(&vma->mm_list);
2765         /* Avoid an unnecessary call to unbind on rebind. */
2766         if (i915_is_ggtt(vma->vm))
2767                 obj->map_and_fenceable = true;
2768
2769         drm_mm_remove_node(&vma->node);
2770         i915_gem_vma_destroy(vma);
2771
2772         /* Since the unbound list is global, only move to that list if
2773          * no more VMAs exist. */
2774         if (list_empty(&obj->vma_list))
2775                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2776
2777         /* And finally now the object is completely decoupled from this vma,
2778          * we can drop its hold on the backing storage and allow it to be
2779          * reaped by the shrinker.
2780          */
2781         i915_gem_object_unpin_pages(obj);
2782
2783         return 0;
2784 }
2785
2786 int i915_gpu_idle(struct drm_device *dev)
2787 {
2788         struct drm_i915_private *dev_priv = dev->dev_private;
2789         struct intel_ring_buffer *ring;
2790         int ret, i;
2791
2792         /* Flush everything onto the inactive list. */
2793         for_each_ring(ring, dev_priv, i) {
2794                 ret = i915_switch_context(ring, ring->default_context);
2795                 if (ret)
2796                         return ret;
2797
2798                 ret = intel_ring_idle(ring);
2799                 if (ret)
2800                         return ret;
2801         }
2802
2803         return 0;
2804 }
2805
2806 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2807                                  struct drm_i915_gem_object *obj)
2808 {
2809         struct drm_i915_private *dev_priv = dev->dev_private;
2810         int fence_reg;
2811         int fence_pitch_shift;
2812
2813         if (INTEL_INFO(dev)->gen >= 6) {
2814                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2815                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2816         } else {
2817                 fence_reg = FENCE_REG_965_0;
2818                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2819         }
2820
2821         fence_reg += reg * 8;
2822
2823         /* To w/a incoherency with non-atomic 64-bit register updates,
2824          * we split the 64-bit update into two 32-bit writes. In order
2825          * for a partial fence not to be evaluated between writes, we
2826          * precede the update with write to turn off the fence register,
2827          * and only enable the fence as the last step.
2828          *
2829          * For extra levels of paranoia, we make sure each step lands
2830          * before applying the next step.
2831          */
2832         I915_WRITE(fence_reg, 0);
2833         POSTING_READ(fence_reg);
2834
2835         if (obj) {
2836                 u32 size = i915_gem_obj_ggtt_size(obj);
2837                 uint64_t val;
2838
2839                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2840                                  0xfffff000) << 32;
2841                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2842                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2843                 if (obj->tiling_mode == I915_TILING_Y)
2844                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2845                 val |= I965_FENCE_REG_VALID;
2846
2847                 I915_WRITE(fence_reg + 4, val >> 32);
2848                 POSTING_READ(fence_reg + 4);
2849
2850                 I915_WRITE(fence_reg + 0, val);
2851                 POSTING_READ(fence_reg);
2852         } else {
2853                 I915_WRITE(fence_reg + 4, 0);
2854                 POSTING_READ(fence_reg + 4);
2855         }
2856 }
2857
2858 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2859                                  struct drm_i915_gem_object *obj)
2860 {
2861         struct drm_i915_private *dev_priv = dev->dev_private;
2862         u32 val;
2863
2864         if (obj) {
2865                 u32 size = i915_gem_obj_ggtt_size(obj);
2866                 int pitch_val;
2867                 int tile_width;
2868
2869                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2870                      (size & -size) != size ||
2871                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2872                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2873                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2874
2875                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2876                         tile_width = 128;
2877                 else
2878                         tile_width = 512;
2879
2880                 /* Note: pitch better be a power of two tile widths */
2881                 pitch_val = obj->stride / tile_width;
2882                 pitch_val = ffs(pitch_val) - 1;
2883
2884                 val = i915_gem_obj_ggtt_offset(obj);
2885                 if (obj->tiling_mode == I915_TILING_Y)
2886                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2887                 val |= I915_FENCE_SIZE_BITS(size);
2888                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2889                 val |= I830_FENCE_REG_VALID;
2890         } else
2891                 val = 0;
2892
2893         if (reg < 8)
2894                 reg = FENCE_REG_830_0 + reg * 4;
2895         else
2896                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2897
2898         I915_WRITE(reg, val);
2899         POSTING_READ(reg);
2900 }
2901
2902 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2903                                 struct drm_i915_gem_object *obj)
2904 {
2905         struct drm_i915_private *dev_priv = dev->dev_private;
2906         uint32_t val;
2907
2908         if (obj) {
2909                 u32 size = i915_gem_obj_ggtt_size(obj);
2910                 uint32_t pitch_val;
2911
2912                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2913                      (size & -size) != size ||
2914                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2915                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2916                      i915_gem_obj_ggtt_offset(obj), size);
2917
2918                 pitch_val = obj->stride / 128;
2919                 pitch_val = ffs(pitch_val) - 1;
2920
2921                 val = i915_gem_obj_ggtt_offset(obj);
2922                 if (obj->tiling_mode == I915_TILING_Y)
2923                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2924                 val |= I830_FENCE_SIZE_BITS(size);
2925                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2926                 val |= I830_FENCE_REG_VALID;
2927         } else
2928                 val = 0;
2929
2930         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2931         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2932 }
2933
2934 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2935 {
2936         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2937 }
2938
2939 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2940                                  struct drm_i915_gem_object *obj)
2941 {
2942         struct drm_i915_private *dev_priv = dev->dev_private;
2943
2944         /* Ensure that all CPU reads are completed before installing a fence
2945          * and all writes before removing the fence.
2946          */
2947         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2948                 mb();
2949
2950         WARN(obj && (!obj->stride || !obj->tiling_mode),
2951              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2952              obj->stride, obj->tiling_mode);
2953
2954         switch (INTEL_INFO(dev)->gen) {
2955         case 8:
2956         case 7:
2957         case 6:
2958         case 5:
2959         case 4: i965_write_fence_reg(dev, reg, obj); break;
2960         case 3: i915_write_fence_reg(dev, reg, obj); break;
2961         case 2: i830_write_fence_reg(dev, reg, obj); break;
2962         default: BUG();
2963         }
2964
2965         /* And similarly be paranoid that no direct access to this region
2966          * is reordered to before the fence is installed.
2967          */
2968         if (i915_gem_object_needs_mb(obj))
2969                 mb();
2970 }
2971
2972 static inline int fence_number(struct drm_i915_private *dev_priv,
2973                                struct drm_i915_fence_reg *fence)
2974 {
2975         return fence - dev_priv->fence_regs;
2976 }
2977
2978 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2979                                          struct drm_i915_fence_reg *fence,
2980                                          bool enable)
2981 {
2982         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2983         int reg = fence_number(dev_priv, fence);
2984
2985         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2986
2987         if (enable) {
2988                 obj->fence_reg = reg;
2989                 fence->obj = obj;
2990                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2991         } else {
2992                 obj->fence_reg = I915_FENCE_REG_NONE;
2993                 fence->obj = NULL;
2994                 list_del_init(&fence->lru_list);
2995         }
2996         obj->fence_dirty = false;
2997 }
2998
2999 static int
3000 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3001 {
3002         if (obj->last_fenced_seqno) {
3003                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3004                 if (ret)
3005                         return ret;
3006
3007                 obj->last_fenced_seqno = 0;
3008         }
3009
3010         obj->fenced_gpu_access = false;
3011         return 0;
3012 }
3013
3014 int
3015 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3016 {
3017         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3018         struct drm_i915_fence_reg *fence;
3019         int ret;
3020
3021         ret = i915_gem_object_wait_fence(obj);
3022         if (ret)
3023                 return ret;
3024
3025         if (obj->fence_reg == I915_FENCE_REG_NONE)
3026                 return 0;
3027
3028         fence = &dev_priv->fence_regs[obj->fence_reg];
3029
3030         i915_gem_object_fence_lost(obj);
3031         i915_gem_object_update_fence(obj, fence, false);
3032
3033         return 0;
3034 }
3035
3036 static struct drm_i915_fence_reg *
3037 i915_find_fence_reg(struct drm_device *dev)
3038 {
3039         struct drm_i915_private *dev_priv = dev->dev_private;
3040         struct drm_i915_fence_reg *reg, *avail;
3041         int i;
3042
3043         /* First try to find a free reg */
3044         avail = NULL;
3045         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3046                 reg = &dev_priv->fence_regs[i];
3047                 if (!reg->obj)
3048                         return reg;
3049
3050                 if (!reg->pin_count)
3051                         avail = reg;
3052         }
3053
3054         if (avail == NULL)
3055                 goto deadlock;
3056
3057         /* None available, try to steal one or wait for a user to finish */
3058         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3059                 if (reg->pin_count)
3060                         continue;
3061
3062                 return reg;
3063         }
3064
3065 deadlock:
3066         /* Wait for completion of pending flips which consume fences */
3067         if (intel_has_pending_fb_unpin(dev))
3068                 return ERR_PTR(-EAGAIN);
3069
3070         return ERR_PTR(-EDEADLK);
3071 }
3072
3073 /**
3074  * i915_gem_object_get_fence - set up fencing for an object
3075  * @obj: object to map through a fence reg
3076  *
3077  * When mapping objects through the GTT, userspace wants to be able to write
3078  * to them without having to worry about swizzling if the object is tiled.
3079  * This function walks the fence regs looking for a free one for @obj,
3080  * stealing one if it can't find any.
3081  *
3082  * It then sets up the reg based on the object's properties: address, pitch
3083  * and tiling format.
3084  *
3085  * For an untiled surface, this removes any existing fence.
3086  */
3087 int
3088 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3089 {
3090         struct drm_device *dev = obj->base.dev;
3091         struct drm_i915_private *dev_priv = dev->dev_private;
3092         bool enable = obj->tiling_mode != I915_TILING_NONE;
3093         struct drm_i915_fence_reg *reg;
3094         int ret;
3095
3096         /* Have we updated the tiling parameters upon the object and so
3097          * will need to serialise the write to the associated fence register?
3098          */
3099         if (obj->fence_dirty) {
3100                 ret = i915_gem_object_wait_fence(obj);
3101                 if (ret)
3102                         return ret;
3103         }
3104
3105         /* Just update our place in the LRU if our fence is getting reused. */
3106         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3107                 reg = &dev_priv->fence_regs[obj->fence_reg];
3108                 if (!obj->fence_dirty) {
3109                         list_move_tail(&reg->lru_list,
3110                                        &dev_priv->mm.fence_list);
3111                         return 0;
3112                 }
3113         } else if (enable) {
3114                 reg = i915_find_fence_reg(dev);
3115                 if (IS_ERR(reg))
3116                         return PTR_ERR(reg);
3117
3118                 if (reg->obj) {
3119                         struct drm_i915_gem_object *old = reg->obj;
3120
3121                         ret = i915_gem_object_wait_fence(old);
3122                         if (ret)
3123                                 return ret;
3124
3125                         i915_gem_object_fence_lost(old);
3126                 }
3127         } else
3128                 return 0;
3129
3130         i915_gem_object_update_fence(obj, reg, enable);
3131
3132         return 0;
3133 }
3134
3135 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3136                                      struct drm_mm_node *gtt_space,
3137                                      unsigned long cache_level)
3138 {
3139         struct drm_mm_node *other;
3140
3141         /* On non-LLC machines we have to be careful when putting differing
3142          * types of snoopable memory together to avoid the prefetcher
3143          * crossing memory domains and dying.
3144          */
3145         if (HAS_LLC(dev))
3146                 return true;
3147
3148         if (!drm_mm_node_allocated(gtt_space))
3149                 return true;
3150
3151         if (list_empty(&gtt_space->node_list))
3152                 return true;
3153
3154         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3155         if (other->allocated && !other->hole_follows && other->color != cache_level)
3156                 return false;
3157
3158         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3159         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3160                 return false;
3161
3162         return true;
3163 }
3164
3165 static void i915_gem_verify_gtt(struct drm_device *dev)
3166 {
3167 #if WATCH_GTT
3168         struct drm_i915_private *dev_priv = dev->dev_private;
3169         struct drm_i915_gem_object *obj;
3170         int err = 0;
3171
3172         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3173                 if (obj->gtt_space == NULL) {
3174                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3175                         err++;
3176                         continue;
3177                 }
3178
3179                 if (obj->cache_level != obj->gtt_space->color) {
3180                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3181                                i915_gem_obj_ggtt_offset(obj),
3182                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3183                                obj->cache_level,
3184                                obj->gtt_space->color);
3185                         err++;
3186                         continue;
3187                 }
3188
3189                 if (!i915_gem_valid_gtt_space(dev,
3190                                               obj->gtt_space,
3191                                               obj->cache_level)) {
3192                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3193                                i915_gem_obj_ggtt_offset(obj),
3194                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3195                                obj->cache_level);
3196                         err++;
3197                         continue;
3198                 }
3199         }
3200
3201         WARN_ON(err);
3202 #endif
3203 }
3204
3205 /**
3206  * Finds free space in the GTT aperture and binds the object there.
3207  */
3208 static struct i915_vma *
3209 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3210                            struct i915_address_space *vm,
3211                            unsigned alignment,
3212                            unsigned flags)
3213 {
3214         struct drm_device *dev = obj->base.dev;
3215         struct drm_i915_private *dev_priv = dev->dev_private;
3216         u32 size, fence_size, fence_alignment, unfenced_alignment;
3217         size_t gtt_max =
3218                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3219         struct i915_vma *vma;
3220         int ret;
3221
3222         fence_size = i915_gem_get_gtt_size(dev,
3223                                            obj->base.size,
3224                                            obj->tiling_mode);
3225         fence_alignment = i915_gem_get_gtt_alignment(dev,
3226                                                      obj->base.size,
3227                                                      obj->tiling_mode, true);
3228         unfenced_alignment =
3229                 i915_gem_get_gtt_alignment(dev,
3230                                            obj->base.size,
3231                                            obj->tiling_mode, false);
3232
3233         if (alignment == 0)
3234                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3235                                                 unfenced_alignment;
3236         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3237                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3238                 return ERR_PTR(-EINVAL);
3239         }
3240
3241         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3242
3243         /* If the object is bigger than the entire aperture, reject it early
3244          * before evicting everything in a vain attempt to find space.
3245          */
3246         if (obj->base.size > gtt_max) {
3247                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3248                           obj->base.size,
3249                           flags & PIN_MAPPABLE ? "mappable" : "total",
3250                           gtt_max);
3251                 return ERR_PTR(-E2BIG);
3252         }
3253
3254         ret = i915_gem_object_get_pages(obj);
3255         if (ret)
3256                 return ERR_PTR(ret);
3257
3258         i915_gem_object_pin_pages(obj);
3259
3260         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3261         if (IS_ERR(vma))
3262                 goto err_unpin;
3263
3264 search_free:
3265         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3266                                                   size, alignment,
3267                                                   obj->cache_level, 0, gtt_max,
3268                                                   DRM_MM_SEARCH_DEFAULT,
3269                                                   DRM_MM_CREATE_DEFAULT);
3270         if (ret) {
3271                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3272                                                obj->cache_level, flags);
3273                 if (ret == 0)
3274                         goto search_free;
3275
3276                 goto err_free_vma;
3277         }
3278         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3279                                               obj->cache_level))) {
3280                 ret = -EINVAL;
3281                 goto err_remove_node;
3282         }
3283
3284         ret = i915_gem_gtt_prepare_object(obj);
3285         if (ret)
3286                 goto err_remove_node;
3287
3288         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3289         list_add_tail(&vma->mm_list, &vm->inactive_list);
3290
3291         if (i915_is_ggtt(vm)) {
3292                 bool mappable, fenceable;
3293
3294                 fenceable = (vma->node.size == fence_size &&
3295                              (vma->node.start & (fence_alignment - 1)) == 0);
3296
3297                 mappable = (vma->node.start + obj->base.size <=
3298                             dev_priv->gtt.mappable_end);
3299
3300                 obj->map_and_fenceable = mappable && fenceable;
3301         }
3302
3303         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3304
3305         trace_i915_vma_bind(vma, flags);
3306         vma->bind_vma(vma, obj->cache_level,
3307                       flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3308
3309         i915_gem_verify_gtt(dev);
3310         return vma;
3311
3312 err_remove_node:
3313         drm_mm_remove_node(&vma->node);
3314 err_free_vma:
3315         i915_gem_vma_destroy(vma);
3316         vma = ERR_PTR(ret);
3317 err_unpin:
3318         i915_gem_object_unpin_pages(obj);
3319         return vma;
3320 }
3321
3322 bool
3323 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3324                         bool force)
3325 {
3326         /* If we don't have a page list set up, then we're not pinned
3327          * to GPU, and we can ignore the cache flush because it'll happen
3328          * again at bind time.
3329          */
3330         if (obj->pages == NULL)
3331                 return false;
3332
3333         /*
3334          * Stolen memory is always coherent with the GPU as it is explicitly
3335          * marked as wc by the system, or the system is cache-coherent.
3336          */
3337         if (obj->stolen)
3338                 return false;
3339
3340         /* If the GPU is snooping the contents of the CPU cache,
3341          * we do not need to manually clear the CPU cache lines.  However,
3342          * the caches are only snooped when the render cache is
3343          * flushed/invalidated.  As we always have to emit invalidations
3344          * and flushes when moving into and out of the RENDER domain, correct
3345          * snooping behaviour occurs naturally as the result of our domain
3346          * tracking.
3347          */
3348         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3349                 return false;
3350
3351         trace_i915_gem_object_clflush(obj);
3352         drm_clflush_sg(obj->pages);
3353
3354         return true;
3355 }
3356
3357 /** Flushes the GTT write domain for the object if it's dirty. */
3358 static void
3359 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3360 {
3361         uint32_t old_write_domain;
3362
3363         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3364                 return;
3365
3366         /* No actual flushing is required for the GTT write domain.  Writes
3367          * to it immediately go to main memory as far as we know, so there's
3368          * no chipset flush.  It also doesn't land in render cache.
3369          *
3370          * However, we do have to enforce the order so that all writes through
3371          * the GTT land before any writes to the device, such as updates to
3372          * the GATT itself.
3373          */
3374         wmb();
3375
3376         old_write_domain = obj->base.write_domain;
3377         obj->base.write_domain = 0;
3378
3379         trace_i915_gem_object_change_domain(obj,
3380                                             obj->base.read_domains,
3381                                             old_write_domain);
3382 }
3383
3384 /** Flushes the CPU write domain for the object if it's dirty. */
3385 static void
3386 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3387                                        bool force)
3388 {
3389         uint32_t old_write_domain;
3390
3391         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3392                 return;
3393
3394         if (i915_gem_clflush_object(obj, force))
3395                 i915_gem_chipset_flush(obj->base.dev);
3396
3397         old_write_domain = obj->base.write_domain;
3398         obj->base.write_domain = 0;
3399
3400         trace_i915_gem_object_change_domain(obj,
3401                                             obj->base.read_domains,
3402                                             old_write_domain);
3403 }
3404
3405 /**
3406  * Moves a single object to the GTT read, and possibly write domain.
3407  *
3408  * This function returns when the move is complete, including waiting on
3409  * flushes to occur.
3410  */
3411 int
3412 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3413 {
3414         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3415         uint32_t old_write_domain, old_read_domains;
3416         int ret;
3417
3418         /* Not valid to be called on unbound objects. */
3419         if (!i915_gem_obj_bound_any(obj))
3420                 return -EINVAL;
3421
3422         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3423                 return 0;
3424
3425         ret = i915_gem_object_wait_rendering(obj, !write);
3426         if (ret)
3427                 return ret;
3428
3429         i915_gem_object_flush_cpu_write_domain(obj, false);
3430
3431         /* Serialise direct access to this object with the barriers for
3432          * coherent writes from the GPU, by effectively invalidating the
3433          * GTT domain upon first access.
3434          */
3435         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3436                 mb();
3437
3438         old_write_domain = obj->base.write_domain;
3439         old_read_domains = obj->base.read_domains;
3440
3441         /* It should now be out of any other write domains, and we can update
3442          * the domain values for our changes.
3443          */
3444         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3445         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3446         if (write) {
3447                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3448                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3449                 obj->dirty = 1;
3450         }
3451
3452         trace_i915_gem_object_change_domain(obj,
3453                                             old_read_domains,
3454                                             old_write_domain);
3455
3456         /* And bump the LRU for this access */
3457         if (i915_gem_object_is_inactive(obj)) {
3458                 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3459                 if (vma)
3460                         list_move_tail(&vma->mm_list,
3461                                        &dev_priv->gtt.base.inactive_list);
3462
3463         }
3464
3465         return 0;
3466 }
3467
3468 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3469                                     enum i915_cache_level cache_level)
3470 {
3471         struct drm_device *dev = obj->base.dev;
3472         struct i915_vma *vma, *next;
3473         int ret;
3474
3475         if (obj->cache_level == cache_level)
3476                 return 0;
3477
3478         if (i915_gem_obj_is_pinned(obj)) {
3479                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3480                 return -EBUSY;
3481         }
3482
3483         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3484                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3485                         ret = i915_vma_unbind(vma);
3486                         if (ret)
3487                                 return ret;
3488                 }
3489         }
3490
3491         if (i915_gem_obj_bound_any(obj)) {
3492                 ret = i915_gem_object_finish_gpu(obj);
3493                 if (ret)
3494                         return ret;
3495
3496                 i915_gem_object_finish_gtt(obj);
3497
3498                 /* Before SandyBridge, you could not use tiling or fence
3499                  * registers with snooped memory, so relinquish any fences
3500                  * currently pointing to our region in the aperture.
3501                  */
3502                 if (INTEL_INFO(dev)->gen < 6) {
3503                         ret = i915_gem_object_put_fence(obj);
3504                         if (ret)
3505                                 return ret;
3506                 }
3507
3508                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3509                         if (drm_mm_node_allocated(&vma->node))
3510                                 vma->bind_vma(vma, cache_level,
3511                                               obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3512         }
3513
3514         list_for_each_entry(vma, &obj->vma_list, vma_link)
3515                 vma->node.color = cache_level;
3516         obj->cache_level = cache_level;
3517
3518         if (cpu_write_needs_clflush(obj)) {
3519                 u32 old_read_domains, old_write_domain;
3520
3521                 /* If we're coming from LLC cached, then we haven't
3522                  * actually been tracking whether the data is in the
3523                  * CPU cache or not, since we only allow one bit set
3524                  * in obj->write_domain and have been skipping the clflushes.
3525                  * Just set it to the CPU cache for now.
3526                  */
3527                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3528
3529                 old_read_domains = obj->base.read_domains;
3530                 old_write_domain = obj->base.write_domain;
3531
3532                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3533                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3534
3535                 trace_i915_gem_object_change_domain(obj,
3536                                                     old_read_domains,
3537                                                     old_write_domain);
3538         }
3539
3540         i915_gem_verify_gtt(dev);
3541         return 0;
3542 }
3543
3544 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3545                                struct drm_file *file)
3546 {
3547         struct drm_i915_gem_caching *args = data;
3548         struct drm_i915_gem_object *obj;
3549         int ret;
3550
3551         ret = i915_mutex_lock_interruptible(dev);
3552         if (ret)
3553                 return ret;
3554
3555         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3556         if (&obj->base == NULL) {
3557                 ret = -ENOENT;
3558                 goto unlock;
3559         }
3560
3561         switch (obj->cache_level) {
3562         case I915_CACHE_LLC:
3563         case I915_CACHE_L3_LLC:
3564                 args->caching = I915_CACHING_CACHED;
3565                 break;
3566
3567         case I915_CACHE_WT:
3568                 args->caching = I915_CACHING_DISPLAY;
3569                 break;
3570
3571         default:
3572                 args->caching = I915_CACHING_NONE;
3573                 break;
3574         }
3575
3576         drm_gem_object_unreference(&obj->base);
3577 unlock:
3578         mutex_unlock(&dev->struct_mutex);
3579         return ret;
3580 }
3581
3582 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3583                                struct drm_file *file)
3584 {
3585         struct drm_i915_gem_caching *args = data;
3586         struct drm_i915_gem_object *obj;
3587         enum i915_cache_level level;
3588         int ret;
3589
3590         switch (args->caching) {
3591         case I915_CACHING_NONE:
3592                 level = I915_CACHE_NONE;
3593                 break;
3594         case I915_CACHING_CACHED:
3595                 level = I915_CACHE_LLC;
3596                 break;
3597         case I915_CACHING_DISPLAY:
3598                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3599                 break;
3600         default:
3601                 return -EINVAL;
3602         }
3603
3604         ret = i915_mutex_lock_interruptible(dev);
3605         if (ret)
3606                 return ret;
3607
3608         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3609         if (&obj->base == NULL) {
3610                 ret = -ENOENT;
3611                 goto unlock;
3612         }
3613
3614         ret = i915_gem_object_set_cache_level(obj, level);
3615
3616         drm_gem_object_unreference(&obj->base);
3617 unlock:
3618         mutex_unlock(&dev->struct_mutex);
3619         return ret;
3620 }
3621
3622 static bool is_pin_display(struct drm_i915_gem_object *obj)
3623 {
3624         /* There are 3 sources that pin objects:
3625          *   1. The display engine (scanouts, sprites, cursors);
3626          *   2. Reservations for execbuffer;
3627          *   3. The user.
3628          *
3629          * We can ignore reservations as we hold the struct_mutex and
3630          * are only called outside of the reservation path.  The user
3631          * can only increment pin_count once, and so if after
3632          * subtracting the potential reference by the user, any pin_count
3633          * remains, it must be due to another use by the display engine.
3634          */
3635         return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
3636 }
3637
3638 /*
3639  * Prepare buffer for display plane (scanout, cursors, etc).
3640  * Can be called from an uninterruptible phase (modesetting) and allows
3641  * any flushes to be pipelined (for pageflips).
3642  */
3643 int
3644 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3645                                      u32 alignment,
3646                                      struct intel_ring_buffer *pipelined)
3647 {
3648         u32 old_read_domains, old_write_domain;
3649         int ret;
3650
3651         if (pipelined != obj->ring) {
3652                 ret = i915_gem_object_sync(obj, pipelined);
3653                 if (ret)
3654                         return ret;
3655         }
3656
3657         /* Mark the pin_display early so that we account for the
3658          * display coherency whilst setting up the cache domains.
3659          */
3660         obj->pin_display = true;
3661
3662         /* The display engine is not coherent with the LLC cache on gen6.  As
3663          * a result, we make sure that the pinning that is about to occur is
3664          * done with uncached PTEs. This is lowest common denominator for all
3665          * chipsets.
3666          *
3667          * However for gen6+, we could do better by using the GFDT bit instead
3668          * of uncaching, which would allow us to flush all the LLC-cached data
3669          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3670          */
3671         ret = i915_gem_object_set_cache_level(obj,
3672                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3673         if (ret)
3674                 goto err_unpin_display;
3675
3676         /* As the user may map the buffer once pinned in the display plane
3677          * (e.g. libkms for the bootup splash), we have to ensure that we
3678          * always use map_and_fenceable for all scanout buffers.
3679          */
3680         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3681         if (ret)
3682                 goto err_unpin_display;
3683
3684         i915_gem_object_flush_cpu_write_domain(obj, true);
3685
3686         old_write_domain = obj->base.write_domain;
3687         old_read_domains = obj->base.read_domains;
3688
3689         /* It should now be out of any other write domains, and we can update
3690          * the domain values for our changes.
3691          */
3692         obj->base.write_domain = 0;
3693         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3694
3695         trace_i915_gem_object_change_domain(obj,
3696                                             old_read_domains,
3697                                             old_write_domain);
3698
3699         return 0;
3700
3701 err_unpin_display:
3702         obj->pin_display = is_pin_display(obj);
3703         return ret;
3704 }
3705
3706 void
3707 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3708 {
3709         i915_gem_object_ggtt_unpin(obj);
3710         obj->pin_display = is_pin_display(obj);
3711 }
3712
3713 int
3714 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3715 {
3716         int ret;
3717
3718         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3719                 return 0;
3720
3721         ret = i915_gem_object_wait_rendering(obj, false);
3722         if (ret)
3723                 return ret;
3724
3725         /* Ensure that we invalidate the GPU's caches and TLBs. */
3726         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3727         return 0;
3728 }
3729
3730 /**
3731  * Moves a single object to the CPU read, and possibly write domain.
3732  *
3733  * This function returns when the move is complete, including waiting on
3734  * flushes to occur.
3735  */
3736 int
3737 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3738 {
3739         uint32_t old_write_domain, old_read_domains;
3740         int ret;
3741
3742         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3743                 return 0;
3744
3745         ret = i915_gem_object_wait_rendering(obj, !write);
3746         if (ret)
3747                 return ret;
3748
3749         i915_gem_object_flush_gtt_write_domain(obj);
3750
3751         old_write_domain = obj->base.write_domain;
3752         old_read_domains = obj->base.read_domains;
3753
3754         /* Flush the CPU cache if it's still invalid. */
3755         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3756                 i915_gem_clflush_object(obj, false);
3757
3758                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3759         }
3760
3761         /* It should now be out of any other write domains, and we can update
3762          * the domain values for our changes.
3763          */
3764         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3765
3766         /* If we're writing through the CPU, then the GPU read domains will
3767          * need to be invalidated at next use.
3768          */
3769         if (write) {
3770                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3771                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3772         }
3773
3774         trace_i915_gem_object_change_domain(obj,
3775                                             old_read_domains,
3776                                             old_write_domain);
3777
3778         return 0;
3779 }
3780
3781 /* Throttle our rendering by waiting until the ring has completed our requests
3782  * emitted over 20 msec ago.
3783  *
3784  * Note that if we were to use the current jiffies each time around the loop,
3785  * we wouldn't escape the function with any frames outstanding if the time to
3786  * render a frame was over 20ms.
3787  *
3788  * This should get us reasonable parallelism between CPU and GPU but also
3789  * relatively low latency when blocking on a particular request to finish.
3790  */
3791 static int
3792 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3793 {
3794         struct drm_i915_private *dev_priv = dev->dev_private;
3795         struct drm_i915_file_private *file_priv = file->driver_priv;
3796         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3797         struct drm_i915_gem_request *request;
3798         struct intel_ring_buffer *ring = NULL;
3799         unsigned reset_counter;
3800         u32 seqno = 0;
3801         int ret;
3802
3803         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3804         if (ret)
3805                 return ret;
3806
3807         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3808         if (ret)
3809                 return ret;
3810
3811         spin_lock(&file_priv->mm.lock);
3812         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3813                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3814                         break;
3815
3816                 ring = request->ring;
3817                 seqno = request->seqno;
3818         }
3819         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3820         spin_unlock(&file_priv->mm.lock);
3821
3822         if (seqno == 0)
3823                 return 0;
3824
3825         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3826         if (ret == 0)
3827                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3828
3829         return ret;
3830 }
3831
3832 int
3833 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3834                     struct i915_address_space *vm,
3835                     uint32_t alignment,
3836                     unsigned flags)
3837 {
3838         struct i915_vma *vma;
3839         int ret;
3840
3841         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3842                 return -EINVAL;
3843
3844         vma = i915_gem_obj_to_vma(obj, vm);
3845         if (vma) {
3846                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3847                         return -EBUSY;
3848
3849                 if ((alignment &&
3850                      vma->node.start & (alignment - 1)) ||
3851                     (flags & PIN_MAPPABLE && !obj->map_and_fenceable)) {
3852                         WARN(vma->pin_count,
3853                              "bo is already pinned with incorrect alignment:"
3854                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3855                              " obj->map_and_fenceable=%d\n",
3856                              i915_gem_obj_offset(obj, vm), alignment,
3857                              flags & PIN_MAPPABLE,
3858                              obj->map_and_fenceable);
3859                         ret = i915_vma_unbind(vma);
3860                         if (ret)
3861                                 return ret;
3862
3863                         vma = NULL;
3864                 }
3865         }
3866
3867         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3868                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
3869                 if (IS_ERR(vma))
3870                         return PTR_ERR(vma);
3871         }
3872
3873         if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
3874                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
3875
3876         vma->pin_count++;
3877         if (flags & PIN_MAPPABLE)
3878                 obj->pin_mappable |= true;
3879
3880         return 0;
3881 }
3882
3883 void
3884 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3885 {
3886         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3887
3888         BUG_ON(!vma);
3889         BUG_ON(vma->pin_count == 0);
3890         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3891
3892         if (--vma->pin_count == 0)
3893                 obj->pin_mappable = false;
3894 }
3895
3896 int
3897 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3898                    struct drm_file *file)
3899 {
3900         struct drm_i915_gem_pin *args = data;
3901         struct drm_i915_gem_object *obj;
3902         int ret;
3903
3904         if (INTEL_INFO(dev)->gen >= 6)
3905                 return -ENODEV;
3906
3907         ret = i915_mutex_lock_interruptible(dev);
3908         if (ret)
3909                 return ret;
3910
3911         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3912         if (&obj->base == NULL) {
3913                 ret = -ENOENT;
3914                 goto unlock;
3915         }
3916
3917         if (obj->madv != I915_MADV_WILLNEED) {
3918                 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
3919                 ret = -EFAULT;
3920                 goto out;
3921         }
3922
3923         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3924                 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
3925                           args->handle);
3926                 ret = -EINVAL;
3927                 goto out;
3928         }
3929
3930         if (obj->user_pin_count == ULONG_MAX) {
3931                 ret = -EBUSY;
3932                 goto out;
3933         }
3934
3935         if (obj->user_pin_count == 0) {
3936                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
3937                 if (ret)
3938                         goto out;
3939         }
3940
3941         obj->user_pin_count++;
3942         obj->pin_filp = file;
3943
3944         args->offset = i915_gem_obj_ggtt_offset(obj);
3945 out:
3946         drm_gem_object_unreference(&obj->base);
3947 unlock:
3948         mutex_unlock(&dev->struct_mutex);
3949         return ret;
3950 }
3951
3952 int
3953 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3954                      struct drm_file *file)
3955 {
3956         struct drm_i915_gem_pin *args = data;
3957         struct drm_i915_gem_object *obj;
3958         int ret;
3959
3960         ret = i915_mutex_lock_interruptible(dev);
3961         if (ret)
3962                 return ret;
3963
3964         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3965         if (&obj->base == NULL) {
3966                 ret = -ENOENT;
3967                 goto unlock;
3968         }
3969
3970         if (obj->pin_filp != file) {
3971                 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3972                           args->handle);
3973                 ret = -EINVAL;
3974                 goto out;
3975         }
3976         obj->user_pin_count--;
3977         if (obj->user_pin_count == 0) {
3978                 obj->pin_filp = NULL;
3979                 i915_gem_object_ggtt_unpin(obj);
3980         }
3981
3982 out:
3983         drm_gem_object_unreference(&obj->base);
3984 unlock:
3985         mutex_unlock(&dev->struct_mutex);
3986         return ret;
3987 }
3988
3989 int
3990 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3991                     struct drm_file *file)
3992 {
3993         struct drm_i915_gem_busy *args = data;
3994         struct drm_i915_gem_object *obj;
3995         int ret;
3996
3997         ret = i915_mutex_lock_interruptible(dev);
3998         if (ret)
3999                 return ret;
4000
4001         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4002         if (&obj->base == NULL) {
4003                 ret = -ENOENT;
4004                 goto unlock;
4005         }
4006
4007         /* Count all active objects as busy, even if they are currently not used
4008          * by the gpu. Users of this interface expect objects to eventually
4009          * become non-busy without any further actions, therefore emit any
4010          * necessary flushes here.
4011          */
4012         ret = i915_gem_object_flush_active(obj);
4013
4014         args->busy = obj->active;
4015         if (obj->ring) {
4016                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4017                 args->busy |= intel_ring_flag(obj->ring) << 16;
4018         }
4019
4020         drm_gem_object_unreference(&obj->base);
4021 unlock:
4022         mutex_unlock(&dev->struct_mutex);
4023         return ret;
4024 }
4025
4026 int
4027 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4028                         struct drm_file *file_priv)
4029 {
4030         return i915_gem_ring_throttle(dev, file_priv);
4031 }
4032
4033 int
4034 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4035                        struct drm_file *file_priv)
4036 {
4037         struct drm_i915_gem_madvise *args = data;
4038         struct drm_i915_gem_object *obj;
4039         int ret;
4040
4041         switch (args->madv) {
4042         case I915_MADV_DONTNEED:
4043         case I915_MADV_WILLNEED:
4044             break;
4045         default:
4046             return -EINVAL;
4047         }
4048
4049         ret = i915_mutex_lock_interruptible(dev);
4050         if (ret)
4051                 return ret;
4052
4053         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4054         if (&obj->base == NULL) {
4055                 ret = -ENOENT;
4056                 goto unlock;
4057         }
4058
4059         if (i915_gem_obj_is_pinned(obj)) {
4060                 ret = -EINVAL;
4061                 goto out;
4062         }
4063
4064         if (obj->madv != __I915_MADV_PURGED)
4065                 obj->madv = args->madv;
4066
4067         /* if the object is no longer attached, discard its backing storage */
4068         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4069                 i915_gem_object_truncate(obj);
4070
4071         args->retained = obj->madv != __I915_MADV_PURGED;
4072
4073 out:
4074         drm_gem_object_unreference(&obj->base);
4075 unlock:
4076         mutex_unlock(&dev->struct_mutex);
4077         return ret;
4078 }
4079
4080 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4081                           const struct drm_i915_gem_object_ops *ops)
4082 {
4083         INIT_LIST_HEAD(&obj->global_list);
4084         INIT_LIST_HEAD(&obj->ring_list);
4085         INIT_LIST_HEAD(&obj->obj_exec_link);
4086         INIT_LIST_HEAD(&obj->vma_list);
4087
4088         obj->ops = ops;
4089
4090         obj->fence_reg = I915_FENCE_REG_NONE;
4091         obj->madv = I915_MADV_WILLNEED;
4092         /* Avoid an unnecessary call to unbind on the first bind. */
4093         obj->map_and_fenceable = true;
4094
4095         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4096 }
4097
4098 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4099         .get_pages = i915_gem_object_get_pages_gtt,
4100         .put_pages = i915_gem_object_put_pages_gtt,
4101 };
4102
4103 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4104                                                   size_t size)
4105 {
4106         struct drm_i915_gem_object *obj;
4107         struct address_space *mapping;
4108         gfp_t mask;
4109
4110         obj = i915_gem_object_alloc(dev);
4111         if (obj == NULL)
4112                 return NULL;
4113
4114         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4115                 i915_gem_object_free(obj);
4116                 return NULL;
4117         }
4118
4119         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4120         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4121                 /* 965gm cannot relocate objects above 4GiB. */
4122                 mask &= ~__GFP_HIGHMEM;
4123                 mask |= __GFP_DMA32;
4124         }
4125
4126         mapping = file_inode(obj->base.filp)->i_mapping;
4127         mapping_set_gfp_mask(mapping, mask);
4128
4129         i915_gem_object_init(obj, &i915_gem_object_ops);
4130
4131         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4132         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4133
4134         if (HAS_LLC(dev)) {
4135                 /* On some devices, we can have the GPU use the LLC (the CPU
4136                  * cache) for about a 10% performance improvement
4137                  * compared to uncached.  Graphics requests other than
4138                  * display scanout are coherent with the CPU in
4139                  * accessing this cache.  This means in this mode we
4140                  * don't need to clflush on the CPU side, and on the
4141                  * GPU side we only need to flush internal caches to
4142                  * get data visible to the CPU.
4143                  *
4144                  * However, we maintain the display planes as UC, and so
4145                  * need to rebind when first used as such.
4146                  */
4147                 obj->cache_level = I915_CACHE_LLC;
4148         } else
4149                 obj->cache_level = I915_CACHE_NONE;
4150
4151         trace_i915_gem_object_create(obj);
4152
4153         return obj;
4154 }
4155
4156 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4157 {
4158         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4159         struct drm_device *dev = obj->base.dev;
4160         struct drm_i915_private *dev_priv = dev->dev_private;
4161         struct i915_vma *vma, *next;
4162
4163         intel_runtime_pm_get(dev_priv);
4164
4165         trace_i915_gem_object_destroy(obj);
4166
4167         if (obj->phys_obj)
4168                 i915_gem_detach_phys_object(dev, obj);
4169
4170         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4171                 int ret;
4172
4173                 vma->pin_count = 0;
4174                 ret = i915_vma_unbind(vma);
4175                 if (WARN_ON(ret == -ERESTARTSYS)) {
4176                         bool was_interruptible;
4177
4178                         was_interruptible = dev_priv->mm.interruptible;
4179                         dev_priv->mm.interruptible = false;
4180
4181                         WARN_ON(i915_vma_unbind(vma));
4182
4183                         dev_priv->mm.interruptible = was_interruptible;
4184                 }
4185         }
4186
4187         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4188          * before progressing. */
4189         if (obj->stolen)
4190                 i915_gem_object_unpin_pages(obj);
4191
4192         if (WARN_ON(obj->pages_pin_count))
4193                 obj->pages_pin_count = 0;
4194         i915_gem_object_put_pages(obj);
4195         i915_gem_object_free_mmap_offset(obj);
4196         i915_gem_object_release_stolen(obj);
4197
4198         BUG_ON(obj->pages);
4199
4200         if (obj->base.import_attach)
4201                 drm_prime_gem_destroy(&obj->base, NULL);
4202
4203         drm_gem_object_release(&obj->base);
4204         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4205
4206         kfree(obj->bit_17);
4207         i915_gem_object_free(obj);
4208
4209         intel_runtime_pm_put(dev_priv);
4210 }
4211
4212 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4213                                      struct i915_address_space *vm)
4214 {
4215         struct i915_vma *vma;
4216         list_for_each_entry(vma, &obj->vma_list, vma_link)
4217                 if (vma->vm == vm)
4218                         return vma;
4219
4220         return NULL;
4221 }
4222
4223 void i915_gem_vma_destroy(struct i915_vma *vma)
4224 {
4225         WARN_ON(vma->node.allocated);
4226
4227         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4228         if (!list_empty(&vma->exec_list))
4229                 return;
4230
4231         list_del(&vma->vma_link);
4232
4233         kfree(vma);
4234 }
4235
4236 int
4237 i915_gem_suspend(struct drm_device *dev)
4238 {
4239         struct drm_i915_private *dev_priv = dev->dev_private;
4240         int ret = 0;
4241
4242         mutex_lock(&dev->struct_mutex);
4243         if (dev_priv->ums.mm_suspended)
4244                 goto err;
4245
4246         ret = i915_gpu_idle(dev);
4247         if (ret)
4248                 goto err;
4249
4250         i915_gem_retire_requests(dev);
4251
4252         /* Under UMS, be paranoid and evict. */
4253         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4254                 i915_gem_evict_everything(dev);
4255
4256         i915_kernel_lost_context(dev);
4257         i915_gem_cleanup_ringbuffer(dev);
4258
4259         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4260          * We need to replace this with a semaphore, or something.
4261          * And not confound ums.mm_suspended!
4262          */
4263         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4264                                                              DRIVER_MODESET);
4265         mutex_unlock(&dev->struct_mutex);
4266
4267         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4268         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4269         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4270
4271         return 0;
4272
4273 err:
4274         mutex_unlock(&dev->struct_mutex);
4275         return ret;
4276 }
4277
4278 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4279 {
4280         struct drm_device *dev = ring->dev;
4281         struct drm_i915_private *dev_priv = dev->dev_private;
4282         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4283         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4284         int i, ret;
4285
4286         if (!HAS_L3_DPF(dev) || !remap_info)
4287                 return 0;
4288
4289         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4290         if (ret)
4291                 return ret;
4292
4293         /*
4294          * Note: We do not worry about the concurrent register cacheline hang
4295          * here because no other code should access these registers other than
4296          * at initialization time.
4297          */
4298         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4299                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4300                 intel_ring_emit(ring, reg_base + i);
4301                 intel_ring_emit(ring, remap_info[i/4]);
4302         }
4303
4304         intel_ring_advance(ring);
4305
4306         return ret;
4307 }
4308
4309 void i915_gem_init_swizzling(struct drm_device *dev)
4310 {
4311         struct drm_i915_private *dev_priv = dev->dev_private;
4312
4313         if (INTEL_INFO(dev)->gen < 5 ||
4314             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4315                 return;
4316
4317         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4318                                  DISP_TILE_SURFACE_SWIZZLING);
4319
4320         if (IS_GEN5(dev))
4321                 return;
4322
4323         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4324         if (IS_GEN6(dev))
4325                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4326         else if (IS_GEN7(dev))
4327                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4328         else if (IS_GEN8(dev))
4329                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4330         else
4331                 BUG();
4332 }
4333
4334 static bool
4335 intel_enable_blt(struct drm_device *dev)
4336 {
4337         if (!HAS_BLT(dev))
4338                 return false;
4339
4340         /* The blitter was dysfunctional on early prototypes */
4341         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4342                 DRM_INFO("BLT not supported on this pre-production hardware;"
4343                          " graphics performance will be degraded.\n");
4344                 return false;
4345         }
4346
4347         return true;
4348 }
4349
4350 static int i915_gem_init_rings(struct drm_device *dev)
4351 {
4352         struct drm_i915_private *dev_priv = dev->dev_private;
4353         int ret;
4354
4355         ret = intel_init_render_ring_buffer(dev);
4356         if (ret)
4357                 return ret;
4358
4359         if (HAS_BSD(dev)) {
4360                 ret = intel_init_bsd_ring_buffer(dev);
4361                 if (ret)
4362                         goto cleanup_render_ring;
4363         }
4364
4365         if (intel_enable_blt(dev)) {
4366                 ret = intel_init_blt_ring_buffer(dev);
4367                 if (ret)
4368                         goto cleanup_bsd_ring;
4369         }
4370
4371         if (HAS_VEBOX(dev)) {
4372                 ret = intel_init_vebox_ring_buffer(dev);
4373                 if (ret)
4374                         goto cleanup_blt_ring;
4375         }
4376
4377
4378         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4379         if (ret)
4380                 goto cleanup_vebox_ring;
4381
4382         return 0;
4383
4384 cleanup_vebox_ring:
4385         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4386 cleanup_blt_ring:
4387         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4388 cleanup_bsd_ring:
4389         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4390 cleanup_render_ring:
4391         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4392
4393         return ret;
4394 }
4395
4396 int
4397 i915_gem_init_hw(struct drm_device *dev)
4398 {
4399         struct drm_i915_private *dev_priv = dev->dev_private;
4400         int ret, i;
4401
4402         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4403                 return -EIO;
4404
4405         if (dev_priv->ellc_size)
4406                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4407
4408         if (IS_HASWELL(dev))
4409                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4410                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4411
4412         if (HAS_PCH_NOP(dev)) {
4413                 if (IS_IVYBRIDGE(dev)) {
4414                         u32 temp = I915_READ(GEN7_MSG_CTL);
4415                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4416                         I915_WRITE(GEN7_MSG_CTL, temp);
4417                 } else if (INTEL_INFO(dev)->gen >= 7) {
4418                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4419                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4420                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4421                 }
4422         }
4423
4424         i915_gem_init_swizzling(dev);
4425
4426         ret = i915_gem_init_rings(dev);
4427         if (ret)
4428                 return ret;
4429
4430         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4431                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4432
4433         /*
4434          * XXX: Contexts should only be initialized once. Doing a switch to the
4435          * default context switch however is something we'd like to do after
4436          * reset or thaw (the latter may not actually be necessary for HW, but
4437          * goes with our code better). Context switching requires rings (for
4438          * the do_switch), but before enabling PPGTT. So don't move this.
4439          */
4440         ret = i915_gem_context_enable(dev_priv);
4441         if (ret) {
4442                 DRM_ERROR("Context enable failed %d\n", ret);
4443                 goto err_out;
4444         }
4445
4446         return 0;
4447
4448 err_out:
4449         i915_gem_cleanup_ringbuffer(dev);
4450         return ret;
4451 }
4452
4453 int i915_gem_init(struct drm_device *dev)
4454 {
4455         struct drm_i915_private *dev_priv = dev->dev_private;
4456         int ret;
4457
4458         mutex_lock(&dev->struct_mutex);
4459
4460         if (IS_VALLEYVIEW(dev)) {
4461                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4462                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4463                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4464                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4465         }
4466
4467         i915_gem_init_global_gtt(dev);
4468
4469         ret = i915_gem_context_init(dev);
4470         if (ret) {
4471                 mutex_unlock(&dev->struct_mutex);
4472                 return ret;
4473         }
4474
4475         ret = i915_gem_init_hw(dev);
4476         mutex_unlock(&dev->struct_mutex);
4477         if (ret) {
4478                 WARN_ON(dev_priv->mm.aliasing_ppgtt);
4479                 i915_gem_context_fini(dev);
4480                 drm_mm_takedown(&dev_priv->gtt.base.mm);
4481                 return ret;
4482         }
4483
4484         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4485         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4486                 dev_priv->dri1.allow_batchbuffer = 1;
4487         return 0;
4488 }
4489
4490 void
4491 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4492 {
4493         struct drm_i915_private *dev_priv = dev->dev_private;
4494         struct intel_ring_buffer *ring;
4495         int i;
4496
4497         for_each_ring(ring, dev_priv, i)
4498                 intel_cleanup_ring_buffer(ring);
4499 }
4500
4501 int
4502 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4503                        struct drm_file *file_priv)
4504 {
4505         struct drm_i915_private *dev_priv = dev->dev_private;
4506         int ret;
4507
4508         if (drm_core_check_feature(dev, DRIVER_MODESET))
4509                 return 0;
4510
4511         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4512                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4513                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4514         }
4515
4516         mutex_lock(&dev->struct_mutex);
4517         dev_priv->ums.mm_suspended = 0;
4518
4519         ret = i915_gem_init_hw(dev);
4520         if (ret != 0) {
4521                 mutex_unlock(&dev->struct_mutex);
4522                 return ret;
4523         }
4524
4525         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4526         mutex_unlock(&dev->struct_mutex);
4527
4528         ret = drm_irq_install(dev);
4529         if (ret)
4530                 goto cleanup_ringbuffer;
4531
4532         return 0;
4533
4534 cleanup_ringbuffer:
4535         mutex_lock(&dev->struct_mutex);
4536         i915_gem_cleanup_ringbuffer(dev);
4537         dev_priv->ums.mm_suspended = 1;
4538         mutex_unlock(&dev->struct_mutex);
4539
4540         return ret;
4541 }
4542
4543 int
4544 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4545                        struct drm_file *file_priv)
4546 {
4547         if (drm_core_check_feature(dev, DRIVER_MODESET))
4548                 return 0;
4549
4550         drm_irq_uninstall(dev);
4551
4552         return i915_gem_suspend(dev);
4553 }
4554
4555 void
4556 i915_gem_lastclose(struct drm_device *dev)
4557 {
4558         int ret;
4559
4560         if (drm_core_check_feature(dev, DRIVER_MODESET))
4561                 return;
4562
4563         ret = i915_gem_suspend(dev);
4564         if (ret)
4565                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4566 }
4567
4568 static void
4569 init_ring_lists(struct intel_ring_buffer *ring)
4570 {
4571         INIT_LIST_HEAD(&ring->active_list);
4572         INIT_LIST_HEAD(&ring->request_list);
4573 }
4574
4575 void i915_init_vm(struct drm_i915_private *dev_priv,
4576                   struct i915_address_space *vm)
4577 {
4578         if (!i915_is_ggtt(vm))
4579                 drm_mm_init(&vm->mm, vm->start, vm->total);
4580         vm->dev = dev_priv->dev;
4581         INIT_LIST_HEAD(&vm->active_list);
4582         INIT_LIST_HEAD(&vm->inactive_list);
4583         INIT_LIST_HEAD(&vm->global_link);
4584         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4585 }
4586
4587 void
4588 i915_gem_load(struct drm_device *dev)
4589 {
4590         struct drm_i915_private *dev_priv = dev->dev_private;
4591         int i;
4592
4593         dev_priv->slab =
4594                 kmem_cache_create("i915_gem_object",
4595                                   sizeof(struct drm_i915_gem_object), 0,
4596                                   SLAB_HWCACHE_ALIGN,
4597                                   NULL);
4598
4599         INIT_LIST_HEAD(&dev_priv->vm_list);
4600         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4601
4602         INIT_LIST_HEAD(&dev_priv->context_list);
4603         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4604         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4605         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4606         for (i = 0; i < I915_NUM_RINGS; i++)
4607                 init_ring_lists(&dev_priv->ring[i]);
4608         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4609                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4610         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4611                           i915_gem_retire_work_handler);
4612         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4613                           i915_gem_idle_work_handler);
4614         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4615
4616         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4617         if (IS_GEN3(dev)) {
4618                 I915_WRITE(MI_ARB_STATE,
4619                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4620         }
4621
4622         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4623
4624         /* Old X drivers will take 0-2 for front, back, depth buffers */
4625         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4626                 dev_priv->fence_reg_start = 3;
4627
4628         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4629                 dev_priv->num_fence_regs = 32;
4630         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4631                 dev_priv->num_fence_regs = 16;
4632         else
4633                 dev_priv->num_fence_regs = 8;
4634
4635         /* Initialize fence registers to zero */
4636         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4637         i915_gem_restore_fences(dev);
4638
4639         i915_gem_detect_bit_6_swizzle(dev);
4640         init_waitqueue_head(&dev_priv->pending_flip_queue);
4641
4642         dev_priv->mm.interruptible = true;
4643
4644         dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4645         dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4646         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4647         register_shrinker(&dev_priv->mm.inactive_shrinker);
4648 }
4649
4650 /*
4651  * Create a physically contiguous memory object for this object
4652  * e.g. for cursor + overlay regs
4653  */
4654 static int i915_gem_init_phys_object(struct drm_device *dev,
4655                                      int id, int size, int align)
4656 {
4657         struct drm_i915_private *dev_priv = dev->dev_private;
4658         struct drm_i915_gem_phys_object *phys_obj;
4659         int ret;
4660
4661         if (dev_priv->mm.phys_objs[id - 1] || !size)
4662                 return 0;
4663
4664         phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4665         if (!phys_obj)
4666                 return -ENOMEM;
4667
4668         phys_obj->id = id;
4669
4670         phys_obj->handle = drm_pci_alloc(dev, size, align);
4671         if (!phys_obj->handle) {
4672                 ret = -ENOMEM;
4673                 goto kfree_obj;
4674         }
4675 #ifdef CONFIG_X86
4676         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4677 #endif
4678
4679         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4680
4681         return 0;
4682 kfree_obj:
4683         kfree(phys_obj);
4684         return ret;
4685 }
4686
4687 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4688 {
4689         struct drm_i915_private *dev_priv = dev->dev_private;
4690         struct drm_i915_gem_phys_object *phys_obj;
4691
4692         if (!dev_priv->mm.phys_objs[id - 1])
4693                 return;
4694
4695         phys_obj = dev_priv->mm.phys_objs[id - 1];
4696         if (phys_obj->cur_obj) {
4697                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4698         }
4699
4700 #ifdef CONFIG_X86
4701         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4702 #endif
4703         drm_pci_free(dev, phys_obj->handle);
4704         kfree(phys_obj);
4705         dev_priv->mm.phys_objs[id - 1] = NULL;
4706 }
4707
4708 void i915_gem_free_all_phys_object(struct drm_device *dev)
4709 {
4710         int i;
4711
4712         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4713                 i915_gem_free_phys_object(dev, i);
4714 }
4715
4716 void i915_gem_detach_phys_object(struct drm_device *dev,
4717                                  struct drm_i915_gem_object *obj)
4718 {
4719         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4720         char *vaddr;
4721         int i;
4722         int page_count;
4723
4724         if (!obj->phys_obj)
4725                 return;
4726         vaddr = obj->phys_obj->handle->vaddr;
4727
4728         page_count = obj->base.size / PAGE_SIZE;
4729         for (i = 0; i < page_count; i++) {
4730                 struct page *page = shmem_read_mapping_page(mapping, i);
4731                 if (!IS_ERR(page)) {
4732                         char *dst = kmap_atomic(page);
4733                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4734                         kunmap_atomic(dst);
4735
4736                         drm_clflush_pages(&page, 1);
4737
4738                         set_page_dirty(page);
4739                         mark_page_accessed(page);
4740                         page_cache_release(page);
4741                 }
4742         }
4743         i915_gem_chipset_flush(dev);
4744
4745         obj->phys_obj->cur_obj = NULL;
4746         obj->phys_obj = NULL;
4747 }
4748
4749 int
4750 i915_gem_attach_phys_object(struct drm_device *dev,
4751                             struct drm_i915_gem_object *obj,
4752                             int id,
4753                             int align)
4754 {
4755         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4756         struct drm_i915_private *dev_priv = dev->dev_private;
4757         int ret = 0;
4758         int page_count;
4759         int i;
4760
4761         if (id > I915_MAX_PHYS_OBJECT)
4762                 return -EINVAL;
4763
4764         if (obj->phys_obj) {
4765                 if (obj->phys_obj->id == id)
4766                         return 0;
4767                 i915_gem_detach_phys_object(dev, obj);
4768         }
4769
4770         /* create a new object */
4771         if (!dev_priv->mm.phys_objs[id - 1]) {
4772                 ret = i915_gem_init_phys_object(dev, id,
4773                                                 obj->base.size, align);
4774                 if (ret) {
4775                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4776                                   id, obj->base.size);
4777                         return ret;
4778                 }
4779         }
4780
4781         /* bind to the object */
4782         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4783         obj->phys_obj->cur_obj = obj;
4784
4785         page_count = obj->base.size / PAGE_SIZE;
4786
4787         for (i = 0; i < page_count; i++) {
4788                 struct page *page;
4789                 char *dst, *src;
4790
4791                 page = shmem_read_mapping_page(mapping, i);
4792                 if (IS_ERR(page))
4793                         return PTR_ERR(page);
4794
4795                 src = kmap_atomic(page);
4796                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4797                 memcpy(dst, src, PAGE_SIZE);
4798                 kunmap_atomic(src);
4799
4800                 mark_page_accessed(page);
4801                 page_cache_release(page);
4802         }
4803
4804         return 0;
4805 }
4806
4807 static int
4808 i915_gem_phys_pwrite(struct drm_device *dev,
4809                      struct drm_i915_gem_object *obj,
4810                      struct drm_i915_gem_pwrite *args,
4811                      struct drm_file *file_priv)
4812 {
4813         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4814         char __user *user_data = to_user_ptr(args->data_ptr);
4815
4816         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4817                 unsigned long unwritten;
4818
4819                 /* The physical object once assigned is fixed for the lifetime
4820                  * of the obj, so we can safely drop the lock and continue
4821                  * to access vaddr.
4822                  */
4823                 mutex_unlock(&dev->struct_mutex);
4824                 unwritten = copy_from_user(vaddr, user_data, args->size);
4825                 mutex_lock(&dev->struct_mutex);
4826                 if (unwritten)
4827                         return -EFAULT;
4828         }
4829
4830         i915_gem_chipset_flush(dev);
4831         return 0;
4832 }
4833
4834 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4835 {
4836         struct drm_i915_file_private *file_priv = file->driver_priv;
4837
4838         cancel_delayed_work_sync(&file_priv->mm.idle_work);
4839
4840         /* Clean up our request list when the client is going away, so that
4841          * later retire_requests won't dereference our soon-to-be-gone
4842          * file_priv.
4843          */
4844         spin_lock(&file_priv->mm.lock);
4845         while (!list_empty(&file_priv->mm.request_list)) {
4846                 struct drm_i915_gem_request *request;
4847
4848                 request = list_first_entry(&file_priv->mm.request_list,
4849                                            struct drm_i915_gem_request,
4850                                            client_list);
4851                 list_del(&request->client_list);
4852                 request->file_priv = NULL;
4853         }
4854         spin_unlock(&file_priv->mm.lock);
4855 }
4856
4857 static void
4858 i915_gem_file_idle_work_handler(struct work_struct *work)
4859 {
4860         struct drm_i915_file_private *file_priv =
4861                 container_of(work, typeof(*file_priv), mm.idle_work.work);
4862
4863         atomic_set(&file_priv->rps_wait_boost, false);
4864 }
4865
4866 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4867 {
4868         struct drm_i915_file_private *file_priv;
4869         int ret;
4870
4871         DRM_DEBUG_DRIVER("\n");
4872
4873         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4874         if (!file_priv)
4875                 return -ENOMEM;
4876
4877         file->driver_priv = file_priv;
4878         file_priv->dev_priv = dev->dev_private;
4879         file_priv->file = file;
4880
4881         spin_lock_init(&file_priv->mm.lock);
4882         INIT_LIST_HEAD(&file_priv->mm.request_list);
4883         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4884                           i915_gem_file_idle_work_handler);
4885
4886         ret = i915_gem_context_open(dev, file);
4887         if (ret)
4888                 kfree(file_priv);
4889
4890         return ret;
4891 }
4892
4893 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4894 {
4895         if (!mutex_is_locked(mutex))
4896                 return false;
4897
4898 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4899         return mutex->owner == task;
4900 #else
4901         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4902         return false;
4903 #endif
4904 }
4905
4906 static unsigned long
4907 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4908 {
4909         struct drm_i915_private *dev_priv =
4910                 container_of(shrinker,
4911                              struct drm_i915_private,
4912                              mm.inactive_shrinker);
4913         struct drm_device *dev = dev_priv->dev;
4914         struct drm_i915_gem_object *obj;
4915         bool unlock = true;
4916         unsigned long count;
4917
4918         if (!mutex_trylock(&dev->struct_mutex)) {
4919                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4920                         return 0;
4921
4922                 if (dev_priv->mm.shrinker_no_lock_stealing)
4923                         return 0;
4924
4925                 unlock = false;
4926         }
4927
4928         count = 0;
4929         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4930                 if (obj->pages_pin_count == 0)
4931                         count += obj->base.size >> PAGE_SHIFT;
4932
4933         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4934                 if (obj->active)
4935                         continue;
4936
4937                 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
4938                         count += obj->base.size >> PAGE_SHIFT;
4939         }
4940
4941         if (unlock)
4942                 mutex_unlock(&dev->struct_mutex);
4943
4944         return count;
4945 }
4946
4947 /* All the new VM stuff */
4948 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4949                                   struct i915_address_space *vm)
4950 {
4951         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4952         struct i915_vma *vma;
4953
4954         if (!dev_priv->mm.aliasing_ppgtt ||
4955             vm == &dev_priv->mm.aliasing_ppgtt->base)
4956                 vm = &dev_priv->gtt.base;
4957
4958         BUG_ON(list_empty(&o->vma_list));
4959         list_for_each_entry(vma, &o->vma_list, vma_link) {
4960                 if (vma->vm == vm)
4961                         return vma->node.start;
4962
4963         }
4964         return -1;
4965 }
4966
4967 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4968                         struct i915_address_space *vm)
4969 {
4970         struct i915_vma *vma;
4971
4972         list_for_each_entry(vma, &o->vma_list, vma_link)
4973                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4974                         return true;
4975
4976         return false;
4977 }
4978
4979 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4980 {
4981         struct i915_vma *vma;
4982
4983         list_for_each_entry(vma, &o->vma_list, vma_link)
4984                 if (drm_mm_node_allocated(&vma->node))
4985                         return true;
4986
4987         return false;
4988 }
4989
4990 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4991                                 struct i915_address_space *vm)
4992 {
4993         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4994         struct i915_vma *vma;
4995
4996         if (!dev_priv->mm.aliasing_ppgtt ||
4997             vm == &dev_priv->mm.aliasing_ppgtt->base)
4998                 vm = &dev_priv->gtt.base;
4999
5000         BUG_ON(list_empty(&o->vma_list));
5001
5002         list_for_each_entry(vma, &o->vma_list, vma_link)
5003                 if (vma->vm == vm)
5004                         return vma->node.size;
5005
5006         return 0;
5007 }
5008
5009 static unsigned long
5010 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5011 {
5012         struct drm_i915_private *dev_priv =
5013                 container_of(shrinker,
5014                              struct drm_i915_private,
5015                              mm.inactive_shrinker);
5016         struct drm_device *dev = dev_priv->dev;
5017         unsigned long freed;
5018         bool unlock = true;
5019
5020         if (!mutex_trylock(&dev->struct_mutex)) {
5021                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5022                         return SHRINK_STOP;
5023
5024                 if (dev_priv->mm.shrinker_no_lock_stealing)
5025                         return SHRINK_STOP;
5026
5027                 unlock = false;
5028         }
5029
5030         freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5031         if (freed < sc->nr_to_scan)
5032                 freed += __i915_gem_shrink(dev_priv,
5033                                            sc->nr_to_scan - freed,
5034                                            false);
5035         if (freed < sc->nr_to_scan)
5036                 freed += i915_gem_shrink_all(dev_priv);
5037
5038         if (unlock)
5039                 mutex_unlock(&dev->struct_mutex);
5040
5041         return freed;
5042 }
5043
5044 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5045 {
5046         struct i915_vma *vma;
5047
5048         if (WARN_ON(list_empty(&obj->vma_list)))
5049                 return NULL;
5050
5051         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5052         if (vma->vm != obj_to_ggtt(obj))
5053                 return NULL;
5054
5055         return vma;
5056 }