Merge drm/drm-next into drm-intel-gt-next
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <linux/dma-fence-array.h>
29 #include <linux/kthread.h>
30 #include <linux/dma-resv.h>
31 #include <linux/shmem_fs.h>
32 #include <linux/slab.h>
33 #include <linux/stop_machine.h>
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36 #include <linux/dma-buf.h>
37 #include <linux/mman.h>
38
39 #include <drm/drm_cache.h>
40 #include <drm/drm_vma_manager.h>
41
42 #include "display/intel_display.h"
43 #include "display/intel_frontbuffer.h"
44
45 #include "gem/i915_gem_clflush.h"
46 #include "gem/i915_gem_context.h"
47 #include "gem/i915_gem_ioctls.h"
48 #include "gem/i915_gem_mman.h"
49 #include "gem/i915_gem_pm.h"
50 #include "gem/i915_gem_region.h"
51 #include "gem/i915_gem_userptr.h"
52 #include "gt/intel_engine_user.h"
53 #include "gt/intel_gt.h"
54 #include "gt/intel_gt_pm.h"
55 #include "gt/intel_workarounds.h"
56
57 #include "i915_drv.h"
58 #include "i915_file_private.h"
59 #include "i915_trace.h"
60 #include "i915_vgpu.h"
61 #include "intel_pm.h"
62
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
65 {
66         int err;
67
68         err = mutex_lock_interruptible(&ggtt->vm.mutex);
69         if (err)
70                 return err;
71
72         memset(node, 0, sizeof(*node));
73         err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
74                                           size, 0, I915_COLOR_UNEVICTABLE,
75                                           0, ggtt->mappable_end,
76                                           DRM_MM_INSERT_LOW);
77
78         mutex_unlock(&ggtt->vm.mutex);
79
80         return err;
81 }
82
83 static void
84 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
85 {
86         mutex_lock(&ggtt->vm.mutex);
87         drm_mm_remove_node(node);
88         mutex_unlock(&ggtt->vm.mutex);
89 }
90
91 int
92 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
93                             struct drm_file *file)
94 {
95         struct drm_i915_private *i915 = to_i915(dev);
96         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
97         struct drm_i915_gem_get_aperture *args = data;
98         struct i915_vma *vma;
99         u64 pinned;
100
101         if (mutex_lock_interruptible(&ggtt->vm.mutex))
102                 return -EINTR;
103
104         pinned = ggtt->vm.reserved;
105         list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
106                 if (i915_vma_is_pinned(vma))
107                         pinned += vma->node.size;
108
109         mutex_unlock(&ggtt->vm.mutex);
110
111         args->aper_size = ggtt->vm.total;
112         args->aper_available_size = args->aper_size - pinned;
113
114         return 0;
115 }
116
117 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
118                            unsigned long flags)
119 {
120         struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
121         bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK);
122         LIST_HEAD(still_in_list);
123         intel_wakeref_t wakeref;
124         struct i915_vma *vma;
125         int ret;
126
127         assert_object_held(obj);
128
129         if (list_empty(&obj->vma.list))
130                 return 0;
131
132         /*
133          * As some machines use ACPI to handle runtime-resume callbacks, and
134          * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
135          * as they are required by the shrinker. Ergo, we wake the device up
136          * first just in case.
137          */
138         wakeref = intel_runtime_pm_get(rpm);
139
140 try_again:
141         ret = 0;
142         spin_lock(&obj->vma.lock);
143         while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
144                                                        struct i915_vma,
145                                                        obj_link))) {
146                 list_move_tail(&vma->obj_link, &still_in_list);
147                 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
148                         continue;
149
150                 if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
151                         ret = -EBUSY;
152                         break;
153                 }
154
155                 /*
156                  * Requiring the vm destructor to take the object lock
157                  * before destroying a vma would help us eliminate the
158                  * i915_vm_tryget() here, AND thus also the barrier stuff
159                  * at the end. That's an easy fix, but sleeping locks in
160                  * a kthread should generally be avoided.
161                  */
162                 ret = -EAGAIN;
163                 if (!i915_vm_tryget(vma->vm))
164                         break;
165
166                 spin_unlock(&obj->vma.lock);
167
168                 /*
169                  * Since i915_vma_parked() takes the object lock
170                  * before vma destruction, it won't race us here,
171                  * and destroy the vma from under us.
172                  */
173
174                 ret = -EBUSY;
175                 if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) {
176                         assert_object_held(vma->obj);
177                         ret = i915_vma_unbind_async(vma, vm_trylock);
178                 }
179
180                 if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
181                                       !i915_vma_is_active(vma))) {
182                         if (vm_trylock) {
183                                 if (mutex_trylock(&vma->vm->mutex)) {
184                                         ret = __i915_vma_unbind(vma);
185                                         mutex_unlock(&vma->vm->mutex);
186                                 }
187                         } else {
188                                 ret = i915_vma_unbind(vma);
189                         }
190                 }
191
192                 i915_vm_put(vma->vm);
193                 spin_lock(&obj->vma.lock);
194         }
195         list_splice_init(&still_in_list, &obj->vma.list);
196         spin_unlock(&obj->vma.lock);
197
198         if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
199                 rcu_barrier(); /* flush the i915_vm_release() */
200                 goto try_again;
201         }
202
203         intel_runtime_pm_put(rpm, wakeref);
204
205         return ret;
206 }
207
208 static int
209 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
210             bool needs_clflush)
211 {
212         char *vaddr;
213         int ret;
214
215         vaddr = kmap(page);
216
217         if (needs_clflush)
218                 drm_clflush_virt_range(vaddr + offset, len);
219
220         ret = __copy_to_user(user_data, vaddr + offset, len);
221
222         kunmap(page);
223
224         return ret ? -EFAULT : 0;
225 }
226
227 static int
228 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
229                      struct drm_i915_gem_pread *args)
230 {
231         unsigned int needs_clflush;
232         unsigned int idx, offset;
233         char __user *user_data;
234         u64 remain;
235         int ret;
236
237         ret = i915_gem_object_lock_interruptible(obj, NULL);
238         if (ret)
239                 return ret;
240
241         ret = i915_gem_object_pin_pages(obj);
242         if (ret)
243                 goto err_unlock;
244
245         ret = i915_gem_object_prepare_read(obj, &needs_clflush);
246         if (ret)
247                 goto err_unpin;
248
249         i915_gem_object_finish_access(obj);
250         i915_gem_object_unlock(obj);
251
252         remain = args->size;
253         user_data = u64_to_user_ptr(args->data_ptr);
254         offset = offset_in_page(args->offset);
255         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
256                 struct page *page = i915_gem_object_get_page(obj, idx);
257                 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
258
259                 ret = shmem_pread(page, offset, length, user_data,
260                                   needs_clflush);
261                 if (ret)
262                         break;
263
264                 remain -= length;
265                 user_data += length;
266                 offset = 0;
267         }
268
269         i915_gem_object_unpin_pages(obj);
270         return ret;
271
272 err_unpin:
273         i915_gem_object_unpin_pages(obj);
274 err_unlock:
275         i915_gem_object_unlock(obj);
276         return ret;
277 }
278
279 static inline bool
280 gtt_user_read(struct io_mapping *mapping,
281               loff_t base, int offset,
282               char __user *user_data, int length)
283 {
284         void __iomem *vaddr;
285         unsigned long unwritten;
286
287         /* We can use the cpu mem copy function because this is X86. */
288         vaddr = io_mapping_map_atomic_wc(mapping, base);
289         unwritten = __copy_to_user_inatomic(user_data,
290                                             (void __force *)vaddr + offset,
291                                             length);
292         io_mapping_unmap_atomic(vaddr);
293         if (unwritten) {
294                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
295                 unwritten = copy_to_user(user_data,
296                                          (void __force *)vaddr + offset,
297                                          length);
298                 io_mapping_unmap(vaddr);
299         }
300         return unwritten;
301 }
302
303 static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
304                                              struct drm_mm_node *node,
305                                              bool write)
306 {
307         struct drm_i915_private *i915 = to_i915(obj->base.dev);
308         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
309         struct i915_vma *vma;
310         struct i915_gem_ww_ctx ww;
311         int ret;
312
313         i915_gem_ww_ctx_init(&ww, true);
314 retry:
315         vma = ERR_PTR(-ENODEV);
316         ret = i915_gem_object_lock(obj, &ww);
317         if (ret)
318                 goto err_ww;
319
320         ret = i915_gem_object_set_to_gtt_domain(obj, write);
321         if (ret)
322                 goto err_ww;
323
324         if (!i915_gem_object_is_tiled(obj))
325                 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
326                                                   PIN_MAPPABLE |
327                                                   PIN_NONBLOCK /* NOWARN */ |
328                                                   PIN_NOEVICT);
329         if (vma == ERR_PTR(-EDEADLK)) {
330                 ret = -EDEADLK;
331                 goto err_ww;
332         } else if (!IS_ERR(vma)) {
333                 node->start = i915_ggtt_offset(vma);
334                 node->flags = 0;
335         } else {
336                 ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
337                 if (ret)
338                         goto err_ww;
339                 GEM_BUG_ON(!drm_mm_node_allocated(node));
340                 vma = NULL;
341         }
342
343         ret = i915_gem_object_pin_pages(obj);
344         if (ret) {
345                 if (drm_mm_node_allocated(node)) {
346                         ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
347                         remove_mappable_node(ggtt, node);
348                 } else {
349                         i915_vma_unpin(vma);
350                 }
351         }
352
353 err_ww:
354         if (ret == -EDEADLK) {
355                 ret = i915_gem_ww_ctx_backoff(&ww);
356                 if (!ret)
357                         goto retry;
358         }
359         i915_gem_ww_ctx_fini(&ww);
360
361         return ret ? ERR_PTR(ret) : vma;
362 }
363
364 static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
365                                  struct drm_mm_node *node,
366                                  struct i915_vma *vma)
367 {
368         struct drm_i915_private *i915 = to_i915(obj->base.dev);
369         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
370
371         i915_gem_object_unpin_pages(obj);
372         if (drm_mm_node_allocated(node)) {
373                 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
374                 remove_mappable_node(ggtt, node);
375         } else {
376                 i915_vma_unpin(vma);
377         }
378 }
379
380 static int
381 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
382                    const struct drm_i915_gem_pread *args)
383 {
384         struct drm_i915_private *i915 = to_i915(obj->base.dev);
385         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
386         intel_wakeref_t wakeref;
387         struct drm_mm_node node;
388         void __user *user_data;
389         struct i915_vma *vma;
390         u64 remain, offset;
391         int ret = 0;
392
393         wakeref = intel_runtime_pm_get(&i915->runtime_pm);
394
395         vma = i915_gem_gtt_prepare(obj, &node, false);
396         if (IS_ERR(vma)) {
397                 ret = PTR_ERR(vma);
398                 goto out_rpm;
399         }
400
401         user_data = u64_to_user_ptr(args->data_ptr);
402         remain = args->size;
403         offset = args->offset;
404
405         while (remain > 0) {
406                 /* Operation in this page
407                  *
408                  * page_base = page offset within aperture
409                  * page_offset = offset within page
410                  * page_length = bytes to copy for this page
411                  */
412                 u32 page_base = node.start;
413                 unsigned page_offset = offset_in_page(offset);
414                 unsigned page_length = PAGE_SIZE - page_offset;
415                 page_length = remain < page_length ? remain : page_length;
416                 if (drm_mm_node_allocated(&node)) {
417                         ggtt->vm.insert_page(&ggtt->vm,
418                                              i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
419                                              node.start, I915_CACHE_NONE, 0);
420                 } else {
421                         page_base += offset & PAGE_MASK;
422                 }
423
424                 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
425                                   user_data, page_length)) {
426                         ret = -EFAULT;
427                         break;
428                 }
429
430                 remain -= page_length;
431                 user_data += page_length;
432                 offset += page_length;
433         }
434
435         i915_gem_gtt_cleanup(obj, &node, vma);
436 out_rpm:
437         intel_runtime_pm_put(&i915->runtime_pm, wakeref);
438         return ret;
439 }
440
441 /**
442  * Reads data from the object referenced by handle.
443  * @dev: drm device pointer
444  * @data: ioctl data blob
445  * @file: drm file pointer
446  *
447  * On error, the contents of *data are undefined.
448  */
449 int
450 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
451                      struct drm_file *file)
452 {
453         struct drm_i915_private *i915 = to_i915(dev);
454         struct drm_i915_gem_pread *args = data;
455         struct drm_i915_gem_object *obj;
456         int ret;
457
458         /* PREAD is disallowed for all platforms after TGL-LP.  This also
459          * covers all platforms with local memory.
460          */
461         if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
462                 return -EOPNOTSUPP;
463
464         if (args->size == 0)
465                 return 0;
466
467         if (!access_ok(u64_to_user_ptr(args->data_ptr),
468                        args->size))
469                 return -EFAULT;
470
471         obj = i915_gem_object_lookup(file, args->handle);
472         if (!obj)
473                 return -ENOENT;
474
475         /* Bounds check source.  */
476         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
477                 ret = -EINVAL;
478                 goto out;
479         }
480
481         trace_i915_gem_object_pread(obj, args->offset, args->size);
482         ret = -ENODEV;
483         if (obj->ops->pread)
484                 ret = obj->ops->pread(obj, args);
485         if (ret != -ENODEV)
486                 goto out;
487
488         ret = i915_gem_object_wait(obj,
489                                    I915_WAIT_INTERRUPTIBLE,
490                                    MAX_SCHEDULE_TIMEOUT);
491         if (ret)
492                 goto out;
493
494         ret = i915_gem_shmem_pread(obj, args);
495         if (ret == -EFAULT || ret == -ENODEV)
496                 ret = i915_gem_gtt_pread(obj, args);
497
498 out:
499         i915_gem_object_put(obj);
500         return ret;
501 }
502
503 /* This is the fast write path which cannot handle
504  * page faults in the source data
505  */
506
507 static inline bool
508 ggtt_write(struct io_mapping *mapping,
509            loff_t base, int offset,
510            char __user *user_data, int length)
511 {
512         void __iomem *vaddr;
513         unsigned long unwritten;
514
515         /* We can use the cpu mem copy function because this is X86. */
516         vaddr = io_mapping_map_atomic_wc(mapping, base);
517         unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
518                                                       user_data, length);
519         io_mapping_unmap_atomic(vaddr);
520         if (unwritten) {
521                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
522                 unwritten = copy_from_user((void __force *)vaddr + offset,
523                                            user_data, length);
524                 io_mapping_unmap(vaddr);
525         }
526
527         return unwritten;
528 }
529
530 /**
531  * This is the fast pwrite path, where we copy the data directly from the
532  * user into the GTT, uncached.
533  * @obj: i915 GEM object
534  * @args: pwrite arguments structure
535  */
536 static int
537 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
538                          const struct drm_i915_gem_pwrite *args)
539 {
540         struct drm_i915_private *i915 = to_i915(obj->base.dev);
541         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
542         struct intel_runtime_pm *rpm = &i915->runtime_pm;
543         intel_wakeref_t wakeref;
544         struct drm_mm_node node;
545         struct i915_vma *vma;
546         u64 remain, offset;
547         void __user *user_data;
548         int ret = 0;
549
550         if (i915_gem_object_has_struct_page(obj)) {
551                 /*
552                  * Avoid waking the device up if we can fallback, as
553                  * waking/resuming is very slow (worst-case 10-100 ms
554                  * depending on PCI sleeps and our own resume time).
555                  * This easily dwarfs any performance advantage from
556                  * using the cache bypass of indirect GGTT access.
557                  */
558                 wakeref = intel_runtime_pm_get_if_in_use(rpm);
559                 if (!wakeref)
560                         return -EFAULT;
561         } else {
562                 /* No backing pages, no fallback, we must force GGTT access */
563                 wakeref = intel_runtime_pm_get(rpm);
564         }
565
566         vma = i915_gem_gtt_prepare(obj, &node, true);
567         if (IS_ERR(vma)) {
568                 ret = PTR_ERR(vma);
569                 goto out_rpm;
570         }
571
572         i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
573
574         user_data = u64_to_user_ptr(args->data_ptr);
575         offset = args->offset;
576         remain = args->size;
577         while (remain) {
578                 /* Operation in this page
579                  *
580                  * page_base = page offset within aperture
581                  * page_offset = offset within page
582                  * page_length = bytes to copy for this page
583                  */
584                 u32 page_base = node.start;
585                 unsigned int page_offset = offset_in_page(offset);
586                 unsigned int page_length = PAGE_SIZE - page_offset;
587                 page_length = remain < page_length ? remain : page_length;
588                 if (drm_mm_node_allocated(&node)) {
589                         /* flush the write before we modify the GGTT */
590                         intel_gt_flush_ggtt_writes(ggtt->vm.gt);
591                         ggtt->vm.insert_page(&ggtt->vm,
592                                              i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
593                                              node.start, I915_CACHE_NONE, 0);
594                         wmb(); /* flush modifications to the GGTT (insert_page) */
595                 } else {
596                         page_base += offset & PAGE_MASK;
597                 }
598                 /* If we get a fault while copying data, then (presumably) our
599                  * source page isn't available.  Return the error and we'll
600                  * retry in the slow path.
601                  * If the object is non-shmem backed, we retry again with the
602                  * path that handles page fault.
603                  */
604                 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
605                                user_data, page_length)) {
606                         ret = -EFAULT;
607                         break;
608                 }
609
610                 remain -= page_length;
611                 user_data += page_length;
612                 offset += page_length;
613         }
614
615         intel_gt_flush_ggtt_writes(ggtt->vm.gt);
616         i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
617
618         i915_gem_gtt_cleanup(obj, &node, vma);
619 out_rpm:
620         intel_runtime_pm_put(rpm, wakeref);
621         return ret;
622 }
623
624 /* Per-page copy function for the shmem pwrite fastpath.
625  * Flushes invalid cachelines before writing to the target if
626  * needs_clflush_before is set and flushes out any written cachelines after
627  * writing if needs_clflush is set.
628  */
629 static int
630 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
631              bool needs_clflush_before,
632              bool needs_clflush_after)
633 {
634         char *vaddr;
635         int ret;
636
637         vaddr = kmap(page);
638
639         if (needs_clflush_before)
640                 drm_clflush_virt_range(vaddr + offset, len);
641
642         ret = __copy_from_user(vaddr + offset, user_data, len);
643         if (!ret && needs_clflush_after)
644                 drm_clflush_virt_range(vaddr + offset, len);
645
646         kunmap(page);
647
648         return ret ? -EFAULT : 0;
649 }
650
651 static int
652 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
653                       const struct drm_i915_gem_pwrite *args)
654 {
655         unsigned int partial_cacheline_write;
656         unsigned int needs_clflush;
657         unsigned int offset, idx;
658         void __user *user_data;
659         u64 remain;
660         int ret;
661
662         ret = i915_gem_object_lock_interruptible(obj, NULL);
663         if (ret)
664                 return ret;
665
666         ret = i915_gem_object_pin_pages(obj);
667         if (ret)
668                 goto err_unlock;
669
670         ret = i915_gem_object_prepare_write(obj, &needs_clflush);
671         if (ret)
672                 goto err_unpin;
673
674         i915_gem_object_finish_access(obj);
675         i915_gem_object_unlock(obj);
676
677         /* If we don't overwrite a cacheline completely we need to be
678          * careful to have up-to-date data by first clflushing. Don't
679          * overcomplicate things and flush the entire patch.
680          */
681         partial_cacheline_write = 0;
682         if (needs_clflush & CLFLUSH_BEFORE)
683                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
684
685         user_data = u64_to_user_ptr(args->data_ptr);
686         remain = args->size;
687         offset = offset_in_page(args->offset);
688         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
689                 struct page *page = i915_gem_object_get_page(obj, idx);
690                 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
691
692                 ret = shmem_pwrite(page, offset, length, user_data,
693                                    (offset | length) & partial_cacheline_write,
694                                    needs_clflush & CLFLUSH_AFTER);
695                 if (ret)
696                         break;
697
698                 remain -= length;
699                 user_data += length;
700                 offset = 0;
701         }
702
703         i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
704
705         i915_gem_object_unpin_pages(obj);
706         return ret;
707
708 err_unpin:
709         i915_gem_object_unpin_pages(obj);
710 err_unlock:
711         i915_gem_object_unlock(obj);
712         return ret;
713 }
714
715 /**
716  * Writes data to the object referenced by handle.
717  * @dev: drm device
718  * @data: ioctl data blob
719  * @file: drm file
720  *
721  * On error, the contents of the buffer that were to be modified are undefined.
722  */
723 int
724 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
725                       struct drm_file *file)
726 {
727         struct drm_i915_private *i915 = to_i915(dev);
728         struct drm_i915_gem_pwrite *args = data;
729         struct drm_i915_gem_object *obj;
730         int ret;
731
732         /* PWRITE is disallowed for all platforms after TGL-LP.  This also
733          * covers all platforms with local memory.
734          */
735         if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
736                 return -EOPNOTSUPP;
737
738         if (args->size == 0)
739                 return 0;
740
741         if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
742                 return -EFAULT;
743
744         obj = i915_gem_object_lookup(file, args->handle);
745         if (!obj)
746                 return -ENOENT;
747
748         /* Bounds check destination. */
749         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
750                 ret = -EINVAL;
751                 goto err;
752         }
753
754         /* Writes not allowed into this read-only object */
755         if (i915_gem_object_is_readonly(obj)) {
756                 ret = -EINVAL;
757                 goto err;
758         }
759
760         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
761
762         ret = -ENODEV;
763         if (obj->ops->pwrite)
764                 ret = obj->ops->pwrite(obj, args);
765         if (ret != -ENODEV)
766                 goto err;
767
768         ret = i915_gem_object_wait(obj,
769                                    I915_WAIT_INTERRUPTIBLE |
770                                    I915_WAIT_ALL,
771                                    MAX_SCHEDULE_TIMEOUT);
772         if (ret)
773                 goto err;
774
775         ret = -EFAULT;
776         /* We can only do the GTT pwrite on untiled buffers, as otherwise
777          * it would end up going through the fenced access, and we'll get
778          * different detiling behavior between reading and writing.
779          * pread/pwrite currently are reading and writing from the CPU
780          * perspective, requiring manual detiling by the client.
781          */
782         if (!i915_gem_object_has_struct_page(obj) ||
783             i915_gem_cpu_write_needs_clflush(obj))
784                 /* Note that the gtt paths might fail with non-page-backed user
785                  * pointers (e.g. gtt mappings when moving data between
786                  * textures). Fallback to the shmem path in that case.
787                  */
788                 ret = i915_gem_gtt_pwrite_fast(obj, args);
789
790         if (ret == -EFAULT || ret == -ENOSPC) {
791                 if (i915_gem_object_has_struct_page(obj))
792                         ret = i915_gem_shmem_pwrite(obj, args);
793         }
794
795 err:
796         i915_gem_object_put(obj);
797         return ret;
798 }
799
800 /**
801  * Called when user space has done writes to this buffer
802  * @dev: drm device
803  * @data: ioctl data blob
804  * @file: drm file
805  */
806 int
807 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
808                          struct drm_file *file)
809 {
810         struct drm_i915_gem_sw_finish *args = data;
811         struct drm_i915_gem_object *obj;
812
813         obj = i915_gem_object_lookup(file, args->handle);
814         if (!obj)
815                 return -ENOENT;
816
817         /*
818          * Proxy objects are barred from CPU access, so there is no
819          * need to ban sw_finish as it is a nop.
820          */
821
822         /* Pinned buffers may be scanout, so flush the cache */
823         i915_gem_object_flush_if_display(obj);
824         i915_gem_object_put(obj);
825
826         return 0;
827 }
828
829 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
830 {
831         struct drm_i915_gem_object *obj, *on;
832         int i;
833
834         /*
835          * Only called during RPM suspend. All users of the userfault_list
836          * must be holding an RPM wakeref to ensure that this can not
837          * run concurrently with themselves (and use the struct_mutex for
838          * protection between themselves).
839          */
840
841         list_for_each_entry_safe(obj, on,
842                                  &to_gt(i915)->ggtt->userfault_list, userfault_link)
843                 __i915_gem_object_release_mmap_gtt(obj);
844
845         list_for_each_entry_safe(obj, on,
846                                  &to_gt(i915)->lmem_userfault_list, userfault_link)
847                 i915_gem_object_runtime_pm_release_mmap_offset(obj);
848
849         /*
850          * The fence will be lost when the device powers down. If any were
851          * in use by hardware (i.e. they are pinned), we should not be powering
852          * down! All other fences will be reacquired by the user upon waking.
853          */
854         for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) {
855                 struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i];
856
857                 /*
858                  * Ideally we want to assert that the fence register is not
859                  * live at this point (i.e. that no piece of code will be
860                  * trying to write through fence + GTT, as that both violates
861                  * our tracking of activity and associated locking/barriers,
862                  * but also is illegal given that the hw is powered down).
863                  *
864                  * Previously we used reg->pin_count as a "liveness" indicator.
865                  * That is not sufficient, and we need a more fine-grained
866                  * tool if we want to have a sanity check here.
867                  */
868
869                 if (!reg->vma)
870                         continue;
871
872                 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
873                 reg->dirty = true;
874         }
875 }
876
877 static void discard_ggtt_vma(struct i915_vma *vma)
878 {
879         struct drm_i915_gem_object *obj = vma->obj;
880
881         spin_lock(&obj->vma.lock);
882         if (!RB_EMPTY_NODE(&vma->obj_node)) {
883                 rb_erase(&vma->obj_node, &obj->vma.tree);
884                 RB_CLEAR_NODE(&vma->obj_node);
885         }
886         spin_unlock(&obj->vma.lock);
887 }
888
889 struct i915_vma *
890 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
891                             struct i915_gem_ww_ctx *ww,
892                             const struct i915_gtt_view *view,
893                             u64 size, u64 alignment, u64 flags)
894 {
895         struct drm_i915_private *i915 = to_i915(obj->base.dev);
896         struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
897         struct i915_vma *vma;
898         int ret;
899
900         GEM_WARN_ON(!ww);
901
902         if (flags & PIN_MAPPABLE &&
903             (!view || view->type == I915_GTT_VIEW_NORMAL)) {
904                 /*
905                  * If the required space is larger than the available
906                  * aperture, we will not able to find a slot for the
907                  * object and unbinding the object now will be in
908                  * vain. Worse, doing so may cause us to ping-pong
909                  * the object in and out of the Global GTT and
910                  * waste a lot of cycles under the mutex.
911                  */
912                 if (obj->base.size > ggtt->mappable_end)
913                         return ERR_PTR(-E2BIG);
914
915                 /*
916                  * If NONBLOCK is set the caller is optimistically
917                  * trying to cache the full object within the mappable
918                  * aperture, and *must* have a fallback in place for
919                  * situations where we cannot bind the object. We
920                  * can be a little more lax here and use the fallback
921                  * more often to avoid costly migrations of ourselves
922                  * and other objects within the aperture.
923                  *
924                  * Half-the-aperture is used as a simple heuristic.
925                  * More interesting would to do search for a free
926                  * block prior to making the commitment to unbind.
927                  * That caters for the self-harm case, and with a
928                  * little more heuristics (e.g. NOFAULT, NOEVICT)
929                  * we could try to minimise harm to others.
930                  */
931                 if (flags & PIN_NONBLOCK &&
932                     obj->base.size > ggtt->mappable_end / 2)
933                         return ERR_PTR(-ENOSPC);
934         }
935
936 new_vma:
937         vma = i915_vma_instance(obj, &ggtt->vm, view);
938         if (IS_ERR(vma))
939                 return vma;
940
941         if (i915_vma_misplaced(vma, size, alignment, flags)) {
942                 if (flags & PIN_NONBLOCK) {
943                         if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
944                                 return ERR_PTR(-ENOSPC);
945
946                         /*
947                          * If this misplaced vma is too big (i.e, at-least
948                          * half the size of aperture) or hasn't been pinned
949                          * mappable before, we ignore the misplacement when
950                          * PIN_NONBLOCK is set in order to avoid the ping-pong
951                          * issue described above. In other words, we try to
952                          * avoid the costly operation of unbinding this vma
953                          * from the GGTT and rebinding it back because there
954                          * may not be enough space for this vma in the aperture.
955                          */
956                         if (flags & PIN_MAPPABLE &&
957                             (vma->fence_size > ggtt->mappable_end / 2 ||
958                             !i915_vma_is_map_and_fenceable(vma)))
959                                 return ERR_PTR(-ENOSPC);
960                 }
961
962                 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
963                         discard_ggtt_vma(vma);
964                         goto new_vma;
965                 }
966
967                 ret = i915_vma_unbind(vma);
968                 if (ret)
969                         return ERR_PTR(ret);
970         }
971
972         ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
973
974         if (ret)
975                 return ERR_PTR(ret);
976
977         if (vma->fence && !i915_gem_object_is_tiled(obj)) {
978                 mutex_lock(&ggtt->vm.mutex);
979                 i915_vma_revoke_fence(vma);
980                 mutex_unlock(&ggtt->vm.mutex);
981         }
982
983         ret = i915_vma_wait_for_bind(vma);
984         if (ret) {
985                 i915_vma_unpin(vma);
986                 return ERR_PTR(ret);
987         }
988
989         return vma;
990 }
991
992 struct i915_vma * __must_check
993 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
994                          const struct i915_gtt_view *view,
995                          u64 size, u64 alignment, u64 flags)
996 {
997         struct i915_gem_ww_ctx ww;
998         struct i915_vma *ret;
999         int err;
1000
1001         for_i915_gem_ww(&ww, err, true) {
1002                 err = i915_gem_object_lock(obj, &ww);
1003                 if (err)
1004                         continue;
1005
1006                 ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size,
1007                                                   alignment, flags);
1008                 if (IS_ERR(ret))
1009                         err = PTR_ERR(ret);
1010         }
1011
1012         return err ? ERR_PTR(err) : ret;
1013 }
1014
1015 int
1016 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1017                        struct drm_file *file_priv)
1018 {
1019         struct drm_i915_private *i915 = to_i915(dev);
1020         struct drm_i915_gem_madvise *args = data;
1021         struct drm_i915_gem_object *obj;
1022         int err;
1023
1024         switch (args->madv) {
1025         case I915_MADV_DONTNEED:
1026         case I915_MADV_WILLNEED:
1027             break;
1028         default:
1029             return -EINVAL;
1030         }
1031
1032         obj = i915_gem_object_lookup(file_priv, args->handle);
1033         if (!obj)
1034                 return -ENOENT;
1035
1036         err = i915_gem_object_lock_interruptible(obj, NULL);
1037         if (err)
1038                 goto out;
1039
1040         if (i915_gem_object_has_pages(obj) &&
1041             i915_gem_object_is_tiled(obj) &&
1042             i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
1043                 if (obj->mm.madv == I915_MADV_WILLNEED) {
1044                         GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1045                         i915_gem_object_clear_tiling_quirk(obj);
1046                         i915_gem_object_make_shrinkable(obj);
1047                 }
1048                 if (args->madv == I915_MADV_WILLNEED) {
1049                         GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1050                         i915_gem_object_make_unshrinkable(obj);
1051                         i915_gem_object_set_tiling_quirk(obj);
1052                 }
1053         }
1054
1055         if (obj->mm.madv != __I915_MADV_PURGED) {
1056                 obj->mm.madv = args->madv;
1057                 if (obj->ops->adjust_lru)
1058                         obj->ops->adjust_lru(obj);
1059         }
1060
1061         if (i915_gem_object_has_pages(obj) ||
1062             i915_gem_object_has_self_managed_shrink_list(obj)) {
1063                 unsigned long flags;
1064
1065                 spin_lock_irqsave(&i915->mm.obj_lock, flags);
1066                 if (!list_empty(&obj->mm.link)) {
1067                         struct list_head *list;
1068
1069                         if (obj->mm.madv != I915_MADV_WILLNEED)
1070                                 list = &i915->mm.purge_list;
1071                         else
1072                                 list = &i915->mm.shrink_list;
1073                         list_move_tail(&obj->mm.link, list);
1074
1075                 }
1076                 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1077         }
1078
1079         /* if the object is no longer attached, discard its backing storage */
1080         if (obj->mm.madv == I915_MADV_DONTNEED &&
1081             !i915_gem_object_has_pages(obj))
1082                 i915_gem_object_truncate(obj);
1083
1084         args->retained = obj->mm.madv != __I915_MADV_PURGED;
1085
1086         i915_gem_object_unlock(obj);
1087 out:
1088         i915_gem_object_put(obj);
1089         return err;
1090 }
1091
1092 /*
1093  * A single pass should suffice to release all the freed objects (along most
1094  * call paths), but be a little more paranoid in that freeing the objects does
1095  * take a little amount of time, during which the rcu callbacks could have added
1096  * new objects into the freed list, and armed the work again.
1097  */
1098 void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
1099 {
1100         while (atomic_read(&i915->mm.free_count)) {
1101                 flush_work(&i915->mm.free_work);
1102                 flush_delayed_work(&i915->bdev.wq);
1103                 rcu_barrier();
1104         }
1105 }
1106
1107 /*
1108  * Similar to objects above (see i915_gem_drain_freed-objects), in general we
1109  * have workers that are armed by RCU and then rearm themselves in their
1110  * callbacks. To be paranoid, we need to drain the workqueue a second time after
1111  * waiting for the RCU grace period so that we catch work queued via RCU from
1112  * the first pass. As neither drain_workqueue() nor flush_workqueue() report a
1113  * result, we make an assumption that we only don't require more than 3 passes
1114  * to catch all _recursive_ RCU delayed work.
1115  */
1116 void i915_gem_drain_workqueue(struct drm_i915_private *i915)
1117 {
1118         int i;
1119
1120         for (i = 0; i < 3; i++) {
1121                 flush_workqueue(i915->wq);
1122                 rcu_barrier();
1123                 i915_gem_drain_freed_objects(i915);
1124         }
1125
1126         drain_workqueue(i915->wq);
1127 }
1128
1129 int i915_gem_init(struct drm_i915_private *dev_priv)
1130 {
1131         struct intel_gt *gt;
1132         unsigned int i;
1133         int ret;
1134
1135         /* We need to fallback to 4K pages if host doesn't support huge gtt. */
1136         if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1137                 RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K;
1138
1139         ret = i915_gem_init_userptr(dev_priv);
1140         if (ret)
1141                 return ret;
1142
1143         intel_uc_fetch_firmwares(&to_gt(dev_priv)->uc);
1144         intel_wopcm_init(&dev_priv->wopcm);
1145
1146         ret = i915_init_ggtt(dev_priv);
1147         if (ret) {
1148                 GEM_BUG_ON(ret == -EIO);
1149                 goto err_unlock;
1150         }
1151
1152         /*
1153          * Despite its name intel_init_clock_gating applies both display
1154          * clock gating workarounds; GT mmio workarounds and the occasional
1155          * GT power context workaround. Worse, sometimes it includes a context
1156          * register workaround which we need to apply before we record the
1157          * default HW state for all contexts.
1158          *
1159          * FIXME: break up the workarounds and apply them at the right time!
1160          */
1161         intel_init_clock_gating(dev_priv);
1162
1163         for_each_gt(gt, dev_priv, i) {
1164                 ret = intel_gt_init(gt);
1165                 if (ret)
1166                         goto err_unlock;
1167         }
1168
1169         return 0;
1170
1171         /*
1172          * Unwinding is complicated by that we want to handle -EIO to mean
1173          * disable GPU submission but keep KMS alive. We want to mark the
1174          * HW as irrevisibly wedged, but keep enough state around that the
1175          * driver doesn't explode during runtime.
1176          */
1177 err_unlock:
1178         i915_gem_drain_workqueue(dev_priv);
1179
1180         if (ret != -EIO) {
1181                 for_each_gt(gt, dev_priv, i) {
1182                         intel_gt_driver_remove(gt);
1183                         intel_gt_driver_release(gt);
1184                         intel_uc_cleanup_firmwares(&gt->uc);
1185                 }
1186         }
1187
1188         if (ret == -EIO) {
1189                 /*
1190                  * Allow engines or uC initialisation to fail by marking the GPU
1191                  * as wedged. But we only want to do this when the GPU is angry,
1192                  * for all other failure, such as an allocation failure, bail.
1193                  */
1194                 for_each_gt(gt, dev_priv, i) {
1195                         if (!intel_gt_is_wedged(gt)) {
1196                                 i915_probe_error(dev_priv,
1197                                                  "Failed to initialize GPU, declaring it wedged!\n");
1198                                 intel_gt_set_wedged(gt);
1199                         }
1200                 }
1201
1202                 /* Minimal basic recovery for KMS */
1203                 ret = i915_ggtt_enable_hw(dev_priv);
1204                 i915_ggtt_resume(to_gt(dev_priv)->ggtt);
1205                 intel_init_clock_gating(dev_priv);
1206         }
1207
1208         i915_gem_drain_freed_objects(dev_priv);
1209
1210         return ret;
1211 }
1212
1213 void i915_gem_driver_register(struct drm_i915_private *i915)
1214 {
1215         i915_gem_driver_register__shrinker(i915);
1216
1217         intel_engines_driver_register(i915);
1218 }
1219
1220 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1221 {
1222         i915_gem_driver_unregister__shrinker(i915);
1223 }
1224
1225 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1226 {
1227         struct intel_gt *gt;
1228         unsigned int i;
1229
1230         intel_wakeref_auto_fini(&to_gt(dev_priv)->userfault_wakeref);
1231
1232         i915_gem_suspend_late(dev_priv);
1233         for_each_gt(gt, dev_priv, i)
1234                 intel_gt_driver_remove(gt);
1235         dev_priv->uabi_engines = RB_ROOT;
1236
1237         /* Flush any outstanding unpin_work. */
1238         i915_gem_drain_workqueue(dev_priv);
1239 }
1240
1241 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1242 {
1243         struct intel_gt *gt;
1244         unsigned int i;
1245
1246         for_each_gt(gt, dev_priv, i) {
1247                 intel_gt_driver_release(gt);
1248                 intel_uc_cleanup_firmwares(&gt->uc);
1249         }
1250
1251         /* Flush any outstanding work, including i915_gem_context.release_work. */
1252         i915_gem_drain_workqueue(dev_priv);
1253
1254         drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1255 }
1256
1257 static void i915_gem_init__mm(struct drm_i915_private *i915)
1258 {
1259         spin_lock_init(&i915->mm.obj_lock);
1260
1261         init_llist_head(&i915->mm.free_list);
1262
1263         INIT_LIST_HEAD(&i915->mm.purge_list);
1264         INIT_LIST_HEAD(&i915->mm.shrink_list);
1265
1266         i915_gem_init__objects(i915);
1267 }
1268
1269 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1270 {
1271         i915_gem_init__mm(dev_priv);
1272         i915_gem_init__contexts(dev_priv);
1273
1274         spin_lock_init(&dev_priv->display.fb_tracking.lock);
1275 }
1276
1277 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1278 {
1279         i915_gem_drain_workqueue(dev_priv);
1280         GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1281         GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1282         drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1283 }
1284
1285 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1286 {
1287         struct drm_i915_file_private *file_priv;
1288         struct i915_drm_client *client;
1289         int ret = -ENOMEM;
1290
1291         DRM_DEBUG("\n");
1292
1293         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1294         if (!file_priv)
1295                 goto err_alloc;
1296
1297         client = i915_drm_client_add(&i915->clients);
1298         if (IS_ERR(client)) {
1299                 ret = PTR_ERR(client);
1300                 goto err_client;
1301         }
1302
1303         file->driver_priv = file_priv;
1304         file_priv->dev_priv = i915;
1305         file_priv->file = file;
1306         file_priv->client = client;
1307
1308         file_priv->bsd_engine = -1;
1309         file_priv->hang_timestamp = jiffies;
1310
1311         ret = i915_gem_context_open(i915, file);
1312         if (ret)
1313                 goto err_context;
1314
1315         return 0;
1316
1317 err_context:
1318         i915_drm_client_put(client);
1319 err_client:
1320         kfree(file_priv);
1321 err_alloc:
1322         return ret;
1323 }
1324
1325 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1326 #include "selftests/mock_gem_device.c"
1327 #include "selftests/i915_gem.c"
1328 #endif