drm/i915: Keep a small stash of preallocated WC pages
[linux-block.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_render_state.h"
71 #include "i915_gem_request.h"
72 #include "i915_gem_timeline.h"
73
74 #include "i915_vma.h"
75
76 #include "intel_gvt.h"
77
78 /* General customization:
79  */
80
81 #define DRIVER_NAME             "i915"
82 #define DRIVER_DESC             "Intel Graphics"
83 #define DRIVER_DATE             "20170818"
84 #define DRIVER_TIMESTAMP        1503088845
85
86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88  * which may not necessarily be a user visible problem.  This will either
89  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90  * enable distros and users to tailor their preferred amount of i915 abrt
91  * spam.
92  */
93 #define I915_STATE_WARN(condition, format...) ({                        \
94         int __ret_warn_on = !!(condition);                              \
95         if (unlikely(__ret_warn_on))                                    \
96                 if (!WARN(i915.verbose_state_checks, format))           \
97                         DRM_ERROR(format);                              \
98         unlikely(__ret_warn_on);                                        \
99 })
100
101 #define I915_STATE_WARN_ON(x)                                           \
102         I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103
104 bool __i915_inject_load_failure(const char *func, int line);
105 #define i915_inject_load_failure() \
106         __i915_inject_load_failure(__func__, __LINE__)
107
108 typedef struct {
109         uint32_t val;
110 } uint_fixed_16_16_t;
111
112 #define FP_16_16_MAX ({ \
113         uint_fixed_16_16_t fp; \
114         fp.val = UINT_MAX; \
115         fp; \
116 })
117
118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119 {
120         if (val.val == 0)
121                 return true;
122         return false;
123 }
124
125 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
126 {
127         uint_fixed_16_16_t fp;
128
129         WARN_ON(val >> 16);
130
131         fp.val = val << 16;
132         return fp;
133 }
134
135 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
136 {
137         return DIV_ROUND_UP(fp.val, 1 << 16);
138 }
139
140 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
141 {
142         return fp.val >> 16;
143 }
144
145 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
146                                                  uint_fixed_16_16_t min2)
147 {
148         uint_fixed_16_16_t min;
149
150         min.val = min(min1.val, min2.val);
151         return min;
152 }
153
154 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
155                                                  uint_fixed_16_16_t max2)
156 {
157         uint_fixed_16_16_t max;
158
159         max.val = max(max1.val, max2.val);
160         return max;
161 }
162
163 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
164 {
165         uint_fixed_16_16_t fp;
166         WARN_ON(val >> 32);
167         fp.val = clamp_t(uint32_t, val, 0, ~0);
168         return fp;
169 }
170
171 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
172                                             uint_fixed_16_16_t d)
173 {
174         return DIV_ROUND_UP(val.val, d.val);
175 }
176
177 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
178                                                 uint_fixed_16_16_t mul)
179 {
180         uint64_t intermediate_val;
181
182         intermediate_val = (uint64_t) val * mul.val;
183         intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
184         WARN_ON(intermediate_val >> 32);
185         return clamp_t(uint32_t, intermediate_val, 0, ~0);
186 }
187
188 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
189                                              uint_fixed_16_16_t mul)
190 {
191         uint64_t intermediate_val;
192
193         intermediate_val = (uint64_t) val.val * mul.val;
194         intermediate_val = intermediate_val >> 16;
195         return clamp_u64_to_fixed16(intermediate_val);
196 }
197
198 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
199 {
200         uint64_t interm_val;
201
202         interm_val = (uint64_t)val << 16;
203         interm_val = DIV_ROUND_UP_ULL(interm_val, d);
204         return clamp_u64_to_fixed16(interm_val);
205 }
206
207 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
208                                                 uint_fixed_16_16_t d)
209 {
210         uint64_t interm_val;
211
212         interm_val = (uint64_t)val << 16;
213         interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
214         WARN_ON(interm_val >> 32);
215         return clamp_t(uint32_t, interm_val, 0, ~0);
216 }
217
218 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
219                                                      uint_fixed_16_16_t mul)
220 {
221         uint64_t intermediate_val;
222
223         intermediate_val = (uint64_t) val * mul.val;
224         return clamp_u64_to_fixed16(intermediate_val);
225 }
226
227 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
228                                              uint_fixed_16_16_t add2)
229 {
230         uint64_t interm_sum;
231
232         interm_sum = (uint64_t) add1.val + add2.val;
233         return clamp_u64_to_fixed16(interm_sum);
234 }
235
236 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
237                                                  uint32_t add2)
238 {
239         uint64_t interm_sum;
240         uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
241
242         interm_sum = (uint64_t) add1.val + interm_add2.val;
243         return clamp_u64_to_fixed16(interm_sum);
244 }
245
246 static inline const char *yesno(bool v)
247 {
248         return v ? "yes" : "no";
249 }
250
251 static inline const char *onoff(bool v)
252 {
253         return v ? "on" : "off";
254 }
255
256 static inline const char *enableddisabled(bool v)
257 {
258         return v ? "enabled" : "disabled";
259 }
260
261 enum pipe {
262         INVALID_PIPE = -1,
263         PIPE_A = 0,
264         PIPE_B,
265         PIPE_C,
266         _PIPE_EDP,
267         I915_MAX_PIPES = _PIPE_EDP
268 };
269 #define pipe_name(p) ((p) + 'A')
270
271 enum transcoder {
272         TRANSCODER_A = 0,
273         TRANSCODER_B,
274         TRANSCODER_C,
275         TRANSCODER_EDP,
276         TRANSCODER_DSI_A,
277         TRANSCODER_DSI_C,
278         I915_MAX_TRANSCODERS
279 };
280
281 static inline const char *transcoder_name(enum transcoder transcoder)
282 {
283         switch (transcoder) {
284         case TRANSCODER_A:
285                 return "A";
286         case TRANSCODER_B:
287                 return "B";
288         case TRANSCODER_C:
289                 return "C";
290         case TRANSCODER_EDP:
291                 return "EDP";
292         case TRANSCODER_DSI_A:
293                 return "DSI A";
294         case TRANSCODER_DSI_C:
295                 return "DSI C";
296         default:
297                 return "<invalid>";
298         }
299 }
300
301 static inline bool transcoder_is_dsi(enum transcoder transcoder)
302 {
303         return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
304 }
305
306 /*
307  * Global legacy plane identifier. Valid only for primary/sprite
308  * planes on pre-g4x, and only for primary planes on g4x+.
309  */
310 enum plane {
311         PLANE_A,
312         PLANE_B,
313         PLANE_C,
314 };
315 #define plane_name(p) ((p) + 'A')
316
317 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
318
319 /*
320  * Per-pipe plane identifier.
321  * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
322  * number of planes per CRTC.  Not all platforms really have this many planes,
323  * which means some arrays of size I915_MAX_PLANES may have unused entries
324  * between the topmost sprite plane and the cursor plane.
325  *
326  * This is expected to be passed to various register macros
327  * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
328  */
329 enum plane_id {
330         PLANE_PRIMARY,
331         PLANE_SPRITE0,
332         PLANE_SPRITE1,
333         PLANE_SPRITE2,
334         PLANE_CURSOR,
335         I915_MAX_PLANES,
336 };
337
338 #define for_each_plane_id_on_crtc(__crtc, __p) \
339         for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
340                 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
341
342 enum port {
343         PORT_NONE = -1,
344         PORT_A = 0,
345         PORT_B,
346         PORT_C,
347         PORT_D,
348         PORT_E,
349         I915_MAX_PORTS
350 };
351 #define port_name(p) ((p) + 'A')
352
353 #define I915_NUM_PHYS_VLV 2
354
355 enum dpio_channel {
356         DPIO_CH0,
357         DPIO_CH1
358 };
359
360 enum dpio_phy {
361         DPIO_PHY0,
362         DPIO_PHY1,
363         DPIO_PHY2,
364 };
365
366 enum intel_display_power_domain {
367         POWER_DOMAIN_PIPE_A,
368         POWER_DOMAIN_PIPE_B,
369         POWER_DOMAIN_PIPE_C,
370         POWER_DOMAIN_PIPE_A_PANEL_FITTER,
371         POWER_DOMAIN_PIPE_B_PANEL_FITTER,
372         POWER_DOMAIN_PIPE_C_PANEL_FITTER,
373         POWER_DOMAIN_TRANSCODER_A,
374         POWER_DOMAIN_TRANSCODER_B,
375         POWER_DOMAIN_TRANSCODER_C,
376         POWER_DOMAIN_TRANSCODER_EDP,
377         POWER_DOMAIN_TRANSCODER_DSI_A,
378         POWER_DOMAIN_TRANSCODER_DSI_C,
379         POWER_DOMAIN_PORT_DDI_A_LANES,
380         POWER_DOMAIN_PORT_DDI_B_LANES,
381         POWER_DOMAIN_PORT_DDI_C_LANES,
382         POWER_DOMAIN_PORT_DDI_D_LANES,
383         POWER_DOMAIN_PORT_DDI_E_LANES,
384         POWER_DOMAIN_PORT_DDI_A_IO,
385         POWER_DOMAIN_PORT_DDI_B_IO,
386         POWER_DOMAIN_PORT_DDI_C_IO,
387         POWER_DOMAIN_PORT_DDI_D_IO,
388         POWER_DOMAIN_PORT_DDI_E_IO,
389         POWER_DOMAIN_PORT_DSI,
390         POWER_DOMAIN_PORT_CRT,
391         POWER_DOMAIN_PORT_OTHER,
392         POWER_DOMAIN_VGA,
393         POWER_DOMAIN_AUDIO,
394         POWER_DOMAIN_PLLS,
395         POWER_DOMAIN_AUX_A,
396         POWER_DOMAIN_AUX_B,
397         POWER_DOMAIN_AUX_C,
398         POWER_DOMAIN_AUX_D,
399         POWER_DOMAIN_GMBUS,
400         POWER_DOMAIN_MODESET,
401         POWER_DOMAIN_INIT,
402
403         POWER_DOMAIN_NUM,
404 };
405
406 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
407 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
408                 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
409 #define POWER_DOMAIN_TRANSCODER(tran) \
410         ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
411          (tran) + POWER_DOMAIN_TRANSCODER_A)
412
413 enum hpd_pin {
414         HPD_NONE = 0,
415         HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
416         HPD_CRT,
417         HPD_SDVO_B,
418         HPD_SDVO_C,
419         HPD_PORT_A,
420         HPD_PORT_B,
421         HPD_PORT_C,
422         HPD_PORT_D,
423         HPD_PORT_E,
424         HPD_NUM_PINS
425 };
426
427 #define for_each_hpd_pin(__pin) \
428         for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
429
430 #define HPD_STORM_DEFAULT_THRESHOLD 5
431
432 struct i915_hotplug {
433         struct work_struct hotplug_work;
434
435         struct {
436                 unsigned long last_jiffies;
437                 int count;
438                 enum {
439                         HPD_ENABLED = 0,
440                         HPD_DISABLED = 1,
441                         HPD_MARK_DISABLED = 2
442                 } state;
443         } stats[HPD_NUM_PINS];
444         u32 event_bits;
445         struct delayed_work reenable_work;
446
447         struct intel_digital_port *irq_port[I915_MAX_PORTS];
448         u32 long_port_mask;
449         u32 short_port_mask;
450         struct work_struct dig_port_work;
451
452         struct work_struct poll_init_work;
453         bool poll_enabled;
454
455         unsigned int hpd_storm_threshold;
456
457         /*
458          * if we get a HPD irq from DP and a HPD irq from non-DP
459          * the non-DP HPD could block the workqueue on a mode config
460          * mutex getting, that userspace may have taken. However
461          * userspace is waiting on the DP workqueue to run which is
462          * blocked behind the non-DP one.
463          */
464         struct workqueue_struct *dp_wq;
465 };
466
467 #define I915_GEM_GPU_DOMAINS \
468         (I915_GEM_DOMAIN_RENDER | \
469          I915_GEM_DOMAIN_SAMPLER | \
470          I915_GEM_DOMAIN_COMMAND | \
471          I915_GEM_DOMAIN_INSTRUCTION | \
472          I915_GEM_DOMAIN_VERTEX)
473
474 #define for_each_pipe(__dev_priv, __p) \
475         for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
476 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
477         for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
478                 for_each_if ((__mask) & (1 << (__p)))
479 #define for_each_universal_plane(__dev_priv, __pipe, __p)               \
480         for ((__p) = 0;                                                 \
481              (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
482              (__p)++)
483 #define for_each_sprite(__dev_priv, __p, __s)                           \
484         for ((__s) = 0;                                                 \
485              (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)];        \
486              (__s)++)
487
488 #define for_each_port_masked(__port, __ports_mask) \
489         for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++)  \
490                 for_each_if ((__ports_mask) & (1 << (__port)))
491
492 #define for_each_crtc(dev, crtc) \
493         list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
494
495 #define for_each_intel_plane(dev, intel_plane) \
496         list_for_each_entry(intel_plane,                        \
497                             &(dev)->mode_config.plane_list,     \
498                             base.head)
499
500 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask)         \
501         list_for_each_entry(intel_plane,                                \
502                             &(dev)->mode_config.plane_list,             \
503                             base.head)                                  \
504                 for_each_if ((plane_mask) &                             \
505                              (1 << drm_plane_index(&intel_plane->base)))
506
507 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane)      \
508         list_for_each_entry(intel_plane,                                \
509                             &(dev)->mode_config.plane_list,             \
510                             base.head)                                  \
511                 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
512
513 #define for_each_intel_crtc(dev, intel_crtc)                            \
514         list_for_each_entry(intel_crtc,                                 \
515                             &(dev)->mode_config.crtc_list,              \
516                             base.head)
517
518 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask)            \
519         list_for_each_entry(intel_crtc,                                 \
520                             &(dev)->mode_config.crtc_list,              \
521                             base.head)                                  \
522                 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
523
524 #define for_each_intel_encoder(dev, intel_encoder)              \
525         list_for_each_entry(intel_encoder,                      \
526                             &(dev)->mode_config.encoder_list,   \
527                             base.head)
528
529 #define for_each_intel_connector_iter(intel_connector, iter) \
530         while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
531
532 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
533         list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
534                 for_each_if ((intel_encoder)->base.crtc == (__crtc))
535
536 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
537         list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
538                 for_each_if ((intel_connector)->base.encoder == (__encoder))
539
540 #define for_each_power_domain(domain, mask)                             \
541         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
542                 for_each_if (BIT_ULL(domain) & (mask))
543
544 #define for_each_power_well(__dev_priv, __power_well)                           \
545         for ((__power_well) = (__dev_priv)->power_domains.power_wells;  \
546              (__power_well) - (__dev_priv)->power_domains.power_wells < \
547                 (__dev_priv)->power_domains.power_well_count;           \
548              (__power_well)++)
549
550 #define for_each_power_well_rev(__dev_priv, __power_well)                       \
551         for ((__power_well) = (__dev_priv)->power_domains.power_wells +         \
552                               (__dev_priv)->power_domains.power_well_count - 1; \
553              (__power_well) - (__dev_priv)->power_domains.power_wells >= 0;     \
554              (__power_well)--)
555
556 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask)     \
557         for_each_power_well(__dev_priv, __power_well)                           \
558                 for_each_if ((__power_well)->domains & (__domain_mask))
559
560 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
561         for_each_power_well_rev(__dev_priv, __power_well)                       \
562                 for_each_if ((__power_well)->domains & (__domain_mask))
563
564 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
565         for ((__i) = 0; \
566              (__i) < (__state)->base.dev->mode_config.num_total_plane && \
567                      ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
568                       (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
569              (__i)++) \
570                 for_each_if (plane_state)
571
572 struct drm_i915_private;
573 struct i915_mm_struct;
574 struct i915_mmu_object;
575
576 struct drm_i915_file_private {
577         struct drm_i915_private *dev_priv;
578         struct drm_file *file;
579
580         struct {
581                 spinlock_t lock;
582                 struct list_head request_list;
583 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
584  * chosen to prevent the CPU getting more than a frame ahead of the GPU
585  * (when using lax throttling for the frontbuffer). We also use it to
586  * offer free GPU waitboosts for severely congested workloads.
587  */
588 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
589         } mm;
590         struct idr context_idr;
591
592         struct intel_rps_client {
593                 atomic_t boosts;
594         } rps;
595
596         unsigned int bsd_engine;
597
598 /* Client can have a maximum of 3 contexts banned before
599  * it is denied of creating new contexts. As one context
600  * ban needs 4 consecutive hangs, and more if there is
601  * progress in between, this is a last resort stop gap measure
602  * to limit the badly behaving clients access to gpu.
603  */
604 #define I915_MAX_CLIENT_CONTEXT_BANS 3
605         atomic_t context_bans;
606 };
607
608 /* Used by dp and fdi links */
609 struct intel_link_m_n {
610         uint32_t        tu;
611         uint32_t        gmch_m;
612         uint32_t        gmch_n;
613         uint32_t        link_m;
614         uint32_t        link_n;
615 };
616
617 void intel_link_compute_m_n(int bpp, int nlanes,
618                             int pixel_clock, int link_clock,
619                             struct intel_link_m_n *m_n,
620                             bool reduce_m_n);
621
622 /* Interface history:
623  *
624  * 1.1: Original.
625  * 1.2: Add Power Management
626  * 1.3: Add vblank support
627  * 1.4: Fix cmdbuffer path, add heap destroy
628  * 1.5: Add vblank pipe configuration
629  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
630  *      - Support vertical blank on secondary display pipe
631  */
632 #define DRIVER_MAJOR            1
633 #define DRIVER_MINOR            6
634 #define DRIVER_PATCHLEVEL       0
635
636 struct opregion_header;
637 struct opregion_acpi;
638 struct opregion_swsci;
639 struct opregion_asle;
640
641 struct intel_opregion {
642         struct opregion_header *header;
643         struct opregion_acpi *acpi;
644         struct opregion_swsci *swsci;
645         u32 swsci_gbda_sub_functions;
646         u32 swsci_sbcb_sub_functions;
647         struct opregion_asle *asle;
648         void *rvda;
649         void *vbt_firmware;
650         const void *vbt;
651         u32 vbt_size;
652         u32 *lid_state;
653         struct work_struct asle_work;
654 };
655 #define OPREGION_SIZE            (8*1024)
656
657 struct intel_overlay;
658 struct intel_overlay_error_state;
659
660 struct sdvo_device_mapping {
661         u8 initialized;
662         u8 dvo_port;
663         u8 slave_addr;
664         u8 dvo_wiring;
665         u8 i2c_pin;
666         u8 ddc_pin;
667 };
668
669 struct intel_connector;
670 struct intel_encoder;
671 struct intel_atomic_state;
672 struct intel_crtc_state;
673 struct intel_initial_plane_config;
674 struct intel_crtc;
675 struct intel_limit;
676 struct dpll;
677 struct intel_cdclk_state;
678
679 struct drm_i915_display_funcs {
680         void (*get_cdclk)(struct drm_i915_private *dev_priv,
681                           struct intel_cdclk_state *cdclk_state);
682         void (*set_cdclk)(struct drm_i915_private *dev_priv,
683                           const struct intel_cdclk_state *cdclk_state);
684         int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
685         int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
686         int (*compute_intermediate_wm)(struct drm_device *dev,
687                                        struct intel_crtc *intel_crtc,
688                                        struct intel_crtc_state *newstate);
689         void (*initial_watermarks)(struct intel_atomic_state *state,
690                                    struct intel_crtc_state *cstate);
691         void (*atomic_update_watermarks)(struct intel_atomic_state *state,
692                                          struct intel_crtc_state *cstate);
693         void (*optimize_watermarks)(struct intel_atomic_state *state,
694                                     struct intel_crtc_state *cstate);
695         int (*compute_global_watermarks)(struct drm_atomic_state *state);
696         void (*update_wm)(struct intel_crtc *crtc);
697         int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
698         /* Returns the active state of the crtc, and if the crtc is active,
699          * fills out the pipe-config with the hw state. */
700         bool (*get_pipe_config)(struct intel_crtc *,
701                                 struct intel_crtc_state *);
702         void (*get_initial_plane_config)(struct intel_crtc *,
703                                          struct intel_initial_plane_config *);
704         int (*crtc_compute_clock)(struct intel_crtc *crtc,
705                                   struct intel_crtc_state *crtc_state);
706         void (*crtc_enable)(struct intel_crtc_state *pipe_config,
707                             struct drm_atomic_state *old_state);
708         void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
709                              struct drm_atomic_state *old_state);
710         void (*update_crtcs)(struct drm_atomic_state *state,
711                              unsigned int *crtc_vblank_mask);
712         void (*audio_codec_enable)(struct drm_connector *connector,
713                                    struct intel_encoder *encoder,
714                                    const struct drm_display_mode *adjusted_mode);
715         void (*audio_codec_disable)(struct intel_encoder *encoder);
716         void (*fdi_link_train)(struct intel_crtc *crtc,
717                                const struct intel_crtc_state *crtc_state);
718         void (*init_clock_gating)(struct drm_i915_private *dev_priv);
719         void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
720         /* clock updates for mode set */
721         /* cursor updates */
722         /* render clock increase/decrease */
723         /* display clock increase/decrease */
724         /* pll clock increase/decrease */
725
726         void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
727         void (*load_luts)(struct drm_crtc_state *crtc_state);
728 };
729
730 #define CSR_VERSION(major, minor)       ((major) << 16 | (minor))
731 #define CSR_VERSION_MAJOR(version)      ((version) >> 16)
732 #define CSR_VERSION_MINOR(version)      ((version) & 0xffff)
733
734 struct intel_csr {
735         struct work_struct work;
736         const char *fw_path;
737         uint32_t *dmc_payload;
738         uint32_t dmc_fw_size;
739         uint32_t version;
740         uint32_t mmio_count;
741         i915_reg_t mmioaddr[8];
742         uint32_t mmiodata[8];
743         uint32_t dc_state;
744         uint32_t allowed_dc_mask;
745 };
746
747 #define DEV_INFO_FOR_EACH_FLAG(func) \
748         func(is_mobile); \
749         func(is_lp); \
750         func(is_alpha_support); \
751         /* Keep has_* in alphabetical order */ \
752         func(has_64bit_reloc); \
753         func(has_aliasing_ppgtt); \
754         func(has_csr); \
755         func(has_ddi); \
756         func(has_dp_mst); \
757         func(has_reset_engine); \
758         func(has_fbc); \
759         func(has_fpga_dbg); \
760         func(has_full_ppgtt); \
761         func(has_full_48bit_ppgtt); \
762         func(has_gmbus_irq); \
763         func(has_gmch_display); \
764         func(has_guc); \
765         func(has_guc_ct); \
766         func(has_hotplug); \
767         func(has_l3_dpf); \
768         func(has_llc); \
769         func(has_logical_ring_contexts); \
770         func(has_overlay); \
771         func(has_pipe_cxsr); \
772         func(has_pooled_eu); \
773         func(has_psr); \
774         func(has_rc6); \
775         func(has_rc6p); \
776         func(has_resource_streamer); \
777         func(has_runtime_pm); \
778         func(has_snoop); \
779         func(unfenced_needs_alignment); \
780         func(cursor_needs_physical); \
781         func(hws_needs_physical); \
782         func(overlay_needs_physical); \
783         func(supports_tv);
784
785 struct sseu_dev_info {
786         u8 slice_mask;
787         u8 subslice_mask;
788         u8 eu_total;
789         u8 eu_per_subslice;
790         u8 min_eu_in_pool;
791         /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
792         u8 subslice_7eu[3];
793         u8 has_slice_pg:1;
794         u8 has_subslice_pg:1;
795         u8 has_eu_pg:1;
796 };
797
798 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
799 {
800         return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
801 }
802
803 /* Keep in gen based order, and chronological order within a gen */
804 enum intel_platform {
805         INTEL_PLATFORM_UNINITIALIZED = 0,
806         INTEL_I830,
807         INTEL_I845G,
808         INTEL_I85X,
809         INTEL_I865G,
810         INTEL_I915G,
811         INTEL_I915GM,
812         INTEL_I945G,
813         INTEL_I945GM,
814         INTEL_G33,
815         INTEL_PINEVIEW,
816         INTEL_I965G,
817         INTEL_I965GM,
818         INTEL_G45,
819         INTEL_GM45,
820         INTEL_IRONLAKE,
821         INTEL_SANDYBRIDGE,
822         INTEL_IVYBRIDGE,
823         INTEL_VALLEYVIEW,
824         INTEL_HASWELL,
825         INTEL_BROADWELL,
826         INTEL_CHERRYVIEW,
827         INTEL_SKYLAKE,
828         INTEL_BROXTON,
829         INTEL_KABYLAKE,
830         INTEL_GEMINILAKE,
831         INTEL_COFFEELAKE,
832         INTEL_CANNONLAKE,
833         INTEL_MAX_PLATFORMS
834 };
835
836 struct intel_device_info {
837         u32 display_mmio_offset;
838         u16 device_id;
839         u8 num_pipes;
840         u8 num_sprites[I915_MAX_PIPES];
841         u8 num_scalers[I915_MAX_PIPES];
842         u8 gen;
843         u16 gen_mask;
844         enum intel_platform platform;
845         u8 ring_mask; /* Rings supported by the HW */
846         u8 num_rings;
847 #define DEFINE_FLAG(name) u8 name:1
848         DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
849 #undef DEFINE_FLAG
850         u16 ddb_size; /* in blocks */
851         /* Register offsets for the various display pipes and transcoders */
852         int pipe_offsets[I915_MAX_TRANSCODERS];
853         int trans_offsets[I915_MAX_TRANSCODERS];
854         int palette_offsets[I915_MAX_PIPES];
855         int cursor_offsets[I915_MAX_PIPES];
856
857         /* Slice/subslice/EU info */
858         struct sseu_dev_info sseu;
859
860         struct color_luts {
861                 u16 degamma_lut_size;
862                 u16 gamma_lut_size;
863         } color;
864 };
865
866 struct intel_display_error_state;
867
868 struct i915_gpu_state {
869         struct kref ref;
870         struct timeval time;
871         struct timeval boottime;
872         struct timeval uptime;
873
874         struct drm_i915_private *i915;
875
876         char error_msg[128];
877         bool simulated;
878         bool awake;
879         bool wakelock;
880         bool suspended;
881         int iommu;
882         u32 reset_count;
883         u32 suspend_count;
884         struct intel_device_info device_info;
885         struct i915_params params;
886
887         /* Generic register state */
888         u32 eir;
889         u32 pgtbl_er;
890         u32 ier;
891         u32 gtier[4], ngtier;
892         u32 ccid;
893         u32 derrmr;
894         u32 forcewake;
895         u32 error; /* gen6+ */
896         u32 err_int; /* gen7 */
897         u32 fault_data0; /* gen8, gen9 */
898         u32 fault_data1; /* gen8, gen9 */
899         u32 done_reg;
900         u32 gac_eco;
901         u32 gam_ecochk;
902         u32 gab_ctl;
903         u32 gfx_mode;
904
905         u32 nfence;
906         u64 fence[I915_MAX_NUM_FENCES];
907         struct intel_overlay_error_state *overlay;
908         struct intel_display_error_state *display;
909         struct drm_i915_error_object *semaphore;
910         struct drm_i915_error_object *guc_log;
911
912         struct drm_i915_error_engine {
913                 int engine_id;
914                 /* Software tracked state */
915                 bool waiting;
916                 int num_waiters;
917                 unsigned long hangcheck_timestamp;
918                 bool hangcheck_stalled;
919                 enum intel_engine_hangcheck_action hangcheck_action;
920                 struct i915_address_space *vm;
921                 int num_requests;
922                 u32 reset_count;
923
924                 /* position of active request inside the ring */
925                 u32 rq_head, rq_post, rq_tail;
926
927                 /* our own tracking of ring head and tail */
928                 u32 cpu_ring_head;
929                 u32 cpu_ring_tail;
930
931                 u32 last_seqno;
932
933                 /* Register state */
934                 u32 start;
935                 u32 tail;
936                 u32 head;
937                 u32 ctl;
938                 u32 mode;
939                 u32 hws;
940                 u32 ipeir;
941                 u32 ipehr;
942                 u32 bbstate;
943                 u32 instpm;
944                 u32 instps;
945                 u32 seqno;
946                 u64 bbaddr;
947                 u64 acthd;
948                 u32 fault_reg;
949                 u64 faddr;
950                 u32 rc_psmi; /* sleep state */
951                 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
952                 struct intel_instdone instdone;
953
954                 struct drm_i915_error_context {
955                         char comm[TASK_COMM_LEN];
956                         pid_t pid;
957                         u32 handle;
958                         u32 hw_id;
959                         int ban_score;
960                         int active;
961                         int guilty;
962                 } context;
963
964                 struct drm_i915_error_object {
965                         u64 gtt_offset;
966                         u64 gtt_size;
967                         int page_count;
968                         int unused;
969                         u32 *pages[0];
970                 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
971
972                 struct drm_i915_error_object **user_bo;
973                 long user_bo_count;
974
975                 struct drm_i915_error_object *wa_ctx;
976
977                 struct drm_i915_error_request {
978                         long jiffies;
979                         pid_t pid;
980                         u32 context;
981                         int ban_score;
982                         u32 seqno;
983                         u32 head;
984                         u32 tail;
985                 } *requests, execlist[2];
986
987                 struct drm_i915_error_waiter {
988                         char comm[TASK_COMM_LEN];
989                         pid_t pid;
990                         u32 seqno;
991                 } *waiters;
992
993                 struct {
994                         u32 gfx_mode;
995                         union {
996                                 u64 pdp[4];
997                                 u32 pp_dir_base;
998                         };
999                 } vm_info;
1000         } engine[I915_NUM_ENGINES];
1001
1002         struct drm_i915_error_buffer {
1003                 u32 size;
1004                 u32 name;
1005                 u32 rseqno[I915_NUM_ENGINES], wseqno;
1006                 u64 gtt_offset;
1007                 u32 read_domains;
1008                 u32 write_domain;
1009                 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1010                 u32 tiling:2;
1011                 u32 dirty:1;
1012                 u32 purgeable:1;
1013                 u32 userptr:1;
1014                 s32 engine:4;
1015                 u32 cache_level:3;
1016         } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1017         u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1018         struct i915_address_space *active_vm[I915_NUM_ENGINES];
1019 };
1020
1021 enum i915_cache_level {
1022         I915_CACHE_NONE = 0,
1023         I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1024         I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1025                               caches, eg sampler/render caches, and the
1026                               large Last-Level-Cache. LLC is coherent with
1027                               the CPU, but L3 is only visible to the GPU. */
1028         I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1029 };
1030
1031 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1032
1033 enum fb_op_origin {
1034         ORIGIN_GTT,
1035         ORIGIN_CPU,
1036         ORIGIN_CS,
1037         ORIGIN_FLIP,
1038         ORIGIN_DIRTYFB,
1039 };
1040
1041 struct intel_fbc {
1042         /* This is always the inner lock when overlapping with struct_mutex and
1043          * it's the outer lock when overlapping with stolen_lock. */
1044         struct mutex lock;
1045         unsigned threshold;
1046         unsigned int possible_framebuffer_bits;
1047         unsigned int busy_bits;
1048         unsigned int visible_pipes_mask;
1049         struct intel_crtc *crtc;
1050
1051         struct drm_mm_node compressed_fb;
1052         struct drm_mm_node *compressed_llb;
1053
1054         bool false_color;
1055
1056         bool enabled;
1057         bool active;
1058
1059         bool underrun_detected;
1060         struct work_struct underrun_work;
1061
1062         /*
1063          * Due to the atomic rules we can't access some structures without the
1064          * appropriate locking, so we cache information here in order to avoid
1065          * these problems.
1066          */
1067         struct intel_fbc_state_cache {
1068                 struct i915_vma *vma;
1069
1070                 struct {
1071                         unsigned int mode_flags;
1072                         uint32_t hsw_bdw_pixel_rate;
1073                 } crtc;
1074
1075                 struct {
1076                         unsigned int rotation;
1077                         int src_w;
1078                         int src_h;
1079                         bool visible;
1080                 } plane;
1081
1082                 struct {
1083                         const struct drm_format_info *format;
1084                         unsigned int stride;
1085                 } fb;
1086         } state_cache;
1087
1088         /*
1089          * This structure contains everything that's relevant to program the
1090          * hardware registers. When we want to figure out if we need to disable
1091          * and re-enable FBC for a new configuration we just check if there's
1092          * something different in the struct. The genx_fbc_activate functions
1093          * are supposed to read from it in order to program the registers.
1094          */
1095         struct intel_fbc_reg_params {
1096                 struct i915_vma *vma;
1097
1098                 struct {
1099                         enum pipe pipe;
1100                         enum plane plane;
1101                         unsigned int fence_y_offset;
1102                 } crtc;
1103
1104                 struct {
1105                         const struct drm_format_info *format;
1106                         unsigned int stride;
1107                 } fb;
1108
1109                 int cfb_size;
1110         } params;
1111
1112         struct intel_fbc_work {
1113                 bool scheduled;
1114                 u32 scheduled_vblank;
1115                 struct work_struct work;
1116         } work;
1117
1118         const char *no_fbc_reason;
1119 };
1120
1121 /*
1122  * HIGH_RR is the highest eDP panel refresh rate read from EDID
1123  * LOW_RR is the lowest eDP panel refresh rate found from EDID
1124  * parsing for same resolution.
1125  */
1126 enum drrs_refresh_rate_type {
1127         DRRS_HIGH_RR,
1128         DRRS_LOW_RR,
1129         DRRS_MAX_RR, /* RR count */
1130 };
1131
1132 enum drrs_support_type {
1133         DRRS_NOT_SUPPORTED = 0,
1134         STATIC_DRRS_SUPPORT = 1,
1135         SEAMLESS_DRRS_SUPPORT = 2
1136 };
1137
1138 struct intel_dp;
1139 struct i915_drrs {
1140         struct mutex mutex;
1141         struct delayed_work work;
1142         struct intel_dp *dp;
1143         unsigned busy_frontbuffer_bits;
1144         enum drrs_refresh_rate_type refresh_rate_type;
1145         enum drrs_support_type type;
1146 };
1147
1148 struct i915_psr {
1149         struct mutex lock;
1150         bool sink_support;
1151         bool source_ok;
1152         struct intel_dp *enabled;
1153         bool active;
1154         struct delayed_work work;
1155         unsigned busy_frontbuffer_bits;
1156         bool psr2_support;
1157         bool aux_frame_sync;
1158         bool link_standby;
1159         bool y_cord_support;
1160         bool colorimetry_support;
1161         bool alpm;
1162 };
1163
1164 enum intel_pch {
1165         PCH_NONE = 0,   /* No PCH present */
1166         PCH_IBX,        /* Ibexpeak PCH */
1167         PCH_CPT,        /* Cougarpoint/Pantherpoint PCH */
1168         PCH_LPT,        /* Lynxpoint/Wildcatpoint PCH */
1169         PCH_SPT,        /* Sunrisepoint PCH */
1170         PCH_KBP,        /* Kaby Lake PCH */
1171         PCH_CNP,        /* Cannon Lake PCH */
1172         PCH_NOP,
1173 };
1174
1175 enum intel_sbi_destination {
1176         SBI_ICLK,
1177         SBI_MPHY,
1178 };
1179
1180 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1181 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1182 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1183 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1184 #define QUIRK_INCREASE_T12_DELAY (1<<6)
1185
1186 struct intel_fbdev;
1187 struct intel_fbc_work;
1188
1189 struct intel_gmbus {
1190         struct i2c_adapter adapter;
1191 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1192         u32 force_bit;
1193         u32 reg0;
1194         i915_reg_t gpio_reg;
1195         struct i2c_algo_bit_data bit_algo;
1196         struct drm_i915_private *dev_priv;
1197 };
1198
1199 struct i915_suspend_saved_registers {
1200         u32 saveDSPARB;
1201         u32 saveFBC_CONTROL;
1202         u32 saveCACHE_MODE_0;
1203         u32 saveMI_ARB_STATE;
1204         u32 saveSWF0[16];
1205         u32 saveSWF1[16];
1206         u32 saveSWF3[3];
1207         uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1208         u32 savePCH_PORT_HOTPLUG;
1209         u16 saveGCDGMBUS;
1210 };
1211
1212 struct vlv_s0ix_state {
1213         /* GAM */
1214         u32 wr_watermark;
1215         u32 gfx_prio_ctrl;
1216         u32 arb_mode;
1217         u32 gfx_pend_tlb0;
1218         u32 gfx_pend_tlb1;
1219         u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1220         u32 media_max_req_count;
1221         u32 gfx_max_req_count;
1222         u32 render_hwsp;
1223         u32 ecochk;
1224         u32 bsd_hwsp;
1225         u32 blt_hwsp;
1226         u32 tlb_rd_addr;
1227
1228         /* MBC */
1229         u32 g3dctl;
1230         u32 gsckgctl;
1231         u32 mbctl;
1232
1233         /* GCP */
1234         u32 ucgctl1;
1235         u32 ucgctl3;
1236         u32 rcgctl1;
1237         u32 rcgctl2;
1238         u32 rstctl;
1239         u32 misccpctl;
1240
1241         /* GPM */
1242         u32 gfxpause;
1243         u32 rpdeuhwtc;
1244         u32 rpdeuc;
1245         u32 ecobus;
1246         u32 pwrdwnupctl;
1247         u32 rp_down_timeout;
1248         u32 rp_deucsw;
1249         u32 rcubmabdtmr;
1250         u32 rcedata;
1251         u32 spare2gh;
1252
1253         /* Display 1 CZ domain */
1254         u32 gt_imr;
1255         u32 gt_ier;
1256         u32 pm_imr;
1257         u32 pm_ier;
1258         u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1259
1260         /* GT SA CZ domain */
1261         u32 tilectl;
1262         u32 gt_fifoctl;
1263         u32 gtlc_wake_ctrl;
1264         u32 gtlc_survive;
1265         u32 pmwgicz;
1266
1267         /* Display 2 CZ domain */
1268         u32 gu_ctl0;
1269         u32 gu_ctl1;
1270         u32 pcbr;
1271         u32 clock_gate_dis2;
1272 };
1273
1274 struct intel_rps_ei {
1275         ktime_t ktime;
1276         u32 render_c0;
1277         u32 media_c0;
1278 };
1279
1280 struct intel_gen6_power_mgmt {
1281         /*
1282          * work, interrupts_enabled and pm_iir are protected by
1283          * dev_priv->irq_lock
1284          */
1285         struct work_struct work;
1286         bool interrupts_enabled;
1287         u32 pm_iir;
1288
1289         /* PM interrupt bits that should never be masked */
1290         u32 pm_intrmsk_mbz;
1291
1292         /* Frequencies are stored in potentially platform dependent multiples.
1293          * In other words, *_freq needs to be multiplied by X to be interesting.
1294          * Soft limits are those which are used for the dynamic reclocking done
1295          * by the driver (raise frequencies under heavy loads, and lower for
1296          * lighter loads). Hard limits are those imposed by the hardware.
1297          *
1298          * A distinction is made for overclocking, which is never enabled by
1299          * default, and is considered to be above the hard limit if it's
1300          * possible at all.
1301          */
1302         u8 cur_freq;            /* Current frequency (cached, may not == HW) */
1303         u8 min_freq_softlimit;  /* Minimum frequency permitted by the driver */
1304         u8 max_freq_softlimit;  /* Max frequency permitted by the driver */
1305         u8 max_freq;            /* Maximum frequency, RP0 if not overclocking */
1306         u8 min_freq;            /* AKA RPn. Minimum frequency */
1307         u8 boost_freq;          /* Frequency to request when wait boosting */
1308         u8 idle_freq;           /* Frequency to request when we are idle */
1309         u8 efficient_freq;      /* AKA RPe. Pre-determined balanced frequency */
1310         u8 rp1_freq;            /* "less than" RP0 power/freqency */
1311         u8 rp0_freq;            /* Non-overclocked max frequency. */
1312         u16 gpll_ref_freq;      /* vlv/chv GPLL reference frequency */
1313
1314         u8 up_threshold; /* Current %busy required to uplock */
1315         u8 down_threshold; /* Current %busy required to downclock */
1316
1317         int last_adj;
1318         enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1319
1320         bool enabled;
1321         struct delayed_work autoenable_work;
1322         atomic_t num_waiters;
1323         atomic_t boosts;
1324
1325         /* manual wa residency calculations */
1326         struct intel_rps_ei ei;
1327
1328         /*
1329          * Protects RPS/RC6 register access and PCU communication.
1330          * Must be taken after struct_mutex if nested. Note that
1331          * this lock may be held for long periods of time when
1332          * talking to hw - so only take it when talking to hw!
1333          */
1334         struct mutex hw_lock;
1335 };
1336
1337 /* defined intel_pm.c */
1338 extern spinlock_t mchdev_lock;
1339
1340 struct intel_ilk_power_mgmt {
1341         u8 cur_delay;
1342         u8 min_delay;
1343         u8 max_delay;
1344         u8 fmax;
1345         u8 fstart;
1346
1347         u64 last_count1;
1348         unsigned long last_time1;
1349         unsigned long chipset_power;
1350         u64 last_count2;
1351         u64 last_time2;
1352         unsigned long gfx_power;
1353         u8 corr;
1354
1355         int c_m;
1356         int r_t;
1357 };
1358
1359 struct drm_i915_private;
1360 struct i915_power_well;
1361
1362 struct i915_power_well_ops {
1363         /*
1364          * Synchronize the well's hw state to match the current sw state, for
1365          * example enable/disable it based on the current refcount. Called
1366          * during driver init and resume time, possibly after first calling
1367          * the enable/disable handlers.
1368          */
1369         void (*sync_hw)(struct drm_i915_private *dev_priv,
1370                         struct i915_power_well *power_well);
1371         /*
1372          * Enable the well and resources that depend on it (for example
1373          * interrupts located on the well). Called after the 0->1 refcount
1374          * transition.
1375          */
1376         void (*enable)(struct drm_i915_private *dev_priv,
1377                        struct i915_power_well *power_well);
1378         /*
1379          * Disable the well and resources that depend on it. Called after
1380          * the 1->0 refcount transition.
1381          */
1382         void (*disable)(struct drm_i915_private *dev_priv,
1383                         struct i915_power_well *power_well);
1384         /* Returns the hw enabled state. */
1385         bool (*is_enabled)(struct drm_i915_private *dev_priv,
1386                            struct i915_power_well *power_well);
1387 };
1388
1389 /* Power well structure for haswell */
1390 struct i915_power_well {
1391         const char *name;
1392         bool always_on;
1393         /* power well enable/disable usage count */
1394         int count;
1395         /* cached hw enabled state */
1396         bool hw_enabled;
1397         u64 domains;
1398         /* unique identifier for this power well */
1399         enum i915_power_well_id id;
1400         /*
1401          * Arbitraty data associated with this power well. Platform and power
1402          * well specific.
1403          */
1404         union {
1405                 struct {
1406                         enum dpio_phy phy;
1407                 } bxt;
1408                 struct {
1409                         /* Mask of pipes whose IRQ logic is backed by the pw */
1410                         u8 irq_pipe_mask;
1411                         /* The pw is backing the VGA functionality */
1412                         bool has_vga:1;
1413                         bool has_fuses:1;
1414                 } hsw;
1415         };
1416         const struct i915_power_well_ops *ops;
1417 };
1418
1419 struct i915_power_domains {
1420         /*
1421          * Power wells needed for initialization at driver init and suspend
1422          * time are on. They are kept on until after the first modeset.
1423          */
1424         bool init_power_on;
1425         bool initializing;
1426         int power_well_count;
1427
1428         struct mutex lock;
1429         int domain_use_count[POWER_DOMAIN_NUM];
1430         struct i915_power_well *power_wells;
1431 };
1432
1433 #define MAX_L3_SLICES 2
1434 struct intel_l3_parity {
1435         u32 *remap_info[MAX_L3_SLICES];
1436         struct work_struct error_work;
1437         int which_slice;
1438 };
1439
1440 struct i915_gem_mm {
1441         /** Memory allocator for GTT stolen memory */
1442         struct drm_mm stolen;
1443         /** Protects the usage of the GTT stolen memory allocator. This is
1444          * always the inner lock when overlapping with struct_mutex. */
1445         struct mutex stolen_lock;
1446
1447         /** List of all objects in gtt_space. Used to restore gtt
1448          * mappings on resume */
1449         struct list_head bound_list;
1450         /**
1451          * List of objects which are not bound to the GTT (thus
1452          * are idle and not used by the GPU). These objects may or may
1453          * not actually have any pages attached.
1454          */
1455         struct list_head unbound_list;
1456
1457         /** List of all objects in gtt_space, currently mmaped by userspace.
1458          * All objects within this list must also be on bound_list.
1459          */
1460         struct list_head userfault_list;
1461
1462         /**
1463          * List of objects which are pending destruction.
1464          */
1465         struct llist_head free_list;
1466         struct work_struct free_work;
1467
1468         /**
1469          * Small stash of WC pages
1470          */
1471         struct pagevec wc_stash;
1472
1473         /** Usable portion of the GTT for GEM */
1474         dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1475
1476         /** PPGTT used for aliasing the PPGTT with the GTT */
1477         struct i915_hw_ppgtt *aliasing_ppgtt;
1478
1479         struct notifier_block oom_notifier;
1480         struct notifier_block vmap_notifier;
1481         struct shrinker shrinker;
1482
1483         /** LRU list of objects with fence regs on them. */
1484         struct list_head fence_list;
1485
1486         /**
1487          * Workqueue to fault in userptr pages, flushed by the execbuf
1488          * when required but otherwise left to userspace to try again
1489          * on EAGAIN.
1490          */
1491         struct workqueue_struct *userptr_wq;
1492
1493         u64 unordered_timeline;
1494
1495         /* the indicator for dispatch video commands on two BSD rings */
1496         atomic_t bsd_engine_dispatch_index;
1497
1498         /** Bit 6 swizzling required for X tiling */
1499         uint32_t bit_6_swizzle_x;
1500         /** Bit 6 swizzling required for Y tiling */
1501         uint32_t bit_6_swizzle_y;
1502
1503         /* accounting, useful for userland debugging */
1504         spinlock_t object_stat_lock;
1505         u64 object_memory;
1506         u32 object_count;
1507 };
1508
1509 struct drm_i915_error_state_buf {
1510         struct drm_i915_private *i915;
1511         unsigned bytes;
1512         unsigned size;
1513         int err;
1514         u8 *buf;
1515         loff_t start;
1516         loff_t pos;
1517 };
1518
1519 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1520 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1521
1522 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
1523 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
1524
1525 struct i915_gpu_error {
1526         /* For hangcheck timer */
1527 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1528 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1529
1530         struct delayed_work hangcheck_work;
1531
1532         /* For reset and error_state handling. */
1533         spinlock_t lock;
1534         /* Protected by the above dev->gpu_error.lock. */
1535         struct i915_gpu_state *first_error;
1536
1537         atomic_t pending_fb_pin;
1538
1539         unsigned long missed_irq_rings;
1540
1541         /**
1542          * State variable controlling the reset flow and count
1543          *
1544          * This is a counter which gets incremented when reset is triggered,
1545          *
1546          * Before the reset commences, the I915_RESET_BACKOFF bit is set
1547          * meaning that any waiters holding onto the struct_mutex should
1548          * relinquish the lock immediately in order for the reset to start.
1549          *
1550          * If reset is not completed succesfully, the I915_WEDGE bit is
1551          * set meaning that hardware is terminally sour and there is no
1552          * recovery. All waiters on the reset_queue will be woken when
1553          * that happens.
1554          *
1555          * This counter is used by the wait_seqno code to notice that reset
1556          * event happened and it needs to restart the entire ioctl (since most
1557          * likely the seqno it waited for won't ever signal anytime soon).
1558          *
1559          * This is important for lock-free wait paths, where no contended lock
1560          * naturally enforces the correct ordering between the bail-out of the
1561          * waiter and the gpu reset work code.
1562          */
1563         unsigned long reset_count;
1564
1565         /**
1566          * flags: Control various stages of the GPU reset
1567          *
1568          * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1569          * other users acquiring the struct_mutex. To do this we set the
1570          * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1571          * and then check for that bit before acquiring the struct_mutex (in
1572          * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1573          * secondary role in preventing two concurrent global reset attempts.
1574          *
1575          * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1576          * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1577          * but it may be held by some long running waiter (that we cannot
1578          * interrupt without causing trouble). Once we are ready to do the GPU
1579          * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1580          * they already hold the struct_mutex and want to participate they can
1581          * inspect the bit and do the reset directly, otherwise the worker
1582          * waits for the struct_mutex.
1583          *
1584          * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1585          * acquire the struct_mutex to reset an engine, we need an explicit
1586          * flag to prevent two concurrent reset attempts in the same engine.
1587          * As the number of engines continues to grow, allocate the flags from
1588          * the most significant bits.
1589          *
1590          * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1591          * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1592          * i915_gem_request_alloc(), this bit is checked and the sequence
1593          * aborted (with -EIO reported to userspace) if set.
1594          */
1595         unsigned long flags;
1596 #define I915_RESET_BACKOFF      0
1597 #define I915_RESET_HANDOFF      1
1598 #define I915_RESET_MODESET      2
1599 #define I915_WEDGED             (BITS_PER_LONG - 1)
1600 #define I915_RESET_ENGINE       (I915_WEDGED - I915_NUM_ENGINES)
1601
1602         /** Number of times an engine has been reset */
1603         u32 reset_engine_count[I915_NUM_ENGINES];
1604
1605         /**
1606          * Waitqueue to signal when a hang is detected. Used to for waiters
1607          * to release the struct_mutex for the reset to procede.
1608          */
1609         wait_queue_head_t wait_queue;
1610
1611         /**
1612          * Waitqueue to signal when the reset has completed. Used by clients
1613          * that wait for dev_priv->mm.wedged to settle.
1614          */
1615         wait_queue_head_t reset_queue;
1616
1617         /* For missed irq/seqno simulation. */
1618         unsigned long test_irq_rings;
1619 };
1620
1621 enum modeset_restore {
1622         MODESET_ON_LID_OPEN,
1623         MODESET_DONE,
1624         MODESET_SUSPENDED,
1625 };
1626
1627 #define DP_AUX_A 0x40
1628 #define DP_AUX_B 0x10
1629 #define DP_AUX_C 0x20
1630 #define DP_AUX_D 0x30
1631
1632 #define DDC_PIN_B  0x05
1633 #define DDC_PIN_C  0x04
1634 #define DDC_PIN_D  0x06
1635
1636 struct ddi_vbt_port_info {
1637         /*
1638          * This is an index in the HDMI/DVI DDI buffer translation table.
1639          * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1640          * populate this field.
1641          */
1642 #define HDMI_LEVEL_SHIFT_UNKNOWN        0xff
1643         uint8_t hdmi_level_shift;
1644
1645         uint8_t supports_dvi:1;
1646         uint8_t supports_hdmi:1;
1647         uint8_t supports_dp:1;
1648         uint8_t supports_edp:1;
1649
1650         uint8_t alternate_aux_channel;
1651         uint8_t alternate_ddc_pin;
1652
1653         uint8_t dp_boost_level;
1654         uint8_t hdmi_boost_level;
1655 };
1656
1657 enum psr_lines_to_wait {
1658         PSR_0_LINES_TO_WAIT = 0,
1659         PSR_1_LINE_TO_WAIT,
1660         PSR_4_LINES_TO_WAIT,
1661         PSR_8_LINES_TO_WAIT
1662 };
1663
1664 struct intel_vbt_data {
1665         struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1666         struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1667
1668         /* Feature bits */
1669         unsigned int int_tv_support:1;
1670         unsigned int lvds_dither:1;
1671         unsigned int lvds_vbt:1;
1672         unsigned int int_crt_support:1;
1673         unsigned int lvds_use_ssc:1;
1674         unsigned int display_clock_mode:1;
1675         unsigned int fdi_rx_polarity_inverted:1;
1676         unsigned int panel_type:4;
1677         int lvds_ssc_freq;
1678         unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1679
1680         enum drrs_support_type drrs_type;
1681
1682         struct {
1683                 int rate;
1684                 int lanes;
1685                 int preemphasis;
1686                 int vswing;
1687                 bool low_vswing;
1688                 bool initialized;
1689                 bool support;
1690                 int bpp;
1691                 struct edp_power_seq pps;
1692         } edp;
1693
1694         struct {
1695                 bool full_link;
1696                 bool require_aux_wakeup;
1697                 int idle_frames;
1698                 enum psr_lines_to_wait lines_to_wait;
1699                 int tp1_wakeup_time;
1700                 int tp2_tp3_wakeup_time;
1701         } psr;
1702
1703         struct {
1704                 u16 pwm_freq_hz;
1705                 bool present;
1706                 bool active_low_pwm;
1707                 u8 min_brightness;      /* min_brightness/255 of max */
1708                 u8 controller;          /* brightness controller number */
1709                 enum intel_backlight_type type;
1710         } backlight;
1711
1712         /* MIPI DSI */
1713         struct {
1714                 u16 panel_id;
1715                 struct mipi_config *config;
1716                 struct mipi_pps_data *pps;
1717                 u8 seq_version;
1718                 u32 size;
1719                 u8 *data;
1720                 const u8 *sequence[MIPI_SEQ_MAX];
1721         } dsi;
1722
1723         int crt_ddc_pin;
1724
1725         int child_dev_num;
1726         union child_device_config *child_dev;
1727
1728         struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1729         struct sdvo_device_mapping sdvo_mappings[2];
1730 };
1731
1732 enum intel_ddb_partitioning {
1733         INTEL_DDB_PART_1_2,
1734         INTEL_DDB_PART_5_6, /* IVB+ */
1735 };
1736
1737 struct intel_wm_level {
1738         bool enable;
1739         uint32_t pri_val;
1740         uint32_t spr_val;
1741         uint32_t cur_val;
1742         uint32_t fbc_val;
1743 };
1744
1745 struct ilk_wm_values {
1746         uint32_t wm_pipe[3];
1747         uint32_t wm_lp[3];
1748         uint32_t wm_lp_spr[3];
1749         uint32_t wm_linetime[3];
1750         bool enable_fbc_wm;
1751         enum intel_ddb_partitioning partitioning;
1752 };
1753
1754 struct g4x_pipe_wm {
1755         uint16_t plane[I915_MAX_PLANES];
1756         uint16_t fbc;
1757 };
1758
1759 struct g4x_sr_wm {
1760         uint16_t plane;
1761         uint16_t cursor;
1762         uint16_t fbc;
1763 };
1764
1765 struct vlv_wm_ddl_values {
1766         uint8_t plane[I915_MAX_PLANES];
1767 };
1768
1769 struct vlv_wm_values {
1770         struct g4x_pipe_wm pipe[3];
1771         struct g4x_sr_wm sr;
1772         struct vlv_wm_ddl_values ddl[3];
1773         uint8_t level;
1774         bool cxsr;
1775 };
1776
1777 struct g4x_wm_values {
1778         struct g4x_pipe_wm pipe[2];
1779         struct g4x_sr_wm sr;
1780         struct g4x_sr_wm hpll;
1781         bool cxsr;
1782         bool hpll_en;
1783         bool fbc_en;
1784 };
1785
1786 struct skl_ddb_entry {
1787         uint16_t start, end;    /* in number of blocks, 'end' is exclusive */
1788 };
1789
1790 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1791 {
1792         return entry->end - entry->start;
1793 }
1794
1795 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1796                                        const struct skl_ddb_entry *e2)
1797 {
1798         if (e1->start == e2->start && e1->end == e2->end)
1799                 return true;
1800
1801         return false;
1802 }
1803
1804 struct skl_ddb_allocation {
1805         struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1806         struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1807 };
1808
1809 struct skl_wm_values {
1810         unsigned dirty_pipes;
1811         struct skl_ddb_allocation ddb;
1812 };
1813
1814 struct skl_wm_level {
1815         bool plane_en;
1816         uint16_t plane_res_b;
1817         uint8_t plane_res_l;
1818 };
1819
1820 /*
1821  * This struct helps tracking the state needed for runtime PM, which puts the
1822  * device in PCI D3 state. Notice that when this happens, nothing on the
1823  * graphics device works, even register access, so we don't get interrupts nor
1824  * anything else.
1825  *
1826  * Every piece of our code that needs to actually touch the hardware needs to
1827  * either call intel_runtime_pm_get or call intel_display_power_get with the
1828  * appropriate power domain.
1829  *
1830  * Our driver uses the autosuspend delay feature, which means we'll only really
1831  * suspend if we stay with zero refcount for a certain amount of time. The
1832  * default value is currently very conservative (see intel_runtime_pm_enable), but
1833  * it can be changed with the standard runtime PM files from sysfs.
1834  *
1835  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1836  * goes back to false exactly before we reenable the IRQs. We use this variable
1837  * to check if someone is trying to enable/disable IRQs while they're supposed
1838  * to be disabled. This shouldn't happen and we'll print some error messages in
1839  * case it happens.
1840  *
1841  * For more, read the Documentation/power/runtime_pm.txt.
1842  */
1843 struct i915_runtime_pm {
1844         atomic_t wakeref_count;
1845         bool suspended;
1846         bool irqs_enabled;
1847 };
1848
1849 enum intel_pipe_crc_source {
1850         INTEL_PIPE_CRC_SOURCE_NONE,
1851         INTEL_PIPE_CRC_SOURCE_PLANE1,
1852         INTEL_PIPE_CRC_SOURCE_PLANE2,
1853         INTEL_PIPE_CRC_SOURCE_PF,
1854         INTEL_PIPE_CRC_SOURCE_PIPE,
1855         /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1856         INTEL_PIPE_CRC_SOURCE_TV,
1857         INTEL_PIPE_CRC_SOURCE_DP_B,
1858         INTEL_PIPE_CRC_SOURCE_DP_C,
1859         INTEL_PIPE_CRC_SOURCE_DP_D,
1860         INTEL_PIPE_CRC_SOURCE_AUTO,
1861         INTEL_PIPE_CRC_SOURCE_MAX,
1862 };
1863
1864 struct intel_pipe_crc_entry {
1865         uint32_t frame;
1866         uint32_t crc[5];
1867 };
1868
1869 #define INTEL_PIPE_CRC_ENTRIES_NR       128
1870 struct intel_pipe_crc {
1871         spinlock_t lock;
1872         bool opened;            /* exclusive access to the result file */
1873         struct intel_pipe_crc_entry *entries;
1874         enum intel_pipe_crc_source source;
1875         int head, tail;
1876         wait_queue_head_t wq;
1877         int skipped;
1878 };
1879
1880 struct i915_frontbuffer_tracking {
1881         spinlock_t lock;
1882
1883         /*
1884          * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1885          * scheduled flips.
1886          */
1887         unsigned busy_bits;
1888         unsigned flip_bits;
1889 };
1890
1891 struct i915_wa_reg {
1892         i915_reg_t addr;
1893         u32 value;
1894         /* bitmask representing WA bits */
1895         u32 mask;
1896 };
1897
1898 /*
1899  * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1900  * allowing it for RCS as we don't foresee any requirement of having
1901  * a whitelist for other engines. When it is really required for
1902  * other engines then the limit need to be increased.
1903  */
1904 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1905
1906 struct i915_workarounds {
1907         struct i915_wa_reg reg[I915_MAX_WA_REGS];
1908         u32 count;
1909         u32 hw_whitelist_count[I915_NUM_ENGINES];
1910 };
1911
1912 struct i915_virtual_gpu {
1913         bool active;
1914         u32 caps;
1915 };
1916
1917 /* used in computing the new watermarks state */
1918 struct intel_wm_config {
1919         unsigned int num_pipes_active;
1920         bool sprites_enabled;
1921         bool sprites_scaled;
1922 };
1923
1924 struct i915_oa_format {
1925         u32 format;
1926         int size;
1927 };
1928
1929 struct i915_oa_reg {
1930         i915_reg_t addr;
1931         u32 value;
1932 };
1933
1934 struct i915_oa_config {
1935         char uuid[UUID_STRING_LEN + 1];
1936         int id;
1937
1938         const struct i915_oa_reg *mux_regs;
1939         u32 mux_regs_len;
1940         const struct i915_oa_reg *b_counter_regs;
1941         u32 b_counter_regs_len;
1942         const struct i915_oa_reg *flex_regs;
1943         u32 flex_regs_len;
1944
1945         struct attribute_group sysfs_metric;
1946         struct attribute *attrs[2];
1947         struct device_attribute sysfs_metric_id;
1948
1949         atomic_t ref_count;
1950 };
1951
1952 struct i915_perf_stream;
1953
1954 /**
1955  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1956  */
1957 struct i915_perf_stream_ops {
1958         /**
1959          * @enable: Enables the collection of HW samples, either in response to
1960          * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1961          * without `I915_PERF_FLAG_DISABLED`.
1962          */
1963         void (*enable)(struct i915_perf_stream *stream);
1964
1965         /**
1966          * @disable: Disables the collection of HW samples, either in response
1967          * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1968          * the stream.
1969          */
1970         void (*disable)(struct i915_perf_stream *stream);
1971
1972         /**
1973          * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1974          * once there is something ready to read() for the stream
1975          */
1976         void (*poll_wait)(struct i915_perf_stream *stream,
1977                           struct file *file,
1978                           poll_table *wait);
1979
1980         /**
1981          * @wait_unlocked: For handling a blocking read, wait until there is
1982          * something to ready to read() for the stream. E.g. wait on the same
1983          * wait queue that would be passed to poll_wait().
1984          */
1985         int (*wait_unlocked)(struct i915_perf_stream *stream);
1986
1987         /**
1988          * @read: Copy buffered metrics as records to userspace
1989          * **buf**: the userspace, destination buffer
1990          * **count**: the number of bytes to copy, requested by userspace
1991          * **offset**: zero at the start of the read, updated as the read
1992          * proceeds, it represents how many bytes have been copied so far and
1993          * the buffer offset for copying the next record.
1994          *
1995          * Copy as many buffered i915 perf samples and records for this stream
1996          * to userspace as will fit in the given buffer.
1997          *
1998          * Only write complete records; returning -%ENOSPC if there isn't room
1999          * for a complete record.
2000          *
2001          * Return any error condition that results in a short read such as
2002          * -%ENOSPC or -%EFAULT, even though these may be squashed before
2003          * returning to userspace.
2004          */
2005         int (*read)(struct i915_perf_stream *stream,
2006                     char __user *buf,
2007                     size_t count,
2008                     size_t *offset);
2009
2010         /**
2011          * @destroy: Cleanup any stream specific resources.
2012          *
2013          * The stream will always be disabled before this is called.
2014          */
2015         void (*destroy)(struct i915_perf_stream *stream);
2016 };
2017
2018 /**
2019  * struct i915_perf_stream - state for a single open stream FD
2020  */
2021 struct i915_perf_stream {
2022         /**
2023          * @dev_priv: i915 drm device
2024          */
2025         struct drm_i915_private *dev_priv;
2026
2027         /**
2028          * @link: Links the stream into ``&drm_i915_private->streams``
2029          */
2030         struct list_head link;
2031
2032         /**
2033          * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
2034          * properties given when opening a stream, representing the contents
2035          * of a single sample as read() by userspace.
2036          */
2037         u32 sample_flags;
2038
2039         /**
2040          * @sample_size: Considering the configured contents of a sample
2041          * combined with the required header size, this is the total size
2042          * of a single sample record.
2043          */
2044         int sample_size;
2045
2046         /**
2047          * @ctx: %NULL if measuring system-wide across all contexts or a
2048          * specific context that is being monitored.
2049          */
2050         struct i915_gem_context *ctx;
2051
2052         /**
2053          * @enabled: Whether the stream is currently enabled, considering
2054          * whether the stream was opened in a disabled state and based
2055          * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2056          */
2057         bool enabled;
2058
2059         /**
2060          * @ops: The callbacks providing the implementation of this specific
2061          * type of configured stream.
2062          */
2063         const struct i915_perf_stream_ops *ops;
2064
2065         /**
2066          * @oa_config: The OA configuration used by the stream.
2067          */
2068         struct i915_oa_config *oa_config;
2069 };
2070
2071 /**
2072  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2073  */
2074 struct i915_oa_ops {
2075         /**
2076          * @is_valid_b_counter_reg: Validates register's address for
2077          * programming boolean counters for a particular platform.
2078          */
2079         bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
2080                                        u32 addr);
2081
2082         /**
2083          * @is_valid_mux_reg: Validates register's address for programming mux
2084          * for a particular platform.
2085          */
2086         bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
2087
2088         /**
2089          * @is_valid_flex_reg: Validates register's address for programming
2090          * flex EU filtering for a particular platform.
2091          */
2092         bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
2093
2094         /**
2095          * @init_oa_buffer: Resets the head and tail pointers of the
2096          * circular buffer for periodic OA reports.
2097          *
2098          * Called when first opening a stream for OA metrics, but also may be
2099          * called in response to an OA buffer overflow or other error
2100          * condition.
2101          *
2102          * Note it may be necessary to clear the full OA buffer here as part of
2103          * maintaining the invariable that new reports must be written to
2104          * zeroed memory for us to be able to reliable detect if an expected
2105          * report has not yet landed in memory.  (At least on Haswell the OA
2106          * buffer tail pointer is not synchronized with reports being visible
2107          * to the CPU)
2108          */
2109         void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2110
2111         /**
2112          * @enable_metric_set: Selects and applies any MUX configuration to set
2113          * up the Boolean and Custom (B/C) counters that are part of the
2114          * counter reports being sampled. May apply system constraints such as
2115          * disabling EU clock gating as required.
2116          */
2117         int (*enable_metric_set)(struct drm_i915_private *dev_priv,
2118                                  const struct i915_oa_config *oa_config);
2119
2120         /**
2121          * @disable_metric_set: Remove system constraints associated with using
2122          * the OA unit.
2123          */
2124         void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2125
2126         /**
2127          * @oa_enable: Enable periodic sampling
2128          */
2129         void (*oa_enable)(struct drm_i915_private *dev_priv);
2130
2131         /**
2132          * @oa_disable: Disable periodic sampling
2133          */
2134         void (*oa_disable)(struct drm_i915_private *dev_priv);
2135
2136         /**
2137          * @read: Copy data from the circular OA buffer into a given userspace
2138          * buffer.
2139          */
2140         int (*read)(struct i915_perf_stream *stream,
2141                     char __user *buf,
2142                     size_t count,
2143                     size_t *offset);
2144
2145         /**
2146          * @oa_hw_tail_read: read the OA tail pointer register
2147          *
2148          * In particular this enables us to share all the fiddly code for
2149          * handling the OA unit tail pointer race that affects multiple
2150          * generations.
2151          */
2152         u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2153 };
2154
2155 struct intel_cdclk_state {
2156         unsigned int cdclk, vco, ref;
2157 };
2158
2159 struct drm_i915_private {
2160         struct drm_device drm;
2161
2162         struct kmem_cache *objects;
2163         struct kmem_cache *vmas;
2164         struct kmem_cache *luts;
2165         struct kmem_cache *requests;
2166         struct kmem_cache *dependencies;
2167         struct kmem_cache *priorities;
2168
2169         const struct intel_device_info info;
2170
2171         void __iomem *regs;
2172
2173         struct intel_uncore uncore;
2174
2175         struct i915_virtual_gpu vgpu;
2176
2177         struct intel_gvt *gvt;
2178
2179         struct intel_huc huc;
2180         struct intel_guc guc;
2181
2182         struct intel_csr csr;
2183
2184         struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2185
2186         /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2187          * controller on different i2c buses. */
2188         struct mutex gmbus_mutex;
2189
2190         /**
2191          * Base address of the gmbus and gpio block.
2192          */
2193         uint32_t gpio_mmio_base;
2194
2195         /* MMIO base address for MIPI regs */
2196         uint32_t mipi_mmio_base;
2197
2198         uint32_t psr_mmio_base;
2199
2200         uint32_t pps_mmio_base;
2201
2202         wait_queue_head_t gmbus_wait_queue;
2203
2204         struct pci_dev *bridge_dev;
2205         struct i915_gem_context *kernel_context;
2206         struct intel_engine_cs *engine[I915_NUM_ENGINES];
2207         struct i915_vma *semaphore;
2208
2209         struct drm_dma_handle *status_page_dmah;
2210         struct resource mch_res;
2211
2212         /* protects the irq masks */
2213         spinlock_t irq_lock;
2214
2215         bool display_irqs_enabled;
2216
2217         /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2218         struct pm_qos_request pm_qos;
2219
2220         /* Sideband mailbox protection */
2221         struct mutex sb_lock;
2222
2223         /** Cached value of IMR to avoid reads in updating the bitfield */
2224         union {
2225                 u32 irq_mask;
2226                 u32 de_irq_mask[I915_MAX_PIPES];
2227         };
2228         u32 gt_irq_mask;
2229         u32 pm_imr;
2230         u32 pm_ier;
2231         u32 pm_rps_events;
2232         u32 pm_guc_events;
2233         u32 pipestat_irq_mask[I915_MAX_PIPES];
2234
2235         struct i915_hotplug hotplug;
2236         struct intel_fbc fbc;
2237         struct i915_drrs drrs;
2238         struct intel_opregion opregion;
2239         struct intel_vbt_data vbt;
2240
2241         bool preserve_bios_swizzle;
2242
2243         /* overlay */
2244         struct intel_overlay *overlay;
2245
2246         /* backlight registers and fields in struct intel_panel */
2247         struct mutex backlight_lock;
2248
2249         /* LVDS info */
2250         bool no_aux_handshake;
2251
2252         /* protects panel power sequencer state */
2253         struct mutex pps_mutex;
2254
2255         struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2256         int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2257
2258         unsigned int fsb_freq, mem_freq, is_ddr3;
2259         unsigned int skl_preferred_vco_freq;
2260         unsigned int max_cdclk_freq;
2261
2262         unsigned int max_dotclk_freq;
2263         unsigned int rawclk_freq;
2264         unsigned int hpll_freq;
2265         unsigned int czclk_freq;
2266
2267         struct {
2268                 /*
2269                  * The current logical cdclk state.
2270                  * See intel_atomic_state.cdclk.logical
2271                  *
2272                  * For reading holding any crtc lock is sufficient,
2273                  * for writing must hold all of them.
2274                  */
2275                 struct intel_cdclk_state logical;
2276                 /*
2277                  * The current actual cdclk state.
2278                  * See intel_atomic_state.cdclk.actual
2279                  */
2280                 struct intel_cdclk_state actual;
2281                 /* The current hardware cdclk state */
2282                 struct intel_cdclk_state hw;
2283         } cdclk;
2284
2285         /**
2286          * wq - Driver workqueue for GEM.
2287          *
2288          * NOTE: Work items scheduled here are not allowed to grab any modeset
2289          * locks, for otherwise the flushing done in the pageflip code will
2290          * result in deadlocks.
2291          */
2292         struct workqueue_struct *wq;
2293
2294         /* Display functions */
2295         struct drm_i915_display_funcs display;
2296
2297         /* PCH chipset type */
2298         enum intel_pch pch_type;
2299         unsigned short pch_id;
2300
2301         unsigned long quirks;
2302
2303         enum modeset_restore modeset_restore;
2304         struct mutex modeset_restore_lock;
2305         struct drm_atomic_state *modeset_restore_state;
2306         struct drm_modeset_acquire_ctx reset_ctx;
2307
2308         struct list_head vm_list; /* Global list of all address spaces */
2309         struct i915_ggtt ggtt; /* VM representing the global address space */
2310
2311         struct i915_gem_mm mm;
2312         DECLARE_HASHTABLE(mm_structs, 7);
2313         struct mutex mm_lock;
2314
2315         /* Kernel Modesetting */
2316
2317         struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2318         struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2319
2320 #ifdef CONFIG_DEBUG_FS
2321         struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2322 #endif
2323
2324         /* dpll and cdclk state is protected by connection_mutex */
2325         int num_shared_dpll;
2326         struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2327         const struct intel_dpll_mgr *dpll_mgr;
2328
2329         /*
2330          * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2331          * Must be global rather than per dpll, because on some platforms
2332          * plls share registers.
2333          */
2334         struct mutex dpll_lock;
2335
2336         unsigned int active_crtcs;
2337         unsigned int min_pixclk[I915_MAX_PIPES];
2338
2339         int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2340
2341         struct i915_workarounds workarounds;
2342
2343         struct i915_frontbuffer_tracking fb_tracking;
2344
2345         struct intel_atomic_helper {
2346                 struct llist_head free_list;
2347                 struct work_struct free_work;
2348         } atomic_helper;
2349
2350         u16 orig_clock;
2351
2352         bool mchbar_need_disable;
2353
2354         struct intel_l3_parity l3_parity;
2355
2356         /* Cannot be determined by PCIID. You must always read a register. */
2357         u32 edram_cap;
2358
2359         /* gen6+ rps state */
2360         struct intel_gen6_power_mgmt rps;
2361
2362         /* ilk-only ips/rps state. Everything in here is protected by the global
2363          * mchdev_lock in intel_pm.c */
2364         struct intel_ilk_power_mgmt ips;
2365
2366         struct i915_power_domains power_domains;
2367
2368         struct i915_psr psr;
2369
2370         struct i915_gpu_error gpu_error;
2371
2372         struct drm_i915_gem_object *vlv_pctx;
2373
2374         /* list of fbdev register on this device */
2375         struct intel_fbdev *fbdev;
2376         struct work_struct fbdev_suspend_work;
2377
2378         struct drm_property *broadcast_rgb_property;
2379         struct drm_property *force_audio_property;
2380
2381         /* hda/i915 audio component */
2382         struct i915_audio_component *audio_component;
2383         bool audio_component_registered;
2384         /**
2385          * av_mutex - mutex for audio/video sync
2386          *
2387          */
2388         struct mutex av_mutex;
2389
2390         struct {
2391                 struct list_head list;
2392                 struct llist_head free_list;
2393                 struct work_struct free_work;
2394
2395                 /* The hw wants to have a stable context identifier for the
2396                  * lifetime of the context (for OA, PASID, faults, etc).
2397                  * This is limited in execlists to 21 bits.
2398                  */
2399                 struct ida hw_ida;
2400 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2401         } contexts;
2402
2403         u32 fdi_rx_config;
2404
2405         /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2406         u32 chv_phy_control;
2407         /*
2408          * Shadows for CHV DPLL_MD regs to keep the state
2409          * checker somewhat working in the presence hardware
2410          * crappiness (can't read out DPLL_MD for pipes B & C).
2411          */
2412         u32 chv_dpll_md[I915_MAX_PIPES];
2413         u32 bxt_phy_grc;
2414
2415         u32 suspend_count;
2416         bool suspended_to_idle;
2417         struct i915_suspend_saved_registers regfile;
2418         struct vlv_s0ix_state vlv_s0ix_state;
2419
2420         enum {
2421                 I915_SAGV_UNKNOWN = 0,
2422                 I915_SAGV_DISABLED,
2423                 I915_SAGV_ENABLED,
2424                 I915_SAGV_NOT_CONTROLLED
2425         } sagv_status;
2426
2427         struct {
2428                 /*
2429                  * Raw watermark latency values:
2430                  * in 0.1us units for WM0,
2431                  * in 0.5us units for WM1+.
2432                  */
2433                 /* primary */
2434                 uint16_t pri_latency[5];
2435                 /* sprite */
2436                 uint16_t spr_latency[5];
2437                 /* cursor */
2438                 uint16_t cur_latency[5];
2439                 /*
2440                  * Raw watermark memory latency values
2441                  * for SKL for all 8 levels
2442                  * in 1us units.
2443                  */
2444                 uint16_t skl_latency[8];
2445
2446                 /* current hardware state */
2447                 union {
2448                         struct ilk_wm_values hw;
2449                         struct skl_wm_values skl_hw;
2450                         struct vlv_wm_values vlv;
2451                         struct g4x_wm_values g4x;
2452                 };
2453
2454                 uint8_t max_level;
2455
2456                 /*
2457                  * Should be held around atomic WM register writing; also
2458                  * protects * intel_crtc->wm.active and
2459                  * cstate->wm.need_postvbl_update.
2460                  */
2461                 struct mutex wm_mutex;
2462
2463                 /*
2464                  * Set during HW readout of watermarks/DDB.  Some platforms
2465                  * need to know when we're still using BIOS-provided values
2466                  * (which we don't fully trust).
2467                  */
2468                 bool distrust_bios_wm;
2469         } wm;
2470
2471         struct i915_runtime_pm pm;
2472
2473         struct {
2474                 bool initialized;
2475
2476                 struct kobject *metrics_kobj;
2477                 struct ctl_table_header *sysctl_header;
2478
2479                 /*
2480                  * Lock associated with adding/modifying/removing OA configs
2481                  * in dev_priv->perf.metrics_idr.
2482                  */
2483                 struct mutex metrics_lock;
2484
2485                 /*
2486                  * List of dynamic configurations, you need to hold
2487                  * dev_priv->perf.metrics_lock to access it.
2488                  */
2489                 struct idr metrics_idr;
2490
2491                 /*
2492                  * Lock associated with anything below within this structure
2493                  * except exclusive_stream.
2494                  */
2495                 struct mutex lock;
2496                 struct list_head streams;
2497
2498                 struct {
2499                         /*
2500                          * The stream currently using the OA unit. If accessed
2501                          * outside a syscall associated to its file
2502                          * descriptor, you need to hold
2503                          * dev_priv->drm.struct_mutex.
2504                          */
2505                         struct i915_perf_stream *exclusive_stream;
2506
2507                         u32 specific_ctx_id;
2508
2509                         struct hrtimer poll_check_timer;
2510                         wait_queue_head_t poll_wq;
2511                         bool pollin;
2512
2513                         /**
2514                          * For rate limiting any notifications of spurious
2515                          * invalid OA reports
2516                          */
2517                         struct ratelimit_state spurious_report_rs;
2518
2519                         bool periodic;
2520                         int period_exponent;
2521                         int timestamp_frequency;
2522
2523                         struct i915_oa_config test_config;
2524
2525                         struct {
2526                                 struct i915_vma *vma;
2527                                 u8 *vaddr;
2528                                 u32 last_ctx_id;
2529                                 int format;
2530                                 int format_size;
2531
2532                                 /**
2533                                  * Locks reads and writes to all head/tail state
2534                                  *
2535                                  * Consider: the head and tail pointer state
2536                                  * needs to be read consistently from a hrtimer
2537                                  * callback (atomic context) and read() fop
2538                                  * (user context) with tail pointer updates
2539                                  * happening in atomic context and head updates
2540                                  * in user context and the (unlikely)
2541                                  * possibility of read() errors needing to
2542                                  * reset all head/tail state.
2543                                  *
2544                                  * Note: Contention or performance aren't
2545                                  * currently a significant concern here
2546                                  * considering the relatively low frequency of
2547                                  * hrtimer callbacks (5ms period) and that
2548                                  * reads typically only happen in response to a
2549                                  * hrtimer event and likely complete before the
2550                                  * next callback.
2551                                  *
2552                                  * Note: This lock is not held *while* reading
2553                                  * and copying data to userspace so the value
2554                                  * of head observed in htrimer callbacks won't
2555                                  * represent any partial consumption of data.
2556                                  */
2557                                 spinlock_t ptr_lock;
2558
2559                                 /**
2560                                  * One 'aging' tail pointer and one 'aged'
2561                                  * tail pointer ready to used for reading.
2562                                  *
2563                                  * Initial values of 0xffffffff are invalid
2564                                  * and imply that an update is required
2565                                  * (and should be ignored by an attempted
2566                                  * read)
2567                                  */
2568                                 struct {
2569                                         u32 offset;
2570                                 } tails[2];
2571
2572                                 /**
2573                                  * Index for the aged tail ready to read()
2574                                  * data up to.
2575                                  */
2576                                 unsigned int aged_tail_idx;
2577
2578                                 /**
2579                                  * A monotonic timestamp for when the current
2580                                  * aging tail pointer was read; used to
2581                                  * determine when it is old enough to trust.
2582                                  */
2583                                 u64 aging_timestamp;
2584
2585                                 /**
2586                                  * Although we can always read back the head
2587                                  * pointer register, we prefer to avoid
2588                                  * trusting the HW state, just to avoid any
2589                                  * risk that some hardware condition could
2590                                  * somehow bump the head pointer unpredictably
2591                                  * and cause us to forward the wrong OA buffer
2592                                  * data to userspace.
2593                                  */
2594                                 u32 head;
2595                         } oa_buffer;
2596
2597                         u32 gen7_latched_oastatus1;
2598                         u32 ctx_oactxctrl_offset;
2599                         u32 ctx_flexeu0_offset;
2600
2601                         /**
2602                          * The RPT_ID/reason field for Gen8+ includes a bit
2603                          * to determine if the CTX ID in the report is valid
2604                          * but the specific bit differs between Gen 8 and 9
2605                          */
2606                         u32 gen8_valid_ctx_bit;
2607
2608                         struct i915_oa_ops ops;
2609                         const struct i915_oa_format *oa_formats;
2610                 } oa;
2611         } perf;
2612
2613         /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2614         struct {
2615                 void (*resume)(struct drm_i915_private *);
2616                 void (*cleanup_engine)(struct intel_engine_cs *engine);
2617
2618                 struct list_head timelines;
2619                 struct i915_gem_timeline global_timeline;
2620                 u32 active_requests;
2621
2622                 /**
2623                  * Is the GPU currently considered idle, or busy executing
2624                  * userspace requests? Whilst idle, we allow runtime power
2625                  * management to power down the hardware and display clocks.
2626                  * In order to reduce the effect on performance, there
2627                  * is a slight delay before we do so.
2628                  */
2629                 bool awake;
2630
2631                 /**
2632                  * We leave the user IRQ off as much as possible,
2633                  * but this means that requests will finish and never
2634                  * be retired once the system goes idle. Set a timer to
2635                  * fire periodically while the ring is running. When it
2636                  * fires, go retire requests.
2637                  */
2638                 struct delayed_work retire_work;
2639
2640                 /**
2641                  * When we detect an idle GPU, we want to turn on
2642                  * powersaving features. So once we see that there
2643                  * are no more requests outstanding and no more
2644                  * arrive within a small period of time, we fire
2645                  * off the idle_work.
2646                  */
2647                 struct delayed_work idle_work;
2648
2649                 ktime_t last_init_time;
2650         } gt;
2651
2652         /* perform PHY state sanity checks? */
2653         bool chv_phy_assert[2];
2654
2655         bool ipc_enabled;
2656
2657         /* Used to save the pipe-to-encoder mapping for audio */
2658         struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2659
2660         /* necessary resource sharing with HDMI LPE audio driver. */
2661         struct {
2662                 struct platform_device *platdev;
2663                 int     irq;
2664         } lpe_audio;
2665
2666         /*
2667          * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2668          * will be rejected. Instead look for a better place.
2669          */
2670 };
2671
2672 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2673 {
2674         return container_of(dev, struct drm_i915_private, drm);
2675 }
2676
2677 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2678 {
2679         return to_i915(dev_get_drvdata(kdev));
2680 }
2681
2682 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2683 {
2684         return container_of(guc, struct drm_i915_private, guc);
2685 }
2686
2687 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2688 {
2689         return container_of(huc, struct drm_i915_private, huc);
2690 }
2691
2692 /* Simple iterator over all initialised engines */
2693 #define for_each_engine(engine__, dev_priv__, id__) \
2694         for ((id__) = 0; \
2695              (id__) < I915_NUM_ENGINES; \
2696              (id__)++) \
2697                 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2698
2699 /* Iterator over subset of engines selected by mask */
2700 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2701         for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask;        \
2702              tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2703
2704 enum hdmi_force_audio {
2705         HDMI_AUDIO_OFF_DVI = -2,        /* no aux data for HDMI-DVI converter */
2706         HDMI_AUDIO_OFF,                 /* force turn off HDMI audio */
2707         HDMI_AUDIO_AUTO,                /* trust EDID */
2708         HDMI_AUDIO_ON,                  /* force turn on HDMI audio */
2709 };
2710
2711 #define I915_GTT_OFFSET_NONE ((u32)-1)
2712
2713 /*
2714  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2715  * considered to be the frontbuffer for the given plane interface-wise. This
2716  * doesn't mean that the hw necessarily already scans it out, but that any
2717  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2718  *
2719  * We have one bit per pipe and per scanout plane type.
2720  */
2721 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2722 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2723 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2724         (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2725 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2726         (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2727 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2728         (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2729 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2730         (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2731 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2732         (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2733
2734 /*
2735  * Optimised SGL iterator for GEM objects
2736  */
2737 static __always_inline struct sgt_iter {
2738         struct scatterlist *sgp;
2739         union {
2740                 unsigned long pfn;
2741                 dma_addr_t dma;
2742         };
2743         unsigned int curr;
2744         unsigned int max;
2745 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2746         struct sgt_iter s = { .sgp = sgl };
2747
2748         if (s.sgp) {
2749                 s.max = s.curr = s.sgp->offset;
2750                 s.max += s.sgp->length;
2751                 if (dma)
2752                         s.dma = sg_dma_address(s.sgp);
2753                 else
2754                         s.pfn = page_to_pfn(sg_page(s.sgp));
2755         }
2756
2757         return s;
2758 }
2759
2760 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2761 {
2762         ++sg;
2763         if (unlikely(sg_is_chain(sg)))
2764                 sg = sg_chain_ptr(sg);
2765         return sg;
2766 }
2767
2768 /**
2769  * __sg_next - return the next scatterlist entry in a list
2770  * @sg:         The current sg entry
2771  *
2772  * Description:
2773  *   If the entry is the last, return NULL; otherwise, step to the next
2774  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2775  *   otherwise just return the pointer to the current element.
2776  **/
2777 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2778 {
2779 #ifdef CONFIG_DEBUG_SG
2780         BUG_ON(sg->sg_magic != SG_MAGIC);
2781 #endif
2782         return sg_is_last(sg) ? NULL : ____sg_next(sg);
2783 }
2784
2785 /**
2786  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2787  * @__dmap:     DMA address (output)
2788  * @__iter:     'struct sgt_iter' (iterator state, internal)
2789  * @__sgt:      sg_table to iterate over (input)
2790  */
2791 #define for_each_sgt_dma(__dmap, __iter, __sgt)                         \
2792         for ((__iter) = __sgt_iter((__sgt)->sgl, true);                 \
2793              ((__dmap) = (__iter).dma + (__iter).curr);                 \
2794              (((__iter).curr += PAGE_SIZE) < (__iter).max) ||           \
2795              ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2796
2797 /**
2798  * for_each_sgt_page - iterate over the pages of the given sg_table
2799  * @__pp:       page pointer (output)
2800  * @__iter:     'struct sgt_iter' (iterator state, internal)
2801  * @__sgt:      sg_table to iterate over (input)
2802  */
2803 #define for_each_sgt_page(__pp, __iter, __sgt)                          \
2804         for ((__iter) = __sgt_iter((__sgt)->sgl, false);                \
2805              ((__pp) = (__iter).pfn == 0 ? NULL :                       \
2806               pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2807              (((__iter).curr += PAGE_SIZE) < (__iter).max) ||           \
2808              ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2809
2810 static inline const struct intel_device_info *
2811 intel_info(const struct drm_i915_private *dev_priv)
2812 {
2813         return &dev_priv->info;
2814 }
2815
2816 #define INTEL_INFO(dev_priv)    intel_info((dev_priv))
2817
2818 #define INTEL_GEN(dev_priv)     ((dev_priv)->info.gen)
2819 #define INTEL_DEVID(dev_priv)   ((dev_priv)->info.device_id)
2820
2821 #define REVID_FOREVER           0xff
2822 #define INTEL_REVID(dev_priv)   ((dev_priv)->drm.pdev->revision)
2823
2824 #define GEN_FOREVER (0)
2825 /*
2826  * Returns true if Gen is in inclusive range [Start, End].
2827  *
2828  * Use GEN_FOREVER for unbound start and or end.
2829  */
2830 #define IS_GEN(dev_priv, s, e) ({ \
2831         unsigned int __s = (s), __e = (e); \
2832         BUILD_BUG_ON(!__builtin_constant_p(s)); \
2833         BUILD_BUG_ON(!__builtin_constant_p(e)); \
2834         if ((__s) != GEN_FOREVER) \
2835                 __s = (s) - 1; \
2836         if ((__e) == GEN_FOREVER) \
2837                 __e = BITS_PER_LONG - 1; \
2838         else \
2839                 __e = (e) - 1; \
2840         !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2841 })
2842
2843 /*
2844  * Return true if revision is in range [since,until] inclusive.
2845  *
2846  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2847  */
2848 #define IS_REVID(p, since, until) \
2849         (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2850
2851 #define IS_I830(dev_priv)       ((dev_priv)->info.platform == INTEL_I830)
2852 #define IS_I845G(dev_priv)      ((dev_priv)->info.platform == INTEL_I845G)
2853 #define IS_I85X(dev_priv)       ((dev_priv)->info.platform == INTEL_I85X)
2854 #define IS_I865G(dev_priv)      ((dev_priv)->info.platform == INTEL_I865G)
2855 #define IS_I915G(dev_priv)      ((dev_priv)->info.platform == INTEL_I915G)
2856 #define IS_I915GM(dev_priv)     ((dev_priv)->info.platform == INTEL_I915GM)
2857 #define IS_I945G(dev_priv)      ((dev_priv)->info.platform == INTEL_I945G)
2858 #define IS_I945GM(dev_priv)     ((dev_priv)->info.platform == INTEL_I945GM)
2859 #define IS_I965G(dev_priv)      ((dev_priv)->info.platform == INTEL_I965G)
2860 #define IS_I965GM(dev_priv)     ((dev_priv)->info.platform == INTEL_I965GM)
2861 #define IS_G45(dev_priv)        ((dev_priv)->info.platform == INTEL_G45)
2862 #define IS_GM45(dev_priv)       ((dev_priv)->info.platform == INTEL_GM45)
2863 #define IS_G4X(dev_priv)        (IS_G45(dev_priv) || IS_GM45(dev_priv))
2864 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2865 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2866 #define IS_PINEVIEW(dev_priv)   ((dev_priv)->info.platform == INTEL_PINEVIEW)
2867 #define IS_G33(dev_priv)        ((dev_priv)->info.platform == INTEL_G33)
2868 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2869 #define IS_IVYBRIDGE(dev_priv)  ((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2870 #define IS_IVB_GT1(dev_priv)    (INTEL_DEVID(dev_priv) == 0x0156 || \
2871                                  INTEL_DEVID(dev_priv) == 0x0152 || \
2872                                  INTEL_DEVID(dev_priv) == 0x015a)
2873 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2874 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2875 #define IS_HASWELL(dev_priv)    ((dev_priv)->info.platform == INTEL_HASWELL)
2876 #define IS_BROADWELL(dev_priv)  ((dev_priv)->info.platform == INTEL_BROADWELL)
2877 #define IS_SKYLAKE(dev_priv)    ((dev_priv)->info.platform == INTEL_SKYLAKE)
2878 #define IS_BROXTON(dev_priv)    ((dev_priv)->info.platform == INTEL_BROXTON)
2879 #define IS_KABYLAKE(dev_priv)   ((dev_priv)->info.platform == INTEL_KABYLAKE)
2880 #define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE)
2881 #define IS_COFFEELAKE(dev_priv) ((dev_priv)->info.platform == INTEL_COFFEELAKE)
2882 #define IS_CANNONLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_CANNONLAKE)
2883 #define IS_MOBILE(dev_priv)     ((dev_priv)->info.is_mobile)
2884 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2885                                     (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2886 #define IS_BDW_ULT(dev_priv)    (IS_BROADWELL(dev_priv) && \
2887                                  ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||       \
2888                                  (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||        \
2889                                  (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2890 /* ULX machines are also considered ULT. */
2891 #define IS_BDW_ULX(dev_priv)    (IS_BROADWELL(dev_priv) && \
2892                                  (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2893 #define IS_BDW_GT3(dev_priv)    (IS_BROADWELL(dev_priv) && \
2894                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2895 #define IS_HSW_ULT(dev_priv)    (IS_HASWELL(dev_priv) && \
2896                                  (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2897 #define IS_HSW_GT3(dev_priv)    (IS_HASWELL(dev_priv) && \
2898                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2899 /* ULX machines are also considered ULT. */
2900 #define IS_HSW_ULX(dev_priv)    (INTEL_DEVID(dev_priv) == 0x0A0E || \
2901                                  INTEL_DEVID(dev_priv) == 0x0A1E)
2902 #define IS_SKL_ULT(dev_priv)    (INTEL_DEVID(dev_priv) == 0x1906 || \
2903                                  INTEL_DEVID(dev_priv) == 0x1913 || \
2904                                  INTEL_DEVID(dev_priv) == 0x1916 || \
2905                                  INTEL_DEVID(dev_priv) == 0x1921 || \
2906                                  INTEL_DEVID(dev_priv) == 0x1926)
2907 #define IS_SKL_ULX(dev_priv)    (INTEL_DEVID(dev_priv) == 0x190E || \
2908                                  INTEL_DEVID(dev_priv) == 0x1915 || \
2909                                  INTEL_DEVID(dev_priv) == 0x191E)
2910 #define IS_KBL_ULT(dev_priv)    (INTEL_DEVID(dev_priv) == 0x5906 || \
2911                                  INTEL_DEVID(dev_priv) == 0x5913 || \
2912                                  INTEL_DEVID(dev_priv) == 0x5916 || \
2913                                  INTEL_DEVID(dev_priv) == 0x5921 || \
2914                                  INTEL_DEVID(dev_priv) == 0x5926)
2915 #define IS_KBL_ULX(dev_priv)    (INTEL_DEVID(dev_priv) == 0x590E || \
2916                                  INTEL_DEVID(dev_priv) == 0x5915 || \
2917                                  INTEL_DEVID(dev_priv) == 0x591E)
2918 #define IS_SKL_GT2(dev_priv)    (IS_SKYLAKE(dev_priv) && \
2919                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2920 #define IS_SKL_GT3(dev_priv)    (IS_SKYLAKE(dev_priv) && \
2921                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2922 #define IS_SKL_GT4(dev_priv)    (IS_SKYLAKE(dev_priv) && \
2923                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2924 #define IS_KBL_GT2(dev_priv)    (IS_KABYLAKE(dev_priv) && \
2925                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2926 #define IS_KBL_GT3(dev_priv)    (IS_KABYLAKE(dev_priv) && \
2927                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2928 #define IS_CFL_ULT(dev_priv)    (IS_COFFEELAKE(dev_priv) && \
2929                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2930
2931 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2932
2933 #define SKL_REVID_A0            0x0
2934 #define SKL_REVID_B0            0x1
2935 #define SKL_REVID_C0            0x2
2936 #define SKL_REVID_D0            0x3
2937 #define SKL_REVID_E0            0x4
2938 #define SKL_REVID_F0            0x5
2939 #define SKL_REVID_G0            0x6
2940 #define SKL_REVID_H0            0x7
2941
2942 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2943
2944 #define BXT_REVID_A0            0x0
2945 #define BXT_REVID_A1            0x1
2946 #define BXT_REVID_B0            0x3
2947 #define BXT_REVID_B_LAST        0x8
2948 #define BXT_REVID_C0            0x9
2949
2950 #define IS_BXT_REVID(dev_priv, since, until) \
2951         (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2952
2953 #define KBL_REVID_A0            0x0
2954 #define KBL_REVID_B0            0x1
2955 #define KBL_REVID_C0            0x2
2956 #define KBL_REVID_D0            0x3
2957 #define KBL_REVID_E0            0x4
2958
2959 #define IS_KBL_REVID(dev_priv, since, until) \
2960         (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2961
2962 #define GLK_REVID_A0            0x0
2963 #define GLK_REVID_A1            0x1
2964
2965 #define IS_GLK_REVID(dev_priv, since, until) \
2966         (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2967
2968 #define CNL_REVID_A0            0x0
2969 #define CNL_REVID_B0            0x1
2970
2971 #define IS_CNL_REVID(p, since, until) \
2972         (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2973
2974 /*
2975  * The genX designation typically refers to the render engine, so render
2976  * capability related checks should use IS_GEN, while display and other checks
2977  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2978  * chips, etc.).
2979  */
2980 #define IS_GEN2(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(1)))
2981 #define IS_GEN3(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(2)))
2982 #define IS_GEN4(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(3)))
2983 #define IS_GEN5(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(4)))
2984 #define IS_GEN6(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(5)))
2985 #define IS_GEN7(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(6)))
2986 #define IS_GEN8(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(7)))
2987 #define IS_GEN9(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(8)))
2988 #define IS_GEN10(dev_priv)      (!!((dev_priv)->info.gen_mask & BIT(9)))
2989
2990 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
2991 #define IS_GEN9_LP(dev_priv)    (IS_GEN9(dev_priv) && IS_LP(dev_priv))
2992 #define IS_GEN9_BC(dev_priv)    (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2993
2994 #define ENGINE_MASK(id) BIT(id)
2995 #define RENDER_RING     ENGINE_MASK(RCS)
2996 #define BSD_RING        ENGINE_MASK(VCS)
2997 #define BLT_RING        ENGINE_MASK(BCS)
2998 #define VEBOX_RING      ENGINE_MASK(VECS)
2999 #define BSD2_RING       ENGINE_MASK(VCS2)
3000 #define ALL_ENGINES     (~0)
3001
3002 #define HAS_ENGINE(dev_priv, id) \
3003         (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
3004
3005 #define HAS_BSD(dev_priv)       HAS_ENGINE(dev_priv, VCS)
3006 #define HAS_BSD2(dev_priv)      HAS_ENGINE(dev_priv, VCS2)
3007 #define HAS_BLT(dev_priv)       HAS_ENGINE(dev_priv, BCS)
3008 #define HAS_VEBOX(dev_priv)     HAS_ENGINE(dev_priv, VECS)
3009
3010 #define HAS_LLC(dev_priv)       ((dev_priv)->info.has_llc)
3011 #define HAS_SNOOP(dev_priv)     ((dev_priv)->info.has_snoop)
3012 #define HAS_EDRAM(dev_priv)     (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
3013 #define HAS_WT(dev_priv)        ((IS_HASWELL(dev_priv) || \
3014                                  IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
3015
3016 #define HWS_NEEDS_PHYSICAL(dev_priv)    ((dev_priv)->info.hws_needs_physical)
3017
3018 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
3019                 ((dev_priv)->info.has_logical_ring_contexts)
3020 #define USES_PPGTT(dev_priv)            (i915.enable_ppgtt)
3021 #define USES_FULL_PPGTT(dev_priv)       (i915.enable_ppgtt >= 2)
3022 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3)
3023
3024 #define HAS_OVERLAY(dev_priv)            ((dev_priv)->info.has_overlay)
3025 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
3026                 ((dev_priv)->info.overlay_needs_physical)
3027
3028 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
3029 #define HAS_BROKEN_CS_TLB(dev_priv)     (IS_I830(dev_priv) || IS_I845G(dev_priv))
3030
3031 /* WaRsDisableCoarsePowerGating:skl,bxt */
3032 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
3033         (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
3034
3035 /*
3036  * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
3037  * even when in MSI mode. This results in spurious interrupt warnings if the
3038  * legacy irq no. is shared with another device. The kernel then disables that
3039  * interrupt source and so prevents the other device from working properly.
3040  */
3041 #define HAS_AUX_IRQ(dev_priv)   ((dev_priv)->info.gen >= 5)
3042 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
3043
3044 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
3045  * rows, which changed the alignment requirements and fence programming.
3046  */
3047 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
3048                                          !(IS_I915G(dev_priv) || \
3049                                          IS_I915GM(dev_priv)))
3050 #define SUPPORTS_TV(dev_priv)           ((dev_priv)->info.supports_tv)
3051 #define I915_HAS_HOTPLUG(dev_priv)      ((dev_priv)->info.has_hotplug)
3052
3053 #define HAS_FW_BLC(dev_priv)    (INTEL_GEN(dev_priv) > 2)
3054 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
3055 #define HAS_FBC(dev_priv)       ((dev_priv)->info.has_fbc)
3056 #define HAS_CUR_FBC(dev_priv)   (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
3057
3058 #define HAS_IPS(dev_priv)       (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
3059
3060 #define HAS_DP_MST(dev_priv)    ((dev_priv)->info.has_dp_mst)
3061
3062 #define HAS_DDI(dev_priv)                ((dev_priv)->info.has_ddi)
3063 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
3064 #define HAS_PSR(dev_priv)                ((dev_priv)->info.has_psr)
3065 #define HAS_RC6(dev_priv)                ((dev_priv)->info.has_rc6)
3066 #define HAS_RC6p(dev_priv)               ((dev_priv)->info.has_rc6p)
3067
3068 #define HAS_CSR(dev_priv)       ((dev_priv)->info.has_csr)
3069
3070 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
3071 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
3072
3073 /*
3074  * For now, anything with a GuC requires uCode loading, and then supports
3075  * command submission once loaded. But these are logically independent
3076  * properties, so we have separate macros to test them.
3077  */
3078 #define HAS_GUC(dev_priv)       ((dev_priv)->info.has_guc)
3079 #define HAS_GUC_CT(dev_priv)    ((dev_priv)->info.has_guc_ct)
3080 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3081 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
3082 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3083
3084 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3085
3086 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
3087
3088 #define INTEL_PCH_DEVICE_ID_MASK                0xff80
3089 #define INTEL_PCH_IBX_DEVICE_ID_TYPE            0x3b00
3090 #define INTEL_PCH_CPT_DEVICE_ID_TYPE            0x1c00
3091 #define INTEL_PCH_PPT_DEVICE_ID_TYPE            0x1e00
3092 #define INTEL_PCH_LPT_DEVICE_ID_TYPE            0x8c00
3093 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE         0x9c00
3094 #define INTEL_PCH_WPT_DEVICE_ID_TYPE            0x8c80
3095 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE         0x9c80
3096 #define INTEL_PCH_SPT_DEVICE_ID_TYPE            0xA100
3097 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE         0x9D00
3098 #define INTEL_PCH_KBP_DEVICE_ID_TYPE            0xA280
3099 #define INTEL_PCH_CNP_DEVICE_ID_TYPE            0xA300
3100 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE         0x9D80
3101 #define INTEL_PCH_P2X_DEVICE_ID_TYPE            0x7100
3102 #define INTEL_PCH_P3X_DEVICE_ID_TYPE            0x7000
3103 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE           0x2900 /* qemu q35 has 2918 */
3104
3105 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3106 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3107 #define HAS_PCH_CNP_LP(dev_priv) \
3108         ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3109 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3110 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3111 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3112 #define HAS_PCH_LPT_LP(dev_priv) \
3113         ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3114          (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3115 #define HAS_PCH_LPT_H(dev_priv) \
3116         ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3117          (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3118 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3119 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3120 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3121 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3122
3123 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3124
3125 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3126
3127 /* DPF == dynamic parity feature */
3128 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3129 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3130                                  2 : HAS_L3_DPF(dev_priv))
3131
3132 #define GT_FREQUENCY_MULTIPLIER 50
3133 #define GEN9_FREQ_SCALER 3
3134
3135 #include "i915_trace.h"
3136
3137 static inline bool intel_vtd_active(void)
3138 {
3139 #ifdef CONFIG_INTEL_IOMMU
3140         if (intel_iommu_gfx_mapped)
3141                 return true;
3142 #endif
3143         return false;
3144 }
3145
3146 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3147 {
3148         return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3149 }
3150
3151 static inline bool
3152 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3153 {
3154         return IS_BROXTON(dev_priv) && intel_vtd_active();
3155 }
3156
3157 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3158                                 int enable_ppgtt);
3159
3160 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3161
3162 /* i915_drv.c */
3163 void __printf(3, 4)
3164 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3165               const char *fmt, ...);
3166
3167 #define i915_report_error(dev_priv, fmt, ...)                              \
3168         __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3169
3170 #ifdef CONFIG_COMPAT
3171 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3172                               unsigned long arg);
3173 #else
3174 #define i915_compat_ioctl NULL
3175 #endif
3176 extern const struct dev_pm_ops i915_pm_ops;
3177
3178 extern int i915_driver_load(struct pci_dev *pdev,
3179                             const struct pci_device_id *ent);
3180 extern void i915_driver_unload(struct drm_device *dev);
3181 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3182 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3183
3184 #define I915_RESET_QUIET BIT(0)
3185 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
3186 extern int i915_reset_engine(struct intel_engine_cs *engine,
3187                              unsigned int flags);
3188
3189 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3190 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3191 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3192 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3193 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3194 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3195 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3196 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3197 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3198
3199 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3200 int intel_engines_init(struct drm_i915_private *dev_priv);
3201
3202 /* intel_hotplug.c */
3203 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3204                            u32 pin_mask, u32 long_mask);
3205 void intel_hpd_init(struct drm_i915_private *dev_priv);
3206 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3207 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3208 enum port intel_hpd_pin_to_port(enum hpd_pin pin);
3209 enum hpd_pin intel_hpd_pin(enum port port);
3210 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3211 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3212
3213 /* i915_irq.c */
3214 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3215 {
3216         unsigned long delay;
3217
3218         if (unlikely(!i915.enable_hangcheck))
3219                 return;
3220
3221         /* Don't continually defer the hangcheck so that it is always run at
3222          * least once after work has been scheduled on any ring. Otherwise,
3223          * we will ignore a hung ring if a second ring is kept busy.
3224          */
3225
3226         delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3227         queue_delayed_work(system_long_wq,
3228                            &dev_priv->gpu_error.hangcheck_work, delay);
3229 }
3230
3231 __printf(3, 4)
3232 void i915_handle_error(struct drm_i915_private *dev_priv,
3233                        u32 engine_mask,
3234                        const char *fmt, ...);
3235
3236 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3237 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3238 int intel_irq_install(struct drm_i915_private *dev_priv);
3239 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3240
3241 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3242 {
3243         return dev_priv->gvt;
3244 }
3245
3246 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3247 {
3248         return dev_priv->vgpu.active;
3249 }
3250
3251 void
3252 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3253                      u32 status_mask);
3254
3255 void
3256 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3257                       u32 status_mask);
3258
3259 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3260 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3261 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3262                                    uint32_t mask,
3263                                    uint32_t bits);
3264 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3265                             uint32_t interrupt_mask,
3266                             uint32_t enabled_irq_mask);
3267 static inline void
3268 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3269 {
3270         ilk_update_display_irq(dev_priv, bits, bits);
3271 }
3272 static inline void
3273 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3274 {
3275         ilk_update_display_irq(dev_priv, bits, 0);
3276 }
3277 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3278                          enum pipe pipe,
3279                          uint32_t interrupt_mask,
3280                          uint32_t enabled_irq_mask);
3281 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3282                                        enum pipe pipe, uint32_t bits)
3283 {
3284         bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3285 }
3286 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3287                                         enum pipe pipe, uint32_t bits)
3288 {
3289         bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3290 }
3291 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3292                                   uint32_t interrupt_mask,
3293                                   uint32_t enabled_irq_mask);
3294 static inline void
3295 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3296 {
3297         ibx_display_interrupt_update(dev_priv, bits, bits);
3298 }
3299 static inline void
3300 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3301 {
3302         ibx_display_interrupt_update(dev_priv, bits, 0);
3303 }
3304
3305 /* i915_gem.c */
3306 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3307                           struct drm_file *file_priv);
3308 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3309                          struct drm_file *file_priv);
3310 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3311                           struct drm_file *file_priv);
3312 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3313                         struct drm_file *file_priv);
3314 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3315                         struct drm_file *file_priv);
3316 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3317                               struct drm_file *file_priv);
3318 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3319                              struct drm_file *file_priv);
3320 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3321                         struct drm_file *file_priv);
3322 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3323                          struct drm_file *file_priv);
3324 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3325                         struct drm_file *file_priv);
3326 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3327                                struct drm_file *file);
3328 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3329                                struct drm_file *file);
3330 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3331                             struct drm_file *file_priv);
3332 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3333                            struct drm_file *file_priv);
3334 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3335                               struct drm_file *file_priv);
3336 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3337                               struct drm_file *file_priv);
3338 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3339 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3340 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3341                            struct drm_file *file);
3342 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3343                                 struct drm_file *file_priv);
3344 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3345                         struct drm_file *file_priv);
3346 void i915_gem_sanitize(struct drm_i915_private *i915);
3347 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3348 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3349 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3350 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3351 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3352
3353 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3354 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3355 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3356                          const struct drm_i915_gem_object_ops *ops);
3357 struct drm_i915_gem_object *
3358 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3359 struct drm_i915_gem_object *
3360 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3361                                  const void *data, size_t size);
3362 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3363 void i915_gem_free_object(struct drm_gem_object *obj);
3364
3365 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3366 {
3367         /* A single pass should suffice to release all the freed objects (along
3368          * most call paths) , but be a little more paranoid in that freeing
3369          * the objects does take a little amount of time, during which the rcu
3370          * callbacks could have added new objects into the freed list, and
3371          * armed the work again.
3372          */
3373         do {
3374                 rcu_barrier();
3375         } while (flush_work(&i915->mm.free_work));
3376 }
3377
3378 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3379 {
3380         /*
3381          * Similar to objects above (see i915_gem_drain_freed-objects), in
3382          * general we have workers that are armed by RCU and then rearm
3383          * themselves in their callbacks. To be paranoid, we need to
3384          * drain the workqueue a second time after waiting for the RCU
3385          * grace period so that we catch work queued via RCU from the first
3386          * pass. As neither drain_workqueue() nor flush_workqueue() report
3387          * a result, we make an assumption that we only don't require more
3388          * than 2 passes to catch all recursive RCU delayed work.
3389          *
3390          */
3391         int pass = 2;
3392         do {
3393                 rcu_barrier();
3394                 drain_workqueue(i915->wq);
3395         } while (--pass);
3396 }
3397
3398 struct i915_vma * __must_check
3399 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3400                          const struct i915_ggtt_view *view,
3401                          u64 size,
3402                          u64 alignment,
3403                          u64 flags);
3404
3405 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3406 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3407
3408 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3409
3410 static inline int __sg_page_count(const struct scatterlist *sg)
3411 {
3412         return sg->length >> PAGE_SHIFT;
3413 }
3414
3415 struct scatterlist *
3416 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3417                        unsigned int n, unsigned int *offset);
3418
3419 struct page *
3420 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3421                          unsigned int n);
3422
3423 struct page *
3424 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3425                                unsigned int n);
3426
3427 dma_addr_t
3428 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3429                                 unsigned long n);
3430
3431 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3432                                  struct sg_table *pages);
3433 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3434
3435 static inline int __must_check
3436 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3437 {
3438         might_lock(&obj->mm.lock);
3439
3440         if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3441                 return 0;
3442
3443         return __i915_gem_object_get_pages(obj);
3444 }
3445
3446 static inline void
3447 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3448 {
3449         GEM_BUG_ON(!obj->mm.pages);
3450
3451         atomic_inc(&obj->mm.pages_pin_count);
3452 }
3453
3454 static inline bool
3455 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3456 {
3457         return atomic_read(&obj->mm.pages_pin_count);
3458 }
3459
3460 static inline void
3461 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3462 {
3463         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3464         GEM_BUG_ON(!obj->mm.pages);
3465
3466         atomic_dec(&obj->mm.pages_pin_count);
3467 }
3468
3469 static inline void
3470 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3471 {
3472         __i915_gem_object_unpin_pages(obj);
3473 }
3474
3475 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3476         I915_MM_NORMAL = 0,
3477         I915_MM_SHRINKER
3478 };
3479
3480 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3481                                  enum i915_mm_subclass subclass);
3482 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3483
3484 enum i915_map_type {
3485         I915_MAP_WB = 0,
3486         I915_MAP_WC,
3487 };
3488
3489 /**
3490  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3491  * @obj: the object to map into kernel address space
3492  * @type: the type of mapping, used to select pgprot_t
3493  *
3494  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3495  * pages and then returns a contiguous mapping of the backing storage into
3496  * the kernel address space. Based on the @type of mapping, the PTE will be
3497  * set to either WriteBack or WriteCombine (via pgprot_t).
3498  *
3499  * The caller is responsible for calling i915_gem_object_unpin_map() when the
3500  * mapping is no longer required.
3501  *
3502  * Returns the pointer through which to access the mapped object, or an
3503  * ERR_PTR() on error.
3504  */
3505 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3506                                            enum i915_map_type type);
3507
3508 /**
3509  * i915_gem_object_unpin_map - releases an earlier mapping
3510  * @obj: the object to unmap
3511  *
3512  * After pinning the object and mapping its pages, once you are finished
3513  * with your access, call i915_gem_object_unpin_map() to release the pin
3514  * upon the mapping. Once the pin count reaches zero, that mapping may be
3515  * removed.
3516  */
3517 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3518 {
3519         i915_gem_object_unpin_pages(obj);
3520 }
3521
3522 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3523                                     unsigned int *needs_clflush);
3524 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3525                                      unsigned int *needs_clflush);
3526 #define CLFLUSH_BEFORE  BIT(0)
3527 #define CLFLUSH_AFTER   BIT(1)
3528 #define CLFLUSH_FLAGS   (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3529
3530 static inline void
3531 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3532 {
3533         i915_gem_object_unpin_pages(obj);
3534 }
3535
3536 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3537 void i915_vma_move_to_active(struct i915_vma *vma,
3538                              struct drm_i915_gem_request *req,
3539                              unsigned int flags);
3540 int i915_gem_dumb_create(struct drm_file *file_priv,
3541                          struct drm_device *dev,
3542                          struct drm_mode_create_dumb *args);
3543 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3544                       uint32_t handle, uint64_t *offset);
3545 int i915_gem_mmap_gtt_version(void);
3546
3547 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3548                        struct drm_i915_gem_object *new,
3549                        unsigned frontbuffer_bits);
3550
3551 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3552
3553 struct drm_i915_gem_request *
3554 i915_gem_find_active_request(struct intel_engine_cs *engine);
3555
3556 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3557
3558 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3559 {
3560         return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3561 }
3562
3563 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3564 {
3565         return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3566 }
3567
3568 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3569 {
3570         return unlikely(test_bit(I915_WEDGED, &error->flags));
3571 }
3572
3573 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3574 {
3575         return i915_reset_backoff(error) | i915_terminally_wedged(error);
3576 }
3577
3578 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3579 {
3580         return READ_ONCE(error->reset_count);
3581 }
3582
3583 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3584                                           struct intel_engine_cs *engine)
3585 {
3586         return READ_ONCE(error->reset_engine_count[engine->id]);
3587 }
3588
3589 struct drm_i915_gem_request *
3590 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3591 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3592 void i915_gem_reset(struct drm_i915_private *dev_priv);
3593 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3594 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3595 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3596 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3597 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3598                            struct drm_i915_gem_request *request);
3599
3600 void i915_gem_init_mmio(struct drm_i915_private *i915);
3601 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3602 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3603 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3604 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3605 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3606                            unsigned int flags);
3607 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3608 void i915_gem_resume(struct drm_i915_private *dev_priv);
3609 int i915_gem_fault(struct vm_fault *vmf);
3610 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3611                          unsigned int flags,
3612                          long timeout,
3613                          struct intel_rps_client *rps);
3614 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3615                                   unsigned int flags,
3616                                   int priority);
3617 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3618
3619 int __must_check
3620 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3621 int __must_check
3622 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3623 int __must_check
3624 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3625 struct i915_vma * __must_check
3626 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3627                                      u32 alignment,
3628                                      const struct i915_ggtt_view *view);
3629 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3630 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3631                                 int align);
3632 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3633 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3634
3635 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3636                                     enum i915_cache_level cache_level);
3637
3638 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3639                                 struct dma_buf *dma_buf);
3640
3641 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3642                                 struct drm_gem_object *gem_obj, int flags);
3643
3644 static inline struct i915_hw_ppgtt *
3645 i915_vm_to_ppgtt(struct i915_address_space *vm)
3646 {
3647         return container_of(vm, struct i915_hw_ppgtt, base);
3648 }
3649
3650 /* i915_gem_fence_reg.c */
3651 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3652 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3653
3654 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3655 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3656
3657 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3658 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3659                                        struct sg_table *pages);
3660 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3661                                          struct sg_table *pages);
3662
3663 static inline struct i915_gem_context *
3664 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3665 {
3666         return idr_find(&file_priv->context_idr, id);
3667 }
3668
3669 static inline struct i915_gem_context *
3670 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3671 {
3672         struct i915_gem_context *ctx;
3673
3674         rcu_read_lock();
3675         ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3676         if (ctx && !kref_get_unless_zero(&ctx->ref))
3677                 ctx = NULL;
3678         rcu_read_unlock();
3679
3680         return ctx;
3681 }
3682
3683 static inline struct intel_timeline *
3684 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3685                                  struct intel_engine_cs *engine)
3686 {
3687         struct i915_address_space *vm;
3688
3689         vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3690         return &vm->timeline.engine[engine->id];
3691 }
3692
3693 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3694                          struct drm_file *file);
3695 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3696                                struct drm_file *file);
3697 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3698                                   struct drm_file *file);
3699 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3700                             struct i915_gem_context *ctx,
3701                             uint32_t *reg_state);
3702
3703 /* i915_gem_evict.c */
3704 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3705                                           u64 min_size, u64 alignment,
3706                                           unsigned cache_level,
3707                                           u64 start, u64 end,
3708                                           unsigned flags);
3709 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3710                                          struct drm_mm_node *node,
3711                                          unsigned int flags);
3712 int i915_gem_evict_vm(struct i915_address_space *vm);
3713
3714 /* belongs in i915_gem_gtt.h */
3715 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3716 {
3717         wmb();
3718         if (INTEL_GEN(dev_priv) < 6)
3719                 intel_gtt_chipset_flush();
3720 }
3721
3722 /* i915_gem_stolen.c */
3723 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3724                                 struct drm_mm_node *node, u64 size,
3725                                 unsigned alignment);
3726 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3727                                          struct drm_mm_node *node, u64 size,
3728                                          unsigned alignment, u64 start,
3729                                          u64 end);
3730 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3731                                  struct drm_mm_node *node);
3732 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3733 void i915_gem_cleanup_stolen(struct drm_device *dev);
3734 struct drm_i915_gem_object *
3735 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3736 struct drm_i915_gem_object *
3737 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3738                                                u32 stolen_offset,
3739                                                u32 gtt_offset,
3740                                                u32 size);
3741
3742 /* i915_gem_internal.c */
3743 struct drm_i915_gem_object *
3744 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3745                                 phys_addr_t size);
3746
3747 /* i915_gem_shrinker.c */
3748 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3749                               unsigned long target,
3750                               unsigned flags);
3751 #define I915_SHRINK_PURGEABLE 0x1
3752 #define I915_SHRINK_UNBOUND 0x2
3753 #define I915_SHRINK_BOUND 0x4
3754 #define I915_SHRINK_ACTIVE 0x8
3755 #define I915_SHRINK_VMAPS 0x10
3756 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3757 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3758 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3759
3760
3761 /* i915_gem_tiling.c */
3762 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3763 {
3764         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3765
3766         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3767                 i915_gem_object_is_tiled(obj);
3768 }
3769
3770 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3771                         unsigned int tiling, unsigned int stride);
3772 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3773                              unsigned int tiling, unsigned int stride);
3774
3775 /* i915_debugfs.c */
3776 #ifdef CONFIG_DEBUG_FS
3777 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3778 int i915_debugfs_connector_add(struct drm_connector *connector);
3779 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3780 #else
3781 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3782 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3783 { return 0; }
3784 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3785 #endif
3786
3787 /* i915_gpu_error.c */
3788 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3789
3790 __printf(2, 3)
3791 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3792 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3793                             const struct i915_gpu_state *gpu);
3794 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3795                               struct drm_i915_private *i915,
3796                               size_t count, loff_t pos);
3797 static inline void i915_error_state_buf_release(
3798         struct drm_i915_error_state_buf *eb)
3799 {
3800         kfree(eb->buf);
3801 }
3802
3803 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3804 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3805                               u32 engine_mask,
3806                               const char *error_msg);
3807
3808 static inline struct i915_gpu_state *
3809 i915_gpu_state_get(struct i915_gpu_state *gpu)
3810 {
3811         kref_get(&gpu->ref);
3812         return gpu;
3813 }
3814
3815 void __i915_gpu_state_free(struct kref *kref);
3816 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3817 {
3818         if (gpu)
3819                 kref_put(&gpu->ref, __i915_gpu_state_free);
3820 }
3821
3822 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3823 void i915_reset_error_state(struct drm_i915_private *i915);
3824
3825 #else
3826
3827 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3828                                             u32 engine_mask,
3829                                             const char *error_msg)
3830 {
3831 }
3832
3833 static inline struct i915_gpu_state *
3834 i915_first_error_state(struct drm_i915_private *i915)
3835 {
3836         return NULL;
3837 }
3838
3839 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3840 {
3841 }
3842
3843 #endif
3844
3845 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3846
3847 /* i915_cmd_parser.c */
3848 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3849 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3850 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3851 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3852                             struct drm_i915_gem_object *batch_obj,
3853                             struct drm_i915_gem_object *shadow_batch_obj,
3854                             u32 batch_start_offset,
3855                             u32 batch_len,
3856                             bool is_master);
3857
3858 /* i915_perf.c */
3859 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3860 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3861 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3862 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3863
3864 /* i915_suspend.c */
3865 extern int i915_save_state(struct drm_i915_private *dev_priv);
3866 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3867
3868 /* i915_sysfs.c */
3869 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3870 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3871
3872 /* intel_lpe_audio.c */
3873 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3874 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3875 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3876 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3877                             enum pipe pipe, enum port port,
3878                             const void *eld, int ls_clock, bool dp_output);
3879
3880 /* intel_i2c.c */
3881 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3882 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3883 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3884                                      unsigned int pin);
3885
3886 extern struct i2c_adapter *
3887 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3888 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3889 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3890 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3891 {
3892         return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3893 }
3894 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3895
3896 /* intel_bios.c */
3897 void intel_bios_init(struct drm_i915_private *dev_priv);
3898 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3899 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3900 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3901 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3902 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3903 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3904 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3905 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3906                                      enum port port);
3907 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3908                                 enum port port);
3909
3910
3911 /* intel_opregion.c */
3912 #ifdef CONFIG_ACPI
3913 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3914 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3915 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3916 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3917 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3918                                          bool enable);
3919 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3920                                          pci_power_t state);
3921 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3922 #else
3923 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3924 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3925 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3926 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3927 {
3928 }
3929 static inline int
3930 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3931 {
3932         return 0;
3933 }
3934 static inline int
3935 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3936 {
3937         return 0;
3938 }
3939 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3940 {
3941         return -ENODEV;
3942 }
3943 #endif
3944
3945 /* intel_acpi.c */
3946 #ifdef CONFIG_ACPI
3947 extern void intel_register_dsm_handler(void);
3948 extern void intel_unregister_dsm_handler(void);
3949 #else
3950 static inline void intel_register_dsm_handler(void) { return; }
3951 static inline void intel_unregister_dsm_handler(void) { return; }
3952 #endif /* CONFIG_ACPI */
3953
3954 /* intel_device_info.c */
3955 static inline struct intel_device_info *
3956 mkwrite_device_info(struct drm_i915_private *dev_priv)
3957 {
3958         return (struct intel_device_info *)&dev_priv->info;
3959 }
3960
3961 const char *intel_platform_name(enum intel_platform platform);
3962 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3963 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3964
3965 /* modesetting */
3966 extern void intel_modeset_init_hw(struct drm_device *dev);
3967 extern int intel_modeset_init(struct drm_device *dev);
3968 extern void intel_modeset_gem_init(struct drm_device *dev);
3969 extern void intel_modeset_cleanup(struct drm_device *dev);
3970 extern int intel_connector_register(struct drm_connector *);
3971 extern void intel_connector_unregister(struct drm_connector *);
3972 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3973                                        bool state);
3974 extern void intel_display_resume(struct drm_device *dev);
3975 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3976 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3977 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3978 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3979 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3980 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3981                                   bool enable);
3982
3983 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3984                         struct drm_file *file);
3985
3986 /* overlay */
3987 extern struct intel_overlay_error_state *
3988 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3989 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3990                                             struct intel_overlay_error_state *error);
3991
3992 extern struct intel_display_error_state *
3993 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3994 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3995                                             struct intel_display_error_state *error);
3996
3997 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3998 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3999 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
4000                       u32 reply_mask, u32 reply, int timeout_base_ms);
4001
4002 /* intel_sideband.c */
4003 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
4004 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
4005 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
4006 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
4007 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
4008 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
4009 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4010 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
4011 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4012 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
4013 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4014 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
4015 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
4016 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
4017                    enum intel_sbi_destination destination);
4018 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
4019                      enum intel_sbi_destination destination);
4020 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
4021 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4022
4023 /* intel_dpio_phy.c */
4024 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
4025                              enum dpio_phy *phy, enum dpio_channel *ch);
4026 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
4027                                   enum port port, u32 margin, u32 scale,
4028                                   u32 enable, u32 deemphasis);
4029 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4030 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4031 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
4032                             enum dpio_phy phy);
4033 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
4034                               enum dpio_phy phy);
4035 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
4036                                              uint8_t lane_count);
4037 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
4038                                      uint8_t lane_lat_optim_mask);
4039 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
4040
4041 void chv_set_phy_signal_level(struct intel_encoder *encoder,
4042                               u32 deemph_reg_value, u32 margin_reg_value,
4043                               bool uniq_trans_scale);
4044 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
4045                               bool reset);
4046 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
4047 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4048 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
4049 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
4050
4051 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
4052                               u32 demph_reg_value, u32 preemph_reg_value,
4053                               u32 uniqtranscale_reg_value, u32 tx3_demph);
4054 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
4055 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4056 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
4057
4058 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
4059 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
4060 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
4061                            const i915_reg_t reg);
4062
4063 #define I915_READ8(reg)         dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
4064 #define I915_WRITE8(reg, val)   dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
4065
4066 #define I915_READ16(reg)        dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
4067 #define I915_WRITE16(reg, val)  dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
4068 #define I915_READ16_NOTRACE(reg)        dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
4069 #define I915_WRITE16_NOTRACE(reg, val)  dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
4070
4071 #define I915_READ(reg)          dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
4072 #define I915_WRITE(reg, val)    dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
4073 #define I915_READ_NOTRACE(reg)          dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
4074 #define I915_WRITE_NOTRACE(reg, val)    dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
4075
4076 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
4077  * will be implemented using 2 32-bit writes in an arbitrary order with
4078  * an arbitrary delay between them. This can cause the hardware to
4079  * act upon the intermediate value, possibly leading to corruption and
4080  * machine death. For this reason we do not support I915_WRITE64, or
4081  * dev_priv->uncore.funcs.mmio_writeq.
4082  *
4083  * When reading a 64-bit value as two 32-bit values, the delay may cause
4084  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
4085  * occasionally a 64-bit register does not actualy support a full readq
4086  * and must be read using two 32-bit reads.
4087  *
4088  * You have been warned.
4089  */
4090 #define I915_READ64(reg)        dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
4091
4092 #define I915_READ64_2x32(lower_reg, upper_reg) ({                       \
4093         u32 upper, lower, old_upper, loop = 0;                          \
4094         upper = I915_READ(upper_reg);                                   \
4095         do {                                                            \
4096                 old_upper = upper;                                      \
4097                 lower = I915_READ(lower_reg);                           \
4098                 upper = I915_READ(upper_reg);                           \
4099         } while (upper != old_upper && loop++ < 2);                     \
4100         (u64)upper << 32 | lower; })
4101
4102 #define POSTING_READ(reg)       (void)I915_READ_NOTRACE(reg)
4103 #define POSTING_READ16(reg)     (void)I915_READ16_NOTRACE(reg)
4104
4105 #define __raw_read(x, s) \
4106 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4107                                              i915_reg_t reg) \
4108 { \
4109         return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4110 }
4111
4112 #define __raw_write(x, s) \
4113 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4114                                        i915_reg_t reg, uint##x##_t val) \
4115 { \
4116         write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4117 }
4118 __raw_read(8, b)
4119 __raw_read(16, w)
4120 __raw_read(32, l)
4121 __raw_read(64, q)
4122
4123 __raw_write(8, b)
4124 __raw_write(16, w)
4125 __raw_write(32, l)
4126 __raw_write(64, q)
4127
4128 #undef __raw_read
4129 #undef __raw_write
4130
4131 /* These are untraced mmio-accessors that are only valid to be used inside
4132  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4133  * controlled.
4134  *
4135  * Think twice, and think again, before using these.
4136  *
4137  * As an example, these accessors can possibly be used between:
4138  *
4139  * spin_lock_irq(&dev_priv->uncore.lock);
4140  * intel_uncore_forcewake_get__locked();
4141  *
4142  * and
4143  *
4144  * intel_uncore_forcewake_put__locked();
4145  * spin_unlock_irq(&dev_priv->uncore.lock);
4146  *
4147  *
4148  * Note: some registers may not need forcewake held, so
4149  * intel_uncore_forcewake_{get,put} can be omitted, see
4150  * intel_uncore_forcewake_for_reg().
4151  *
4152  * Certain architectures will die if the same cacheline is concurrently accessed
4153  * by different clients (e.g. on Ivybridge). Access to registers should
4154  * therefore generally be serialised, by either the dev_priv->uncore.lock or
4155  * a more localised lock guarding all access to that bank of registers.
4156  */
4157 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4158 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4159 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4160 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4161
4162 /* "Broadcast RGB" property */
4163 #define INTEL_BROADCAST_RGB_AUTO 0
4164 #define INTEL_BROADCAST_RGB_FULL 1
4165 #define INTEL_BROADCAST_RGB_LIMITED 2
4166
4167 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4168 {
4169         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4170                 return VLV_VGACNTRL;
4171         else if (INTEL_GEN(dev_priv) >= 5)
4172                 return CPU_VGACNTRL;
4173         else
4174                 return VGACNTRL;
4175 }
4176
4177 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4178 {
4179         unsigned long j = msecs_to_jiffies(m);
4180
4181         return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4182 }
4183
4184 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4185 {
4186         /* nsecs_to_jiffies64() does not guard against overflow */
4187         if (NSEC_PER_SEC % HZ &&
4188             div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
4189                 return MAX_JIFFY_OFFSET;
4190
4191         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4192 }
4193
4194 static inline unsigned long
4195 timespec_to_jiffies_timeout(const struct timespec *value)
4196 {
4197         unsigned long j = timespec_to_jiffies(value);
4198
4199         return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4200 }
4201
4202 /*
4203  * If you need to wait X milliseconds between events A and B, but event B
4204  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4205  * when event A happened, then just before event B you call this function and
4206  * pass the timestamp as the first argument, and X as the second argument.
4207  */
4208 static inline void
4209 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4210 {
4211         unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4212
4213         /*
4214          * Don't re-read the value of "jiffies" every time since it may change
4215          * behind our back and break the math.
4216          */
4217         tmp_jiffies = jiffies;
4218         target_jiffies = timestamp_jiffies +
4219                          msecs_to_jiffies_timeout(to_wait_ms);
4220
4221         if (time_after(target_jiffies, tmp_jiffies)) {
4222                 remaining_jiffies = target_jiffies - tmp_jiffies;
4223                 while (remaining_jiffies)
4224                         remaining_jiffies =
4225                             schedule_timeout_uninterruptible(remaining_jiffies);
4226         }
4227 }
4228
4229 static inline bool
4230 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4231 {
4232         struct intel_engine_cs *engine = req->engine;
4233         u32 seqno;
4234
4235         /* Note that the engine may have wrapped around the seqno, and
4236          * so our request->global_seqno will be ahead of the hardware,
4237          * even though it completed the request before wrapping. We catch
4238          * this by kicking all the waiters before resetting the seqno
4239          * in hardware, and also signal the fence.
4240          */
4241         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4242                 return true;
4243
4244         /* The request was dequeued before we were awoken. We check after
4245          * inspecting the hw to confirm that this was the same request
4246          * that generated the HWS update. The memory barriers within
4247          * the request execution are sufficient to ensure that a check
4248          * after reading the value from hw matches this request.
4249          */
4250         seqno = i915_gem_request_global_seqno(req);
4251         if (!seqno)
4252                 return false;
4253
4254         /* Before we do the heavier coherent read of the seqno,
4255          * check the value (hopefully) in the CPU cacheline.
4256          */
4257         if (__i915_gem_request_completed(req, seqno))
4258                 return true;
4259
4260         /* Ensure our read of the seqno is coherent so that we
4261          * do not "miss an interrupt" (i.e. if this is the last
4262          * request and the seqno write from the GPU is not visible
4263          * by the time the interrupt fires, we will see that the
4264          * request is incomplete and go back to sleep awaiting
4265          * another interrupt that will never come.)
4266          *
4267          * Strictly, we only need to do this once after an interrupt,
4268          * but it is easier and safer to do it every time the waiter
4269          * is woken.
4270          */
4271         if (engine->irq_seqno_barrier &&
4272             test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4273                 struct intel_breadcrumbs *b = &engine->breadcrumbs;
4274
4275                 /* The ordering of irq_posted versus applying the barrier
4276                  * is crucial. The clearing of the current irq_posted must
4277                  * be visible before we perform the barrier operation,
4278                  * such that if a subsequent interrupt arrives, irq_posted
4279                  * is reasserted and our task rewoken (which causes us to
4280                  * do another __i915_request_irq_complete() immediately
4281                  * and reapply the barrier). Conversely, if the clear
4282                  * occurs after the barrier, then an interrupt that arrived
4283                  * whilst we waited on the barrier would not trigger a
4284                  * barrier on the next pass, and the read may not see the
4285                  * seqno update.
4286                  */
4287                 engine->irq_seqno_barrier(engine);
4288
4289                 /* If we consume the irq, but we are no longer the bottom-half,
4290                  * the real bottom-half may not have serialised their own
4291                  * seqno check with the irq-barrier (i.e. may have inspected
4292                  * the seqno before we believe it coherent since they see
4293                  * irq_posted == false but we are still running).
4294                  */
4295                 spin_lock_irq(&b->irq_lock);
4296                 if (b->irq_wait && b->irq_wait->tsk != current)
4297                         /* Note that if the bottom-half is changed as we
4298                          * are sending the wake-up, the new bottom-half will
4299                          * be woken by whomever made the change. We only have
4300                          * to worry about when we steal the irq-posted for
4301                          * ourself.
4302                          */
4303                         wake_up_process(b->irq_wait->tsk);
4304                 spin_unlock_irq(&b->irq_lock);
4305
4306                 if (__i915_gem_request_completed(req, seqno))
4307                         return true;
4308         }
4309
4310         return false;
4311 }
4312
4313 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4314 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4315
4316 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4317  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4318  * perform the operation. To check beforehand, pass in the parameters to
4319  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4320  * you only need to pass in the minor offsets, page-aligned pointers are
4321  * always valid.
4322  *
4323  * For just checking for SSE4.1, in the foreknowledge that the future use
4324  * will be correctly aligned, just use i915_has_memcpy_from_wc().
4325  */
4326 #define i915_can_memcpy_from_wc(dst, src, len) \
4327         i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4328
4329 #define i915_has_memcpy_from_wc() \
4330         i915_memcpy_from_wc(NULL, NULL, 0)
4331
4332 /* i915_mm.c */
4333 int remap_io_mapping(struct vm_area_struct *vma,
4334                      unsigned long addr, unsigned long pfn, unsigned long size,
4335                      struct io_mapping *iomap);
4336
4337 static inline bool
4338 intel_engine_can_store_dword(struct intel_engine_cs *engine)
4339 {
4340         return __intel_engine_can_store_dword(INTEL_GEN(engine->i915),
4341                                               engine->class);
4342 }
4343
4344 #endif