Merge tag 'ceph-for-4.21-rc1' of git://github.com/ceph/ceph-client
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_atomic_helper.h>
47 #include <drm/i915_drm.h>
48
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "i915_pmu.h"
52 #include "i915_query.h"
53 #include "i915_vgpu.h"
54 #include "intel_drv.h"
55 #include "intel_uc.h"
56 #include "intel_workarounds.h"
57
58 static struct drm_driver driver;
59
60 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
61 static unsigned int i915_load_fail_count;
62
63 bool __i915_inject_load_failure(const char *func, int line)
64 {
65         if (i915_load_fail_count >= i915_modparams.inject_load_failure)
66                 return false;
67
68         if (++i915_load_fail_count == i915_modparams.inject_load_failure) {
69                 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
70                          i915_modparams.inject_load_failure, func, line);
71                 i915_modparams.inject_load_failure = 0;
72                 return true;
73         }
74
75         return false;
76 }
77
78 bool i915_error_injected(void)
79 {
80         return i915_load_fail_count && !i915_modparams.inject_load_failure;
81 }
82
83 #endif
84
85 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
86 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
87                     "providing the dmesg log by booting with drm.debug=0xf"
88
89 void
90 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
91               const char *fmt, ...)
92 {
93         static bool shown_bug_once;
94         struct device *kdev = dev_priv->drm.dev;
95         bool is_error = level[1] <= KERN_ERR[1];
96         bool is_debug = level[1] == KERN_DEBUG[1];
97         struct va_format vaf;
98         va_list args;
99
100         if (is_debug && !(drm_debug & DRM_UT_DRIVER))
101                 return;
102
103         va_start(args, fmt);
104
105         vaf.fmt = fmt;
106         vaf.va = &args;
107
108         if (is_error)
109                 dev_printk(level, kdev, "%pV", &vaf);
110         else
111                 dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
112                            __builtin_return_address(0), &vaf);
113
114         va_end(args);
115
116         if (is_error && !shown_bug_once) {
117                 /*
118                  * Ask the user to file a bug report for the error, except
119                  * if they may have caused the bug by fiddling with unsafe
120                  * module parameters.
121                  */
122                 if (!test_taint(TAINT_USER))
123                         dev_notice(kdev, "%s", FDO_BUG_MSG);
124                 shown_bug_once = true;
125         }
126 }
127
128 /* Map PCH device id to PCH type, or PCH_NONE if unknown. */
129 static enum intel_pch
130 intel_pch_type(const struct drm_i915_private *dev_priv, unsigned short id)
131 {
132         switch (id) {
133         case INTEL_PCH_IBX_DEVICE_ID_TYPE:
134                 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
135                 WARN_ON(!IS_GEN5(dev_priv));
136                 return PCH_IBX;
137         case INTEL_PCH_CPT_DEVICE_ID_TYPE:
138                 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
139                 WARN_ON(!IS_GEN6(dev_priv) && !IS_IVYBRIDGE(dev_priv));
140                 return PCH_CPT;
141         case INTEL_PCH_PPT_DEVICE_ID_TYPE:
142                 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
143                 WARN_ON(!IS_GEN6(dev_priv) && !IS_IVYBRIDGE(dev_priv));
144                 /* PantherPoint is CPT compatible */
145                 return PCH_CPT;
146         case INTEL_PCH_LPT_DEVICE_ID_TYPE:
147                 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
148                 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
149                 WARN_ON(IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv));
150                 return PCH_LPT;
151         case INTEL_PCH_LPT_LP_DEVICE_ID_TYPE:
152                 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
153                 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
154                 WARN_ON(!IS_HSW_ULT(dev_priv) && !IS_BDW_ULT(dev_priv));
155                 return PCH_LPT;
156         case INTEL_PCH_WPT_DEVICE_ID_TYPE:
157                 DRM_DEBUG_KMS("Found WildcatPoint PCH\n");
158                 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
159                 WARN_ON(IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv));
160                 /* WildcatPoint is LPT compatible */
161                 return PCH_LPT;
162         case INTEL_PCH_WPT_LP_DEVICE_ID_TYPE:
163                 DRM_DEBUG_KMS("Found WildcatPoint LP PCH\n");
164                 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
165                 WARN_ON(!IS_HSW_ULT(dev_priv) && !IS_BDW_ULT(dev_priv));
166                 /* WildcatPoint is LPT compatible */
167                 return PCH_LPT;
168         case INTEL_PCH_SPT_DEVICE_ID_TYPE:
169                 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
170                 WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv));
171                 return PCH_SPT;
172         case INTEL_PCH_SPT_LP_DEVICE_ID_TYPE:
173                 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
174                 WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv));
175                 return PCH_SPT;
176         case INTEL_PCH_KBP_DEVICE_ID_TYPE:
177                 DRM_DEBUG_KMS("Found Kaby Lake PCH (KBP)\n");
178                 WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv) &&
179                         !IS_COFFEELAKE(dev_priv));
180                 return PCH_KBP;
181         case INTEL_PCH_CNP_DEVICE_ID_TYPE:
182                 DRM_DEBUG_KMS("Found Cannon Lake PCH (CNP)\n");
183                 WARN_ON(!IS_CANNONLAKE(dev_priv) && !IS_COFFEELAKE(dev_priv));
184                 return PCH_CNP;
185         case INTEL_PCH_CNP_LP_DEVICE_ID_TYPE:
186                 DRM_DEBUG_KMS("Found Cannon Lake LP PCH (CNP-LP)\n");
187                 WARN_ON(!IS_CANNONLAKE(dev_priv) && !IS_COFFEELAKE(dev_priv));
188                 return PCH_CNP;
189         case INTEL_PCH_ICP_DEVICE_ID_TYPE:
190                 DRM_DEBUG_KMS("Found Ice Lake PCH\n");
191                 WARN_ON(!IS_ICELAKE(dev_priv));
192                 return PCH_ICP;
193         default:
194                 return PCH_NONE;
195         }
196 }
197
198 static bool intel_is_virt_pch(unsigned short id,
199                               unsigned short svendor, unsigned short sdevice)
200 {
201         return (id == INTEL_PCH_P2X_DEVICE_ID_TYPE ||
202                 id == INTEL_PCH_P3X_DEVICE_ID_TYPE ||
203                 (id == INTEL_PCH_QEMU_DEVICE_ID_TYPE &&
204                  svendor == PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
205                  sdevice == PCI_SUBDEVICE_ID_QEMU));
206 }
207
208 static unsigned short
209 intel_virt_detect_pch(const struct drm_i915_private *dev_priv)
210 {
211         unsigned short id = 0;
212
213         /*
214          * In a virtualized passthrough environment we can be in a
215          * setup where the ISA bridge is not able to be passed through.
216          * In this case, a south bridge can be emulated and we have to
217          * make an educated guess as to which PCH is really there.
218          */
219
220         if (IS_GEN5(dev_priv))
221                 id = INTEL_PCH_IBX_DEVICE_ID_TYPE;
222         else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
223                 id = INTEL_PCH_CPT_DEVICE_ID_TYPE;
224         else if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
225                 id = INTEL_PCH_LPT_LP_DEVICE_ID_TYPE;
226         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
227                 id = INTEL_PCH_LPT_DEVICE_ID_TYPE;
228         else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
229                 id = INTEL_PCH_SPT_DEVICE_ID_TYPE;
230         else if (IS_COFFEELAKE(dev_priv) || IS_CANNONLAKE(dev_priv))
231                 id = INTEL_PCH_CNP_DEVICE_ID_TYPE;
232         else if (IS_ICELAKE(dev_priv))
233                 id = INTEL_PCH_ICP_DEVICE_ID_TYPE;
234
235         if (id)
236                 DRM_DEBUG_KMS("Assuming PCH ID %04x\n", id);
237         else
238                 DRM_DEBUG_KMS("Assuming no PCH\n");
239
240         return id;
241 }
242
243 static void intel_detect_pch(struct drm_i915_private *dev_priv)
244 {
245         struct pci_dev *pch = NULL;
246
247         /*
248          * The reason to probe ISA bridge instead of Dev31:Fun0 is to
249          * make graphics device passthrough work easy for VMM, that only
250          * need to expose ISA bridge to let driver know the real hardware
251          * underneath. This is a requirement from virtualization team.
252          *
253          * In some virtualized environments (e.g. XEN), there is irrelevant
254          * ISA bridge in the system. To work reliably, we should scan trhough
255          * all the ISA bridge devices and check for the first match, instead
256          * of only checking the first one.
257          */
258         while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
259                 unsigned short id;
260                 enum intel_pch pch_type;
261
262                 if (pch->vendor != PCI_VENDOR_ID_INTEL)
263                         continue;
264
265                 id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
266
267                 pch_type = intel_pch_type(dev_priv, id);
268                 if (pch_type != PCH_NONE) {
269                         dev_priv->pch_type = pch_type;
270                         dev_priv->pch_id = id;
271                         break;
272                 } else if (intel_is_virt_pch(id, pch->subsystem_vendor,
273                                          pch->subsystem_device)) {
274                         id = intel_virt_detect_pch(dev_priv);
275                         pch_type = intel_pch_type(dev_priv, id);
276
277                         /* Sanity check virtual PCH id */
278                         if (WARN_ON(id && pch_type == PCH_NONE))
279                                 id = 0;
280
281                         dev_priv->pch_type = pch_type;
282                         dev_priv->pch_id = id;
283                         break;
284                 }
285         }
286
287         /*
288          * Use PCH_NOP (PCH but no South Display) for PCH platforms without
289          * display.
290          */
291         if (pch && !HAS_DISPLAY(dev_priv)) {
292                 DRM_DEBUG_KMS("Display disabled, reverting to NOP PCH\n");
293                 dev_priv->pch_type = PCH_NOP;
294                 dev_priv->pch_id = 0;
295         }
296
297         if (!pch)
298                 DRM_DEBUG_KMS("No PCH found.\n");
299
300         pci_dev_put(pch);
301 }
302
303 static int i915_getparam_ioctl(struct drm_device *dev, void *data,
304                                struct drm_file *file_priv)
305 {
306         struct drm_i915_private *dev_priv = to_i915(dev);
307         struct pci_dev *pdev = dev_priv->drm.pdev;
308         drm_i915_getparam_t *param = data;
309         int value;
310
311         switch (param->param) {
312         case I915_PARAM_IRQ_ACTIVE:
313         case I915_PARAM_ALLOW_BATCHBUFFER:
314         case I915_PARAM_LAST_DISPATCH:
315         case I915_PARAM_HAS_EXEC_CONSTANTS:
316                 /* Reject all old ums/dri params. */
317                 return -ENODEV;
318         case I915_PARAM_CHIPSET_ID:
319                 value = pdev->device;
320                 break;
321         case I915_PARAM_REVISION:
322                 value = pdev->revision;
323                 break;
324         case I915_PARAM_NUM_FENCES_AVAIL:
325                 value = dev_priv->num_fence_regs;
326                 break;
327         case I915_PARAM_HAS_OVERLAY:
328                 value = dev_priv->overlay ? 1 : 0;
329                 break;
330         case I915_PARAM_HAS_BSD:
331                 value = !!dev_priv->engine[VCS];
332                 break;
333         case I915_PARAM_HAS_BLT:
334                 value = !!dev_priv->engine[BCS];
335                 break;
336         case I915_PARAM_HAS_VEBOX:
337                 value = !!dev_priv->engine[VECS];
338                 break;
339         case I915_PARAM_HAS_BSD2:
340                 value = !!dev_priv->engine[VCS2];
341                 break;
342         case I915_PARAM_HAS_LLC:
343                 value = HAS_LLC(dev_priv);
344                 break;
345         case I915_PARAM_HAS_WT:
346                 value = HAS_WT(dev_priv);
347                 break;
348         case I915_PARAM_HAS_ALIASING_PPGTT:
349                 value = min_t(int, INTEL_PPGTT(dev_priv), I915_GEM_PPGTT_FULL);
350                 break;
351         case I915_PARAM_HAS_SEMAPHORES:
352                 value = HAS_LEGACY_SEMAPHORES(dev_priv);
353                 break;
354         case I915_PARAM_HAS_SECURE_BATCHES:
355                 value = capable(CAP_SYS_ADMIN);
356                 break;
357         case I915_PARAM_CMD_PARSER_VERSION:
358                 value = i915_cmd_parser_get_version(dev_priv);
359                 break;
360         case I915_PARAM_SUBSLICE_TOTAL:
361                 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
362                 if (!value)
363                         return -ENODEV;
364                 break;
365         case I915_PARAM_EU_TOTAL:
366                 value = INTEL_INFO(dev_priv)->sseu.eu_total;
367                 if (!value)
368                         return -ENODEV;
369                 break;
370         case I915_PARAM_HAS_GPU_RESET:
371                 value = i915_modparams.enable_hangcheck &&
372                         intel_has_gpu_reset(dev_priv);
373                 if (value && intel_has_reset_engine(dev_priv))
374                         value = 2;
375                 break;
376         case I915_PARAM_HAS_RESOURCE_STREAMER:
377                 value = 0;
378                 break;
379         case I915_PARAM_HAS_POOLED_EU:
380                 value = HAS_POOLED_EU(dev_priv);
381                 break;
382         case I915_PARAM_MIN_EU_IN_POOL:
383                 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
384                 break;
385         case I915_PARAM_HUC_STATUS:
386                 value = intel_huc_check_status(&dev_priv->huc);
387                 if (value < 0)
388                         return value;
389                 break;
390         case I915_PARAM_MMAP_GTT_VERSION:
391                 /* Though we've started our numbering from 1, and so class all
392                  * earlier versions as 0, in effect their value is undefined as
393                  * the ioctl will report EINVAL for the unknown param!
394                  */
395                 value = i915_gem_mmap_gtt_version();
396                 break;
397         case I915_PARAM_HAS_SCHEDULER:
398                 value = dev_priv->caps.scheduler;
399                 break;
400
401         case I915_PARAM_MMAP_VERSION:
402                 /* Remember to bump this if the version changes! */
403         case I915_PARAM_HAS_GEM:
404         case I915_PARAM_HAS_PAGEFLIPPING:
405         case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
406         case I915_PARAM_HAS_RELAXED_FENCING:
407         case I915_PARAM_HAS_COHERENT_RINGS:
408         case I915_PARAM_HAS_RELAXED_DELTA:
409         case I915_PARAM_HAS_GEN7_SOL_RESET:
410         case I915_PARAM_HAS_WAIT_TIMEOUT:
411         case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
412         case I915_PARAM_HAS_PINNED_BATCHES:
413         case I915_PARAM_HAS_EXEC_NO_RELOC:
414         case I915_PARAM_HAS_EXEC_HANDLE_LUT:
415         case I915_PARAM_HAS_COHERENT_PHYS_GTT:
416         case I915_PARAM_HAS_EXEC_SOFTPIN:
417         case I915_PARAM_HAS_EXEC_ASYNC:
418         case I915_PARAM_HAS_EXEC_FENCE:
419         case I915_PARAM_HAS_EXEC_CAPTURE:
420         case I915_PARAM_HAS_EXEC_BATCH_FIRST:
421         case I915_PARAM_HAS_EXEC_FENCE_ARRAY:
422                 /* For the time being all of these are always true;
423                  * if some supported hardware does not have one of these
424                  * features this value needs to be provided from
425                  * INTEL_INFO(), a feature macro, or similar.
426                  */
427                 value = 1;
428                 break;
429         case I915_PARAM_HAS_CONTEXT_ISOLATION:
430                 value = intel_engines_has_context_isolation(dev_priv);
431                 break;
432         case I915_PARAM_SLICE_MASK:
433                 value = INTEL_INFO(dev_priv)->sseu.slice_mask;
434                 if (!value)
435                         return -ENODEV;
436                 break;
437         case I915_PARAM_SUBSLICE_MASK:
438                 value = INTEL_INFO(dev_priv)->sseu.subslice_mask[0];
439                 if (!value)
440                         return -ENODEV;
441                 break;
442         case I915_PARAM_CS_TIMESTAMP_FREQUENCY:
443                 value = 1000 * INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz;
444                 break;
445         case I915_PARAM_MMAP_GTT_COHERENT:
446                 value = INTEL_INFO(dev_priv)->has_coherent_ggtt;
447                 break;
448         default:
449                 DRM_DEBUG("Unknown parameter %d\n", param->param);
450                 return -EINVAL;
451         }
452
453         if (put_user(value, param->value))
454                 return -EFAULT;
455
456         return 0;
457 }
458
459 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
460 {
461         int domain = pci_domain_nr(dev_priv->drm.pdev->bus);
462
463         dev_priv->bridge_dev =
464                 pci_get_domain_bus_and_slot(domain, 0, PCI_DEVFN(0, 0));
465         if (!dev_priv->bridge_dev) {
466                 DRM_ERROR("bridge device not found\n");
467                 return -1;
468         }
469         return 0;
470 }
471
472 /* Allocate space for the MCH regs if needed, return nonzero on error */
473 static int
474 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
475 {
476         int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
477         u32 temp_lo, temp_hi = 0;
478         u64 mchbar_addr;
479         int ret;
480
481         if (INTEL_GEN(dev_priv) >= 4)
482                 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
483         pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
484         mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
485
486         /* If ACPI doesn't have it, assume we need to allocate it ourselves */
487 #ifdef CONFIG_PNP
488         if (mchbar_addr &&
489             pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
490                 return 0;
491 #endif
492
493         /* Get some space for it */
494         dev_priv->mch_res.name = "i915 MCHBAR";
495         dev_priv->mch_res.flags = IORESOURCE_MEM;
496         ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
497                                      &dev_priv->mch_res,
498                                      MCHBAR_SIZE, MCHBAR_SIZE,
499                                      PCIBIOS_MIN_MEM,
500                                      0, pcibios_align_resource,
501                                      dev_priv->bridge_dev);
502         if (ret) {
503                 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
504                 dev_priv->mch_res.start = 0;
505                 return ret;
506         }
507
508         if (INTEL_GEN(dev_priv) >= 4)
509                 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
510                                        upper_32_bits(dev_priv->mch_res.start));
511
512         pci_write_config_dword(dev_priv->bridge_dev, reg,
513                                lower_32_bits(dev_priv->mch_res.start));
514         return 0;
515 }
516
517 /* Setup MCHBAR if possible, return true if we should disable it again */
518 static void
519 intel_setup_mchbar(struct drm_i915_private *dev_priv)
520 {
521         int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
522         u32 temp;
523         bool enabled;
524
525         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
526                 return;
527
528         dev_priv->mchbar_need_disable = false;
529
530         if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
531                 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
532                 enabled = !!(temp & DEVEN_MCHBAR_EN);
533         } else {
534                 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
535                 enabled = temp & 1;
536         }
537
538         /* If it's already enabled, don't have to do anything */
539         if (enabled)
540                 return;
541
542         if (intel_alloc_mchbar_resource(dev_priv))
543                 return;
544
545         dev_priv->mchbar_need_disable = true;
546
547         /* Space is allocated or reserved, so enable it. */
548         if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
549                 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
550                                        temp | DEVEN_MCHBAR_EN);
551         } else {
552                 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
553                 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
554         }
555 }
556
557 static void
558 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
559 {
560         int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
561
562         if (dev_priv->mchbar_need_disable) {
563                 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
564                         u32 deven_val;
565
566                         pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
567                                               &deven_val);
568                         deven_val &= ~DEVEN_MCHBAR_EN;
569                         pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
570                                                deven_val);
571                 } else {
572                         u32 mchbar_val;
573
574                         pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
575                                               &mchbar_val);
576                         mchbar_val &= ~1;
577                         pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
578                                                mchbar_val);
579                 }
580         }
581
582         if (dev_priv->mch_res.start)
583                 release_resource(&dev_priv->mch_res);
584 }
585
586 /* true = enable decode, false = disable decoder */
587 static unsigned int i915_vga_set_decode(void *cookie, bool state)
588 {
589         struct drm_i915_private *dev_priv = cookie;
590
591         intel_modeset_vga_set_state(dev_priv, state);
592         if (state)
593                 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
594                        VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
595         else
596                 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
597 }
598
599 static int i915_resume_switcheroo(struct drm_device *dev);
600 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
601
602 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
603 {
604         struct drm_device *dev = pci_get_drvdata(pdev);
605         pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
606
607         if (state == VGA_SWITCHEROO_ON) {
608                 pr_info("switched on\n");
609                 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
610                 /* i915 resume handler doesn't set to D0 */
611                 pci_set_power_state(pdev, PCI_D0);
612                 i915_resume_switcheroo(dev);
613                 dev->switch_power_state = DRM_SWITCH_POWER_ON;
614         } else {
615                 pr_info("switched off\n");
616                 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
617                 i915_suspend_switcheroo(dev, pmm);
618                 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
619         }
620 }
621
622 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
623 {
624         struct drm_device *dev = pci_get_drvdata(pdev);
625
626         /*
627          * FIXME: open_count is protected by drm_global_mutex but that would lead to
628          * locking inversion with the driver load path. And the access here is
629          * completely racy anyway. So don't bother with locking for now.
630          */
631         return dev->open_count == 0;
632 }
633
634 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
635         .set_gpu_state = i915_switcheroo_set_state,
636         .reprobe = NULL,
637         .can_switch = i915_switcheroo_can_switch,
638 };
639
640 static int i915_load_modeset_init(struct drm_device *dev)
641 {
642         struct drm_i915_private *dev_priv = to_i915(dev);
643         struct pci_dev *pdev = dev_priv->drm.pdev;
644         int ret;
645
646         if (i915_inject_load_failure())
647                 return -ENODEV;
648
649         if (HAS_DISPLAY(dev_priv)) {
650                 ret = drm_vblank_init(&dev_priv->drm,
651                                       INTEL_INFO(dev_priv)->num_pipes);
652                 if (ret)
653                         goto out;
654         }
655
656         intel_bios_init(dev_priv);
657
658         /* If we have > 1 VGA cards, then we need to arbitrate access
659          * to the common VGA resources.
660          *
661          * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
662          * then we do not take part in VGA arbitration and the
663          * vga_client_register() fails with -ENODEV.
664          */
665         ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
666         if (ret && ret != -ENODEV)
667                 goto out;
668
669         intel_register_dsm_handler();
670
671         ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
672         if (ret)
673                 goto cleanup_vga_client;
674
675         /* must happen before intel_power_domains_init_hw() on VLV/CHV */
676         intel_update_rawclk(dev_priv);
677
678         intel_power_domains_init_hw(dev_priv, false);
679
680         intel_csr_ucode_init(dev_priv);
681
682         ret = intel_irq_install(dev_priv);
683         if (ret)
684                 goto cleanup_csr;
685
686         intel_setup_gmbus(dev_priv);
687
688         /* Important: The output setup functions called by modeset_init need
689          * working irqs for e.g. gmbus and dp aux transfers. */
690         ret = intel_modeset_init(dev);
691         if (ret)
692                 goto cleanup_irq;
693
694         ret = i915_gem_init(dev_priv);
695         if (ret)
696                 goto cleanup_modeset;
697
698         intel_overlay_setup(dev_priv);
699
700         if (!HAS_DISPLAY(dev_priv))
701                 return 0;
702
703         ret = intel_fbdev_init(dev);
704         if (ret)
705                 goto cleanup_gem;
706
707         /* Only enable hotplug handling once the fbdev is fully set up. */
708         intel_hpd_init(dev_priv);
709
710         intel_init_ipc(dev_priv);
711
712         return 0;
713
714 cleanup_gem:
715         if (i915_gem_suspend(dev_priv))
716                 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
717         i915_gem_fini(dev_priv);
718 cleanup_modeset:
719         intel_modeset_cleanup(dev);
720 cleanup_irq:
721         drm_irq_uninstall(dev);
722         intel_teardown_gmbus(dev_priv);
723 cleanup_csr:
724         intel_csr_ucode_fini(dev_priv);
725         intel_power_domains_fini_hw(dev_priv);
726         vga_switcheroo_unregister_client(pdev);
727 cleanup_vga_client:
728         vga_client_register(pdev, NULL, NULL, NULL);
729 out:
730         return ret;
731 }
732
733 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
734 {
735         struct apertures_struct *ap;
736         struct pci_dev *pdev = dev_priv->drm.pdev;
737         struct i915_ggtt *ggtt = &dev_priv->ggtt;
738         bool primary;
739         int ret;
740
741         ap = alloc_apertures(1);
742         if (!ap)
743                 return -ENOMEM;
744
745         ap->ranges[0].base = ggtt->gmadr.start;
746         ap->ranges[0].size = ggtt->mappable_end;
747
748         primary =
749                 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
750
751         ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
752
753         kfree(ap);
754
755         return ret;
756 }
757
758 #if !defined(CONFIG_VGA_CONSOLE)
759 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
760 {
761         return 0;
762 }
763 #elif !defined(CONFIG_DUMMY_CONSOLE)
764 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
765 {
766         return -ENODEV;
767 }
768 #else
769 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
770 {
771         int ret = 0;
772
773         DRM_INFO("Replacing VGA console driver\n");
774
775         console_lock();
776         if (con_is_bound(&vga_con))
777                 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
778         if (ret == 0) {
779                 ret = do_unregister_con_driver(&vga_con);
780
781                 /* Ignore "already unregistered". */
782                 if (ret == -ENODEV)
783                         ret = 0;
784         }
785         console_unlock();
786
787         return ret;
788 }
789 #endif
790
791 static void intel_init_dpio(struct drm_i915_private *dev_priv)
792 {
793         /*
794          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
795          * CHV x1 PHY (DP/HDMI D)
796          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
797          */
798         if (IS_CHERRYVIEW(dev_priv)) {
799                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
800                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
801         } else if (IS_VALLEYVIEW(dev_priv)) {
802                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
803         }
804 }
805
806 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
807 {
808         /*
809          * The i915 workqueue is primarily used for batched retirement of
810          * requests (and thus managing bo) once the task has been completed
811          * by the GPU. i915_retire_requests() is called directly when we
812          * need high-priority retirement, such as waiting for an explicit
813          * bo.
814          *
815          * It is also used for periodic low-priority events, such as
816          * idle-timers and recording error state.
817          *
818          * All tasks on the workqueue are expected to acquire the dev mutex
819          * so there is no point in running more than one instance of the
820          * workqueue at any time.  Use an ordered one.
821          */
822         dev_priv->wq = alloc_ordered_workqueue("i915", 0);
823         if (dev_priv->wq == NULL)
824                 goto out_err;
825
826         dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
827         if (dev_priv->hotplug.dp_wq == NULL)
828                 goto out_free_wq;
829
830         return 0;
831
832 out_free_wq:
833         destroy_workqueue(dev_priv->wq);
834 out_err:
835         DRM_ERROR("Failed to allocate workqueues.\n");
836
837         return -ENOMEM;
838 }
839
840 static void i915_engines_cleanup(struct drm_i915_private *i915)
841 {
842         struct intel_engine_cs *engine;
843         enum intel_engine_id id;
844
845         for_each_engine(engine, i915, id)
846                 kfree(engine);
847 }
848
849 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
850 {
851         destroy_workqueue(dev_priv->hotplug.dp_wq);
852         destroy_workqueue(dev_priv->wq);
853 }
854
855 /*
856  * We don't keep the workarounds for pre-production hardware, so we expect our
857  * driver to fail on these machines in one way or another. A little warning on
858  * dmesg may help both the user and the bug triagers.
859  *
860  * Our policy for removing pre-production workarounds is to keep the
861  * current gen workarounds as a guide to the bring-up of the next gen
862  * (workarounds have a habit of persisting!). Anything older than that
863  * should be removed along with the complications they introduce.
864  */
865 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
866 {
867         bool pre = false;
868
869         pre |= IS_HSW_EARLY_SDV(dev_priv);
870         pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
871         pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
872         pre |= IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0);
873
874         if (pre) {
875                 DRM_ERROR("This is a pre-production stepping. "
876                           "It may not be fully functional.\n");
877                 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
878         }
879 }
880
881 /**
882  * i915_driver_init_early - setup state not requiring device access
883  * @dev_priv: device private
884  *
885  * Initialize everything that is a "SW-only" state, that is state not
886  * requiring accessing the device or exposing the driver via kernel internal
887  * or userspace interfaces. Example steps belonging here: lock initialization,
888  * system memory allocation, setting up device specific attributes and
889  * function hooks not requiring accessing the device.
890  */
891 static int i915_driver_init_early(struct drm_i915_private *dev_priv)
892 {
893         int ret = 0;
894
895         if (i915_inject_load_failure())
896                 return -ENODEV;
897
898         spin_lock_init(&dev_priv->irq_lock);
899         spin_lock_init(&dev_priv->gpu_error.lock);
900         mutex_init(&dev_priv->backlight_lock);
901         spin_lock_init(&dev_priv->uncore.lock);
902
903         mutex_init(&dev_priv->sb_lock);
904         mutex_init(&dev_priv->av_mutex);
905         mutex_init(&dev_priv->wm.wm_mutex);
906         mutex_init(&dev_priv->pps_mutex);
907
908         i915_memcpy_init_early(dev_priv);
909
910         ret = i915_workqueues_init(dev_priv);
911         if (ret < 0)
912                 goto err_engines;
913
914         ret = i915_gem_init_early(dev_priv);
915         if (ret < 0)
916                 goto err_workqueues;
917
918         /* This must be called before any calls to HAS_PCH_* */
919         intel_detect_pch(dev_priv);
920
921         intel_wopcm_init_early(&dev_priv->wopcm);
922         intel_uc_init_early(dev_priv);
923         intel_pm_setup(dev_priv);
924         intel_init_dpio(dev_priv);
925         ret = intel_power_domains_init(dev_priv);
926         if (ret < 0)
927                 goto err_uc;
928         intel_irq_init(dev_priv);
929         intel_hangcheck_init(dev_priv);
930         intel_init_display_hooks(dev_priv);
931         intel_init_clock_gating_hooks(dev_priv);
932         intel_init_audio_hooks(dev_priv);
933         intel_display_crc_init(dev_priv);
934
935         intel_detect_preproduction_hw(dev_priv);
936
937         return 0;
938
939 err_uc:
940         intel_uc_cleanup_early(dev_priv);
941         i915_gem_cleanup_early(dev_priv);
942 err_workqueues:
943         i915_workqueues_cleanup(dev_priv);
944 err_engines:
945         i915_engines_cleanup(dev_priv);
946         return ret;
947 }
948
949 /**
950  * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
951  * @dev_priv: device private
952  */
953 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
954 {
955         intel_irq_fini(dev_priv);
956         intel_power_domains_cleanup(dev_priv);
957         intel_uc_cleanup_early(dev_priv);
958         i915_gem_cleanup_early(dev_priv);
959         i915_workqueues_cleanup(dev_priv);
960         i915_engines_cleanup(dev_priv);
961 }
962
963 static int i915_mmio_setup(struct drm_i915_private *dev_priv)
964 {
965         struct pci_dev *pdev = dev_priv->drm.pdev;
966         int mmio_bar;
967         int mmio_size;
968
969         mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
970         /*
971          * Before gen4, the registers and the GTT are behind different BARs.
972          * However, from gen4 onwards, the registers and the GTT are shared
973          * in the same BAR, so we want to restrict this ioremap from
974          * clobbering the GTT which we want ioremap_wc instead. Fortunately,
975          * the register BAR remains the same size for all the earlier
976          * generations up to Ironlake.
977          */
978         if (INTEL_GEN(dev_priv) < 5)
979                 mmio_size = 512 * 1024;
980         else
981                 mmio_size = 2 * 1024 * 1024;
982         dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
983         if (dev_priv->regs == NULL) {
984                 DRM_ERROR("failed to map registers\n");
985
986                 return -EIO;
987         }
988
989         /* Try to make sure MCHBAR is enabled before poking at it */
990         intel_setup_mchbar(dev_priv);
991
992         return 0;
993 }
994
995 static void i915_mmio_cleanup(struct drm_i915_private *dev_priv)
996 {
997         struct pci_dev *pdev = dev_priv->drm.pdev;
998
999         intel_teardown_mchbar(dev_priv);
1000         pci_iounmap(pdev, dev_priv->regs);
1001 }
1002
1003 /**
1004  * i915_driver_init_mmio - setup device MMIO
1005  * @dev_priv: device private
1006  *
1007  * Setup minimal device state necessary for MMIO accesses later in the
1008  * initialization sequence. The setup here should avoid any other device-wide
1009  * side effects or exposing the driver via kernel internal or user space
1010  * interfaces.
1011  */
1012 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
1013 {
1014         int ret;
1015
1016         if (i915_inject_load_failure())
1017                 return -ENODEV;
1018
1019         if (i915_get_bridge_dev(dev_priv))
1020                 return -EIO;
1021
1022         ret = i915_mmio_setup(dev_priv);
1023         if (ret < 0)
1024                 goto err_bridge;
1025
1026         intel_uncore_init(dev_priv);
1027
1028         intel_device_info_init_mmio(dev_priv);
1029
1030         intel_uncore_prune(dev_priv);
1031
1032         intel_uc_init_mmio(dev_priv);
1033
1034         ret = intel_engines_init_mmio(dev_priv);
1035         if (ret)
1036                 goto err_uncore;
1037
1038         i915_gem_init_mmio(dev_priv);
1039
1040         return 0;
1041
1042 err_uncore:
1043         intel_uncore_fini(dev_priv);
1044         i915_mmio_cleanup(dev_priv);
1045 err_bridge:
1046         pci_dev_put(dev_priv->bridge_dev);
1047
1048         return ret;
1049 }
1050
1051 /**
1052  * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
1053  * @dev_priv: device private
1054  */
1055 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
1056 {
1057         intel_uncore_fini(dev_priv);
1058         i915_mmio_cleanup(dev_priv);
1059         pci_dev_put(dev_priv->bridge_dev);
1060 }
1061
1062 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
1063 {
1064         intel_gvt_sanitize_options(dev_priv);
1065 }
1066
1067 static enum dram_rank skl_get_dimm_rank(u8 size, u32 rank)
1068 {
1069         if (size == 0)
1070                 return I915_DRAM_RANK_INVALID;
1071         if (rank == SKL_DRAM_RANK_SINGLE)
1072                 return I915_DRAM_RANK_SINGLE;
1073         else if (rank == SKL_DRAM_RANK_DUAL)
1074                 return I915_DRAM_RANK_DUAL;
1075
1076         return I915_DRAM_RANK_INVALID;
1077 }
1078
1079 static bool
1080 skl_is_16gb_dimm(enum dram_rank rank, u8 size, u8 width)
1081 {
1082         if (rank == I915_DRAM_RANK_SINGLE && width == 8 && size == 16)
1083                 return true;
1084         else if (rank == I915_DRAM_RANK_DUAL && width == 8 && size == 32)
1085                 return true;
1086         else if (rank == SKL_DRAM_RANK_SINGLE && width == 16 && size == 8)
1087                 return true;
1088         else if (rank == SKL_DRAM_RANK_DUAL && width == 16 && size == 16)
1089                 return true;
1090
1091         return false;
1092 }
1093
1094 static int
1095 skl_dram_get_channel_info(struct dram_channel_info *ch, u32 val)
1096 {
1097         u32 tmp_l, tmp_s;
1098         u32 s_val = val >> SKL_DRAM_S_SHIFT;
1099
1100         if (!val)
1101                 return -EINVAL;
1102
1103         tmp_l = val & SKL_DRAM_SIZE_MASK;
1104         tmp_s = s_val & SKL_DRAM_SIZE_MASK;
1105
1106         if (tmp_l == 0 && tmp_s == 0)
1107                 return -EINVAL;
1108
1109         ch->l_info.size = tmp_l;
1110         ch->s_info.size = tmp_s;
1111
1112         tmp_l = (val & SKL_DRAM_WIDTH_MASK) >> SKL_DRAM_WIDTH_SHIFT;
1113         tmp_s = (s_val & SKL_DRAM_WIDTH_MASK) >> SKL_DRAM_WIDTH_SHIFT;
1114         ch->l_info.width = (1 << tmp_l) * 8;
1115         ch->s_info.width = (1 << tmp_s) * 8;
1116
1117         tmp_l = val & SKL_DRAM_RANK_MASK;
1118         tmp_s = s_val & SKL_DRAM_RANK_MASK;
1119         ch->l_info.rank = skl_get_dimm_rank(ch->l_info.size, tmp_l);
1120         ch->s_info.rank = skl_get_dimm_rank(ch->s_info.size, tmp_s);
1121
1122         if (ch->l_info.rank == I915_DRAM_RANK_DUAL ||
1123             ch->s_info.rank == I915_DRAM_RANK_DUAL)
1124                 ch->rank = I915_DRAM_RANK_DUAL;
1125         else if (ch->l_info.rank == I915_DRAM_RANK_SINGLE &&
1126                  ch->s_info.rank == I915_DRAM_RANK_SINGLE)
1127                 ch->rank = I915_DRAM_RANK_DUAL;
1128         else
1129                 ch->rank = I915_DRAM_RANK_SINGLE;
1130
1131         ch->is_16gb_dimm = skl_is_16gb_dimm(ch->l_info.rank, ch->l_info.size,
1132                                             ch->l_info.width) ||
1133                            skl_is_16gb_dimm(ch->s_info.rank, ch->s_info.size,
1134                                             ch->s_info.width);
1135
1136         DRM_DEBUG_KMS("(size:width:rank) L(%dGB:X%d:%s) S(%dGB:X%d:%s)\n",
1137                       ch->l_info.size, ch->l_info.width,
1138                       ch->l_info.rank ? "dual" : "single",
1139                       ch->s_info.size, ch->s_info.width,
1140                       ch->s_info.rank ? "dual" : "single");
1141
1142         return 0;
1143 }
1144
1145 static bool
1146 intel_is_dram_symmetric(u32 val_ch0, u32 val_ch1,
1147                         struct dram_channel_info *ch0)
1148 {
1149         return (val_ch0 == val_ch1 &&
1150                 (ch0->s_info.size == 0 ||
1151                  (ch0->l_info.size == ch0->s_info.size &&
1152                   ch0->l_info.width == ch0->s_info.width &&
1153                   ch0->l_info.rank == ch0->s_info.rank)));
1154 }
1155
1156 static int
1157 skl_dram_get_channels_info(struct drm_i915_private *dev_priv)
1158 {
1159         struct dram_info *dram_info = &dev_priv->dram_info;
1160         struct dram_channel_info ch0, ch1;
1161         u32 val_ch0, val_ch1;
1162         int ret;
1163
1164         val_ch0 = I915_READ(SKL_MAD_DIMM_CH0_0_0_0_MCHBAR_MCMAIN);
1165         ret = skl_dram_get_channel_info(&ch0, val_ch0);
1166         if (ret == 0)
1167                 dram_info->num_channels++;
1168
1169         val_ch1 = I915_READ(SKL_MAD_DIMM_CH1_0_0_0_MCHBAR_MCMAIN);
1170         ret = skl_dram_get_channel_info(&ch1, val_ch1);
1171         if (ret == 0)
1172                 dram_info->num_channels++;
1173
1174         if (dram_info->num_channels == 0) {
1175                 DRM_INFO("Number of memory channels is zero\n");
1176                 return -EINVAL;
1177         }
1178
1179         /*
1180          * If any of the channel is single rank channel, worst case output
1181          * will be same as if single rank memory, so consider single rank
1182          * memory.
1183          */
1184         if (ch0.rank == I915_DRAM_RANK_SINGLE ||
1185             ch1.rank == I915_DRAM_RANK_SINGLE)
1186                 dram_info->rank = I915_DRAM_RANK_SINGLE;
1187         else
1188                 dram_info->rank = max(ch0.rank, ch1.rank);
1189
1190         if (dram_info->rank == I915_DRAM_RANK_INVALID) {
1191                 DRM_INFO("couldn't get memory rank information\n");
1192                 return -EINVAL;
1193         }
1194
1195         dram_info->is_16gb_dimm = ch0.is_16gb_dimm || ch1.is_16gb_dimm;
1196
1197         dev_priv->dram_info.symmetric_memory = intel_is_dram_symmetric(val_ch0,
1198                                                                        val_ch1,
1199                                                                        &ch0);
1200
1201         DRM_DEBUG_KMS("memory configuration is %sSymmetric memory\n",
1202                       dev_priv->dram_info.symmetric_memory ? "" : "not ");
1203         return 0;
1204 }
1205
1206 static int
1207 skl_get_dram_info(struct drm_i915_private *dev_priv)
1208 {
1209         struct dram_info *dram_info = &dev_priv->dram_info;
1210         u32 mem_freq_khz, val;
1211         int ret;
1212
1213         ret = skl_dram_get_channels_info(dev_priv);
1214         if (ret)
1215                 return ret;
1216
1217         val = I915_READ(SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
1218         mem_freq_khz = DIV_ROUND_UP((val & SKL_REQ_DATA_MASK) *
1219                                     SKL_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
1220
1221         dram_info->bandwidth_kbps = dram_info->num_channels *
1222                                                         mem_freq_khz * 8;
1223
1224         if (dram_info->bandwidth_kbps == 0) {
1225                 DRM_INFO("Couldn't get system memory bandwidth\n");
1226                 return -EINVAL;
1227         }
1228
1229         dram_info->valid = true;
1230         return 0;
1231 }
1232
1233 static int
1234 bxt_get_dram_info(struct drm_i915_private *dev_priv)
1235 {
1236         struct dram_info *dram_info = &dev_priv->dram_info;
1237         u32 dram_channels;
1238         u32 mem_freq_khz, val;
1239         u8 num_active_channels;
1240         int i;
1241
1242         val = I915_READ(BXT_P_CR_MC_BIOS_REQ_0_0_0);
1243         mem_freq_khz = DIV_ROUND_UP((val & BXT_REQ_DATA_MASK) *
1244                                     BXT_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
1245
1246         dram_channels = val & BXT_DRAM_CHANNEL_ACTIVE_MASK;
1247         num_active_channels = hweight32(dram_channels);
1248
1249         /* Each active bit represents 4-byte channel */
1250         dram_info->bandwidth_kbps = (mem_freq_khz * num_active_channels * 4);
1251
1252         if (dram_info->bandwidth_kbps == 0) {
1253                 DRM_INFO("Couldn't get system memory bandwidth\n");
1254                 return -EINVAL;
1255         }
1256
1257         /*
1258          * Now read each DUNIT8/9/10/11 to check the rank of each dimms.
1259          */
1260         for (i = BXT_D_CR_DRP0_DUNIT_START; i <= BXT_D_CR_DRP0_DUNIT_END; i++) {
1261                 u8 size, width;
1262                 enum dram_rank rank;
1263                 u32 tmp;
1264
1265                 val = I915_READ(BXT_D_CR_DRP0_DUNIT(i));
1266                 if (val == 0xFFFFFFFF)
1267                         continue;
1268
1269                 dram_info->num_channels++;
1270                 tmp = val & BXT_DRAM_RANK_MASK;
1271
1272                 if (tmp == BXT_DRAM_RANK_SINGLE)
1273                         rank = I915_DRAM_RANK_SINGLE;
1274                 else if (tmp == BXT_DRAM_RANK_DUAL)
1275                         rank = I915_DRAM_RANK_DUAL;
1276                 else
1277                         rank = I915_DRAM_RANK_INVALID;
1278
1279                 tmp = val & BXT_DRAM_SIZE_MASK;
1280                 if (tmp == BXT_DRAM_SIZE_4GB)
1281                         size = 4;
1282                 else if (tmp == BXT_DRAM_SIZE_6GB)
1283                         size = 6;
1284                 else if (tmp == BXT_DRAM_SIZE_8GB)
1285                         size = 8;
1286                 else if (tmp == BXT_DRAM_SIZE_12GB)
1287                         size = 12;
1288                 else if (tmp == BXT_DRAM_SIZE_16GB)
1289                         size = 16;
1290                 else
1291                         size = 0;
1292
1293                 tmp = (val & BXT_DRAM_WIDTH_MASK) >> BXT_DRAM_WIDTH_SHIFT;
1294                 width = (1 << tmp) * 8;
1295                 DRM_DEBUG_KMS("dram size:%dGB width:X%d rank:%s\n", size,
1296                               width, rank == I915_DRAM_RANK_SINGLE ? "single" :
1297                               rank == I915_DRAM_RANK_DUAL ? "dual" : "unknown");
1298
1299                 /*
1300                  * If any of the channel is single rank channel,
1301                  * worst case output will be same as if single rank
1302                  * memory, so consider single rank memory.
1303                  */
1304                 if (dram_info->rank == I915_DRAM_RANK_INVALID)
1305                         dram_info->rank = rank;
1306                 else if (rank == I915_DRAM_RANK_SINGLE)
1307                         dram_info->rank = I915_DRAM_RANK_SINGLE;
1308         }
1309
1310         if (dram_info->rank == I915_DRAM_RANK_INVALID) {
1311                 DRM_INFO("couldn't get memory rank information\n");
1312                 return -EINVAL;
1313         }
1314
1315         dram_info->valid = true;
1316         return 0;
1317 }
1318
1319 static void
1320 intel_get_dram_info(struct drm_i915_private *dev_priv)
1321 {
1322         struct dram_info *dram_info = &dev_priv->dram_info;
1323         char bandwidth_str[32];
1324         int ret;
1325
1326         dram_info->valid = false;
1327         dram_info->rank = I915_DRAM_RANK_INVALID;
1328         dram_info->bandwidth_kbps = 0;
1329         dram_info->num_channels = 0;
1330
1331         /*
1332          * Assume 16Gb DIMMs are present until proven otherwise.
1333          * This is only used for the level 0 watermark latency
1334          * w/a which does not apply to bxt/glk.
1335          */
1336         dram_info->is_16gb_dimm = !IS_GEN9_LP(dev_priv);
1337
1338         if (INTEL_GEN(dev_priv) < 9 || IS_GEMINILAKE(dev_priv))
1339                 return;
1340
1341         /* Need to calculate bandwidth only for Gen9 */
1342         if (IS_BROXTON(dev_priv))
1343                 ret = bxt_get_dram_info(dev_priv);
1344         else if (IS_GEN9(dev_priv))
1345                 ret = skl_get_dram_info(dev_priv);
1346         else
1347                 ret = skl_dram_get_channels_info(dev_priv);
1348         if (ret)
1349                 return;
1350
1351         if (dram_info->bandwidth_kbps)
1352                 sprintf(bandwidth_str, "%d KBps", dram_info->bandwidth_kbps);
1353         else
1354                 sprintf(bandwidth_str, "unknown");
1355         DRM_DEBUG_KMS("DRAM bandwidth:%s, total-channels: %u\n",
1356                       bandwidth_str, dram_info->num_channels);
1357         DRM_DEBUG_KMS("DRAM rank: %s rank 16GB-dimm:%s\n",
1358                       (dram_info->rank == I915_DRAM_RANK_DUAL) ?
1359                       "dual" : "single", yesno(dram_info->is_16gb_dimm));
1360 }
1361
1362 /**
1363  * i915_driver_init_hw - setup state requiring device access
1364  * @dev_priv: device private
1365  *
1366  * Setup state that requires accessing the device, but doesn't require
1367  * exposing the driver via kernel internal or userspace interfaces.
1368  */
1369 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
1370 {
1371         struct pci_dev *pdev = dev_priv->drm.pdev;
1372         int ret;
1373
1374         if (i915_inject_load_failure())
1375                 return -ENODEV;
1376
1377         intel_device_info_runtime_init(mkwrite_device_info(dev_priv));
1378
1379         if (HAS_PPGTT(dev_priv)) {
1380                 if (intel_vgpu_active(dev_priv) &&
1381                     !intel_vgpu_has_full_48bit_ppgtt(dev_priv)) {
1382                         i915_report_error(dev_priv,
1383                                           "incompatible vGPU found, support for isolated ppGTT required\n");
1384                         return -ENXIO;
1385                 }
1386         }
1387
1388         if (HAS_EXECLISTS(dev_priv)) {
1389                 /*
1390                  * Older GVT emulation depends upon intercepting CSB mmio,
1391                  * which we no longer use, preferring to use the HWSP cache
1392                  * instead.
1393                  */
1394                 if (intel_vgpu_active(dev_priv) &&
1395                     !intel_vgpu_has_hwsp_emulation(dev_priv)) {
1396                         i915_report_error(dev_priv,
1397                                           "old vGPU host found, support for HWSP emulation required\n");
1398                         return -ENXIO;
1399                 }
1400         }
1401
1402         intel_sanitize_options(dev_priv);
1403
1404         i915_perf_init(dev_priv);
1405
1406         ret = i915_ggtt_probe_hw(dev_priv);
1407         if (ret)
1408                 goto err_perf;
1409
1410         /*
1411          * WARNING: Apparently we must kick fbdev drivers before vgacon,
1412          * otherwise the vga fbdev driver falls over.
1413          */
1414         ret = i915_kick_out_firmware_fb(dev_priv);
1415         if (ret) {
1416                 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1417                 goto err_ggtt;
1418         }
1419
1420         ret = i915_kick_out_vgacon(dev_priv);
1421         if (ret) {
1422                 DRM_ERROR("failed to remove conflicting VGA console\n");
1423                 goto err_ggtt;
1424         }
1425
1426         ret = i915_ggtt_init_hw(dev_priv);
1427         if (ret)
1428                 goto err_ggtt;
1429
1430         ret = i915_ggtt_enable_hw(dev_priv);
1431         if (ret) {
1432                 DRM_ERROR("failed to enable GGTT\n");
1433                 goto err_ggtt;
1434         }
1435
1436         pci_set_master(pdev);
1437
1438         /* overlay on gen2 is broken and can't address above 1G */
1439         if (IS_GEN2(dev_priv)) {
1440                 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1441                 if (ret) {
1442                         DRM_ERROR("failed to set DMA mask\n");
1443
1444                         goto err_ggtt;
1445                 }
1446         }
1447
1448         /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1449          * using 32bit addressing, overwriting memory if HWS is located
1450          * above 4GB.
1451          *
1452          * The documentation also mentions an issue with undefined
1453          * behaviour if any general state is accessed within a page above 4GB,
1454          * which also needs to be handled carefully.
1455          */
1456         if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1457                 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1458
1459                 if (ret) {
1460                         DRM_ERROR("failed to set DMA mask\n");
1461
1462                         goto err_ggtt;
1463                 }
1464         }
1465
1466         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1467                            PM_QOS_DEFAULT_VALUE);
1468
1469         intel_uncore_sanitize(dev_priv);
1470
1471         intel_gt_init_workarounds(dev_priv);
1472         i915_gem_load_init_fences(dev_priv);
1473
1474         /* On the 945G/GM, the chipset reports the MSI capability on the
1475          * integrated graphics even though the support isn't actually there
1476          * according to the published specs.  It doesn't appear to function
1477          * correctly in testing on 945G.
1478          * This may be a side effect of MSI having been made available for PEG
1479          * and the registers being closely associated.
1480          *
1481          * According to chipset errata, on the 965GM, MSI interrupts may
1482          * be lost or delayed, and was defeatured. MSI interrupts seem to
1483          * get lost on g4x as well, and interrupt delivery seems to stay
1484          * properly dead afterwards. So we'll just disable them for all
1485          * pre-gen5 chipsets.
1486          *
1487          * dp aux and gmbus irq on gen4 seems to be able to generate legacy
1488          * interrupts even when in MSI mode. This results in spurious
1489          * interrupt warnings if the legacy irq no. is shared with another
1490          * device. The kernel then disables that interrupt source and so
1491          * prevents the other device from working properly.
1492          */
1493         if (INTEL_GEN(dev_priv) >= 5) {
1494                 if (pci_enable_msi(pdev) < 0)
1495                         DRM_DEBUG_DRIVER("can't enable MSI");
1496         }
1497
1498         ret = intel_gvt_init(dev_priv);
1499         if (ret)
1500                 goto err_msi;
1501
1502         intel_opregion_setup(dev_priv);
1503         /*
1504          * Fill the dram structure to get the system raw bandwidth and
1505          * dram info. This will be used for memory latency calculation.
1506          */
1507         intel_get_dram_info(dev_priv);
1508
1509
1510         return 0;
1511
1512 err_msi:
1513         if (pdev->msi_enabled)
1514                 pci_disable_msi(pdev);
1515         pm_qos_remove_request(&dev_priv->pm_qos);
1516 err_ggtt:
1517         i915_ggtt_cleanup_hw(dev_priv);
1518 err_perf:
1519         i915_perf_fini(dev_priv);
1520         return ret;
1521 }
1522
1523 /**
1524  * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1525  * @dev_priv: device private
1526  */
1527 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1528 {
1529         struct pci_dev *pdev = dev_priv->drm.pdev;
1530
1531         i915_perf_fini(dev_priv);
1532
1533         if (pdev->msi_enabled)
1534                 pci_disable_msi(pdev);
1535
1536         pm_qos_remove_request(&dev_priv->pm_qos);
1537         i915_ggtt_cleanup_hw(dev_priv);
1538 }
1539
1540 /**
1541  * i915_driver_register - register the driver with the rest of the system
1542  * @dev_priv: device private
1543  *
1544  * Perform any steps necessary to make the driver available via kernel
1545  * internal or userspace interfaces.
1546  */
1547 static void i915_driver_register(struct drm_i915_private *dev_priv)
1548 {
1549         struct drm_device *dev = &dev_priv->drm;
1550
1551         i915_gem_shrinker_register(dev_priv);
1552         i915_pmu_register(dev_priv);
1553
1554         /*
1555          * Notify a valid surface after modesetting,
1556          * when running inside a VM.
1557          */
1558         if (intel_vgpu_active(dev_priv))
1559                 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1560
1561         /* Reveal our presence to userspace */
1562         if (drm_dev_register(dev, 0) == 0) {
1563                 i915_debugfs_register(dev_priv);
1564                 i915_setup_sysfs(dev_priv);
1565
1566                 /* Depends on sysfs having been initialized */
1567                 i915_perf_register(dev_priv);
1568         } else
1569                 DRM_ERROR("Failed to register driver for userspace access!\n");
1570
1571         if (HAS_DISPLAY(dev_priv)) {
1572                 /* Must be done after probing outputs */
1573                 intel_opregion_register(dev_priv);
1574                 acpi_video_register();
1575         }
1576
1577         if (IS_GEN5(dev_priv))
1578                 intel_gpu_ips_init(dev_priv);
1579
1580         intel_audio_init(dev_priv);
1581
1582         /*
1583          * Some ports require correctly set-up hpd registers for detection to
1584          * work properly (leading to ghost connected connector status), e.g. VGA
1585          * on gm45.  Hence we can only set up the initial fbdev config after hpd
1586          * irqs are fully enabled. We do it last so that the async config
1587          * cannot run before the connectors are registered.
1588          */
1589         intel_fbdev_initial_config_async(dev);
1590
1591         /*
1592          * We need to coordinate the hotplugs with the asynchronous fbdev
1593          * configuration, for which we use the fbdev->async_cookie.
1594          */
1595         if (HAS_DISPLAY(dev_priv))
1596                 drm_kms_helper_poll_init(dev);
1597
1598         intel_power_domains_enable(dev_priv);
1599         intel_runtime_pm_enable(dev_priv);
1600 }
1601
1602 /**
1603  * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1604  * @dev_priv: device private
1605  */
1606 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1607 {
1608         intel_runtime_pm_disable(dev_priv);
1609         intel_power_domains_disable(dev_priv);
1610
1611         intel_fbdev_unregister(dev_priv);
1612         intel_audio_deinit(dev_priv);
1613
1614         /*
1615          * After flushing the fbdev (incl. a late async config which will
1616          * have delayed queuing of a hotplug event), then flush the hotplug
1617          * events.
1618          */
1619         drm_kms_helper_poll_fini(&dev_priv->drm);
1620
1621         intel_gpu_ips_teardown();
1622         acpi_video_unregister();
1623         intel_opregion_unregister(dev_priv);
1624
1625         i915_perf_unregister(dev_priv);
1626         i915_pmu_unregister(dev_priv);
1627
1628         i915_teardown_sysfs(dev_priv);
1629         drm_dev_unregister(&dev_priv->drm);
1630
1631         i915_gem_shrinker_unregister(dev_priv);
1632 }
1633
1634 static void i915_welcome_messages(struct drm_i915_private *dev_priv)
1635 {
1636         if (drm_debug & DRM_UT_DRIVER) {
1637                 struct drm_printer p = drm_debug_printer("i915 device info:");
1638
1639                 intel_device_info_dump(&dev_priv->info, &p);
1640                 intel_device_info_dump_runtime(&dev_priv->info, &p);
1641         }
1642
1643         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1644                 DRM_INFO("DRM_I915_DEBUG enabled\n");
1645         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1646                 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1647         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM))
1648                 DRM_INFO("DRM_I915_DEBUG_RUNTIME_PM enabled\n");
1649 }
1650
1651 static struct drm_i915_private *
1652 i915_driver_create(struct pci_dev *pdev, const struct pci_device_id *ent)
1653 {
1654         const struct intel_device_info *match_info =
1655                 (struct intel_device_info *)ent->driver_data;
1656         struct intel_device_info *device_info;
1657         struct drm_i915_private *i915;
1658         int err;
1659
1660         i915 = kzalloc(sizeof(*i915), GFP_KERNEL);
1661         if (!i915)
1662                 return ERR_PTR(-ENOMEM);
1663
1664         err = drm_dev_init(&i915->drm, &driver, &pdev->dev);
1665         if (err) {
1666                 kfree(i915);
1667                 return ERR_PTR(err);
1668         }
1669
1670         i915->drm.pdev = pdev;
1671         i915->drm.dev_private = i915;
1672         pci_set_drvdata(pdev, &i915->drm);
1673
1674         /* Setup the write-once "constant" device info */
1675         device_info = mkwrite_device_info(i915);
1676         memcpy(device_info, match_info, sizeof(*device_info));
1677         device_info->device_id = pdev->device;
1678
1679         BUILD_BUG_ON(INTEL_MAX_PLATFORMS >
1680                      BITS_PER_TYPE(device_info->platform_mask));
1681         BUG_ON(device_info->gen > BITS_PER_TYPE(device_info->gen_mask));
1682
1683         return i915;
1684 }
1685
1686 static void i915_driver_destroy(struct drm_i915_private *i915)
1687 {
1688         struct pci_dev *pdev = i915->drm.pdev;
1689
1690         drm_dev_fini(&i915->drm);
1691         kfree(i915);
1692
1693         /* And make sure we never chase our dangling pointer from pci_dev */
1694         pci_set_drvdata(pdev, NULL);
1695 }
1696
1697 /**
1698  * i915_driver_load - setup chip and create an initial config
1699  * @pdev: PCI device
1700  * @ent: matching PCI ID entry
1701  *
1702  * The driver load routine has to do several things:
1703  *   - drive output discovery via intel_modeset_init()
1704  *   - initialize the memory manager
1705  *   - allocate initial config memory
1706  *   - setup the DRM framebuffer with the allocated memory
1707  */
1708 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1709 {
1710         const struct intel_device_info *match_info =
1711                 (struct intel_device_info *)ent->driver_data;
1712         struct drm_i915_private *dev_priv;
1713         int ret;
1714
1715         dev_priv = i915_driver_create(pdev, ent);
1716         if (IS_ERR(dev_priv))
1717                 return PTR_ERR(dev_priv);
1718
1719         /* Disable nuclear pageflip by default on pre-ILK */
1720         if (!i915_modparams.nuclear_pageflip && match_info->gen < 5)
1721                 dev_priv->drm.driver_features &= ~DRIVER_ATOMIC;
1722
1723         ret = pci_enable_device(pdev);
1724         if (ret)
1725                 goto out_fini;
1726
1727         ret = i915_driver_init_early(dev_priv);
1728         if (ret < 0)
1729                 goto out_pci_disable;
1730
1731         disable_rpm_wakeref_asserts(dev_priv);
1732
1733         ret = i915_driver_init_mmio(dev_priv);
1734         if (ret < 0)
1735                 goto out_runtime_pm_put;
1736
1737         ret = i915_driver_init_hw(dev_priv);
1738         if (ret < 0)
1739                 goto out_cleanup_mmio;
1740
1741         ret = i915_load_modeset_init(&dev_priv->drm);
1742         if (ret < 0)
1743                 goto out_cleanup_hw;
1744
1745         i915_driver_register(dev_priv);
1746
1747         enable_rpm_wakeref_asserts(dev_priv);
1748
1749         i915_welcome_messages(dev_priv);
1750
1751         return 0;
1752
1753 out_cleanup_hw:
1754         i915_driver_cleanup_hw(dev_priv);
1755 out_cleanup_mmio:
1756         i915_driver_cleanup_mmio(dev_priv);
1757 out_runtime_pm_put:
1758         enable_rpm_wakeref_asserts(dev_priv);
1759         i915_driver_cleanup_early(dev_priv);
1760 out_pci_disable:
1761         pci_disable_device(pdev);
1762 out_fini:
1763         i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1764         i915_driver_destroy(dev_priv);
1765         return ret;
1766 }
1767
1768 void i915_driver_unload(struct drm_device *dev)
1769 {
1770         struct drm_i915_private *dev_priv = to_i915(dev);
1771         struct pci_dev *pdev = dev_priv->drm.pdev;
1772
1773         disable_rpm_wakeref_asserts(dev_priv);
1774
1775         i915_driver_unregister(dev_priv);
1776
1777         if (i915_gem_suspend(dev_priv))
1778                 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1779
1780         drm_atomic_helper_shutdown(dev);
1781
1782         intel_gvt_cleanup(dev_priv);
1783
1784         intel_modeset_cleanup(dev);
1785
1786         intel_bios_cleanup(dev_priv);
1787
1788         vga_switcheroo_unregister_client(pdev);
1789         vga_client_register(pdev, NULL, NULL, NULL);
1790
1791         intel_csr_ucode_fini(dev_priv);
1792
1793         /* Free error state after interrupts are fully disabled. */
1794         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1795         i915_reset_error_state(dev_priv);
1796
1797         i915_gem_fini(dev_priv);
1798
1799         intel_power_domains_fini_hw(dev_priv);
1800
1801         i915_driver_cleanup_hw(dev_priv);
1802         i915_driver_cleanup_mmio(dev_priv);
1803
1804         enable_rpm_wakeref_asserts(dev_priv);
1805
1806         WARN_ON(atomic_read(&dev_priv->runtime_pm.wakeref_count));
1807 }
1808
1809 static void i915_driver_release(struct drm_device *dev)
1810 {
1811         struct drm_i915_private *dev_priv = to_i915(dev);
1812
1813         i915_driver_cleanup_early(dev_priv);
1814         i915_driver_destroy(dev_priv);
1815 }
1816
1817 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1818 {
1819         struct drm_i915_private *i915 = to_i915(dev);
1820         int ret;
1821
1822         ret = i915_gem_open(i915, file);
1823         if (ret)
1824                 return ret;
1825
1826         return 0;
1827 }
1828
1829 /**
1830  * i915_driver_lastclose - clean up after all DRM clients have exited
1831  * @dev: DRM device
1832  *
1833  * Take care of cleaning up after all DRM clients have exited.  In the
1834  * mode setting case, we want to restore the kernel's initial mode (just
1835  * in case the last client left us in a bad state).
1836  *
1837  * Additionally, in the non-mode setting case, we'll tear down the GTT
1838  * and DMA structures, since the kernel won't be using them, and clea
1839  * up any GEM state.
1840  */
1841 static void i915_driver_lastclose(struct drm_device *dev)
1842 {
1843         intel_fbdev_restore_mode(dev);
1844         vga_switcheroo_process_delayed_switch();
1845 }
1846
1847 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1848 {
1849         struct drm_i915_file_private *file_priv = file->driver_priv;
1850
1851         mutex_lock(&dev->struct_mutex);
1852         i915_gem_context_close(file);
1853         i915_gem_release(dev, file);
1854         mutex_unlock(&dev->struct_mutex);
1855
1856         kfree(file_priv);
1857 }
1858
1859 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1860 {
1861         struct drm_device *dev = &dev_priv->drm;
1862         struct intel_encoder *encoder;
1863
1864         drm_modeset_lock_all(dev);
1865         for_each_intel_encoder(dev, encoder)
1866                 if (encoder->suspend)
1867                         encoder->suspend(encoder);
1868         drm_modeset_unlock_all(dev);
1869 }
1870
1871 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1872                               bool rpm_resume);
1873 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1874
1875 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1876 {
1877 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1878         if (acpi_target_system_state() < ACPI_STATE_S3)
1879                 return true;
1880 #endif
1881         return false;
1882 }
1883
1884 static int i915_drm_prepare(struct drm_device *dev)
1885 {
1886         struct drm_i915_private *i915 = to_i915(dev);
1887         int err;
1888
1889         /*
1890          * NB intel_display_suspend() may issue new requests after we've
1891          * ostensibly marked the GPU as ready-to-sleep here. We need to
1892          * split out that work and pull it forward so that after point,
1893          * the GPU is not woken again.
1894          */
1895         err = i915_gem_suspend(i915);
1896         if (err)
1897                 dev_err(&i915->drm.pdev->dev,
1898                         "GEM idle failed, suspend/resume might fail\n");
1899
1900         return err;
1901 }
1902
1903 static int i915_drm_suspend(struct drm_device *dev)
1904 {
1905         struct drm_i915_private *dev_priv = to_i915(dev);
1906         struct pci_dev *pdev = dev_priv->drm.pdev;
1907         pci_power_t opregion_target_state;
1908
1909         disable_rpm_wakeref_asserts(dev_priv);
1910
1911         /* We do a lot of poking in a lot of registers, make sure they work
1912          * properly. */
1913         intel_power_domains_disable(dev_priv);
1914
1915         drm_kms_helper_poll_disable(dev);
1916
1917         pci_save_state(pdev);
1918
1919         intel_display_suspend(dev);
1920
1921         intel_dp_mst_suspend(dev_priv);
1922
1923         intel_runtime_pm_disable_interrupts(dev_priv);
1924         intel_hpd_cancel_work(dev_priv);
1925
1926         intel_suspend_encoders(dev_priv);
1927
1928         intel_suspend_hw(dev_priv);
1929
1930         i915_gem_suspend_gtt_mappings(dev_priv);
1931
1932         i915_save_state(dev_priv);
1933
1934         opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1935         intel_opregion_suspend(dev_priv, opregion_target_state);
1936
1937         intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1938
1939         dev_priv->suspend_count++;
1940
1941         intel_csr_ucode_suspend(dev_priv);
1942
1943         enable_rpm_wakeref_asserts(dev_priv);
1944
1945         return 0;
1946 }
1947
1948 static enum i915_drm_suspend_mode
1949 get_suspend_mode(struct drm_i915_private *dev_priv, bool hibernate)
1950 {
1951         if (hibernate)
1952                 return I915_DRM_SUSPEND_HIBERNATE;
1953
1954         if (suspend_to_idle(dev_priv))
1955                 return I915_DRM_SUSPEND_IDLE;
1956
1957         return I915_DRM_SUSPEND_MEM;
1958 }
1959
1960 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1961 {
1962         struct drm_i915_private *dev_priv = to_i915(dev);
1963         struct pci_dev *pdev = dev_priv->drm.pdev;
1964         int ret;
1965
1966         disable_rpm_wakeref_asserts(dev_priv);
1967
1968         i915_gem_suspend_late(dev_priv);
1969
1970         intel_uncore_suspend(dev_priv);
1971
1972         intel_power_domains_suspend(dev_priv,
1973                                     get_suspend_mode(dev_priv, hibernation));
1974
1975         ret = 0;
1976         if (INTEL_GEN(dev_priv) >= 11 || IS_GEN9_LP(dev_priv))
1977                 bxt_enable_dc9(dev_priv);
1978         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1979                 hsw_enable_pc8(dev_priv);
1980         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1981                 ret = vlv_suspend_complete(dev_priv);
1982
1983         if (ret) {
1984                 DRM_ERROR("Suspend complete failed: %d\n", ret);
1985                 intel_power_domains_resume(dev_priv);
1986
1987                 goto out;
1988         }
1989
1990         pci_disable_device(pdev);
1991         /*
1992          * During hibernation on some platforms the BIOS may try to access
1993          * the device even though it's already in D3 and hang the machine. So
1994          * leave the device in D0 on those platforms and hope the BIOS will
1995          * power down the device properly. The issue was seen on multiple old
1996          * GENs with different BIOS vendors, so having an explicit blacklist
1997          * is inpractical; apply the workaround on everything pre GEN6. The
1998          * platforms where the issue was seen:
1999          * Lenovo Thinkpad X301, X61s, X60, T60, X41
2000          * Fujitsu FSC S7110
2001          * Acer Aspire 1830T
2002          */
2003         if (!(hibernation && INTEL_GEN(dev_priv) < 6))
2004                 pci_set_power_state(pdev, PCI_D3hot);
2005
2006 out:
2007         enable_rpm_wakeref_asserts(dev_priv);
2008
2009         return ret;
2010 }
2011
2012 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
2013 {
2014         int error;
2015
2016         if (!dev) {
2017                 DRM_ERROR("dev: %p\n", dev);
2018                 DRM_ERROR("DRM not initialized, aborting suspend.\n");
2019                 return -ENODEV;
2020         }
2021
2022         if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
2023                          state.event != PM_EVENT_FREEZE))
2024                 return -EINVAL;
2025
2026         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2027                 return 0;
2028
2029         error = i915_drm_suspend(dev);
2030         if (error)
2031                 return error;
2032
2033         return i915_drm_suspend_late(dev, false);
2034 }
2035
2036 static int i915_drm_resume(struct drm_device *dev)
2037 {
2038         struct drm_i915_private *dev_priv = to_i915(dev);
2039         int ret;
2040
2041         disable_rpm_wakeref_asserts(dev_priv);
2042         intel_sanitize_gt_powersave(dev_priv);
2043
2044         i915_gem_sanitize(dev_priv);
2045
2046         ret = i915_ggtt_enable_hw(dev_priv);
2047         if (ret)
2048                 DRM_ERROR("failed to re-enable GGTT\n");
2049
2050         intel_csr_ucode_resume(dev_priv);
2051
2052         i915_restore_state(dev_priv);
2053         intel_pps_unlock_regs_wa(dev_priv);
2054
2055         intel_init_pch_refclk(dev_priv);
2056
2057         /*
2058          * Interrupts have to be enabled before any batches are run. If not the
2059          * GPU will hang. i915_gem_init_hw() will initiate batches to
2060          * update/restore the context.
2061          *
2062          * drm_mode_config_reset() needs AUX interrupts.
2063          *
2064          * Modeset enabling in intel_modeset_init_hw() also needs working
2065          * interrupts.
2066          */
2067         intel_runtime_pm_enable_interrupts(dev_priv);
2068
2069         drm_mode_config_reset(dev);
2070
2071         i915_gem_resume(dev_priv);
2072
2073         intel_modeset_init_hw(dev);
2074         intel_init_clock_gating(dev_priv);
2075
2076         spin_lock_irq(&dev_priv->irq_lock);
2077         if (dev_priv->display.hpd_irq_setup)
2078                 dev_priv->display.hpd_irq_setup(dev_priv);
2079         spin_unlock_irq(&dev_priv->irq_lock);
2080
2081         intel_dp_mst_resume(dev_priv);
2082
2083         intel_display_resume(dev);
2084
2085         drm_kms_helper_poll_enable(dev);
2086
2087         /*
2088          * ... but also need to make sure that hotplug processing
2089          * doesn't cause havoc. Like in the driver load code we don't
2090          * bother with the tiny race here where we might lose hotplug
2091          * notifications.
2092          * */
2093         intel_hpd_init(dev_priv);
2094
2095         intel_opregion_resume(dev_priv);
2096
2097         intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
2098
2099         intel_power_domains_enable(dev_priv);
2100
2101         enable_rpm_wakeref_asserts(dev_priv);
2102
2103         return 0;
2104 }
2105
2106 static int i915_drm_resume_early(struct drm_device *dev)
2107 {
2108         struct drm_i915_private *dev_priv = to_i915(dev);
2109         struct pci_dev *pdev = dev_priv->drm.pdev;
2110         int ret;
2111
2112         /*
2113          * We have a resume ordering issue with the snd-hda driver also
2114          * requiring our device to be power up. Due to the lack of a
2115          * parent/child relationship we currently solve this with an early
2116          * resume hook.
2117          *
2118          * FIXME: This should be solved with a special hdmi sink device or
2119          * similar so that power domains can be employed.
2120          */
2121
2122         /*
2123          * Note that we need to set the power state explicitly, since we
2124          * powered off the device during freeze and the PCI core won't power
2125          * it back up for us during thaw. Powering off the device during
2126          * freeze is not a hard requirement though, and during the
2127          * suspend/resume phases the PCI core makes sure we get here with the
2128          * device powered on. So in case we change our freeze logic and keep
2129          * the device powered we can also remove the following set power state
2130          * call.
2131          */
2132         ret = pci_set_power_state(pdev, PCI_D0);
2133         if (ret) {
2134                 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
2135                 return ret;
2136         }
2137
2138         /*
2139          * Note that pci_enable_device() first enables any parent bridge
2140          * device and only then sets the power state for this device. The
2141          * bridge enabling is a nop though, since bridge devices are resumed
2142          * first. The order of enabling power and enabling the device is
2143          * imposed by the PCI core as described above, so here we preserve the
2144          * same order for the freeze/thaw phases.
2145          *
2146          * TODO: eventually we should remove pci_disable_device() /
2147          * pci_enable_enable_device() from suspend/resume. Due to how they
2148          * depend on the device enable refcount we can't anyway depend on them
2149          * disabling/enabling the device.
2150          */
2151         if (pci_enable_device(pdev))
2152                 return -EIO;
2153
2154         pci_set_master(pdev);
2155
2156         disable_rpm_wakeref_asserts(dev_priv);
2157
2158         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2159                 ret = vlv_resume_prepare(dev_priv, false);
2160         if (ret)
2161                 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
2162                           ret);
2163
2164         intel_uncore_resume_early(dev_priv);
2165
2166         if (INTEL_GEN(dev_priv) >= 11 || IS_GEN9_LP(dev_priv)) {
2167                 gen9_sanitize_dc_state(dev_priv);
2168                 bxt_disable_dc9(dev_priv);
2169         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2170                 hsw_disable_pc8(dev_priv);
2171         }
2172
2173         intel_uncore_sanitize(dev_priv);
2174
2175         intel_power_domains_resume(dev_priv);
2176
2177         intel_engines_sanitize(dev_priv);
2178
2179         enable_rpm_wakeref_asserts(dev_priv);
2180
2181         return ret;
2182 }
2183
2184 static int i915_resume_switcheroo(struct drm_device *dev)
2185 {
2186         int ret;
2187
2188         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2189                 return 0;
2190
2191         ret = i915_drm_resume_early(dev);
2192         if (ret)
2193                 return ret;
2194
2195         return i915_drm_resume(dev);
2196 }
2197
2198 /**
2199  * i915_reset - reset chip after a hang
2200  * @i915: #drm_i915_private to reset
2201  * @stalled_mask: mask of the stalled engines with the guilty requests
2202  * @reason: user error message for why we are resetting
2203  *
2204  * Reset the chip.  Useful if a hang is detected. Marks the device as wedged
2205  * on failure.
2206  *
2207  * Caller must hold the struct_mutex.
2208  *
2209  * Procedure is fairly simple:
2210  *   - reset the chip using the reset reg
2211  *   - re-init context state
2212  *   - re-init hardware status page
2213  *   - re-init ring buffer
2214  *   - re-init interrupt state
2215  *   - re-init display
2216  */
2217 void i915_reset(struct drm_i915_private *i915,
2218                 unsigned int stalled_mask,
2219                 const char *reason)
2220 {
2221         struct i915_gpu_error *error = &i915->gpu_error;
2222         int ret;
2223         int i;
2224
2225         GEM_TRACE("flags=%lx\n", error->flags);
2226
2227         might_sleep();
2228         lockdep_assert_held(&i915->drm.struct_mutex);
2229         GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &error->flags));
2230
2231         if (!test_bit(I915_RESET_HANDOFF, &error->flags))
2232                 return;
2233
2234         /* Clear any previous failed attempts at recovery. Time to try again. */
2235         if (!i915_gem_unset_wedged(i915))
2236                 goto wakeup;
2237
2238         if (reason)
2239                 dev_notice(i915->drm.dev, "Resetting chip for %s\n", reason);
2240         error->reset_count++;
2241
2242         ret = i915_gem_reset_prepare(i915);
2243         if (ret) {
2244                 dev_err(i915->drm.dev, "GPU recovery failed\n");
2245                 goto taint;
2246         }
2247
2248         if (!intel_has_gpu_reset(i915)) {
2249                 if (i915_modparams.reset)
2250                         dev_err(i915->drm.dev, "GPU reset not supported\n");
2251                 else
2252                         DRM_DEBUG_DRIVER("GPU reset disabled\n");
2253                 goto error;
2254         }
2255
2256         for (i = 0; i < 3; i++) {
2257                 ret = intel_gpu_reset(i915, ALL_ENGINES);
2258                 if (ret == 0)
2259                         break;
2260
2261                 msleep(100);
2262         }
2263         if (ret) {
2264                 dev_err(i915->drm.dev, "Failed to reset chip\n");
2265                 goto taint;
2266         }
2267
2268         /* Ok, now get things going again... */
2269
2270         /*
2271          * Everything depends on having the GTT running, so we need to start
2272          * there.
2273          */
2274         ret = i915_ggtt_enable_hw(i915);
2275         if (ret) {
2276                 DRM_ERROR("Failed to re-enable GGTT following reset (%d)\n",
2277                           ret);
2278                 goto error;
2279         }
2280
2281         i915_gem_reset(i915, stalled_mask);
2282         intel_overlay_reset(i915);
2283
2284         /*
2285          * Next we need to restore the context, but we don't use those
2286          * yet either...
2287          *
2288          * Ring buffer needs to be re-initialized in the KMS case, or if X
2289          * was running at the time of the reset (i.e. we weren't VT
2290          * switched away).
2291          */
2292         ret = i915_gem_init_hw(i915);
2293         if (ret) {
2294                 DRM_ERROR("Failed to initialise HW following reset (%d)\n",
2295                           ret);
2296                 goto error;
2297         }
2298
2299         i915_queue_hangcheck(i915);
2300
2301 finish:
2302         i915_gem_reset_finish(i915);
2303 wakeup:
2304         clear_bit(I915_RESET_HANDOFF, &error->flags);
2305         wake_up_bit(&error->flags, I915_RESET_HANDOFF);
2306         return;
2307
2308 taint:
2309         /*
2310          * History tells us that if we cannot reset the GPU now, we
2311          * never will. This then impacts everything that is run
2312          * subsequently. On failing the reset, we mark the driver
2313          * as wedged, preventing further execution on the GPU.
2314          * We also want to go one step further and add a taint to the
2315          * kernel so that any subsequent faults can be traced back to
2316          * this failure. This is important for CI, where if the
2317          * GPU/driver fails we would like to reboot and restart testing
2318          * rather than continue on into oblivion. For everyone else,
2319          * the system should still plod along, but they have been warned!
2320          */
2321         add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2322 error:
2323         i915_gem_set_wedged(i915);
2324         i915_retire_requests(i915);
2325         goto finish;
2326 }
2327
2328 static inline int intel_gt_reset_engine(struct drm_i915_private *dev_priv,
2329                                         struct intel_engine_cs *engine)
2330 {
2331         return intel_gpu_reset(dev_priv, intel_engine_flag(engine));
2332 }
2333
2334 /**
2335  * i915_reset_engine - reset GPU engine to recover from a hang
2336  * @engine: engine to reset
2337  * @msg: reason for GPU reset; or NULL for no dev_notice()
2338  *
2339  * Reset a specific GPU engine. Useful if a hang is detected.
2340  * Returns zero on successful reset or otherwise an error code.
2341  *
2342  * Procedure is:
2343  *  - identifies the request that caused the hang and it is dropped
2344  *  - reset engine (which will force the engine to idle)
2345  *  - re-init/configure engine
2346  */
2347 int i915_reset_engine(struct intel_engine_cs *engine, const char *msg)
2348 {
2349         struct i915_gpu_error *error = &engine->i915->gpu_error;
2350         struct i915_request *active_request;
2351         int ret;
2352
2353         GEM_TRACE("%s flags=%lx\n", engine->name, error->flags);
2354         GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &error->flags));
2355
2356         active_request = i915_gem_reset_prepare_engine(engine);
2357         if (IS_ERR_OR_NULL(active_request)) {
2358                 /* Either the previous reset failed, or we pardon the reset. */
2359                 ret = PTR_ERR(active_request);
2360                 goto out;
2361         }
2362
2363         if (msg)
2364                 dev_notice(engine->i915->drm.dev,
2365                            "Resetting %s for %s\n", engine->name, msg);
2366         error->reset_engine_count[engine->id]++;
2367
2368         if (!engine->i915->guc.execbuf_client)
2369                 ret = intel_gt_reset_engine(engine->i915, engine);
2370         else
2371                 ret = intel_guc_reset_engine(&engine->i915->guc, engine);
2372         if (ret) {
2373                 /* If we fail here, we expect to fallback to a global reset */
2374                 DRM_DEBUG_DRIVER("%sFailed to reset %s, ret=%d\n",
2375                                  engine->i915->guc.execbuf_client ? "GuC " : "",
2376                                  engine->name, ret);
2377                 goto out;
2378         }
2379
2380         /*
2381          * The request that caused the hang is stuck on elsp, we know the
2382          * active request and can drop it, adjust head to skip the offending
2383          * request to resume executing remaining requests in the queue.
2384          */
2385         i915_gem_reset_engine(engine, active_request, true);
2386
2387         /*
2388          * The engine and its registers (and workarounds in case of render)
2389          * have been reset to their default values. Follow the init_ring
2390          * process to program RING_MODE, HWSP and re-enable submission.
2391          */
2392         ret = engine->init_hw(engine);
2393         if (ret)
2394                 goto out;
2395
2396 out:
2397         intel_engine_cancel_stop_cs(engine);
2398         i915_gem_reset_finish_engine(engine);
2399         return ret;
2400 }
2401
2402 static int i915_pm_prepare(struct device *kdev)
2403 {
2404         struct pci_dev *pdev = to_pci_dev(kdev);
2405         struct drm_device *dev = pci_get_drvdata(pdev);
2406
2407         if (!dev) {
2408                 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2409                 return -ENODEV;
2410         }
2411
2412         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2413                 return 0;
2414
2415         return i915_drm_prepare(dev);
2416 }
2417
2418 static int i915_pm_suspend(struct device *kdev)
2419 {
2420         struct pci_dev *pdev = to_pci_dev(kdev);
2421         struct drm_device *dev = pci_get_drvdata(pdev);
2422
2423         if (!dev) {
2424                 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2425                 return -ENODEV;
2426         }
2427
2428         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2429                 return 0;
2430
2431         return i915_drm_suspend(dev);
2432 }
2433
2434 static int i915_pm_suspend_late(struct device *kdev)
2435 {
2436         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2437
2438         /*
2439          * We have a suspend ordering issue with the snd-hda driver also
2440          * requiring our device to be power up. Due to the lack of a
2441          * parent/child relationship we currently solve this with an late
2442          * suspend hook.
2443          *
2444          * FIXME: This should be solved with a special hdmi sink device or
2445          * similar so that power domains can be employed.
2446          */
2447         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2448                 return 0;
2449
2450         return i915_drm_suspend_late(dev, false);
2451 }
2452
2453 static int i915_pm_poweroff_late(struct device *kdev)
2454 {
2455         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2456
2457         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2458                 return 0;
2459
2460         return i915_drm_suspend_late(dev, true);
2461 }
2462
2463 static int i915_pm_resume_early(struct device *kdev)
2464 {
2465         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2466
2467         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2468                 return 0;
2469
2470         return i915_drm_resume_early(dev);
2471 }
2472
2473 static int i915_pm_resume(struct device *kdev)
2474 {
2475         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2476
2477         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2478                 return 0;
2479
2480         return i915_drm_resume(dev);
2481 }
2482
2483 /* freeze: before creating the hibernation_image */
2484 static int i915_pm_freeze(struct device *kdev)
2485 {
2486         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2487         int ret;
2488
2489         if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2490                 ret = i915_drm_suspend(dev);
2491                 if (ret)
2492                         return ret;
2493         }
2494
2495         ret = i915_gem_freeze(kdev_to_i915(kdev));
2496         if (ret)
2497                 return ret;
2498
2499         return 0;
2500 }
2501
2502 static int i915_pm_freeze_late(struct device *kdev)
2503 {
2504         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2505         int ret;
2506
2507         if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2508                 ret = i915_drm_suspend_late(dev, true);
2509                 if (ret)
2510                         return ret;
2511         }
2512
2513         ret = i915_gem_freeze_late(kdev_to_i915(kdev));
2514         if (ret)
2515                 return ret;
2516
2517         return 0;
2518 }
2519
2520 /* thaw: called after creating the hibernation image, but before turning off. */
2521 static int i915_pm_thaw_early(struct device *kdev)
2522 {
2523         return i915_pm_resume_early(kdev);
2524 }
2525
2526 static int i915_pm_thaw(struct device *kdev)
2527 {
2528         return i915_pm_resume(kdev);
2529 }
2530
2531 /* restore: called after loading the hibernation image. */
2532 static int i915_pm_restore_early(struct device *kdev)
2533 {
2534         return i915_pm_resume_early(kdev);
2535 }
2536
2537 static int i915_pm_restore(struct device *kdev)
2538 {
2539         return i915_pm_resume(kdev);
2540 }
2541
2542 /*
2543  * Save all Gunit registers that may be lost after a D3 and a subsequent
2544  * S0i[R123] transition. The list of registers needing a save/restore is
2545  * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2546  * registers in the following way:
2547  * - Driver: saved/restored by the driver
2548  * - Punit : saved/restored by the Punit firmware
2549  * - No, w/o marking: no need to save/restore, since the register is R/O or
2550  *                    used internally by the HW in a way that doesn't depend
2551  *                    keeping the content across a suspend/resume.
2552  * - Debug : used for debugging
2553  *
2554  * We save/restore all registers marked with 'Driver', with the following
2555  * exceptions:
2556  * - Registers out of use, including also registers marked with 'Debug'.
2557  *   These have no effect on the driver's operation, so we don't save/restore
2558  *   them to reduce the overhead.
2559  * - Registers that are fully setup by an initialization function called from
2560  *   the resume path. For example many clock gating and RPS/RC6 registers.
2561  * - Registers that provide the right functionality with their reset defaults.
2562  *
2563  * TODO: Except for registers that based on the above 3 criteria can be safely
2564  * ignored, we save/restore all others, practically treating the HW context as
2565  * a black-box for the driver. Further investigation is needed to reduce the
2566  * saved/restored registers even further, by following the same 3 criteria.
2567  */
2568 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2569 {
2570         struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2571         int i;
2572
2573         /* GAM 0x4000-0x4770 */
2574         s->wr_watermark         = I915_READ(GEN7_WR_WATERMARK);
2575         s->gfx_prio_ctrl        = I915_READ(GEN7_GFX_PRIO_CTRL);
2576         s->arb_mode             = I915_READ(ARB_MODE);
2577         s->gfx_pend_tlb0        = I915_READ(GEN7_GFX_PEND_TLB0);
2578         s->gfx_pend_tlb1        = I915_READ(GEN7_GFX_PEND_TLB1);
2579
2580         for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2581                 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2582
2583         s->media_max_req_count  = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2584         s->gfx_max_req_count    = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2585
2586         s->render_hwsp          = I915_READ(RENDER_HWS_PGA_GEN7);
2587         s->ecochk               = I915_READ(GAM_ECOCHK);
2588         s->bsd_hwsp             = I915_READ(BSD_HWS_PGA_GEN7);
2589         s->blt_hwsp             = I915_READ(BLT_HWS_PGA_GEN7);
2590
2591         s->tlb_rd_addr          = I915_READ(GEN7_TLB_RD_ADDR);
2592
2593         /* MBC 0x9024-0x91D0, 0x8500 */
2594         s->g3dctl               = I915_READ(VLV_G3DCTL);
2595         s->gsckgctl             = I915_READ(VLV_GSCKGCTL);
2596         s->mbctl                = I915_READ(GEN6_MBCTL);
2597
2598         /* GCP 0x9400-0x9424, 0x8100-0x810C */
2599         s->ucgctl1              = I915_READ(GEN6_UCGCTL1);
2600         s->ucgctl3              = I915_READ(GEN6_UCGCTL3);
2601         s->rcgctl1              = I915_READ(GEN6_RCGCTL1);
2602         s->rcgctl2              = I915_READ(GEN6_RCGCTL2);
2603         s->rstctl               = I915_READ(GEN6_RSTCTL);
2604         s->misccpctl            = I915_READ(GEN7_MISCCPCTL);
2605
2606         /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2607         s->gfxpause             = I915_READ(GEN6_GFXPAUSE);
2608         s->rpdeuhwtc            = I915_READ(GEN6_RPDEUHWTC);
2609         s->rpdeuc               = I915_READ(GEN6_RPDEUC);
2610         s->ecobus               = I915_READ(ECOBUS);
2611         s->pwrdwnupctl          = I915_READ(VLV_PWRDWNUPCTL);
2612         s->rp_down_timeout      = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2613         s->rp_deucsw            = I915_READ(GEN6_RPDEUCSW);
2614         s->rcubmabdtmr          = I915_READ(GEN6_RCUBMABDTMR);
2615         s->rcedata              = I915_READ(VLV_RCEDATA);
2616         s->spare2gh             = I915_READ(VLV_SPAREG2H);
2617
2618         /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2619         s->gt_imr               = I915_READ(GTIMR);
2620         s->gt_ier               = I915_READ(GTIER);
2621         s->pm_imr               = I915_READ(GEN6_PMIMR);
2622         s->pm_ier               = I915_READ(GEN6_PMIER);
2623
2624         for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2625                 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2626
2627         /* GT SA CZ domain, 0x100000-0x138124 */
2628         s->tilectl              = I915_READ(TILECTL);
2629         s->gt_fifoctl           = I915_READ(GTFIFOCTL);
2630         s->gtlc_wake_ctrl       = I915_READ(VLV_GTLC_WAKE_CTRL);
2631         s->gtlc_survive         = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2632         s->pmwgicz              = I915_READ(VLV_PMWGICZ);
2633
2634         /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2635         s->gu_ctl0              = I915_READ(VLV_GU_CTL0);
2636         s->gu_ctl1              = I915_READ(VLV_GU_CTL1);
2637         s->pcbr                 = I915_READ(VLV_PCBR);
2638         s->clock_gate_dis2      = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2639
2640         /*
2641          * Not saving any of:
2642          * DFT,         0x9800-0x9EC0
2643          * SARB,        0xB000-0xB1FC
2644          * GAC,         0x5208-0x524C, 0x14000-0x14C000
2645          * PCI CFG
2646          */
2647 }
2648
2649 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2650 {
2651         struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2652         u32 val;
2653         int i;
2654
2655         /* GAM 0x4000-0x4770 */
2656         I915_WRITE(GEN7_WR_WATERMARK,   s->wr_watermark);
2657         I915_WRITE(GEN7_GFX_PRIO_CTRL,  s->gfx_prio_ctrl);
2658         I915_WRITE(ARB_MODE,            s->arb_mode | (0xffff << 16));
2659         I915_WRITE(GEN7_GFX_PEND_TLB0,  s->gfx_pend_tlb0);
2660         I915_WRITE(GEN7_GFX_PEND_TLB1,  s->gfx_pend_tlb1);
2661
2662         for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2663                 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2664
2665         I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2666         I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2667
2668         I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2669         I915_WRITE(GAM_ECOCHK,          s->ecochk);
2670         I915_WRITE(BSD_HWS_PGA_GEN7,    s->bsd_hwsp);
2671         I915_WRITE(BLT_HWS_PGA_GEN7,    s->blt_hwsp);
2672
2673         I915_WRITE(GEN7_TLB_RD_ADDR,    s->tlb_rd_addr);
2674
2675         /* MBC 0x9024-0x91D0, 0x8500 */
2676         I915_WRITE(VLV_G3DCTL,          s->g3dctl);
2677         I915_WRITE(VLV_GSCKGCTL,        s->gsckgctl);
2678         I915_WRITE(GEN6_MBCTL,          s->mbctl);
2679
2680         /* GCP 0x9400-0x9424, 0x8100-0x810C */
2681         I915_WRITE(GEN6_UCGCTL1,        s->ucgctl1);
2682         I915_WRITE(GEN6_UCGCTL3,        s->ucgctl3);
2683         I915_WRITE(GEN6_RCGCTL1,        s->rcgctl1);
2684         I915_WRITE(GEN6_RCGCTL2,        s->rcgctl2);
2685         I915_WRITE(GEN6_RSTCTL,         s->rstctl);
2686         I915_WRITE(GEN7_MISCCPCTL,      s->misccpctl);
2687
2688         /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2689         I915_WRITE(GEN6_GFXPAUSE,       s->gfxpause);
2690         I915_WRITE(GEN6_RPDEUHWTC,      s->rpdeuhwtc);
2691         I915_WRITE(GEN6_RPDEUC,         s->rpdeuc);
2692         I915_WRITE(ECOBUS,              s->ecobus);
2693         I915_WRITE(VLV_PWRDWNUPCTL,     s->pwrdwnupctl);
2694         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2695         I915_WRITE(GEN6_RPDEUCSW,       s->rp_deucsw);
2696         I915_WRITE(GEN6_RCUBMABDTMR,    s->rcubmabdtmr);
2697         I915_WRITE(VLV_RCEDATA,         s->rcedata);
2698         I915_WRITE(VLV_SPAREG2H,        s->spare2gh);
2699
2700         /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2701         I915_WRITE(GTIMR,               s->gt_imr);
2702         I915_WRITE(GTIER,               s->gt_ier);
2703         I915_WRITE(GEN6_PMIMR,          s->pm_imr);
2704         I915_WRITE(GEN6_PMIER,          s->pm_ier);
2705
2706         for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2707                 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2708
2709         /* GT SA CZ domain, 0x100000-0x138124 */
2710         I915_WRITE(TILECTL,                     s->tilectl);
2711         I915_WRITE(GTFIFOCTL,                   s->gt_fifoctl);
2712         /*
2713          * Preserve the GT allow wake and GFX force clock bit, they are not
2714          * be restored, as they are used to control the s0ix suspend/resume
2715          * sequence by the caller.
2716          */
2717         val = I915_READ(VLV_GTLC_WAKE_CTRL);
2718         val &= VLV_GTLC_ALLOWWAKEREQ;
2719         val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2720         I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2721
2722         val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2723         val &= VLV_GFX_CLK_FORCE_ON_BIT;
2724         val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2725         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2726
2727         I915_WRITE(VLV_PMWGICZ,                 s->pmwgicz);
2728
2729         /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2730         I915_WRITE(VLV_GU_CTL0,                 s->gu_ctl0);
2731         I915_WRITE(VLV_GU_CTL1,                 s->gu_ctl1);
2732         I915_WRITE(VLV_PCBR,                    s->pcbr);
2733         I915_WRITE(VLV_GUNIT_CLOCK_GATE2,       s->clock_gate_dis2);
2734 }
2735
2736 static int vlv_wait_for_pw_status(struct drm_i915_private *dev_priv,
2737                                   u32 mask, u32 val)
2738 {
2739         /* The HW does not like us polling for PW_STATUS frequently, so
2740          * use the sleeping loop rather than risk the busy spin within
2741          * intel_wait_for_register().
2742          *
2743          * Transitioning between RC6 states should be at most 2ms (see
2744          * valleyview_enable_rps) so use a 3ms timeout.
2745          */
2746         return wait_for((I915_READ_NOTRACE(VLV_GTLC_PW_STATUS) & mask) == val,
2747                         3);
2748 }
2749
2750 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2751 {
2752         u32 val;
2753         int err;
2754
2755         val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2756         val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2757         if (force_on)
2758                 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2759         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2760
2761         if (!force_on)
2762                 return 0;
2763
2764         err = intel_wait_for_register(dev_priv,
2765                                       VLV_GTLC_SURVIVABILITY_REG,
2766                                       VLV_GFX_CLK_STATUS_BIT,
2767                                       VLV_GFX_CLK_STATUS_BIT,
2768                                       20);
2769         if (err)
2770                 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2771                           I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2772
2773         return err;
2774 }
2775
2776 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2777 {
2778         u32 mask;
2779         u32 val;
2780         int err;
2781
2782         val = I915_READ(VLV_GTLC_WAKE_CTRL);
2783         val &= ~VLV_GTLC_ALLOWWAKEREQ;
2784         if (allow)
2785                 val |= VLV_GTLC_ALLOWWAKEREQ;
2786         I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2787         POSTING_READ(VLV_GTLC_WAKE_CTRL);
2788
2789         mask = VLV_GTLC_ALLOWWAKEACK;
2790         val = allow ? mask : 0;
2791
2792         err = vlv_wait_for_pw_status(dev_priv, mask, val);
2793         if (err)
2794                 DRM_ERROR("timeout disabling GT waking\n");
2795
2796         return err;
2797 }
2798
2799 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2800                                   bool wait_for_on)
2801 {
2802         u32 mask;
2803         u32 val;
2804
2805         mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2806         val = wait_for_on ? mask : 0;
2807
2808         /*
2809          * RC6 transitioning can be delayed up to 2 msec (see
2810          * valleyview_enable_rps), use 3 msec for safety.
2811          *
2812          * This can fail to turn off the rc6 if the GPU is stuck after a failed
2813          * reset and we are trying to force the machine to sleep.
2814          */
2815         if (vlv_wait_for_pw_status(dev_priv, mask, val))
2816                 DRM_DEBUG_DRIVER("timeout waiting for GT wells to go %s\n",
2817                                  onoff(wait_for_on));
2818 }
2819
2820 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2821 {
2822         if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2823                 return;
2824
2825         DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2826         I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2827 }
2828
2829 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2830 {
2831         u32 mask;
2832         int err;
2833
2834         /*
2835          * Bspec defines the following GT well on flags as debug only, so
2836          * don't treat them as hard failures.
2837          */
2838         vlv_wait_for_gt_wells(dev_priv, false);
2839
2840         mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2841         WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2842
2843         vlv_check_no_gt_access(dev_priv);
2844
2845         err = vlv_force_gfx_clock(dev_priv, true);
2846         if (err)
2847                 goto err1;
2848
2849         err = vlv_allow_gt_wake(dev_priv, false);
2850         if (err)
2851                 goto err2;
2852
2853         if (!IS_CHERRYVIEW(dev_priv))
2854                 vlv_save_gunit_s0ix_state(dev_priv);
2855
2856         err = vlv_force_gfx_clock(dev_priv, false);
2857         if (err)
2858                 goto err2;
2859
2860         return 0;
2861
2862 err2:
2863         /* For safety always re-enable waking and disable gfx clock forcing */
2864         vlv_allow_gt_wake(dev_priv, true);
2865 err1:
2866         vlv_force_gfx_clock(dev_priv, false);
2867
2868         return err;
2869 }
2870
2871 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2872                                 bool rpm_resume)
2873 {
2874         int err;
2875         int ret;
2876
2877         /*
2878          * If any of the steps fail just try to continue, that's the best we
2879          * can do at this point. Return the first error code (which will also
2880          * leave RPM permanently disabled).
2881          */
2882         ret = vlv_force_gfx_clock(dev_priv, true);
2883
2884         if (!IS_CHERRYVIEW(dev_priv))
2885                 vlv_restore_gunit_s0ix_state(dev_priv);
2886
2887         err = vlv_allow_gt_wake(dev_priv, true);
2888         if (!ret)
2889                 ret = err;
2890
2891         err = vlv_force_gfx_clock(dev_priv, false);
2892         if (!ret)
2893                 ret = err;
2894
2895         vlv_check_no_gt_access(dev_priv);
2896
2897         if (rpm_resume)
2898                 intel_init_clock_gating(dev_priv);
2899
2900         return ret;
2901 }
2902
2903 static int intel_runtime_suspend(struct device *kdev)
2904 {
2905         struct pci_dev *pdev = to_pci_dev(kdev);
2906         struct drm_device *dev = pci_get_drvdata(pdev);
2907         struct drm_i915_private *dev_priv = to_i915(dev);
2908         int ret;
2909
2910         if (WARN_ON_ONCE(!(dev_priv->gt_pm.rc6.enabled && HAS_RC6(dev_priv))))
2911                 return -ENODEV;
2912
2913         if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2914                 return -ENODEV;
2915
2916         DRM_DEBUG_KMS("Suspending device\n");
2917
2918         disable_rpm_wakeref_asserts(dev_priv);
2919
2920         /*
2921          * We are safe here against re-faults, since the fault handler takes
2922          * an RPM reference.
2923          */
2924         i915_gem_runtime_suspend(dev_priv);
2925
2926         intel_uc_suspend(dev_priv);
2927
2928         intel_runtime_pm_disable_interrupts(dev_priv);
2929
2930         intel_uncore_suspend(dev_priv);
2931
2932         ret = 0;
2933         if (INTEL_GEN(dev_priv) >= 11) {
2934                 icl_display_core_uninit(dev_priv);
2935                 bxt_enable_dc9(dev_priv);
2936         } else if (IS_GEN9_LP(dev_priv)) {
2937                 bxt_display_core_uninit(dev_priv);
2938                 bxt_enable_dc9(dev_priv);
2939         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2940                 hsw_enable_pc8(dev_priv);
2941         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2942                 ret = vlv_suspend_complete(dev_priv);
2943         }
2944
2945         if (ret) {
2946                 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2947                 intel_uncore_runtime_resume(dev_priv);
2948
2949                 intel_runtime_pm_enable_interrupts(dev_priv);
2950
2951                 intel_uc_resume(dev_priv);
2952
2953                 i915_gem_init_swizzling(dev_priv);
2954                 i915_gem_restore_fences(dev_priv);
2955
2956                 enable_rpm_wakeref_asserts(dev_priv);
2957
2958                 return ret;
2959         }
2960
2961         enable_rpm_wakeref_asserts(dev_priv);
2962         WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2963
2964         if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2965                 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2966
2967         dev_priv->runtime_pm.suspended = true;
2968
2969         /*
2970          * FIXME: We really should find a document that references the arguments
2971          * used below!
2972          */
2973         if (IS_BROADWELL(dev_priv)) {
2974                 /*
2975                  * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2976                  * being detected, and the call we do at intel_runtime_resume()
2977                  * won't be able to restore them. Since PCI_D3hot matches the
2978                  * actual specification and appears to be working, use it.
2979                  */
2980                 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2981         } else {
2982                 /*
2983                  * current versions of firmware which depend on this opregion
2984                  * notification have repurposed the D1 definition to mean
2985                  * "runtime suspended" vs. what you would normally expect (D3)
2986                  * to distinguish it from notifications that might be sent via
2987                  * the suspend path.
2988                  */
2989                 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2990         }
2991
2992         assert_forcewakes_inactive(dev_priv);
2993
2994         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2995                 intel_hpd_poll_init(dev_priv);
2996
2997         DRM_DEBUG_KMS("Device suspended\n");
2998         return 0;
2999 }
3000
3001 static int intel_runtime_resume(struct device *kdev)
3002 {
3003         struct pci_dev *pdev = to_pci_dev(kdev);
3004         struct drm_device *dev = pci_get_drvdata(pdev);
3005         struct drm_i915_private *dev_priv = to_i915(dev);
3006         int ret = 0;
3007
3008         if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
3009                 return -ENODEV;
3010
3011         DRM_DEBUG_KMS("Resuming device\n");
3012
3013         WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
3014         disable_rpm_wakeref_asserts(dev_priv);
3015
3016         intel_opregion_notify_adapter(dev_priv, PCI_D0);
3017         dev_priv->runtime_pm.suspended = false;
3018         if (intel_uncore_unclaimed_mmio(dev_priv))
3019                 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
3020
3021         if (INTEL_GEN(dev_priv) >= 11) {
3022                 bxt_disable_dc9(dev_priv);
3023                 icl_display_core_init(dev_priv, true);
3024                 if (dev_priv->csr.dmc_payload) {
3025                         if (dev_priv->csr.allowed_dc_mask &
3026                             DC_STATE_EN_UPTO_DC6)
3027                                 skl_enable_dc6(dev_priv);
3028                         else if (dev_priv->csr.allowed_dc_mask &
3029                                  DC_STATE_EN_UPTO_DC5)
3030                                 gen9_enable_dc5(dev_priv);
3031                 }
3032         } else if (IS_GEN9_LP(dev_priv)) {
3033                 bxt_disable_dc9(dev_priv);
3034                 bxt_display_core_init(dev_priv, true);
3035                 if (dev_priv->csr.dmc_payload &&
3036                     (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
3037                         gen9_enable_dc5(dev_priv);
3038         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3039                 hsw_disable_pc8(dev_priv);
3040         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3041                 ret = vlv_resume_prepare(dev_priv, true);
3042         }
3043
3044         intel_uncore_runtime_resume(dev_priv);
3045
3046         intel_runtime_pm_enable_interrupts(dev_priv);
3047
3048         intel_uc_resume(dev_priv);
3049
3050         /*
3051          * No point of rolling back things in case of an error, as the best
3052          * we can do is to hope that things will still work (and disable RPM).
3053          */
3054         i915_gem_init_swizzling(dev_priv);
3055         i915_gem_restore_fences(dev_priv);
3056
3057         /*
3058          * On VLV/CHV display interrupts are part of the display
3059          * power well, so hpd is reinitialized from there. For
3060          * everyone else do it here.
3061          */
3062         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
3063                 intel_hpd_init(dev_priv);
3064
3065         intel_enable_ipc(dev_priv);
3066
3067         enable_rpm_wakeref_asserts(dev_priv);
3068
3069         if (ret)
3070                 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
3071         else
3072                 DRM_DEBUG_KMS("Device resumed\n");
3073
3074         return ret;
3075 }
3076
3077 const struct dev_pm_ops i915_pm_ops = {
3078         /*
3079          * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
3080          * PMSG_RESUME]
3081          */
3082         .prepare = i915_pm_prepare,
3083         .suspend = i915_pm_suspend,
3084         .suspend_late = i915_pm_suspend_late,
3085         .resume_early = i915_pm_resume_early,
3086         .resume = i915_pm_resume,
3087
3088         /*
3089          * S4 event handlers
3090          * @freeze, @freeze_late    : called (1) before creating the
3091          *                            hibernation image [PMSG_FREEZE] and
3092          *                            (2) after rebooting, before restoring
3093          *                            the image [PMSG_QUIESCE]
3094          * @thaw, @thaw_early       : called (1) after creating the hibernation
3095          *                            image, before writing it [PMSG_THAW]
3096          *                            and (2) after failing to create or
3097          *                            restore the image [PMSG_RECOVER]
3098          * @poweroff, @poweroff_late: called after writing the hibernation
3099          *                            image, before rebooting [PMSG_HIBERNATE]
3100          * @restore, @restore_early : called after rebooting and restoring the
3101          *                            hibernation image [PMSG_RESTORE]
3102          */
3103         .freeze = i915_pm_freeze,
3104         .freeze_late = i915_pm_freeze_late,
3105         .thaw_early = i915_pm_thaw_early,
3106         .thaw = i915_pm_thaw,
3107         .poweroff = i915_pm_suspend,
3108         .poweroff_late = i915_pm_poweroff_late,
3109         .restore_early = i915_pm_restore_early,
3110         .restore = i915_pm_restore,
3111
3112         /* S0ix (via runtime suspend) event handlers */
3113         .runtime_suspend = intel_runtime_suspend,
3114         .runtime_resume = intel_runtime_resume,
3115 };
3116
3117 static const struct vm_operations_struct i915_gem_vm_ops = {
3118         .fault = i915_gem_fault,
3119         .open = drm_gem_vm_open,
3120         .close = drm_gem_vm_close,
3121 };
3122
3123 static const struct file_operations i915_driver_fops = {
3124         .owner = THIS_MODULE,
3125         .open = drm_open,
3126         .release = drm_release,
3127         .unlocked_ioctl = drm_ioctl,
3128         .mmap = drm_gem_mmap,
3129         .poll = drm_poll,
3130         .read = drm_read,
3131         .compat_ioctl = i915_compat_ioctl,
3132         .llseek = noop_llseek,
3133 };
3134
3135 static int
3136 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
3137                           struct drm_file *file)
3138 {
3139         return -ENODEV;
3140 }
3141
3142 static const struct drm_ioctl_desc i915_ioctls[] = {
3143         DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
3144         DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
3145         DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
3146         DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
3147         DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
3148         DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
3149         DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
3150         DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
3151         DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
3152         DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
3153         DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
3154         DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
3155         DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP,  drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
3156         DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE,  drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
3157         DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE,  drm_noop, DRM_AUTH),
3158         DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
3159         DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
3160         DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
3161         DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer_ioctl, DRM_AUTH),
3162         DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
3163         DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
3164         DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
3165         DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
3166         DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
3167         DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
3168         DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
3169         DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
3170         DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
3171         DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
3172         DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
3173         DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
3174         DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
3175         DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
3176         DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
3177         DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
3178         DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
3179         DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
3180         DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
3181         DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id_ioctl, 0),
3182         DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
3183         DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER),
3184         DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER),
3185         DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey_ioctl, DRM_MASTER),
3186         DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER),
3187         DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
3188         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
3189         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
3190         DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
3191         DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
3192         DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
3193         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
3194         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
3195         DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
3196         DRM_IOCTL_DEF_DRV(I915_PERF_ADD_CONFIG, i915_perf_add_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
3197         DRM_IOCTL_DEF_DRV(I915_PERF_REMOVE_CONFIG, i915_perf_remove_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
3198         DRM_IOCTL_DEF_DRV(I915_QUERY, i915_query_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
3199 };
3200
3201 static struct drm_driver driver = {
3202         /* Don't use MTRRs here; the Xserver or userspace app should
3203          * deal with them for Intel hardware.
3204          */
3205         .driver_features =
3206             DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
3207             DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC | DRIVER_SYNCOBJ,
3208         .release = i915_driver_release,
3209         .open = i915_driver_open,
3210         .lastclose = i915_driver_lastclose,
3211         .postclose = i915_driver_postclose,
3212
3213         .gem_close_object = i915_gem_close_object,
3214         .gem_free_object_unlocked = i915_gem_free_object,
3215         .gem_vm_ops = &i915_gem_vm_ops,
3216
3217         .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
3218         .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
3219         .gem_prime_export = i915_gem_prime_export,
3220         .gem_prime_import = i915_gem_prime_import,
3221
3222         .dumb_create = i915_gem_dumb_create,
3223         .dumb_map_offset = i915_gem_mmap_gtt,
3224         .ioctls = i915_ioctls,
3225         .num_ioctls = ARRAY_SIZE(i915_ioctls),
3226         .fops = &i915_driver_fops,
3227         .name = DRIVER_NAME,
3228         .desc = DRIVER_DESC,
3229         .date = DRIVER_DATE,
3230         .major = DRIVER_MAJOR,
3231         .minor = DRIVER_MINOR,
3232         .patchlevel = DRIVER_PATCHLEVEL,
3233 };
3234
3235 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3236 #include "selftests/mock_drm.c"
3237 #endif