drm/i915/guc: Get rid of GuC log runtime
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/debugfs.h>
30 #include <linux/sort.h>
31 #include <linux/sched/mm.h>
32 #include "intel_drv.h"
33 #include "intel_guc_submission.h"
34
35 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
36 {
37         return to_i915(node->minor->dev);
38 }
39
40 static int i915_capabilities(struct seq_file *m, void *data)
41 {
42         struct drm_i915_private *dev_priv = node_to_i915(m->private);
43         const struct intel_device_info *info = INTEL_INFO(dev_priv);
44         struct drm_printer p = drm_seq_file_printer(m);
45
46         seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
47         seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
48         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
49
50         intel_device_info_dump_flags(info, &p);
51         intel_device_info_dump_runtime(info, &p);
52         intel_driver_caps_print(&dev_priv->caps, &p);
53
54         kernel_param_lock(THIS_MODULE);
55         i915_params_dump(&i915_modparams, &p);
56         kernel_param_unlock(THIS_MODULE);
57
58         return 0;
59 }
60
61 static char get_active_flag(struct drm_i915_gem_object *obj)
62 {
63         return i915_gem_object_is_active(obj) ? '*' : ' ';
64 }
65
66 static char get_pin_flag(struct drm_i915_gem_object *obj)
67 {
68         return obj->pin_global ? 'p' : ' ';
69 }
70
71 static char get_tiling_flag(struct drm_i915_gem_object *obj)
72 {
73         switch (i915_gem_object_get_tiling(obj)) {
74         default:
75         case I915_TILING_NONE: return ' ';
76         case I915_TILING_X: return 'X';
77         case I915_TILING_Y: return 'Y';
78         }
79 }
80
81 static char get_global_flag(struct drm_i915_gem_object *obj)
82 {
83         return obj->userfault_count ? 'g' : ' ';
84 }
85
86 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
87 {
88         return obj->mm.mapping ? 'M' : ' ';
89 }
90
91 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
92 {
93         u64 size = 0;
94         struct i915_vma *vma;
95
96         for_each_ggtt_vma(vma, obj) {
97                 if (drm_mm_node_allocated(&vma->node))
98                         size += vma->node.size;
99         }
100
101         return size;
102 }
103
104 static const char *
105 stringify_page_sizes(unsigned int page_sizes, char *buf, size_t len)
106 {
107         size_t x = 0;
108
109         switch (page_sizes) {
110         case 0:
111                 return "";
112         case I915_GTT_PAGE_SIZE_4K:
113                 return "4K";
114         case I915_GTT_PAGE_SIZE_64K:
115                 return "64K";
116         case I915_GTT_PAGE_SIZE_2M:
117                 return "2M";
118         default:
119                 if (!buf)
120                         return "M";
121
122                 if (page_sizes & I915_GTT_PAGE_SIZE_2M)
123                         x += snprintf(buf + x, len - x, "2M, ");
124                 if (page_sizes & I915_GTT_PAGE_SIZE_64K)
125                         x += snprintf(buf + x, len - x, "64K, ");
126                 if (page_sizes & I915_GTT_PAGE_SIZE_4K)
127                         x += snprintf(buf + x, len - x, "4K, ");
128                 buf[x-2] = '\0';
129
130                 return buf;
131         }
132 }
133
134 static void
135 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
136 {
137         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
138         struct intel_engine_cs *engine;
139         struct i915_vma *vma;
140         unsigned int frontbuffer_bits;
141         int pin_count = 0;
142
143         lockdep_assert_held(&obj->base.dev->struct_mutex);
144
145         seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
146                    &obj->base,
147                    get_active_flag(obj),
148                    get_pin_flag(obj),
149                    get_tiling_flag(obj),
150                    get_global_flag(obj),
151                    get_pin_mapped_flag(obj),
152                    obj->base.size / 1024,
153                    obj->read_domains,
154                    obj->write_domain,
155                    i915_cache_level_str(dev_priv, obj->cache_level),
156                    obj->mm.dirty ? " dirty" : "",
157                    obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
158         if (obj->base.name)
159                 seq_printf(m, " (name: %d)", obj->base.name);
160         list_for_each_entry(vma, &obj->vma_list, obj_link) {
161                 if (i915_vma_is_pinned(vma))
162                         pin_count++;
163         }
164         seq_printf(m, " (pinned x %d)", pin_count);
165         if (obj->pin_global)
166                 seq_printf(m, " (global)");
167         list_for_each_entry(vma, &obj->vma_list, obj_link) {
168                 if (!drm_mm_node_allocated(&vma->node))
169                         continue;
170
171                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx, pages: %s",
172                            i915_vma_is_ggtt(vma) ? "g" : "pp",
173                            vma->node.start, vma->node.size,
174                            stringify_page_sizes(vma->page_sizes.gtt, NULL, 0));
175                 if (i915_vma_is_ggtt(vma)) {
176                         switch (vma->ggtt_view.type) {
177                         case I915_GGTT_VIEW_NORMAL:
178                                 seq_puts(m, ", normal");
179                                 break;
180
181                         case I915_GGTT_VIEW_PARTIAL:
182                                 seq_printf(m, ", partial [%08llx+%x]",
183                                            vma->ggtt_view.partial.offset << PAGE_SHIFT,
184                                            vma->ggtt_view.partial.size << PAGE_SHIFT);
185                                 break;
186
187                         case I915_GGTT_VIEW_ROTATED:
188                                 seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
189                                            vma->ggtt_view.rotated.plane[0].width,
190                                            vma->ggtt_view.rotated.plane[0].height,
191                                            vma->ggtt_view.rotated.plane[0].stride,
192                                            vma->ggtt_view.rotated.plane[0].offset,
193                                            vma->ggtt_view.rotated.plane[1].width,
194                                            vma->ggtt_view.rotated.plane[1].height,
195                                            vma->ggtt_view.rotated.plane[1].stride,
196                                            vma->ggtt_view.rotated.plane[1].offset);
197                                 break;
198
199                         default:
200                                 MISSING_CASE(vma->ggtt_view.type);
201                                 break;
202                         }
203                 }
204                 if (vma->fence)
205                         seq_printf(m, " , fence: %d%s",
206                                    vma->fence->id,
207                                    i915_gem_active_isset(&vma->last_fence) ? "*" : "");
208                 seq_puts(m, ")");
209         }
210         if (obj->stolen)
211                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
212
213         engine = i915_gem_object_last_write_engine(obj);
214         if (engine)
215                 seq_printf(m, " (%s)", engine->name);
216
217         frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
218         if (frontbuffer_bits)
219                 seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
220 }
221
222 static int obj_rank_by_stolen(const void *A, const void *B)
223 {
224         const struct drm_i915_gem_object *a =
225                 *(const struct drm_i915_gem_object **)A;
226         const struct drm_i915_gem_object *b =
227                 *(const struct drm_i915_gem_object **)B;
228
229         if (a->stolen->start < b->stolen->start)
230                 return -1;
231         if (a->stolen->start > b->stolen->start)
232                 return 1;
233         return 0;
234 }
235
236 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
237 {
238         struct drm_i915_private *dev_priv = node_to_i915(m->private);
239         struct drm_device *dev = &dev_priv->drm;
240         struct drm_i915_gem_object **objects;
241         struct drm_i915_gem_object *obj;
242         u64 total_obj_size, total_gtt_size;
243         unsigned long total, count, n;
244         int ret;
245
246         total = READ_ONCE(dev_priv->mm.object_count);
247         objects = kvmalloc_array(total, sizeof(*objects), GFP_KERNEL);
248         if (!objects)
249                 return -ENOMEM;
250
251         ret = mutex_lock_interruptible(&dev->struct_mutex);
252         if (ret)
253                 goto out;
254
255         total_obj_size = total_gtt_size = count = 0;
256
257         spin_lock(&dev_priv->mm.obj_lock);
258         list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
259                 if (count == total)
260                         break;
261
262                 if (obj->stolen == NULL)
263                         continue;
264
265                 objects[count++] = obj;
266                 total_obj_size += obj->base.size;
267                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
268
269         }
270         list_for_each_entry(obj, &dev_priv->mm.unbound_list, mm.link) {
271                 if (count == total)
272                         break;
273
274                 if (obj->stolen == NULL)
275                         continue;
276
277                 objects[count++] = obj;
278                 total_obj_size += obj->base.size;
279         }
280         spin_unlock(&dev_priv->mm.obj_lock);
281
282         sort(objects, count, sizeof(*objects), obj_rank_by_stolen, NULL);
283
284         seq_puts(m, "Stolen:\n");
285         for (n = 0; n < count; n++) {
286                 seq_puts(m, "   ");
287                 describe_obj(m, objects[n]);
288                 seq_putc(m, '\n');
289         }
290         seq_printf(m, "Total %lu objects, %llu bytes, %llu GTT size\n",
291                    count, total_obj_size, total_gtt_size);
292
293         mutex_unlock(&dev->struct_mutex);
294 out:
295         kvfree(objects);
296         return ret;
297 }
298
299 struct file_stats {
300         struct drm_i915_file_private *file_priv;
301         unsigned long count;
302         u64 total, unbound;
303         u64 global, shared;
304         u64 active, inactive;
305 };
306
307 static int per_file_stats(int id, void *ptr, void *data)
308 {
309         struct drm_i915_gem_object *obj = ptr;
310         struct file_stats *stats = data;
311         struct i915_vma *vma;
312
313         lockdep_assert_held(&obj->base.dev->struct_mutex);
314
315         stats->count++;
316         stats->total += obj->base.size;
317         if (!obj->bind_count)
318                 stats->unbound += obj->base.size;
319         if (obj->base.name || obj->base.dma_buf)
320                 stats->shared += obj->base.size;
321
322         list_for_each_entry(vma, &obj->vma_list, obj_link) {
323                 if (!drm_mm_node_allocated(&vma->node))
324                         continue;
325
326                 if (i915_vma_is_ggtt(vma)) {
327                         stats->global += vma->node.size;
328                 } else {
329                         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
330
331                         if (ppgtt->base.file != stats->file_priv)
332                                 continue;
333                 }
334
335                 if (i915_vma_is_active(vma))
336                         stats->active += vma->node.size;
337                 else
338                         stats->inactive += vma->node.size;
339         }
340
341         return 0;
342 }
343
344 #define print_file_stats(m, name, stats) do { \
345         if (stats.count) \
346                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
347                            name, \
348                            stats.count, \
349                            stats.total, \
350                            stats.active, \
351                            stats.inactive, \
352                            stats.global, \
353                            stats.shared, \
354                            stats.unbound); \
355 } while (0)
356
357 static void print_batch_pool_stats(struct seq_file *m,
358                                    struct drm_i915_private *dev_priv)
359 {
360         struct drm_i915_gem_object *obj;
361         struct file_stats stats;
362         struct intel_engine_cs *engine;
363         enum intel_engine_id id;
364         int j;
365
366         memset(&stats, 0, sizeof(stats));
367
368         for_each_engine(engine, dev_priv, id) {
369                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
370                         list_for_each_entry(obj,
371                                             &engine->batch_pool.cache_list[j],
372                                             batch_pool_link)
373                                 per_file_stats(0, obj, &stats);
374                 }
375         }
376
377         print_file_stats(m, "[k]batch pool", stats);
378 }
379
380 static int per_file_ctx_stats(int id, void *ptr, void *data)
381 {
382         struct i915_gem_context *ctx = ptr;
383         int n;
384
385         for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
386                 if (ctx->engine[n].state)
387                         per_file_stats(0, ctx->engine[n].state->obj, data);
388                 if (ctx->engine[n].ring)
389                         per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
390         }
391
392         return 0;
393 }
394
395 static void print_context_stats(struct seq_file *m,
396                                 struct drm_i915_private *dev_priv)
397 {
398         struct drm_device *dev = &dev_priv->drm;
399         struct file_stats stats;
400         struct drm_file *file;
401
402         memset(&stats, 0, sizeof(stats));
403
404         mutex_lock(&dev->struct_mutex);
405         if (dev_priv->kernel_context)
406                 per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
407
408         list_for_each_entry(file, &dev->filelist, lhead) {
409                 struct drm_i915_file_private *fpriv = file->driver_priv;
410                 idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
411         }
412         mutex_unlock(&dev->struct_mutex);
413
414         print_file_stats(m, "[k]contexts", stats);
415 }
416
417 static int i915_gem_object_info(struct seq_file *m, void *data)
418 {
419         struct drm_i915_private *dev_priv = node_to_i915(m->private);
420         struct drm_device *dev = &dev_priv->drm;
421         struct i915_ggtt *ggtt = &dev_priv->ggtt;
422         u32 count, mapped_count, purgeable_count, dpy_count, huge_count;
423         u64 size, mapped_size, purgeable_size, dpy_size, huge_size;
424         struct drm_i915_gem_object *obj;
425         unsigned int page_sizes = 0;
426         struct drm_file *file;
427         char buf[80];
428         int ret;
429
430         ret = mutex_lock_interruptible(&dev->struct_mutex);
431         if (ret)
432                 return ret;
433
434         seq_printf(m, "%u objects, %llu bytes\n",
435                    dev_priv->mm.object_count,
436                    dev_priv->mm.object_memory);
437
438         size = count = 0;
439         mapped_size = mapped_count = 0;
440         purgeable_size = purgeable_count = 0;
441         huge_size = huge_count = 0;
442
443         spin_lock(&dev_priv->mm.obj_lock);
444         list_for_each_entry(obj, &dev_priv->mm.unbound_list, mm.link) {
445                 size += obj->base.size;
446                 ++count;
447
448                 if (obj->mm.madv == I915_MADV_DONTNEED) {
449                         purgeable_size += obj->base.size;
450                         ++purgeable_count;
451                 }
452
453                 if (obj->mm.mapping) {
454                         mapped_count++;
455                         mapped_size += obj->base.size;
456                 }
457
458                 if (obj->mm.page_sizes.sg > I915_GTT_PAGE_SIZE) {
459                         huge_count++;
460                         huge_size += obj->base.size;
461                         page_sizes |= obj->mm.page_sizes.sg;
462                 }
463         }
464         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
465
466         size = count = dpy_size = dpy_count = 0;
467         list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
468                 size += obj->base.size;
469                 ++count;
470
471                 if (obj->pin_global) {
472                         dpy_size += obj->base.size;
473                         ++dpy_count;
474                 }
475
476                 if (obj->mm.madv == I915_MADV_DONTNEED) {
477                         purgeable_size += obj->base.size;
478                         ++purgeable_count;
479                 }
480
481                 if (obj->mm.mapping) {
482                         mapped_count++;
483                         mapped_size += obj->base.size;
484                 }
485
486                 if (obj->mm.page_sizes.sg > I915_GTT_PAGE_SIZE) {
487                         huge_count++;
488                         huge_size += obj->base.size;
489                         page_sizes |= obj->mm.page_sizes.sg;
490                 }
491         }
492         spin_unlock(&dev_priv->mm.obj_lock);
493
494         seq_printf(m, "%u bound objects, %llu bytes\n",
495                    count, size);
496         seq_printf(m, "%u purgeable objects, %llu bytes\n",
497                    purgeable_count, purgeable_size);
498         seq_printf(m, "%u mapped objects, %llu bytes\n",
499                    mapped_count, mapped_size);
500         seq_printf(m, "%u huge-paged objects (%s) %llu bytes\n",
501                    huge_count,
502                    stringify_page_sizes(page_sizes, buf, sizeof(buf)),
503                    huge_size);
504         seq_printf(m, "%u display objects (globally pinned), %llu bytes\n",
505                    dpy_count, dpy_size);
506
507         seq_printf(m, "%llu [%pa] gtt total\n",
508                    ggtt->base.total, &ggtt->mappable_end);
509         seq_printf(m, "Supported page sizes: %s\n",
510                    stringify_page_sizes(INTEL_INFO(dev_priv)->page_sizes,
511                                         buf, sizeof(buf)));
512
513         seq_putc(m, '\n');
514         print_batch_pool_stats(m, dev_priv);
515         mutex_unlock(&dev->struct_mutex);
516
517         mutex_lock(&dev->filelist_mutex);
518         print_context_stats(m, dev_priv);
519         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
520                 struct file_stats stats;
521                 struct drm_i915_file_private *file_priv = file->driver_priv;
522                 struct i915_request *request;
523                 struct task_struct *task;
524
525                 mutex_lock(&dev->struct_mutex);
526
527                 memset(&stats, 0, sizeof(stats));
528                 stats.file_priv = file->driver_priv;
529                 spin_lock(&file->table_lock);
530                 idr_for_each(&file->object_idr, per_file_stats, &stats);
531                 spin_unlock(&file->table_lock);
532                 /*
533                  * Although we have a valid reference on file->pid, that does
534                  * not guarantee that the task_struct who called get_pid() is
535                  * still alive (e.g. get_pid(current) => fork() => exit()).
536                  * Therefore, we need to protect this ->comm access using RCU.
537                  */
538                 request = list_first_entry_or_null(&file_priv->mm.request_list,
539                                                    struct i915_request,
540                                                    client_link);
541                 rcu_read_lock();
542                 task = pid_task(request && request->ctx->pid ?
543                                 request->ctx->pid : file->pid,
544                                 PIDTYPE_PID);
545                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
546                 rcu_read_unlock();
547
548                 mutex_unlock(&dev->struct_mutex);
549         }
550         mutex_unlock(&dev->filelist_mutex);
551
552         return 0;
553 }
554
555 static int i915_gem_gtt_info(struct seq_file *m, void *data)
556 {
557         struct drm_info_node *node = m->private;
558         struct drm_i915_private *dev_priv = node_to_i915(node);
559         struct drm_device *dev = &dev_priv->drm;
560         struct drm_i915_gem_object **objects;
561         struct drm_i915_gem_object *obj;
562         u64 total_obj_size, total_gtt_size;
563         unsigned long nobject, n;
564         int count, ret;
565
566         nobject = READ_ONCE(dev_priv->mm.object_count);
567         objects = kvmalloc_array(nobject, sizeof(*objects), GFP_KERNEL);
568         if (!objects)
569                 return -ENOMEM;
570
571         ret = mutex_lock_interruptible(&dev->struct_mutex);
572         if (ret)
573                 return ret;
574
575         count = 0;
576         spin_lock(&dev_priv->mm.obj_lock);
577         list_for_each_entry(obj, &dev_priv->mm.bound_list, mm.link) {
578                 objects[count++] = obj;
579                 if (count == nobject)
580                         break;
581         }
582         spin_unlock(&dev_priv->mm.obj_lock);
583
584         total_obj_size = total_gtt_size = 0;
585         for (n = 0;  n < count; n++) {
586                 obj = objects[n];
587
588                 seq_puts(m, "   ");
589                 describe_obj(m, obj);
590                 seq_putc(m, '\n');
591                 total_obj_size += obj->base.size;
592                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
593         }
594
595         mutex_unlock(&dev->struct_mutex);
596
597         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
598                    count, total_obj_size, total_gtt_size);
599         kvfree(objects);
600
601         return 0;
602 }
603
604 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
605 {
606         struct drm_i915_private *dev_priv = node_to_i915(m->private);
607         struct drm_device *dev = &dev_priv->drm;
608         struct drm_i915_gem_object *obj;
609         struct intel_engine_cs *engine;
610         enum intel_engine_id id;
611         int total = 0;
612         int ret, j;
613
614         ret = mutex_lock_interruptible(&dev->struct_mutex);
615         if (ret)
616                 return ret;
617
618         for_each_engine(engine, dev_priv, id) {
619                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
620                         int count;
621
622                         count = 0;
623                         list_for_each_entry(obj,
624                                             &engine->batch_pool.cache_list[j],
625                                             batch_pool_link)
626                                 count++;
627                         seq_printf(m, "%s cache[%d]: %d objects\n",
628                                    engine->name, j, count);
629
630                         list_for_each_entry(obj,
631                                             &engine->batch_pool.cache_list[j],
632                                             batch_pool_link) {
633                                 seq_puts(m, "   ");
634                                 describe_obj(m, obj);
635                                 seq_putc(m, '\n');
636                         }
637
638                         total += count;
639                 }
640         }
641
642         seq_printf(m, "total: %d\n", total);
643
644         mutex_unlock(&dev->struct_mutex);
645
646         return 0;
647 }
648
649 static void gen8_display_interrupt_info(struct seq_file *m)
650 {
651         struct drm_i915_private *dev_priv = node_to_i915(m->private);
652         int pipe;
653
654         for_each_pipe(dev_priv, pipe) {
655                 enum intel_display_power_domain power_domain;
656
657                 power_domain = POWER_DOMAIN_PIPE(pipe);
658                 if (!intel_display_power_get_if_enabled(dev_priv,
659                                                         power_domain)) {
660                         seq_printf(m, "Pipe %c power disabled\n",
661                                    pipe_name(pipe));
662                         continue;
663                 }
664                 seq_printf(m, "Pipe %c IMR:\t%08x\n",
665                            pipe_name(pipe),
666                            I915_READ(GEN8_DE_PIPE_IMR(pipe)));
667                 seq_printf(m, "Pipe %c IIR:\t%08x\n",
668                            pipe_name(pipe),
669                            I915_READ(GEN8_DE_PIPE_IIR(pipe)));
670                 seq_printf(m, "Pipe %c IER:\t%08x\n",
671                            pipe_name(pipe),
672                            I915_READ(GEN8_DE_PIPE_IER(pipe)));
673
674                 intel_display_power_put(dev_priv, power_domain);
675         }
676
677         seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
678                    I915_READ(GEN8_DE_PORT_IMR));
679         seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
680                    I915_READ(GEN8_DE_PORT_IIR));
681         seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
682                    I915_READ(GEN8_DE_PORT_IER));
683
684         seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
685                    I915_READ(GEN8_DE_MISC_IMR));
686         seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
687                    I915_READ(GEN8_DE_MISC_IIR));
688         seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
689                    I915_READ(GEN8_DE_MISC_IER));
690
691         seq_printf(m, "PCU interrupt mask:\t%08x\n",
692                    I915_READ(GEN8_PCU_IMR));
693         seq_printf(m, "PCU interrupt identity:\t%08x\n",
694                    I915_READ(GEN8_PCU_IIR));
695         seq_printf(m, "PCU interrupt enable:\t%08x\n",
696                    I915_READ(GEN8_PCU_IER));
697 }
698
699 static int i915_interrupt_info(struct seq_file *m, void *data)
700 {
701         struct drm_i915_private *dev_priv = node_to_i915(m->private);
702         struct intel_engine_cs *engine;
703         enum intel_engine_id id;
704         int i, pipe;
705
706         intel_runtime_pm_get(dev_priv);
707
708         if (IS_CHERRYVIEW(dev_priv)) {
709                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
710                            I915_READ(GEN8_MASTER_IRQ));
711
712                 seq_printf(m, "Display IER:\t%08x\n",
713                            I915_READ(VLV_IER));
714                 seq_printf(m, "Display IIR:\t%08x\n",
715                            I915_READ(VLV_IIR));
716                 seq_printf(m, "Display IIR_RW:\t%08x\n",
717                            I915_READ(VLV_IIR_RW));
718                 seq_printf(m, "Display IMR:\t%08x\n",
719                            I915_READ(VLV_IMR));
720                 for_each_pipe(dev_priv, pipe) {
721                         enum intel_display_power_domain power_domain;
722
723                         power_domain = POWER_DOMAIN_PIPE(pipe);
724                         if (!intel_display_power_get_if_enabled(dev_priv,
725                                                                 power_domain)) {
726                                 seq_printf(m, "Pipe %c power disabled\n",
727                                            pipe_name(pipe));
728                                 continue;
729                         }
730
731                         seq_printf(m, "Pipe %c stat:\t%08x\n",
732                                    pipe_name(pipe),
733                                    I915_READ(PIPESTAT(pipe)));
734
735                         intel_display_power_put(dev_priv, power_domain);
736                 }
737
738                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
739                 seq_printf(m, "Port hotplug:\t%08x\n",
740                            I915_READ(PORT_HOTPLUG_EN));
741                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
742                            I915_READ(VLV_DPFLIPSTAT));
743                 seq_printf(m, "DPINVGTT:\t%08x\n",
744                            I915_READ(DPINVGTT));
745                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
746
747                 for (i = 0; i < 4; i++) {
748                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
749                                    i, I915_READ(GEN8_GT_IMR(i)));
750                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
751                                    i, I915_READ(GEN8_GT_IIR(i)));
752                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
753                                    i, I915_READ(GEN8_GT_IER(i)));
754                 }
755
756                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
757                            I915_READ(GEN8_PCU_IMR));
758                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
759                            I915_READ(GEN8_PCU_IIR));
760                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
761                            I915_READ(GEN8_PCU_IER));
762         } else if (INTEL_GEN(dev_priv) >= 11) {
763                 seq_printf(m, "Master Interrupt Control:  %08x\n",
764                            I915_READ(GEN11_GFX_MSTR_IRQ));
765
766                 seq_printf(m, "Render/Copy Intr Enable:   %08x\n",
767                            I915_READ(GEN11_RENDER_COPY_INTR_ENABLE));
768                 seq_printf(m, "VCS/VECS Intr Enable:      %08x\n",
769                            I915_READ(GEN11_VCS_VECS_INTR_ENABLE));
770                 seq_printf(m, "GUC/SG Intr Enable:\t   %08x\n",
771                            I915_READ(GEN11_GUC_SG_INTR_ENABLE));
772                 seq_printf(m, "GPM/WGBOXPERF Intr Enable: %08x\n",
773                            I915_READ(GEN11_GPM_WGBOXPERF_INTR_ENABLE));
774                 seq_printf(m, "Crypto Intr Enable:\t   %08x\n",
775                            I915_READ(GEN11_CRYPTO_RSVD_INTR_ENABLE));
776                 seq_printf(m, "GUnit/CSME Intr Enable:\t   %08x\n",
777                            I915_READ(GEN11_GUNIT_CSME_INTR_ENABLE));
778
779                 seq_printf(m, "Display Interrupt Control:\t%08x\n",
780                            I915_READ(GEN11_DISPLAY_INT_CTL));
781
782                 gen8_display_interrupt_info(m);
783         } else if (INTEL_GEN(dev_priv) >= 8) {
784                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
785                            I915_READ(GEN8_MASTER_IRQ));
786
787                 for (i = 0; i < 4; i++) {
788                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
789                                    i, I915_READ(GEN8_GT_IMR(i)));
790                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
791                                    i, I915_READ(GEN8_GT_IIR(i)));
792                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
793                                    i, I915_READ(GEN8_GT_IER(i)));
794                 }
795
796                 gen8_display_interrupt_info(m);
797         } else if (IS_VALLEYVIEW(dev_priv)) {
798                 seq_printf(m, "Display IER:\t%08x\n",
799                            I915_READ(VLV_IER));
800                 seq_printf(m, "Display IIR:\t%08x\n",
801                            I915_READ(VLV_IIR));
802                 seq_printf(m, "Display IIR_RW:\t%08x\n",
803                            I915_READ(VLV_IIR_RW));
804                 seq_printf(m, "Display IMR:\t%08x\n",
805                            I915_READ(VLV_IMR));
806                 for_each_pipe(dev_priv, pipe) {
807                         enum intel_display_power_domain power_domain;
808
809                         power_domain = POWER_DOMAIN_PIPE(pipe);
810                         if (!intel_display_power_get_if_enabled(dev_priv,
811                                                                 power_domain)) {
812                                 seq_printf(m, "Pipe %c power disabled\n",
813                                            pipe_name(pipe));
814                                 continue;
815                         }
816
817                         seq_printf(m, "Pipe %c stat:\t%08x\n",
818                                    pipe_name(pipe),
819                                    I915_READ(PIPESTAT(pipe)));
820                         intel_display_power_put(dev_priv, power_domain);
821                 }
822
823                 seq_printf(m, "Master IER:\t%08x\n",
824                            I915_READ(VLV_MASTER_IER));
825
826                 seq_printf(m, "Render IER:\t%08x\n",
827                            I915_READ(GTIER));
828                 seq_printf(m, "Render IIR:\t%08x\n",
829                            I915_READ(GTIIR));
830                 seq_printf(m, "Render IMR:\t%08x\n",
831                            I915_READ(GTIMR));
832
833                 seq_printf(m, "PM IER:\t\t%08x\n",
834                            I915_READ(GEN6_PMIER));
835                 seq_printf(m, "PM IIR:\t\t%08x\n",
836                            I915_READ(GEN6_PMIIR));
837                 seq_printf(m, "PM IMR:\t\t%08x\n",
838                            I915_READ(GEN6_PMIMR));
839
840                 seq_printf(m, "Port hotplug:\t%08x\n",
841                            I915_READ(PORT_HOTPLUG_EN));
842                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
843                            I915_READ(VLV_DPFLIPSTAT));
844                 seq_printf(m, "DPINVGTT:\t%08x\n",
845                            I915_READ(DPINVGTT));
846
847         } else if (!HAS_PCH_SPLIT(dev_priv)) {
848                 seq_printf(m, "Interrupt enable:    %08x\n",
849                            I915_READ(IER));
850                 seq_printf(m, "Interrupt identity:  %08x\n",
851                            I915_READ(IIR));
852                 seq_printf(m, "Interrupt mask:      %08x\n",
853                            I915_READ(IMR));
854                 for_each_pipe(dev_priv, pipe)
855                         seq_printf(m, "Pipe %c stat:         %08x\n",
856                                    pipe_name(pipe),
857                                    I915_READ(PIPESTAT(pipe)));
858         } else {
859                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
860                            I915_READ(DEIER));
861                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
862                            I915_READ(DEIIR));
863                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
864                            I915_READ(DEIMR));
865                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
866                            I915_READ(SDEIER));
867                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
868                            I915_READ(SDEIIR));
869                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
870                            I915_READ(SDEIMR));
871                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
872                            I915_READ(GTIER));
873                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
874                            I915_READ(GTIIR));
875                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
876                            I915_READ(GTIMR));
877         }
878
879         if (INTEL_GEN(dev_priv) >= 11) {
880                 seq_printf(m, "RCS Intr Mask:\t %08x\n",
881                            I915_READ(GEN11_RCS0_RSVD_INTR_MASK));
882                 seq_printf(m, "BCS Intr Mask:\t %08x\n",
883                            I915_READ(GEN11_BCS_RSVD_INTR_MASK));
884                 seq_printf(m, "VCS0/VCS1 Intr Mask:\t %08x\n",
885                            I915_READ(GEN11_VCS0_VCS1_INTR_MASK));
886                 seq_printf(m, "VCS2/VCS3 Intr Mask:\t %08x\n",
887                            I915_READ(GEN11_VCS2_VCS3_INTR_MASK));
888                 seq_printf(m, "VECS0/VECS1 Intr Mask:\t %08x\n",
889                            I915_READ(GEN11_VECS0_VECS1_INTR_MASK));
890                 seq_printf(m, "GUC/SG Intr Mask:\t %08x\n",
891                            I915_READ(GEN11_GUC_SG_INTR_MASK));
892                 seq_printf(m, "GPM/WGBOXPERF Intr Mask: %08x\n",
893                            I915_READ(GEN11_GPM_WGBOXPERF_INTR_MASK));
894                 seq_printf(m, "Crypto Intr Mask:\t %08x\n",
895                            I915_READ(GEN11_CRYPTO_RSVD_INTR_MASK));
896                 seq_printf(m, "Gunit/CSME Intr Mask:\t %08x\n",
897                            I915_READ(GEN11_GUNIT_CSME_INTR_MASK));
898
899         } else if (INTEL_GEN(dev_priv) >= 6) {
900                 for_each_engine(engine, dev_priv, id) {
901                         seq_printf(m,
902                                    "Graphics Interrupt mask (%s):       %08x\n",
903                                    engine->name, I915_READ_IMR(engine));
904                 }
905         }
906
907         intel_runtime_pm_put(dev_priv);
908
909         return 0;
910 }
911
912 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
913 {
914         struct drm_i915_private *dev_priv = node_to_i915(m->private);
915         struct drm_device *dev = &dev_priv->drm;
916         int i, ret;
917
918         ret = mutex_lock_interruptible(&dev->struct_mutex);
919         if (ret)
920                 return ret;
921
922         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
923         for (i = 0; i < dev_priv->num_fence_regs; i++) {
924                 struct i915_vma *vma = dev_priv->fence_regs[i].vma;
925
926                 seq_printf(m, "Fence %d, pin count = %d, object = ",
927                            i, dev_priv->fence_regs[i].pin_count);
928                 if (!vma)
929                         seq_puts(m, "unused");
930                 else
931                         describe_obj(m, vma->obj);
932                 seq_putc(m, '\n');
933         }
934
935         mutex_unlock(&dev->struct_mutex);
936         return 0;
937 }
938
939 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
940 static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
941                               size_t count, loff_t *pos)
942 {
943         struct i915_gpu_state *error = file->private_data;
944         struct drm_i915_error_state_buf str;
945         ssize_t ret;
946         loff_t tmp;
947
948         if (!error)
949                 return 0;
950
951         ret = i915_error_state_buf_init(&str, error->i915, count, *pos);
952         if (ret)
953                 return ret;
954
955         ret = i915_error_state_to_str(&str, error);
956         if (ret)
957                 goto out;
958
959         tmp = 0;
960         ret = simple_read_from_buffer(ubuf, count, &tmp, str.buf, str.bytes);
961         if (ret < 0)
962                 goto out;
963
964         *pos = str.start + ret;
965 out:
966         i915_error_state_buf_release(&str);
967         return ret;
968 }
969
970 static int gpu_state_release(struct inode *inode, struct file *file)
971 {
972         i915_gpu_state_put(file->private_data);
973         return 0;
974 }
975
976 static int i915_gpu_info_open(struct inode *inode, struct file *file)
977 {
978         struct drm_i915_private *i915 = inode->i_private;
979         struct i915_gpu_state *gpu;
980
981         intel_runtime_pm_get(i915);
982         gpu = i915_capture_gpu_state(i915);
983         intel_runtime_pm_put(i915);
984         if (!gpu)
985                 return -ENOMEM;
986
987         file->private_data = gpu;
988         return 0;
989 }
990
991 static const struct file_operations i915_gpu_info_fops = {
992         .owner = THIS_MODULE,
993         .open = i915_gpu_info_open,
994         .read = gpu_state_read,
995         .llseek = default_llseek,
996         .release = gpu_state_release,
997 };
998
999 static ssize_t
1000 i915_error_state_write(struct file *filp,
1001                        const char __user *ubuf,
1002                        size_t cnt,
1003                        loff_t *ppos)
1004 {
1005         struct i915_gpu_state *error = filp->private_data;
1006
1007         if (!error)
1008                 return 0;
1009
1010         DRM_DEBUG_DRIVER("Resetting error state\n");
1011         i915_reset_error_state(error->i915);
1012
1013         return cnt;
1014 }
1015
1016 static int i915_error_state_open(struct inode *inode, struct file *file)
1017 {
1018         file->private_data = i915_first_error_state(inode->i_private);
1019         return 0;
1020 }
1021
1022 static const struct file_operations i915_error_state_fops = {
1023         .owner = THIS_MODULE,
1024         .open = i915_error_state_open,
1025         .read = gpu_state_read,
1026         .write = i915_error_state_write,
1027         .llseek = default_llseek,
1028         .release = gpu_state_release,
1029 };
1030 #endif
1031
1032 static int
1033 i915_next_seqno_set(void *data, u64 val)
1034 {
1035         struct drm_i915_private *dev_priv = data;
1036         struct drm_device *dev = &dev_priv->drm;
1037         int ret;
1038
1039         ret = mutex_lock_interruptible(&dev->struct_mutex);
1040         if (ret)
1041                 return ret;
1042
1043         intel_runtime_pm_get(dev_priv);
1044         ret = i915_gem_set_global_seqno(dev, val);
1045         intel_runtime_pm_put(dev_priv);
1046
1047         mutex_unlock(&dev->struct_mutex);
1048
1049         return ret;
1050 }
1051
1052 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1053                         NULL, i915_next_seqno_set,
1054                         "0x%llx\n");
1055
1056 static int i915_frequency_info(struct seq_file *m, void *unused)
1057 {
1058         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1059         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1060         int ret = 0;
1061
1062         intel_runtime_pm_get(dev_priv);
1063
1064         if (IS_GEN5(dev_priv)) {
1065                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1066                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1067
1068                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1069                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1070                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1071                            MEMSTAT_VID_SHIFT);
1072                 seq_printf(m, "Current P-state: %d\n",
1073                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1074         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1075                 u32 rpmodectl, freq_sts;
1076
1077                 mutex_lock(&dev_priv->pcu_lock);
1078
1079                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1080                 seq_printf(m, "Video Turbo Mode: %s\n",
1081                            yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
1082                 seq_printf(m, "HW control enabled: %s\n",
1083                            yesno(rpmodectl & GEN6_RP_ENABLE));
1084                 seq_printf(m, "SW control enabled: %s\n",
1085                            yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
1086                                   GEN6_RP_MEDIA_SW_MODE));
1087
1088                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1089                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1090                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1091
1092                 seq_printf(m, "actual GPU freq: %d MHz\n",
1093                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1094
1095                 seq_printf(m, "current GPU freq: %d MHz\n",
1096                            intel_gpu_freq(dev_priv, rps->cur_freq));
1097
1098                 seq_printf(m, "max GPU freq: %d MHz\n",
1099                            intel_gpu_freq(dev_priv, rps->max_freq));
1100
1101                 seq_printf(m, "min GPU freq: %d MHz\n",
1102                            intel_gpu_freq(dev_priv, rps->min_freq));
1103
1104                 seq_printf(m, "idle GPU freq: %d MHz\n",
1105                            intel_gpu_freq(dev_priv, rps->idle_freq));
1106
1107                 seq_printf(m,
1108                            "efficient (RPe) frequency: %d MHz\n",
1109                            intel_gpu_freq(dev_priv, rps->efficient_freq));
1110                 mutex_unlock(&dev_priv->pcu_lock);
1111         } else if (INTEL_GEN(dev_priv) >= 6) {
1112                 u32 rp_state_limits;
1113                 u32 gt_perf_status;
1114                 u32 rp_state_cap;
1115                 u32 rpmodectl, rpinclimit, rpdeclimit;
1116                 u32 rpstat, cagf, reqf;
1117                 u32 rpupei, rpcurup, rpprevup;
1118                 u32 rpdownei, rpcurdown, rpprevdown;
1119                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1120                 int max_freq;
1121
1122                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1123                 if (IS_GEN9_LP(dev_priv)) {
1124                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1125                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1126                 } else {
1127                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1128                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1129                 }
1130
1131                 /* RPSTAT1 is in the GT power well */
1132                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1133
1134                 reqf = I915_READ(GEN6_RPNSWREQ);
1135                 if (INTEL_GEN(dev_priv) >= 9)
1136                         reqf >>= 23;
1137                 else {
1138                         reqf &= ~GEN6_TURBO_DISABLE;
1139                         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1140                                 reqf >>= 24;
1141                         else
1142                                 reqf >>= 25;
1143                 }
1144                 reqf = intel_gpu_freq(dev_priv, reqf);
1145
1146                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1147                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1148                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1149
1150                 rpstat = I915_READ(GEN6_RPSTAT1);
1151                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1152                 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1153                 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1154                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1155                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1156                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1157                 cagf = intel_gpu_freq(dev_priv,
1158                                       intel_get_cagf(dev_priv, rpstat));
1159
1160                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1161
1162                 if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
1163                         pm_ier = I915_READ(GEN6_PMIER);
1164                         pm_imr = I915_READ(GEN6_PMIMR);
1165                         pm_isr = I915_READ(GEN6_PMISR);
1166                         pm_iir = I915_READ(GEN6_PMIIR);
1167                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1168                 } else {
1169                         pm_ier = I915_READ(GEN8_GT_IER(2));
1170                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1171                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1172                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1173                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1174                 }
1175                 seq_printf(m, "Video Turbo Mode: %s\n",
1176                            yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
1177                 seq_printf(m, "HW control enabled: %s\n",
1178                            yesno(rpmodectl & GEN6_RP_ENABLE));
1179                 seq_printf(m, "SW control enabled: %s\n",
1180                            yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
1181                                   GEN6_RP_MEDIA_SW_MODE));
1182                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1183                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1184                 seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
1185                            rps->pm_intrmsk_mbz);
1186                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1187                 seq_printf(m, "Render p-state ratio: %d\n",
1188                            (gt_perf_status & (INTEL_GEN(dev_priv) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
1189                 seq_printf(m, "Render p-state VID: %d\n",
1190                            gt_perf_status & 0xff);
1191                 seq_printf(m, "Render p-state limit: %d\n",
1192                            rp_state_limits & 0xff);
1193                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1194                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1195                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1196                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1197                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1198                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1199                 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1200                            rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1201                 seq_printf(m, "RP CUR UP: %d (%dus)\n",
1202                            rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1203                 seq_printf(m, "RP PREV UP: %d (%dus)\n",
1204                            rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1205                 seq_printf(m, "Up threshold: %d%%\n", rps->up_threshold);
1206
1207                 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1208                            rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1209                 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1210                            rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1211                 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1212                            rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1213                 seq_printf(m, "Down threshold: %d%%\n", rps->down_threshold);
1214
1215                 max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
1216                             rp_state_cap >> 16) & 0xff;
1217                 max_freq *= (IS_GEN9_BC(dev_priv) ||
1218                              IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
1219                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1220                            intel_gpu_freq(dev_priv, max_freq));
1221
1222                 max_freq = (rp_state_cap & 0xff00) >> 8;
1223                 max_freq *= (IS_GEN9_BC(dev_priv) ||
1224                              IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
1225                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1226                            intel_gpu_freq(dev_priv, max_freq));
1227
1228                 max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
1229                             rp_state_cap >> 0) & 0xff;
1230                 max_freq *= (IS_GEN9_BC(dev_priv) ||
1231                              IS_CANNONLAKE(dev_priv) ? GEN9_FREQ_SCALER : 1);
1232                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1233                            intel_gpu_freq(dev_priv, max_freq));
1234                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1235                            intel_gpu_freq(dev_priv, rps->max_freq));
1236
1237                 seq_printf(m, "Current freq: %d MHz\n",
1238                            intel_gpu_freq(dev_priv, rps->cur_freq));
1239                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1240                 seq_printf(m, "Idle freq: %d MHz\n",
1241                            intel_gpu_freq(dev_priv, rps->idle_freq));
1242                 seq_printf(m, "Min freq: %d MHz\n",
1243                            intel_gpu_freq(dev_priv, rps->min_freq));
1244                 seq_printf(m, "Boost freq: %d MHz\n",
1245                            intel_gpu_freq(dev_priv, rps->boost_freq));
1246                 seq_printf(m, "Max freq: %d MHz\n",
1247                            intel_gpu_freq(dev_priv, rps->max_freq));
1248                 seq_printf(m,
1249                            "efficient (RPe) frequency: %d MHz\n",
1250                            intel_gpu_freq(dev_priv, rps->efficient_freq));
1251         } else {
1252                 seq_puts(m, "no P-state info available\n");
1253         }
1254
1255         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
1256         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1257         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1258
1259         intel_runtime_pm_put(dev_priv);
1260         return ret;
1261 }
1262
1263 static void i915_instdone_info(struct drm_i915_private *dev_priv,
1264                                struct seq_file *m,
1265                                struct intel_instdone *instdone)
1266 {
1267         int slice;
1268         int subslice;
1269
1270         seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
1271                    instdone->instdone);
1272
1273         if (INTEL_GEN(dev_priv) <= 3)
1274                 return;
1275
1276         seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
1277                    instdone->slice_common);
1278
1279         if (INTEL_GEN(dev_priv) <= 6)
1280                 return;
1281
1282         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1283                 seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
1284                            slice, subslice, instdone->sampler[slice][subslice]);
1285
1286         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1287                 seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
1288                            slice, subslice, instdone->row[slice][subslice]);
1289 }
1290
1291 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1292 {
1293         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1294         struct intel_engine_cs *engine;
1295         u64 acthd[I915_NUM_ENGINES];
1296         u32 seqno[I915_NUM_ENGINES];
1297         struct intel_instdone instdone;
1298         enum intel_engine_id id;
1299
1300         if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
1301                 seq_puts(m, "Wedged\n");
1302         if (test_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags))
1303                 seq_puts(m, "Reset in progress: struct_mutex backoff\n");
1304         if (test_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags))
1305                 seq_puts(m, "Reset in progress: reset handoff to waiter\n");
1306         if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
1307                 seq_puts(m, "Waiter holding struct mutex\n");
1308         if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
1309                 seq_puts(m, "struct_mutex blocked for reset\n");
1310
1311         if (!i915_modparams.enable_hangcheck) {
1312                 seq_puts(m, "Hangcheck disabled\n");
1313                 return 0;
1314         }
1315
1316         intel_runtime_pm_get(dev_priv);
1317
1318         for_each_engine(engine, dev_priv, id) {
1319                 acthd[id] = intel_engine_get_active_head(engine);
1320                 seqno[id] = intel_engine_get_seqno(engine);
1321         }
1322
1323         intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
1324
1325         intel_runtime_pm_put(dev_priv);
1326
1327         if (timer_pending(&dev_priv->gpu_error.hangcheck_work.timer))
1328                 seq_printf(m, "Hangcheck active, timer fires in %dms\n",
1329                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1330                                             jiffies));
1331         else if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work))
1332                 seq_puts(m, "Hangcheck active, work pending\n");
1333         else
1334                 seq_puts(m, "Hangcheck inactive\n");
1335
1336         seq_printf(m, "GT active? %s\n", yesno(dev_priv->gt.awake));
1337
1338         for_each_engine(engine, dev_priv, id) {
1339                 struct intel_breadcrumbs *b = &engine->breadcrumbs;
1340                 struct rb_node *rb;
1341
1342                 seq_printf(m, "%s:\n", engine->name);
1343                 seq_printf(m, "\tseqno = %x [current %x, last %x], inflight %d\n",
1344                            engine->hangcheck.seqno, seqno[id],
1345                            intel_engine_last_submit(engine),
1346                            engine->timeline->inflight_seqnos);
1347                 seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s\n",
1348                            yesno(intel_engine_has_waiter(engine)),
1349                            yesno(test_bit(engine->id,
1350                                           &dev_priv->gpu_error.missed_irq_rings)),
1351                            yesno(engine->hangcheck.stalled));
1352
1353                 spin_lock_irq(&b->rb_lock);
1354                 for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
1355                         struct intel_wait *w = rb_entry(rb, typeof(*w), node);
1356
1357                         seq_printf(m, "\t%s [%d] waiting for %x\n",
1358                                    w->tsk->comm, w->tsk->pid, w->seqno);
1359                 }
1360                 spin_unlock_irq(&b->rb_lock);
1361
1362                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1363                            (long long)engine->hangcheck.acthd,
1364                            (long long)acthd[id]);
1365                 seq_printf(m, "\taction = %s(%d) %d ms ago\n",
1366                            hangcheck_action_to_str(engine->hangcheck.action),
1367                            engine->hangcheck.action,
1368                            jiffies_to_msecs(jiffies -
1369                                             engine->hangcheck.action_timestamp));
1370
1371                 if (engine->id == RCS) {
1372                         seq_puts(m, "\tinstdone read =\n");
1373
1374                         i915_instdone_info(dev_priv, m, &instdone);
1375
1376                         seq_puts(m, "\tinstdone accu =\n");
1377
1378                         i915_instdone_info(dev_priv, m,
1379                                            &engine->hangcheck.instdone);
1380                 }
1381         }
1382
1383         return 0;
1384 }
1385
1386 static int i915_reset_info(struct seq_file *m, void *unused)
1387 {
1388         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1389         struct i915_gpu_error *error = &dev_priv->gpu_error;
1390         struct intel_engine_cs *engine;
1391         enum intel_engine_id id;
1392
1393         seq_printf(m, "full gpu reset = %u\n", i915_reset_count(error));
1394
1395         for_each_engine(engine, dev_priv, id) {
1396                 seq_printf(m, "%s = %u\n", engine->name,
1397                            i915_reset_engine_count(error, engine));
1398         }
1399
1400         return 0;
1401 }
1402
1403 static int ironlake_drpc_info(struct seq_file *m)
1404 {
1405         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1406         u32 rgvmodectl, rstdbyctl;
1407         u16 crstandvid;
1408
1409         rgvmodectl = I915_READ(MEMMODECTL);
1410         rstdbyctl = I915_READ(RSTDBYCTL);
1411         crstandvid = I915_READ16(CRSTANDVID);
1412
1413         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1414         seq_printf(m, "Boost freq: %d\n",
1415                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1416                    MEMMODE_BOOST_FREQ_SHIFT);
1417         seq_printf(m, "HW control enabled: %s\n",
1418                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1419         seq_printf(m, "SW control enabled: %s\n",
1420                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1421         seq_printf(m, "Gated voltage change: %s\n",
1422                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1423         seq_printf(m, "Starting frequency: P%d\n",
1424                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1425         seq_printf(m, "Max P-state: P%d\n",
1426                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1427         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1428         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1429         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1430         seq_printf(m, "Render standby enabled: %s\n",
1431                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1432         seq_puts(m, "Current RS state: ");
1433         switch (rstdbyctl & RSX_STATUS_MASK) {
1434         case RSX_STATUS_ON:
1435                 seq_puts(m, "on\n");
1436                 break;
1437         case RSX_STATUS_RC1:
1438                 seq_puts(m, "RC1\n");
1439                 break;
1440         case RSX_STATUS_RC1E:
1441                 seq_puts(m, "RC1E\n");
1442                 break;
1443         case RSX_STATUS_RS1:
1444                 seq_puts(m, "RS1\n");
1445                 break;
1446         case RSX_STATUS_RS2:
1447                 seq_puts(m, "RS2 (RC6)\n");
1448                 break;
1449         case RSX_STATUS_RS3:
1450                 seq_puts(m, "RC3 (RC6+)\n");
1451                 break;
1452         default:
1453                 seq_puts(m, "unknown\n");
1454                 break;
1455         }
1456
1457         return 0;
1458 }
1459
1460 static int i915_forcewake_domains(struct seq_file *m, void *data)
1461 {
1462         struct drm_i915_private *i915 = node_to_i915(m->private);
1463         struct intel_uncore_forcewake_domain *fw_domain;
1464         unsigned int tmp;
1465
1466         seq_printf(m, "user.bypass_count = %u\n",
1467                    i915->uncore.user_forcewake.count);
1468
1469         for_each_fw_domain(fw_domain, i915, tmp)
1470                 seq_printf(m, "%s.wake_count = %u\n",
1471                            intel_uncore_forcewake_domain_to_str(fw_domain->id),
1472                            READ_ONCE(fw_domain->wake_count));
1473
1474         return 0;
1475 }
1476
1477 static void print_rc6_res(struct seq_file *m,
1478                           const char *title,
1479                           const i915_reg_t reg)
1480 {
1481         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1482
1483         seq_printf(m, "%s %u (%llu us)\n",
1484                    title, I915_READ(reg),
1485                    intel_rc6_residency_us(dev_priv, reg));
1486 }
1487
1488 static int vlv_drpc_info(struct seq_file *m)
1489 {
1490         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1491         u32 rcctl1, pw_status;
1492
1493         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1494         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1495
1496         seq_printf(m, "RC6 Enabled: %s\n",
1497                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1498                                         GEN6_RC_CTL_EI_MODE(1))));
1499         seq_printf(m, "Render Power Well: %s\n",
1500                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1501         seq_printf(m, "Media Power Well: %s\n",
1502                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1503
1504         print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6);
1505         print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6);
1506
1507         return i915_forcewake_domains(m, NULL);
1508 }
1509
1510 static int gen6_drpc_info(struct seq_file *m)
1511 {
1512         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1513         u32 gt_core_status, rcctl1, rc6vids = 0;
1514         u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1515
1516         gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1517         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1518
1519         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1520         if (INTEL_GEN(dev_priv) >= 9) {
1521                 gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1522                 gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1523         }
1524
1525         if (INTEL_GEN(dev_priv) <= 7) {
1526                 mutex_lock(&dev_priv->pcu_lock);
1527                 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS,
1528                                        &rc6vids);
1529                 mutex_unlock(&dev_priv->pcu_lock);
1530         }
1531
1532         seq_printf(m, "RC1e Enabled: %s\n",
1533                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1534         seq_printf(m, "RC6 Enabled: %s\n",
1535                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1536         if (INTEL_GEN(dev_priv) >= 9) {
1537                 seq_printf(m, "Render Well Gating Enabled: %s\n",
1538                         yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1539                 seq_printf(m, "Media Well Gating Enabled: %s\n",
1540                         yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1541         }
1542         seq_printf(m, "Deep RC6 Enabled: %s\n",
1543                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1544         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1545                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1546         seq_puts(m, "Current RC state: ");
1547         switch (gt_core_status & GEN6_RCn_MASK) {
1548         case GEN6_RC0:
1549                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1550                         seq_puts(m, "Core Power Down\n");
1551                 else
1552                         seq_puts(m, "on\n");
1553                 break;
1554         case GEN6_RC3:
1555                 seq_puts(m, "RC3\n");
1556                 break;
1557         case GEN6_RC6:
1558                 seq_puts(m, "RC6\n");
1559                 break;
1560         case GEN6_RC7:
1561                 seq_puts(m, "RC7\n");
1562                 break;
1563         default:
1564                 seq_puts(m, "Unknown\n");
1565                 break;
1566         }
1567
1568         seq_printf(m, "Core Power Down: %s\n",
1569                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1570         if (INTEL_GEN(dev_priv) >= 9) {
1571                 seq_printf(m, "Render Power Well: %s\n",
1572                         (gen9_powergate_status &
1573                          GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1574                 seq_printf(m, "Media Power Well: %s\n",
1575                         (gen9_powergate_status &
1576                          GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1577         }
1578
1579         /* Not exactly sure what this is */
1580         print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:",
1581                       GEN6_GT_GFX_RC6_LOCKED);
1582         print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6);
1583         print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p);
1584         print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp);
1585
1586         if (INTEL_GEN(dev_priv) <= 7) {
1587                 seq_printf(m, "RC6   voltage: %dmV\n",
1588                            GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1589                 seq_printf(m, "RC6+  voltage: %dmV\n",
1590                            GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1591                 seq_printf(m, "RC6++ voltage: %dmV\n",
1592                            GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1593         }
1594
1595         return i915_forcewake_domains(m, NULL);
1596 }
1597
1598 static int i915_drpc_info(struct seq_file *m, void *unused)
1599 {
1600         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1601         int err;
1602
1603         intel_runtime_pm_get(dev_priv);
1604
1605         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1606                 err = vlv_drpc_info(m);
1607         else if (INTEL_GEN(dev_priv) >= 6)
1608                 err = gen6_drpc_info(m);
1609         else
1610                 err = ironlake_drpc_info(m);
1611
1612         intel_runtime_pm_put(dev_priv);
1613
1614         return err;
1615 }
1616
1617 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1618 {
1619         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1620
1621         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1622                    dev_priv->fb_tracking.busy_bits);
1623
1624         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1625                    dev_priv->fb_tracking.flip_bits);
1626
1627         return 0;
1628 }
1629
1630 static int i915_fbc_status(struct seq_file *m, void *unused)
1631 {
1632         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1633         struct intel_fbc *fbc = &dev_priv->fbc;
1634
1635         if (!HAS_FBC(dev_priv))
1636                 return -ENODEV;
1637
1638         intel_runtime_pm_get(dev_priv);
1639         mutex_lock(&fbc->lock);
1640
1641         if (intel_fbc_is_active(dev_priv))
1642                 seq_puts(m, "FBC enabled\n");
1643         else
1644                 seq_printf(m, "FBC disabled: %s\n", fbc->no_fbc_reason);
1645
1646         if (fbc->work.scheduled)
1647                 seq_printf(m, "FBC worker scheduled on vblank %llu, now %llu\n",
1648                            fbc->work.scheduled_vblank,
1649                            drm_crtc_vblank_count(&fbc->crtc->base));
1650
1651         if (intel_fbc_is_active(dev_priv)) {
1652                 u32 mask;
1653
1654                 if (INTEL_GEN(dev_priv) >= 8)
1655                         mask = I915_READ(IVB_FBC_STATUS2) & BDW_FBC_COMP_SEG_MASK;
1656                 else if (INTEL_GEN(dev_priv) >= 7)
1657                         mask = I915_READ(IVB_FBC_STATUS2) & IVB_FBC_COMP_SEG_MASK;
1658                 else if (INTEL_GEN(dev_priv) >= 5)
1659                         mask = I915_READ(ILK_DPFC_STATUS) & ILK_DPFC_COMP_SEG_MASK;
1660                 else if (IS_G4X(dev_priv))
1661                         mask = I915_READ(DPFC_STATUS) & DPFC_COMP_SEG_MASK;
1662                 else
1663                         mask = I915_READ(FBC_STATUS) & (FBC_STAT_COMPRESSING |
1664                                                         FBC_STAT_COMPRESSED);
1665
1666                 seq_printf(m, "Compressing: %s\n", yesno(mask));
1667         }
1668
1669         mutex_unlock(&fbc->lock);
1670         intel_runtime_pm_put(dev_priv);
1671
1672         return 0;
1673 }
1674
1675 static int i915_fbc_false_color_get(void *data, u64 *val)
1676 {
1677         struct drm_i915_private *dev_priv = data;
1678
1679         if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1680                 return -ENODEV;
1681
1682         *val = dev_priv->fbc.false_color;
1683
1684         return 0;
1685 }
1686
1687 static int i915_fbc_false_color_set(void *data, u64 val)
1688 {
1689         struct drm_i915_private *dev_priv = data;
1690         u32 reg;
1691
1692         if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1693                 return -ENODEV;
1694
1695         mutex_lock(&dev_priv->fbc.lock);
1696
1697         reg = I915_READ(ILK_DPFC_CONTROL);
1698         dev_priv->fbc.false_color = val;
1699
1700         I915_WRITE(ILK_DPFC_CONTROL, val ?
1701                    (reg | FBC_CTL_FALSE_COLOR) :
1702                    (reg & ~FBC_CTL_FALSE_COLOR));
1703
1704         mutex_unlock(&dev_priv->fbc.lock);
1705         return 0;
1706 }
1707
1708 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_false_color_fops,
1709                         i915_fbc_false_color_get, i915_fbc_false_color_set,
1710                         "%llu\n");
1711
1712 static int i915_ips_status(struct seq_file *m, void *unused)
1713 {
1714         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1715
1716         if (!HAS_IPS(dev_priv))
1717                 return -ENODEV;
1718
1719         intel_runtime_pm_get(dev_priv);
1720
1721         seq_printf(m, "Enabled by kernel parameter: %s\n",
1722                    yesno(i915_modparams.enable_ips));
1723
1724         if (INTEL_GEN(dev_priv) >= 8) {
1725                 seq_puts(m, "Currently: unknown\n");
1726         } else {
1727                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1728                         seq_puts(m, "Currently: enabled\n");
1729                 else
1730                         seq_puts(m, "Currently: disabled\n");
1731         }
1732
1733         intel_runtime_pm_put(dev_priv);
1734
1735         return 0;
1736 }
1737
1738 static int i915_sr_status(struct seq_file *m, void *unused)
1739 {
1740         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1741         bool sr_enabled = false;
1742
1743         intel_runtime_pm_get(dev_priv);
1744         intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1745
1746         if (INTEL_GEN(dev_priv) >= 9)
1747                 /* no global SR status; inspect per-plane WM */;
1748         else if (HAS_PCH_SPLIT(dev_priv))
1749                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1750         else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
1751                  IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1752                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1753         else if (IS_I915GM(dev_priv))
1754                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1755         else if (IS_PINEVIEW(dev_priv))
1756                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1757         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1758                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1759
1760         intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1761         intel_runtime_pm_put(dev_priv);
1762
1763         seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
1764
1765         return 0;
1766 }
1767
1768 static int i915_emon_status(struct seq_file *m, void *unused)
1769 {
1770         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1771         struct drm_device *dev = &dev_priv->drm;
1772         unsigned long temp, chipset, gfx;
1773         int ret;
1774
1775         if (!IS_GEN5(dev_priv))
1776                 return -ENODEV;
1777
1778         ret = mutex_lock_interruptible(&dev->struct_mutex);
1779         if (ret)
1780                 return ret;
1781
1782         temp = i915_mch_val(dev_priv);
1783         chipset = i915_chipset_val(dev_priv);
1784         gfx = i915_gfx_val(dev_priv);
1785         mutex_unlock(&dev->struct_mutex);
1786
1787         seq_printf(m, "GMCH temp: %ld\n", temp);
1788         seq_printf(m, "Chipset power: %ld\n", chipset);
1789         seq_printf(m, "GFX power: %ld\n", gfx);
1790         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1791
1792         return 0;
1793 }
1794
1795 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1796 {
1797         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1798         struct intel_rps *rps = &dev_priv->gt_pm.rps;
1799         unsigned int max_gpu_freq, min_gpu_freq;
1800         int gpu_freq, ia_freq;
1801         int ret;
1802
1803         if (!HAS_LLC(dev_priv))
1804                 return -ENODEV;
1805
1806         intel_runtime_pm_get(dev_priv);
1807
1808         ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
1809         if (ret)
1810                 goto out;
1811
1812         min_gpu_freq = rps->min_freq;
1813         max_gpu_freq = rps->max_freq;
1814         if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
1815                 /* Convert GT frequency to 50 HZ units */
1816                 min_gpu_freq /= GEN9_FREQ_SCALER;
1817                 max_gpu_freq /= GEN9_FREQ_SCALER;
1818         }
1819
1820         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1821
1822         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1823                 ia_freq = gpu_freq;
1824                 sandybridge_pcode_read(dev_priv,
1825                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1826                                        &ia_freq);
1827                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1828                            intel_gpu_freq(dev_priv, (gpu_freq *
1829                                                      (IS_GEN9_BC(dev_priv) ||
1830                                                       IS_CANNONLAKE(dev_priv) ?
1831                                                       GEN9_FREQ_SCALER : 1))),
1832                            ((ia_freq >> 0) & 0xff) * 100,
1833                            ((ia_freq >> 8) & 0xff) * 100);
1834         }
1835
1836         mutex_unlock(&dev_priv->pcu_lock);
1837
1838 out:
1839         intel_runtime_pm_put(dev_priv);
1840         return ret;
1841 }
1842
1843 static int i915_opregion(struct seq_file *m, void *unused)
1844 {
1845         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1846         struct drm_device *dev = &dev_priv->drm;
1847         struct intel_opregion *opregion = &dev_priv->opregion;
1848         int ret;
1849
1850         ret = mutex_lock_interruptible(&dev->struct_mutex);
1851         if (ret)
1852                 goto out;
1853
1854         if (opregion->header)
1855                 seq_write(m, opregion->header, OPREGION_SIZE);
1856
1857         mutex_unlock(&dev->struct_mutex);
1858
1859 out:
1860         return 0;
1861 }
1862
1863 static int i915_vbt(struct seq_file *m, void *unused)
1864 {
1865         struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
1866
1867         if (opregion->vbt)
1868                 seq_write(m, opregion->vbt, opregion->vbt_size);
1869
1870         return 0;
1871 }
1872
1873 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1874 {
1875         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1876         struct drm_device *dev = &dev_priv->drm;
1877         struct intel_framebuffer *fbdev_fb = NULL;
1878         struct drm_framebuffer *drm_fb;
1879         int ret;
1880
1881         ret = mutex_lock_interruptible(&dev->struct_mutex);
1882         if (ret)
1883                 return ret;
1884
1885 #ifdef CONFIG_DRM_FBDEV_EMULATION
1886         if (dev_priv->fbdev && dev_priv->fbdev->helper.fb) {
1887                 fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
1888
1889                 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1890                            fbdev_fb->base.width,
1891                            fbdev_fb->base.height,
1892                            fbdev_fb->base.format->depth,
1893                            fbdev_fb->base.format->cpp[0] * 8,
1894                            fbdev_fb->base.modifier,
1895                            drm_framebuffer_read_refcount(&fbdev_fb->base));
1896                 describe_obj(m, fbdev_fb->obj);
1897                 seq_putc(m, '\n');
1898         }
1899 #endif
1900
1901         mutex_lock(&dev->mode_config.fb_lock);
1902         drm_for_each_fb(drm_fb, dev) {
1903                 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1904                 if (fb == fbdev_fb)
1905                         continue;
1906
1907                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1908                            fb->base.width,
1909                            fb->base.height,
1910                            fb->base.format->depth,
1911                            fb->base.format->cpp[0] * 8,
1912                            fb->base.modifier,
1913                            drm_framebuffer_read_refcount(&fb->base));
1914                 describe_obj(m, fb->obj);
1915                 seq_putc(m, '\n');
1916         }
1917         mutex_unlock(&dev->mode_config.fb_lock);
1918         mutex_unlock(&dev->struct_mutex);
1919
1920         return 0;
1921 }
1922
1923 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1924 {
1925         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, emit: %u)",
1926                    ring->space, ring->head, ring->tail, ring->emit);
1927 }
1928
1929 static int i915_context_status(struct seq_file *m, void *unused)
1930 {
1931         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1932         struct drm_device *dev = &dev_priv->drm;
1933         struct intel_engine_cs *engine;
1934         struct i915_gem_context *ctx;
1935         enum intel_engine_id id;
1936         int ret;
1937
1938         ret = mutex_lock_interruptible(&dev->struct_mutex);
1939         if (ret)
1940                 return ret;
1941
1942         list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
1943                 seq_printf(m, "HW context %u ", ctx->hw_id);
1944                 if (ctx->pid) {
1945                         struct task_struct *task;
1946
1947                         task = get_pid_task(ctx->pid, PIDTYPE_PID);
1948                         if (task) {
1949                                 seq_printf(m, "(%s [%d]) ",
1950                                            task->comm, task->pid);
1951                                 put_task_struct(task);
1952                         }
1953                 } else if (IS_ERR(ctx->file_priv)) {
1954                         seq_puts(m, "(deleted) ");
1955                 } else {
1956                         seq_puts(m, "(kernel) ");
1957                 }
1958
1959                 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1960                 seq_putc(m, '\n');
1961
1962                 for_each_engine(engine, dev_priv, id) {
1963                         struct intel_context *ce = &ctx->engine[engine->id];
1964
1965                         seq_printf(m, "%s: ", engine->name);
1966                         if (ce->state)
1967                                 describe_obj(m, ce->state->obj);
1968                         if (ce->ring)
1969                                 describe_ctx_ring(m, ce->ring);
1970                         seq_putc(m, '\n');
1971                 }
1972
1973                 seq_putc(m, '\n');
1974         }
1975
1976         mutex_unlock(&dev->struct_mutex);
1977
1978         return 0;
1979 }
1980
1981 static const char *swizzle_string(unsigned swizzle)
1982 {
1983         switch (swizzle) {
1984         case I915_BIT_6_SWIZZLE_NONE:
1985                 return "none";
1986         case I915_BIT_6_SWIZZLE_9:
1987                 return "bit9";
1988         case I915_BIT_6_SWIZZLE_9_10:
1989                 return "bit9/bit10";
1990         case I915_BIT_6_SWIZZLE_9_11:
1991                 return "bit9/bit11";
1992         case I915_BIT_6_SWIZZLE_9_10_11:
1993                 return "bit9/bit10/bit11";
1994         case I915_BIT_6_SWIZZLE_9_17:
1995                 return "bit9/bit17";
1996         case I915_BIT_6_SWIZZLE_9_10_17:
1997                 return "bit9/bit10/bit17";
1998         case I915_BIT_6_SWIZZLE_UNKNOWN:
1999                 return "unknown";
2000         }
2001
2002         return "bug";
2003 }
2004
2005 static int i915_swizzle_info(struct seq_file *m, void *data)
2006 {
2007         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2008
2009         intel_runtime_pm_get(dev_priv);
2010
2011         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2012                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2013         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2014                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2015
2016         if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
2017                 seq_printf(m, "DDC = 0x%08x\n",
2018                            I915_READ(DCC));
2019                 seq_printf(m, "DDC2 = 0x%08x\n",
2020                            I915_READ(DCC2));
2021                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2022                            I915_READ16(C0DRB3));
2023                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2024                            I915_READ16(C1DRB3));
2025         } else if (INTEL_GEN(dev_priv) >= 6) {
2026                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2027                            I915_READ(MAD_DIMM_C0));
2028                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2029                            I915_READ(MAD_DIMM_C1));
2030                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2031                            I915_READ(MAD_DIMM_C2));
2032                 seq_printf(m, "TILECTL = 0x%08x\n",
2033                            I915_READ(TILECTL));
2034                 if (INTEL_GEN(dev_priv) >= 8)
2035                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2036                                    I915_READ(GAMTARBMODE));
2037                 else
2038                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2039                                    I915_READ(ARB_MODE));
2040                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2041                            I915_READ(DISP_ARB_CTL));
2042         }
2043
2044         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2045                 seq_puts(m, "L-shaped memory detected\n");
2046
2047         intel_runtime_pm_put(dev_priv);
2048
2049         return 0;
2050 }
2051
2052 static int per_file_ctx(int id, void *ptr, void *data)
2053 {
2054         struct i915_gem_context *ctx = ptr;
2055         struct seq_file *m = data;
2056         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2057
2058         if (!ppgtt) {
2059                 seq_printf(m, "  no ppgtt for context %d\n",
2060                            ctx->user_handle);
2061                 return 0;
2062         }
2063
2064         if (i915_gem_context_is_default(ctx))
2065                 seq_puts(m, "  default context:\n");
2066         else
2067                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2068         ppgtt->debug_dump(ppgtt, m);
2069
2070         return 0;
2071 }
2072
2073 static void gen8_ppgtt_info(struct seq_file *m,
2074                             struct drm_i915_private *dev_priv)
2075 {
2076         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2077         struct intel_engine_cs *engine;
2078         enum intel_engine_id id;
2079         int i;
2080
2081         if (!ppgtt)
2082                 return;
2083
2084         for_each_engine(engine, dev_priv, id) {
2085                 seq_printf(m, "%s\n", engine->name);
2086                 for (i = 0; i < 4; i++) {
2087                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2088                         pdp <<= 32;
2089                         pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2090                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2091                 }
2092         }
2093 }
2094
2095 static void gen6_ppgtt_info(struct seq_file *m,
2096                             struct drm_i915_private *dev_priv)
2097 {
2098         struct intel_engine_cs *engine;
2099         enum intel_engine_id id;
2100
2101         if (IS_GEN6(dev_priv))
2102                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2103
2104         for_each_engine(engine, dev_priv, id) {
2105                 seq_printf(m, "%s\n", engine->name);
2106                 if (IS_GEN7(dev_priv))
2107                         seq_printf(m, "GFX_MODE: 0x%08x\n",
2108                                    I915_READ(RING_MODE_GEN7(engine)));
2109                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2110                            I915_READ(RING_PP_DIR_BASE(engine)));
2111                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2112                            I915_READ(RING_PP_DIR_BASE_READ(engine)));
2113                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2114                            I915_READ(RING_PP_DIR_DCLV(engine)));
2115         }
2116         if (dev_priv->mm.aliasing_ppgtt) {
2117                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2118
2119                 seq_puts(m, "aliasing PPGTT:\n");
2120                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2121
2122                 ppgtt->debug_dump(ppgtt, m);
2123         }
2124
2125         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2126 }
2127
2128 static int i915_ppgtt_info(struct seq_file *m, void *data)
2129 {
2130         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2131         struct drm_device *dev = &dev_priv->drm;
2132         struct drm_file *file;
2133         int ret;
2134
2135         mutex_lock(&dev->filelist_mutex);
2136         ret = mutex_lock_interruptible(&dev->struct_mutex);
2137         if (ret)
2138                 goto out_unlock;
2139
2140         intel_runtime_pm_get(dev_priv);
2141
2142         if (INTEL_GEN(dev_priv) >= 8)
2143                 gen8_ppgtt_info(m, dev_priv);
2144         else if (INTEL_GEN(dev_priv) >= 6)
2145                 gen6_ppgtt_info(m, dev_priv);
2146
2147         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2148                 struct drm_i915_file_private *file_priv = file->driver_priv;
2149                 struct task_struct *task;
2150
2151                 task = get_pid_task(file->pid, PIDTYPE_PID);
2152                 if (!task) {
2153                         ret = -ESRCH;
2154                         goto out_rpm;
2155                 }
2156                 seq_printf(m, "\nproc: %s\n", task->comm);
2157                 put_task_struct(task);
2158                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2159                              (void *)(unsigned long)m);
2160         }
2161
2162 out_rpm:
2163         intel_runtime_pm_put(dev_priv);
2164         mutex_unlock(&dev->struct_mutex);
2165 out_unlock:
2166         mutex_unlock(&dev->filelist_mutex);
2167         return ret;
2168 }
2169
2170 static int count_irq_waiters(struct drm_i915_private *i915)
2171 {
2172         struct intel_engine_cs *engine;
2173         enum intel_engine_id id;
2174         int count = 0;
2175
2176         for_each_engine(engine, i915, id)
2177                 count += intel_engine_has_waiter(engine);
2178
2179         return count;
2180 }
2181
2182 static const char *rps_power_to_str(unsigned int power)
2183 {
2184         static const char * const strings[] = {
2185                 [LOW_POWER] = "low power",
2186                 [BETWEEN] = "mixed",
2187                 [HIGH_POWER] = "high power",
2188         };
2189
2190         if (power >= ARRAY_SIZE(strings) || !strings[power])
2191                 return "unknown";
2192
2193         return strings[power];
2194 }
2195
2196 static int i915_rps_boost_info(struct seq_file *m, void *data)
2197 {
2198         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2199         struct drm_device *dev = &dev_priv->drm;
2200         struct intel_rps *rps = &dev_priv->gt_pm.rps;
2201         struct drm_file *file;
2202
2203         seq_printf(m, "RPS enabled? %d\n", rps->enabled);
2204         seq_printf(m, "GPU busy? %s [%d requests]\n",
2205                    yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
2206         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2207         seq_printf(m, "Boosts outstanding? %d\n",
2208                    atomic_read(&rps->num_waiters));
2209         seq_printf(m, "Frequency requested %d\n",
2210                    intel_gpu_freq(dev_priv, rps->cur_freq));
2211         seq_printf(m, "  min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2212                    intel_gpu_freq(dev_priv, rps->min_freq),
2213                    intel_gpu_freq(dev_priv, rps->min_freq_softlimit),
2214                    intel_gpu_freq(dev_priv, rps->max_freq_softlimit),
2215                    intel_gpu_freq(dev_priv, rps->max_freq));
2216         seq_printf(m, "  idle:%d, efficient:%d, boost:%d\n",
2217                    intel_gpu_freq(dev_priv, rps->idle_freq),
2218                    intel_gpu_freq(dev_priv, rps->efficient_freq),
2219                    intel_gpu_freq(dev_priv, rps->boost_freq));
2220
2221         mutex_lock(&dev->filelist_mutex);
2222         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2223                 struct drm_i915_file_private *file_priv = file->driver_priv;
2224                 struct task_struct *task;
2225
2226                 rcu_read_lock();
2227                 task = pid_task(file->pid, PIDTYPE_PID);
2228                 seq_printf(m, "%s [%d]: %d boosts\n",
2229                            task ? task->comm : "<unknown>",
2230                            task ? task->pid : -1,
2231                            atomic_read(&file_priv->rps_client.boosts));
2232                 rcu_read_unlock();
2233         }
2234         seq_printf(m, "Kernel (anonymous) boosts: %d\n",
2235                    atomic_read(&rps->boosts));
2236         mutex_unlock(&dev->filelist_mutex);
2237
2238         if (INTEL_GEN(dev_priv) >= 6 &&
2239             rps->enabled &&
2240             dev_priv->gt.active_requests) {
2241                 u32 rpup, rpupei;
2242                 u32 rpdown, rpdownei;
2243
2244                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2245                 rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
2246                 rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
2247                 rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
2248                 rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
2249                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2250
2251                 seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
2252                            rps_power_to_str(rps->power));
2253                 seq_printf(m, "  Avg. up: %d%% [above threshold? %d%%]\n",
2254                            rpup && rpupei ? 100 * rpup / rpupei : 0,
2255                            rps->up_threshold);
2256                 seq_printf(m, "  Avg. down: %d%% [below threshold? %d%%]\n",
2257                            rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
2258                            rps->down_threshold);
2259         } else {
2260                 seq_puts(m, "\nRPS Autotuning inactive\n");
2261         }
2262
2263         return 0;
2264 }
2265
2266 static int i915_llc(struct seq_file *m, void *data)
2267 {
2268         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2269         const bool edram = INTEL_GEN(dev_priv) > 8;
2270
2271         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
2272         seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2273                    intel_uncore_edram_size(dev_priv)/1024/1024);
2274
2275         return 0;
2276 }
2277
2278 static int i915_huc_load_status_info(struct seq_file *m, void *data)
2279 {
2280         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2281         struct drm_printer p;
2282
2283         if (!HAS_HUC(dev_priv))
2284                 return -ENODEV;
2285
2286         p = drm_seq_file_printer(m);
2287         intel_uc_fw_dump(&dev_priv->huc.fw, &p);
2288
2289         intel_runtime_pm_get(dev_priv);
2290         seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
2291         intel_runtime_pm_put(dev_priv);
2292
2293         return 0;
2294 }
2295
2296 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2297 {
2298         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2299         struct drm_printer p;
2300         u32 tmp, i;
2301
2302         if (!HAS_GUC(dev_priv))
2303                 return -ENODEV;
2304
2305         p = drm_seq_file_printer(m);
2306         intel_uc_fw_dump(&dev_priv->guc.fw, &p);
2307
2308         intel_runtime_pm_get(dev_priv);
2309
2310         tmp = I915_READ(GUC_STATUS);
2311
2312         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2313         seq_printf(m, "\tBootrom status = 0x%x\n",
2314                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2315         seq_printf(m, "\tuKernel status = 0x%x\n",
2316                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2317         seq_printf(m, "\tMIA Core status = 0x%x\n",
2318                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2319         seq_puts(m, "\nScratch registers:\n");
2320         for (i = 0; i < 16; i++)
2321                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2322
2323         intel_runtime_pm_put(dev_priv);
2324
2325         return 0;
2326 }
2327
2328 static void i915_guc_log_info(struct seq_file *m,
2329                               struct drm_i915_private *dev_priv)
2330 {
2331         struct intel_guc *guc = &dev_priv->guc;
2332
2333         seq_puts(m, "\nGuC logging stats:\n");
2334
2335         seq_printf(m, "\tISR:   flush count %10u, overflow count %10u\n",
2336                    guc->log.flush_count[GUC_ISR_LOG_BUFFER],
2337                    guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
2338
2339         seq_printf(m, "\tDPC:   flush count %10u, overflow count %10u\n",
2340                    guc->log.flush_count[GUC_DPC_LOG_BUFFER],
2341                    guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
2342
2343         seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
2344                    guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
2345                    guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
2346
2347         seq_printf(m, "\tTotal flush interrupt count: %u\n",
2348                    guc->log.flush_interrupt_count);
2349
2350         seq_printf(m, "\tRelay full count: %u\n",
2351                    guc->log.relay.full_count);
2352 }
2353
2354 static void i915_guc_client_info(struct seq_file *m,
2355                                  struct drm_i915_private *dev_priv,
2356                                  struct intel_guc_client *client)
2357 {
2358         struct intel_engine_cs *engine;
2359         enum intel_engine_id id;
2360         uint64_t tot = 0;
2361
2362         seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n",
2363                 client->priority, client->stage_id, client->proc_desc_offset);
2364         seq_printf(m, "\tDoorbell id %d, offset: 0x%lx\n",
2365                 client->doorbell_id, client->doorbell_offset);
2366
2367         for_each_engine(engine, dev_priv, id) {
2368                 u64 submissions = client->submissions[id];
2369                 tot += submissions;
2370                 seq_printf(m, "\tSubmissions: %llu %s\n",
2371                                 submissions, engine->name);
2372         }
2373         seq_printf(m, "\tTotal: %llu\n", tot);
2374 }
2375
2376 static int i915_guc_info(struct seq_file *m, void *data)
2377 {
2378         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2379         const struct intel_guc *guc = &dev_priv->guc;
2380
2381         if (!USES_GUC_SUBMISSION(dev_priv))
2382                 return -ENODEV;
2383
2384         GEM_BUG_ON(!guc->execbuf_client);
2385
2386         seq_printf(m, "Doorbell map:\n");
2387         seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap);
2388         seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc->db_cacheline);
2389
2390         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
2391         i915_guc_client_info(m, dev_priv, guc->execbuf_client);
2392         if (guc->preempt_client) {
2393                 seq_printf(m, "\nGuC preempt client @ %p:\n",
2394                            guc->preempt_client);
2395                 i915_guc_client_info(m, dev_priv, guc->preempt_client);
2396         }
2397
2398         i915_guc_log_info(m, dev_priv);
2399
2400         /* Add more as required ... */
2401
2402         return 0;
2403 }
2404
2405 static int i915_guc_stage_pool(struct seq_file *m, void *data)
2406 {
2407         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2408         const struct intel_guc *guc = &dev_priv->guc;
2409         struct guc_stage_desc *desc = guc->stage_desc_pool_vaddr;
2410         struct intel_guc_client *client = guc->execbuf_client;
2411         unsigned int tmp;
2412         int index;
2413
2414         if (!USES_GUC_SUBMISSION(dev_priv))
2415                 return -ENODEV;
2416
2417         for (index = 0; index < GUC_MAX_STAGE_DESCRIPTORS; index++, desc++) {
2418                 struct intel_engine_cs *engine;
2419
2420                 if (!(desc->attribute & GUC_STAGE_DESC_ATTR_ACTIVE))
2421                         continue;
2422
2423                 seq_printf(m, "GuC stage descriptor %u:\n", index);
2424                 seq_printf(m, "\tIndex: %u\n", desc->stage_id);
2425                 seq_printf(m, "\tAttribute: 0x%x\n", desc->attribute);
2426                 seq_printf(m, "\tPriority: %d\n", desc->priority);
2427                 seq_printf(m, "\tDoorbell id: %d\n", desc->db_id);
2428                 seq_printf(m, "\tEngines used: 0x%x\n",
2429                            desc->engines_used);
2430                 seq_printf(m, "\tDoorbell trigger phy: 0x%llx, cpu: 0x%llx, uK: 0x%x\n",
2431                            desc->db_trigger_phy,
2432                            desc->db_trigger_cpu,
2433                            desc->db_trigger_uk);
2434                 seq_printf(m, "\tProcess descriptor: 0x%x\n",
2435                            desc->process_desc);
2436                 seq_printf(m, "\tWorkqueue address: 0x%x, size: 0x%x\n",
2437                            desc->wq_addr, desc->wq_size);
2438                 seq_putc(m, '\n');
2439
2440                 for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
2441                         u32 guc_engine_id = engine->guc_id;
2442                         struct guc_execlist_context *lrc =
2443                                                 &desc->lrc[guc_engine_id];
2444
2445                         seq_printf(m, "\t%s LRC:\n", engine->name);
2446                         seq_printf(m, "\t\tContext desc: 0x%x\n",
2447                                    lrc->context_desc);
2448                         seq_printf(m, "\t\tContext id: 0x%x\n", lrc->context_id);
2449                         seq_printf(m, "\t\tLRCA: 0x%x\n", lrc->ring_lrca);
2450                         seq_printf(m, "\t\tRing begin: 0x%x\n", lrc->ring_begin);
2451                         seq_printf(m, "\t\tRing end: 0x%x\n", lrc->ring_end);
2452                         seq_putc(m, '\n');
2453                 }
2454         }
2455
2456         return 0;
2457 }
2458
2459 static int i915_guc_log_dump(struct seq_file *m, void *data)
2460 {
2461         struct drm_info_node *node = m->private;
2462         struct drm_i915_private *dev_priv = node_to_i915(node);
2463         bool dump_load_err = !!node->info_ent->data;
2464         struct drm_i915_gem_object *obj = NULL;
2465         u32 *log;
2466         int i = 0;
2467
2468         if (!HAS_GUC(dev_priv))
2469                 return -ENODEV;
2470
2471         if (dump_load_err)
2472                 obj = dev_priv->guc.load_err_log;
2473         else if (dev_priv->guc.log.vma)
2474                 obj = dev_priv->guc.log.vma->obj;
2475
2476         if (!obj)
2477                 return 0;
2478
2479         log = i915_gem_object_pin_map(obj, I915_MAP_WC);
2480         if (IS_ERR(log)) {
2481                 DRM_DEBUG("Failed to pin object\n");
2482                 seq_puts(m, "(log data unaccessible)\n");
2483                 return PTR_ERR(log);
2484         }
2485
2486         for (i = 0; i < obj->base.size / sizeof(u32); i += 4)
2487                 seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2488                            *(log + i), *(log + i + 1),
2489                            *(log + i + 2), *(log + i + 3));
2490
2491         seq_putc(m, '\n');
2492
2493         i915_gem_object_unpin_map(obj);
2494
2495         return 0;
2496 }
2497
2498 static int i915_guc_log_level_get(void *data, u64 *val)
2499 {
2500         struct drm_i915_private *dev_priv = data;
2501
2502         if (!USES_GUC(dev_priv))
2503                 return -ENODEV;
2504
2505         *val = intel_guc_log_level_get(&dev_priv->guc.log);
2506
2507         return 0;
2508 }
2509
2510 static int i915_guc_log_level_set(void *data, u64 val)
2511 {
2512         struct drm_i915_private *dev_priv = data;
2513
2514         if (!USES_GUC(dev_priv))
2515                 return -ENODEV;
2516
2517         return intel_guc_log_level_set(&dev_priv->guc.log, val);
2518 }
2519
2520 DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_level_fops,
2521                         i915_guc_log_level_get, i915_guc_log_level_set,
2522                         "%lld\n");
2523
2524 static int i915_guc_log_relay_open(struct inode *inode, struct file *file)
2525 {
2526         struct drm_i915_private *dev_priv = inode->i_private;
2527
2528         if (!USES_GUC(dev_priv))
2529                 return -ENODEV;
2530
2531         file->private_data = &dev_priv->guc.log;
2532
2533         return intel_guc_log_relay_open(&dev_priv->guc.log);
2534 }
2535
2536 static ssize_t
2537 i915_guc_log_relay_write(struct file *filp,
2538                          const char __user *ubuf,
2539                          size_t cnt,
2540                          loff_t *ppos)
2541 {
2542         struct intel_guc_log *log = filp->private_data;
2543
2544         intel_guc_log_relay_flush(log);
2545
2546         return cnt;
2547 }
2548
2549 static int i915_guc_log_relay_release(struct inode *inode, struct file *file)
2550 {
2551         struct drm_i915_private *dev_priv = inode->i_private;
2552
2553         intel_guc_log_relay_close(&dev_priv->guc.log);
2554
2555         return 0;
2556 }
2557
2558 static const struct file_operations i915_guc_log_relay_fops = {
2559         .owner = THIS_MODULE,
2560         .open = i915_guc_log_relay_open,
2561         .write = i915_guc_log_relay_write,
2562         .release = i915_guc_log_relay_release,
2563 };
2564
2565 static const char *psr2_live_status(u32 val)
2566 {
2567         static const char * const live_status[] = {
2568                 "IDLE",
2569                 "CAPTURE",
2570                 "CAPTURE_FS",
2571                 "SLEEP",
2572                 "BUFON_FW",
2573                 "ML_UP",
2574                 "SU_STANDBY",
2575                 "FAST_SLEEP",
2576                 "DEEP_SLEEP",
2577                 "BUF_ON",
2578                 "TG_ON"
2579         };
2580
2581         val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
2582         if (val < ARRAY_SIZE(live_status))
2583                 return live_status[val];
2584
2585         return "unknown";
2586 }
2587
2588 static int i915_edp_psr_status(struct seq_file *m, void *data)
2589 {
2590         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2591         u32 psrperf = 0;
2592         u32 stat[3];
2593         enum pipe pipe;
2594         bool enabled = false;
2595         bool sink_support;
2596
2597         if (!HAS_PSR(dev_priv))
2598                 return -ENODEV;
2599
2600         sink_support = dev_priv->psr.sink_support;
2601         seq_printf(m, "Sink_Support: %s\n", yesno(sink_support));
2602         if (!sink_support)
2603                 return 0;
2604
2605         intel_runtime_pm_get(dev_priv);
2606
2607         mutex_lock(&dev_priv->psr.lock);
2608         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2609         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2610                    dev_priv->psr.busy_frontbuffer_bits);
2611         seq_printf(m, "Re-enable work scheduled: %s\n",
2612                    yesno(work_busy(&dev_priv->psr.work.work)));
2613
2614         if (HAS_DDI(dev_priv)) {
2615                 if (dev_priv->psr.psr2_support)
2616                         enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
2617                 else
2618                         enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2619         } else {
2620                 for_each_pipe(dev_priv, pipe) {
2621                         enum transcoder cpu_transcoder =
2622                                 intel_pipe_to_cpu_transcoder(dev_priv, pipe);
2623                         enum intel_display_power_domain power_domain;
2624
2625                         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
2626                         if (!intel_display_power_get_if_enabled(dev_priv,
2627                                                                 power_domain))
2628                                 continue;
2629
2630                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2631                                 VLV_EDP_PSR_CURR_STATE_MASK;
2632                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2633                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2634                                 enabled = true;
2635
2636                         intel_display_power_put(dev_priv, power_domain);
2637                 }
2638         }
2639
2640         seq_printf(m, "Main link in standby mode: %s\n",
2641                    yesno(dev_priv->psr.link_standby));
2642
2643         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2644
2645         if (!HAS_DDI(dev_priv))
2646                 for_each_pipe(dev_priv, pipe) {
2647                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2648                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2649                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2650                 }
2651         seq_puts(m, "\n");
2652
2653         /*
2654          * VLV/CHV PSR has no kind of performance counter
2655          * SKL+ Perf counter is reset to 0 everytime DC state is entered
2656          */
2657         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2658                 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2659                         EDP_PSR_PERF_CNT_MASK;
2660
2661                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2662         }
2663         if (dev_priv->psr.psr2_support) {
2664                 u32 psr2 = I915_READ(EDP_PSR2_STATUS);
2665
2666                 seq_printf(m, "EDP_PSR2_STATUS: %x [%s]\n",
2667                            psr2, psr2_live_status(psr2));
2668         }
2669         mutex_unlock(&dev_priv->psr.lock);
2670
2671         intel_runtime_pm_put(dev_priv);
2672         return 0;
2673 }
2674
2675 static int i915_sink_crc(struct seq_file *m, void *data)
2676 {
2677         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2678         struct drm_device *dev = &dev_priv->drm;
2679         struct intel_connector *connector;
2680         struct drm_connector_list_iter conn_iter;
2681         struct intel_dp *intel_dp = NULL;
2682         struct drm_modeset_acquire_ctx ctx;
2683         int ret;
2684         u8 crc[6];
2685
2686         drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
2687
2688         drm_connector_list_iter_begin(dev, &conn_iter);
2689
2690         for_each_intel_connector_iter(connector, &conn_iter) {
2691                 struct drm_crtc *crtc;
2692                 struct drm_connector_state *state;
2693                 struct intel_crtc_state *crtc_state;
2694
2695                 if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2696                         continue;
2697
2698 retry:
2699                 ret = drm_modeset_lock(&dev->mode_config.connection_mutex, &ctx);
2700                 if (ret)
2701                         goto err;
2702
2703                 state = connector->base.state;
2704                 if (!state->best_encoder)
2705                         continue;
2706
2707                 crtc = state->crtc;
2708                 ret = drm_modeset_lock(&crtc->mutex, &ctx);
2709                 if (ret)
2710                         goto err;
2711
2712                 crtc_state = to_intel_crtc_state(crtc->state);
2713                 if (!crtc_state->base.active)
2714                         continue;
2715
2716                 /*
2717                  * We need to wait for all crtc updates to complete, to make
2718                  * sure any pending modesets and plane updates are completed.
2719                  */
2720                 if (crtc_state->base.commit) {
2721                         ret = wait_for_completion_interruptible(&crtc_state->base.commit->hw_done);
2722
2723                         if (ret)
2724                                 goto err;
2725                 }
2726
2727                 intel_dp = enc_to_intel_dp(state->best_encoder);
2728
2729                 ret = intel_dp_sink_crc(intel_dp, crtc_state, crc);
2730                 if (ret)
2731                         goto err;
2732
2733                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2734                            crc[0], crc[1], crc[2],
2735                            crc[3], crc[4], crc[5]);
2736                 goto out;
2737
2738 err:
2739                 if (ret == -EDEADLK) {
2740                         ret = drm_modeset_backoff(&ctx);
2741                         if (!ret)
2742                                 goto retry;
2743                 }
2744                 goto out;
2745         }
2746         ret = -ENODEV;
2747 out:
2748         drm_connector_list_iter_end(&conn_iter);
2749         drm_modeset_drop_locks(&ctx);
2750         drm_modeset_acquire_fini(&ctx);
2751
2752         return ret;
2753 }
2754
2755 static int i915_energy_uJ(struct seq_file *m, void *data)
2756 {
2757         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2758         unsigned long long power;
2759         u32 units;
2760
2761         if (INTEL_GEN(dev_priv) < 6)
2762                 return -ENODEV;
2763
2764         intel_runtime_pm_get(dev_priv);
2765
2766         if (rdmsrl_safe(MSR_RAPL_POWER_UNIT, &power)) {
2767                 intel_runtime_pm_put(dev_priv);
2768                 return -ENODEV;
2769         }
2770
2771         units = (power & 0x1f00) >> 8;
2772         power = I915_READ(MCH_SECP_NRG_STTS);
2773         power = (1000000 * power) >> units; /* convert to uJ */
2774
2775         intel_runtime_pm_put(dev_priv);
2776
2777         seq_printf(m, "%llu", power);
2778
2779         return 0;
2780 }
2781
2782 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2783 {
2784         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2785         struct pci_dev *pdev = dev_priv->drm.pdev;
2786
2787         if (!HAS_RUNTIME_PM(dev_priv))
2788                 seq_puts(m, "Runtime power management not supported\n");
2789
2790         seq_printf(m, "GPU idle: %s (epoch %u)\n",
2791                    yesno(!dev_priv->gt.awake), dev_priv->gt.epoch);
2792         seq_printf(m, "IRQs disabled: %s\n",
2793                    yesno(!intel_irqs_enabled(dev_priv)));
2794 #ifdef CONFIG_PM
2795         seq_printf(m, "Usage count: %d\n",
2796                    atomic_read(&dev_priv->drm.dev->power.usage_count));
2797 #else
2798         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2799 #endif
2800         seq_printf(m, "PCI device power state: %s [%d]\n",
2801                    pci_power_name(pdev->current_state),
2802                    pdev->current_state);
2803
2804         return 0;
2805 }
2806
2807 static int i915_power_domain_info(struct seq_file *m, void *unused)
2808 {
2809         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2810         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2811         int i;
2812
2813         mutex_lock(&power_domains->lock);
2814
2815         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2816         for (i = 0; i < power_domains->power_well_count; i++) {
2817                 struct i915_power_well *power_well;
2818                 enum intel_display_power_domain power_domain;
2819
2820                 power_well = &power_domains->power_wells[i];
2821                 seq_printf(m, "%-25s %d\n", power_well->name,
2822                            power_well->count);
2823
2824                 for_each_power_domain(power_domain, power_well->domains)
2825                         seq_printf(m, "  %-23s %d\n",
2826                                  intel_display_power_domain_str(power_domain),
2827                                  power_domains->domain_use_count[power_domain]);
2828         }
2829
2830         mutex_unlock(&power_domains->lock);
2831
2832         return 0;
2833 }
2834
2835 static int i915_dmc_info(struct seq_file *m, void *unused)
2836 {
2837         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2838         struct intel_csr *csr;
2839
2840         if (!HAS_CSR(dev_priv))
2841                 return -ENODEV;
2842
2843         csr = &dev_priv->csr;
2844
2845         intel_runtime_pm_get(dev_priv);
2846
2847         seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2848         seq_printf(m, "path: %s\n", csr->fw_path);
2849
2850         if (!csr->dmc_payload)
2851                 goto out;
2852
2853         seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2854                    CSR_VERSION_MINOR(csr->version));
2855
2856         if (IS_KABYLAKE(dev_priv) ||
2857             (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6))) {
2858                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2859                            I915_READ(SKL_CSR_DC3_DC5_COUNT));
2860                 seq_printf(m, "DC5 -> DC6 count: %d\n",
2861                            I915_READ(SKL_CSR_DC5_DC6_COUNT));
2862         } else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
2863                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2864                            I915_READ(BXT_CSR_DC3_DC5_COUNT));
2865         }
2866
2867 out:
2868         seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2869         seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2870         seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2871
2872         intel_runtime_pm_put(dev_priv);
2873
2874         return 0;
2875 }
2876
2877 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2878                                  struct drm_display_mode *mode)
2879 {
2880         int i;
2881
2882         for (i = 0; i < tabs; i++)
2883                 seq_putc(m, '\t');
2884
2885         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2886                    mode->base.id, mode->name,
2887                    mode->vrefresh, mode->clock,
2888                    mode->hdisplay, mode->hsync_start,
2889                    mode->hsync_end, mode->htotal,
2890                    mode->vdisplay, mode->vsync_start,
2891                    mode->vsync_end, mode->vtotal,
2892                    mode->type, mode->flags);
2893 }
2894
2895 static void intel_encoder_info(struct seq_file *m,
2896                                struct intel_crtc *intel_crtc,
2897                                struct intel_encoder *intel_encoder)
2898 {
2899         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2900         struct drm_device *dev = &dev_priv->drm;
2901         struct drm_crtc *crtc = &intel_crtc->base;
2902         struct intel_connector *intel_connector;
2903         struct drm_encoder *encoder;
2904
2905         encoder = &intel_encoder->base;
2906         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2907                    encoder->base.id, encoder->name);
2908         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2909                 struct drm_connector *connector = &intel_connector->base;
2910                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2911                            connector->base.id,
2912                            connector->name,
2913                            drm_get_connector_status_name(connector->status));
2914                 if (connector->status == connector_status_connected) {
2915                         struct drm_display_mode *mode = &crtc->mode;
2916                         seq_printf(m, ", mode:\n");
2917                         intel_seq_print_mode(m, 2, mode);
2918                 } else {
2919                         seq_putc(m, '\n');
2920                 }
2921         }
2922 }
2923
2924 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2925 {
2926         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2927         struct drm_device *dev = &dev_priv->drm;
2928         struct drm_crtc *crtc = &intel_crtc->base;
2929         struct intel_encoder *intel_encoder;
2930         struct drm_plane_state *plane_state = crtc->primary->state;
2931         struct drm_framebuffer *fb = plane_state->fb;
2932
2933         if (fb)
2934                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2935                            fb->base.id, plane_state->src_x >> 16,
2936                            plane_state->src_y >> 16, fb->width, fb->height);
2937         else
2938                 seq_puts(m, "\tprimary plane disabled\n");
2939         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2940                 intel_encoder_info(m, intel_crtc, intel_encoder);
2941 }
2942
2943 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2944 {
2945         struct drm_display_mode *mode = panel->fixed_mode;
2946
2947         seq_printf(m, "\tfixed mode:\n");
2948         intel_seq_print_mode(m, 2, mode);
2949 }
2950
2951 static void intel_dp_info(struct seq_file *m,
2952                           struct intel_connector *intel_connector)
2953 {
2954         struct intel_encoder *intel_encoder = intel_connector->encoder;
2955         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2956
2957         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2958         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2959         if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2960                 intel_panel_info(m, &intel_connector->panel);
2961
2962         drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
2963                                 &intel_dp->aux);
2964 }
2965
2966 static void intel_dp_mst_info(struct seq_file *m,
2967                           struct intel_connector *intel_connector)
2968 {
2969         struct intel_encoder *intel_encoder = intel_connector->encoder;
2970         struct intel_dp_mst_encoder *intel_mst =
2971                 enc_to_mst(&intel_encoder->base);
2972         struct intel_digital_port *intel_dig_port = intel_mst->primary;
2973         struct intel_dp *intel_dp = &intel_dig_port->dp;
2974         bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2975                                         intel_connector->port);
2976
2977         seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
2978 }
2979
2980 static void intel_hdmi_info(struct seq_file *m,
2981                             struct intel_connector *intel_connector)
2982 {
2983         struct intel_encoder *intel_encoder = intel_connector->encoder;
2984         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2985
2986         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2987 }
2988
2989 static void intel_lvds_info(struct seq_file *m,
2990                             struct intel_connector *intel_connector)
2991 {
2992         intel_panel_info(m, &intel_connector->panel);
2993 }
2994
2995 static void intel_connector_info(struct seq_file *m,
2996                                  struct drm_connector *connector)
2997 {
2998         struct intel_connector *intel_connector = to_intel_connector(connector);
2999         struct intel_encoder *intel_encoder = intel_connector->encoder;
3000         struct drm_display_mode *mode;
3001
3002         seq_printf(m, "connector %d: type %s, status: %s\n",
3003                    connector->base.id, connector->name,
3004                    drm_get_connector_status_name(connector->status));
3005         if (connector->status == connector_status_connected) {
3006                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
3007                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
3008                            connector->display_info.width_mm,
3009                            connector->display_info.height_mm);
3010                 seq_printf(m, "\tsubpixel order: %s\n",
3011                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
3012                 seq_printf(m, "\tCEA rev: %d\n",
3013                            connector->display_info.cea_rev);
3014         }
3015
3016         if (!intel_encoder)
3017                 return;
3018
3019         switch (connector->connector_type) {
3020         case DRM_MODE_CONNECTOR_DisplayPort:
3021         case DRM_MODE_CONNECTOR_eDP:
3022                 if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
3023                         intel_dp_mst_info(m, intel_connector);
3024                 else
3025                         intel_dp_info(m, intel_connector);
3026                 break;
3027         case DRM_MODE_CONNECTOR_LVDS:
3028                 if (intel_encoder->type == INTEL_OUTPUT_LVDS)
3029                         intel_lvds_info(m, intel_connector);
3030                 break;
3031         case DRM_MODE_CONNECTOR_HDMIA:
3032                 if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
3033                     intel_encoder->type == INTEL_OUTPUT_DDI)
3034                         intel_hdmi_info(m, intel_connector);
3035                 break;
3036         default:
3037                 break;
3038         }
3039
3040         seq_printf(m, "\tmodes:\n");
3041         list_for_each_entry(mode, &connector->modes, head)
3042                 intel_seq_print_mode(m, 2, mode);
3043 }
3044
3045 static const char *plane_type(enum drm_plane_type type)
3046 {
3047         switch (type) {
3048         case DRM_PLANE_TYPE_OVERLAY:
3049                 return "OVL";
3050         case DRM_PLANE_TYPE_PRIMARY:
3051                 return "PRI";
3052         case DRM_PLANE_TYPE_CURSOR:
3053                 return "CUR";
3054         /*
3055          * Deliberately omitting default: to generate compiler warnings
3056          * when a new drm_plane_type gets added.
3057          */
3058         }
3059
3060         return "unknown";
3061 }
3062
3063 static const char *plane_rotation(unsigned int rotation)
3064 {
3065         static char buf[48];
3066         /*
3067          * According to doc only one DRM_MODE_ROTATE_ is allowed but this
3068          * will print them all to visualize if the values are misused
3069          */
3070         snprintf(buf, sizeof(buf),
3071                  "%s%s%s%s%s%s(0x%08x)",
3072                  (rotation & DRM_MODE_ROTATE_0) ? "0 " : "",
3073                  (rotation & DRM_MODE_ROTATE_90) ? "90 " : "",
3074                  (rotation & DRM_MODE_ROTATE_180) ? "180 " : "",
3075                  (rotation & DRM_MODE_ROTATE_270) ? "270 " : "",
3076                  (rotation & DRM_MODE_REFLECT_X) ? "FLIPX " : "",
3077                  (rotation & DRM_MODE_REFLECT_Y) ? "FLIPY " : "",
3078                  rotation);
3079
3080         return buf;
3081 }
3082
3083 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3084 {
3085         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3086         struct drm_device *dev = &dev_priv->drm;
3087         struct intel_plane *intel_plane;
3088
3089         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3090                 struct drm_plane_state *state;
3091                 struct drm_plane *plane = &intel_plane->base;
3092                 struct drm_format_name_buf format_name;
3093
3094                 if (!plane->state) {
3095                         seq_puts(m, "plane->state is NULL!\n");
3096                         continue;
3097                 }
3098
3099                 state = plane->state;
3100
3101                 if (state->fb) {
3102                         drm_get_format_name(state->fb->format->format,
3103                                             &format_name);
3104                 } else {
3105                         sprintf(format_name.str, "N/A");
3106                 }
3107
3108                 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3109                            plane->base.id,
3110                            plane_type(intel_plane->base.type),
3111                            state->crtc_x, state->crtc_y,
3112                            state->crtc_w, state->crtc_h,
3113                            (state->src_x >> 16),
3114                            ((state->src_x & 0xffff) * 15625) >> 10,
3115                            (state->src_y >> 16),
3116                            ((state->src_y & 0xffff) * 15625) >> 10,
3117                            (state->src_w >> 16),
3118                            ((state->src_w & 0xffff) * 15625) >> 10,
3119                            (state->src_h >> 16),
3120                            ((state->src_h & 0xffff) * 15625) >> 10,
3121                            format_name.str,
3122                            plane_rotation(state->rotation));
3123         }
3124 }
3125
3126 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3127 {
3128         struct intel_crtc_state *pipe_config;
3129         int num_scalers = intel_crtc->num_scalers;
3130         int i;
3131
3132         pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3133
3134         /* Not all platformas have a scaler */
3135         if (num_scalers) {
3136                 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3137                            num_scalers,
3138                            pipe_config->scaler_state.scaler_users,
3139                            pipe_config->scaler_state.scaler_id);
3140
3141                 for (i = 0; i < num_scalers; i++) {
3142                         struct intel_scaler *sc =
3143                                         &pipe_config->scaler_state.scalers[i];
3144
3145                         seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3146                                    i, yesno(sc->in_use), sc->mode);
3147                 }
3148                 seq_puts(m, "\n");
3149         } else {
3150                 seq_puts(m, "\tNo scalers available on this platform\n");
3151         }
3152 }
3153
3154 static int i915_display_info(struct seq_file *m, void *unused)
3155 {
3156         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3157         struct drm_device *dev = &dev_priv->drm;
3158         struct intel_crtc *crtc;
3159         struct drm_connector *connector;
3160         struct drm_connector_list_iter conn_iter;
3161
3162         intel_runtime_pm_get(dev_priv);
3163         seq_printf(m, "CRTC info\n");
3164         seq_printf(m, "---------\n");
3165         for_each_intel_crtc(dev, crtc) {
3166                 struct intel_crtc_state *pipe_config;
3167
3168                 drm_modeset_lock(&crtc->base.mutex, NULL);
3169                 pipe_config = to_intel_crtc_state(crtc->base.state);
3170
3171                 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3172                            crtc->base.base.id, pipe_name(crtc->pipe),
3173                            yesno(pipe_config->base.active),
3174                            pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3175                            yesno(pipe_config->dither), pipe_config->pipe_bpp);
3176
3177                 if (pipe_config->base.active) {
3178                         struct intel_plane *cursor =
3179                                 to_intel_plane(crtc->base.cursor);
3180
3181                         intel_crtc_info(m, crtc);
3182
3183                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x\n",
3184                                    yesno(cursor->base.state->visible),
3185                                    cursor->base.state->crtc_x,
3186                                    cursor->base.state->crtc_y,
3187                                    cursor->base.state->crtc_w,
3188                                    cursor->base.state->crtc_h,
3189                                    cursor->cursor.base);
3190                         intel_scaler_info(m, crtc);
3191                         intel_plane_info(m, crtc);
3192                 }
3193
3194                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3195                            yesno(!crtc->cpu_fifo_underrun_disabled),
3196                            yesno(!crtc->pch_fifo_underrun_disabled));
3197                 drm_modeset_unlock(&crtc->base.mutex);
3198         }
3199
3200         seq_printf(m, "\n");
3201         seq_printf(m, "Connector info\n");
3202         seq_printf(m, "--------------\n");
3203         mutex_lock(&dev->mode_config.mutex);
3204         drm_connector_list_iter_begin(dev, &conn_iter);
3205         drm_for_each_connector_iter(connector, &conn_iter)
3206                 intel_connector_info(m, connector);
3207         drm_connector_list_iter_end(&conn_iter);
3208         mutex_unlock(&dev->mode_config.mutex);
3209
3210         intel_runtime_pm_put(dev_priv);
3211
3212         return 0;
3213 }
3214
3215 static int i915_engine_info(struct seq_file *m, void *unused)
3216 {
3217         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3218         struct intel_engine_cs *engine;
3219         enum intel_engine_id id;
3220         struct drm_printer p;
3221
3222         intel_runtime_pm_get(dev_priv);
3223
3224         seq_printf(m, "GT awake? %s (epoch %u)\n",
3225                    yesno(dev_priv->gt.awake), dev_priv->gt.epoch);
3226         seq_printf(m, "Global active requests: %d\n",
3227                    dev_priv->gt.active_requests);
3228         seq_printf(m, "CS timestamp frequency: %u kHz\n",
3229                    dev_priv->info.cs_timestamp_frequency_khz);
3230
3231         p = drm_seq_file_printer(m);
3232         for_each_engine(engine, dev_priv, id)
3233                 intel_engine_dump(engine, &p, "%s\n", engine->name);
3234
3235         intel_runtime_pm_put(dev_priv);
3236
3237         return 0;
3238 }
3239
3240 static int i915_rcs_topology(struct seq_file *m, void *unused)
3241 {
3242         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3243         struct drm_printer p = drm_seq_file_printer(m);
3244
3245         intel_device_info_dump_topology(&INTEL_INFO(dev_priv)->sseu, &p);
3246
3247         return 0;
3248 }
3249
3250 static int i915_shrinker_info(struct seq_file *m, void *unused)
3251 {
3252         struct drm_i915_private *i915 = node_to_i915(m->private);
3253
3254         seq_printf(m, "seeks = %d\n", i915->mm.shrinker.seeks);
3255         seq_printf(m, "batch = %lu\n", i915->mm.shrinker.batch);
3256
3257         return 0;
3258 }
3259
3260 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3261 {
3262         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3263         struct drm_device *dev = &dev_priv->drm;
3264         int i;
3265
3266         drm_modeset_lock_all(dev);
3267         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3268                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3269
3270                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3271                 seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3272                            pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
3273                 seq_printf(m, " tracked hardware state:\n");
3274                 seq_printf(m, " dpll:    0x%08x\n", pll->state.hw_state.dpll);
3275                 seq_printf(m, " dpll_md: 0x%08x\n",
3276                            pll->state.hw_state.dpll_md);
3277                 seq_printf(m, " fp0:     0x%08x\n", pll->state.hw_state.fp0);
3278                 seq_printf(m, " fp1:     0x%08x\n", pll->state.hw_state.fp1);
3279                 seq_printf(m, " wrpll:   0x%08x\n", pll->state.hw_state.wrpll);
3280         }
3281         drm_modeset_unlock_all(dev);
3282
3283         return 0;
3284 }
3285
3286 static int i915_wa_registers(struct seq_file *m, void *unused)
3287 {
3288         int i;
3289         int ret;
3290         struct intel_engine_cs *engine;
3291         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3292         struct drm_device *dev = &dev_priv->drm;
3293         struct i915_workarounds *workarounds = &dev_priv->workarounds;
3294         enum intel_engine_id id;
3295
3296         ret = mutex_lock_interruptible(&dev->struct_mutex);
3297         if (ret)
3298                 return ret;
3299
3300         intel_runtime_pm_get(dev_priv);
3301
3302         seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3303         for_each_engine(engine, dev_priv, id)
3304                 seq_printf(m, "HW whitelist count for %s: %d\n",
3305                            engine->name, workarounds->hw_whitelist_count[id]);
3306         for (i = 0; i < workarounds->count; ++i) {
3307                 i915_reg_t addr;
3308                 u32 mask, value, read;
3309                 bool ok;
3310
3311                 addr = workarounds->reg[i].addr;
3312                 mask = workarounds->reg[i].mask;
3313                 value = workarounds->reg[i].value;
3314                 read = I915_READ(addr);
3315                 ok = (value & mask) == (read & mask);
3316                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3317                            i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3318         }
3319
3320         intel_runtime_pm_put(dev_priv);
3321         mutex_unlock(&dev->struct_mutex);
3322
3323         return 0;
3324 }
3325
3326 static int i915_ipc_status_show(struct seq_file *m, void *data)
3327 {
3328         struct drm_i915_private *dev_priv = m->private;
3329
3330         seq_printf(m, "Isochronous Priority Control: %s\n",
3331                         yesno(dev_priv->ipc_enabled));
3332         return 0;
3333 }
3334
3335 static int i915_ipc_status_open(struct inode *inode, struct file *file)
3336 {
3337         struct drm_i915_private *dev_priv = inode->i_private;
3338
3339         if (!HAS_IPC(dev_priv))
3340                 return -ENODEV;
3341
3342         return single_open(file, i915_ipc_status_show, dev_priv);
3343 }
3344
3345 static ssize_t i915_ipc_status_write(struct file *file, const char __user *ubuf,
3346                                      size_t len, loff_t *offp)
3347 {
3348         struct seq_file *m = file->private_data;
3349         struct drm_i915_private *dev_priv = m->private;
3350         int ret;
3351         bool enable;
3352
3353         ret = kstrtobool_from_user(ubuf, len, &enable);
3354         if (ret < 0)
3355                 return ret;
3356
3357         intel_runtime_pm_get(dev_priv);
3358         if (!dev_priv->ipc_enabled && enable)
3359                 DRM_INFO("Enabling IPC: WM will be proper only after next commit\n");
3360         dev_priv->wm.distrust_bios_wm = true;
3361         dev_priv->ipc_enabled = enable;
3362         intel_enable_ipc(dev_priv);
3363         intel_runtime_pm_put(dev_priv);
3364
3365         return len;
3366 }
3367
3368 static const struct file_operations i915_ipc_status_fops = {
3369         .owner = THIS_MODULE,
3370         .open = i915_ipc_status_open,
3371         .read = seq_read,
3372         .llseek = seq_lseek,
3373         .release = single_release,
3374         .write = i915_ipc_status_write
3375 };
3376
3377 static int i915_ddb_info(struct seq_file *m, void *unused)
3378 {
3379         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3380         struct drm_device *dev = &dev_priv->drm;
3381         struct skl_ddb_allocation *ddb;
3382         struct skl_ddb_entry *entry;
3383         enum pipe pipe;
3384         int plane;
3385
3386         if (INTEL_GEN(dev_priv) < 9)
3387                 return -ENODEV;
3388
3389         drm_modeset_lock_all(dev);
3390
3391         ddb = &dev_priv->wm.skl_hw.ddb;
3392
3393         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3394
3395         for_each_pipe(dev_priv, pipe) {
3396                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3397
3398                 for_each_universal_plane(dev_priv, pipe, plane) {
3399                         entry = &ddb->plane[pipe][plane];
3400                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3401                                    entry->start, entry->end,
3402                                    skl_ddb_entry_size(entry));
3403                 }
3404
3405                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3406                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3407                            entry->end, skl_ddb_entry_size(entry));
3408         }
3409
3410         drm_modeset_unlock_all(dev);
3411
3412         return 0;
3413 }
3414
3415 static void drrs_status_per_crtc(struct seq_file *m,
3416                                  struct drm_device *dev,
3417                                  struct intel_crtc *intel_crtc)
3418 {
3419         struct drm_i915_private *dev_priv = to_i915(dev);
3420         struct i915_drrs *drrs = &dev_priv->drrs;
3421         int vrefresh = 0;
3422         struct drm_connector *connector;
3423         struct drm_connector_list_iter conn_iter;
3424
3425         drm_connector_list_iter_begin(dev, &conn_iter);
3426         drm_for_each_connector_iter(connector, &conn_iter) {
3427                 if (connector->state->crtc != &intel_crtc->base)
3428                         continue;
3429
3430                 seq_printf(m, "%s:\n", connector->name);
3431         }
3432         drm_connector_list_iter_end(&conn_iter);
3433
3434         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3435                 seq_puts(m, "\tVBT: DRRS_type: Static");
3436         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3437                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3438         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3439                 seq_puts(m, "\tVBT: DRRS_type: None");
3440         else
3441                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3442
3443         seq_puts(m, "\n\n");
3444
3445         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3446                 struct intel_panel *panel;
3447
3448                 mutex_lock(&drrs->mutex);
3449                 /* DRRS Supported */
3450                 seq_puts(m, "\tDRRS Supported: Yes\n");
3451
3452                 /* disable_drrs() will make drrs->dp NULL */
3453                 if (!drrs->dp) {
3454                         seq_puts(m, "Idleness DRRS: Disabled\n");
3455                         if (dev_priv->psr.enabled)
3456                                 seq_puts(m,
3457                                 "\tAs PSR is enabled, DRRS is not enabled\n");
3458                         mutex_unlock(&drrs->mutex);
3459                         return;
3460                 }
3461
3462                 panel = &drrs->dp->attached_connector->panel;
3463                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3464                                         drrs->busy_frontbuffer_bits);
3465
3466                 seq_puts(m, "\n\t\t");
3467                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3468                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3469                         vrefresh = panel->fixed_mode->vrefresh;
3470                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3471                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3472                         vrefresh = panel->downclock_mode->vrefresh;
3473                 } else {
3474                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3475                                                 drrs->refresh_rate_type);
3476                         mutex_unlock(&drrs->mutex);
3477                         return;
3478                 }
3479                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3480
3481                 seq_puts(m, "\n\t\t");
3482                 mutex_unlock(&drrs->mutex);
3483         } else {
3484                 /* DRRS not supported. Print the VBT parameter*/
3485                 seq_puts(m, "\tDRRS Supported : No");
3486         }
3487         seq_puts(m, "\n");
3488 }
3489
3490 static int i915_drrs_status(struct seq_file *m, void *unused)
3491 {
3492         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3493         struct drm_device *dev = &dev_priv->drm;
3494         struct intel_crtc *intel_crtc;
3495         int active_crtc_cnt = 0;
3496
3497         drm_modeset_lock_all(dev);
3498         for_each_intel_crtc(dev, intel_crtc) {
3499                 if (intel_crtc->base.state->active) {
3500                         active_crtc_cnt++;
3501                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3502
3503                         drrs_status_per_crtc(m, dev, intel_crtc);
3504                 }
3505         }
3506         drm_modeset_unlock_all(dev);
3507
3508         if (!active_crtc_cnt)
3509                 seq_puts(m, "No active crtc found\n");
3510
3511         return 0;
3512 }
3513
3514 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3515 {
3516         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3517         struct drm_device *dev = &dev_priv->drm;
3518         struct intel_encoder *intel_encoder;
3519         struct intel_digital_port *intel_dig_port;
3520         struct drm_connector *connector;
3521         struct drm_connector_list_iter conn_iter;
3522
3523         drm_connector_list_iter_begin(dev, &conn_iter);
3524         drm_for_each_connector_iter(connector, &conn_iter) {
3525                 if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3526                         continue;
3527
3528                 intel_encoder = intel_attached_encoder(connector);
3529                 if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3530                         continue;
3531
3532                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3533                 if (!intel_dig_port->dp.can_mst)
3534                         continue;
3535
3536                 seq_printf(m, "MST Source Port %c\n",
3537                            port_name(intel_dig_port->base.port));
3538                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3539         }
3540         drm_connector_list_iter_end(&conn_iter);
3541
3542         return 0;
3543 }
3544
3545 static ssize_t i915_displayport_test_active_write(struct file *file,
3546                                                   const char __user *ubuf,
3547                                                   size_t len, loff_t *offp)
3548 {
3549         char *input_buffer;
3550         int status = 0;
3551         struct drm_device *dev;
3552         struct drm_connector *connector;
3553         struct drm_connector_list_iter conn_iter;
3554         struct intel_dp *intel_dp;
3555         int val = 0;
3556
3557         dev = ((struct seq_file *)file->private_data)->private;
3558
3559         if (len == 0)
3560                 return 0;
3561
3562         input_buffer = memdup_user_nul(ubuf, len);
3563         if (IS_ERR(input_buffer))
3564                 return PTR_ERR(input_buffer);
3565
3566         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
3567
3568         drm_connector_list_iter_begin(dev, &conn_iter);
3569         drm_for_each_connector_iter(connector, &conn_iter) {
3570                 struct intel_encoder *encoder;
3571
3572                 if (connector->connector_type !=
3573                     DRM_MODE_CONNECTOR_DisplayPort)
3574                         continue;
3575
3576                 encoder = to_intel_encoder(connector->encoder);
3577                 if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3578                         continue;
3579
3580                 if (encoder && connector->status == connector_status_connected) {
3581                         intel_dp = enc_to_intel_dp(&encoder->base);
3582                         status = kstrtoint(input_buffer, 10, &val);
3583                         if (status < 0)
3584                                 break;
3585                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
3586                         /* To prevent erroneous activation of the compliance
3587                          * testing code, only accept an actual value of 1 here
3588                          */
3589                         if (val == 1)
3590                                 intel_dp->compliance.test_active = 1;
3591                         else
3592                                 intel_dp->compliance.test_active = 0;
3593                 }
3594         }
3595         drm_connector_list_iter_end(&conn_iter);
3596         kfree(input_buffer);
3597         if (status < 0)
3598                 return status;
3599
3600         *offp += len;
3601         return len;
3602 }
3603
3604 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
3605 {
3606         struct drm_i915_private *dev_priv = m->private;
3607         struct drm_device *dev = &dev_priv->drm;
3608         struct drm_connector *connector;
3609         struct drm_connector_list_iter conn_iter;
3610         struct intel_dp *intel_dp;
3611
3612         drm_connector_list_iter_begin(dev, &conn_iter);
3613         drm_for_each_connector_iter(connector, &conn_iter) {
3614                 struct intel_encoder *encoder;
3615
3616                 if (connector->connector_type !=
3617                     DRM_MODE_CONNECTOR_DisplayPort)
3618                         continue;
3619
3620                 encoder = to_intel_encoder(connector->encoder);
3621                 if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3622                         continue;
3623
3624                 if (encoder && connector->status == connector_status_connected) {
3625                         intel_dp = enc_to_intel_dp(&encoder->base);
3626                         if (intel_dp->compliance.test_active)
3627                                 seq_puts(m, "1");
3628                         else
3629                                 seq_puts(m, "0");
3630                 } else
3631                         seq_puts(m, "0");
3632         }
3633         drm_connector_list_iter_end(&conn_iter);
3634
3635         return 0;
3636 }
3637
3638 static int i915_displayport_test_active_open(struct inode *inode,
3639                                              struct file *file)
3640 {
3641         return single_open(file, i915_displayport_test_active_show,
3642                            inode->i_private);
3643 }
3644
3645 static const struct file_operations i915_displayport_test_active_fops = {
3646         .owner = THIS_MODULE,
3647         .open = i915_displayport_test_active_open,
3648         .read = seq_read,
3649         .llseek = seq_lseek,
3650         .release = single_release,
3651         .write = i915_displayport_test_active_write
3652 };
3653
3654 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
3655 {
3656         struct drm_i915_private *dev_priv = m->private;
3657         struct drm_device *dev = &dev_priv->drm;
3658         struct drm_connector *connector;
3659         struct drm_connector_list_iter conn_iter;
3660         struct intel_dp *intel_dp;
3661
3662         drm_connector_list_iter_begin(dev, &conn_iter);
3663         drm_for_each_connector_iter(connector, &conn_iter) {
3664                 struct intel_encoder *encoder;
3665
3666                 if (connector->connector_type !=
3667                     DRM_MODE_CONNECTOR_DisplayPort)
3668                         continue;
3669
3670                 encoder = to_intel_encoder(connector->encoder);
3671                 if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3672                         continue;
3673
3674                 if (encoder && connector->status == connector_status_connected) {
3675                         intel_dp = enc_to_intel_dp(&encoder->base);
3676                         if (intel_dp->compliance.test_type ==
3677                             DP_TEST_LINK_EDID_READ)
3678                                 seq_printf(m, "%lx",
3679                                            intel_dp->compliance.test_data.edid);
3680                         else if (intel_dp->compliance.test_type ==
3681                                  DP_TEST_LINK_VIDEO_PATTERN) {
3682                                 seq_printf(m, "hdisplay: %d\n",
3683                                            intel_dp->compliance.test_data.hdisplay);
3684                                 seq_printf(m, "vdisplay: %d\n",
3685                                            intel_dp->compliance.test_data.vdisplay);
3686                                 seq_printf(m, "bpc: %u\n",
3687                                            intel_dp->compliance.test_data.bpc);
3688                         }
3689                 } else
3690                         seq_puts(m, "0");
3691         }
3692         drm_connector_list_iter_end(&conn_iter);
3693
3694         return 0;
3695 }
3696 DEFINE_SHOW_ATTRIBUTE(i915_displayport_test_data);
3697
3698 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
3699 {
3700         struct drm_i915_private *dev_priv = m->private;
3701         struct drm_device *dev = &dev_priv->drm;
3702         struct drm_connector *connector;
3703         struct drm_connector_list_iter conn_iter;
3704         struct intel_dp *intel_dp;
3705
3706         drm_connector_list_iter_begin(dev, &conn_iter);
3707         drm_for_each_connector_iter(connector, &conn_iter) {
3708                 struct intel_encoder *encoder;
3709
3710                 if (connector->connector_type !=
3711                     DRM_MODE_CONNECTOR_DisplayPort)
3712                         continue;
3713
3714                 encoder = to_intel_encoder(connector->encoder);
3715                 if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
3716                         continue;
3717
3718                 if (encoder && connector->status == connector_status_connected) {
3719                         intel_dp = enc_to_intel_dp(&encoder->base);
3720                         seq_printf(m, "%02lx", intel_dp->compliance.test_type);
3721                 } else
3722                         seq_puts(m, "0");
3723         }
3724         drm_connector_list_iter_end(&conn_iter);
3725
3726         return 0;
3727 }
3728 DEFINE_SHOW_ATTRIBUTE(i915_displayport_test_type);
3729
3730 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3731 {
3732         struct drm_i915_private *dev_priv = m->private;
3733         struct drm_device *dev = &dev_priv->drm;
3734         int level;
3735         int num_levels;
3736
3737         if (IS_CHERRYVIEW(dev_priv))
3738                 num_levels = 3;
3739         else if (IS_VALLEYVIEW(dev_priv))
3740                 num_levels = 1;
3741         else if (IS_G4X(dev_priv))
3742                 num_levels = 3;
3743         else
3744                 num_levels = ilk_wm_max_level(dev_priv) + 1;
3745
3746         drm_modeset_lock_all(dev);
3747
3748         for (level = 0; level < num_levels; level++) {
3749                 unsigned int latency = wm[level];
3750
3751                 /*
3752                  * - WM1+ latency values in 0.5us units
3753                  * - latencies are in us on gen9/vlv/chv
3754                  */
3755                 if (INTEL_GEN(dev_priv) >= 9 ||
3756                     IS_VALLEYVIEW(dev_priv) ||
3757                     IS_CHERRYVIEW(dev_priv) ||
3758                     IS_G4X(dev_priv))
3759                         latency *= 10;
3760                 else if (level > 0)
3761                         latency *= 5;
3762
3763                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3764                            level, wm[level], latency / 10, latency % 10);
3765         }
3766
3767         drm_modeset_unlock_all(dev);
3768 }
3769
3770 static int pri_wm_latency_show(struct seq_file *m, void *data)
3771 {
3772         struct drm_i915_private *dev_priv = m->private;
3773         const uint16_t *latencies;
3774
3775         if (INTEL_GEN(dev_priv) >= 9)
3776                 latencies = dev_priv->wm.skl_latency;
3777         else
3778                 latencies = dev_priv->wm.pri_latency;
3779
3780         wm_latency_show(m, latencies);
3781
3782         return 0;
3783 }
3784
3785 static int spr_wm_latency_show(struct seq_file *m, void *data)
3786 {
3787         struct drm_i915_private *dev_priv = m->private;
3788         const uint16_t *latencies;
3789
3790         if (INTEL_GEN(dev_priv) >= 9)
3791                 latencies = dev_priv->wm.skl_latency;
3792         else
3793                 latencies = dev_priv->wm.spr_latency;
3794
3795         wm_latency_show(m, latencies);
3796
3797         return 0;
3798 }
3799
3800 static int cur_wm_latency_show(struct seq_file *m, void *data)
3801 {
3802         struct drm_i915_private *dev_priv = m->private;
3803         const uint16_t *latencies;
3804
3805         if (INTEL_GEN(dev_priv) >= 9)
3806                 latencies = dev_priv->wm.skl_latency;
3807         else
3808                 latencies = dev_priv->wm.cur_latency;
3809
3810         wm_latency_show(m, latencies);
3811
3812         return 0;
3813 }
3814
3815 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3816 {
3817         struct drm_i915_private *dev_priv = inode->i_private;
3818
3819         if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
3820                 return -ENODEV;
3821
3822         return single_open(file, pri_wm_latency_show, dev_priv);
3823 }
3824
3825 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3826 {
3827         struct drm_i915_private *dev_priv = inode->i_private;
3828
3829         if (HAS_GMCH_DISPLAY(dev_priv))
3830                 return -ENODEV;
3831
3832         return single_open(file, spr_wm_latency_show, dev_priv);
3833 }
3834
3835 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3836 {
3837         struct drm_i915_private *dev_priv = inode->i_private;
3838
3839         if (HAS_GMCH_DISPLAY(dev_priv))
3840                 return -ENODEV;
3841
3842         return single_open(file, cur_wm_latency_show, dev_priv);
3843 }
3844
3845 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3846                                 size_t len, loff_t *offp, uint16_t wm[8])
3847 {
3848         struct seq_file *m = file->private_data;
3849         struct drm_i915_private *dev_priv = m->private;
3850         struct drm_device *dev = &dev_priv->drm;
3851         uint16_t new[8] = { 0 };
3852         int num_levels;
3853         int level;
3854         int ret;
3855         char tmp[32];
3856
3857         if (IS_CHERRYVIEW(dev_priv))
3858                 num_levels = 3;
3859         else if (IS_VALLEYVIEW(dev_priv))
3860                 num_levels = 1;
3861         else if (IS_G4X(dev_priv))
3862                 num_levels = 3;
3863         else
3864                 num_levels = ilk_wm_max_level(dev_priv) + 1;
3865
3866         if (len >= sizeof(tmp))
3867                 return -EINVAL;
3868
3869         if (copy_from_user(tmp, ubuf, len))
3870                 return -EFAULT;
3871
3872         tmp[len] = '\0';
3873
3874         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
3875                      &new[0], &new[1], &new[2], &new[3],
3876                      &new[4], &new[5], &new[6], &new[7]);
3877         if (ret != num_levels)
3878                 return -EINVAL;
3879
3880         drm_modeset_lock_all(dev);
3881
3882         for (level = 0; level < num_levels; level++)
3883                 wm[level] = new[level];
3884
3885         drm_modeset_unlock_all(dev);
3886
3887         return len;
3888 }
3889
3890
3891 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3892                                     size_t len, loff_t *offp)
3893 {
3894         struct seq_file *m = file->private_data;
3895         struct drm_i915_private *dev_priv = m->private;
3896         uint16_t *latencies;
3897
3898         if (INTEL_GEN(dev_priv) >= 9)
3899                 latencies = dev_priv->wm.skl_latency;
3900         else
3901                 latencies = dev_priv->wm.pri_latency;
3902
3903         return wm_latency_write(file, ubuf, len, offp, latencies);
3904 }
3905
3906 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3907                                     size_t len, loff_t *offp)
3908 {
3909         struct seq_file *m = file->private_data;
3910         struct drm_i915_private *dev_priv = m->private;
3911         uint16_t *latencies;
3912
3913         if (INTEL_GEN(dev_priv) >= 9)
3914                 latencies = dev_priv->wm.skl_latency;
3915         else
3916                 latencies = dev_priv->wm.spr_latency;
3917
3918         return wm_latency_write(file, ubuf, len, offp, latencies);
3919 }
3920
3921 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3922                                     size_t len, loff_t *offp)
3923 {
3924         struct seq_file *m = file->private_data;
3925         struct drm_i915_private *dev_priv = m->private;
3926         uint16_t *latencies;
3927
3928         if (INTEL_GEN(dev_priv) >= 9)
3929                 latencies = dev_priv->wm.skl_latency;
3930         else
3931                 latencies = dev_priv->wm.cur_latency;
3932
3933         return wm_latency_write(file, ubuf, len, offp, latencies);
3934 }
3935
3936 static const struct file_operations i915_pri_wm_latency_fops = {
3937         .owner = THIS_MODULE,
3938         .open = pri_wm_latency_open,
3939         .read = seq_read,
3940         .llseek = seq_lseek,
3941         .release = single_release,
3942         .write = pri_wm_latency_write
3943 };
3944
3945 static const struct file_operations i915_spr_wm_latency_fops = {
3946         .owner = THIS_MODULE,
3947         .open = spr_wm_latency_open,
3948         .read = seq_read,
3949         .llseek = seq_lseek,
3950         .release = single_release,
3951         .write = spr_wm_latency_write
3952 };
3953
3954 static const struct file_operations i915_cur_wm_latency_fops = {
3955         .owner = THIS_MODULE,
3956         .open = cur_wm_latency_open,
3957         .read = seq_read,
3958         .llseek = seq_lseek,
3959         .release = single_release,
3960         .write = cur_wm_latency_write
3961 };
3962
3963 static int
3964 i915_wedged_get(void *data, u64 *val)
3965 {
3966         struct drm_i915_private *dev_priv = data;
3967
3968         *val = i915_terminally_wedged(&dev_priv->gpu_error);
3969
3970         return 0;
3971 }
3972
3973 static int
3974 i915_wedged_set(void *data, u64 val)
3975 {
3976         struct drm_i915_private *i915 = data;
3977         struct intel_engine_cs *engine;
3978         unsigned int tmp;
3979
3980         /*
3981          * There is no safeguard against this debugfs entry colliding
3982          * with the hangcheck calling same i915_handle_error() in
3983          * parallel, causing an explosion. For now we assume that the
3984          * test harness is responsible enough not to inject gpu hangs
3985          * while it is writing to 'i915_wedged'
3986          */
3987
3988         if (i915_reset_backoff(&i915->gpu_error))
3989                 return -EAGAIN;
3990
3991         for_each_engine_masked(engine, i915, val, tmp) {
3992                 engine->hangcheck.seqno = intel_engine_get_seqno(engine);
3993                 engine->hangcheck.stalled = true;
3994         }
3995
3996         i915_handle_error(i915, val, "Manually set wedged engine mask = %llx",
3997                           val);
3998
3999         wait_on_bit(&i915->gpu_error.flags,
4000                     I915_RESET_HANDOFF,
4001                     TASK_UNINTERRUPTIBLE);
4002
4003         return 0;
4004 }
4005
4006 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4007                         i915_wedged_get, i915_wedged_set,
4008                         "%llu\n");
4009
4010 static int
4011 fault_irq_set(struct drm_i915_private *i915,
4012               unsigned long *irq,
4013               unsigned long val)
4014 {
4015         int err;
4016
4017         err = mutex_lock_interruptible(&i915->drm.struct_mutex);
4018         if (err)
4019                 return err;
4020
4021         err = i915_gem_wait_for_idle(i915,
4022                                      I915_WAIT_LOCKED |
4023                                      I915_WAIT_INTERRUPTIBLE);
4024         if (err)
4025                 goto err_unlock;
4026
4027         *irq = val;
4028         mutex_unlock(&i915->drm.struct_mutex);
4029
4030         /* Flush idle worker to disarm irq */
4031         drain_delayed_work(&i915->gt.idle_work);
4032
4033         return 0;
4034
4035 err_unlock:
4036         mutex_unlock(&i915->drm.struct_mutex);
4037         return err;
4038 }
4039
4040 static int
4041 i915_ring_missed_irq_get(void *data, u64 *val)
4042 {
4043         struct drm_i915_private *dev_priv = data;
4044
4045         *val = dev_priv->gpu_error.missed_irq_rings;
4046         return 0;
4047 }
4048
4049 static int
4050 i915_ring_missed_irq_set(void *data, u64 val)
4051 {
4052         struct drm_i915_private *i915 = data;
4053
4054         return fault_irq_set(i915, &i915->gpu_error.missed_irq_rings, val);
4055 }
4056
4057 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4058                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4059                         "0x%08llx\n");
4060
4061 static int
4062 i915_ring_test_irq_get(void *data, u64 *val)
4063 {
4064         struct drm_i915_private *dev_priv = data;
4065
4066         *val = dev_priv->gpu_error.test_irq_rings;
4067
4068         return 0;
4069 }
4070
4071 static int
4072 i915_ring_test_irq_set(void *data, u64 val)
4073 {
4074         struct drm_i915_private *i915 = data;
4075
4076         val &= INTEL_INFO(i915)->ring_mask;
4077         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4078
4079         return fault_irq_set(i915, &i915->gpu_error.test_irq_rings, val);
4080 }
4081
4082 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4083                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4084                         "0x%08llx\n");
4085
4086 #define DROP_UNBOUND    BIT(0)
4087 #define DROP_BOUND      BIT(1)
4088 #define DROP_RETIRE     BIT(2)
4089 #define DROP_ACTIVE     BIT(3)
4090 #define DROP_FREED      BIT(4)
4091 #define DROP_SHRINK_ALL BIT(5)
4092 #define DROP_IDLE       BIT(6)
4093 #define DROP_ALL (DROP_UNBOUND  | \
4094                   DROP_BOUND    | \
4095                   DROP_RETIRE   | \
4096                   DROP_ACTIVE   | \
4097                   DROP_FREED    | \
4098                   DROP_SHRINK_ALL |\
4099                   DROP_IDLE)
4100 static int
4101 i915_drop_caches_get(void *data, u64 *val)
4102 {
4103         *val = DROP_ALL;
4104
4105         return 0;
4106 }
4107
4108 static int
4109 i915_drop_caches_set(void *data, u64 val)
4110 {
4111         struct drm_i915_private *dev_priv = data;
4112         struct drm_device *dev = &dev_priv->drm;
4113         int ret = 0;
4114
4115         DRM_DEBUG("Dropping caches: 0x%08llx [0x%08llx]\n",
4116                   val, val & DROP_ALL);
4117
4118         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4119          * on ioctls on -EAGAIN. */
4120         if (val & (DROP_ACTIVE | DROP_RETIRE)) {
4121                 ret = mutex_lock_interruptible(&dev->struct_mutex);
4122                 if (ret)
4123                         return ret;
4124
4125                 if (val & DROP_ACTIVE)
4126                         ret = i915_gem_wait_for_idle(dev_priv,
4127                                                      I915_WAIT_INTERRUPTIBLE |
4128                                                      I915_WAIT_LOCKED);
4129
4130                 if (val & DROP_RETIRE)
4131                         i915_retire_requests(dev_priv);
4132
4133                 mutex_unlock(&dev->struct_mutex);
4134         }
4135
4136         fs_reclaim_acquire(GFP_KERNEL);
4137         if (val & DROP_BOUND)
4138                 i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_BOUND);
4139
4140         if (val & DROP_UNBOUND)
4141                 i915_gem_shrink(dev_priv, LONG_MAX, NULL, I915_SHRINK_UNBOUND);
4142
4143         if (val & DROP_SHRINK_ALL)
4144                 i915_gem_shrink_all(dev_priv);
4145         fs_reclaim_release(GFP_KERNEL);
4146
4147         if (val & DROP_IDLE)
4148                 drain_delayed_work(&dev_priv->gt.idle_work);
4149
4150         if (val & DROP_FREED)
4151                 i915_gem_drain_freed_objects(dev_priv);
4152
4153         return ret;
4154 }
4155
4156 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4157                         i915_drop_caches_get, i915_drop_caches_set,
4158                         "0x%08llx\n");
4159
4160 static int
4161 i915_max_freq_get(void *data, u64 *val)
4162 {
4163         struct drm_i915_private *dev_priv = data;
4164
4165         if (INTEL_GEN(dev_priv) < 6)
4166                 return -ENODEV;
4167
4168         *val = intel_gpu_freq(dev_priv, dev_priv->gt_pm.rps.max_freq_softlimit);
4169         return 0;
4170 }
4171
4172 static int
4173 i915_max_freq_set(void *data, u64 val)
4174 {
4175         struct drm_i915_private *dev_priv = data;
4176         struct intel_rps *rps = &dev_priv->gt_pm.rps;
4177         u32 hw_max, hw_min;
4178         int ret;
4179
4180         if (INTEL_GEN(dev_priv) < 6)
4181                 return -ENODEV;
4182
4183         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4184
4185         ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
4186         if (ret)
4187                 return ret;
4188
4189         /*
4190          * Turbo will still be enabled, but won't go above the set value.
4191          */
4192         val = intel_freq_opcode(dev_priv, val);
4193
4194         hw_max = rps->max_freq;
4195         hw_min = rps->min_freq;
4196
4197         if (val < hw_min || val > hw_max || val < rps->min_freq_softlimit) {
4198                 mutex_unlock(&dev_priv->pcu_lock);
4199                 return -EINVAL;
4200         }
4201
4202         rps->max_freq_softlimit = val;
4203
4204         if (intel_set_rps(dev_priv, val))
4205                 DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4206
4207         mutex_unlock(&dev_priv->pcu_lock);
4208
4209         return 0;
4210 }
4211
4212 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4213                         i915_max_freq_get, i915_max_freq_set,
4214                         "%llu\n");
4215
4216 static int
4217 i915_min_freq_get(void *data, u64 *val)
4218 {
4219         struct drm_i915_private *dev_priv = data;
4220
4221         if (INTEL_GEN(dev_priv) < 6)
4222                 return -ENODEV;
4223
4224         *val = intel_gpu_freq(dev_priv, dev_priv->gt_pm.rps.min_freq_softlimit);
4225         return 0;
4226 }
4227
4228 static int
4229 i915_min_freq_set(void *data, u64 val)
4230 {
4231         struct drm_i915_private *dev_priv = data;
4232         struct intel_rps *rps = &dev_priv->gt_pm.rps;
4233         u32 hw_max, hw_min;
4234         int ret;
4235
4236         if (INTEL_GEN(dev_priv) < 6)
4237                 return -ENODEV;
4238
4239         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4240
4241         ret = mutex_lock_interruptible(&dev_priv->pcu_lock);
4242         if (ret)
4243                 return ret;
4244
4245         /*
4246          * Turbo will still be enabled, but won't go below the set value.
4247          */
4248         val = intel_freq_opcode(dev_priv, val);
4249
4250         hw_max = rps->max_freq;
4251         hw_min = rps->min_freq;
4252
4253         if (val < hw_min ||
4254             val > hw_max || val > rps->max_freq_softlimit) {
4255                 mutex_unlock(&dev_priv->pcu_lock);
4256                 return -EINVAL;
4257         }
4258
4259         rps->min_freq_softlimit = val;
4260
4261         if (intel_set_rps(dev_priv, val))
4262                 DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4263
4264         mutex_unlock(&dev_priv->pcu_lock);
4265
4266         return 0;
4267 }
4268
4269 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4270                         i915_min_freq_get, i915_min_freq_set,
4271                         "%llu\n");
4272
4273 static int
4274 i915_cache_sharing_get(void *data, u64 *val)
4275 {
4276         struct drm_i915_private *dev_priv = data;
4277         u32 snpcr;
4278
4279         if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4280                 return -ENODEV;
4281
4282         intel_runtime_pm_get(dev_priv);
4283
4284         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4285
4286         intel_runtime_pm_put(dev_priv);
4287
4288         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4289
4290         return 0;
4291 }
4292
4293 static int
4294 i915_cache_sharing_set(void *data, u64 val)
4295 {
4296         struct drm_i915_private *dev_priv = data;
4297         u32 snpcr;
4298
4299         if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4300                 return -ENODEV;
4301
4302         if (val > 3)
4303                 return -EINVAL;
4304
4305         intel_runtime_pm_get(dev_priv);
4306         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4307
4308         /* Update the cache sharing policy here as well */
4309         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4310         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4311         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4312         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4313
4314         intel_runtime_pm_put(dev_priv);
4315         return 0;
4316 }
4317
4318 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4319                         i915_cache_sharing_get, i915_cache_sharing_set,
4320                         "%llu\n");
4321
4322 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
4323                                           struct sseu_dev_info *sseu)
4324 {
4325 #define SS_MAX 2
4326         const int ss_max = SS_MAX;
4327         u32 sig1[SS_MAX], sig2[SS_MAX];
4328         int ss;
4329
4330         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4331         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4332         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4333         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4334
4335         for (ss = 0; ss < ss_max; ss++) {
4336                 unsigned int eu_cnt;
4337
4338                 if (sig1[ss] & CHV_SS_PG_ENABLE)
4339                         /* skip disabled subslice */
4340                         continue;
4341
4342                 sseu->slice_mask = BIT(0);
4343                 sseu->subslice_mask[0] |= BIT(ss);
4344                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4345                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4346                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4347                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4348                 sseu->eu_total += eu_cnt;
4349                 sseu->eu_per_subslice = max_t(unsigned int,
4350                                               sseu->eu_per_subslice, eu_cnt);
4351         }
4352 #undef SS_MAX
4353 }
4354
4355 static void gen10_sseu_device_status(struct drm_i915_private *dev_priv,
4356                                      struct sseu_dev_info *sseu)
4357 {
4358 #define SS_MAX 6
4359         const struct intel_device_info *info = INTEL_INFO(dev_priv);
4360         u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
4361         int s, ss;
4362
4363         for (s = 0; s < info->sseu.max_slices; s++) {
4364                 /*
4365                  * FIXME: Valid SS Mask respects the spec and read
4366                  * only valid bits for those registers, excluding reserverd
4367                  * although this seems wrong because it would leave many
4368                  * subslices without ACK.
4369                  */
4370                 s_reg[s] = I915_READ(GEN10_SLICE_PGCTL_ACK(s)) &
4371                         GEN10_PGCTL_VALID_SS_MASK(s);
4372                 eu_reg[2 * s] = I915_READ(GEN10_SS01_EU_PGCTL_ACK(s));
4373                 eu_reg[2 * s + 1] = I915_READ(GEN10_SS23_EU_PGCTL_ACK(s));
4374         }
4375
4376         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4377                      GEN9_PGCTL_SSA_EU19_ACK |
4378                      GEN9_PGCTL_SSA_EU210_ACK |
4379                      GEN9_PGCTL_SSA_EU311_ACK;
4380         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4381                      GEN9_PGCTL_SSB_EU19_ACK |
4382                      GEN9_PGCTL_SSB_EU210_ACK |
4383                      GEN9_PGCTL_SSB_EU311_ACK;
4384
4385         for (s = 0; s < info->sseu.max_slices; s++) {
4386                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4387                         /* skip disabled slice */
4388                         continue;
4389
4390                 sseu->slice_mask |= BIT(s);
4391                 sseu->subslice_mask[s] = info->sseu.subslice_mask[s];
4392
4393                 for (ss = 0; ss < info->sseu.max_subslices; ss++) {
4394                         unsigned int eu_cnt;
4395
4396                         if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
4397                                 /* skip disabled subslice */
4398                                 continue;
4399
4400                         eu_cnt = 2 * hweight32(eu_reg[2 * s + ss / 2] &
4401                                                eu_mask[ss % 2]);
4402                         sseu->eu_total += eu_cnt;
4403                         sseu->eu_per_subslice = max_t(unsigned int,
4404                                                       sseu->eu_per_subslice,
4405                                                       eu_cnt);
4406                 }
4407         }
4408 #undef SS_MAX
4409 }
4410
4411 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
4412                                     struct sseu_dev_info *sseu)
4413 {
4414 #define SS_MAX 3
4415         const struct intel_device_info *info = INTEL_INFO(dev_priv);
4416         u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
4417         int s, ss;
4418
4419         for (s = 0; s < info->sseu.max_slices; s++) {
4420                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
4421                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
4422                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
4423         }
4424
4425         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4426                      GEN9_PGCTL_SSA_EU19_ACK |
4427                      GEN9_PGCTL_SSA_EU210_ACK |
4428                      GEN9_PGCTL_SSA_EU311_ACK;
4429         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4430                      GEN9_PGCTL_SSB_EU19_ACK |
4431                      GEN9_PGCTL_SSB_EU210_ACK |
4432                      GEN9_PGCTL_SSB_EU311_ACK;
4433
4434         for (s = 0; s < info->sseu.max_slices; s++) {
4435                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4436                         /* skip disabled slice */
4437                         continue;
4438
4439                 sseu->slice_mask |= BIT(s);
4440
4441                 if (IS_GEN9_BC(dev_priv))
4442                         sseu->subslice_mask[s] =
4443                                 INTEL_INFO(dev_priv)->sseu.subslice_mask[s];
4444
4445                 for (ss = 0; ss < info->sseu.max_subslices; ss++) {
4446                         unsigned int eu_cnt;
4447
4448                         if (IS_GEN9_LP(dev_priv)) {
4449                                 if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
4450                                         /* skip disabled subslice */
4451                                         continue;
4452
4453                                 sseu->subslice_mask[s] |= BIT(ss);
4454                         }
4455
4456                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4457                                                eu_mask[ss%2]);
4458                         sseu->eu_total += eu_cnt;
4459                         sseu->eu_per_subslice = max_t(unsigned int,
4460                                                       sseu->eu_per_subslice,
4461                                                       eu_cnt);
4462                 }
4463         }
4464 #undef SS_MAX
4465 }
4466
4467 static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
4468                                          struct sseu_dev_info *sseu)
4469 {
4470         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
4471         int s;
4472
4473         sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
4474
4475         if (sseu->slice_mask) {
4476                 sseu->eu_per_subslice =
4477                                 INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
4478                 for (s = 0; s < fls(sseu->slice_mask); s++) {
4479                         sseu->subslice_mask[s] =
4480                                 INTEL_INFO(dev_priv)->sseu.subslice_mask[s];
4481                 }
4482                 sseu->eu_total = sseu->eu_per_subslice *
4483                                  sseu_subslice_total(sseu);
4484
4485                 /* subtract fused off EU(s) from enabled slice(s) */
4486                 for (s = 0; s < fls(sseu->slice_mask); s++) {
4487                         u8 subslice_7eu =
4488                                 INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
4489
4490                         sseu->eu_total -= hweight8(subslice_7eu);
4491                 }
4492         }
4493 }
4494
4495 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
4496                                  const struct sseu_dev_info *sseu)
4497 {
4498         struct drm_i915_private *dev_priv = node_to_i915(m->private);
4499         const char *type = is_available_info ? "Available" : "Enabled";
4500         int s;
4501
4502         seq_printf(m, "  %s Slice Mask: %04x\n", type,
4503                    sseu->slice_mask);
4504         seq_printf(m, "  %s Slice Total: %u\n", type,
4505                    hweight8(sseu->slice_mask));
4506         seq_printf(m, "  %s Subslice Total: %u\n", type,
4507                    sseu_subslice_total(sseu));
4508         for (s = 0; s < fls(sseu->slice_mask); s++) {
4509                 seq_printf(m, "  %s Slice%i subslices: %u\n", type,
4510                            s, hweight8(sseu->subslice_mask[s]));
4511         }
4512         seq_printf(m, "  %s EU Total: %u\n", type,
4513                    sseu->eu_total);
4514         seq_printf(m, "  %s EU Per Subslice: %u\n", type,
4515                    sseu->eu_per_subslice);
4516
4517         if (!is_available_info)
4518                 return;
4519
4520         seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
4521         if (HAS_POOLED_EU(dev_priv))
4522                 seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);
4523
4524         seq_printf(m, "  Has Slice Power Gating: %s\n",
4525                    yesno(sseu->has_slice_pg));
4526         seq_printf(m, "  Has Subslice Power Gating: %s\n",
4527                    yesno(sseu->has_subslice_pg));
4528         seq_printf(m, "  Has EU Power Gating: %s\n",
4529                    yesno(sseu->has_eu_pg));
4530 }
4531
4532 static int i915_sseu_status(struct seq_file *m, void *unused)
4533 {
4534         struct drm_i915_private *dev_priv = node_to_i915(m->private);
4535         struct sseu_dev_info sseu;
4536
4537         if (INTEL_GEN(dev_priv) < 8)
4538                 return -ENODEV;
4539
4540         seq_puts(m, "SSEU Device Info\n");
4541         i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
4542
4543         seq_puts(m, "SSEU Device Status\n");
4544         memset(&sseu, 0, sizeof(sseu));
4545         sseu.max_slices = INTEL_INFO(dev_priv)->sseu.max_slices;
4546         sseu.max_subslices = INTEL_INFO(dev_priv)->sseu.max_subslices;
4547         sseu.max_eus_per_subslice =
4548                 INTEL_INFO(dev_priv)->sseu.max_eus_per_subslice;
4549
4550         intel_runtime_pm_get(dev_priv);
4551
4552         if (IS_CHERRYVIEW(dev_priv)) {
4553                 cherryview_sseu_device_status(dev_priv, &sseu);
4554         } else if (IS_BROADWELL(dev_priv)) {
4555                 broadwell_sseu_device_status(dev_priv, &sseu);
4556         } else if (IS_GEN9(dev_priv)) {
4557                 gen9_sseu_device_status(dev_priv, &sseu);
4558         } else if (INTEL_GEN(dev_priv) >= 10) {
4559                 gen10_sseu_device_status(dev_priv, &sseu);
4560         }
4561
4562         intel_runtime_pm_put(dev_priv);
4563
4564         i915_print_sseu_info(m, false, &sseu);
4565
4566         return 0;
4567 }
4568
4569 static int i915_forcewake_open(struct inode *inode, struct file *file)
4570 {
4571         struct drm_i915_private *i915 = inode->i_private;
4572
4573         if (INTEL_GEN(i915) < 6)
4574                 return 0;
4575
4576         intel_runtime_pm_get(i915);
4577         intel_uncore_forcewake_user_get(i915);
4578
4579         return 0;
4580 }
4581
4582 static int i915_forcewake_release(struct inode *inode, struct file *file)
4583 {
4584         struct drm_i915_private *i915 = inode->i_private;
4585
4586         if (INTEL_GEN(i915) < 6)
4587                 return 0;
4588
4589         intel_uncore_forcewake_user_put(i915);
4590         intel_runtime_pm_put(i915);
4591
4592         return 0;
4593 }
4594
4595 static const struct file_operations i915_forcewake_fops = {
4596         .owner = THIS_MODULE,
4597         .open = i915_forcewake_open,
4598         .release = i915_forcewake_release,
4599 };
4600
4601 static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data)
4602 {
4603         struct drm_i915_private *dev_priv = m->private;
4604         struct i915_hotplug *hotplug = &dev_priv->hotplug;
4605
4606         seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold);
4607         seq_printf(m, "Detected: %s\n",
4608                    yesno(delayed_work_pending(&hotplug->reenable_work)));
4609
4610         return 0;
4611 }
4612
4613 static ssize_t i915_hpd_storm_ctl_write(struct file *file,
4614                                         const char __user *ubuf, size_t len,
4615                                         loff_t *offp)
4616 {
4617         struct seq_file *m = file->private_data;
4618         struct drm_i915_private *dev_priv = m->private;
4619         struct i915_hotplug *hotplug = &dev_priv->hotplug;
4620         unsigned int new_threshold;
4621         int i;
4622         char *newline;
4623         char tmp[16];
4624
4625         if (len >= sizeof(tmp))
4626                 return -EINVAL;
4627
4628         if (copy_from_user(tmp, ubuf, len))
4629                 return -EFAULT;
4630
4631         tmp[len] = '\0';
4632
4633         /* Strip newline, if any */
4634         newline = strchr(tmp, '\n');
4635         if (newline)
4636                 *newline = '\0';
4637
4638         if (strcmp(tmp, "reset") == 0)
4639                 new_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4640         else if (kstrtouint(tmp, 10, &new_threshold) != 0)
4641                 return -EINVAL;
4642
4643         if (new_threshold > 0)
4644                 DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n",
4645                               new_threshold);
4646         else
4647                 DRM_DEBUG_KMS("Disabling HPD storm detection\n");
4648
4649         spin_lock_irq(&dev_priv->irq_lock);
4650         hotplug->hpd_storm_threshold = new_threshold;
4651         /* Reset the HPD storm stats so we don't accidentally trigger a storm */
4652         for_each_hpd_pin(i)
4653                 hotplug->stats[i].count = 0;
4654         spin_unlock_irq(&dev_priv->irq_lock);
4655
4656         /* Re-enable hpd immediately if we were in an irq storm */
4657         flush_delayed_work(&dev_priv->hotplug.reenable_work);
4658
4659         return len;
4660 }
4661
4662 static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file)
4663 {
4664         return single_open(file, i915_hpd_storm_ctl_show, inode->i_private);
4665 }
4666
4667 static const struct file_operations i915_hpd_storm_ctl_fops = {
4668         .owner = THIS_MODULE,
4669         .open = i915_hpd_storm_ctl_open,
4670         .read = seq_read,
4671         .llseek = seq_lseek,
4672         .release = single_release,
4673         .write = i915_hpd_storm_ctl_write
4674 };
4675
4676 static int i915_drrs_ctl_set(void *data, u64 val)
4677 {
4678         struct drm_i915_private *dev_priv = data;
4679         struct drm_device *dev = &dev_priv->drm;
4680         struct intel_crtc *intel_crtc;
4681         struct intel_encoder *encoder;
4682         struct intel_dp *intel_dp;
4683
4684         if (INTEL_GEN(dev_priv) < 7)
4685                 return -ENODEV;
4686
4687         drm_modeset_lock_all(dev);
4688         for_each_intel_crtc(dev, intel_crtc) {
4689                 if (!intel_crtc->base.state->active ||
4690                                         !intel_crtc->config->has_drrs)
4691                         continue;
4692
4693                 for_each_encoder_on_crtc(dev, &intel_crtc->base, encoder) {
4694                         if (encoder->type != INTEL_OUTPUT_EDP)
4695                                 continue;
4696
4697                         DRM_DEBUG_DRIVER("Manually %sabling DRRS. %llu\n",
4698                                                 val ? "en" : "dis", val);
4699
4700                         intel_dp = enc_to_intel_dp(&encoder->base);
4701                         if (val)
4702                                 intel_edp_drrs_enable(intel_dp,
4703                                                         intel_crtc->config);
4704                         else
4705                                 intel_edp_drrs_disable(intel_dp,
4706                                                         intel_crtc->config);
4707                 }
4708         }
4709         drm_modeset_unlock_all(dev);
4710
4711         return 0;
4712 }
4713
4714 DEFINE_SIMPLE_ATTRIBUTE(i915_drrs_ctl_fops, NULL, i915_drrs_ctl_set, "%llu\n");
4715
4716 static const struct drm_info_list i915_debugfs_list[] = {
4717         {"i915_capabilities", i915_capabilities, 0},
4718         {"i915_gem_objects", i915_gem_object_info, 0},
4719         {"i915_gem_gtt", i915_gem_gtt_info, 0},
4720         {"i915_gem_stolen", i915_gem_stolen_list_info },
4721         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4722         {"i915_gem_interrupt", i915_interrupt_info, 0},
4723         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
4724         {"i915_guc_info", i915_guc_info, 0},
4725         {"i915_guc_load_status", i915_guc_load_status_info, 0},
4726         {"i915_guc_log_dump", i915_guc_log_dump, 0},
4727         {"i915_guc_load_err_log_dump", i915_guc_log_dump, 0, (void *)1},
4728         {"i915_guc_stage_pool", i915_guc_stage_pool, 0},
4729         {"i915_huc_load_status", i915_huc_load_status_info, 0},
4730         {"i915_frequency_info", i915_frequency_info, 0},
4731         {"i915_hangcheck_info", i915_hangcheck_info, 0},
4732         {"i915_reset_info", i915_reset_info, 0},
4733         {"i915_drpc_info", i915_drpc_info, 0},
4734         {"i915_emon_status", i915_emon_status, 0},
4735         {"i915_ring_freq_table", i915_ring_freq_table, 0},
4736         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
4737         {"i915_fbc_status", i915_fbc_status, 0},
4738         {"i915_ips_status", i915_ips_status, 0},
4739         {"i915_sr_status", i915_sr_status, 0},
4740         {"i915_opregion", i915_opregion, 0},
4741         {"i915_vbt", i915_vbt, 0},
4742         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4743         {"i915_context_status", i915_context_status, 0},
4744         {"i915_forcewake_domains", i915_forcewake_domains, 0},
4745         {"i915_swizzle_info", i915_swizzle_info, 0},
4746         {"i915_ppgtt_info", i915_ppgtt_info, 0},
4747         {"i915_llc", i915_llc, 0},
4748         {"i915_edp_psr_status", i915_edp_psr_status, 0},
4749         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
4750         {"i915_energy_uJ", i915_energy_uJ, 0},
4751         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
4752         {"i915_power_domain_info", i915_power_domain_info, 0},
4753         {"i915_dmc_info", i915_dmc_info, 0},
4754         {"i915_display_info", i915_display_info, 0},
4755         {"i915_engine_info", i915_engine_info, 0},
4756         {"i915_rcs_topology", i915_rcs_topology, 0},
4757         {"i915_shrinker_info", i915_shrinker_info, 0},
4758         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4759         {"i915_dp_mst_info", i915_dp_mst_info, 0},
4760         {"i915_wa_registers", i915_wa_registers, 0},
4761         {"i915_ddb_info", i915_ddb_info, 0},
4762         {"i915_sseu_status", i915_sseu_status, 0},
4763         {"i915_drrs_status", i915_drrs_status, 0},
4764         {"i915_rps_boost_info", i915_rps_boost_info, 0},
4765 };
4766 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4767
4768 static const struct i915_debugfs_files {
4769         const char *name;
4770         const struct file_operations *fops;
4771 } i915_debugfs_files[] = {
4772         {"i915_wedged", &i915_wedged_fops},
4773         {"i915_max_freq", &i915_max_freq_fops},
4774         {"i915_min_freq", &i915_min_freq_fops},
4775         {"i915_cache_sharing", &i915_cache_sharing_fops},
4776         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4777         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
4778         {"i915_gem_drop_caches", &i915_drop_caches_fops},
4779 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
4780         {"i915_error_state", &i915_error_state_fops},
4781         {"i915_gpu_info", &i915_gpu_info_fops},
4782 #endif
4783         {"i915_next_seqno", &i915_next_seqno_fops},
4784         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4785         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4786         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4787         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4788         {"i915_fbc_false_color", &i915_fbc_false_color_fops},
4789         {"i915_dp_test_data", &i915_displayport_test_data_fops},
4790         {"i915_dp_test_type", &i915_displayport_test_type_fops},
4791         {"i915_dp_test_active", &i915_displayport_test_active_fops},
4792         {"i915_guc_log_level", &i915_guc_log_level_fops},
4793         {"i915_guc_log_relay", &i915_guc_log_relay_fops},
4794         {"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops},
4795         {"i915_ipc_status", &i915_ipc_status_fops},
4796         {"i915_drrs_ctl", &i915_drrs_ctl_fops}
4797 };
4798
4799 int i915_debugfs_register(struct drm_i915_private *dev_priv)
4800 {
4801         struct drm_minor *minor = dev_priv->drm.primary;
4802         struct dentry *ent;
4803         int ret, i;
4804
4805         ent = debugfs_create_file("i915_forcewake_user", S_IRUSR,
4806                                   minor->debugfs_root, to_i915(minor->dev),
4807                                   &i915_forcewake_fops);
4808         if (!ent)
4809                 return -ENOMEM;
4810
4811         ret = intel_pipe_crc_create(minor);
4812         if (ret)
4813                 return ret;
4814
4815         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4816                 ent = debugfs_create_file(i915_debugfs_files[i].name,
4817                                           S_IRUGO | S_IWUSR,
4818                                           minor->debugfs_root,
4819                                           to_i915(minor->dev),
4820                                           i915_debugfs_files[i].fops);
4821                 if (!ent)
4822                         return -ENOMEM;
4823         }
4824
4825         return drm_debugfs_create_files(i915_debugfs_list,
4826                                         I915_DEBUGFS_ENTRIES,
4827                                         minor->debugfs_root, minor);
4828 }
4829
4830 struct dpcd_block {
4831         /* DPCD dump start address. */
4832         unsigned int offset;
4833         /* DPCD dump end address, inclusive. If unset, .size will be used. */
4834         unsigned int end;
4835         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
4836         size_t size;
4837         /* Only valid for eDP. */
4838         bool edp;
4839 };
4840
4841 static const struct dpcd_block i915_dpcd_debug[] = {
4842         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
4843         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
4844         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
4845         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
4846         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
4847         { .offset = DP_SET_POWER },
4848         { .offset = DP_EDP_DPCD_REV },
4849         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
4850         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
4851         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
4852 };
4853
4854 static int i915_dpcd_show(struct seq_file *m, void *data)
4855 {
4856         struct drm_connector *connector = m->private;
4857         struct intel_dp *intel_dp =
4858                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4859         uint8_t buf[16];
4860         ssize_t err;
4861         int i;
4862
4863         if (connector->status != connector_status_connected)
4864                 return -ENODEV;
4865
4866         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
4867                 const struct dpcd_block *b = &i915_dpcd_debug[i];
4868                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
4869
4870                 if (b->edp &&
4871                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
4872                         continue;
4873
4874                 /* low tech for now */
4875                 if (WARN_ON(size > sizeof(buf)))
4876                         continue;
4877
4878                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
4879                 if (err <= 0) {
4880                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
4881                                   size, b->offset, err);
4882                         continue;
4883                 }
4884
4885                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
4886         }
4887
4888         return 0;
4889 }
4890 DEFINE_SHOW_ATTRIBUTE(i915_dpcd);
4891
4892 static int i915_panel_show(struct seq_file *m, void *data)
4893 {
4894         struct drm_connector *connector = m->private;
4895         struct intel_dp *intel_dp =
4896                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4897
4898         if (connector->status != connector_status_connected)
4899                 return -ENODEV;
4900
4901         seq_printf(m, "Panel power up delay: %d\n",
4902                    intel_dp->panel_power_up_delay);
4903         seq_printf(m, "Panel power down delay: %d\n",
4904                    intel_dp->panel_power_down_delay);
4905         seq_printf(m, "Backlight on delay: %d\n",
4906                    intel_dp->backlight_on_delay);
4907         seq_printf(m, "Backlight off delay: %d\n",
4908                    intel_dp->backlight_off_delay);
4909
4910         return 0;
4911 }
4912 DEFINE_SHOW_ATTRIBUTE(i915_panel);
4913
4914 /**
4915  * i915_debugfs_connector_add - add i915 specific connector debugfs files
4916  * @connector: pointer to a registered drm_connector
4917  *
4918  * Cleanup will be done by drm_connector_unregister() through a call to
4919  * drm_debugfs_connector_remove().
4920  *
4921  * Returns 0 on success, negative error codes on error.
4922  */
4923 int i915_debugfs_connector_add(struct drm_connector *connector)
4924 {
4925         struct dentry *root = connector->debugfs_entry;
4926
4927         /* The connector must have been registered beforehands. */
4928         if (!root)
4929                 return -ENODEV;
4930
4931         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
4932             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4933                 debugfs_create_file("i915_dpcd", S_IRUGO, root,
4934                                     connector, &i915_dpcd_fops);
4935
4936         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4937                 debugfs_create_file("i915_panel_timings", S_IRUGO, root,
4938                                     connector, &i915_panel_fops);
4939
4940         return 0;
4941 }