Merge tag 'x86-urgent-2022-08-06' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_active.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6
7 #include <linux/debugobjects.h>
8
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_heartbeat.h"
11 #include "gt/intel_engine_pm.h"
12 #include "gt/intel_ring.h"
13
14 #include "i915_drv.h"
15 #include "i915_active.h"
16
17 /*
18  * Active refs memory management
19  *
20  * To be more economical with memory, we reap all the i915_active trees as
21  * they idle (when we know the active requests are inactive) and allocate the
22  * nodes from a local slab cache to hopefully reduce the fragmentation.
23  */
24 static struct kmem_cache *slab_cache;
25
26 struct active_node {
27         struct rb_node node;
28         struct i915_active_fence base;
29         struct i915_active *ref;
30         u64 timeline;
31 };
32
33 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
34
35 static inline struct active_node *
36 node_from_active(struct i915_active_fence *active)
37 {
38         return container_of(active, struct active_node, base);
39 }
40
41 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
42
43 static inline bool is_barrier(const struct i915_active_fence *active)
44 {
45         return IS_ERR(rcu_access_pointer(active->fence));
46 }
47
48 static inline struct llist_node *barrier_to_ll(struct active_node *node)
49 {
50         GEM_BUG_ON(!is_barrier(&node->base));
51         return (struct llist_node *)&node->base.cb.node;
52 }
53
54 static inline struct intel_engine_cs *
55 __barrier_to_engine(struct active_node *node)
56 {
57         return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
58 }
59
60 static inline struct intel_engine_cs *
61 barrier_to_engine(struct active_node *node)
62 {
63         GEM_BUG_ON(!is_barrier(&node->base));
64         return __barrier_to_engine(node);
65 }
66
67 static inline struct active_node *barrier_from_ll(struct llist_node *x)
68 {
69         return container_of((struct list_head *)x,
70                             struct active_node, base.cb.node);
71 }
72
73 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
74
75 static void *active_debug_hint(void *addr)
76 {
77         struct i915_active *ref = addr;
78
79         return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
80 }
81
82 static const struct debug_obj_descr active_debug_desc = {
83         .name = "i915_active",
84         .debug_hint = active_debug_hint,
85 };
86
87 static void debug_active_init(struct i915_active *ref)
88 {
89         debug_object_init(ref, &active_debug_desc);
90 }
91
92 static void debug_active_activate(struct i915_active *ref)
93 {
94         lockdep_assert_held(&ref->tree_lock);
95         if (!atomic_read(&ref->count)) /* before the first inc */
96                 debug_object_activate(ref, &active_debug_desc);
97 }
98
99 static void debug_active_deactivate(struct i915_active *ref)
100 {
101         lockdep_assert_held(&ref->tree_lock);
102         if (!atomic_read(&ref->count)) /* after the last dec */
103                 debug_object_deactivate(ref, &active_debug_desc);
104 }
105
106 static void debug_active_fini(struct i915_active *ref)
107 {
108         debug_object_free(ref, &active_debug_desc);
109 }
110
111 static void debug_active_assert(struct i915_active *ref)
112 {
113         debug_object_assert_init(ref, &active_debug_desc);
114 }
115
116 #else
117
118 static inline void debug_active_init(struct i915_active *ref) { }
119 static inline void debug_active_activate(struct i915_active *ref) { }
120 static inline void debug_active_deactivate(struct i915_active *ref) { }
121 static inline void debug_active_fini(struct i915_active *ref) { }
122 static inline void debug_active_assert(struct i915_active *ref) { }
123
124 #endif
125
126 static void
127 __active_retire(struct i915_active *ref)
128 {
129         struct rb_root root = RB_ROOT;
130         struct active_node *it, *n;
131         unsigned long flags;
132
133         GEM_BUG_ON(i915_active_is_idle(ref));
134
135         /* return the unused nodes to our slabcache -- flushing the allocator */
136         if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
137                 return;
138
139         GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
140         debug_active_deactivate(ref);
141
142         /* Even if we have not used the cache, we may still have a barrier */
143         if (!ref->cache)
144                 ref->cache = fetch_node(ref->tree.rb_node);
145
146         /* Keep the MRU cached node for reuse */
147         if (ref->cache) {
148                 /* Discard all other nodes in the tree */
149                 rb_erase(&ref->cache->node, &ref->tree);
150                 root = ref->tree;
151
152                 /* Rebuild the tree with only the cached node */
153                 rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
154                 rb_insert_color(&ref->cache->node, &ref->tree);
155                 GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
156
157                 /* Make the cached node available for reuse with any timeline */
158                 ref->cache->timeline = 0; /* needs cmpxchg(u64) */
159         }
160
161         spin_unlock_irqrestore(&ref->tree_lock, flags);
162
163         /* After the final retire, the entire struct may be freed */
164         if (ref->retire)
165                 ref->retire(ref);
166
167         /* ... except if you wait on it, you must manage your own references! */
168         wake_up_var(ref);
169
170         /* Finally free the discarded timeline tree  */
171         rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
172                 GEM_BUG_ON(i915_active_fence_isset(&it->base));
173                 kmem_cache_free(slab_cache, it);
174         }
175 }
176
177 static void
178 active_work(struct work_struct *wrk)
179 {
180         struct i915_active *ref = container_of(wrk, typeof(*ref), work);
181
182         GEM_BUG_ON(!atomic_read(&ref->count));
183         if (atomic_add_unless(&ref->count, -1, 1))
184                 return;
185
186         __active_retire(ref);
187 }
188
189 static void
190 active_retire(struct i915_active *ref)
191 {
192         GEM_BUG_ON(!atomic_read(&ref->count));
193         if (atomic_add_unless(&ref->count, -1, 1))
194                 return;
195
196         if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
197                 queue_work(system_unbound_wq, &ref->work);
198                 return;
199         }
200
201         __active_retire(ref);
202 }
203
204 static inline struct dma_fence **
205 __active_fence_slot(struct i915_active_fence *active)
206 {
207         return (struct dma_fence ** __force)&active->fence;
208 }
209
210 static inline bool
211 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
212 {
213         struct i915_active_fence *active =
214                 container_of(cb, typeof(*active), cb);
215
216         return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
217 }
218
219 static void
220 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
221 {
222         if (active_fence_cb(fence, cb))
223                 active_retire(container_of(cb, struct active_node, base.cb)->ref);
224 }
225
226 static void
227 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
228 {
229         if (active_fence_cb(fence, cb))
230                 active_retire(container_of(cb, struct i915_active, excl.cb));
231 }
232
233 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
234 {
235         struct active_node *it;
236
237         GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
238
239         /*
240          * We track the most recently used timeline to skip a rbtree search
241          * for the common case, under typical loads we never need the rbtree
242          * at all. We can reuse the last slot if it is empty, that is
243          * after the previous activity has been retired, or if it matches the
244          * current timeline.
245          */
246         it = READ_ONCE(ref->cache);
247         if (it) {
248                 u64 cached = READ_ONCE(it->timeline);
249
250                 /* Once claimed, this slot will only belong to this idx */
251                 if (cached == idx)
252                         return it;
253
254                 /*
255                  * An unclaimed cache [.timeline=0] can only be claimed once.
256                  *
257                  * If the value is already non-zero, some other thread has
258                  * claimed the cache and we know that is does not match our
259                  * idx. If, and only if, the timeline is currently zero is it
260                  * worth competing to claim it atomically for ourselves (for
261                  * only the winner of that race will cmpxchg return the old
262                  * value of 0).
263                  */
264                 if (!cached && !cmpxchg64(&it->timeline, 0, idx))
265                         return it;
266         }
267
268         BUILD_BUG_ON(offsetof(typeof(*it), node));
269
270         /* While active, the tree can only be built; not destroyed */
271         GEM_BUG_ON(i915_active_is_idle(ref));
272
273         it = fetch_node(ref->tree.rb_node);
274         while (it) {
275                 if (it->timeline < idx) {
276                         it = fetch_node(it->node.rb_right);
277                 } else if (it->timeline > idx) {
278                         it = fetch_node(it->node.rb_left);
279                 } else {
280                         WRITE_ONCE(ref->cache, it);
281                         break;
282                 }
283         }
284
285         /* NB: If the tree rotated beneath us, we may miss our target. */
286         return it;
287 }
288
289 static struct i915_active_fence *
290 active_instance(struct i915_active *ref, u64 idx)
291 {
292         struct active_node *node;
293         struct rb_node **p, *parent;
294
295         node = __active_lookup(ref, idx);
296         if (likely(node))
297                 return &node->base;
298
299         spin_lock_irq(&ref->tree_lock);
300         GEM_BUG_ON(i915_active_is_idle(ref));
301
302         parent = NULL;
303         p = &ref->tree.rb_node;
304         while (*p) {
305                 parent = *p;
306
307                 node = rb_entry(parent, struct active_node, node);
308                 if (node->timeline == idx)
309                         goto out;
310
311                 if (node->timeline < idx)
312                         p = &parent->rb_right;
313                 else
314                         p = &parent->rb_left;
315         }
316
317         /*
318          * XXX: We should preallocate this before i915_active_ref() is ever
319          *  called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC.
320          */
321         node = kmem_cache_alloc(slab_cache, GFP_ATOMIC);
322         if (!node)
323                 goto out;
324
325         __i915_active_fence_init(&node->base, NULL, node_retire);
326         node->ref = ref;
327         node->timeline = idx;
328
329         rb_link_node(&node->node, parent, p);
330         rb_insert_color(&node->node, &ref->tree);
331
332 out:
333         WRITE_ONCE(ref->cache, node);
334         spin_unlock_irq(&ref->tree_lock);
335
336         return &node->base;
337 }
338
339 void __i915_active_init(struct i915_active *ref,
340                         int (*active)(struct i915_active *ref),
341                         void (*retire)(struct i915_active *ref),
342                         unsigned long flags,
343                         struct lock_class_key *mkey,
344                         struct lock_class_key *wkey)
345 {
346         debug_active_init(ref);
347
348         ref->flags = flags;
349         ref->active = active;
350         ref->retire = retire;
351
352         spin_lock_init(&ref->tree_lock);
353         ref->tree = RB_ROOT;
354         ref->cache = NULL;
355
356         init_llist_head(&ref->preallocated_barriers);
357         atomic_set(&ref->count, 0);
358         __mutex_init(&ref->mutex, "i915_active", mkey);
359         __i915_active_fence_init(&ref->excl, NULL, excl_retire);
360         INIT_WORK(&ref->work, active_work);
361 #if IS_ENABLED(CONFIG_LOCKDEP)
362         lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
363 #endif
364 }
365
366 static bool ____active_del_barrier(struct i915_active *ref,
367                                    struct active_node *node,
368                                    struct intel_engine_cs *engine)
369
370 {
371         struct llist_node *head = NULL, *tail = NULL;
372         struct llist_node *pos, *next;
373
374         GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
375
376         /*
377          * Rebuild the llist excluding our node. We may perform this
378          * outside of the kernel_context timeline mutex and so someone
379          * else may be manipulating the engine->barrier_tasks, in
380          * which case either we or they will be upset :)
381          *
382          * A second __active_del_barrier() will report failure to claim
383          * the active_node and the caller will just shrug and know not to
384          * claim ownership of its node.
385          *
386          * A concurrent i915_request_add_active_barriers() will miss adding
387          * any of the tasks, but we will try again on the next -- and since
388          * we are actively using the barrier, we know that there will be
389          * at least another opportunity when we idle.
390          */
391         llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
392                 if (node == barrier_from_ll(pos)) {
393                         node = NULL;
394                         continue;
395                 }
396
397                 pos->next = head;
398                 head = pos;
399                 if (!tail)
400                         tail = pos;
401         }
402         if (head)
403                 llist_add_batch(head, tail, &engine->barrier_tasks);
404
405         return !node;
406 }
407
408 static bool
409 __active_del_barrier(struct i915_active *ref, struct active_node *node)
410 {
411         return ____active_del_barrier(ref, node, barrier_to_engine(node));
412 }
413
414 static bool
415 replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
416 {
417         if (!is_barrier(active)) /* proto-node used by our idle barrier? */
418                 return false;
419
420         /*
421          * This request is on the kernel_context timeline, and so
422          * we can use it to substitute for the pending idle-barrer
423          * request that we want to emit on the kernel_context.
424          */
425         __active_del_barrier(ref, node_from_active(active));
426         return true;
427 }
428
429 int i915_active_add_request(struct i915_active *ref, struct i915_request *rq)
430 {
431         struct dma_fence *fence = &rq->fence;
432         struct i915_active_fence *active;
433         int err;
434
435         /* Prevent reaping in case we malloc/wait while building the tree */
436         err = i915_active_acquire(ref);
437         if (err)
438                 return err;
439
440         active = active_instance(ref, i915_request_timeline(rq)->fence_context);
441         if (!active) {
442                 err = -ENOMEM;
443                 goto out;
444         }
445
446         if (replace_barrier(ref, active)) {
447                 RCU_INIT_POINTER(active->fence, NULL);
448                 atomic_dec(&ref->count);
449         }
450         if (!__i915_active_fence_set(active, fence))
451                 __i915_active_acquire(ref);
452
453 out:
454         i915_active_release(ref);
455         return err;
456 }
457
458 static struct dma_fence *
459 __i915_active_set_fence(struct i915_active *ref,
460                         struct i915_active_fence *active,
461                         struct dma_fence *fence)
462 {
463         struct dma_fence *prev;
464
465         if (replace_barrier(ref, active)) {
466                 RCU_INIT_POINTER(active->fence, fence);
467                 return NULL;
468         }
469
470         rcu_read_lock();
471         prev = __i915_active_fence_set(active, fence);
472         if (prev)
473                 prev = dma_fence_get_rcu(prev);
474         else
475                 __i915_active_acquire(ref);
476         rcu_read_unlock();
477
478         return prev;
479 }
480
481 struct dma_fence *
482 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
483 {
484         /* We expect the caller to manage the exclusive timeline ordering */
485         return __i915_active_set_fence(ref, &ref->excl, f);
486 }
487
488 bool i915_active_acquire_if_busy(struct i915_active *ref)
489 {
490         debug_active_assert(ref);
491         return atomic_add_unless(&ref->count, 1, 0);
492 }
493
494 static void __i915_active_activate(struct i915_active *ref)
495 {
496         spin_lock_irq(&ref->tree_lock); /* __active_retire() */
497         if (!atomic_fetch_inc(&ref->count))
498                 debug_active_activate(ref);
499         spin_unlock_irq(&ref->tree_lock);
500 }
501
502 int i915_active_acquire(struct i915_active *ref)
503 {
504         int err;
505
506         if (i915_active_acquire_if_busy(ref))
507                 return 0;
508
509         if (!ref->active) {
510                 __i915_active_activate(ref);
511                 return 0;
512         }
513
514         err = mutex_lock_interruptible(&ref->mutex);
515         if (err)
516                 return err;
517
518         if (likely(!i915_active_acquire_if_busy(ref))) {
519                 err = ref->active(ref);
520                 if (!err)
521                         __i915_active_activate(ref);
522         }
523
524         mutex_unlock(&ref->mutex);
525
526         return err;
527 }
528
529 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
530 {
531         struct i915_active_fence *active;
532         int err;
533
534         err = i915_active_acquire(ref);
535         if (err)
536                 return err;
537
538         active = active_instance(ref, idx);
539         if (!active) {
540                 i915_active_release(ref);
541                 return -ENOMEM;
542         }
543
544         return 0; /* return with active ref */
545 }
546
547 void i915_active_release(struct i915_active *ref)
548 {
549         debug_active_assert(ref);
550         active_retire(ref);
551 }
552
553 static void enable_signaling(struct i915_active_fence *active)
554 {
555         struct dma_fence *fence;
556
557         if (unlikely(is_barrier(active)))
558                 return;
559
560         fence = i915_active_fence_get(active);
561         if (!fence)
562                 return;
563
564         dma_fence_enable_sw_signaling(fence);
565         dma_fence_put(fence);
566 }
567
568 static int flush_barrier(struct active_node *it)
569 {
570         struct intel_engine_cs *engine;
571
572         if (likely(!is_barrier(&it->base)))
573                 return 0;
574
575         engine = __barrier_to_engine(it);
576         smp_rmb(); /* serialise with add_active_barriers */
577         if (!is_barrier(&it->base))
578                 return 0;
579
580         return intel_engine_flush_barriers(engine);
581 }
582
583 static int flush_lazy_signals(struct i915_active *ref)
584 {
585         struct active_node *it, *n;
586         int err = 0;
587
588         enable_signaling(&ref->excl);
589         rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
590                 err = flush_barrier(it); /* unconnected idle barrier? */
591                 if (err)
592                         break;
593
594                 enable_signaling(&it->base);
595         }
596
597         return err;
598 }
599
600 int __i915_active_wait(struct i915_active *ref, int state)
601 {
602         might_sleep();
603
604         /* Any fence added after the wait begins will not be auto-signaled */
605         if (i915_active_acquire_if_busy(ref)) {
606                 int err;
607
608                 err = flush_lazy_signals(ref);
609                 i915_active_release(ref);
610                 if (err)
611                         return err;
612
613                 if (___wait_var_event(ref, i915_active_is_idle(ref),
614                                       state, 0, 0, schedule()))
615                         return -EINTR;
616         }
617
618         /*
619          * After the wait is complete, the caller may free the active.
620          * We have to flush any concurrent retirement before returning.
621          */
622         flush_work(&ref->work);
623         return 0;
624 }
625
626 static int __await_active(struct i915_active_fence *active,
627                           int (*fn)(void *arg, struct dma_fence *fence),
628                           void *arg)
629 {
630         struct dma_fence *fence;
631
632         if (is_barrier(active)) /* XXX flush the barrier? */
633                 return 0;
634
635         fence = i915_active_fence_get(active);
636         if (fence) {
637                 int err;
638
639                 err = fn(arg, fence);
640                 dma_fence_put(fence);
641                 if (err < 0)
642                         return err;
643         }
644
645         return 0;
646 }
647
648 struct wait_barrier {
649         struct wait_queue_entry base;
650         struct i915_active *ref;
651 };
652
653 static int
654 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
655 {
656         struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
657
658         if (i915_active_is_idle(wb->ref)) {
659                 list_del(&wq->entry);
660                 i915_sw_fence_complete(wq->private);
661                 kfree(wq);
662         }
663
664         return 0;
665 }
666
667 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
668 {
669         struct wait_barrier *wb;
670
671         wb = kmalloc(sizeof(*wb), GFP_KERNEL);
672         if (unlikely(!wb))
673                 return -ENOMEM;
674
675         GEM_BUG_ON(i915_active_is_idle(ref));
676         if (!i915_sw_fence_await(fence)) {
677                 kfree(wb);
678                 return -EINVAL;
679         }
680
681         wb->base.flags = 0;
682         wb->base.func = barrier_wake;
683         wb->base.private = fence;
684         wb->ref = ref;
685
686         add_wait_queue(__var_waitqueue(ref), &wb->base);
687         return 0;
688 }
689
690 static int await_active(struct i915_active *ref,
691                         unsigned int flags,
692                         int (*fn)(void *arg, struct dma_fence *fence),
693                         void *arg, struct i915_sw_fence *barrier)
694 {
695         int err = 0;
696
697         if (!i915_active_acquire_if_busy(ref))
698                 return 0;
699
700         if (flags & I915_ACTIVE_AWAIT_EXCL &&
701             rcu_access_pointer(ref->excl.fence)) {
702                 err = __await_active(&ref->excl, fn, arg);
703                 if (err)
704                         goto out;
705         }
706
707         if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
708                 struct active_node *it, *n;
709
710                 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
711                         err = __await_active(&it->base, fn, arg);
712                         if (err)
713                                 goto out;
714                 }
715         }
716
717         if (flags & I915_ACTIVE_AWAIT_BARRIER) {
718                 err = flush_lazy_signals(ref);
719                 if (err)
720                         goto out;
721
722                 err = __await_barrier(ref, barrier);
723                 if (err)
724                         goto out;
725         }
726
727 out:
728         i915_active_release(ref);
729         return err;
730 }
731
732 static int rq_await_fence(void *arg, struct dma_fence *fence)
733 {
734         return i915_request_await_dma_fence(arg, fence);
735 }
736
737 int i915_request_await_active(struct i915_request *rq,
738                               struct i915_active *ref,
739                               unsigned int flags)
740 {
741         return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
742 }
743
744 static int sw_await_fence(void *arg, struct dma_fence *fence)
745 {
746         return i915_sw_fence_await_dma_fence(arg, fence, 0,
747                                              GFP_NOWAIT | __GFP_NOWARN);
748 }
749
750 int i915_sw_fence_await_active(struct i915_sw_fence *fence,
751                                struct i915_active *ref,
752                                unsigned int flags)
753 {
754         return await_active(ref, flags, sw_await_fence, fence, fence);
755 }
756
757 void i915_active_fini(struct i915_active *ref)
758 {
759         debug_active_fini(ref);
760         GEM_BUG_ON(atomic_read(&ref->count));
761         GEM_BUG_ON(work_pending(&ref->work));
762         mutex_destroy(&ref->mutex);
763
764         if (ref->cache)
765                 kmem_cache_free(slab_cache, ref->cache);
766 }
767
768 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
769 {
770         return node->timeline == idx && !i915_active_fence_isset(&node->base);
771 }
772
773 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
774 {
775         struct rb_node *prev, *p;
776
777         if (RB_EMPTY_ROOT(&ref->tree))
778                 return NULL;
779
780         GEM_BUG_ON(i915_active_is_idle(ref));
781
782         /*
783          * Try to reuse any existing barrier nodes already allocated for this
784          * i915_active, due to overlapping active phases there is likely a
785          * node kept alive (as we reuse before parking). We prefer to reuse
786          * completely idle barriers (less hassle in manipulating the llists),
787          * but otherwise any will do.
788          */
789         if (ref->cache && is_idle_barrier(ref->cache, idx)) {
790                 p = &ref->cache->node;
791                 goto match;
792         }
793
794         prev = NULL;
795         p = ref->tree.rb_node;
796         while (p) {
797                 struct active_node *node =
798                         rb_entry(p, struct active_node, node);
799
800                 if (is_idle_barrier(node, idx))
801                         goto match;
802
803                 prev = p;
804                 if (node->timeline < idx)
805                         p = READ_ONCE(p->rb_right);
806                 else
807                         p = READ_ONCE(p->rb_left);
808         }
809
810         /*
811          * No quick match, but we did find the leftmost rb_node for the
812          * kernel_context. Walk the rb_tree in-order to see if there were
813          * any idle-barriers on this timeline that we missed, or just use
814          * the first pending barrier.
815          */
816         for (p = prev; p; p = rb_next(p)) {
817                 struct active_node *node =
818                         rb_entry(p, struct active_node, node);
819                 struct intel_engine_cs *engine;
820
821                 if (node->timeline > idx)
822                         break;
823
824                 if (node->timeline < idx)
825                         continue;
826
827                 if (is_idle_barrier(node, idx))
828                         goto match;
829
830                 /*
831                  * The list of pending barriers is protected by the
832                  * kernel_context timeline, which notably we do not hold
833                  * here. i915_request_add_active_barriers() may consume
834                  * the barrier before we claim it, so we have to check
835                  * for success.
836                  */
837                 engine = __barrier_to_engine(node);
838                 smp_rmb(); /* serialise with add_active_barriers */
839                 if (is_barrier(&node->base) &&
840                     ____active_del_barrier(ref, node, engine))
841                         goto match;
842         }
843
844         return NULL;
845
846 match:
847         spin_lock_irq(&ref->tree_lock);
848         rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
849         if (p == &ref->cache->node)
850                 WRITE_ONCE(ref->cache, NULL);
851         spin_unlock_irq(&ref->tree_lock);
852
853         return rb_entry(p, struct active_node, node);
854 }
855
856 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
857                                             struct intel_engine_cs *engine)
858 {
859         intel_engine_mask_t tmp, mask = engine->mask;
860         struct llist_node *first = NULL, *last = NULL;
861         struct intel_gt *gt = engine->gt;
862
863         GEM_BUG_ON(i915_active_is_idle(ref));
864
865         /* Wait until the previous preallocation is completed */
866         while (!llist_empty(&ref->preallocated_barriers))
867                 cond_resched();
868
869         /*
870          * Preallocate a node for each physical engine supporting the target
871          * engine (remember virtual engines have more than one sibling).
872          * We can then use the preallocated nodes in
873          * i915_active_acquire_barrier()
874          */
875         GEM_BUG_ON(!mask);
876         for_each_engine_masked(engine, gt, mask, tmp) {
877                 u64 idx = engine->kernel_context->timeline->fence_context;
878                 struct llist_node *prev = first;
879                 struct active_node *node;
880
881                 rcu_read_lock();
882                 node = reuse_idle_barrier(ref, idx);
883                 rcu_read_unlock();
884                 if (!node) {
885                         node = kmem_cache_alloc(slab_cache, GFP_KERNEL);
886                         if (!node)
887                                 goto unwind;
888
889                         RCU_INIT_POINTER(node->base.fence, NULL);
890                         node->base.cb.func = node_retire;
891                         node->timeline = idx;
892                         node->ref = ref;
893                 }
894
895                 if (!i915_active_fence_isset(&node->base)) {
896                         /*
897                          * Mark this as being *our* unconnected proto-node.
898                          *
899                          * Since this node is not in any list, and we have
900                          * decoupled it from the rbtree, we can reuse the
901                          * request to indicate this is an idle-barrier node
902                          * and then we can use the rb_node and list pointers
903                          * for our tracking of the pending barrier.
904                          */
905                         RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
906                         node->base.cb.node.prev = (void *)engine;
907                         __i915_active_acquire(ref);
908                 }
909                 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
910
911                 GEM_BUG_ON(barrier_to_engine(node) != engine);
912                 first = barrier_to_ll(node);
913                 first->next = prev;
914                 if (!last)
915                         last = first;
916                 intel_engine_pm_get(engine);
917         }
918
919         GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
920         llist_add_batch(first, last, &ref->preallocated_barriers);
921
922         return 0;
923
924 unwind:
925         while (first) {
926                 struct active_node *node = barrier_from_ll(first);
927
928                 first = first->next;
929
930                 atomic_dec(&ref->count);
931                 intel_engine_pm_put(barrier_to_engine(node));
932
933                 kmem_cache_free(slab_cache, node);
934         }
935         return -ENOMEM;
936 }
937
938 void i915_active_acquire_barrier(struct i915_active *ref)
939 {
940         struct llist_node *pos, *next;
941         unsigned long flags;
942
943         GEM_BUG_ON(i915_active_is_idle(ref));
944
945         /*
946          * Transfer the list of preallocated barriers into the
947          * i915_active rbtree, but only as proto-nodes. They will be
948          * populated by i915_request_add_active_barriers() to point to the
949          * request that will eventually release them.
950          */
951         llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
952                 struct active_node *node = barrier_from_ll(pos);
953                 struct intel_engine_cs *engine = barrier_to_engine(node);
954                 struct rb_node **p, *parent;
955
956                 spin_lock_irqsave_nested(&ref->tree_lock, flags,
957                                          SINGLE_DEPTH_NESTING);
958                 parent = NULL;
959                 p = &ref->tree.rb_node;
960                 while (*p) {
961                         struct active_node *it;
962
963                         parent = *p;
964
965                         it = rb_entry(parent, struct active_node, node);
966                         if (it->timeline < node->timeline)
967                                 p = &parent->rb_right;
968                         else
969                                 p = &parent->rb_left;
970                 }
971                 rb_link_node(&node->node, parent, p);
972                 rb_insert_color(&node->node, &ref->tree);
973                 spin_unlock_irqrestore(&ref->tree_lock, flags);
974
975                 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
976                 llist_add(barrier_to_ll(node), &engine->barrier_tasks);
977                 intel_engine_pm_put_delay(engine, 2);
978         }
979 }
980
981 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
982 {
983         return __active_fence_slot(&barrier_from_ll(node)->base);
984 }
985
986 void i915_request_add_active_barriers(struct i915_request *rq)
987 {
988         struct intel_engine_cs *engine = rq->engine;
989         struct llist_node *node, *next;
990         unsigned long flags;
991
992         GEM_BUG_ON(!intel_context_is_barrier(rq->context));
993         GEM_BUG_ON(intel_engine_is_virtual(engine));
994         GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
995
996         node = llist_del_all(&engine->barrier_tasks);
997         if (!node)
998                 return;
999         /*
1000          * Attach the list of proto-fences to the in-flight request such
1001          * that the parent i915_active will be released when this request
1002          * is retired.
1003          */
1004         spin_lock_irqsave(&rq->lock, flags);
1005         llist_for_each_safe(node, next, node) {
1006                 /* serialise with reuse_idle_barrier */
1007                 smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
1008                 list_add_tail((struct list_head *)node, &rq->fence.cb_list);
1009         }
1010         spin_unlock_irqrestore(&rq->lock, flags);
1011 }
1012
1013 /*
1014  * __i915_active_fence_set: Update the last active fence along its timeline
1015  * @active: the active tracker
1016  * @fence: the new fence (under construction)
1017  *
1018  * Records the new @fence as the last active fence along its timeline in
1019  * this active tracker, moving the tracking callbacks from the previous
1020  * fence onto this one. Returns the previous fence (if not already completed),
1021  * which the caller must ensure is executed before the new fence. To ensure
1022  * that the order of fences within the timeline of the i915_active_fence is
1023  * understood, it should be locked by the caller.
1024  */
1025 struct dma_fence *
1026 __i915_active_fence_set(struct i915_active_fence *active,
1027                         struct dma_fence *fence)
1028 {
1029         struct dma_fence *prev;
1030         unsigned long flags;
1031
1032         if (fence == rcu_access_pointer(active->fence))
1033                 return fence;
1034
1035         GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
1036
1037         /*
1038          * Consider that we have two threads arriving (A and B), with
1039          * C already resident as the active->fence.
1040          *
1041          * A does the xchg first, and so it sees C or NULL depending
1042          * on the timing of the interrupt handler. If it is NULL, the
1043          * previous fence must have been signaled and we know that
1044          * we are first on the timeline. If it is still present,
1045          * we acquire the lock on that fence and serialise with the interrupt
1046          * handler, in the process removing it from any future interrupt
1047          * callback. A will then wait on C before executing (if present).
1048          *
1049          * As B is second, it sees A as the previous fence and so waits for
1050          * it to complete its transition and takes over the occupancy for
1051          * itself -- remembering that it needs to wait on A before executing.
1052          *
1053          * Note the strong ordering of the timeline also provides consistent
1054          * nesting rules for the fence->lock; the inner lock is always the
1055          * older lock.
1056          */
1057         spin_lock_irqsave(fence->lock, flags);
1058         prev = xchg(__active_fence_slot(active), fence);
1059         if (prev) {
1060                 GEM_BUG_ON(prev == fence);
1061                 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1062                 __list_del_entry(&active->cb.node);
1063                 spin_unlock(prev->lock); /* serialise with prev->cb_list */
1064         }
1065         list_add_tail(&active->cb.node, &fence->cb_list);
1066         spin_unlock_irqrestore(fence->lock, flags);
1067
1068         return prev;
1069 }
1070
1071 int i915_active_fence_set(struct i915_active_fence *active,
1072                           struct i915_request *rq)
1073 {
1074         struct dma_fence *fence;
1075         int err = 0;
1076
1077         /* Must maintain timeline ordering wrt previous active requests */
1078         rcu_read_lock();
1079         fence = __i915_active_fence_set(active, &rq->fence);
1080         if (fence) /* but the previous fence may not belong to that timeline! */
1081                 fence = dma_fence_get_rcu(fence);
1082         rcu_read_unlock();
1083         if (fence) {
1084                 err = i915_request_await_dma_fence(rq, fence);
1085                 dma_fence_put(fence);
1086         }
1087
1088         return err;
1089 }
1090
1091 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
1092 {
1093         active_fence_cb(fence, cb);
1094 }
1095
1096 struct auto_active {
1097         struct i915_active base;
1098         struct kref ref;
1099 };
1100
1101 struct i915_active *i915_active_get(struct i915_active *ref)
1102 {
1103         struct auto_active *aa = container_of(ref, typeof(*aa), base);
1104
1105         kref_get(&aa->ref);
1106         return &aa->base;
1107 }
1108
1109 static void auto_release(struct kref *ref)
1110 {
1111         struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1112
1113         i915_active_fini(&aa->base);
1114         kfree(aa);
1115 }
1116
1117 void i915_active_put(struct i915_active *ref)
1118 {
1119         struct auto_active *aa = container_of(ref, typeof(*aa), base);
1120
1121         kref_put(&aa->ref, auto_release);
1122 }
1123
1124 static int auto_active(struct i915_active *ref)
1125 {
1126         i915_active_get(ref);
1127         return 0;
1128 }
1129
1130 static void auto_retire(struct i915_active *ref)
1131 {
1132         i915_active_put(ref);
1133 }
1134
1135 struct i915_active *i915_active_create(void)
1136 {
1137         struct auto_active *aa;
1138
1139         aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1140         if (!aa)
1141                 return NULL;
1142
1143         kref_init(&aa->ref);
1144         i915_active_init(&aa->base, auto_active, auto_retire, 0);
1145
1146         return &aa->base;
1147 }
1148
1149 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1150 #include "selftests/i915_active.c"
1151 #endif
1152
1153 void i915_active_module_exit(void)
1154 {
1155         kmem_cache_destroy(slab_cache);
1156 }
1157
1158 int __init i915_active_module_init(void)
1159 {
1160         slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1161         if (!slab_cache)
1162                 return -ENOMEM;
1163
1164         return 0;
1165 }