drm/i915: Wrap engine->context_pin() and engine->context_unpin()
[linux-2.6-block.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35
36 #include <linux/kthread.h>
37
38 #include "i915_drv.h"
39 #include "gvt.h"
40
41 #define RING_CTX_OFF(x) \
42         offsetof(struct execlist_ring_context, x)
43
44 static void set_context_pdp_root_pointer(
45                 struct execlist_ring_context *ring_context,
46                 u32 pdp[8])
47 {
48         struct execlist_mmio_pair *pdp_pair = &ring_context->pdp3_UDW;
49         int i;
50
51         for (i = 0; i < 8; i++)
52                 pdp_pair[i].val = pdp[7 - i];
53 }
54
55 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
56 {
57         struct intel_vgpu *vgpu = workload->vgpu;
58         int ring_id = workload->ring_id;
59         struct i915_gem_context *shadow_ctx = vgpu->submission.shadow_ctx;
60         struct drm_i915_gem_object *ctx_obj =
61                 shadow_ctx->__engine[ring_id].state->obj;
62         struct execlist_ring_context *shadow_ring_context;
63         struct page *page;
64
65         if (WARN_ON(!workload->shadow_mm))
66                 return;
67
68         if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
69                 return;
70
71         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
72         shadow_ring_context = kmap(page);
73         set_context_pdp_root_pointer(shadow_ring_context,
74                         (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
75         kunmap(page);
76 }
77
78 /*
79  * when populating shadow ctx from guest, we should not overrride oa related
80  * registers, so that they will not be overlapped by guest oa configs. Thus
81  * made it possible to capture oa data from host for both host and guests.
82  */
83 static void sr_oa_regs(struct intel_vgpu_workload *workload,
84                 u32 *reg_state, bool save)
85 {
86         struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
87         u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
88         u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
89         int i = 0;
90         u32 flex_mmio[] = {
91                 i915_mmio_reg_offset(EU_PERF_CNTL0),
92                 i915_mmio_reg_offset(EU_PERF_CNTL1),
93                 i915_mmio_reg_offset(EU_PERF_CNTL2),
94                 i915_mmio_reg_offset(EU_PERF_CNTL3),
95                 i915_mmio_reg_offset(EU_PERF_CNTL4),
96                 i915_mmio_reg_offset(EU_PERF_CNTL5),
97                 i915_mmio_reg_offset(EU_PERF_CNTL6),
98         };
99
100         if (workload->ring_id != RCS)
101                 return;
102
103         if (save) {
104                 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
105
106                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
107                         u32 state_offset = ctx_flexeu0 + i * 2;
108
109                         workload->flex_mmio[i] = reg_state[state_offset + 1];
110                 }
111         } else {
112                 reg_state[ctx_oactxctrl] =
113                         i915_mmio_reg_offset(GEN8_OACTXCONTROL);
114                 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
115
116                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
117                         u32 state_offset = ctx_flexeu0 + i * 2;
118                         u32 mmio = flex_mmio[i];
119
120                         reg_state[state_offset] = mmio;
121                         reg_state[state_offset + 1] = workload->flex_mmio[i];
122                 }
123         }
124 }
125
126 static int populate_shadow_context(struct intel_vgpu_workload *workload)
127 {
128         struct intel_vgpu *vgpu = workload->vgpu;
129         struct intel_gvt *gvt = vgpu->gvt;
130         int ring_id = workload->ring_id;
131         struct i915_gem_context *shadow_ctx = vgpu->submission.shadow_ctx;
132         struct drm_i915_gem_object *ctx_obj =
133                 shadow_ctx->__engine[ring_id].state->obj;
134         struct execlist_ring_context *shadow_ring_context;
135         struct page *page;
136         void *dst;
137         unsigned long context_gpa, context_page_num;
138         int i;
139
140         gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
141                         workload->ctx_desc.lrca);
142
143         context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
144
145         context_page_num = context_page_num >> PAGE_SHIFT;
146
147         if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
148                 context_page_num = 19;
149
150         i = 2;
151
152         while (i < context_page_num) {
153                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
154                                 (u32)((workload->ctx_desc.lrca + i) <<
155                                 I915_GTT_PAGE_SHIFT));
156                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
157                         gvt_vgpu_err("Invalid guest context descriptor\n");
158                         return -EFAULT;
159                 }
160
161                 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
162                 dst = kmap(page);
163                 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
164                                 I915_GTT_PAGE_SIZE);
165                 kunmap(page);
166                 i++;
167         }
168
169         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
170         shadow_ring_context = kmap(page);
171
172         sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
173 #define COPY_REG(name) \
174         intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
175                 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
176 #define COPY_REG_MASKED(name) {\
177                 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
178                                               + RING_CTX_OFF(name.val),\
179                                               &shadow_ring_context->name.val, 4);\
180                 shadow_ring_context->name.val |= 0xffff << 16;\
181         }
182
183         COPY_REG_MASKED(ctx_ctrl);
184         COPY_REG(ctx_timestamp);
185
186         if (ring_id == RCS) {
187                 COPY_REG(bb_per_ctx_ptr);
188                 COPY_REG(rcs_indirect_ctx);
189                 COPY_REG(rcs_indirect_ctx_offset);
190         }
191 #undef COPY_REG
192 #undef COPY_REG_MASKED
193
194         intel_gvt_hypervisor_read_gpa(vgpu,
195                         workload->ring_context_gpa +
196                         sizeof(*shadow_ring_context),
197                         (void *)shadow_ring_context +
198                         sizeof(*shadow_ring_context),
199                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
200
201         sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
202         kunmap(page);
203         return 0;
204 }
205
206 static inline bool is_gvt_request(struct i915_request *req)
207 {
208         return i915_gem_context_force_single_submission(req->ctx);
209 }
210
211 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
212 {
213         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
214         u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
215         i915_reg_t reg;
216
217         reg = RING_INSTDONE(ring_base);
218         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
219         reg = RING_ACTHD(ring_base);
220         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
221         reg = RING_ACTHD_UDW(ring_base);
222         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
223 }
224
225 static int shadow_context_status_change(struct notifier_block *nb,
226                 unsigned long action, void *data)
227 {
228         struct i915_request *req = data;
229         struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
230                                 shadow_ctx_notifier_block[req->engine->id]);
231         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
232         enum intel_engine_id ring_id = req->engine->id;
233         struct intel_vgpu_workload *workload;
234         unsigned long flags;
235
236         if (!is_gvt_request(req)) {
237                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
238                 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
239                     scheduler->engine_owner[ring_id]) {
240                         /* Switch ring from vGPU to host. */
241                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
242                                               NULL, ring_id);
243                         scheduler->engine_owner[ring_id] = NULL;
244                 }
245                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
246
247                 return NOTIFY_OK;
248         }
249
250         workload = scheduler->current_workload[ring_id];
251         if (unlikely(!workload))
252                 return NOTIFY_OK;
253
254         switch (action) {
255         case INTEL_CONTEXT_SCHEDULE_IN:
256                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
257                 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
258                         /* Switch ring from host to vGPU or vGPU to vGPU. */
259                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
260                                               workload->vgpu, ring_id);
261                         scheduler->engine_owner[ring_id] = workload->vgpu;
262                 } else
263                         gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
264                                       ring_id, workload->vgpu->id);
265                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
266                 atomic_set(&workload->shadow_ctx_active, 1);
267                 break;
268         case INTEL_CONTEXT_SCHEDULE_OUT:
269                 save_ring_hw_state(workload->vgpu, ring_id);
270                 atomic_set(&workload->shadow_ctx_active, 0);
271                 break;
272         case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
273                 save_ring_hw_state(workload->vgpu, ring_id);
274                 break;
275         default:
276                 WARN_ON(1);
277                 return NOTIFY_OK;
278         }
279         wake_up(&workload->shadow_ctx_status_wq);
280         return NOTIFY_OK;
281 }
282
283 static void shadow_context_descriptor_update(struct i915_gem_context *ctx,
284                 struct intel_engine_cs *engine)
285 {
286         struct intel_context *ce = to_intel_context(ctx, engine);
287         u64 desc = 0;
288
289         desc = ce->lrc_desc;
290
291         /* Update bits 0-11 of the context descriptor which includes flags
292          * like GEN8_CTX_* cached in desc_template
293          */
294         desc &= U64_MAX << 12;
295         desc |= ctx->desc_template & ((1ULL << 12) - 1);
296
297         ce->lrc_desc = desc;
298 }
299
300 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
301 {
302         struct intel_vgpu *vgpu = workload->vgpu;
303         void *shadow_ring_buffer_va;
304         u32 *cs;
305         struct i915_request *req = workload->req;
306
307         if (IS_KABYLAKE(req->i915) &&
308             is_inhibit_context(req->ctx, req->engine->id))
309                 intel_vgpu_restore_inhibit_context(vgpu, req);
310
311         /* allocate shadow ring buffer */
312         cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
313         if (IS_ERR(cs)) {
314                 gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
315                         workload->rb_len);
316                 return PTR_ERR(cs);
317         }
318
319         shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
320
321         /* get shadow ring buffer va */
322         workload->shadow_ring_buffer_va = cs;
323
324         memcpy(cs, shadow_ring_buffer_va,
325                         workload->rb_len);
326
327         cs += workload->rb_len / sizeof(u32);
328         intel_ring_advance(workload->req, cs);
329
330         return 0;
331 }
332
333 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
334 {
335         if (!wa_ctx->indirect_ctx.obj)
336                 return;
337
338         i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
339         i915_gem_object_put(wa_ctx->indirect_ctx.obj);
340 }
341
342 /**
343  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
344  * shadow it as well, include ringbuffer,wa_ctx and ctx.
345  * @workload: an abstract entity for each execlist submission.
346  *
347  * This function is called before the workload submitting to i915, to make
348  * sure the content of the workload is valid.
349  */
350 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
351 {
352         struct intel_vgpu *vgpu = workload->vgpu;
353         struct intel_vgpu_submission *s = &vgpu->submission;
354         struct i915_gem_context *shadow_ctx = s->shadow_ctx;
355         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
356         int ring_id = workload->ring_id;
357         struct intel_engine_cs *engine = dev_priv->engine[ring_id];
358         struct intel_ring *ring;
359         int ret;
360
361         lockdep_assert_held(&dev_priv->drm.struct_mutex);
362
363         if (workload->shadowed)
364                 return 0;
365
366         shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
367         shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
368                                     GEN8_CTX_ADDRESSING_MODE_SHIFT;
369
370         if (!test_and_set_bit(ring_id, s->shadow_ctx_desc_updated))
371                 shadow_context_descriptor_update(shadow_ctx,
372                                         dev_priv->engine[ring_id]);
373
374         ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
375         if (ret)
376                 goto err_scan;
377
378         if ((workload->ring_id == RCS) &&
379             (workload->wa_ctx.indirect_ctx.size != 0)) {
380                 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
381                 if (ret)
382                         goto err_scan;
383         }
384
385         /* pin shadow context by gvt even the shadow context will be pinned
386          * when i915 alloc request. That is because gvt will update the guest
387          * context from shadow context when workload is completed, and at that
388          * moment, i915 may already unpined the shadow context to make the
389          * shadow_ctx pages invalid. So gvt need to pin itself. After update
390          * the guest context, gvt can unpin the shadow_ctx safely.
391          */
392         ring = intel_context_pin(shadow_ctx, engine);
393         if (IS_ERR(ring)) {
394                 ret = PTR_ERR(ring);
395                 gvt_vgpu_err("fail to pin shadow context\n");
396                 goto err_shadow;
397         }
398
399         ret = populate_shadow_context(workload);
400         if (ret)
401                 goto err_unpin;
402         workload->shadowed = true;
403         return 0;
404
405 err_unpin:
406         intel_context_unpin(shadow_ctx, engine);
407 err_shadow:
408         release_shadow_wa_ctx(&workload->wa_ctx);
409 err_scan:
410         return ret;
411 }
412
413 static int intel_gvt_generate_request(struct intel_vgpu_workload *workload)
414 {
415         int ring_id = workload->ring_id;
416         struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
417         struct intel_engine_cs *engine = dev_priv->engine[ring_id];
418         struct i915_request *rq;
419         struct intel_vgpu *vgpu = workload->vgpu;
420         struct intel_vgpu_submission *s = &vgpu->submission;
421         struct i915_gem_context *shadow_ctx = s->shadow_ctx;
422         int ret;
423
424         rq = i915_request_alloc(dev_priv->engine[ring_id], shadow_ctx);
425         if (IS_ERR(rq)) {
426                 gvt_vgpu_err("fail to allocate gem request\n");
427                 ret = PTR_ERR(rq);
428                 goto err_unpin;
429         }
430
431         gvt_dbg_sched("ring id %d get i915 gem request %p\n", ring_id, rq);
432
433         workload->req = i915_request_get(rq);
434         ret = copy_workload_to_ring_buffer(workload);
435         if (ret)
436                 goto err_unpin;
437         return 0;
438
439 err_unpin:
440         intel_context_unpin(shadow_ctx, engine);
441         release_shadow_wa_ctx(&workload->wa_ctx);
442         return ret;
443 }
444
445 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
446
447 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
448 {
449         struct intel_gvt *gvt = workload->vgpu->gvt;
450         const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
451         struct intel_vgpu_shadow_bb *bb;
452         int ret;
453
454         list_for_each_entry(bb, &workload->shadow_bb, list) {
455                 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
456                  * is only updated into ring_scan_buffer, not real ring address
457                  * allocated in later copy_workload_to_ring_buffer. pls be noted
458                  * shadow_ring_buffer_va is now pointed to real ring buffer va
459                  * in copy_workload_to_ring_buffer.
460                  */
461
462                 if (bb->bb_offset)
463                         bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
464                                 + bb->bb_offset;
465
466                 if (bb->ppgtt) {
467                         /* for non-priv bb, scan&shadow is only for
468                          * debugging purpose, so the content of shadow bb
469                          * is the same as original bb. Therefore,
470                          * here, rather than switch to shadow bb's gma
471                          * address, we directly use original batch buffer's
472                          * gma address, and send original bb to hardware
473                          * directly
474                          */
475                         if (bb->clflush & CLFLUSH_AFTER) {
476                                 drm_clflush_virt_range(bb->va,
477                                                 bb->obj->base.size);
478                                 bb->clflush &= ~CLFLUSH_AFTER;
479                         }
480                         i915_gem_obj_finish_shmem_access(bb->obj);
481                         bb->accessing = false;
482
483                 } else {
484                         bb->vma = i915_gem_object_ggtt_pin(bb->obj,
485                                         NULL, 0, 0, 0);
486                         if (IS_ERR(bb->vma)) {
487                                 ret = PTR_ERR(bb->vma);
488                                 goto err;
489                         }
490
491                         /* relocate shadow batch buffer */
492                         bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
493                         if (gmadr_bytes == 8)
494                                 bb->bb_start_cmd_va[2] = 0;
495
496                         /* No one is going to touch shadow bb from now on. */
497                         if (bb->clflush & CLFLUSH_AFTER) {
498                                 drm_clflush_virt_range(bb->va,
499                                                 bb->obj->base.size);
500                                 bb->clflush &= ~CLFLUSH_AFTER;
501                         }
502
503                         ret = i915_gem_object_set_to_gtt_domain(bb->obj,
504                                         false);
505                         if (ret)
506                                 goto err;
507
508                         i915_gem_obj_finish_shmem_access(bb->obj);
509                         bb->accessing = false;
510
511                         i915_vma_move_to_active(bb->vma, workload->req, 0);
512                 }
513         }
514         return 0;
515 err:
516         release_shadow_batch_buffer(workload);
517         return ret;
518 }
519
520 static int update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
521 {
522         struct intel_vgpu_workload *workload = container_of(wa_ctx,
523                                         struct intel_vgpu_workload,
524                                         wa_ctx);
525         int ring_id = workload->ring_id;
526         struct intel_vgpu_submission *s = &workload->vgpu->submission;
527         struct i915_gem_context *shadow_ctx = s->shadow_ctx;
528         struct drm_i915_gem_object *ctx_obj =
529                 shadow_ctx->__engine[ring_id].state->obj;
530         struct execlist_ring_context *shadow_ring_context;
531         struct page *page;
532
533         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
534         shadow_ring_context = kmap_atomic(page);
535
536         shadow_ring_context->bb_per_ctx_ptr.val =
537                 (shadow_ring_context->bb_per_ctx_ptr.val &
538                 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
539         shadow_ring_context->rcs_indirect_ctx.val =
540                 (shadow_ring_context->rcs_indirect_ctx.val &
541                 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
542
543         kunmap_atomic(shadow_ring_context);
544         return 0;
545 }
546
547 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
548 {
549         struct i915_vma *vma;
550         unsigned char *per_ctx_va =
551                 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
552                 wa_ctx->indirect_ctx.size;
553
554         if (wa_ctx->indirect_ctx.size == 0)
555                 return 0;
556
557         vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
558                                        0, CACHELINE_BYTES, 0);
559         if (IS_ERR(vma))
560                 return PTR_ERR(vma);
561
562         /* FIXME: we are not tracking our pinned VMA leaving it
563          * up to the core to fix up the stray pin_count upon
564          * free.
565          */
566
567         wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
568
569         wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
570         memset(per_ctx_va, 0, CACHELINE_BYTES);
571
572         update_wa_ctx_2_shadow_ctx(wa_ctx);
573         return 0;
574 }
575
576 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
577 {
578         struct intel_vgpu *vgpu = workload->vgpu;
579         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
580         struct intel_vgpu_shadow_bb *bb, *pos;
581
582         if (list_empty(&workload->shadow_bb))
583                 return;
584
585         bb = list_first_entry(&workload->shadow_bb,
586                         struct intel_vgpu_shadow_bb, list);
587
588         mutex_lock(&dev_priv->drm.struct_mutex);
589
590         list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
591                 if (bb->obj) {
592                         if (bb->accessing)
593                                 i915_gem_obj_finish_shmem_access(bb->obj);
594
595                         if (bb->va && !IS_ERR(bb->va))
596                                 i915_gem_object_unpin_map(bb->obj);
597
598                         if (bb->vma && !IS_ERR(bb->vma)) {
599                                 i915_vma_unpin(bb->vma);
600                                 i915_vma_close(bb->vma);
601                         }
602                         __i915_gem_object_release_unless_active(bb->obj);
603                 }
604                 list_del(&bb->list);
605                 kfree(bb);
606         }
607
608         mutex_unlock(&dev_priv->drm.struct_mutex);
609 }
610
611 static int prepare_workload(struct intel_vgpu_workload *workload)
612 {
613         struct intel_vgpu *vgpu = workload->vgpu;
614         int ret = 0;
615
616         ret = intel_vgpu_pin_mm(workload->shadow_mm);
617         if (ret) {
618                 gvt_vgpu_err("fail to vgpu pin mm\n");
619                 return ret;
620         }
621
622         update_shadow_pdps(workload);
623
624         ret = intel_vgpu_sync_oos_pages(workload->vgpu);
625         if (ret) {
626                 gvt_vgpu_err("fail to vgpu sync oos pages\n");
627                 goto err_unpin_mm;
628         }
629
630         ret = intel_vgpu_flush_post_shadow(workload->vgpu);
631         if (ret) {
632                 gvt_vgpu_err("fail to flush post shadow\n");
633                 goto err_unpin_mm;
634         }
635
636         ret = intel_gvt_generate_request(workload);
637         if (ret) {
638                 gvt_vgpu_err("fail to generate request\n");
639                 goto err_unpin_mm;
640         }
641
642         ret = prepare_shadow_batch_buffer(workload);
643         if (ret) {
644                 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
645                 goto err_unpin_mm;
646         }
647
648         ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
649         if (ret) {
650                 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
651                 goto err_shadow_batch;
652         }
653
654         if (workload->prepare) {
655                 ret = workload->prepare(workload);
656                 if (ret)
657                         goto err_shadow_wa_ctx;
658         }
659
660         return 0;
661 err_shadow_wa_ctx:
662         release_shadow_wa_ctx(&workload->wa_ctx);
663 err_shadow_batch:
664         release_shadow_batch_buffer(workload);
665 err_unpin_mm:
666         intel_vgpu_unpin_mm(workload->shadow_mm);
667         return ret;
668 }
669
670 static int dispatch_workload(struct intel_vgpu_workload *workload)
671 {
672         struct intel_vgpu *vgpu = workload->vgpu;
673         struct intel_vgpu_submission *s = &vgpu->submission;
674         struct i915_gem_context *shadow_ctx = s->shadow_ctx;
675         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
676         int ring_id = workload->ring_id;
677         struct intel_engine_cs *engine = dev_priv->engine[ring_id];
678         int ret = 0;
679
680         gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
681                 ring_id, workload);
682
683         mutex_lock(&dev_priv->drm.struct_mutex);
684
685         ret = intel_gvt_scan_and_shadow_workload(workload);
686         if (ret)
687                 goto out;
688
689         ret = prepare_workload(workload);
690         if (ret) {
691                 intel_context_unpin(shadow_ctx, engine);
692                 goto out;
693         }
694
695 out:
696         if (ret)
697                 workload->status = ret;
698
699         if (!IS_ERR_OR_NULL(workload->req)) {
700                 gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
701                                 ring_id, workload->req);
702                 i915_request_add(workload->req);
703                 workload->dispatched = true;
704         }
705
706         mutex_unlock(&dev_priv->drm.struct_mutex);
707         return ret;
708 }
709
710 static struct intel_vgpu_workload *pick_next_workload(
711                 struct intel_gvt *gvt, int ring_id)
712 {
713         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
714         struct intel_vgpu_workload *workload = NULL;
715
716         mutex_lock(&gvt->lock);
717
718         /*
719          * no current vgpu / will be scheduled out / no workload
720          * bail out
721          */
722         if (!scheduler->current_vgpu) {
723                 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
724                 goto out;
725         }
726
727         if (scheduler->need_reschedule) {
728                 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
729                 goto out;
730         }
731
732         if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
733                 goto out;
734
735         /*
736          * still have current workload, maybe the workload disptacher
737          * fail to submit it for some reason, resubmit it.
738          */
739         if (scheduler->current_workload[ring_id]) {
740                 workload = scheduler->current_workload[ring_id];
741                 gvt_dbg_sched("ring id %d still have current workload %p\n",
742                                 ring_id, workload);
743                 goto out;
744         }
745
746         /*
747          * pick a workload as current workload
748          * once current workload is set, schedule policy routines
749          * will wait the current workload is finished when trying to
750          * schedule out a vgpu.
751          */
752         scheduler->current_workload[ring_id] = container_of(
753                         workload_q_head(scheduler->current_vgpu, ring_id)->next,
754                         struct intel_vgpu_workload, list);
755
756         workload = scheduler->current_workload[ring_id];
757
758         gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
759
760         atomic_inc(&workload->vgpu->submission.running_workload_num);
761 out:
762         mutex_unlock(&gvt->lock);
763         return workload;
764 }
765
766 static void update_guest_context(struct intel_vgpu_workload *workload)
767 {
768         struct intel_vgpu *vgpu = workload->vgpu;
769         struct intel_gvt *gvt = vgpu->gvt;
770         struct intel_vgpu_submission *s = &vgpu->submission;
771         struct i915_gem_context *shadow_ctx = s->shadow_ctx;
772         int ring_id = workload->ring_id;
773         struct drm_i915_gem_object *ctx_obj =
774                 shadow_ctx->__engine[ring_id].state->obj;
775         struct execlist_ring_context *shadow_ring_context;
776         struct page *page;
777         void *src;
778         unsigned long context_gpa, context_page_num;
779         int i;
780
781         gvt_dbg_sched("ring id %d workload lrca %x\n", ring_id,
782                         workload->ctx_desc.lrca);
783
784         context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
785
786         context_page_num = context_page_num >> PAGE_SHIFT;
787
788         if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
789                 context_page_num = 19;
790
791         i = 2;
792
793         while (i < context_page_num) {
794                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
795                                 (u32)((workload->ctx_desc.lrca + i) <<
796                                         I915_GTT_PAGE_SHIFT));
797                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
798                         gvt_vgpu_err("invalid guest context descriptor\n");
799                         return;
800                 }
801
802                 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
803                 src = kmap(page);
804                 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
805                                 I915_GTT_PAGE_SIZE);
806                 kunmap(page);
807                 i++;
808         }
809
810         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
811                 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
812
813         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
814         shadow_ring_context = kmap(page);
815
816 #define COPY_REG(name) \
817         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
818                 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
819
820         COPY_REG(ctx_ctrl);
821         COPY_REG(ctx_timestamp);
822
823 #undef COPY_REG
824
825         intel_gvt_hypervisor_write_gpa(vgpu,
826                         workload->ring_context_gpa +
827                         sizeof(*shadow_ring_context),
828                         (void *)shadow_ring_context +
829                         sizeof(*shadow_ring_context),
830                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
831
832         kunmap(page);
833 }
834
835 static void clean_workloads(struct intel_vgpu *vgpu, unsigned long engine_mask)
836 {
837         struct intel_vgpu_submission *s = &vgpu->submission;
838         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
839         struct intel_engine_cs *engine;
840         struct intel_vgpu_workload *pos, *n;
841         unsigned int tmp;
842
843         /* free the unsubmited workloads in the queues. */
844         for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
845                 list_for_each_entry_safe(pos, n,
846                         &s->workload_q_head[engine->id], list) {
847                         list_del_init(&pos->list);
848                         intel_vgpu_destroy_workload(pos);
849                 }
850                 clear_bit(engine->id, s->shadow_ctx_desc_updated);
851         }
852 }
853
854 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
855 {
856         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
857         struct intel_vgpu_workload *workload =
858                 scheduler->current_workload[ring_id];
859         struct intel_vgpu *vgpu = workload->vgpu;
860         struct intel_vgpu_submission *s = &vgpu->submission;
861         int event;
862
863         mutex_lock(&gvt->lock);
864
865         /* For the workload w/ request, needs to wait for the context
866          * switch to make sure request is completed.
867          * For the workload w/o request, directly complete the workload.
868          */
869         if (workload->req) {
870                 struct drm_i915_private *dev_priv =
871                         workload->vgpu->gvt->dev_priv;
872                 struct intel_engine_cs *engine =
873                         dev_priv->engine[workload->ring_id];
874                 wait_event(workload->shadow_ctx_status_wq,
875                            !atomic_read(&workload->shadow_ctx_active));
876
877                 /* If this request caused GPU hang, req->fence.error will
878                  * be set to -EIO. Use -EIO to set workload status so
879                  * that when this request caused GPU hang, didn't trigger
880                  * context switch interrupt to guest.
881                  */
882                 if (likely(workload->status == -EINPROGRESS)) {
883                         if (workload->req->fence.error == -EIO)
884                                 workload->status = -EIO;
885                         else
886                                 workload->status = 0;
887                 }
888
889                 i915_request_put(fetch_and_zero(&workload->req));
890
891                 if (!workload->status && !(vgpu->resetting_eng &
892                                            ENGINE_MASK(ring_id))) {
893                         update_guest_context(workload);
894
895                         for_each_set_bit(event, workload->pending_events,
896                                          INTEL_GVT_EVENT_MAX)
897                                 intel_vgpu_trigger_virtual_event(vgpu, event);
898                 }
899                 mutex_lock(&dev_priv->drm.struct_mutex);
900                 /* unpin shadow ctx as the shadow_ctx update is done */
901                 intel_context_unpin(s->shadow_ctx, engine);
902                 mutex_unlock(&dev_priv->drm.struct_mutex);
903         }
904
905         gvt_dbg_sched("ring id %d complete workload %p status %d\n",
906                         ring_id, workload, workload->status);
907
908         scheduler->current_workload[ring_id] = NULL;
909
910         list_del_init(&workload->list);
911
912         if (!workload->status) {
913                 release_shadow_batch_buffer(workload);
914                 release_shadow_wa_ctx(&workload->wa_ctx);
915         }
916
917         if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) {
918                 /* if workload->status is not successful means HW GPU
919                  * has occurred GPU hang or something wrong with i915/GVT,
920                  * and GVT won't inject context switch interrupt to guest.
921                  * So this error is a vGPU hang actually to the guest.
922                  * According to this we should emunlate a vGPU hang. If
923                  * there are pending workloads which are already submitted
924                  * from guest, we should clean them up like HW GPU does.
925                  *
926                  * if it is in middle of engine resetting, the pending
927                  * workloads won't be submitted to HW GPU and will be
928                  * cleaned up during the resetting process later, so doing
929                  * the workload clean up here doesn't have any impact.
930                  **/
931                 clean_workloads(vgpu, ENGINE_MASK(ring_id));
932         }
933
934         workload->complete(workload);
935
936         atomic_dec(&s->running_workload_num);
937         wake_up(&scheduler->workload_complete_wq);
938
939         if (gvt->scheduler.need_reschedule)
940                 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
941
942         mutex_unlock(&gvt->lock);
943 }
944
945 struct workload_thread_param {
946         struct intel_gvt *gvt;
947         int ring_id;
948 };
949
950 static int workload_thread(void *priv)
951 {
952         struct workload_thread_param *p = (struct workload_thread_param *)priv;
953         struct intel_gvt *gvt = p->gvt;
954         int ring_id = p->ring_id;
955         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
956         struct intel_vgpu_workload *workload = NULL;
957         struct intel_vgpu *vgpu = NULL;
958         int ret;
959         bool need_force_wake = IS_SKYLAKE(gvt->dev_priv)
960                         || IS_KABYLAKE(gvt->dev_priv);
961         DEFINE_WAIT_FUNC(wait, woken_wake_function);
962
963         kfree(p);
964
965         gvt_dbg_core("workload thread for ring %d started\n", ring_id);
966
967         while (!kthread_should_stop()) {
968                 add_wait_queue(&scheduler->waitq[ring_id], &wait);
969                 do {
970                         workload = pick_next_workload(gvt, ring_id);
971                         if (workload)
972                                 break;
973                         wait_woken(&wait, TASK_INTERRUPTIBLE,
974                                    MAX_SCHEDULE_TIMEOUT);
975                 } while (!kthread_should_stop());
976                 remove_wait_queue(&scheduler->waitq[ring_id], &wait);
977
978                 if (!workload)
979                         break;
980
981                 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
982                                 workload->ring_id, workload,
983                                 workload->vgpu->id);
984
985                 intel_runtime_pm_get(gvt->dev_priv);
986
987                 gvt_dbg_sched("ring id %d will dispatch workload %p\n",
988                                 workload->ring_id, workload);
989
990                 if (need_force_wake)
991                         intel_uncore_forcewake_get(gvt->dev_priv,
992                                         FORCEWAKE_ALL);
993
994                 mutex_lock(&gvt->lock);
995                 ret = dispatch_workload(workload);
996                 mutex_unlock(&gvt->lock);
997
998                 if (ret) {
999                         vgpu = workload->vgpu;
1000                         gvt_vgpu_err("fail to dispatch workload, skip\n");
1001                         goto complete;
1002                 }
1003
1004                 gvt_dbg_sched("ring id %d wait workload %p\n",
1005                                 workload->ring_id, workload);
1006                 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1007
1008 complete:
1009                 gvt_dbg_sched("will complete workload %p, status: %d\n",
1010                                 workload, workload->status);
1011
1012                 complete_current_workload(gvt, ring_id);
1013
1014                 if (need_force_wake)
1015                         intel_uncore_forcewake_put(gvt->dev_priv,
1016                                         FORCEWAKE_ALL);
1017
1018                 intel_runtime_pm_put(gvt->dev_priv);
1019                 if (ret && (vgpu_is_vm_unhealthy(ret)))
1020                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1021         }
1022         return 0;
1023 }
1024
1025 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1026 {
1027         struct intel_vgpu_submission *s = &vgpu->submission;
1028         struct intel_gvt *gvt = vgpu->gvt;
1029         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1030
1031         if (atomic_read(&s->running_workload_num)) {
1032                 gvt_dbg_sched("wait vgpu idle\n");
1033
1034                 wait_event(scheduler->workload_complete_wq,
1035                                 !atomic_read(&s->running_workload_num));
1036         }
1037 }
1038
1039 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1040 {
1041         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1042         struct intel_engine_cs *engine;
1043         enum intel_engine_id i;
1044
1045         gvt_dbg_core("clean workload scheduler\n");
1046
1047         for_each_engine(engine, gvt->dev_priv, i) {
1048                 atomic_notifier_chain_unregister(
1049                                         &engine->context_status_notifier,
1050                                         &gvt->shadow_ctx_notifier_block[i]);
1051                 kthread_stop(scheduler->thread[i]);
1052         }
1053 }
1054
1055 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1056 {
1057         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1058         struct workload_thread_param *param = NULL;
1059         struct intel_engine_cs *engine;
1060         enum intel_engine_id i;
1061         int ret;
1062
1063         gvt_dbg_core("init workload scheduler\n");
1064
1065         init_waitqueue_head(&scheduler->workload_complete_wq);
1066
1067         for_each_engine(engine, gvt->dev_priv, i) {
1068                 init_waitqueue_head(&scheduler->waitq[i]);
1069
1070                 param = kzalloc(sizeof(*param), GFP_KERNEL);
1071                 if (!param) {
1072                         ret = -ENOMEM;
1073                         goto err;
1074                 }
1075
1076                 param->gvt = gvt;
1077                 param->ring_id = i;
1078
1079                 scheduler->thread[i] = kthread_run(workload_thread, param,
1080                         "gvt workload %d", i);
1081                 if (IS_ERR(scheduler->thread[i])) {
1082                         gvt_err("fail to create workload thread\n");
1083                         ret = PTR_ERR(scheduler->thread[i]);
1084                         goto err;
1085                 }
1086
1087                 gvt->shadow_ctx_notifier_block[i].notifier_call =
1088                                         shadow_context_status_change;
1089                 atomic_notifier_chain_register(&engine->context_status_notifier,
1090                                         &gvt->shadow_ctx_notifier_block[i]);
1091         }
1092         return 0;
1093 err:
1094         intel_gvt_clean_workload_scheduler(gvt);
1095         kfree(param);
1096         param = NULL;
1097         return ret;
1098 }
1099
1100 /**
1101  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1102  * @vgpu: a vGPU
1103  *
1104  * This function is called when a vGPU is being destroyed.
1105  *
1106  */
1107 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1108 {
1109         struct intel_vgpu_submission *s = &vgpu->submission;
1110
1111         intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1112         i915_gem_context_put(s->shadow_ctx);
1113         kmem_cache_destroy(s->workloads);
1114 }
1115
1116
1117 /**
1118  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1119  * @vgpu: a vGPU
1120  * @engine_mask: engines expected to be reset
1121  *
1122  * This function is called when a vGPU is being destroyed.
1123  *
1124  */
1125 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1126                 unsigned long engine_mask)
1127 {
1128         struct intel_vgpu_submission *s = &vgpu->submission;
1129
1130         if (!s->active)
1131                 return;
1132
1133         clean_workloads(vgpu, engine_mask);
1134         s->ops->reset(vgpu, engine_mask);
1135 }
1136
1137 /**
1138  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1139  * @vgpu: a vGPU
1140  *
1141  * This function is called when a vGPU is being created.
1142  *
1143  * Returns:
1144  * Zero on success, negative error code if failed.
1145  *
1146  */
1147 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1148 {
1149         struct intel_vgpu_submission *s = &vgpu->submission;
1150         enum intel_engine_id i;
1151         struct intel_engine_cs *engine;
1152         int ret;
1153
1154         s->shadow_ctx = i915_gem_context_create_gvt(
1155                         &vgpu->gvt->dev_priv->drm);
1156         if (IS_ERR(s->shadow_ctx))
1157                 return PTR_ERR(s->shadow_ctx);
1158
1159         if (HAS_LOGICAL_RING_PREEMPTION(vgpu->gvt->dev_priv))
1160                 s->shadow_ctx->sched.priority = INT_MAX;
1161
1162         bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1163
1164         s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1165                                                   sizeof(struct intel_vgpu_workload), 0,
1166                                                   SLAB_HWCACHE_ALIGN,
1167                                                   offsetof(struct intel_vgpu_workload, rb_tail),
1168                                                   sizeof_field(struct intel_vgpu_workload, rb_tail),
1169                                                   NULL);
1170
1171         if (!s->workloads) {
1172                 ret = -ENOMEM;
1173                 goto out_shadow_ctx;
1174         }
1175
1176         for_each_engine(engine, vgpu->gvt->dev_priv, i)
1177                 INIT_LIST_HEAD(&s->workload_q_head[i]);
1178
1179         atomic_set(&s->running_workload_num, 0);
1180         bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1181
1182         return 0;
1183
1184 out_shadow_ctx:
1185         i915_gem_context_put(s->shadow_ctx);
1186         return ret;
1187 }
1188
1189 /**
1190  * intel_vgpu_select_submission_ops - select virtual submission interface
1191  * @vgpu: a vGPU
1192  * @interface: expected vGPU virtual submission interface
1193  *
1194  * This function is called when guest configures submission interface.
1195  *
1196  * Returns:
1197  * Zero on success, negative error code if failed.
1198  *
1199  */
1200 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1201                                      unsigned long engine_mask,
1202                                      unsigned int interface)
1203 {
1204         struct intel_vgpu_submission *s = &vgpu->submission;
1205         const struct intel_vgpu_submission_ops *ops[] = {
1206                 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1207                         &intel_vgpu_execlist_submission_ops,
1208         };
1209         int ret;
1210
1211         if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1212                 return -EINVAL;
1213
1214         if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1215                 return -EINVAL;
1216
1217         if (s->active)
1218                 s->ops->clean(vgpu, engine_mask);
1219
1220         if (interface == 0) {
1221                 s->ops = NULL;
1222                 s->virtual_submission_interface = 0;
1223                 s->active = false;
1224                 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1225                 return 0;
1226         }
1227
1228         ret = ops[interface]->init(vgpu, engine_mask);
1229         if (ret)
1230                 return ret;
1231
1232         s->ops = ops[interface];
1233         s->virtual_submission_interface = interface;
1234         s->active = true;
1235
1236         gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1237                         vgpu->id, s->ops->name);
1238
1239         return 0;
1240 }
1241
1242 /**
1243  * intel_vgpu_destroy_workload - destroy a vGPU workload
1244  * @vgpu: a vGPU
1245  *
1246  * This function is called when destroy a vGPU workload.
1247  *
1248  */
1249 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1250 {
1251         struct intel_vgpu_submission *s = &workload->vgpu->submission;
1252
1253         if (workload->shadow_mm)
1254                 intel_vgpu_mm_put(workload->shadow_mm);
1255
1256         kmem_cache_free(s->workloads, workload);
1257 }
1258
1259 static struct intel_vgpu_workload *
1260 alloc_workload(struct intel_vgpu *vgpu)
1261 {
1262         struct intel_vgpu_submission *s = &vgpu->submission;
1263         struct intel_vgpu_workload *workload;
1264
1265         workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1266         if (!workload)
1267                 return ERR_PTR(-ENOMEM);
1268
1269         INIT_LIST_HEAD(&workload->list);
1270         INIT_LIST_HEAD(&workload->shadow_bb);
1271
1272         init_waitqueue_head(&workload->shadow_ctx_status_wq);
1273         atomic_set(&workload->shadow_ctx_active, 0);
1274
1275         workload->status = -EINPROGRESS;
1276         workload->shadowed = false;
1277         workload->vgpu = vgpu;
1278
1279         return workload;
1280 }
1281
1282 #define RING_CTX_OFF(x) \
1283         offsetof(struct execlist_ring_context, x)
1284
1285 static void read_guest_pdps(struct intel_vgpu *vgpu,
1286                 u64 ring_context_gpa, u32 pdp[8])
1287 {
1288         u64 gpa;
1289         int i;
1290
1291         gpa = ring_context_gpa + RING_CTX_OFF(pdp3_UDW.val);
1292
1293         for (i = 0; i < 8; i++)
1294                 intel_gvt_hypervisor_read_gpa(vgpu,
1295                                 gpa + i * 8, &pdp[7 - i], 4);
1296 }
1297
1298 static int prepare_mm(struct intel_vgpu_workload *workload)
1299 {
1300         struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1301         struct intel_vgpu_mm *mm;
1302         struct intel_vgpu *vgpu = workload->vgpu;
1303         intel_gvt_gtt_type_t root_entry_type;
1304         u64 pdps[GVT_RING_CTX_NR_PDPS];
1305
1306         switch (desc->addressing_mode) {
1307         case 1: /* legacy 32-bit */
1308                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1309                 break;
1310         case 3: /* legacy 64-bit */
1311                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1312                 break;
1313         default:
1314                 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1315                 return -EINVAL;
1316         }
1317
1318         read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1319
1320         mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1321         if (IS_ERR(mm))
1322                 return PTR_ERR(mm);
1323
1324         workload->shadow_mm = mm;
1325         return 0;
1326 }
1327
1328 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1329                 ((a)->lrca == (b)->lrca))
1330
1331 #define get_last_workload(q) \
1332         (list_empty(q) ? NULL : container_of(q->prev, \
1333         struct intel_vgpu_workload, list))
1334 /**
1335  * intel_vgpu_create_workload - create a vGPU workload
1336  * @vgpu: a vGPU
1337  * @desc: a guest context descriptor
1338  *
1339  * This function is called when creating a vGPU workload.
1340  *
1341  * Returns:
1342  * struct intel_vgpu_workload * on success, negative error code in
1343  * pointer if failed.
1344  *
1345  */
1346 struct intel_vgpu_workload *
1347 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1348                            struct execlist_ctx_descriptor_format *desc)
1349 {
1350         struct intel_vgpu_submission *s = &vgpu->submission;
1351         struct list_head *q = workload_q_head(vgpu, ring_id);
1352         struct intel_vgpu_workload *last_workload = get_last_workload(q);
1353         struct intel_vgpu_workload *workload = NULL;
1354         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1355         u64 ring_context_gpa;
1356         u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1357         int ret;
1358
1359         ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1360                         (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1361         if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1362                 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1363                 return ERR_PTR(-EINVAL);
1364         }
1365
1366         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1367                         RING_CTX_OFF(ring_header.val), &head, 4);
1368
1369         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1370                         RING_CTX_OFF(ring_tail.val), &tail, 4);
1371
1372         head &= RB_HEAD_OFF_MASK;
1373         tail &= RB_TAIL_OFF_MASK;
1374
1375         if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1376                 gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1377                 gvt_dbg_el("ctx head %x real head %lx\n", head,
1378                                 last_workload->rb_tail);
1379                 /*
1380                  * cannot use guest context head pointer here,
1381                  * as it might not be updated at this time
1382                  */
1383                 head = last_workload->rb_tail;
1384         }
1385
1386         gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1387
1388         /* record some ring buffer register values for scan and shadow */
1389         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1390                         RING_CTX_OFF(rb_start.val), &start, 4);
1391         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1392                         RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1393         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1394                         RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1395
1396         workload = alloc_workload(vgpu);
1397         if (IS_ERR(workload))
1398                 return workload;
1399
1400         workload->ring_id = ring_id;
1401         workload->ctx_desc = *desc;
1402         workload->ring_context_gpa = ring_context_gpa;
1403         workload->rb_head = head;
1404         workload->rb_tail = tail;
1405         workload->rb_start = start;
1406         workload->rb_ctl = ctl;
1407
1408         if (ring_id == RCS) {
1409                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1410                         RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1411                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1412                         RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1413
1414                 workload->wa_ctx.indirect_ctx.guest_gma =
1415                         indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1416                 workload->wa_ctx.indirect_ctx.size =
1417                         (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1418                         CACHELINE_BYTES;
1419                 workload->wa_ctx.per_ctx.guest_gma =
1420                         per_ctx & PER_CTX_ADDR_MASK;
1421                 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1422         }
1423
1424         gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1425                         workload, ring_id, head, tail, start, ctl);
1426
1427         ret = prepare_mm(workload);
1428         if (ret) {
1429                 kmem_cache_free(s->workloads, workload);
1430                 return ERR_PTR(ret);
1431         }
1432
1433         /* Only scan and shadow the first workload in the queue
1434          * as there is only one pre-allocated buf-obj for shadow.
1435          */
1436         if (list_empty(workload_q_head(vgpu, ring_id))) {
1437                 intel_runtime_pm_get(dev_priv);
1438                 mutex_lock(&dev_priv->drm.struct_mutex);
1439                 ret = intel_gvt_scan_and_shadow_workload(workload);
1440                 mutex_unlock(&dev_priv->drm.struct_mutex);
1441                 intel_runtime_pm_put(dev_priv);
1442         }
1443
1444         if (ret && (vgpu_is_vm_unhealthy(ret))) {
1445                 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1446                 intel_vgpu_destroy_workload(workload);
1447                 return ERR_PTR(ret);
1448         }
1449
1450         return workload;
1451 }
1452
1453 /**
1454  * intel_vgpu_queue_workload - Qeue a vGPU workload
1455  * @workload: the workload to queue in
1456  */
1457 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1458 {
1459         list_add_tail(&workload->list,
1460                 workload_q_head(workload->vgpu, workload->ring_id));
1461         intel_gvt_kick_schedule(workload->vgpu->gvt);
1462         wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1463 }