f650ad3367b60df0fa1734ffd5dd4f0d4a732187
[linux-block.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35
36 #include <linux/kthread.h>
37
38 #include "gem/i915_gem_pm.h"
39 #include "gt/intel_context.h"
40 #include "gt/intel_ring.h"
41
42 #include "i915_drv.h"
43 #include "i915_gem_gtt.h"
44 #include "gvt.h"
45
46 #define RING_CTX_OFF(x) \
47         offsetof(struct execlist_ring_context, x)
48
49 static void set_context_pdp_root_pointer(
50                 struct execlist_ring_context *ring_context,
51                 u32 pdp[8])
52 {
53         int i;
54
55         for (i = 0; i < 8; i++)
56                 ring_context->pdps[i].val = pdp[7 - i];
57 }
58
59 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
60 {
61         struct drm_i915_gem_object *ctx_obj =
62                 workload->req->context->state->obj;
63         struct execlist_ring_context *shadow_ring_context;
64         struct page *page;
65
66         if (WARN_ON(!workload->shadow_mm))
67                 return;
68
69         if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
70                 return;
71
72         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
73         shadow_ring_context = kmap(page);
74         set_context_pdp_root_pointer(shadow_ring_context,
75                         (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
76         kunmap(page);
77 }
78
79 /*
80  * when populating shadow ctx from guest, we should not overrride oa related
81  * registers, so that they will not be overlapped by guest oa configs. Thus
82  * made it possible to capture oa data from host for both host and guests.
83  */
84 static void sr_oa_regs(struct intel_vgpu_workload *workload,
85                 u32 *reg_state, bool save)
86 {
87         struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915;
88         u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
89         u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
90         int i = 0;
91         u32 flex_mmio[] = {
92                 i915_mmio_reg_offset(EU_PERF_CNTL0),
93                 i915_mmio_reg_offset(EU_PERF_CNTL1),
94                 i915_mmio_reg_offset(EU_PERF_CNTL2),
95                 i915_mmio_reg_offset(EU_PERF_CNTL3),
96                 i915_mmio_reg_offset(EU_PERF_CNTL4),
97                 i915_mmio_reg_offset(EU_PERF_CNTL5),
98                 i915_mmio_reg_offset(EU_PERF_CNTL6),
99         };
100
101         if (workload->engine->id != RCS0)
102                 return;
103
104         if (save) {
105                 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
106
107                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
108                         u32 state_offset = ctx_flexeu0 + i * 2;
109
110                         workload->flex_mmio[i] = reg_state[state_offset + 1];
111                 }
112         } else {
113                 reg_state[ctx_oactxctrl] =
114                         i915_mmio_reg_offset(GEN8_OACTXCONTROL);
115                 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
116
117                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
118                         u32 state_offset = ctx_flexeu0 + i * 2;
119                         u32 mmio = flex_mmio[i];
120
121                         reg_state[state_offset] = mmio;
122                         reg_state[state_offset + 1] = workload->flex_mmio[i];
123                 }
124         }
125 }
126
127 static int populate_shadow_context(struct intel_vgpu_workload *workload)
128 {
129         struct intel_vgpu *vgpu = workload->vgpu;
130         struct intel_gvt *gvt = vgpu->gvt;
131         struct intel_context *ctx = workload->req->context;
132         struct execlist_ring_context *shadow_ring_context;
133         void *dst;
134         void *context_base;
135         unsigned long context_gpa, context_page_num;
136         unsigned long gpa_base; /* first gpa of consecutive GPAs */
137         unsigned long gpa_size; /* size of consecutive GPAs */
138         int i;
139
140         GEM_BUG_ON(!intel_context_is_pinned(ctx));
141
142         context_base = (void *) ctx->lrc_reg_state -
143                                 (LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
144
145         shadow_ring_context = (void *) ctx->lrc_reg_state;
146
147         sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
148 #define COPY_REG(name) \
149         intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
150                 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
151 #define COPY_REG_MASKED(name) {\
152                 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
153                                               + RING_CTX_OFF(name.val),\
154                                               &shadow_ring_context->name.val, 4);\
155                 shadow_ring_context->name.val |= 0xffff << 16;\
156         }
157
158         COPY_REG_MASKED(ctx_ctrl);
159         COPY_REG(ctx_timestamp);
160
161         if (workload->engine->id == RCS0) {
162                 COPY_REG(bb_per_ctx_ptr);
163                 COPY_REG(rcs_indirect_ctx);
164                 COPY_REG(rcs_indirect_ctx_offset);
165         }
166 #undef COPY_REG
167 #undef COPY_REG_MASKED
168
169         intel_gvt_hypervisor_read_gpa(vgpu,
170                         workload->ring_context_gpa +
171                         sizeof(*shadow_ring_context),
172                         (void *)shadow_ring_context +
173                         sizeof(*shadow_ring_context),
174                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
175
176         sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
177
178         if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
179                 return 0;
180
181         gvt_dbg_sched("ring %s workload lrca %x",
182                       workload->engine->name,
183                       workload->ctx_desc.lrca);
184
185         context_page_num = workload->engine->context_size;
186         context_page_num = context_page_num >> PAGE_SHIFT;
187
188         if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0)
189                 context_page_num = 19;
190
191         /* find consecutive GPAs from gma until the first inconsecutive GPA.
192          * read from the continuous GPAs into dst virtual address
193          */
194         gpa_size = 0;
195         for (i = 2; i < context_page_num; i++) {
196                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
197                                 (u32)((workload->ctx_desc.lrca + i) <<
198                                 I915_GTT_PAGE_SHIFT));
199                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
200                         gvt_vgpu_err("Invalid guest context descriptor\n");
201                         return -EFAULT;
202                 }
203
204                 if (gpa_size == 0) {
205                         gpa_base = context_gpa;
206                         dst = context_base + (i << I915_GTT_PAGE_SHIFT);
207                 } else if (context_gpa != gpa_base + gpa_size)
208                         goto read;
209
210                 gpa_size += I915_GTT_PAGE_SIZE;
211
212                 if (i == context_page_num - 1)
213                         goto read;
214
215                 continue;
216
217 read:
218                 intel_gvt_hypervisor_read_gpa(vgpu, gpa_base, dst, gpa_size);
219                 gpa_base = context_gpa;
220                 gpa_size = I915_GTT_PAGE_SIZE;
221                 dst = context_base + (i << I915_GTT_PAGE_SHIFT);
222         }
223         return 0;
224 }
225
226 static inline bool is_gvt_request(struct i915_request *rq)
227 {
228         return intel_context_force_single_submission(rq->context);
229 }
230
231 static void save_ring_hw_state(struct intel_vgpu *vgpu,
232                                const struct intel_engine_cs *engine)
233 {
234         struct intel_uncore *uncore = engine->uncore;
235         i915_reg_t reg;
236
237         reg = RING_INSTDONE(engine->mmio_base);
238         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
239                 intel_uncore_read(uncore, reg);
240
241         reg = RING_ACTHD(engine->mmio_base);
242         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
243                 intel_uncore_read(uncore, reg);
244
245         reg = RING_ACTHD_UDW(engine->mmio_base);
246         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
247                 intel_uncore_read(uncore, reg);
248 }
249
250 static int shadow_context_status_change(struct notifier_block *nb,
251                 unsigned long action, void *data)
252 {
253         struct i915_request *rq = data;
254         struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
255                                 shadow_ctx_notifier_block[rq->engine->id]);
256         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
257         enum intel_engine_id ring_id = rq->engine->id;
258         struct intel_vgpu_workload *workload;
259         unsigned long flags;
260
261         if (!is_gvt_request(rq)) {
262                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
263                 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
264                     scheduler->engine_owner[ring_id]) {
265                         /* Switch ring from vGPU to host. */
266                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
267                                               NULL, rq->engine);
268                         scheduler->engine_owner[ring_id] = NULL;
269                 }
270                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
271
272                 return NOTIFY_OK;
273         }
274
275         workload = scheduler->current_workload[ring_id];
276         if (unlikely(!workload))
277                 return NOTIFY_OK;
278
279         switch (action) {
280         case INTEL_CONTEXT_SCHEDULE_IN:
281                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
282                 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
283                         /* Switch ring from host to vGPU or vGPU to vGPU. */
284                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
285                                               workload->vgpu, rq->engine);
286                         scheduler->engine_owner[ring_id] = workload->vgpu;
287                 } else
288                         gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
289                                       ring_id, workload->vgpu->id);
290                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
291                 atomic_set(&workload->shadow_ctx_active, 1);
292                 break;
293         case INTEL_CONTEXT_SCHEDULE_OUT:
294                 save_ring_hw_state(workload->vgpu, rq->engine);
295                 atomic_set(&workload->shadow_ctx_active, 0);
296                 break;
297         case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
298                 save_ring_hw_state(workload->vgpu, rq->engine);
299                 break;
300         default:
301                 WARN_ON(1);
302                 return NOTIFY_OK;
303         }
304         wake_up(&workload->shadow_ctx_status_wq);
305         return NOTIFY_OK;
306 }
307
308 static void
309 shadow_context_descriptor_update(struct intel_context *ce,
310                                  struct intel_vgpu_workload *workload)
311 {
312         u64 desc = ce->lrc_desc;
313
314         /*
315          * Update bits 0-11 of the context descriptor which includes flags
316          * like GEN8_CTX_* cached in desc_template
317          */
318         desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
319         desc |= workload->ctx_desc.addressing_mode <<
320                 GEN8_CTX_ADDRESSING_MODE_SHIFT;
321
322         ce->lrc_desc = desc;
323 }
324
325 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
326 {
327         struct intel_vgpu *vgpu = workload->vgpu;
328         struct i915_request *req = workload->req;
329         void *shadow_ring_buffer_va;
330         u32 *cs;
331         int err;
332
333         if (IS_GEN(req->i915, 9) && is_inhibit_context(req->context))
334                 intel_vgpu_restore_inhibit_context(vgpu, req);
335
336         /*
337          * To track whether a request has started on HW, we can emit a
338          * breadcrumb at the beginning of the request and check its
339          * timeline's HWSP to see if the breadcrumb has advanced past the
340          * start of this request. Actually, the request must have the
341          * init_breadcrumb if its timeline set has_init_bread_crumb, or the
342          * scheduler might get a wrong state of it during reset. Since the
343          * requests from gvt always set the has_init_breadcrumb flag, here
344          * need to do the emit_init_breadcrumb for all the requests.
345          */
346         if (req->engine->emit_init_breadcrumb) {
347                 err = req->engine->emit_init_breadcrumb(req);
348                 if (err) {
349                         gvt_vgpu_err("fail to emit init breadcrumb\n");
350                         return err;
351                 }
352         }
353
354         /* allocate shadow ring buffer */
355         cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
356         if (IS_ERR(cs)) {
357                 gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
358                         workload->rb_len);
359                 return PTR_ERR(cs);
360         }
361
362         shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
363
364         /* get shadow ring buffer va */
365         workload->shadow_ring_buffer_va = cs;
366
367         memcpy(cs, shadow_ring_buffer_va,
368                         workload->rb_len);
369
370         cs += workload->rb_len / sizeof(u32);
371         intel_ring_advance(workload->req, cs);
372
373         return 0;
374 }
375
376 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
377 {
378         if (!wa_ctx->indirect_ctx.obj)
379                 return;
380
381         i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
382         i915_gem_object_put(wa_ctx->indirect_ctx.obj);
383
384         wa_ctx->indirect_ctx.obj = NULL;
385         wa_ctx->indirect_ctx.shadow_va = NULL;
386 }
387
388 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
389                                           struct intel_context *ce)
390 {
391         struct intel_vgpu_mm *mm = workload->shadow_mm;
392         struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
393         int i = 0;
394
395         if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
396                 px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
397         } else {
398                 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
399                         struct i915_page_directory * const pd =
400                                 i915_pd_entry(ppgtt->pd, i);
401
402                         px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
403                 }
404         }
405 }
406
407 static int
408 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
409 {
410         struct intel_vgpu *vgpu = workload->vgpu;
411         struct intel_vgpu_submission *s = &vgpu->submission;
412         struct i915_request *rq;
413
414         if (workload->req)
415                 return 0;
416
417         rq = i915_request_create(s->shadow[workload->engine->id]);
418         if (IS_ERR(rq)) {
419                 gvt_vgpu_err("fail to allocate gem request\n");
420                 return PTR_ERR(rq);
421         }
422
423         workload->req = i915_request_get(rq);
424         return 0;
425 }
426
427 /**
428  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
429  * shadow it as well, include ringbuffer,wa_ctx and ctx.
430  * @workload: an abstract entity for each execlist submission.
431  *
432  * This function is called before the workload submitting to i915, to make
433  * sure the content of the workload is valid.
434  */
435 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
436 {
437         struct intel_vgpu *vgpu = workload->vgpu;
438         struct intel_vgpu_submission *s = &vgpu->submission;
439         int ret;
440
441         lockdep_assert_held(&vgpu->vgpu_lock);
442
443         if (workload->shadow)
444                 return 0;
445
446         if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated))
447                 shadow_context_descriptor_update(s->shadow[workload->engine->id],
448                                                  workload);
449
450         ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
451         if (ret)
452                 return ret;
453
454         if (workload->engine->id == RCS0 &&
455             workload->wa_ctx.indirect_ctx.size) {
456                 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
457                 if (ret)
458                         goto err_shadow;
459         }
460
461         workload->shadow = true;
462         return 0;
463
464 err_shadow:
465         release_shadow_wa_ctx(&workload->wa_ctx);
466         return ret;
467 }
468
469 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
470
471 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
472 {
473         struct intel_gvt *gvt = workload->vgpu->gvt;
474         const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
475         struct intel_vgpu_shadow_bb *bb;
476         int ret;
477
478         list_for_each_entry(bb, &workload->shadow_bb, list) {
479                 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
480                  * is only updated into ring_scan_buffer, not real ring address
481                  * allocated in later copy_workload_to_ring_buffer. pls be noted
482                  * shadow_ring_buffer_va is now pointed to real ring buffer va
483                  * in copy_workload_to_ring_buffer.
484                  */
485
486                 if (bb->bb_offset)
487                         bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
488                                 + bb->bb_offset;
489
490                 if (bb->ppgtt) {
491                         /* for non-priv bb, scan&shadow is only for
492                          * debugging purpose, so the content of shadow bb
493                          * is the same as original bb. Therefore,
494                          * here, rather than switch to shadow bb's gma
495                          * address, we directly use original batch buffer's
496                          * gma address, and send original bb to hardware
497                          * directly
498                          */
499                         if (bb->clflush & CLFLUSH_AFTER) {
500                                 drm_clflush_virt_range(bb->va,
501                                                 bb->obj->base.size);
502                                 bb->clflush &= ~CLFLUSH_AFTER;
503                         }
504                         i915_gem_object_finish_access(bb->obj);
505                         bb->accessing = false;
506
507                 } else {
508                         bb->vma = i915_gem_object_ggtt_pin(bb->obj,
509                                         NULL, 0, 0, 0);
510                         if (IS_ERR(bb->vma)) {
511                                 ret = PTR_ERR(bb->vma);
512                                 goto err;
513                         }
514
515                         /* relocate shadow batch buffer */
516                         bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
517                         if (gmadr_bytes == 8)
518                                 bb->bb_start_cmd_va[2] = 0;
519
520                         /* No one is going to touch shadow bb from now on. */
521                         if (bb->clflush & CLFLUSH_AFTER) {
522                                 drm_clflush_virt_range(bb->va,
523                                                 bb->obj->base.size);
524                                 bb->clflush &= ~CLFLUSH_AFTER;
525                         }
526
527                         ret = i915_gem_object_set_to_gtt_domain(bb->obj,
528                                                                 false);
529                         if (ret)
530                                 goto err;
531
532                         ret = i915_vma_move_to_active(bb->vma,
533                                                       workload->req,
534                                                       0);
535                         if (ret)
536                                 goto err;
537
538                         i915_gem_object_finish_access(bb->obj);
539                         bb->accessing = false;
540                 }
541         }
542         return 0;
543 err:
544         release_shadow_batch_buffer(workload);
545         return ret;
546 }
547
548 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
549 {
550         struct intel_vgpu_workload *workload =
551                 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
552         struct i915_request *rq = workload->req;
553         struct execlist_ring_context *shadow_ring_context =
554                 (struct execlist_ring_context *)rq->context->lrc_reg_state;
555
556         shadow_ring_context->bb_per_ctx_ptr.val =
557                 (shadow_ring_context->bb_per_ctx_ptr.val &
558                 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
559         shadow_ring_context->rcs_indirect_ctx.val =
560                 (shadow_ring_context->rcs_indirect_ctx.val &
561                 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
562 }
563
564 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
565 {
566         struct i915_vma *vma;
567         unsigned char *per_ctx_va =
568                 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
569                 wa_ctx->indirect_ctx.size;
570
571         if (wa_ctx->indirect_ctx.size == 0)
572                 return 0;
573
574         vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
575                                        0, CACHELINE_BYTES, 0);
576         if (IS_ERR(vma))
577                 return PTR_ERR(vma);
578
579         /* FIXME: we are not tracking our pinned VMA leaving it
580          * up to the core to fix up the stray pin_count upon
581          * free.
582          */
583
584         wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
585
586         wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
587         memset(per_ctx_va, 0, CACHELINE_BYTES);
588
589         update_wa_ctx_2_shadow_ctx(wa_ctx);
590         return 0;
591 }
592
593 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
594 {
595         vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) =
596                 workload->rb_start;
597 }
598
599 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
600 {
601         struct intel_vgpu_shadow_bb *bb, *pos;
602
603         if (list_empty(&workload->shadow_bb))
604                 return;
605
606         bb = list_first_entry(&workload->shadow_bb,
607                         struct intel_vgpu_shadow_bb, list);
608
609         list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
610                 if (bb->obj) {
611                         if (bb->accessing)
612                                 i915_gem_object_finish_access(bb->obj);
613
614                         if (bb->va && !IS_ERR(bb->va))
615                                 i915_gem_object_unpin_map(bb->obj);
616
617                         if (bb->vma && !IS_ERR(bb->vma)) {
618                                 i915_vma_unpin(bb->vma);
619                                 i915_vma_close(bb->vma);
620                         }
621                         i915_gem_object_put(bb->obj);
622                 }
623                 list_del(&bb->list);
624                 kfree(bb);
625         }
626 }
627
628 static int prepare_workload(struct intel_vgpu_workload *workload)
629 {
630         struct intel_vgpu *vgpu = workload->vgpu;
631         struct intel_vgpu_submission *s = &vgpu->submission;
632         int ret = 0;
633
634         ret = intel_vgpu_pin_mm(workload->shadow_mm);
635         if (ret) {
636                 gvt_vgpu_err("fail to vgpu pin mm\n");
637                 return ret;
638         }
639
640         if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
641             !workload->shadow_mm->ppgtt_mm.shadowed) {
642                 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
643                 return -EINVAL;
644         }
645
646         update_shadow_pdps(workload);
647
648         set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]);
649
650         ret = intel_vgpu_sync_oos_pages(workload->vgpu);
651         if (ret) {
652                 gvt_vgpu_err("fail to vgpu sync oos pages\n");
653                 goto err_unpin_mm;
654         }
655
656         ret = intel_vgpu_flush_post_shadow(workload->vgpu);
657         if (ret) {
658                 gvt_vgpu_err("fail to flush post shadow\n");
659                 goto err_unpin_mm;
660         }
661
662         ret = copy_workload_to_ring_buffer(workload);
663         if (ret) {
664                 gvt_vgpu_err("fail to generate request\n");
665                 goto err_unpin_mm;
666         }
667
668         ret = prepare_shadow_batch_buffer(workload);
669         if (ret) {
670                 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
671                 goto err_unpin_mm;
672         }
673
674         ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
675         if (ret) {
676                 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
677                 goto err_shadow_batch;
678         }
679
680         if (workload->prepare) {
681                 ret = workload->prepare(workload);
682                 if (ret)
683                         goto err_shadow_wa_ctx;
684         }
685
686         return 0;
687 err_shadow_wa_ctx:
688         release_shadow_wa_ctx(&workload->wa_ctx);
689 err_shadow_batch:
690         release_shadow_batch_buffer(workload);
691 err_unpin_mm:
692         intel_vgpu_unpin_mm(workload->shadow_mm);
693         return ret;
694 }
695
696 static int dispatch_workload(struct intel_vgpu_workload *workload)
697 {
698         struct intel_vgpu *vgpu = workload->vgpu;
699         struct i915_request *rq;
700         int ret;
701
702         gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n",
703                       workload->engine->name, workload);
704
705         mutex_lock(&vgpu->vgpu_lock);
706
707         ret = intel_gvt_workload_req_alloc(workload);
708         if (ret)
709                 goto err_req;
710
711         ret = intel_gvt_scan_and_shadow_workload(workload);
712         if (ret)
713                 goto out;
714
715         ret = populate_shadow_context(workload);
716         if (ret) {
717                 release_shadow_wa_ctx(&workload->wa_ctx);
718                 goto out;
719         }
720
721         ret = prepare_workload(workload);
722 out:
723         if (ret) {
724                 /* We might still need to add request with
725                  * clean ctx to retire it properly..
726                  */
727                 rq = fetch_and_zero(&workload->req);
728                 i915_request_put(rq);
729         }
730
731         if (!IS_ERR_OR_NULL(workload->req)) {
732                 gvt_dbg_sched("ring id %s submit workload to i915 %p\n",
733                               workload->engine->name, workload->req);
734                 i915_request_add(workload->req);
735                 workload->dispatched = true;
736         }
737 err_req:
738         if (ret)
739                 workload->status = ret;
740         mutex_unlock(&vgpu->vgpu_lock);
741         return ret;
742 }
743
744 static struct intel_vgpu_workload *
745 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine)
746 {
747         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
748         struct intel_vgpu_workload *workload = NULL;
749
750         mutex_lock(&gvt->sched_lock);
751
752         /*
753          * no current vgpu / will be scheduled out / no workload
754          * bail out
755          */
756         if (!scheduler->current_vgpu) {
757                 gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name);
758                 goto out;
759         }
760
761         if (scheduler->need_reschedule) {
762                 gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name);
763                 goto out;
764         }
765
766         if (!scheduler->current_vgpu->active ||
767             list_empty(workload_q_head(scheduler->current_vgpu, engine)))
768                 goto out;
769
770         /*
771          * still have current workload, maybe the workload disptacher
772          * fail to submit it for some reason, resubmit it.
773          */
774         if (scheduler->current_workload[engine->id]) {
775                 workload = scheduler->current_workload[engine->id];
776                 gvt_dbg_sched("ring %s still have current workload %p\n",
777                               engine->name, workload);
778                 goto out;
779         }
780
781         /*
782          * pick a workload as current workload
783          * once current workload is set, schedule policy routines
784          * will wait the current workload is finished when trying to
785          * schedule out a vgpu.
786          */
787         scheduler->current_workload[engine->id] =
788                 list_first_entry(workload_q_head(scheduler->current_vgpu,
789                                                  engine),
790                                  struct intel_vgpu_workload, list);
791
792         workload = scheduler->current_workload[engine->id];
793
794         gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload);
795
796         atomic_inc(&workload->vgpu->submission.running_workload_num);
797 out:
798         mutex_unlock(&gvt->sched_lock);
799         return workload;
800 }
801
802 static void update_guest_context(struct intel_vgpu_workload *workload)
803 {
804         struct i915_request *rq = workload->req;
805         struct intel_vgpu *vgpu = workload->vgpu;
806         struct execlist_ring_context *shadow_ring_context;
807         struct intel_context *ctx = workload->req->context;
808         void *context_base;
809         void *src;
810         unsigned long context_gpa, context_page_num;
811         unsigned long gpa_base; /* first gpa of consecutive GPAs */
812         unsigned long gpa_size; /* size of consecutive GPAs*/
813         int i;
814         u32 ring_base;
815         u32 head, tail;
816         u16 wrap_count;
817
818         gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
819                       workload->ctx_desc.lrca);
820
821         GEM_BUG_ON(!intel_context_is_pinned(ctx));
822
823         head = workload->rb_head;
824         tail = workload->rb_tail;
825         wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
826
827         if (tail < head) {
828                 if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
829                         wrap_count = 0;
830                 else
831                         wrap_count += 1;
832         }
833
834         head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
835
836         ring_base = rq->engine->mmio_base;
837         vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
838         vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
839
840         context_page_num = rq->engine->context_size;
841         context_page_num = context_page_num >> PAGE_SHIFT;
842
843         if (IS_BROADWELL(rq->i915) && rq->engine->id == RCS0)
844                 context_page_num = 19;
845
846         context_base = (void *) ctx->lrc_reg_state -
847                         (LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
848
849         /* find consecutive GPAs from gma until the first inconsecutive GPA.
850          * write to the consecutive GPAs from src virtual address
851          */
852         gpa_size = 0;
853         for (i = 2; i < context_page_num; i++) {
854                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
855                                 (u32)((workload->ctx_desc.lrca + i) <<
856                                         I915_GTT_PAGE_SHIFT));
857                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
858                         gvt_vgpu_err("invalid guest context descriptor\n");
859                         return;
860                 }
861
862                 if (gpa_size == 0) {
863                         gpa_base = context_gpa;
864                         src = context_base + (i << I915_GTT_PAGE_SHIFT);
865                 } else if (context_gpa != gpa_base + gpa_size)
866                         goto write;
867
868                 gpa_size += I915_GTT_PAGE_SIZE;
869
870                 if (i == context_page_num - 1)
871                         goto write;
872
873                 continue;
874
875 write:
876                 intel_gvt_hypervisor_write_gpa(vgpu, gpa_base, src, gpa_size);
877                 gpa_base = context_gpa;
878                 gpa_size = I915_GTT_PAGE_SIZE;
879                 src = context_base + (i << I915_GTT_PAGE_SHIFT);
880         }
881
882         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
883                 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
884
885         shadow_ring_context = (void *) ctx->lrc_reg_state;
886
887 #define COPY_REG(name) \
888         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
889                 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
890
891         COPY_REG(ctx_ctrl);
892         COPY_REG(ctx_timestamp);
893
894 #undef COPY_REG
895
896         intel_gvt_hypervisor_write_gpa(vgpu,
897                         workload->ring_context_gpa +
898                         sizeof(*shadow_ring_context),
899                         (void *)shadow_ring_context +
900                         sizeof(*shadow_ring_context),
901                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
902 }
903
904 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
905                                 intel_engine_mask_t engine_mask)
906 {
907         struct intel_vgpu_submission *s = &vgpu->submission;
908         struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
909         struct intel_engine_cs *engine;
910         struct intel_vgpu_workload *pos, *n;
911         intel_engine_mask_t tmp;
912
913         /* free the unsubmited workloads in the queues. */
914         for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) {
915                 list_for_each_entry_safe(pos, n,
916                         &s->workload_q_head[engine->id], list) {
917                         list_del_init(&pos->list);
918                         intel_vgpu_destroy_workload(pos);
919                 }
920                 clear_bit(engine->id, s->shadow_ctx_desc_updated);
921         }
922 }
923
924 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
925 {
926         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
927         struct intel_vgpu_workload *workload =
928                 scheduler->current_workload[ring_id];
929         struct intel_vgpu *vgpu = workload->vgpu;
930         struct intel_vgpu_submission *s = &vgpu->submission;
931         struct i915_request *rq = workload->req;
932         int event;
933
934         mutex_lock(&vgpu->vgpu_lock);
935         mutex_lock(&gvt->sched_lock);
936
937         /* For the workload w/ request, needs to wait for the context
938          * switch to make sure request is completed.
939          * For the workload w/o request, directly complete the workload.
940          */
941         if (rq) {
942                 wait_event(workload->shadow_ctx_status_wq,
943                            !atomic_read(&workload->shadow_ctx_active));
944
945                 /* If this request caused GPU hang, req->fence.error will
946                  * be set to -EIO. Use -EIO to set workload status so
947                  * that when this request caused GPU hang, didn't trigger
948                  * context switch interrupt to guest.
949                  */
950                 if (likely(workload->status == -EINPROGRESS)) {
951                         if (workload->req->fence.error == -EIO)
952                                 workload->status = -EIO;
953                         else
954                                 workload->status = 0;
955                 }
956
957                 if (!workload->status &&
958                     !(vgpu->resetting_eng & BIT(ring_id))) {
959                         update_guest_context(workload);
960
961                         for_each_set_bit(event, workload->pending_events,
962                                          INTEL_GVT_EVENT_MAX)
963                                 intel_vgpu_trigger_virtual_event(vgpu, event);
964                 }
965
966                 i915_request_put(fetch_and_zero(&workload->req));
967         }
968
969         gvt_dbg_sched("ring id %d complete workload %p status %d\n",
970                         ring_id, workload, workload->status);
971
972         scheduler->current_workload[ring_id] = NULL;
973
974         list_del_init(&workload->list);
975
976         if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
977                 /* if workload->status is not successful means HW GPU
978                  * has occurred GPU hang or something wrong with i915/GVT,
979                  * and GVT won't inject context switch interrupt to guest.
980                  * So this error is a vGPU hang actually to the guest.
981                  * According to this we should emunlate a vGPU hang. If
982                  * there are pending workloads which are already submitted
983                  * from guest, we should clean them up like HW GPU does.
984                  *
985                  * if it is in middle of engine resetting, the pending
986                  * workloads won't be submitted to HW GPU and will be
987                  * cleaned up during the resetting process later, so doing
988                  * the workload clean up here doesn't have any impact.
989                  **/
990                 intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
991         }
992
993         workload->complete(workload);
994
995         atomic_dec(&s->running_workload_num);
996         wake_up(&scheduler->workload_complete_wq);
997
998         if (gvt->scheduler.need_reschedule)
999                 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
1000
1001         mutex_unlock(&gvt->sched_lock);
1002         mutex_unlock(&vgpu->vgpu_lock);
1003 }
1004
1005 static int workload_thread(void *arg)
1006 {
1007         struct intel_engine_cs *engine = arg;
1008         const bool need_force_wake = INTEL_GEN(engine->i915) >= 9;
1009         struct intel_gvt *gvt = engine->i915->gvt;
1010         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1011         struct intel_vgpu_workload *workload = NULL;
1012         struct intel_vgpu *vgpu = NULL;
1013         int ret;
1014         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1015
1016         gvt_dbg_core("workload thread for ring %s started\n", engine->name);
1017
1018         while (!kthread_should_stop()) {
1019                 intel_wakeref_t wakeref;
1020
1021                 add_wait_queue(&scheduler->waitq[engine->id], &wait);
1022                 do {
1023                         workload = pick_next_workload(gvt, engine);
1024                         if (workload)
1025                                 break;
1026                         wait_woken(&wait, TASK_INTERRUPTIBLE,
1027                                    MAX_SCHEDULE_TIMEOUT);
1028                 } while (!kthread_should_stop());
1029                 remove_wait_queue(&scheduler->waitq[engine->id], &wait);
1030
1031                 if (!workload)
1032                         break;
1033
1034                 gvt_dbg_sched("ring %s next workload %p vgpu %d\n",
1035                               engine->name, workload,
1036                               workload->vgpu->id);
1037
1038                 wakeref = intel_runtime_pm_get(engine->uncore->rpm);
1039
1040                 gvt_dbg_sched("ring %s will dispatch workload %p\n",
1041                               engine->name, workload);
1042
1043                 if (need_force_wake)
1044                         intel_uncore_forcewake_get(engine->uncore,
1045                                                    FORCEWAKE_ALL);
1046                 /*
1047                  * Update the vReg of the vGPU which submitted this
1048                  * workload. The vGPU may use these registers for checking
1049                  * the context state. The value comes from GPU commands
1050                  * in this workload.
1051                  */
1052                 update_vreg_in_ctx(workload);
1053
1054                 ret = dispatch_workload(workload);
1055
1056                 if (ret) {
1057                         vgpu = workload->vgpu;
1058                         gvt_vgpu_err("fail to dispatch workload, skip\n");
1059                         goto complete;
1060                 }
1061
1062                 gvt_dbg_sched("ring %s wait workload %p\n",
1063                               engine->name, workload);
1064                 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1065
1066 complete:
1067                 gvt_dbg_sched("will complete workload %p, status: %d\n",
1068                               workload, workload->status);
1069
1070                 complete_current_workload(gvt, engine->id);
1071
1072                 if (need_force_wake)
1073                         intel_uncore_forcewake_put(engine->uncore,
1074                                                    FORCEWAKE_ALL);
1075
1076                 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1077                 if (ret && (vgpu_is_vm_unhealthy(ret)))
1078                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1079         }
1080         return 0;
1081 }
1082
1083 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1084 {
1085         struct intel_vgpu_submission *s = &vgpu->submission;
1086         struct intel_gvt *gvt = vgpu->gvt;
1087         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1088
1089         if (atomic_read(&s->running_workload_num)) {
1090                 gvt_dbg_sched("wait vgpu idle\n");
1091
1092                 wait_event(scheduler->workload_complete_wq,
1093                                 !atomic_read(&s->running_workload_num));
1094         }
1095 }
1096
1097 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1098 {
1099         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1100         struct intel_engine_cs *engine;
1101         enum intel_engine_id i;
1102
1103         gvt_dbg_core("clean workload scheduler\n");
1104
1105         for_each_engine(engine, gvt->gt, i) {
1106                 atomic_notifier_chain_unregister(
1107                                         &engine->context_status_notifier,
1108                                         &gvt->shadow_ctx_notifier_block[i]);
1109                 kthread_stop(scheduler->thread[i]);
1110         }
1111 }
1112
1113 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1114 {
1115         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1116         struct intel_engine_cs *engine;
1117         enum intel_engine_id i;
1118         int ret;
1119
1120         gvt_dbg_core("init workload scheduler\n");
1121
1122         init_waitqueue_head(&scheduler->workload_complete_wq);
1123
1124         for_each_engine(engine, gvt->gt, i) {
1125                 init_waitqueue_head(&scheduler->waitq[i]);
1126
1127                 scheduler->thread[i] = kthread_run(workload_thread, engine,
1128                                                    "gvt:%s", engine->name);
1129                 if (IS_ERR(scheduler->thread[i])) {
1130                         gvt_err("fail to create workload thread\n");
1131                         ret = PTR_ERR(scheduler->thread[i]);
1132                         goto err;
1133                 }
1134
1135                 gvt->shadow_ctx_notifier_block[i].notifier_call =
1136                                         shadow_context_status_change;
1137                 atomic_notifier_chain_register(&engine->context_status_notifier,
1138                                         &gvt->shadow_ctx_notifier_block[i]);
1139         }
1140
1141         return 0;
1142
1143 err:
1144         intel_gvt_clean_workload_scheduler(gvt);
1145         return ret;
1146 }
1147
1148 static void
1149 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1150                                 struct i915_ppgtt *ppgtt)
1151 {
1152         int i;
1153
1154         if (i915_vm_is_4lvl(&ppgtt->vm)) {
1155                 px_dma(ppgtt->pd) = s->i915_context_pml4;
1156         } else {
1157                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1158                         struct i915_page_directory * const pd =
1159                                 i915_pd_entry(ppgtt->pd, i);
1160
1161                         px_dma(pd) = s->i915_context_pdps[i];
1162                 }
1163         }
1164 }
1165
1166 /**
1167  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1168  * @vgpu: a vGPU
1169  *
1170  * This function is called when a vGPU is being destroyed.
1171  *
1172  */
1173 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1174 {
1175         struct intel_vgpu_submission *s = &vgpu->submission;
1176         struct intel_engine_cs *engine;
1177         enum intel_engine_id id;
1178
1179         intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1180
1181         i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1182         for_each_engine(engine, vgpu->gvt->gt, id)
1183                 intel_context_unpin(s->shadow[id]);
1184
1185         kmem_cache_destroy(s->workloads);
1186 }
1187
1188
1189 /**
1190  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1191  * @vgpu: a vGPU
1192  * @engine_mask: engines expected to be reset
1193  *
1194  * This function is called when a vGPU is being destroyed.
1195  *
1196  */
1197 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1198                                  intel_engine_mask_t engine_mask)
1199 {
1200         struct intel_vgpu_submission *s = &vgpu->submission;
1201
1202         if (!s->active)
1203                 return;
1204
1205         intel_vgpu_clean_workloads(vgpu, engine_mask);
1206         s->ops->reset(vgpu, engine_mask);
1207 }
1208
1209 static void
1210 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1211                              struct i915_ppgtt *ppgtt)
1212 {
1213         int i;
1214
1215         if (i915_vm_is_4lvl(&ppgtt->vm)) {
1216                 s->i915_context_pml4 = px_dma(ppgtt->pd);
1217         } else {
1218                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1219                         struct i915_page_directory * const pd =
1220                                 i915_pd_entry(ppgtt->pd, i);
1221
1222                         s->i915_context_pdps[i] = px_dma(pd);
1223                 }
1224         }
1225 }
1226
1227 /**
1228  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1229  * @vgpu: a vGPU
1230  *
1231  * This function is called when a vGPU is being created.
1232  *
1233  * Returns:
1234  * Zero on success, negative error code if failed.
1235  *
1236  */
1237 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1238 {
1239         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1240         struct intel_vgpu_submission *s = &vgpu->submission;
1241         struct intel_engine_cs *engine;
1242         struct i915_ppgtt *ppgtt;
1243         enum intel_engine_id i;
1244         int ret;
1245
1246         ppgtt = i915_ppgtt_create(&i915->gt);
1247         if (IS_ERR(ppgtt))
1248                 return PTR_ERR(ppgtt);
1249
1250         i915_context_ppgtt_root_save(s, ppgtt);
1251
1252         for_each_engine(engine, vgpu->gvt->gt, i) {
1253                 struct intel_context *ce;
1254
1255                 INIT_LIST_HEAD(&s->workload_q_head[i]);
1256                 s->shadow[i] = ERR_PTR(-EINVAL);
1257
1258                 ce = intel_context_create(engine);
1259                 if (IS_ERR(ce)) {
1260                         ret = PTR_ERR(ce);
1261                         goto out_shadow_ctx;
1262                 }
1263
1264                 i915_vm_put(ce->vm);
1265                 ce->vm = i915_vm_get(&ppgtt->vm);
1266                 intel_context_set_single_submission(ce);
1267
1268                 if (!USES_GUC_SUBMISSION(i915)) { /* Max ring buffer size */
1269                         const unsigned int ring_size = 512 * SZ_4K;
1270
1271                         ce->ring = __intel_context_ring_size(ring_size);
1272                 }
1273
1274                 ret = intel_context_pin(ce);
1275                 intel_context_put(ce);
1276                 if (ret)
1277                         goto out_shadow_ctx;
1278
1279                 s->shadow[i] = ce;
1280         }
1281
1282         bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1283
1284         s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1285                                                   sizeof(struct intel_vgpu_workload), 0,
1286                                                   SLAB_HWCACHE_ALIGN,
1287                                                   offsetof(struct intel_vgpu_workload, rb_tail),
1288                                                   sizeof_field(struct intel_vgpu_workload, rb_tail),
1289                                                   NULL);
1290
1291         if (!s->workloads) {
1292                 ret = -ENOMEM;
1293                 goto out_shadow_ctx;
1294         }
1295
1296         atomic_set(&s->running_workload_num, 0);
1297         bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1298
1299         i915_vm_put(&ppgtt->vm);
1300         return 0;
1301
1302 out_shadow_ctx:
1303         i915_context_ppgtt_root_restore(s, ppgtt);
1304         for_each_engine(engine, vgpu->gvt->gt, i) {
1305                 if (IS_ERR(s->shadow[i]))
1306                         break;
1307
1308                 intel_context_unpin(s->shadow[i]);
1309                 intel_context_put(s->shadow[i]);
1310         }
1311         i915_vm_put(&ppgtt->vm);
1312         return ret;
1313 }
1314
1315 /**
1316  * intel_vgpu_select_submission_ops - select virtual submission interface
1317  * @vgpu: a vGPU
1318  * @engine_mask: either ALL_ENGINES or target engine mask
1319  * @interface: expected vGPU virtual submission interface
1320  *
1321  * This function is called when guest configures submission interface.
1322  *
1323  * Returns:
1324  * Zero on success, negative error code if failed.
1325  *
1326  */
1327 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1328                                      intel_engine_mask_t engine_mask,
1329                                      unsigned int interface)
1330 {
1331         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1332         struct intel_vgpu_submission *s = &vgpu->submission;
1333         const struct intel_vgpu_submission_ops *ops[] = {
1334                 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1335                         &intel_vgpu_execlist_submission_ops,
1336         };
1337         int ret;
1338
1339         if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops)))
1340                 return -EINVAL;
1341
1342         if (drm_WARN_ON(&i915->drm,
1343                         interface == 0 && engine_mask != ALL_ENGINES))
1344                 return -EINVAL;
1345
1346         if (s->active)
1347                 s->ops->clean(vgpu, engine_mask);
1348
1349         if (interface == 0) {
1350                 s->ops = NULL;
1351                 s->virtual_submission_interface = 0;
1352                 s->active = false;
1353                 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1354                 return 0;
1355         }
1356
1357         ret = ops[interface]->init(vgpu, engine_mask);
1358         if (ret)
1359                 return ret;
1360
1361         s->ops = ops[interface];
1362         s->virtual_submission_interface = interface;
1363         s->active = true;
1364
1365         gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1366                         vgpu->id, s->ops->name);
1367
1368         return 0;
1369 }
1370
1371 /**
1372  * intel_vgpu_destroy_workload - destroy a vGPU workload
1373  * @workload: workload to destroy
1374  *
1375  * This function is called when destroy a vGPU workload.
1376  *
1377  */
1378 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1379 {
1380         struct intel_vgpu_submission *s = &workload->vgpu->submission;
1381
1382         release_shadow_batch_buffer(workload);
1383         release_shadow_wa_ctx(&workload->wa_ctx);
1384
1385         if (workload->shadow_mm)
1386                 intel_vgpu_mm_put(workload->shadow_mm);
1387
1388         kmem_cache_free(s->workloads, workload);
1389 }
1390
1391 static struct intel_vgpu_workload *
1392 alloc_workload(struct intel_vgpu *vgpu)
1393 {
1394         struct intel_vgpu_submission *s = &vgpu->submission;
1395         struct intel_vgpu_workload *workload;
1396
1397         workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1398         if (!workload)
1399                 return ERR_PTR(-ENOMEM);
1400
1401         INIT_LIST_HEAD(&workload->list);
1402         INIT_LIST_HEAD(&workload->shadow_bb);
1403
1404         init_waitqueue_head(&workload->shadow_ctx_status_wq);
1405         atomic_set(&workload->shadow_ctx_active, 0);
1406
1407         workload->status = -EINPROGRESS;
1408         workload->vgpu = vgpu;
1409
1410         return workload;
1411 }
1412
1413 #define RING_CTX_OFF(x) \
1414         offsetof(struct execlist_ring_context, x)
1415
1416 static void read_guest_pdps(struct intel_vgpu *vgpu,
1417                 u64 ring_context_gpa, u32 pdp[8])
1418 {
1419         u64 gpa;
1420         int i;
1421
1422         gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1423
1424         for (i = 0; i < 8; i++)
1425                 intel_gvt_hypervisor_read_gpa(vgpu,
1426                                 gpa + i * 8, &pdp[7 - i], 4);
1427 }
1428
1429 static int prepare_mm(struct intel_vgpu_workload *workload)
1430 {
1431         struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1432         struct intel_vgpu_mm *mm;
1433         struct intel_vgpu *vgpu = workload->vgpu;
1434         enum intel_gvt_gtt_type root_entry_type;
1435         u64 pdps[GVT_RING_CTX_NR_PDPS];
1436
1437         switch (desc->addressing_mode) {
1438         case 1: /* legacy 32-bit */
1439                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1440                 break;
1441         case 3: /* legacy 64-bit */
1442                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1443                 break;
1444         default:
1445                 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1446                 return -EINVAL;
1447         }
1448
1449         read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1450
1451         mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1452         if (IS_ERR(mm))
1453                 return PTR_ERR(mm);
1454
1455         workload->shadow_mm = mm;
1456         return 0;
1457 }
1458
1459 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1460                 ((a)->lrca == (b)->lrca))
1461
1462 /**
1463  * intel_vgpu_create_workload - create a vGPU workload
1464  * @vgpu: a vGPU
1465  * @engine: the engine
1466  * @desc: a guest context descriptor
1467  *
1468  * This function is called when creating a vGPU workload.
1469  *
1470  * Returns:
1471  * struct intel_vgpu_workload * on success, negative error code in
1472  * pointer if failed.
1473  *
1474  */
1475 struct intel_vgpu_workload *
1476 intel_vgpu_create_workload(struct intel_vgpu *vgpu,
1477                            const struct intel_engine_cs *engine,
1478                            struct execlist_ctx_descriptor_format *desc)
1479 {
1480         struct intel_vgpu_submission *s = &vgpu->submission;
1481         struct list_head *q = workload_q_head(vgpu, engine);
1482         struct intel_vgpu_workload *last_workload = NULL;
1483         struct intel_vgpu_workload *workload = NULL;
1484         u64 ring_context_gpa;
1485         u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1486         u32 guest_head;
1487         int ret;
1488
1489         ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1490                         (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1491         if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1492                 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1493                 return ERR_PTR(-EINVAL);
1494         }
1495
1496         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1497                         RING_CTX_OFF(ring_header.val), &head, 4);
1498
1499         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1500                         RING_CTX_OFF(ring_tail.val), &tail, 4);
1501
1502         guest_head = head;
1503
1504         head &= RB_HEAD_OFF_MASK;
1505         tail &= RB_TAIL_OFF_MASK;
1506
1507         list_for_each_entry_reverse(last_workload, q, list) {
1508
1509                 if (same_context(&last_workload->ctx_desc, desc)) {
1510                         gvt_dbg_el("ring %s cur workload == last\n",
1511                                    engine->name);
1512                         gvt_dbg_el("ctx head %x real head %lx\n", head,
1513                                    last_workload->rb_tail);
1514                         /*
1515                          * cannot use guest context head pointer here,
1516                          * as it might not be updated at this time
1517                          */
1518                         head = last_workload->rb_tail;
1519                         break;
1520                 }
1521         }
1522
1523         gvt_dbg_el("ring %s begin a new workload\n", engine->name);
1524
1525         /* record some ring buffer register values for scan and shadow */
1526         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1527                         RING_CTX_OFF(rb_start.val), &start, 4);
1528         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1529                         RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1530         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1531                         RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1532
1533         if (!intel_gvt_ggtt_validate_range(vgpu, start,
1534                                 _RING_CTL_BUF_SIZE(ctl))) {
1535                 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1536                 return ERR_PTR(-EINVAL);
1537         }
1538
1539         workload = alloc_workload(vgpu);
1540         if (IS_ERR(workload))
1541                 return workload;
1542
1543         workload->engine = engine;
1544         workload->ctx_desc = *desc;
1545         workload->ring_context_gpa = ring_context_gpa;
1546         workload->rb_head = head;
1547         workload->guest_rb_head = guest_head;
1548         workload->rb_tail = tail;
1549         workload->rb_start = start;
1550         workload->rb_ctl = ctl;
1551
1552         if (engine->id == RCS0) {
1553                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1554                         RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1555                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1556                         RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1557
1558                 workload->wa_ctx.indirect_ctx.guest_gma =
1559                         indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1560                 workload->wa_ctx.indirect_ctx.size =
1561                         (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1562                         CACHELINE_BYTES;
1563
1564                 if (workload->wa_ctx.indirect_ctx.size != 0) {
1565                         if (!intel_gvt_ggtt_validate_range(vgpu,
1566                                 workload->wa_ctx.indirect_ctx.guest_gma,
1567                                 workload->wa_ctx.indirect_ctx.size)) {
1568                                 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1569                                     workload->wa_ctx.indirect_ctx.guest_gma);
1570                                 kmem_cache_free(s->workloads, workload);
1571                                 return ERR_PTR(-EINVAL);
1572                         }
1573                 }
1574
1575                 workload->wa_ctx.per_ctx.guest_gma =
1576                         per_ctx & PER_CTX_ADDR_MASK;
1577                 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1578                 if (workload->wa_ctx.per_ctx.valid) {
1579                         if (!intel_gvt_ggtt_validate_range(vgpu,
1580                                 workload->wa_ctx.per_ctx.guest_gma,
1581                                 CACHELINE_BYTES)) {
1582                                 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1583                                         workload->wa_ctx.per_ctx.guest_gma);
1584                                 kmem_cache_free(s->workloads, workload);
1585                                 return ERR_PTR(-EINVAL);
1586                         }
1587                 }
1588         }
1589
1590         gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n",
1591                    workload, engine->name, head, tail, start, ctl);
1592
1593         ret = prepare_mm(workload);
1594         if (ret) {
1595                 kmem_cache_free(s->workloads, workload);
1596                 return ERR_PTR(ret);
1597         }
1598
1599         /* Only scan and shadow the first workload in the queue
1600          * as there is only one pre-allocated buf-obj for shadow.
1601          */
1602         if (list_empty(q)) {
1603                 intel_wakeref_t wakeref;
1604
1605                 with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref)
1606                         ret = intel_gvt_scan_and_shadow_workload(workload);
1607         }
1608
1609         if (ret) {
1610                 if (vgpu_is_vm_unhealthy(ret))
1611                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1612                 intel_vgpu_destroy_workload(workload);
1613                 return ERR_PTR(ret);
1614         }
1615
1616         return workload;
1617 }
1618
1619 /**
1620  * intel_vgpu_queue_workload - Qeue a vGPU workload
1621  * @workload: the workload to queue in
1622  */
1623 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1624 {
1625         list_add_tail(&workload->list,
1626                       workload_q_head(workload->vgpu, workload->engine));
1627         intel_gvt_kick_schedule(workload->vgpu->gvt);
1628         wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]);
1629 }