Merge tag 'gvt-next-fixes-2019-09-06' of https://github.com/intel/gvt-linux into...
[linux-2.6-block.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35
36 #include <linux/kthread.h>
37
38 #include "gem/i915_gem_context.h"
39 #include "gem/i915_gem_pm.h"
40 #include "gt/intel_context.h"
41
42 #include "i915_drv.h"
43 #include "gvt.h"
44
45 #define RING_CTX_OFF(x) \
46         offsetof(struct execlist_ring_context, x)
47
48 static void set_context_pdp_root_pointer(
49                 struct execlist_ring_context *ring_context,
50                 u32 pdp[8])
51 {
52         int i;
53
54         for (i = 0; i < 8; i++)
55                 ring_context->pdps[i].val = pdp[7 - i];
56 }
57
58 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
59 {
60         struct drm_i915_gem_object *ctx_obj =
61                 workload->req->hw_context->state->obj;
62         struct execlist_ring_context *shadow_ring_context;
63         struct page *page;
64
65         if (WARN_ON(!workload->shadow_mm))
66                 return;
67
68         if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
69                 return;
70
71         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
72         shadow_ring_context = kmap(page);
73         set_context_pdp_root_pointer(shadow_ring_context,
74                         (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
75         kunmap(page);
76 }
77
78 /*
79  * when populating shadow ctx from guest, we should not overrride oa related
80  * registers, so that they will not be overlapped by guest oa configs. Thus
81  * made it possible to capture oa data from host for both host and guests.
82  */
83 static void sr_oa_regs(struct intel_vgpu_workload *workload,
84                 u32 *reg_state, bool save)
85 {
86         struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
87         u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
88         u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
89         int i = 0;
90         u32 flex_mmio[] = {
91                 i915_mmio_reg_offset(EU_PERF_CNTL0),
92                 i915_mmio_reg_offset(EU_PERF_CNTL1),
93                 i915_mmio_reg_offset(EU_PERF_CNTL2),
94                 i915_mmio_reg_offset(EU_PERF_CNTL3),
95                 i915_mmio_reg_offset(EU_PERF_CNTL4),
96                 i915_mmio_reg_offset(EU_PERF_CNTL5),
97                 i915_mmio_reg_offset(EU_PERF_CNTL6),
98         };
99
100         if (workload->ring_id != RCS0)
101                 return;
102
103         if (save) {
104                 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
105
106                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
107                         u32 state_offset = ctx_flexeu0 + i * 2;
108
109                         workload->flex_mmio[i] = reg_state[state_offset + 1];
110                 }
111         } else {
112                 reg_state[ctx_oactxctrl] =
113                         i915_mmio_reg_offset(GEN8_OACTXCONTROL);
114                 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
115
116                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
117                         u32 state_offset = ctx_flexeu0 + i * 2;
118                         u32 mmio = flex_mmio[i];
119
120                         reg_state[state_offset] = mmio;
121                         reg_state[state_offset + 1] = workload->flex_mmio[i];
122                 }
123         }
124 }
125
126 static int populate_shadow_context(struct intel_vgpu_workload *workload)
127 {
128         struct intel_vgpu *vgpu = workload->vgpu;
129         struct intel_gvt *gvt = vgpu->gvt;
130         int ring_id = workload->ring_id;
131         struct drm_i915_gem_object *ctx_obj =
132                 workload->req->hw_context->state->obj;
133         struct execlist_ring_context *shadow_ring_context;
134         struct page *page;
135         void *dst;
136         unsigned long context_gpa, context_page_num;
137         int i;
138
139         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
140         shadow_ring_context = kmap(page);
141
142         sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
143 #define COPY_REG(name) \
144         intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
145                 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
146 #define COPY_REG_MASKED(name) {\
147                 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
148                                               + RING_CTX_OFF(name.val),\
149                                               &shadow_ring_context->name.val, 4);\
150                 shadow_ring_context->name.val |= 0xffff << 16;\
151         }
152
153         COPY_REG_MASKED(ctx_ctrl);
154         COPY_REG(ctx_timestamp);
155
156         if (ring_id == RCS0) {
157                 COPY_REG(bb_per_ctx_ptr);
158                 COPY_REG(rcs_indirect_ctx);
159                 COPY_REG(rcs_indirect_ctx_offset);
160         }
161 #undef COPY_REG
162 #undef COPY_REG_MASKED
163
164         intel_gvt_hypervisor_read_gpa(vgpu,
165                         workload->ring_context_gpa +
166                         sizeof(*shadow_ring_context),
167                         (void *)shadow_ring_context +
168                         sizeof(*shadow_ring_context),
169                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
170
171         sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
172         kunmap(page);
173
174         if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
175                 return 0;
176
177         gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
178                         workload->ctx_desc.lrca);
179
180         context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
181
182         context_page_num = context_page_num >> PAGE_SHIFT;
183
184         if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
185                 context_page_num = 19;
186
187         i = 2;
188         while (i < context_page_num) {
189                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
190                                 (u32)((workload->ctx_desc.lrca + i) <<
191                                 I915_GTT_PAGE_SHIFT));
192                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
193                         gvt_vgpu_err("Invalid guest context descriptor\n");
194                         return -EFAULT;
195                 }
196
197                 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
198                 dst = kmap(page);
199                 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
200                                 I915_GTT_PAGE_SIZE);
201                 kunmap(page);
202                 i++;
203         }
204         return 0;
205 }
206
207 static inline bool is_gvt_request(struct i915_request *req)
208 {
209         return i915_gem_context_force_single_submission(req->gem_context);
210 }
211
212 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
213 {
214         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
215         u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
216         i915_reg_t reg;
217
218         reg = RING_INSTDONE(ring_base);
219         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
220         reg = RING_ACTHD(ring_base);
221         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
222         reg = RING_ACTHD_UDW(ring_base);
223         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
224 }
225
226 static int shadow_context_status_change(struct notifier_block *nb,
227                 unsigned long action, void *data)
228 {
229         struct i915_request *req = data;
230         struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
231                                 shadow_ctx_notifier_block[req->engine->id]);
232         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
233         enum intel_engine_id ring_id = req->engine->id;
234         struct intel_vgpu_workload *workload;
235         unsigned long flags;
236
237         if (!is_gvt_request(req)) {
238                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
239                 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
240                     scheduler->engine_owner[ring_id]) {
241                         /* Switch ring from vGPU to host. */
242                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
243                                               NULL, ring_id);
244                         scheduler->engine_owner[ring_id] = NULL;
245                 }
246                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
247
248                 return NOTIFY_OK;
249         }
250
251         workload = scheduler->current_workload[ring_id];
252         if (unlikely(!workload))
253                 return NOTIFY_OK;
254
255         switch (action) {
256         case INTEL_CONTEXT_SCHEDULE_IN:
257                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
258                 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
259                         /* Switch ring from host to vGPU or vGPU to vGPU. */
260                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
261                                               workload->vgpu, ring_id);
262                         scheduler->engine_owner[ring_id] = workload->vgpu;
263                 } else
264                         gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
265                                       ring_id, workload->vgpu->id);
266                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
267                 atomic_set(&workload->shadow_ctx_active, 1);
268                 break;
269         case INTEL_CONTEXT_SCHEDULE_OUT:
270                 save_ring_hw_state(workload->vgpu, ring_id);
271                 atomic_set(&workload->shadow_ctx_active, 0);
272                 break;
273         case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
274                 save_ring_hw_state(workload->vgpu, ring_id);
275                 break;
276         default:
277                 WARN_ON(1);
278                 return NOTIFY_OK;
279         }
280         wake_up(&workload->shadow_ctx_status_wq);
281         return NOTIFY_OK;
282 }
283
284 static void
285 shadow_context_descriptor_update(struct intel_context *ce,
286                                  struct intel_vgpu_workload *workload)
287 {
288         u64 desc = ce->lrc_desc;
289
290         /*
291          * Update bits 0-11 of the context descriptor which includes flags
292          * like GEN8_CTX_* cached in desc_template
293          */
294         desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
295         desc |= workload->ctx_desc.addressing_mode <<
296                 GEN8_CTX_ADDRESSING_MODE_SHIFT;
297
298         ce->lrc_desc = desc;
299 }
300
301 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
302 {
303         struct intel_vgpu *vgpu = workload->vgpu;
304         struct i915_request *req = workload->req;
305         void *shadow_ring_buffer_va;
306         u32 *cs;
307         int err;
308
309         if (IS_GEN(req->i915, 9) && is_inhibit_context(req->hw_context))
310                 intel_vgpu_restore_inhibit_context(vgpu, req);
311
312         /*
313          * To track whether a request has started on HW, we can emit a
314          * breadcrumb at the beginning of the request and check its
315          * timeline's HWSP to see if the breadcrumb has advanced past the
316          * start of this request. Actually, the request must have the
317          * init_breadcrumb if its timeline set has_init_bread_crumb, or the
318          * scheduler might get a wrong state of it during reset. Since the
319          * requests from gvt always set the has_init_breadcrumb flag, here
320          * need to do the emit_init_breadcrumb for all the requests.
321          */
322         if (req->engine->emit_init_breadcrumb) {
323                 err = req->engine->emit_init_breadcrumb(req);
324                 if (err) {
325                         gvt_vgpu_err("fail to emit init breadcrumb\n");
326                         return err;
327                 }
328         }
329
330         /* allocate shadow ring buffer */
331         cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
332         if (IS_ERR(cs)) {
333                 gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
334                         workload->rb_len);
335                 return PTR_ERR(cs);
336         }
337
338         shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
339
340         /* get shadow ring buffer va */
341         workload->shadow_ring_buffer_va = cs;
342
343         memcpy(cs, shadow_ring_buffer_va,
344                         workload->rb_len);
345
346         cs += workload->rb_len / sizeof(u32);
347         intel_ring_advance(workload->req, cs);
348
349         return 0;
350 }
351
352 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
353 {
354         if (!wa_ctx->indirect_ctx.obj)
355                 return;
356
357         i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
358         i915_gem_object_put(wa_ctx->indirect_ctx.obj);
359
360         wa_ctx->indirect_ctx.obj = NULL;
361         wa_ctx->indirect_ctx.shadow_va = NULL;
362 }
363
364 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
365                                           struct i915_gem_context *ctx)
366 {
367         struct intel_vgpu_mm *mm = workload->shadow_mm;
368         struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ctx->vm);
369         int i = 0;
370
371         if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
372                 px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
373         } else {
374                 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
375                         struct i915_page_directory * const pd =
376                                 i915_pd_entry(ppgtt->pd, i);
377
378                         px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
379                 }
380         }
381 }
382
383 static int
384 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
385 {
386         struct intel_vgpu *vgpu = workload->vgpu;
387         struct intel_vgpu_submission *s = &vgpu->submission;
388         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
389         struct i915_request *rq;
390
391         lockdep_assert_held(&dev_priv->drm.struct_mutex);
392
393         if (workload->req)
394                 return 0;
395
396         rq = i915_request_create(s->shadow[workload->ring_id]);
397         if (IS_ERR(rq)) {
398                 gvt_vgpu_err("fail to allocate gem request\n");
399                 return PTR_ERR(rq);
400         }
401
402         workload->req = i915_request_get(rq);
403         return 0;
404 }
405
406 /**
407  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
408  * shadow it as well, include ringbuffer,wa_ctx and ctx.
409  * @workload: an abstract entity for each execlist submission.
410  *
411  * This function is called before the workload submitting to i915, to make
412  * sure the content of the workload is valid.
413  */
414 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
415 {
416         struct intel_vgpu *vgpu = workload->vgpu;
417         struct intel_vgpu_submission *s = &vgpu->submission;
418         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
419         int ret;
420
421         lockdep_assert_held(&dev_priv->drm.struct_mutex);
422
423         if (workload->shadow)
424                 return 0;
425
426         if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
427                 shadow_context_descriptor_update(s->shadow[workload->ring_id],
428                                                  workload);
429
430         ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
431         if (ret)
432                 return ret;
433
434         if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
435                 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
436                 if (ret)
437                         goto err_shadow;
438         }
439
440         workload->shadow = true;
441         return 0;
442 err_shadow:
443         release_shadow_wa_ctx(&workload->wa_ctx);
444         return ret;
445 }
446
447 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
448
449 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
450 {
451         struct intel_gvt *gvt = workload->vgpu->gvt;
452         const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
453         struct intel_vgpu_shadow_bb *bb;
454         int ret;
455
456         list_for_each_entry(bb, &workload->shadow_bb, list) {
457                 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
458                  * is only updated into ring_scan_buffer, not real ring address
459                  * allocated in later copy_workload_to_ring_buffer. pls be noted
460                  * shadow_ring_buffer_va is now pointed to real ring buffer va
461                  * in copy_workload_to_ring_buffer.
462                  */
463
464                 if (bb->bb_offset)
465                         bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
466                                 + bb->bb_offset;
467
468                 if (bb->ppgtt) {
469                         /* for non-priv bb, scan&shadow is only for
470                          * debugging purpose, so the content of shadow bb
471                          * is the same as original bb. Therefore,
472                          * here, rather than switch to shadow bb's gma
473                          * address, we directly use original batch buffer's
474                          * gma address, and send original bb to hardware
475                          * directly
476                          */
477                         if (bb->clflush & CLFLUSH_AFTER) {
478                                 drm_clflush_virt_range(bb->va,
479                                                 bb->obj->base.size);
480                                 bb->clflush &= ~CLFLUSH_AFTER;
481                         }
482                         i915_gem_object_finish_access(bb->obj);
483                         bb->accessing = false;
484
485                 } else {
486                         bb->vma = i915_gem_object_ggtt_pin(bb->obj,
487                                         NULL, 0, 0, 0);
488                         if (IS_ERR(bb->vma)) {
489                                 ret = PTR_ERR(bb->vma);
490                                 goto err;
491                         }
492
493                         /* relocate shadow batch buffer */
494                         bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
495                         if (gmadr_bytes == 8)
496                                 bb->bb_start_cmd_va[2] = 0;
497
498                         /* No one is going to touch shadow bb from now on. */
499                         if (bb->clflush & CLFLUSH_AFTER) {
500                                 drm_clflush_virt_range(bb->va,
501                                                 bb->obj->base.size);
502                                 bb->clflush &= ~CLFLUSH_AFTER;
503                         }
504
505                         ret = i915_gem_object_set_to_gtt_domain(bb->obj,
506                                                                 false);
507                         if (ret)
508                                 goto err;
509
510                         ret = i915_vma_move_to_active(bb->vma,
511                                                       workload->req,
512                                                       0);
513                         if (ret)
514                                 goto err;
515
516                         i915_gem_object_finish_access(bb->obj);
517                         bb->accessing = false;
518                 }
519         }
520         return 0;
521 err:
522         release_shadow_batch_buffer(workload);
523         return ret;
524 }
525
526 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
527 {
528         struct intel_vgpu_workload *workload =
529                 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
530         struct i915_request *rq = workload->req;
531         struct execlist_ring_context *shadow_ring_context =
532                 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
533
534         shadow_ring_context->bb_per_ctx_ptr.val =
535                 (shadow_ring_context->bb_per_ctx_ptr.val &
536                 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
537         shadow_ring_context->rcs_indirect_ctx.val =
538                 (shadow_ring_context->rcs_indirect_ctx.val &
539                 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
540 }
541
542 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
543 {
544         struct i915_vma *vma;
545         unsigned char *per_ctx_va =
546                 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
547                 wa_ctx->indirect_ctx.size;
548
549         if (wa_ctx->indirect_ctx.size == 0)
550                 return 0;
551
552         vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
553                                        0, CACHELINE_BYTES, 0);
554         if (IS_ERR(vma))
555                 return PTR_ERR(vma);
556
557         /* FIXME: we are not tracking our pinned VMA leaving it
558          * up to the core to fix up the stray pin_count upon
559          * free.
560          */
561
562         wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
563
564         wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
565         memset(per_ctx_va, 0, CACHELINE_BYTES);
566
567         update_wa_ctx_2_shadow_ctx(wa_ctx);
568         return 0;
569 }
570
571 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
572 {
573         struct intel_vgpu *vgpu = workload->vgpu;
574         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
575         u32 ring_base;
576
577         ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
578         vgpu_vreg_t(vgpu, RING_START(ring_base)) = workload->rb_start;
579 }
580
581 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
582 {
583         struct intel_vgpu *vgpu = workload->vgpu;
584         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
585         struct intel_vgpu_shadow_bb *bb, *pos;
586
587         if (list_empty(&workload->shadow_bb))
588                 return;
589
590         bb = list_first_entry(&workload->shadow_bb,
591                         struct intel_vgpu_shadow_bb, list);
592
593         mutex_lock(&dev_priv->drm.struct_mutex);
594
595         list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
596                 if (bb->obj) {
597                         if (bb->accessing)
598                                 i915_gem_object_finish_access(bb->obj);
599
600                         if (bb->va && !IS_ERR(bb->va))
601                                 i915_gem_object_unpin_map(bb->obj);
602
603                         if (bb->vma && !IS_ERR(bb->vma)) {
604                                 i915_vma_unpin(bb->vma);
605                                 i915_vma_close(bb->vma);
606                         }
607                         i915_gem_object_put(bb->obj);
608                 }
609                 list_del(&bb->list);
610                 kfree(bb);
611         }
612
613         mutex_unlock(&dev_priv->drm.struct_mutex);
614 }
615
616 static int prepare_workload(struct intel_vgpu_workload *workload)
617 {
618         struct intel_vgpu *vgpu = workload->vgpu;
619         struct intel_vgpu_submission *s = &vgpu->submission;
620         int ring = workload->ring_id;
621         int ret = 0;
622
623         ret = intel_vgpu_pin_mm(workload->shadow_mm);
624         if (ret) {
625                 gvt_vgpu_err("fail to vgpu pin mm\n");
626                 return ret;
627         }
628
629         if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
630             !workload->shadow_mm->ppgtt_mm.shadowed) {
631                 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
632                 return -EINVAL;
633         }
634
635         update_shadow_pdps(workload);
636
637         set_context_ppgtt_from_shadow(workload, s->shadow[ring]->gem_context);
638
639         ret = intel_vgpu_sync_oos_pages(workload->vgpu);
640         if (ret) {
641                 gvt_vgpu_err("fail to vgpu sync oos pages\n");
642                 goto err_unpin_mm;
643         }
644
645         ret = intel_vgpu_flush_post_shadow(workload->vgpu);
646         if (ret) {
647                 gvt_vgpu_err("fail to flush post shadow\n");
648                 goto err_unpin_mm;
649         }
650
651         ret = copy_workload_to_ring_buffer(workload);
652         if (ret) {
653                 gvt_vgpu_err("fail to generate request\n");
654                 goto err_unpin_mm;
655         }
656
657         ret = prepare_shadow_batch_buffer(workload);
658         if (ret) {
659                 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
660                 goto err_unpin_mm;
661         }
662
663         ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
664         if (ret) {
665                 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
666                 goto err_shadow_batch;
667         }
668
669         if (workload->prepare) {
670                 ret = workload->prepare(workload);
671                 if (ret)
672                         goto err_shadow_wa_ctx;
673         }
674
675         return 0;
676 err_shadow_wa_ctx:
677         release_shadow_wa_ctx(&workload->wa_ctx);
678 err_shadow_batch:
679         release_shadow_batch_buffer(workload);
680 err_unpin_mm:
681         intel_vgpu_unpin_mm(workload->shadow_mm);
682         return ret;
683 }
684
685 static int dispatch_workload(struct intel_vgpu_workload *workload)
686 {
687         struct intel_vgpu *vgpu = workload->vgpu;
688         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
689         struct i915_request *rq;
690         int ring_id = workload->ring_id;
691         int ret;
692
693         gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
694                 ring_id, workload);
695
696         mutex_lock(&vgpu->vgpu_lock);
697         mutex_lock(&dev_priv->drm.struct_mutex);
698
699         ret = intel_gvt_workload_req_alloc(workload);
700         if (ret)
701                 goto err_req;
702
703         ret = intel_gvt_scan_and_shadow_workload(workload);
704         if (ret)
705                 goto out;
706
707         ret = populate_shadow_context(workload);
708         if (ret) {
709                 release_shadow_wa_ctx(&workload->wa_ctx);
710                 goto out;
711         }
712
713         ret = prepare_workload(workload);
714 out:
715         if (ret) {
716                 /* We might still need to add request with
717                  * clean ctx to retire it properly..
718                  */
719                 rq = fetch_and_zero(&workload->req);
720                 i915_request_put(rq);
721         }
722
723         if (!IS_ERR_OR_NULL(workload->req)) {
724                 gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
725                                 ring_id, workload->req);
726                 i915_request_add(workload->req);
727                 workload->dispatched = true;
728         }
729 err_req:
730         if (ret)
731                 workload->status = ret;
732         mutex_unlock(&dev_priv->drm.struct_mutex);
733         mutex_unlock(&vgpu->vgpu_lock);
734         return ret;
735 }
736
737 static struct intel_vgpu_workload *pick_next_workload(
738                 struct intel_gvt *gvt, int ring_id)
739 {
740         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
741         struct intel_vgpu_workload *workload = NULL;
742
743         mutex_lock(&gvt->sched_lock);
744
745         /*
746          * no current vgpu / will be scheduled out / no workload
747          * bail out
748          */
749         if (!scheduler->current_vgpu) {
750                 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
751                 goto out;
752         }
753
754         if (scheduler->need_reschedule) {
755                 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
756                 goto out;
757         }
758
759         if (!scheduler->current_vgpu->active ||
760             list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
761                 goto out;
762
763         /*
764          * still have current workload, maybe the workload disptacher
765          * fail to submit it for some reason, resubmit it.
766          */
767         if (scheduler->current_workload[ring_id]) {
768                 workload = scheduler->current_workload[ring_id];
769                 gvt_dbg_sched("ring id %d still have current workload %p\n",
770                                 ring_id, workload);
771                 goto out;
772         }
773
774         /*
775          * pick a workload as current workload
776          * once current workload is set, schedule policy routines
777          * will wait the current workload is finished when trying to
778          * schedule out a vgpu.
779          */
780         scheduler->current_workload[ring_id] = container_of(
781                         workload_q_head(scheduler->current_vgpu, ring_id)->next,
782                         struct intel_vgpu_workload, list);
783
784         workload = scheduler->current_workload[ring_id];
785
786         gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
787
788         atomic_inc(&workload->vgpu->submission.running_workload_num);
789 out:
790         mutex_unlock(&gvt->sched_lock);
791         return workload;
792 }
793
794 static void update_guest_context(struct intel_vgpu_workload *workload)
795 {
796         struct i915_request *rq = workload->req;
797         struct intel_vgpu *vgpu = workload->vgpu;
798         struct intel_gvt *gvt = vgpu->gvt;
799         struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
800         struct execlist_ring_context *shadow_ring_context;
801         struct page *page;
802         void *src;
803         unsigned long context_gpa, context_page_num;
804         int i;
805         struct drm_i915_private *dev_priv = gvt->dev_priv;
806         u32 ring_base;
807         u32 head, tail;
808         u16 wrap_count;
809
810         gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
811                       workload->ctx_desc.lrca);
812
813         head = workload->rb_head;
814         tail = workload->rb_tail;
815         wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
816
817         if (tail < head) {
818                 if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
819                         wrap_count = 0;
820                 else
821                         wrap_count += 1;
822         }
823
824         head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
825
826         ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
827         vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
828         vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
829
830         context_page_num = rq->engine->context_size;
831         context_page_num = context_page_num >> PAGE_SHIFT;
832
833         if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
834                 context_page_num = 19;
835
836         i = 2;
837
838         while (i < context_page_num) {
839                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
840                                 (u32)((workload->ctx_desc.lrca + i) <<
841                                         I915_GTT_PAGE_SHIFT));
842                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
843                         gvt_vgpu_err("invalid guest context descriptor\n");
844                         return;
845                 }
846
847                 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
848                 src = kmap(page);
849                 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
850                                 I915_GTT_PAGE_SIZE);
851                 kunmap(page);
852                 i++;
853         }
854
855         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
856                 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
857
858         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
859         shadow_ring_context = kmap(page);
860
861 #define COPY_REG(name) \
862         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
863                 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
864
865         COPY_REG(ctx_ctrl);
866         COPY_REG(ctx_timestamp);
867
868 #undef COPY_REG
869
870         intel_gvt_hypervisor_write_gpa(vgpu,
871                         workload->ring_context_gpa +
872                         sizeof(*shadow_ring_context),
873                         (void *)shadow_ring_context +
874                         sizeof(*shadow_ring_context),
875                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
876
877         kunmap(page);
878 }
879
880 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
881                                 intel_engine_mask_t engine_mask)
882 {
883         struct intel_vgpu_submission *s = &vgpu->submission;
884         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
885         struct intel_engine_cs *engine;
886         struct intel_vgpu_workload *pos, *n;
887         intel_engine_mask_t tmp;
888
889         /* free the unsubmited workloads in the queues. */
890         for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
891                 list_for_each_entry_safe(pos, n,
892                         &s->workload_q_head[engine->id], list) {
893                         list_del_init(&pos->list);
894                         intel_vgpu_destroy_workload(pos);
895                 }
896                 clear_bit(engine->id, s->shadow_ctx_desc_updated);
897         }
898 }
899
900 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
901 {
902         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
903         struct intel_vgpu_workload *workload =
904                 scheduler->current_workload[ring_id];
905         struct intel_vgpu *vgpu = workload->vgpu;
906         struct intel_vgpu_submission *s = &vgpu->submission;
907         struct i915_request *rq = workload->req;
908         int event;
909
910         mutex_lock(&vgpu->vgpu_lock);
911         mutex_lock(&gvt->sched_lock);
912
913         /* For the workload w/ request, needs to wait for the context
914          * switch to make sure request is completed.
915          * For the workload w/o request, directly complete the workload.
916          */
917         if (rq) {
918                 wait_event(workload->shadow_ctx_status_wq,
919                            !atomic_read(&workload->shadow_ctx_active));
920
921                 /* If this request caused GPU hang, req->fence.error will
922                  * be set to -EIO. Use -EIO to set workload status so
923                  * that when this request caused GPU hang, didn't trigger
924                  * context switch interrupt to guest.
925                  */
926                 if (likely(workload->status == -EINPROGRESS)) {
927                         if (workload->req->fence.error == -EIO)
928                                 workload->status = -EIO;
929                         else
930                                 workload->status = 0;
931                 }
932
933                 if (!workload->status &&
934                     !(vgpu->resetting_eng & BIT(ring_id))) {
935                         update_guest_context(workload);
936
937                         for_each_set_bit(event, workload->pending_events,
938                                          INTEL_GVT_EVENT_MAX)
939                                 intel_vgpu_trigger_virtual_event(vgpu, event);
940                 }
941
942                 i915_request_put(fetch_and_zero(&workload->req));
943         }
944
945         gvt_dbg_sched("ring id %d complete workload %p status %d\n",
946                         ring_id, workload, workload->status);
947
948         scheduler->current_workload[ring_id] = NULL;
949
950         list_del_init(&workload->list);
951
952         if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
953                 /* if workload->status is not successful means HW GPU
954                  * has occurred GPU hang or something wrong with i915/GVT,
955                  * and GVT won't inject context switch interrupt to guest.
956                  * So this error is a vGPU hang actually to the guest.
957                  * According to this we should emunlate a vGPU hang. If
958                  * there are pending workloads which are already submitted
959                  * from guest, we should clean them up like HW GPU does.
960                  *
961                  * if it is in middle of engine resetting, the pending
962                  * workloads won't be submitted to HW GPU and will be
963                  * cleaned up during the resetting process later, so doing
964                  * the workload clean up here doesn't have any impact.
965                  **/
966                 intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
967         }
968
969         workload->complete(workload);
970
971         atomic_dec(&s->running_workload_num);
972         wake_up(&scheduler->workload_complete_wq);
973
974         if (gvt->scheduler.need_reschedule)
975                 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
976
977         mutex_unlock(&gvt->sched_lock);
978         mutex_unlock(&vgpu->vgpu_lock);
979 }
980
981 struct workload_thread_param {
982         struct intel_gvt *gvt;
983         int ring_id;
984 };
985
986 static int workload_thread(void *priv)
987 {
988         struct workload_thread_param *p = (struct workload_thread_param *)priv;
989         struct intel_gvt *gvt = p->gvt;
990         int ring_id = p->ring_id;
991         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
992         struct intel_vgpu_workload *workload = NULL;
993         struct intel_vgpu *vgpu = NULL;
994         int ret;
995         bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
996         DEFINE_WAIT_FUNC(wait, woken_wake_function);
997         struct intel_runtime_pm *rpm = &gvt->dev_priv->runtime_pm;
998
999         kfree(p);
1000
1001         gvt_dbg_core("workload thread for ring %d started\n", ring_id);
1002
1003         while (!kthread_should_stop()) {
1004                 add_wait_queue(&scheduler->waitq[ring_id], &wait);
1005                 do {
1006                         workload = pick_next_workload(gvt, ring_id);
1007                         if (workload)
1008                                 break;
1009                         wait_woken(&wait, TASK_INTERRUPTIBLE,
1010                                    MAX_SCHEDULE_TIMEOUT);
1011                 } while (!kthread_should_stop());
1012                 remove_wait_queue(&scheduler->waitq[ring_id], &wait);
1013
1014                 if (!workload)
1015                         break;
1016
1017                 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
1018                                 workload->ring_id, workload,
1019                                 workload->vgpu->id);
1020
1021                 intel_runtime_pm_get(rpm);
1022
1023                 gvt_dbg_sched("ring id %d will dispatch workload %p\n",
1024                                 workload->ring_id, workload);
1025
1026                 if (need_force_wake)
1027                         intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
1028                                         FORCEWAKE_ALL);
1029                 /*
1030                  * Update the vReg of the vGPU which submitted this
1031                  * workload. The vGPU may use these registers for checking
1032                  * the context state. The value comes from GPU commands
1033                  * in this workload.
1034                  */
1035                 update_vreg_in_ctx(workload);
1036
1037                 ret = dispatch_workload(workload);
1038
1039                 if (ret) {
1040                         vgpu = workload->vgpu;
1041                         gvt_vgpu_err("fail to dispatch workload, skip\n");
1042                         goto complete;
1043                 }
1044
1045                 gvt_dbg_sched("ring id %d wait workload %p\n",
1046                                 workload->ring_id, workload);
1047                 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1048
1049 complete:
1050                 gvt_dbg_sched("will complete workload %p, status: %d\n",
1051                                 workload, workload->status);
1052
1053                 complete_current_workload(gvt, ring_id);
1054
1055                 if (need_force_wake)
1056                         intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1057                                         FORCEWAKE_ALL);
1058
1059                 intel_runtime_pm_put_unchecked(rpm);
1060                 if (ret && (vgpu_is_vm_unhealthy(ret)))
1061                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1062         }
1063         return 0;
1064 }
1065
1066 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1067 {
1068         struct intel_vgpu_submission *s = &vgpu->submission;
1069         struct intel_gvt *gvt = vgpu->gvt;
1070         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1071
1072         if (atomic_read(&s->running_workload_num)) {
1073                 gvt_dbg_sched("wait vgpu idle\n");
1074
1075                 wait_event(scheduler->workload_complete_wq,
1076                                 !atomic_read(&s->running_workload_num));
1077         }
1078 }
1079
1080 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1081 {
1082         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1083         struct intel_engine_cs *engine;
1084         enum intel_engine_id i;
1085
1086         gvt_dbg_core("clean workload scheduler\n");
1087
1088         for_each_engine(engine, gvt->dev_priv, i) {
1089                 atomic_notifier_chain_unregister(
1090                                         &engine->context_status_notifier,
1091                                         &gvt->shadow_ctx_notifier_block[i]);
1092                 kthread_stop(scheduler->thread[i]);
1093         }
1094 }
1095
1096 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1097 {
1098         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1099         struct workload_thread_param *param = NULL;
1100         struct intel_engine_cs *engine;
1101         enum intel_engine_id i;
1102         int ret;
1103
1104         gvt_dbg_core("init workload scheduler\n");
1105
1106         init_waitqueue_head(&scheduler->workload_complete_wq);
1107
1108         for_each_engine(engine, gvt->dev_priv, i) {
1109                 init_waitqueue_head(&scheduler->waitq[i]);
1110
1111                 param = kzalloc(sizeof(*param), GFP_KERNEL);
1112                 if (!param) {
1113                         ret = -ENOMEM;
1114                         goto err;
1115                 }
1116
1117                 param->gvt = gvt;
1118                 param->ring_id = i;
1119
1120                 scheduler->thread[i] = kthread_run(workload_thread, param,
1121                         "gvt workload %d", i);
1122                 if (IS_ERR(scheduler->thread[i])) {
1123                         gvt_err("fail to create workload thread\n");
1124                         ret = PTR_ERR(scheduler->thread[i]);
1125                         goto err;
1126                 }
1127
1128                 gvt->shadow_ctx_notifier_block[i].notifier_call =
1129                                         shadow_context_status_change;
1130                 atomic_notifier_chain_register(&engine->context_status_notifier,
1131                                         &gvt->shadow_ctx_notifier_block[i]);
1132         }
1133         return 0;
1134 err:
1135         intel_gvt_clean_workload_scheduler(gvt);
1136         kfree(param);
1137         param = NULL;
1138         return ret;
1139 }
1140
1141 static void
1142 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1143                                 struct i915_ppgtt *ppgtt)
1144 {
1145         int i;
1146
1147         if (i915_vm_is_4lvl(&ppgtt->vm)) {
1148                 px_dma(ppgtt->pd) = s->i915_context_pml4;
1149         } else {
1150                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1151                         struct i915_page_directory * const pd =
1152                                 i915_pd_entry(ppgtt->pd, i);
1153
1154                         px_dma(pd) = s->i915_context_pdps[i];
1155                 }
1156         }
1157 }
1158
1159 /**
1160  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1161  * @vgpu: a vGPU
1162  *
1163  * This function is called when a vGPU is being destroyed.
1164  *
1165  */
1166 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1167 {
1168         struct intel_vgpu_submission *s = &vgpu->submission;
1169         struct intel_engine_cs *engine;
1170         enum intel_engine_id id;
1171
1172         intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1173
1174         i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1175         for_each_engine(engine, vgpu->gvt->dev_priv, id)
1176                 intel_context_unpin(s->shadow[id]);
1177
1178         kmem_cache_destroy(s->workloads);
1179 }
1180
1181
1182 /**
1183  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1184  * @vgpu: a vGPU
1185  * @engine_mask: engines expected to be reset
1186  *
1187  * This function is called when a vGPU is being destroyed.
1188  *
1189  */
1190 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1191                                  intel_engine_mask_t engine_mask)
1192 {
1193         struct intel_vgpu_submission *s = &vgpu->submission;
1194
1195         if (!s->active)
1196                 return;
1197
1198         intel_vgpu_clean_workloads(vgpu, engine_mask);
1199         s->ops->reset(vgpu, engine_mask);
1200 }
1201
1202 static void
1203 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1204                              struct i915_ppgtt *ppgtt)
1205 {
1206         int i;
1207
1208         if (i915_vm_is_4lvl(&ppgtt->vm)) {
1209                 s->i915_context_pml4 = px_dma(ppgtt->pd);
1210         } else {
1211                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1212                         struct i915_page_directory * const pd =
1213                                 i915_pd_entry(ppgtt->pd, i);
1214
1215                         s->i915_context_pdps[i] = px_dma(pd);
1216                 }
1217         }
1218 }
1219
1220 /**
1221  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1222  * @vgpu: a vGPU
1223  *
1224  * This function is called when a vGPU is being created.
1225  *
1226  * Returns:
1227  * Zero on success, negative error code if failed.
1228  *
1229  */
1230 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1231 {
1232         struct drm_i915_private *i915 = vgpu->gvt->dev_priv;
1233         struct intel_vgpu_submission *s = &vgpu->submission;
1234         struct intel_engine_cs *engine;
1235         struct i915_gem_context *ctx;
1236         enum intel_engine_id i;
1237         int ret;
1238
1239         mutex_lock(&i915->drm.struct_mutex);
1240
1241         ctx = i915_gem_context_create_kernel(i915, I915_PRIORITY_MAX);
1242         if (IS_ERR(ctx)) {
1243                 ret = PTR_ERR(ctx);
1244                 goto out_unlock;
1245         }
1246
1247         i915_gem_context_set_force_single_submission(ctx);
1248
1249         i915_context_ppgtt_root_save(s, i915_vm_to_ppgtt(ctx->vm));
1250
1251         for_each_engine(engine, i915, i) {
1252                 struct intel_context *ce;
1253
1254                 INIT_LIST_HEAD(&s->workload_q_head[i]);
1255                 s->shadow[i] = ERR_PTR(-EINVAL);
1256
1257                 ce = intel_context_create(ctx, engine);
1258                 if (IS_ERR(ce)) {
1259                         ret = PTR_ERR(ce);
1260                         goto out_shadow_ctx;
1261                 }
1262
1263                 if (!USES_GUC_SUBMISSION(i915)) { /* Max ring buffer size */
1264                         const unsigned int ring_size = 512 * SZ_4K;
1265
1266                         ce->ring = __intel_context_ring_size(ring_size);
1267                 }
1268
1269                 ret = intel_context_pin(ce);
1270                 intel_context_put(ce);
1271                 if (ret)
1272                         goto out_shadow_ctx;
1273
1274                 s->shadow[i] = ce;
1275         }
1276
1277         bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1278
1279         s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1280                                                   sizeof(struct intel_vgpu_workload), 0,
1281                                                   SLAB_HWCACHE_ALIGN,
1282                                                   offsetof(struct intel_vgpu_workload, rb_tail),
1283                                                   sizeof_field(struct intel_vgpu_workload, rb_tail),
1284                                                   NULL);
1285
1286         if (!s->workloads) {
1287                 ret = -ENOMEM;
1288                 goto out_shadow_ctx;
1289         }
1290
1291         atomic_set(&s->running_workload_num, 0);
1292         bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1293
1294         i915_gem_context_put(ctx);
1295         mutex_unlock(&i915->drm.struct_mutex);
1296         return 0;
1297
1298 out_shadow_ctx:
1299         i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(ctx->vm));
1300         for_each_engine(engine, i915, i) {
1301                 if (IS_ERR(s->shadow[i]))
1302                         break;
1303
1304                 intel_context_unpin(s->shadow[i]);
1305                 intel_context_put(s->shadow[i]);
1306         }
1307         i915_gem_context_put(ctx);
1308 out_unlock:
1309         mutex_unlock(&i915->drm.struct_mutex);
1310         return ret;
1311 }
1312
1313 /**
1314  * intel_vgpu_select_submission_ops - select virtual submission interface
1315  * @vgpu: a vGPU
1316  * @engine_mask: either ALL_ENGINES or target engine mask
1317  * @interface: expected vGPU virtual submission interface
1318  *
1319  * This function is called when guest configures submission interface.
1320  *
1321  * Returns:
1322  * Zero on success, negative error code if failed.
1323  *
1324  */
1325 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1326                                      intel_engine_mask_t engine_mask,
1327                                      unsigned int interface)
1328 {
1329         struct intel_vgpu_submission *s = &vgpu->submission;
1330         const struct intel_vgpu_submission_ops *ops[] = {
1331                 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1332                         &intel_vgpu_execlist_submission_ops,
1333         };
1334         int ret;
1335
1336         if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1337                 return -EINVAL;
1338
1339         if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1340                 return -EINVAL;
1341
1342         if (s->active)
1343                 s->ops->clean(vgpu, engine_mask);
1344
1345         if (interface == 0) {
1346                 s->ops = NULL;
1347                 s->virtual_submission_interface = 0;
1348                 s->active = false;
1349                 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1350                 return 0;
1351         }
1352
1353         ret = ops[interface]->init(vgpu, engine_mask);
1354         if (ret)
1355                 return ret;
1356
1357         s->ops = ops[interface];
1358         s->virtual_submission_interface = interface;
1359         s->active = true;
1360
1361         gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1362                         vgpu->id, s->ops->name);
1363
1364         return 0;
1365 }
1366
1367 /**
1368  * intel_vgpu_destroy_workload - destroy a vGPU workload
1369  * @workload: workload to destroy
1370  *
1371  * This function is called when destroy a vGPU workload.
1372  *
1373  */
1374 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1375 {
1376         struct intel_vgpu_submission *s = &workload->vgpu->submission;
1377
1378         release_shadow_batch_buffer(workload);
1379         release_shadow_wa_ctx(&workload->wa_ctx);
1380
1381         if (workload->shadow_mm)
1382                 intel_vgpu_mm_put(workload->shadow_mm);
1383
1384         kmem_cache_free(s->workloads, workload);
1385 }
1386
1387 static struct intel_vgpu_workload *
1388 alloc_workload(struct intel_vgpu *vgpu)
1389 {
1390         struct intel_vgpu_submission *s = &vgpu->submission;
1391         struct intel_vgpu_workload *workload;
1392
1393         workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1394         if (!workload)
1395                 return ERR_PTR(-ENOMEM);
1396
1397         INIT_LIST_HEAD(&workload->list);
1398         INIT_LIST_HEAD(&workload->shadow_bb);
1399
1400         init_waitqueue_head(&workload->shadow_ctx_status_wq);
1401         atomic_set(&workload->shadow_ctx_active, 0);
1402
1403         workload->status = -EINPROGRESS;
1404         workload->vgpu = vgpu;
1405
1406         return workload;
1407 }
1408
1409 #define RING_CTX_OFF(x) \
1410         offsetof(struct execlist_ring_context, x)
1411
1412 static void read_guest_pdps(struct intel_vgpu *vgpu,
1413                 u64 ring_context_gpa, u32 pdp[8])
1414 {
1415         u64 gpa;
1416         int i;
1417
1418         gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1419
1420         for (i = 0; i < 8; i++)
1421                 intel_gvt_hypervisor_read_gpa(vgpu,
1422                                 gpa + i * 8, &pdp[7 - i], 4);
1423 }
1424
1425 static int prepare_mm(struct intel_vgpu_workload *workload)
1426 {
1427         struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1428         struct intel_vgpu_mm *mm;
1429         struct intel_vgpu *vgpu = workload->vgpu;
1430         enum intel_gvt_gtt_type root_entry_type;
1431         u64 pdps[GVT_RING_CTX_NR_PDPS];
1432
1433         switch (desc->addressing_mode) {
1434         case 1: /* legacy 32-bit */
1435                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1436                 break;
1437         case 3: /* legacy 64-bit */
1438                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1439                 break;
1440         default:
1441                 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1442                 return -EINVAL;
1443         }
1444
1445         read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1446
1447         mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1448         if (IS_ERR(mm))
1449                 return PTR_ERR(mm);
1450
1451         workload->shadow_mm = mm;
1452         return 0;
1453 }
1454
1455 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1456                 ((a)->lrca == (b)->lrca))
1457
1458 /**
1459  * intel_vgpu_create_workload - create a vGPU workload
1460  * @vgpu: a vGPU
1461  * @ring_id: ring index
1462  * @desc: a guest context descriptor
1463  *
1464  * This function is called when creating a vGPU workload.
1465  *
1466  * Returns:
1467  * struct intel_vgpu_workload * on success, negative error code in
1468  * pointer if failed.
1469  *
1470  */
1471 struct intel_vgpu_workload *
1472 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1473                            struct execlist_ctx_descriptor_format *desc)
1474 {
1475         struct intel_vgpu_submission *s = &vgpu->submission;
1476         struct list_head *q = workload_q_head(vgpu, ring_id);
1477         struct intel_vgpu_workload *last_workload = NULL;
1478         struct intel_vgpu_workload *workload = NULL;
1479         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1480         u64 ring_context_gpa;
1481         u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1482         u32 guest_head;
1483         int ret;
1484
1485         ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1486                         (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1487         if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1488                 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1489                 return ERR_PTR(-EINVAL);
1490         }
1491
1492         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1493                         RING_CTX_OFF(ring_header.val), &head, 4);
1494
1495         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1496                         RING_CTX_OFF(ring_tail.val), &tail, 4);
1497
1498         guest_head = head;
1499
1500         head &= RB_HEAD_OFF_MASK;
1501         tail &= RB_TAIL_OFF_MASK;
1502
1503         list_for_each_entry_reverse(last_workload, q, list) {
1504
1505                 if (same_context(&last_workload->ctx_desc, desc)) {
1506                         gvt_dbg_el("ring id %d cur workload == last\n",
1507                                         ring_id);
1508                         gvt_dbg_el("ctx head %x real head %lx\n", head,
1509                                         last_workload->rb_tail);
1510                         /*
1511                          * cannot use guest context head pointer here,
1512                          * as it might not be updated at this time
1513                          */
1514                         head = last_workload->rb_tail;
1515                         break;
1516                 }
1517         }
1518
1519         gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1520
1521         /* record some ring buffer register values for scan and shadow */
1522         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1523                         RING_CTX_OFF(rb_start.val), &start, 4);
1524         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1525                         RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1526         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1527                         RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1528
1529         if (!intel_gvt_ggtt_validate_range(vgpu, start,
1530                                 _RING_CTL_BUF_SIZE(ctl))) {
1531                 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1532                 return ERR_PTR(-EINVAL);
1533         }
1534
1535         workload = alloc_workload(vgpu);
1536         if (IS_ERR(workload))
1537                 return workload;
1538
1539         workload->ring_id = ring_id;
1540         workload->ctx_desc = *desc;
1541         workload->ring_context_gpa = ring_context_gpa;
1542         workload->rb_head = head;
1543         workload->guest_rb_head = guest_head;
1544         workload->rb_tail = tail;
1545         workload->rb_start = start;
1546         workload->rb_ctl = ctl;
1547
1548         if (ring_id == RCS0) {
1549                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1550                         RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1551                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1552                         RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1553
1554                 workload->wa_ctx.indirect_ctx.guest_gma =
1555                         indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1556                 workload->wa_ctx.indirect_ctx.size =
1557                         (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1558                         CACHELINE_BYTES;
1559
1560                 if (workload->wa_ctx.indirect_ctx.size != 0) {
1561                         if (!intel_gvt_ggtt_validate_range(vgpu,
1562                                 workload->wa_ctx.indirect_ctx.guest_gma,
1563                                 workload->wa_ctx.indirect_ctx.size)) {
1564                                 kmem_cache_free(s->workloads, workload);
1565                                 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1566                                     workload->wa_ctx.indirect_ctx.guest_gma);
1567                                 return ERR_PTR(-EINVAL);
1568                         }
1569                 }
1570
1571                 workload->wa_ctx.per_ctx.guest_gma =
1572                         per_ctx & PER_CTX_ADDR_MASK;
1573                 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1574                 if (workload->wa_ctx.per_ctx.valid) {
1575                         if (!intel_gvt_ggtt_validate_range(vgpu,
1576                                 workload->wa_ctx.per_ctx.guest_gma,
1577                                 CACHELINE_BYTES)) {
1578                                 kmem_cache_free(s->workloads, workload);
1579                                 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1580                                         workload->wa_ctx.per_ctx.guest_gma);
1581                                 return ERR_PTR(-EINVAL);
1582                         }
1583                 }
1584         }
1585
1586         gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1587                         workload, ring_id, head, tail, start, ctl);
1588
1589         ret = prepare_mm(workload);
1590         if (ret) {
1591                 kmem_cache_free(s->workloads, workload);
1592                 return ERR_PTR(ret);
1593         }
1594
1595         /* Only scan and shadow the first workload in the queue
1596          * as there is only one pre-allocated buf-obj for shadow.
1597          */
1598         if (list_empty(workload_q_head(vgpu, ring_id))) {
1599                 intel_runtime_pm_get(&dev_priv->runtime_pm);
1600                 mutex_lock(&dev_priv->drm.struct_mutex);
1601                 ret = intel_gvt_scan_and_shadow_workload(workload);
1602                 mutex_unlock(&dev_priv->drm.struct_mutex);
1603                 intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
1604         }
1605
1606         if (ret) {
1607                 if (vgpu_is_vm_unhealthy(ret))
1608                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1609                 intel_vgpu_destroy_workload(workload);
1610                 return ERR_PTR(ret);
1611         }
1612
1613         return workload;
1614 }
1615
1616 /**
1617  * intel_vgpu_queue_workload - Qeue a vGPU workload
1618  * @workload: the workload to queue in
1619  */
1620 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1621 {
1622         list_add_tail(&workload->list,
1623                 workload_q_head(workload->vgpu, workload->ring_id));
1624         intel_gvt_kick_schedule(workload->vgpu->gvt);
1625         wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1626 }