Merge tag 'gvt-next-2020-04-22' of https://github.com/intel/gvt-linux into drm-intel...
[linux-block.git] / drivers / gpu / drm / i915 / gvt / gtt.c
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56         if (size == 0)
57                 return vgpu_gmadr_is_valid(vgpu, addr);
58
59         if (vgpu_gmadr_is_aperture(vgpu, addr) &&
60             vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
61                 return true;
62         else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
63                  vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
64                 return true;
65
66         gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
67                      addr, size);
68         return false;
69 }
70
71 /* translate a guest gmadr to host gmadr */
72 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
73 {
74         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
75
76         if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
77                      "invalid guest gmadr %llx\n", g_addr))
78                 return -EACCES;
79
80         if (vgpu_gmadr_is_aperture(vgpu, g_addr))
81                 *h_addr = vgpu_aperture_gmadr_base(vgpu)
82                           + (g_addr - vgpu_aperture_offset(vgpu));
83         else
84                 *h_addr = vgpu_hidden_gmadr_base(vgpu)
85                           + (g_addr - vgpu_hidden_offset(vgpu));
86         return 0;
87 }
88
89 /* translate a host gmadr to guest gmadr */
90 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
91 {
92         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
93
94         if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
95                      "invalid host gmadr %llx\n", h_addr))
96                 return -EACCES;
97
98         if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
99                 *g_addr = vgpu_aperture_gmadr_base(vgpu)
100                         + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
101         else
102                 *g_addr = vgpu_hidden_gmadr_base(vgpu)
103                         + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
104         return 0;
105 }
106
107 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
108                              unsigned long *h_index)
109 {
110         u64 h_addr;
111         int ret;
112
113         ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
114                                        &h_addr);
115         if (ret)
116                 return ret;
117
118         *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
119         return 0;
120 }
121
122 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
123                              unsigned long *g_index)
124 {
125         u64 g_addr;
126         int ret;
127
128         ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
129                                        &g_addr);
130         if (ret)
131                 return ret;
132
133         *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
134         return 0;
135 }
136
137 #define gtt_type_is_entry(type) \
138         (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
139          && type != GTT_TYPE_PPGTT_PTE_ENTRY \
140          && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
141
142 #define gtt_type_is_pt(type) \
143         (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
144
145 #define gtt_type_is_pte_pt(type) \
146         (type == GTT_TYPE_PPGTT_PTE_PT)
147
148 #define gtt_type_is_root_pointer(type) \
149         (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
150
151 #define gtt_init_entry(e, t, p, v) do { \
152         (e)->type = t; \
153         (e)->pdev = p; \
154         memcpy(&(e)->val64, &v, sizeof(v)); \
155 } while (0)
156
157 /*
158  * Mappings between GTT_TYPE* enumerations.
159  * Following information can be found according to the given type:
160  * - type of next level page table
161  * - type of entry inside this level page table
162  * - type of entry with PSE set
163  *
164  * If the given type doesn't have such a kind of information,
165  * e.g. give a l4 root entry type, then request to get its PSE type,
166  * give a PTE page table type, then request to get its next level page
167  * table type, as we know l4 root entry doesn't have a PSE bit,
168  * and a PTE page table doesn't have a next level page table type,
169  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
170  * page table.
171  */
172
173 struct gtt_type_table_entry {
174         int entry_type;
175         int pt_type;
176         int next_pt_type;
177         int pse_entry_type;
178 };
179
180 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
181         [type] = { \
182                 .entry_type = e_type, \
183                 .pt_type = cpt_type, \
184                 .next_pt_type = npt_type, \
185                 .pse_entry_type = pse_type, \
186         }
187
188 static struct gtt_type_table_entry gtt_type_table[] = {
189         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
190                         GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
191                         GTT_TYPE_INVALID,
192                         GTT_TYPE_PPGTT_PML4_PT,
193                         GTT_TYPE_INVALID),
194         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
195                         GTT_TYPE_PPGTT_PML4_ENTRY,
196                         GTT_TYPE_PPGTT_PML4_PT,
197                         GTT_TYPE_PPGTT_PDP_PT,
198                         GTT_TYPE_INVALID),
199         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
200                         GTT_TYPE_PPGTT_PML4_ENTRY,
201                         GTT_TYPE_PPGTT_PML4_PT,
202                         GTT_TYPE_PPGTT_PDP_PT,
203                         GTT_TYPE_INVALID),
204         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
205                         GTT_TYPE_PPGTT_PDP_ENTRY,
206                         GTT_TYPE_PPGTT_PDP_PT,
207                         GTT_TYPE_PPGTT_PDE_PT,
208                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
210                         GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
211                         GTT_TYPE_INVALID,
212                         GTT_TYPE_PPGTT_PDE_PT,
213                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
214         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
215                         GTT_TYPE_PPGTT_PDP_ENTRY,
216                         GTT_TYPE_PPGTT_PDP_PT,
217                         GTT_TYPE_PPGTT_PDE_PT,
218                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
220                         GTT_TYPE_PPGTT_PDE_ENTRY,
221                         GTT_TYPE_PPGTT_PDE_PT,
222                         GTT_TYPE_PPGTT_PTE_PT,
223                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
224         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
225                         GTT_TYPE_PPGTT_PDE_ENTRY,
226                         GTT_TYPE_PPGTT_PDE_PT,
227                         GTT_TYPE_PPGTT_PTE_PT,
228                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
229         /* We take IPS bit as 'PSE' for PTE level. */
230         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
231                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232                         GTT_TYPE_PPGTT_PTE_PT,
233                         GTT_TYPE_INVALID,
234                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
236                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
237                         GTT_TYPE_PPGTT_PTE_PT,
238                         GTT_TYPE_INVALID,
239                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
240         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
241                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
242                         GTT_TYPE_PPGTT_PTE_PT,
243                         GTT_TYPE_INVALID,
244                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
245         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
246                         GTT_TYPE_PPGTT_PDE_ENTRY,
247                         GTT_TYPE_PPGTT_PDE_PT,
248                         GTT_TYPE_INVALID,
249                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
250         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
251                         GTT_TYPE_PPGTT_PDP_ENTRY,
252                         GTT_TYPE_PPGTT_PDP_PT,
253                         GTT_TYPE_INVALID,
254                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
255         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
256                         GTT_TYPE_GGTT_PTE,
257                         GTT_TYPE_INVALID,
258                         GTT_TYPE_INVALID,
259                         GTT_TYPE_INVALID),
260 };
261
262 static inline int get_next_pt_type(int type)
263 {
264         return gtt_type_table[type].next_pt_type;
265 }
266
267 static inline int get_pt_type(int type)
268 {
269         return gtt_type_table[type].pt_type;
270 }
271
272 static inline int get_entry_type(int type)
273 {
274         return gtt_type_table[type].entry_type;
275 }
276
277 static inline int get_pse_type(int type)
278 {
279         return gtt_type_table[type].pse_entry_type;
280 }
281
282 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
283 {
284         void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
285
286         return readq(addr);
287 }
288
289 static void ggtt_invalidate(struct intel_gt *gt)
290 {
291         mmio_hw_access_pre(gt);
292         intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
293         mmio_hw_access_post(gt);
294 }
295
296 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
297 {
298         void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
299
300         writeq(pte, addr);
301 }
302
303 static inline int gtt_get_entry64(void *pt,
304                 struct intel_gvt_gtt_entry *e,
305                 unsigned long index, bool hypervisor_access, unsigned long gpa,
306                 struct intel_vgpu *vgpu)
307 {
308         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
309         int ret;
310
311         if (WARN_ON(info->gtt_entry_size != 8))
312                 return -EINVAL;
313
314         if (hypervisor_access) {
315                 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
316                                 (index << info->gtt_entry_size_shift),
317                                 &e->val64, 8);
318                 if (WARN_ON(ret))
319                         return ret;
320         } else if (!pt) {
321                 e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
322         } else {
323                 e->val64 = *((u64 *)pt + index);
324         }
325         return 0;
326 }
327
328 static inline int gtt_set_entry64(void *pt,
329                 struct intel_gvt_gtt_entry *e,
330                 unsigned long index, bool hypervisor_access, unsigned long gpa,
331                 struct intel_vgpu *vgpu)
332 {
333         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
334         int ret;
335
336         if (WARN_ON(info->gtt_entry_size != 8))
337                 return -EINVAL;
338
339         if (hypervisor_access) {
340                 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
341                                 (index << info->gtt_entry_size_shift),
342                                 &e->val64, 8);
343                 if (WARN_ON(ret))
344                         return ret;
345         } else if (!pt) {
346                 write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
347         } else {
348                 *((u64 *)pt + index) = e->val64;
349         }
350         return 0;
351 }
352
353 #define GTT_HAW 46
354
355 #define ADDR_1G_MASK    GENMASK_ULL(GTT_HAW - 1, 30)
356 #define ADDR_2M_MASK    GENMASK_ULL(GTT_HAW - 1, 21)
357 #define ADDR_64K_MASK   GENMASK_ULL(GTT_HAW - 1, 16)
358 #define ADDR_4K_MASK    GENMASK_ULL(GTT_HAW - 1, 12)
359
360 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
361 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
362
363 #define GTT_64K_PTE_STRIDE 16
364
365 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
366 {
367         unsigned long pfn;
368
369         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
370                 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
371         else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
372                 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
373         else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
374                 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
375         else
376                 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
377         return pfn;
378 }
379
380 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
381 {
382         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
383                 e->val64 &= ~ADDR_1G_MASK;
384                 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
385         } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
386                 e->val64 &= ~ADDR_2M_MASK;
387                 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
388         } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
389                 e->val64 &= ~ADDR_64K_MASK;
390                 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
391         } else {
392                 e->val64 &= ~ADDR_4K_MASK;
393                 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
394         }
395
396         e->val64 |= (pfn << PAGE_SHIFT);
397 }
398
399 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
400 {
401         return !!(e->val64 & _PAGE_PSE);
402 }
403
404 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
405 {
406         if (gen8_gtt_test_pse(e)) {
407                 switch (e->type) {
408                 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
409                         e->val64 &= ~_PAGE_PSE;
410                         e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
411                         break;
412                 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
413                         e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
414                         e->val64 &= ~_PAGE_PSE;
415                         break;
416                 default:
417                         WARN_ON(1);
418                 }
419         }
420 }
421
422 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
423 {
424         if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
425                 return false;
426
427         return !!(e->val64 & GEN8_PDE_IPS_64K);
428 }
429
430 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
431 {
432         if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
433                 return;
434
435         e->val64 &= ~GEN8_PDE_IPS_64K;
436 }
437
438 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
439 {
440         /*
441          * i915 writes PDP root pointer registers without present bit,
442          * it also works, so we need to treat root pointer entry
443          * specifically.
444          */
445         if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
446                         || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
447                 return (e->val64 != 0);
448         else
449                 return (e->val64 & _PAGE_PRESENT);
450 }
451
452 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
453 {
454         e->val64 &= ~_PAGE_PRESENT;
455 }
456
457 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
458 {
459         e->val64 |= _PAGE_PRESENT;
460 }
461
462 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
463 {
464         return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
465 }
466
467 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
468 {
469         e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
470 }
471
472 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
473 {
474         e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
475 }
476
477 /*
478  * Per-platform GMA routines.
479  */
480 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
481 {
482         unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
483
484         trace_gma_index(__func__, gma, x);
485         return x;
486 }
487
488 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
489 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
490 { \
491         unsigned long x = (exp); \
492         trace_gma_index(__func__, gma, x); \
493         return x; \
494 }
495
496 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
497 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
498 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
499 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
500 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
501
502 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
503         .get_entry = gtt_get_entry64,
504         .set_entry = gtt_set_entry64,
505         .clear_present = gtt_entry_clear_present,
506         .set_present = gtt_entry_set_present,
507         .test_present = gen8_gtt_test_present,
508         .test_pse = gen8_gtt_test_pse,
509         .clear_pse = gen8_gtt_clear_pse,
510         .clear_ips = gen8_gtt_clear_ips,
511         .test_ips = gen8_gtt_test_ips,
512         .clear_64k_splited = gen8_gtt_clear_64k_splited,
513         .set_64k_splited = gen8_gtt_set_64k_splited,
514         .test_64k_splited = gen8_gtt_test_64k_splited,
515         .get_pfn = gen8_gtt_get_pfn,
516         .set_pfn = gen8_gtt_set_pfn,
517 };
518
519 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
520         .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
521         .gma_to_pte_index = gen8_gma_to_pte_index,
522         .gma_to_pde_index = gen8_gma_to_pde_index,
523         .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
524         .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
525         .gma_to_pml4_index = gen8_gma_to_pml4_index,
526 };
527
528 /* Update entry type per pse and ips bit. */
529 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
530         struct intel_gvt_gtt_entry *entry, bool ips)
531 {
532         switch (entry->type) {
533         case GTT_TYPE_PPGTT_PDE_ENTRY:
534         case GTT_TYPE_PPGTT_PDP_ENTRY:
535                 if (pte_ops->test_pse(entry))
536                         entry->type = get_pse_type(entry->type);
537                 break;
538         case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
539                 if (ips)
540                         entry->type = get_pse_type(entry->type);
541                 break;
542         default:
543                 GEM_BUG_ON(!gtt_type_is_entry(entry->type));
544         }
545
546         GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
547 }
548
549 /*
550  * MM helpers.
551  */
552 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
553                 struct intel_gvt_gtt_entry *entry, unsigned long index,
554                 bool guest)
555 {
556         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
557
558         GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
559
560         entry->type = mm->ppgtt_mm.root_entry_type;
561         pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
562                            mm->ppgtt_mm.shadow_pdps,
563                            entry, index, false, 0, mm->vgpu);
564         update_entry_type_for_real(pte_ops, entry, false);
565 }
566
567 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
568                 struct intel_gvt_gtt_entry *entry, unsigned long index)
569 {
570         _ppgtt_get_root_entry(mm, entry, index, true);
571 }
572
573 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
574                 struct intel_gvt_gtt_entry *entry, unsigned long index)
575 {
576         _ppgtt_get_root_entry(mm, entry, index, false);
577 }
578
579 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
580                 struct intel_gvt_gtt_entry *entry, unsigned long index,
581                 bool guest)
582 {
583         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
584
585         pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
586                            mm->ppgtt_mm.shadow_pdps,
587                            entry, index, false, 0, mm->vgpu);
588 }
589
590 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
591                 struct intel_gvt_gtt_entry *entry, unsigned long index)
592 {
593         _ppgtt_set_root_entry(mm, entry, index, true);
594 }
595
596 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
597                 struct intel_gvt_gtt_entry *entry, unsigned long index)
598 {
599         _ppgtt_set_root_entry(mm, entry, index, false);
600 }
601
602 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
603                 struct intel_gvt_gtt_entry *entry, unsigned long index)
604 {
605         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
606
607         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
608
609         entry->type = GTT_TYPE_GGTT_PTE;
610         pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
611                            false, 0, mm->vgpu);
612 }
613
614 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
615                 struct intel_gvt_gtt_entry *entry, unsigned long index)
616 {
617         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
618
619         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
620
621         pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
622                            false, 0, mm->vgpu);
623 }
624
625 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
626                 struct intel_gvt_gtt_entry *entry, unsigned long index)
627 {
628         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
629
630         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
631
632         pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
633 }
634
635 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
636                 struct intel_gvt_gtt_entry *entry, unsigned long index)
637 {
638         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
639
640         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
641
642         pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
643 }
644
645 /*
646  * PPGTT shadow page table helpers.
647  */
648 static inline int ppgtt_spt_get_entry(
649                 struct intel_vgpu_ppgtt_spt *spt,
650                 void *page_table, int type,
651                 struct intel_gvt_gtt_entry *e, unsigned long index,
652                 bool guest)
653 {
654         struct intel_gvt *gvt = spt->vgpu->gvt;
655         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
656         int ret;
657
658         e->type = get_entry_type(type);
659
660         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
661                 return -EINVAL;
662
663         ret = ops->get_entry(page_table, e, index, guest,
664                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
665                         spt->vgpu);
666         if (ret)
667                 return ret;
668
669         update_entry_type_for_real(ops, e, guest ?
670                                    spt->guest_page.pde_ips : false);
671
672         gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
673                     type, e->type, index, e->val64);
674         return 0;
675 }
676
677 static inline int ppgtt_spt_set_entry(
678                 struct intel_vgpu_ppgtt_spt *spt,
679                 void *page_table, int type,
680                 struct intel_gvt_gtt_entry *e, unsigned long index,
681                 bool guest)
682 {
683         struct intel_gvt *gvt = spt->vgpu->gvt;
684         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
685
686         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
687                 return -EINVAL;
688
689         gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
690                     type, e->type, index, e->val64);
691
692         return ops->set_entry(page_table, e, index, guest,
693                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
694                         spt->vgpu);
695 }
696
697 #define ppgtt_get_guest_entry(spt, e, index) \
698         ppgtt_spt_get_entry(spt, NULL, \
699                 spt->guest_page.type, e, index, true)
700
701 #define ppgtt_set_guest_entry(spt, e, index) \
702         ppgtt_spt_set_entry(spt, NULL, \
703                 spt->guest_page.type, e, index, true)
704
705 #define ppgtt_get_shadow_entry(spt, e, index) \
706         ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
707                 spt->shadow_page.type, e, index, false)
708
709 #define ppgtt_set_shadow_entry(spt, e, index) \
710         ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
711                 spt->shadow_page.type, e, index, false)
712
713 static void *alloc_spt(gfp_t gfp_mask)
714 {
715         struct intel_vgpu_ppgtt_spt *spt;
716
717         spt = kzalloc(sizeof(*spt), gfp_mask);
718         if (!spt)
719                 return NULL;
720
721         spt->shadow_page.page = alloc_page(gfp_mask);
722         if (!spt->shadow_page.page) {
723                 kfree(spt);
724                 return NULL;
725         }
726         return spt;
727 }
728
729 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
730 {
731         __free_page(spt->shadow_page.page);
732         kfree(spt);
733 }
734
735 static int detach_oos_page(struct intel_vgpu *vgpu,
736                 struct intel_vgpu_oos_page *oos_page);
737
738 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
739 {
740         struct device *kdev = &spt->vgpu->gvt->gt->i915->drm.pdev->dev;
741
742         trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
743
744         dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
745                        PCI_DMA_BIDIRECTIONAL);
746
747         radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
748
749         if (spt->guest_page.gfn) {
750                 if (spt->guest_page.oos_page)
751                         detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
752
753                 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
754         }
755
756         list_del_init(&spt->post_shadow_list);
757         free_spt(spt);
758 }
759
760 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
761 {
762         struct intel_vgpu_ppgtt_spt *spt, *spn;
763         struct radix_tree_iter iter;
764         LIST_HEAD(all_spt);
765         void __rcu **slot;
766
767         rcu_read_lock();
768         radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
769                 spt = radix_tree_deref_slot(slot);
770                 list_move(&spt->post_shadow_list, &all_spt);
771         }
772         rcu_read_unlock();
773
774         list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
775                 ppgtt_free_spt(spt);
776 }
777
778 static int ppgtt_handle_guest_write_page_table_bytes(
779                 struct intel_vgpu_ppgtt_spt *spt,
780                 u64 pa, void *p_data, int bytes);
781
782 static int ppgtt_write_protection_handler(
783                 struct intel_vgpu_page_track *page_track,
784                 u64 gpa, void *data, int bytes)
785 {
786         struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
787
788         int ret;
789
790         if (bytes != 4 && bytes != 8)
791                 return -EINVAL;
792
793         ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
794         if (ret)
795                 return ret;
796         return ret;
797 }
798
799 /* Find a spt by guest gfn. */
800 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
801                 struct intel_vgpu *vgpu, unsigned long gfn)
802 {
803         struct intel_vgpu_page_track *track;
804
805         track = intel_vgpu_find_page_track(vgpu, gfn);
806         if (track && track->handler == ppgtt_write_protection_handler)
807                 return track->priv_data;
808
809         return NULL;
810 }
811
812 /* Find the spt by shadow page mfn. */
813 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
814                 struct intel_vgpu *vgpu, unsigned long mfn)
815 {
816         return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
817 }
818
819 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
820
821 /* Allocate shadow page table without guest page. */
822 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
823                 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
824 {
825         struct device *kdev = &vgpu->gvt->gt->i915->drm.pdev->dev;
826         struct intel_vgpu_ppgtt_spt *spt = NULL;
827         dma_addr_t daddr;
828         int ret;
829
830 retry:
831         spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
832         if (!spt) {
833                 if (reclaim_one_ppgtt_mm(vgpu->gvt))
834                         goto retry;
835
836                 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
837                 return ERR_PTR(-ENOMEM);
838         }
839
840         spt->vgpu = vgpu;
841         atomic_set(&spt->refcount, 1);
842         INIT_LIST_HEAD(&spt->post_shadow_list);
843
844         /*
845          * Init shadow_page.
846          */
847         spt->shadow_page.type = type;
848         daddr = dma_map_page(kdev, spt->shadow_page.page,
849                              0, 4096, PCI_DMA_BIDIRECTIONAL);
850         if (dma_mapping_error(kdev, daddr)) {
851                 gvt_vgpu_err("fail to map dma addr\n");
852                 ret = -EINVAL;
853                 goto err_free_spt;
854         }
855         spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
856         spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
857
858         ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
859         if (ret)
860                 goto err_unmap_dma;
861
862         return spt;
863
864 err_unmap_dma:
865         dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
866 err_free_spt:
867         free_spt(spt);
868         return ERR_PTR(ret);
869 }
870
871 /* Allocate shadow page table associated with specific gfn. */
872 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
873                 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
874                 unsigned long gfn, bool guest_pde_ips)
875 {
876         struct intel_vgpu_ppgtt_spt *spt;
877         int ret;
878
879         spt = ppgtt_alloc_spt(vgpu, type);
880         if (IS_ERR(spt))
881                 return spt;
882
883         /*
884          * Init guest_page.
885          */
886         ret = intel_vgpu_register_page_track(vgpu, gfn,
887                         ppgtt_write_protection_handler, spt);
888         if (ret) {
889                 ppgtt_free_spt(spt);
890                 return ERR_PTR(ret);
891         }
892
893         spt->guest_page.type = type;
894         spt->guest_page.gfn = gfn;
895         spt->guest_page.pde_ips = guest_pde_ips;
896
897         trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
898
899         return spt;
900 }
901
902 #define pt_entry_size_shift(spt) \
903         ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
904
905 #define pt_entries(spt) \
906         (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
907
908 #define for_each_present_guest_entry(spt, e, i) \
909         for (i = 0; i < pt_entries(spt); \
910              i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
911                 if (!ppgtt_get_guest_entry(spt, e, i) && \
912                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
913
914 #define for_each_present_shadow_entry(spt, e, i) \
915         for (i = 0; i < pt_entries(spt); \
916              i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
917                 if (!ppgtt_get_shadow_entry(spt, e, i) && \
918                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
919
920 #define for_each_shadow_entry(spt, e, i) \
921         for (i = 0; i < pt_entries(spt); \
922              i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
923                 if (!ppgtt_get_shadow_entry(spt, e, i))
924
925 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
926 {
927         int v = atomic_read(&spt->refcount);
928
929         trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
930         atomic_inc(&spt->refcount);
931 }
932
933 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
934 {
935         int v = atomic_read(&spt->refcount);
936
937         trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
938         return atomic_dec_return(&spt->refcount);
939 }
940
941 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
942
943 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
944                 struct intel_gvt_gtt_entry *e)
945 {
946         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
947         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
948         struct intel_vgpu_ppgtt_spt *s;
949         enum intel_gvt_gtt_type cur_pt_type;
950
951         GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
952
953         if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
954                 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
955                 cur_pt_type = get_next_pt_type(e->type);
956
957                 if (!gtt_type_is_pt(cur_pt_type) ||
958                                 !gtt_type_is_pt(cur_pt_type + 1)) {
959                         drm_WARN(&i915->drm, 1,
960                                  "Invalid page table type, cur_pt_type is: %d\n",
961                                  cur_pt_type);
962                         return -EINVAL;
963                 }
964
965                 cur_pt_type += 1;
966
967                 if (ops->get_pfn(e) ==
968                         vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
969                         return 0;
970         }
971         s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
972         if (!s) {
973                 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
974                                 ops->get_pfn(e));
975                 return -ENXIO;
976         }
977         return ppgtt_invalidate_spt(s);
978 }
979
980 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
981                 struct intel_gvt_gtt_entry *entry)
982 {
983         struct intel_vgpu *vgpu = spt->vgpu;
984         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
985         unsigned long pfn;
986         int type;
987
988         pfn = ops->get_pfn(entry);
989         type = spt->shadow_page.type;
990
991         /* Uninitialized spte or unshadowed spte. */
992         if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
993                 return;
994
995         intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
996 }
997
998 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
999 {
1000         struct intel_vgpu *vgpu = spt->vgpu;
1001         struct intel_gvt_gtt_entry e;
1002         unsigned long index;
1003         int ret;
1004
1005         trace_spt_change(spt->vgpu->id, "die", spt,
1006                         spt->guest_page.gfn, spt->shadow_page.type);
1007
1008         if (ppgtt_put_spt(spt) > 0)
1009                 return 0;
1010
1011         for_each_present_shadow_entry(spt, &e, index) {
1012                 switch (e.type) {
1013                 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1014                         gvt_vdbg_mm("invalidate 4K entry\n");
1015                         ppgtt_invalidate_pte(spt, &e);
1016                         break;
1017                 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1018                         /* We don't setup 64K shadow entry so far. */
1019                         WARN(1, "suspicious 64K gtt entry\n");
1020                         continue;
1021                 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1022                         gvt_vdbg_mm("invalidate 2M entry\n");
1023                         continue;
1024                 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1025                         WARN(1, "GVT doesn't support 1GB page\n");
1026                         continue;
1027                 case GTT_TYPE_PPGTT_PML4_ENTRY:
1028                 case GTT_TYPE_PPGTT_PDP_ENTRY:
1029                 case GTT_TYPE_PPGTT_PDE_ENTRY:
1030                         gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1031                         ret = ppgtt_invalidate_spt_by_shadow_entry(
1032                                         spt->vgpu, &e);
1033                         if (ret)
1034                                 goto fail;
1035                         break;
1036                 default:
1037                         GEM_BUG_ON(1);
1038                 }
1039         }
1040
1041         trace_spt_change(spt->vgpu->id, "release", spt,
1042                          spt->guest_page.gfn, spt->shadow_page.type);
1043         ppgtt_free_spt(spt);
1044         return 0;
1045 fail:
1046         gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1047                         spt, e.val64, e.type);
1048         return ret;
1049 }
1050
1051 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1052 {
1053         struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1054
1055         if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1056                 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1057                         GAMW_ECO_ENABLE_64K_IPS_FIELD;
1058
1059                 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1060         } else if (INTEL_GEN(dev_priv) >= 11) {
1061                 /* 64K paging only controlled by IPS bit in PTE now. */
1062                 return true;
1063         } else
1064                 return false;
1065 }
1066
1067 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1068
1069 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1070                 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1071 {
1072         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1073         struct intel_vgpu_ppgtt_spt *spt = NULL;
1074         bool ips = false;
1075         int ret;
1076
1077         GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1078
1079         if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1080                 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1081
1082         spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1083         if (spt) {
1084                 ppgtt_get_spt(spt);
1085
1086                 if (ips != spt->guest_page.pde_ips) {
1087                         spt->guest_page.pde_ips = ips;
1088
1089                         gvt_dbg_mm("reshadow PDE since ips changed\n");
1090                         clear_page(spt->shadow_page.vaddr);
1091                         ret = ppgtt_populate_spt(spt);
1092                         if (ret) {
1093                                 ppgtt_put_spt(spt);
1094                                 goto err;
1095                         }
1096                 }
1097         } else {
1098                 int type = get_next_pt_type(we->type);
1099
1100                 if (!gtt_type_is_pt(type)) {
1101                         ret = -EINVAL;
1102                         goto err;
1103                 }
1104
1105                 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1106                 if (IS_ERR(spt)) {
1107                         ret = PTR_ERR(spt);
1108                         goto err;
1109                 }
1110
1111                 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1112                 if (ret)
1113                         goto err_free_spt;
1114
1115                 ret = ppgtt_populate_spt(spt);
1116                 if (ret)
1117                         goto err_free_spt;
1118
1119                 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1120                                  spt->shadow_page.type);
1121         }
1122         return spt;
1123
1124 err_free_spt:
1125         ppgtt_free_spt(spt);
1126         spt = NULL;
1127 err:
1128         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1129                      spt, we->val64, we->type);
1130         return ERR_PTR(ret);
1131 }
1132
1133 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1134                 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1135 {
1136         struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1137
1138         se->type = ge->type;
1139         se->val64 = ge->val64;
1140
1141         /* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1142         if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1143                 ops->clear_ips(se);
1144
1145         ops->set_pfn(se, s->shadow_page.mfn);
1146 }
1147
1148 /**
1149  * Check if can do 2M page
1150  * @vgpu: target vgpu
1151  * @entry: target pfn's gtt entry
1152  *
1153  * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1154  * negtive if found err.
1155  */
1156 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1157         struct intel_gvt_gtt_entry *entry)
1158 {
1159         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1160         unsigned long pfn;
1161
1162         if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M))
1163                 return 0;
1164
1165         pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1166         if (pfn == INTEL_GVT_INVALID_ADDR)
1167                 return -EINVAL;
1168
1169         return PageTransHuge(pfn_to_page(pfn));
1170 }
1171
1172 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1173         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1174         struct intel_gvt_gtt_entry *se)
1175 {
1176         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1177         struct intel_vgpu_ppgtt_spt *sub_spt;
1178         struct intel_gvt_gtt_entry sub_se;
1179         unsigned long start_gfn;
1180         dma_addr_t dma_addr;
1181         unsigned long sub_index;
1182         int ret;
1183
1184         gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1185
1186         start_gfn = ops->get_pfn(se);
1187
1188         sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1189         if (IS_ERR(sub_spt))
1190                 return PTR_ERR(sub_spt);
1191
1192         for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1193                 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1194                                 start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1195                 if (ret) {
1196                         ppgtt_invalidate_spt(spt);
1197                         return ret;
1198                 }
1199                 sub_se.val64 = se->val64;
1200
1201                 /* Copy the PAT field from PDE. */
1202                 sub_se.val64 &= ~_PAGE_PAT;
1203                 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1204
1205                 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1206                 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1207         }
1208
1209         /* Clear dirty field. */
1210         se->val64 &= ~_PAGE_DIRTY;
1211
1212         ops->clear_pse(se);
1213         ops->clear_ips(se);
1214         ops->set_pfn(se, sub_spt->shadow_page.mfn);
1215         ppgtt_set_shadow_entry(spt, se, index);
1216         return 0;
1217 }
1218
1219 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1220         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1221         struct intel_gvt_gtt_entry *se)
1222 {
1223         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1224         struct intel_gvt_gtt_entry entry = *se;
1225         unsigned long start_gfn;
1226         dma_addr_t dma_addr;
1227         int i, ret;
1228
1229         gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1230
1231         GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1232
1233         start_gfn = ops->get_pfn(se);
1234
1235         entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1236         ops->set_64k_splited(&entry);
1237
1238         for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1239                 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1240                                         start_gfn + i, PAGE_SIZE, &dma_addr);
1241                 if (ret)
1242                         return ret;
1243
1244                 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1245                 ppgtt_set_shadow_entry(spt, &entry, index + i);
1246         }
1247         return 0;
1248 }
1249
1250 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1251         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1252         struct intel_gvt_gtt_entry *ge)
1253 {
1254         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1255         struct intel_gvt_gtt_entry se = *ge;
1256         unsigned long gfn, page_size = PAGE_SIZE;
1257         dma_addr_t dma_addr;
1258         int ret;
1259
1260         if (!pte_ops->test_present(ge))
1261                 return 0;
1262
1263         gfn = pte_ops->get_pfn(ge);
1264
1265         switch (ge->type) {
1266         case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1267                 gvt_vdbg_mm("shadow 4K gtt entry\n");
1268                 break;
1269         case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1270                 gvt_vdbg_mm("shadow 64K gtt entry\n");
1271                 /*
1272                  * The layout of 64K page is special, the page size is
1273                  * controlled by uper PDE. To be simple, we always split
1274                  * 64K page to smaller 4K pages in shadow PT.
1275                  */
1276                 return split_64KB_gtt_entry(vgpu, spt, index, &se);
1277         case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1278                 gvt_vdbg_mm("shadow 2M gtt entry\n");
1279                 ret = is_2MB_gtt_possible(vgpu, ge);
1280                 if (ret == 0)
1281                         return split_2MB_gtt_entry(vgpu, spt, index, &se);
1282                 else if (ret < 0)
1283                         return ret;
1284                 page_size = I915_GTT_PAGE_SIZE_2M;
1285                 break;
1286         case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1287                 gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1288                 return -EINVAL;
1289         default:
1290                 GEM_BUG_ON(1);
1291         }
1292
1293         /* direct shadow */
1294         ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1295                                                       &dma_addr);
1296         if (ret)
1297                 return -ENXIO;
1298
1299         pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1300         ppgtt_set_shadow_entry(spt, &se, index);
1301         return 0;
1302 }
1303
1304 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1305 {
1306         struct intel_vgpu *vgpu = spt->vgpu;
1307         struct intel_gvt *gvt = vgpu->gvt;
1308         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1309         struct intel_vgpu_ppgtt_spt *s;
1310         struct intel_gvt_gtt_entry se, ge;
1311         unsigned long gfn, i;
1312         int ret;
1313
1314         trace_spt_change(spt->vgpu->id, "born", spt,
1315                          spt->guest_page.gfn, spt->shadow_page.type);
1316
1317         for_each_present_guest_entry(spt, &ge, i) {
1318                 if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1319                         s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1320                         if (IS_ERR(s)) {
1321                                 ret = PTR_ERR(s);
1322                                 goto fail;
1323                         }
1324                         ppgtt_get_shadow_entry(spt, &se, i);
1325                         ppgtt_generate_shadow_entry(&se, s, &ge);
1326                         ppgtt_set_shadow_entry(spt, &se, i);
1327                 } else {
1328                         gfn = ops->get_pfn(&ge);
1329                         if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1330                                 ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1331                                 ppgtt_set_shadow_entry(spt, &se, i);
1332                                 continue;
1333                         }
1334
1335                         ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1336                         if (ret)
1337                                 goto fail;
1338                 }
1339         }
1340         return 0;
1341 fail:
1342         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1343                         spt, ge.val64, ge.type);
1344         return ret;
1345 }
1346
1347 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1348                 struct intel_gvt_gtt_entry *se, unsigned long index)
1349 {
1350         struct intel_vgpu *vgpu = spt->vgpu;
1351         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1352         int ret;
1353
1354         trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1355                                spt->shadow_page.type, se->val64, index);
1356
1357         gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1358                     se->type, index, se->val64);
1359
1360         if (!ops->test_present(se))
1361                 return 0;
1362
1363         if (ops->get_pfn(se) ==
1364             vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1365                 return 0;
1366
1367         if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1368                 struct intel_vgpu_ppgtt_spt *s =
1369                         intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1370                 if (!s) {
1371                         gvt_vgpu_err("fail to find guest page\n");
1372                         ret = -ENXIO;
1373                         goto fail;
1374                 }
1375                 ret = ppgtt_invalidate_spt(s);
1376                 if (ret)
1377                         goto fail;
1378         } else {
1379                 /* We don't setup 64K shadow entry so far. */
1380                 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1381                      "suspicious 64K entry\n");
1382                 ppgtt_invalidate_pte(spt, se);
1383         }
1384
1385         return 0;
1386 fail:
1387         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1388                         spt, se->val64, se->type);
1389         return ret;
1390 }
1391
1392 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1393                 struct intel_gvt_gtt_entry *we, unsigned long index)
1394 {
1395         struct intel_vgpu *vgpu = spt->vgpu;
1396         struct intel_gvt_gtt_entry m;
1397         struct intel_vgpu_ppgtt_spt *s;
1398         int ret;
1399
1400         trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1401                                we->val64, index);
1402
1403         gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1404                     we->type, index, we->val64);
1405
1406         if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1407                 s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1408                 if (IS_ERR(s)) {
1409                         ret = PTR_ERR(s);
1410                         goto fail;
1411                 }
1412                 ppgtt_get_shadow_entry(spt, &m, index);
1413                 ppgtt_generate_shadow_entry(&m, s, we);
1414                 ppgtt_set_shadow_entry(spt, &m, index);
1415         } else {
1416                 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1417                 if (ret)
1418                         goto fail;
1419         }
1420         return 0;
1421 fail:
1422         gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1423                 spt, we->val64, we->type);
1424         return ret;
1425 }
1426
1427 static int sync_oos_page(struct intel_vgpu *vgpu,
1428                 struct intel_vgpu_oos_page *oos_page)
1429 {
1430         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1431         struct intel_gvt *gvt = vgpu->gvt;
1432         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1433         struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1434         struct intel_gvt_gtt_entry old, new;
1435         int index;
1436         int ret;
1437
1438         trace_oos_change(vgpu->id, "sync", oos_page->id,
1439                          spt, spt->guest_page.type);
1440
1441         old.type = new.type = get_entry_type(spt->guest_page.type);
1442         old.val64 = new.val64 = 0;
1443
1444         for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1445                                 info->gtt_entry_size_shift); index++) {
1446                 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1447                 ops->get_entry(NULL, &new, index, true,
1448                                spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1449
1450                 if (old.val64 == new.val64
1451                         && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1452                         continue;
1453
1454                 trace_oos_sync(vgpu->id, oos_page->id,
1455                                 spt, spt->guest_page.type,
1456                                 new.val64, index);
1457
1458                 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1459                 if (ret)
1460                         return ret;
1461
1462                 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1463         }
1464
1465         spt->guest_page.write_cnt = 0;
1466         list_del_init(&spt->post_shadow_list);
1467         return 0;
1468 }
1469
1470 static int detach_oos_page(struct intel_vgpu *vgpu,
1471                 struct intel_vgpu_oos_page *oos_page)
1472 {
1473         struct intel_gvt *gvt = vgpu->gvt;
1474         struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1475
1476         trace_oos_change(vgpu->id, "detach", oos_page->id,
1477                          spt, spt->guest_page.type);
1478
1479         spt->guest_page.write_cnt = 0;
1480         spt->guest_page.oos_page = NULL;
1481         oos_page->spt = NULL;
1482
1483         list_del_init(&oos_page->vm_list);
1484         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1485
1486         return 0;
1487 }
1488
1489 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1490                 struct intel_vgpu_ppgtt_spt *spt)
1491 {
1492         struct intel_gvt *gvt = spt->vgpu->gvt;
1493         int ret;
1494
1495         ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1496                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1497                         oos_page->mem, I915_GTT_PAGE_SIZE);
1498         if (ret)
1499                 return ret;
1500
1501         oos_page->spt = spt;
1502         spt->guest_page.oos_page = oos_page;
1503
1504         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1505
1506         trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1507                          spt, spt->guest_page.type);
1508         return 0;
1509 }
1510
1511 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1512 {
1513         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1514         int ret;
1515
1516         ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1517         if (ret)
1518                 return ret;
1519
1520         trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1521                          spt, spt->guest_page.type);
1522
1523         list_del_init(&oos_page->vm_list);
1524         return sync_oos_page(spt->vgpu, oos_page);
1525 }
1526
1527 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1528 {
1529         struct intel_gvt *gvt = spt->vgpu->gvt;
1530         struct intel_gvt_gtt *gtt = &gvt->gtt;
1531         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1532         int ret;
1533
1534         WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1535
1536         if (list_empty(&gtt->oos_page_free_list_head)) {
1537                 oos_page = container_of(gtt->oos_page_use_list_head.next,
1538                         struct intel_vgpu_oos_page, list);
1539                 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1540                 if (ret)
1541                         return ret;
1542                 ret = detach_oos_page(spt->vgpu, oos_page);
1543                 if (ret)
1544                         return ret;
1545         } else
1546                 oos_page = container_of(gtt->oos_page_free_list_head.next,
1547                         struct intel_vgpu_oos_page, list);
1548         return attach_oos_page(oos_page, spt);
1549 }
1550
1551 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1552 {
1553         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1554
1555         if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1556                 return -EINVAL;
1557
1558         trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1559                          spt, spt->guest_page.type);
1560
1561         list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1562         return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1563 }
1564
1565 /**
1566  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1567  * @vgpu: a vGPU
1568  *
1569  * This function is called before submitting a guest workload to host,
1570  * to sync all the out-of-synced shadow for vGPU
1571  *
1572  * Returns:
1573  * Zero on success, negative error code if failed.
1574  */
1575 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1576 {
1577         struct list_head *pos, *n;
1578         struct intel_vgpu_oos_page *oos_page;
1579         int ret;
1580
1581         if (!enable_out_of_sync)
1582                 return 0;
1583
1584         list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1585                 oos_page = container_of(pos,
1586                                 struct intel_vgpu_oos_page, vm_list);
1587                 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1588                 if (ret)
1589                         return ret;
1590         }
1591         return 0;
1592 }
1593
1594 /*
1595  * The heart of PPGTT shadow page table.
1596  */
1597 static int ppgtt_handle_guest_write_page_table(
1598                 struct intel_vgpu_ppgtt_spt *spt,
1599                 struct intel_gvt_gtt_entry *we, unsigned long index)
1600 {
1601         struct intel_vgpu *vgpu = spt->vgpu;
1602         int type = spt->shadow_page.type;
1603         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1604         struct intel_gvt_gtt_entry old_se;
1605         int new_present;
1606         int i, ret;
1607
1608         new_present = ops->test_present(we);
1609
1610         /*
1611          * Adding the new entry first and then removing the old one, that can
1612          * guarantee the ppgtt table is validated during the window between
1613          * adding and removal.
1614          */
1615         ppgtt_get_shadow_entry(spt, &old_se, index);
1616
1617         if (new_present) {
1618                 ret = ppgtt_handle_guest_entry_add(spt, we, index);
1619                 if (ret)
1620                         goto fail;
1621         }
1622
1623         ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1624         if (ret)
1625                 goto fail;
1626
1627         if (!new_present) {
1628                 /* For 64KB splited entries, we need clear them all. */
1629                 if (ops->test_64k_splited(&old_se) &&
1630                     !(index % GTT_64K_PTE_STRIDE)) {
1631                         gvt_vdbg_mm("remove splited 64K shadow entries\n");
1632                         for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1633                                 ops->clear_64k_splited(&old_se);
1634                                 ops->set_pfn(&old_se,
1635                                         vgpu->gtt.scratch_pt[type].page_mfn);
1636                                 ppgtt_set_shadow_entry(spt, &old_se, index + i);
1637                         }
1638                 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1639                            old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1640                         ops->clear_pse(&old_se);
1641                         ops->set_pfn(&old_se,
1642                                      vgpu->gtt.scratch_pt[type].page_mfn);
1643                         ppgtt_set_shadow_entry(spt, &old_se, index);
1644                 } else {
1645                         ops->set_pfn(&old_se,
1646                                      vgpu->gtt.scratch_pt[type].page_mfn);
1647                         ppgtt_set_shadow_entry(spt, &old_se, index);
1648                 }
1649         }
1650
1651         return 0;
1652 fail:
1653         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1654                         spt, we->val64, we->type);
1655         return ret;
1656 }
1657
1658
1659
1660 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1661 {
1662         return enable_out_of_sync
1663                 && gtt_type_is_pte_pt(spt->guest_page.type)
1664                 && spt->guest_page.write_cnt >= 2;
1665 }
1666
1667 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1668                 unsigned long index)
1669 {
1670         set_bit(index, spt->post_shadow_bitmap);
1671         if (!list_empty(&spt->post_shadow_list))
1672                 return;
1673
1674         list_add_tail(&spt->post_shadow_list,
1675                         &spt->vgpu->gtt.post_shadow_list_head);
1676 }
1677
1678 /**
1679  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1680  * @vgpu: a vGPU
1681  *
1682  * This function is called before submitting a guest workload to host,
1683  * to flush all the post shadows for a vGPU.
1684  *
1685  * Returns:
1686  * Zero on success, negative error code if failed.
1687  */
1688 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1689 {
1690         struct list_head *pos, *n;
1691         struct intel_vgpu_ppgtt_spt *spt;
1692         struct intel_gvt_gtt_entry ge;
1693         unsigned long index;
1694         int ret;
1695
1696         list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1697                 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1698                                 post_shadow_list);
1699
1700                 for_each_set_bit(index, spt->post_shadow_bitmap,
1701                                 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1702                         ppgtt_get_guest_entry(spt, &ge, index);
1703
1704                         ret = ppgtt_handle_guest_write_page_table(spt,
1705                                                         &ge, index);
1706                         if (ret)
1707                                 return ret;
1708                         clear_bit(index, spt->post_shadow_bitmap);
1709                 }
1710                 list_del_init(&spt->post_shadow_list);
1711         }
1712         return 0;
1713 }
1714
1715 static int ppgtt_handle_guest_write_page_table_bytes(
1716                 struct intel_vgpu_ppgtt_spt *spt,
1717                 u64 pa, void *p_data, int bytes)
1718 {
1719         struct intel_vgpu *vgpu = spt->vgpu;
1720         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1721         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1722         struct intel_gvt_gtt_entry we, se;
1723         unsigned long index;
1724         int ret;
1725
1726         index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1727
1728         ppgtt_get_guest_entry(spt, &we, index);
1729
1730         /*
1731          * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1732          * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1733          * ignored.
1734          */
1735         if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1736             (index % GTT_64K_PTE_STRIDE)) {
1737                 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1738                             index);
1739                 return 0;
1740         }
1741
1742         if (bytes == info->gtt_entry_size) {
1743                 ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1744                 if (ret)
1745                         return ret;
1746         } else {
1747                 if (!test_bit(index, spt->post_shadow_bitmap)) {
1748                         int type = spt->shadow_page.type;
1749
1750                         ppgtt_get_shadow_entry(spt, &se, index);
1751                         ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1752                         if (ret)
1753                                 return ret;
1754                         ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1755                         ppgtt_set_shadow_entry(spt, &se, index);
1756                 }
1757                 ppgtt_set_post_shadow(spt, index);
1758         }
1759
1760         if (!enable_out_of_sync)
1761                 return 0;
1762
1763         spt->guest_page.write_cnt++;
1764
1765         if (spt->guest_page.oos_page)
1766                 ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1767                                 false, 0, vgpu);
1768
1769         if (can_do_out_of_sync(spt)) {
1770                 if (!spt->guest_page.oos_page)
1771                         ppgtt_allocate_oos_page(spt);
1772
1773                 ret = ppgtt_set_guest_page_oos(spt);
1774                 if (ret < 0)
1775                         return ret;
1776         }
1777         return 0;
1778 }
1779
1780 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1781 {
1782         struct intel_vgpu *vgpu = mm->vgpu;
1783         struct intel_gvt *gvt = vgpu->gvt;
1784         struct intel_gvt_gtt *gtt = &gvt->gtt;
1785         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1786         struct intel_gvt_gtt_entry se;
1787         int index;
1788
1789         if (!mm->ppgtt_mm.shadowed)
1790                 return;
1791
1792         for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1793                 ppgtt_get_shadow_root_entry(mm, &se, index);
1794
1795                 if (!ops->test_present(&se))
1796                         continue;
1797
1798                 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1799                 se.val64 = 0;
1800                 ppgtt_set_shadow_root_entry(mm, &se, index);
1801
1802                 trace_spt_guest_change(vgpu->id, "destroy root pointer",
1803                                        NULL, se.type, se.val64, index);
1804         }
1805
1806         mm->ppgtt_mm.shadowed = false;
1807 }
1808
1809
1810 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1811 {
1812         struct intel_vgpu *vgpu = mm->vgpu;
1813         struct intel_gvt *gvt = vgpu->gvt;
1814         struct intel_gvt_gtt *gtt = &gvt->gtt;
1815         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1816         struct intel_vgpu_ppgtt_spt *spt;
1817         struct intel_gvt_gtt_entry ge, se;
1818         int index, ret;
1819
1820         if (mm->ppgtt_mm.shadowed)
1821                 return 0;
1822
1823         mm->ppgtt_mm.shadowed = true;
1824
1825         for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1826                 ppgtt_get_guest_root_entry(mm, &ge, index);
1827
1828                 if (!ops->test_present(&ge))
1829                         continue;
1830
1831                 trace_spt_guest_change(vgpu->id, __func__, NULL,
1832                                        ge.type, ge.val64, index);
1833
1834                 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1835                 if (IS_ERR(spt)) {
1836                         gvt_vgpu_err("fail to populate guest root pointer\n");
1837                         ret = PTR_ERR(spt);
1838                         goto fail;
1839                 }
1840                 ppgtt_generate_shadow_entry(&se, spt, &ge);
1841                 ppgtt_set_shadow_root_entry(mm, &se, index);
1842
1843                 trace_spt_guest_change(vgpu->id, "populate root pointer",
1844                                        NULL, se.type, se.val64, index);
1845         }
1846
1847         return 0;
1848 fail:
1849         invalidate_ppgtt_mm(mm);
1850         return ret;
1851 }
1852
1853 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1854 {
1855         struct intel_vgpu_mm *mm;
1856
1857         mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1858         if (!mm)
1859                 return NULL;
1860
1861         mm->vgpu = vgpu;
1862         kref_init(&mm->ref);
1863         atomic_set(&mm->pincount, 0);
1864
1865         return mm;
1866 }
1867
1868 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1869 {
1870         kfree(mm);
1871 }
1872
1873 /**
1874  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1875  * @vgpu: a vGPU
1876  * @root_entry_type: ppgtt root entry type
1877  * @pdps: guest pdps.
1878  *
1879  * This function is used to create a ppgtt mm object for a vGPU.
1880  *
1881  * Returns:
1882  * Zero on success, negative error code in pointer if failed.
1883  */
1884 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1885                 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1886 {
1887         struct intel_gvt *gvt = vgpu->gvt;
1888         struct intel_vgpu_mm *mm;
1889         int ret;
1890
1891         mm = vgpu_alloc_mm(vgpu);
1892         if (!mm)
1893                 return ERR_PTR(-ENOMEM);
1894
1895         mm->type = INTEL_GVT_MM_PPGTT;
1896
1897         GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1898                    root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1899         mm->ppgtt_mm.root_entry_type = root_entry_type;
1900
1901         INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1902         INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1903
1904         if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1905                 mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1906         else
1907                 memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1908                        sizeof(mm->ppgtt_mm.guest_pdps));
1909
1910         ret = shadow_ppgtt_mm(mm);
1911         if (ret) {
1912                 gvt_vgpu_err("failed to shadow ppgtt mm\n");
1913                 vgpu_free_mm(mm);
1914                 return ERR_PTR(ret);
1915         }
1916
1917         list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1918
1919         mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1920         list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1921         mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1922
1923         return mm;
1924 }
1925
1926 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1927 {
1928         struct intel_vgpu_mm *mm;
1929         unsigned long nr_entries;
1930
1931         mm = vgpu_alloc_mm(vgpu);
1932         if (!mm)
1933                 return ERR_PTR(-ENOMEM);
1934
1935         mm->type = INTEL_GVT_MM_GGTT;
1936
1937         nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1938         mm->ggtt_mm.virtual_ggtt =
1939                 vzalloc(array_size(nr_entries,
1940                                    vgpu->gvt->device_info.gtt_entry_size));
1941         if (!mm->ggtt_mm.virtual_ggtt) {
1942                 vgpu_free_mm(mm);
1943                 return ERR_PTR(-ENOMEM);
1944         }
1945
1946         return mm;
1947 }
1948
1949 /**
1950  * _intel_vgpu_mm_release - destroy a mm object
1951  * @mm_ref: a kref object
1952  *
1953  * This function is used to destroy a mm object for vGPU
1954  *
1955  */
1956 void _intel_vgpu_mm_release(struct kref *mm_ref)
1957 {
1958         struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1959
1960         if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1961                 gvt_err("vgpu mm pin count bug detected\n");
1962
1963         if (mm->type == INTEL_GVT_MM_PPGTT) {
1964                 list_del(&mm->ppgtt_mm.list);
1965
1966                 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1967                 list_del(&mm->ppgtt_mm.lru_list);
1968                 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1969
1970                 invalidate_ppgtt_mm(mm);
1971         } else {
1972                 vfree(mm->ggtt_mm.virtual_ggtt);
1973         }
1974
1975         vgpu_free_mm(mm);
1976 }
1977
1978 /**
1979  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1980  * @mm: a vGPU mm object
1981  *
1982  * This function is called when user doesn't want to use a vGPU mm object
1983  */
1984 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1985 {
1986         atomic_dec_if_positive(&mm->pincount);
1987 }
1988
1989 /**
1990  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1991  * @mm: target vgpu mm
1992  *
1993  * This function is called when user wants to use a vGPU mm object. If this
1994  * mm object hasn't been shadowed yet, the shadow will be populated at this
1995  * time.
1996  *
1997  * Returns:
1998  * Zero on success, negative error code if failed.
1999  */
2000 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
2001 {
2002         int ret;
2003
2004         atomic_inc(&mm->pincount);
2005
2006         if (mm->type == INTEL_GVT_MM_PPGTT) {
2007                 ret = shadow_ppgtt_mm(mm);
2008                 if (ret)
2009                         return ret;
2010
2011                 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2012                 list_move_tail(&mm->ppgtt_mm.lru_list,
2013                                &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2014                 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2015         }
2016
2017         return 0;
2018 }
2019
2020 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2021 {
2022         struct intel_vgpu_mm *mm;
2023         struct list_head *pos, *n;
2024
2025         mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2026
2027         list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2028                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2029
2030                 if (atomic_read(&mm->pincount))
2031                         continue;
2032
2033                 list_del_init(&mm->ppgtt_mm.lru_list);
2034                 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2035                 invalidate_ppgtt_mm(mm);
2036                 return 1;
2037         }
2038         mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2039         return 0;
2040 }
2041
2042 /*
2043  * GMA translation APIs.
2044  */
2045 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2046                 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2047 {
2048         struct intel_vgpu *vgpu = mm->vgpu;
2049         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2050         struct intel_vgpu_ppgtt_spt *s;
2051
2052         s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2053         if (!s)
2054                 return -ENXIO;
2055
2056         if (!guest)
2057                 ppgtt_get_shadow_entry(s, e, index);
2058         else
2059                 ppgtt_get_guest_entry(s, e, index);
2060         return 0;
2061 }
2062
2063 /**
2064  * intel_vgpu_gma_to_gpa - translate a gma to GPA
2065  * @mm: mm object. could be a PPGTT or GGTT mm object
2066  * @gma: graphics memory address in this mm object
2067  *
2068  * This function is used to translate a graphics memory address in specific
2069  * graphics memory space to guest physical address.
2070  *
2071  * Returns:
2072  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2073  */
2074 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2075 {
2076         struct intel_vgpu *vgpu = mm->vgpu;
2077         struct intel_gvt *gvt = vgpu->gvt;
2078         struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2079         struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2080         unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2081         unsigned long gma_index[4];
2082         struct intel_gvt_gtt_entry e;
2083         int i, levels = 0;
2084         int ret;
2085
2086         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2087                    mm->type != INTEL_GVT_MM_PPGTT);
2088
2089         if (mm->type == INTEL_GVT_MM_GGTT) {
2090                 if (!vgpu_gmadr_is_valid(vgpu, gma))
2091                         goto err;
2092
2093                 ggtt_get_guest_entry(mm, &e,
2094                         gma_ops->gma_to_ggtt_pte_index(gma));
2095
2096                 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2097                         + (gma & ~I915_GTT_PAGE_MASK);
2098
2099                 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2100         } else {
2101                 switch (mm->ppgtt_mm.root_entry_type) {
2102                 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2103                         ppgtt_get_shadow_root_entry(mm, &e, 0);
2104
2105                         gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2106                         gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2107                         gma_index[2] = gma_ops->gma_to_pde_index(gma);
2108                         gma_index[3] = gma_ops->gma_to_pte_index(gma);
2109                         levels = 4;
2110                         break;
2111                 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2112                         ppgtt_get_shadow_root_entry(mm, &e,
2113                                         gma_ops->gma_to_l3_pdp_index(gma));
2114
2115                         gma_index[0] = gma_ops->gma_to_pde_index(gma);
2116                         gma_index[1] = gma_ops->gma_to_pte_index(gma);
2117                         levels = 2;
2118                         break;
2119                 default:
2120                         GEM_BUG_ON(1);
2121                 }
2122
2123                 /* walk the shadow page table and get gpa from guest entry */
2124                 for (i = 0; i < levels; i++) {
2125                         ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2126                                 (i == levels - 1));
2127                         if (ret)
2128                                 goto err;
2129
2130                         if (!pte_ops->test_present(&e)) {
2131                                 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2132                                 goto err;
2133                         }
2134                 }
2135
2136                 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2137                                         (gma & ~I915_GTT_PAGE_MASK);
2138                 trace_gma_translate(vgpu->id, "ppgtt", 0,
2139                                     mm->ppgtt_mm.root_entry_type, gma, gpa);
2140         }
2141
2142         return gpa;
2143 err:
2144         gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2145         return INTEL_GVT_INVALID_ADDR;
2146 }
2147
2148 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2149         unsigned int off, void *p_data, unsigned int bytes)
2150 {
2151         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2152         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2153         unsigned long index = off >> info->gtt_entry_size_shift;
2154         unsigned long gma;
2155         struct intel_gvt_gtt_entry e;
2156
2157         if (bytes != 4 && bytes != 8)
2158                 return -EINVAL;
2159
2160         gma = index << I915_GTT_PAGE_SHIFT;
2161         if (!intel_gvt_ggtt_validate_range(vgpu,
2162                                            gma, 1 << I915_GTT_PAGE_SHIFT)) {
2163                 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2164                 memset(p_data, 0, bytes);
2165                 return 0;
2166         }
2167
2168         ggtt_get_guest_entry(ggtt_mm, &e, index);
2169         memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2170                         bytes);
2171         return 0;
2172 }
2173
2174 /**
2175  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2176  * @vgpu: a vGPU
2177  * @off: register offset
2178  * @p_data: data will be returned to guest
2179  * @bytes: data length
2180  *
2181  * This function is used to emulate the GTT MMIO register read
2182  *
2183  * Returns:
2184  * Zero on success, error code if failed.
2185  */
2186 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2187         void *p_data, unsigned int bytes)
2188 {
2189         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2190         int ret;
2191
2192         if (bytes != 4 && bytes != 8)
2193                 return -EINVAL;
2194
2195         off -= info->gtt_start_offset;
2196         ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2197         return ret;
2198 }
2199
2200 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2201                 struct intel_gvt_gtt_entry *entry)
2202 {
2203         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2204         unsigned long pfn;
2205
2206         pfn = pte_ops->get_pfn(entry);
2207         if (pfn != vgpu->gvt->gtt.scratch_mfn)
2208                 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2209                                                 pfn << PAGE_SHIFT);
2210 }
2211
2212 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2213         void *p_data, unsigned int bytes)
2214 {
2215         struct intel_gvt *gvt = vgpu->gvt;
2216         const struct intel_gvt_device_info *info = &gvt->device_info;
2217         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2218         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2219         unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2220         unsigned long gma, gfn;
2221         struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2222         struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2223         dma_addr_t dma_addr;
2224         int ret;
2225         struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2226         bool partial_update = false;
2227
2228         if (bytes != 4 && bytes != 8)
2229                 return -EINVAL;
2230
2231         gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2232
2233         /* the VM may configure the whole GM space when ballooning is used */
2234         if (!vgpu_gmadr_is_valid(vgpu, gma))
2235                 return 0;
2236
2237         e.type = GTT_TYPE_GGTT_PTE;
2238         memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2239                         bytes);
2240
2241         /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2242          * write, save the first 4 bytes in a list and update virtual
2243          * PTE. Only update shadow PTE when the second 4 bytes comes.
2244          */
2245         if (bytes < info->gtt_entry_size) {
2246                 bool found = false;
2247
2248                 list_for_each_entry_safe(pos, n,
2249                                 &ggtt_mm->ggtt_mm.partial_pte_list, list) {
2250                         if (g_gtt_index == pos->offset >>
2251                                         info->gtt_entry_size_shift) {
2252                                 if (off != pos->offset) {
2253                                         /* the second partial part*/
2254                                         int last_off = pos->offset &
2255                                                 (info->gtt_entry_size - 1);
2256
2257                                         memcpy((void *)&e.val64 + last_off,
2258                                                 (void *)&pos->data + last_off,
2259                                                 bytes);
2260
2261                                         list_del(&pos->list);
2262                                         kfree(pos);
2263                                         found = true;
2264                                         break;
2265                                 }
2266
2267                                 /* update of the first partial part */
2268                                 pos->data = e.val64;
2269                                 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2270                                 return 0;
2271                         }
2272                 }
2273
2274                 if (!found) {
2275                         /* the first partial part */
2276                         partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2277                         if (!partial_pte)
2278                                 return -ENOMEM;
2279                         partial_pte->offset = off;
2280                         partial_pte->data = e.val64;
2281                         list_add_tail(&partial_pte->list,
2282                                 &ggtt_mm->ggtt_mm.partial_pte_list);
2283                         partial_update = true;
2284                 }
2285         }
2286
2287         if (!partial_update && (ops->test_present(&e))) {
2288                 gfn = ops->get_pfn(&e);
2289                 m.val64 = e.val64;
2290                 m.type = e.type;
2291
2292                 /* one PTE update may be issued in multiple writes and the
2293                  * first write may not construct a valid gfn
2294                  */
2295                 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2296                         ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2297                         goto out;
2298                 }
2299
2300                 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2301                                                         PAGE_SIZE, &dma_addr);
2302                 if (ret) {
2303                         gvt_vgpu_err("fail to populate guest ggtt entry\n");
2304                         /* guest driver may read/write the entry when partial
2305                          * update the entry in this situation p2m will fail
2306                          * settting the shadow entry to point to a scratch page
2307                          */
2308                         ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2309                 } else
2310                         ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2311         } else {
2312                 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2313                 ops->clear_present(&m);
2314         }
2315
2316 out:
2317         ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2318
2319         ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2320         ggtt_invalidate_pte(vgpu, &e);
2321
2322         ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2323         ggtt_invalidate(gvt->gt);
2324         return 0;
2325 }
2326
2327 /*
2328  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2329  * @vgpu: a vGPU
2330  * @off: register offset
2331  * @p_data: data from guest write
2332  * @bytes: data length
2333  *
2334  * This function is used to emulate the GTT MMIO register write
2335  *
2336  * Returns:
2337  * Zero on success, error code if failed.
2338  */
2339 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2340                 unsigned int off, void *p_data, unsigned int bytes)
2341 {
2342         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2343         int ret;
2344         struct intel_vgpu_submission *s = &vgpu->submission;
2345         struct intel_engine_cs *engine;
2346         int i;
2347
2348         if (bytes != 4 && bytes != 8)
2349                 return -EINVAL;
2350
2351         off -= info->gtt_start_offset;
2352         ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2353
2354         /* if ggtt of last submitted context is written,
2355          * that context is probably got unpinned.
2356          * Set last shadowed ctx to invalid.
2357          */
2358         for_each_engine(engine, vgpu->gvt->gt, i) {
2359                 if (!s->last_ctx[i].valid)
2360                         continue;
2361
2362                 if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2363                         s->last_ctx[i].valid = false;
2364         }
2365         return ret;
2366 }
2367
2368 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2369                 enum intel_gvt_gtt_type type)
2370 {
2371         struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2372         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2373         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2374         int page_entry_num = I915_GTT_PAGE_SIZE >>
2375                                 vgpu->gvt->device_info.gtt_entry_size_shift;
2376         void *scratch_pt;
2377         int i;
2378         struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev;
2379         dma_addr_t daddr;
2380
2381         if (drm_WARN_ON(&i915->drm,
2382                         type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2383                 return -EINVAL;
2384
2385         scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2386         if (!scratch_pt) {
2387                 gvt_vgpu_err("fail to allocate scratch page\n");
2388                 return -ENOMEM;
2389         }
2390
2391         daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2392                         4096, PCI_DMA_BIDIRECTIONAL);
2393         if (dma_mapping_error(dev, daddr)) {
2394                 gvt_vgpu_err("fail to dmamap scratch_pt\n");
2395                 __free_page(virt_to_page(scratch_pt));
2396                 return -ENOMEM;
2397         }
2398         gtt->scratch_pt[type].page_mfn =
2399                 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2400         gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2401         gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2402                         vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2403
2404         /* Build the tree by full filled the scratch pt with the entries which
2405          * point to the next level scratch pt or scratch page. The
2406          * scratch_pt[type] indicate the scratch pt/scratch page used by the
2407          * 'type' pt.
2408          * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2409          * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2410          * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2411          */
2412         if (type > GTT_TYPE_PPGTT_PTE_PT) {
2413                 struct intel_gvt_gtt_entry se;
2414
2415                 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2416                 se.type = get_entry_type(type - 1);
2417                 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2418
2419                 /* The entry parameters like present/writeable/cache type
2420                  * set to the same as i915's scratch page tree.
2421                  */
2422                 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2423                 if (type == GTT_TYPE_PPGTT_PDE_PT)
2424                         se.val64 |= PPAT_CACHED;
2425
2426                 for (i = 0; i < page_entry_num; i++)
2427                         ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2428         }
2429
2430         return 0;
2431 }
2432
2433 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2434 {
2435         int i;
2436         struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev;
2437         dma_addr_t daddr;
2438
2439         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2440                 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2441                         daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2442                                         I915_GTT_PAGE_SHIFT);
2443                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2444                         __free_page(vgpu->gtt.scratch_pt[i].page);
2445                         vgpu->gtt.scratch_pt[i].page = NULL;
2446                         vgpu->gtt.scratch_pt[i].page_mfn = 0;
2447                 }
2448         }
2449
2450         return 0;
2451 }
2452
2453 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2454 {
2455         int i, ret;
2456
2457         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2458                 ret = alloc_scratch_pages(vgpu, i);
2459                 if (ret)
2460                         goto err;
2461         }
2462
2463         return 0;
2464
2465 err:
2466         release_scratch_page_tree(vgpu);
2467         return ret;
2468 }
2469
2470 /**
2471  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2472  * @vgpu: a vGPU
2473  *
2474  * This function is used to initialize per-vGPU graphics memory virtualization
2475  * components.
2476  *
2477  * Returns:
2478  * Zero on success, error code if failed.
2479  */
2480 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2481 {
2482         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2483
2484         INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2485
2486         INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2487         INIT_LIST_HEAD(&gtt->oos_page_list_head);
2488         INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2489
2490         gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2491         if (IS_ERR(gtt->ggtt_mm)) {
2492                 gvt_vgpu_err("fail to create mm for ggtt.\n");
2493                 return PTR_ERR(gtt->ggtt_mm);
2494         }
2495
2496         intel_vgpu_reset_ggtt(vgpu, false);
2497
2498         INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2499
2500         return create_scratch_page_tree(vgpu);
2501 }
2502
2503 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2504 {
2505         struct list_head *pos, *n;
2506         struct intel_vgpu_mm *mm;
2507
2508         list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2509                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2510                 intel_vgpu_destroy_mm(mm);
2511         }
2512
2513         if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2514                 gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2515
2516         if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2517                 gvt_err("Why we still has spt not freed?\n");
2518                 ppgtt_free_all_spt(vgpu);
2519         }
2520 }
2521
2522 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2523 {
2524         struct intel_gvt_partial_pte *pos, *next;
2525
2526         list_for_each_entry_safe(pos, next,
2527                                  &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2528                                  list) {
2529                 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2530                         pos->offset, pos->data);
2531                 kfree(pos);
2532         }
2533         intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2534         vgpu->gtt.ggtt_mm = NULL;
2535 }
2536
2537 /**
2538  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2539  * @vgpu: a vGPU
2540  *
2541  * This function is used to clean up per-vGPU graphics memory virtualization
2542  * components.
2543  *
2544  * Returns:
2545  * Zero on success, error code if failed.
2546  */
2547 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2548 {
2549         intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2550         intel_vgpu_destroy_ggtt_mm(vgpu);
2551         release_scratch_page_tree(vgpu);
2552 }
2553
2554 static void clean_spt_oos(struct intel_gvt *gvt)
2555 {
2556         struct intel_gvt_gtt *gtt = &gvt->gtt;
2557         struct list_head *pos, *n;
2558         struct intel_vgpu_oos_page *oos_page;
2559
2560         WARN(!list_empty(&gtt->oos_page_use_list_head),
2561                 "someone is still using oos page\n");
2562
2563         list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2564                 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2565                 list_del(&oos_page->list);
2566                 free_page((unsigned long)oos_page->mem);
2567                 kfree(oos_page);
2568         }
2569 }
2570
2571 static int setup_spt_oos(struct intel_gvt *gvt)
2572 {
2573         struct intel_gvt_gtt *gtt = &gvt->gtt;
2574         struct intel_vgpu_oos_page *oos_page;
2575         int i;
2576         int ret;
2577
2578         INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2579         INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2580
2581         for (i = 0; i < preallocated_oos_pages; i++) {
2582                 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2583                 if (!oos_page) {
2584                         ret = -ENOMEM;
2585                         goto fail;
2586                 }
2587                 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2588                 if (!oos_page->mem) {
2589                         ret = -ENOMEM;
2590                         kfree(oos_page);
2591                         goto fail;
2592                 }
2593
2594                 INIT_LIST_HEAD(&oos_page->list);
2595                 INIT_LIST_HEAD(&oos_page->vm_list);
2596                 oos_page->id = i;
2597                 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2598         }
2599
2600         gvt_dbg_mm("%d oos pages preallocated\n", i);
2601
2602         return 0;
2603 fail:
2604         clean_spt_oos(gvt);
2605         return ret;
2606 }
2607
2608 /**
2609  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2610  * @vgpu: a vGPU
2611  * @pdps: pdp root array
2612  *
2613  * This function is used to find a PPGTT mm object from mm object pool
2614  *
2615  * Returns:
2616  * pointer to mm object on success, NULL if failed.
2617  */
2618 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2619                 u64 pdps[])
2620 {
2621         struct intel_vgpu_mm *mm;
2622         struct list_head *pos;
2623
2624         list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2625                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2626
2627                 switch (mm->ppgtt_mm.root_entry_type) {
2628                 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2629                         if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2630                                 return mm;
2631                         break;
2632                 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2633                         if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2634                                     sizeof(mm->ppgtt_mm.guest_pdps)))
2635                                 return mm;
2636                         break;
2637                 default:
2638                         GEM_BUG_ON(1);
2639                 }
2640         }
2641         return NULL;
2642 }
2643
2644 /**
2645  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2646  * @vgpu: a vGPU
2647  * @root_entry_type: ppgtt root entry type
2648  * @pdps: guest pdps
2649  *
2650  * This function is used to find or create a PPGTT mm object from a guest.
2651  *
2652  * Returns:
2653  * Zero on success, negative error code if failed.
2654  */
2655 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2656                 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2657 {
2658         struct intel_vgpu_mm *mm;
2659
2660         mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2661         if (mm) {
2662                 intel_vgpu_mm_get(mm);
2663         } else {
2664                 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2665                 if (IS_ERR(mm))
2666                         gvt_vgpu_err("fail to create mm\n");
2667         }
2668         return mm;
2669 }
2670
2671 /**
2672  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2673  * @vgpu: a vGPU
2674  * @pdps: guest pdps
2675  *
2676  * This function is used to find a PPGTT mm object from a guest and destroy it.
2677  *
2678  * Returns:
2679  * Zero on success, negative error code if failed.
2680  */
2681 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2682 {
2683         struct intel_vgpu_mm *mm;
2684
2685         mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2686         if (!mm) {
2687                 gvt_vgpu_err("fail to find ppgtt instance.\n");
2688                 return -EINVAL;
2689         }
2690         intel_vgpu_mm_put(mm);
2691         return 0;
2692 }
2693
2694 /**
2695  * intel_gvt_init_gtt - initialize mm components of a GVT device
2696  * @gvt: GVT device
2697  *
2698  * This function is called at the initialization stage, to initialize
2699  * the mm components of a GVT device.
2700  *
2701  * Returns:
2702  * zero on success, negative error code if failed.
2703  */
2704 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2705 {
2706         int ret;
2707         void *page;
2708         struct device *dev = &gvt->gt->i915->drm.pdev->dev;
2709         dma_addr_t daddr;
2710
2711         gvt_dbg_core("init gtt\n");
2712
2713         gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2714         gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2715
2716         page = (void *)get_zeroed_page(GFP_KERNEL);
2717         if (!page) {
2718                 gvt_err("fail to allocate scratch ggtt page\n");
2719                 return -ENOMEM;
2720         }
2721
2722         daddr = dma_map_page(dev, virt_to_page(page), 0,
2723                         4096, PCI_DMA_BIDIRECTIONAL);
2724         if (dma_mapping_error(dev, daddr)) {
2725                 gvt_err("fail to dmamap scratch ggtt page\n");
2726                 __free_page(virt_to_page(page));
2727                 return -ENOMEM;
2728         }
2729
2730         gvt->gtt.scratch_page = virt_to_page(page);
2731         gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2732
2733         if (enable_out_of_sync) {
2734                 ret = setup_spt_oos(gvt);
2735                 if (ret) {
2736                         gvt_err("fail to initialize SPT oos\n");
2737                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2738                         __free_page(gvt->gtt.scratch_page);
2739                         return ret;
2740                 }
2741         }
2742         INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2743         mutex_init(&gvt->gtt.ppgtt_mm_lock);
2744         return 0;
2745 }
2746
2747 /**
2748  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2749  * @gvt: GVT device
2750  *
2751  * This function is called at the driver unloading stage, to clean up the
2752  * the mm components of a GVT device.
2753  *
2754  */
2755 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2756 {
2757         struct device *dev = &gvt->gt->i915->drm.pdev->dev;
2758         dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2759                                         I915_GTT_PAGE_SHIFT);
2760
2761         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2762
2763         __free_page(gvt->gtt.scratch_page);
2764
2765         if (enable_out_of_sync)
2766                 clean_spt_oos(gvt);
2767 }
2768
2769 /**
2770  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2771  * @vgpu: a vGPU
2772  *
2773  * This function is called when invalidate all PPGTT instances of a vGPU.
2774  *
2775  */
2776 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2777 {
2778         struct list_head *pos, *n;
2779         struct intel_vgpu_mm *mm;
2780
2781         list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2782                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2783                 if (mm->type == INTEL_GVT_MM_PPGTT) {
2784                         mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2785                         list_del_init(&mm->ppgtt_mm.lru_list);
2786                         mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2787                         if (mm->ppgtt_mm.shadowed)
2788                                 invalidate_ppgtt_mm(mm);
2789                 }
2790         }
2791 }
2792
2793 /**
2794  * intel_vgpu_reset_ggtt - reset the GGTT entry
2795  * @vgpu: a vGPU
2796  * @invalidate_old: invalidate old entries
2797  *
2798  * This function is called at the vGPU create stage
2799  * to reset all the GGTT entries.
2800  *
2801  */
2802 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2803 {
2804         struct intel_gvt *gvt = vgpu->gvt;
2805         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2806         struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2807         struct intel_gvt_gtt_entry old_entry;
2808         u32 index;
2809         u32 num_entries;
2810
2811         pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2812         pte_ops->set_present(&entry);
2813
2814         index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2815         num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2816         while (num_entries--) {
2817                 if (invalidate_old) {
2818                         ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2819                         ggtt_invalidate_pte(vgpu, &old_entry);
2820                 }
2821                 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2822         }
2823
2824         index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2825         num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2826         while (num_entries--) {
2827                 if (invalidate_old) {
2828                         ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2829                         ggtt_invalidate_pte(vgpu, &old_entry);
2830                 }
2831                 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2832         }
2833
2834         ggtt_invalidate(gvt->gt);
2835 }
2836
2837 /**
2838  * intel_vgpu_reset_gtt - reset the all GTT related status
2839  * @vgpu: a vGPU
2840  *
2841  * This function is called from vfio core to reset reset all
2842  * GTT related status, including GGTT, PPGTT, scratch page.
2843  *
2844  */
2845 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2846 {
2847         /* Shadow pages are only created when there is no page
2848          * table tracking data, so remove page tracking data after
2849          * removing the shadow pages.
2850          */
2851         intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2852         intel_vgpu_reset_ggtt(vgpu, true);
2853 }