Merge tag 'drm-next-2019-05-16' of git://anongit.freedesktop.org/drm/drm
[linux-2.6-block.git] / drivers / gpu / drm / i915 / gvt / gtt.c
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56         if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
57                         && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
58                 gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
59                                 addr, size);
60                 return false;
61         }
62         return true;
63 }
64
65 /* translate a guest gmadr to host gmadr */
66 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
67 {
68         if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
69                  "invalid guest gmadr %llx\n", g_addr))
70                 return -EACCES;
71
72         if (vgpu_gmadr_is_aperture(vgpu, g_addr))
73                 *h_addr = vgpu_aperture_gmadr_base(vgpu)
74                           + (g_addr - vgpu_aperture_offset(vgpu));
75         else
76                 *h_addr = vgpu_hidden_gmadr_base(vgpu)
77                           + (g_addr - vgpu_hidden_offset(vgpu));
78         return 0;
79 }
80
81 /* translate a host gmadr to guest gmadr */
82 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
83 {
84         if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
85                  "invalid host gmadr %llx\n", h_addr))
86                 return -EACCES;
87
88         if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
89                 *g_addr = vgpu_aperture_gmadr_base(vgpu)
90                         + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
91         else
92                 *g_addr = vgpu_hidden_gmadr_base(vgpu)
93                         + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
94         return 0;
95 }
96
97 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
98                              unsigned long *h_index)
99 {
100         u64 h_addr;
101         int ret;
102
103         ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
104                                        &h_addr);
105         if (ret)
106                 return ret;
107
108         *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
109         return 0;
110 }
111
112 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
113                              unsigned long *g_index)
114 {
115         u64 g_addr;
116         int ret;
117
118         ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
119                                        &g_addr);
120         if (ret)
121                 return ret;
122
123         *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
124         return 0;
125 }
126
127 #define gtt_type_is_entry(type) \
128         (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
129          && type != GTT_TYPE_PPGTT_PTE_ENTRY \
130          && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
131
132 #define gtt_type_is_pt(type) \
133         (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
134
135 #define gtt_type_is_pte_pt(type) \
136         (type == GTT_TYPE_PPGTT_PTE_PT)
137
138 #define gtt_type_is_root_pointer(type) \
139         (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
140
141 #define gtt_init_entry(e, t, p, v) do { \
142         (e)->type = t; \
143         (e)->pdev = p; \
144         memcpy(&(e)->val64, &v, sizeof(v)); \
145 } while (0)
146
147 /*
148  * Mappings between GTT_TYPE* enumerations.
149  * Following information can be found according to the given type:
150  * - type of next level page table
151  * - type of entry inside this level page table
152  * - type of entry with PSE set
153  *
154  * If the given type doesn't have such a kind of information,
155  * e.g. give a l4 root entry type, then request to get its PSE type,
156  * give a PTE page table type, then request to get its next level page
157  * table type, as we know l4 root entry doesn't have a PSE bit,
158  * and a PTE page table doesn't have a next level page table type,
159  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
160  * page table.
161  */
162
163 struct gtt_type_table_entry {
164         int entry_type;
165         int pt_type;
166         int next_pt_type;
167         int pse_entry_type;
168 };
169
170 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
171         [type] = { \
172                 .entry_type = e_type, \
173                 .pt_type = cpt_type, \
174                 .next_pt_type = npt_type, \
175                 .pse_entry_type = pse_type, \
176         }
177
178 static struct gtt_type_table_entry gtt_type_table[] = {
179         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
180                         GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
181                         GTT_TYPE_INVALID,
182                         GTT_TYPE_PPGTT_PML4_PT,
183                         GTT_TYPE_INVALID),
184         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
185                         GTT_TYPE_PPGTT_PML4_ENTRY,
186                         GTT_TYPE_PPGTT_PML4_PT,
187                         GTT_TYPE_PPGTT_PDP_PT,
188                         GTT_TYPE_INVALID),
189         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
190                         GTT_TYPE_PPGTT_PML4_ENTRY,
191                         GTT_TYPE_PPGTT_PML4_PT,
192                         GTT_TYPE_PPGTT_PDP_PT,
193                         GTT_TYPE_INVALID),
194         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
195                         GTT_TYPE_PPGTT_PDP_ENTRY,
196                         GTT_TYPE_PPGTT_PDP_PT,
197                         GTT_TYPE_PPGTT_PDE_PT,
198                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
199         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
200                         GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
201                         GTT_TYPE_INVALID,
202                         GTT_TYPE_PPGTT_PDE_PT,
203                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
204         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
205                         GTT_TYPE_PPGTT_PDP_ENTRY,
206                         GTT_TYPE_PPGTT_PDP_PT,
207                         GTT_TYPE_PPGTT_PDE_PT,
208                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
210                         GTT_TYPE_PPGTT_PDE_ENTRY,
211                         GTT_TYPE_PPGTT_PDE_PT,
212                         GTT_TYPE_PPGTT_PTE_PT,
213                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
214         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
215                         GTT_TYPE_PPGTT_PDE_ENTRY,
216                         GTT_TYPE_PPGTT_PDE_PT,
217                         GTT_TYPE_PPGTT_PTE_PT,
218                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
219         /* We take IPS bit as 'PSE' for PTE level. */
220         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
221                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
222                         GTT_TYPE_PPGTT_PTE_PT,
223                         GTT_TYPE_INVALID,
224                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
225         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
226                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
227                         GTT_TYPE_PPGTT_PTE_PT,
228                         GTT_TYPE_INVALID,
229                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
230         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
231                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232                         GTT_TYPE_PPGTT_PTE_PT,
233                         GTT_TYPE_INVALID,
234                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
236                         GTT_TYPE_PPGTT_PDE_ENTRY,
237                         GTT_TYPE_PPGTT_PDE_PT,
238                         GTT_TYPE_INVALID,
239                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
240         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
241                         GTT_TYPE_PPGTT_PDP_ENTRY,
242                         GTT_TYPE_PPGTT_PDP_PT,
243                         GTT_TYPE_INVALID,
244                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
245         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
246                         GTT_TYPE_GGTT_PTE,
247                         GTT_TYPE_INVALID,
248                         GTT_TYPE_INVALID,
249                         GTT_TYPE_INVALID),
250 };
251
252 static inline int get_next_pt_type(int type)
253 {
254         return gtt_type_table[type].next_pt_type;
255 }
256
257 static inline int get_pt_type(int type)
258 {
259         return gtt_type_table[type].pt_type;
260 }
261
262 static inline int get_entry_type(int type)
263 {
264         return gtt_type_table[type].entry_type;
265 }
266
267 static inline int get_pse_type(int type)
268 {
269         return gtt_type_table[type].pse_entry_type;
270 }
271
272 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
273 {
274         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
275
276         return readq(addr);
277 }
278
279 static void ggtt_invalidate(struct drm_i915_private *dev_priv)
280 {
281         mmio_hw_access_pre(dev_priv);
282         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
283         mmio_hw_access_post(dev_priv);
284 }
285
286 static void write_pte64(struct drm_i915_private *dev_priv,
287                 unsigned long index, u64 pte)
288 {
289         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
290
291         writeq(pte, addr);
292 }
293
294 static inline int gtt_get_entry64(void *pt,
295                 struct intel_gvt_gtt_entry *e,
296                 unsigned long index, bool hypervisor_access, unsigned long gpa,
297                 struct intel_vgpu *vgpu)
298 {
299         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
300         int ret;
301
302         if (WARN_ON(info->gtt_entry_size != 8))
303                 return -EINVAL;
304
305         if (hypervisor_access) {
306                 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
307                                 (index << info->gtt_entry_size_shift),
308                                 &e->val64, 8);
309                 if (WARN_ON(ret))
310                         return ret;
311         } else if (!pt) {
312                 e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
313         } else {
314                 e->val64 = *((u64 *)pt + index);
315         }
316         return 0;
317 }
318
319 static inline int gtt_set_entry64(void *pt,
320                 struct intel_gvt_gtt_entry *e,
321                 unsigned long index, bool hypervisor_access, unsigned long gpa,
322                 struct intel_vgpu *vgpu)
323 {
324         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
325         int ret;
326
327         if (WARN_ON(info->gtt_entry_size != 8))
328                 return -EINVAL;
329
330         if (hypervisor_access) {
331                 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
332                                 (index << info->gtt_entry_size_shift),
333                                 &e->val64, 8);
334                 if (WARN_ON(ret))
335                         return ret;
336         } else if (!pt) {
337                 write_pte64(vgpu->gvt->dev_priv, index, e->val64);
338         } else {
339                 *((u64 *)pt + index) = e->val64;
340         }
341         return 0;
342 }
343
344 #define GTT_HAW 46
345
346 #define ADDR_1G_MASK    GENMASK_ULL(GTT_HAW - 1, 30)
347 #define ADDR_2M_MASK    GENMASK_ULL(GTT_HAW - 1, 21)
348 #define ADDR_64K_MASK   GENMASK_ULL(GTT_HAW - 1, 16)
349 #define ADDR_4K_MASK    GENMASK_ULL(GTT_HAW - 1, 12)
350
351 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
352 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
353
354 #define GTT_64K_PTE_STRIDE 16
355
356 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
357 {
358         unsigned long pfn;
359
360         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
361                 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
362         else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
363                 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
364         else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
365                 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
366         else
367                 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
368         return pfn;
369 }
370
371 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
372 {
373         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
374                 e->val64 &= ~ADDR_1G_MASK;
375                 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
376         } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
377                 e->val64 &= ~ADDR_2M_MASK;
378                 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
379         } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
380                 e->val64 &= ~ADDR_64K_MASK;
381                 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
382         } else {
383                 e->val64 &= ~ADDR_4K_MASK;
384                 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
385         }
386
387         e->val64 |= (pfn << PAGE_SHIFT);
388 }
389
390 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
391 {
392         return !!(e->val64 & _PAGE_PSE);
393 }
394
395 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
396 {
397         if (gen8_gtt_test_pse(e)) {
398                 switch (e->type) {
399                 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
400                         e->val64 &= ~_PAGE_PSE;
401                         e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
402                         break;
403                 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
404                         e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
405                         e->val64 &= ~_PAGE_PSE;
406                         break;
407                 default:
408                         WARN_ON(1);
409                 }
410         }
411 }
412
413 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
414 {
415         if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
416                 return false;
417
418         return !!(e->val64 & GEN8_PDE_IPS_64K);
419 }
420
421 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
422 {
423         if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
424                 return;
425
426         e->val64 &= ~GEN8_PDE_IPS_64K;
427 }
428
429 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
430 {
431         /*
432          * i915 writes PDP root pointer registers without present bit,
433          * it also works, so we need to treat root pointer entry
434          * specifically.
435          */
436         if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
437                         || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
438                 return (e->val64 != 0);
439         else
440                 return (e->val64 & _PAGE_PRESENT);
441 }
442
443 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
444 {
445         e->val64 &= ~_PAGE_PRESENT;
446 }
447
448 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
449 {
450         e->val64 |= _PAGE_PRESENT;
451 }
452
453 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
454 {
455         return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
456 }
457
458 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
459 {
460         e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
461 }
462
463 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
464 {
465         e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
466 }
467
468 /*
469  * Per-platform GMA routines.
470  */
471 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
472 {
473         unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
474
475         trace_gma_index(__func__, gma, x);
476         return x;
477 }
478
479 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
480 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
481 { \
482         unsigned long x = (exp); \
483         trace_gma_index(__func__, gma, x); \
484         return x; \
485 }
486
487 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
488 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
489 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
490 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
491 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
492
493 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
494         .get_entry = gtt_get_entry64,
495         .set_entry = gtt_set_entry64,
496         .clear_present = gtt_entry_clear_present,
497         .set_present = gtt_entry_set_present,
498         .test_present = gen8_gtt_test_present,
499         .test_pse = gen8_gtt_test_pse,
500         .clear_pse = gen8_gtt_clear_pse,
501         .clear_ips = gen8_gtt_clear_ips,
502         .test_ips = gen8_gtt_test_ips,
503         .clear_64k_splited = gen8_gtt_clear_64k_splited,
504         .set_64k_splited = gen8_gtt_set_64k_splited,
505         .test_64k_splited = gen8_gtt_test_64k_splited,
506         .get_pfn = gen8_gtt_get_pfn,
507         .set_pfn = gen8_gtt_set_pfn,
508 };
509
510 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
511         .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
512         .gma_to_pte_index = gen8_gma_to_pte_index,
513         .gma_to_pde_index = gen8_gma_to_pde_index,
514         .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
515         .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
516         .gma_to_pml4_index = gen8_gma_to_pml4_index,
517 };
518
519 /* Update entry type per pse and ips bit. */
520 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
521         struct intel_gvt_gtt_entry *entry, bool ips)
522 {
523         switch (entry->type) {
524         case GTT_TYPE_PPGTT_PDE_ENTRY:
525         case GTT_TYPE_PPGTT_PDP_ENTRY:
526                 if (pte_ops->test_pse(entry))
527                         entry->type = get_pse_type(entry->type);
528                 break;
529         case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
530                 if (ips)
531                         entry->type = get_pse_type(entry->type);
532                 break;
533         default:
534                 GEM_BUG_ON(!gtt_type_is_entry(entry->type));
535         }
536
537         GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
538 }
539
540 /*
541  * MM helpers.
542  */
543 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
544                 struct intel_gvt_gtt_entry *entry, unsigned long index,
545                 bool guest)
546 {
547         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
548
549         GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
550
551         entry->type = mm->ppgtt_mm.root_entry_type;
552         pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
553                            mm->ppgtt_mm.shadow_pdps,
554                            entry, index, false, 0, mm->vgpu);
555         update_entry_type_for_real(pte_ops, entry, false);
556 }
557
558 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
559                 struct intel_gvt_gtt_entry *entry, unsigned long index)
560 {
561         _ppgtt_get_root_entry(mm, entry, index, true);
562 }
563
564 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
565                 struct intel_gvt_gtt_entry *entry, unsigned long index)
566 {
567         _ppgtt_get_root_entry(mm, entry, index, false);
568 }
569
570 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
571                 struct intel_gvt_gtt_entry *entry, unsigned long index,
572                 bool guest)
573 {
574         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
575
576         pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
577                            mm->ppgtt_mm.shadow_pdps,
578                            entry, index, false, 0, mm->vgpu);
579 }
580
581 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
582                 struct intel_gvt_gtt_entry *entry, unsigned long index)
583 {
584         _ppgtt_set_root_entry(mm, entry, index, true);
585 }
586
587 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
588                 struct intel_gvt_gtt_entry *entry, unsigned long index)
589 {
590         _ppgtt_set_root_entry(mm, entry, index, false);
591 }
592
593 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
594                 struct intel_gvt_gtt_entry *entry, unsigned long index)
595 {
596         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
597
598         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
599
600         entry->type = GTT_TYPE_GGTT_PTE;
601         pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
602                            false, 0, mm->vgpu);
603 }
604
605 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
606                 struct intel_gvt_gtt_entry *entry, unsigned long index)
607 {
608         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
609
610         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
611
612         pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
613                            false, 0, mm->vgpu);
614 }
615
616 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
617                 struct intel_gvt_gtt_entry *entry, unsigned long index)
618 {
619         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
620
621         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
622
623         pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
624 }
625
626 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
627                 struct intel_gvt_gtt_entry *entry, unsigned long index)
628 {
629         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
630
631         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
632
633         pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
634 }
635
636 /*
637  * PPGTT shadow page table helpers.
638  */
639 static inline int ppgtt_spt_get_entry(
640                 struct intel_vgpu_ppgtt_spt *spt,
641                 void *page_table, int type,
642                 struct intel_gvt_gtt_entry *e, unsigned long index,
643                 bool guest)
644 {
645         struct intel_gvt *gvt = spt->vgpu->gvt;
646         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
647         int ret;
648
649         e->type = get_entry_type(type);
650
651         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
652                 return -EINVAL;
653
654         ret = ops->get_entry(page_table, e, index, guest,
655                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
656                         spt->vgpu);
657         if (ret)
658                 return ret;
659
660         update_entry_type_for_real(ops, e, guest ?
661                                    spt->guest_page.pde_ips : false);
662
663         gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
664                     type, e->type, index, e->val64);
665         return 0;
666 }
667
668 static inline int ppgtt_spt_set_entry(
669                 struct intel_vgpu_ppgtt_spt *spt,
670                 void *page_table, int type,
671                 struct intel_gvt_gtt_entry *e, unsigned long index,
672                 bool guest)
673 {
674         struct intel_gvt *gvt = spt->vgpu->gvt;
675         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
676
677         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
678                 return -EINVAL;
679
680         gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
681                     type, e->type, index, e->val64);
682
683         return ops->set_entry(page_table, e, index, guest,
684                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
685                         spt->vgpu);
686 }
687
688 #define ppgtt_get_guest_entry(spt, e, index) \
689         ppgtt_spt_get_entry(spt, NULL, \
690                 spt->guest_page.type, e, index, true)
691
692 #define ppgtt_set_guest_entry(spt, e, index) \
693         ppgtt_spt_set_entry(spt, NULL, \
694                 spt->guest_page.type, e, index, true)
695
696 #define ppgtt_get_shadow_entry(spt, e, index) \
697         ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
698                 spt->shadow_page.type, e, index, false)
699
700 #define ppgtt_set_shadow_entry(spt, e, index) \
701         ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
702                 spt->shadow_page.type, e, index, false)
703
704 static void *alloc_spt(gfp_t gfp_mask)
705 {
706         struct intel_vgpu_ppgtt_spt *spt;
707
708         spt = kzalloc(sizeof(*spt), gfp_mask);
709         if (!spt)
710                 return NULL;
711
712         spt->shadow_page.page = alloc_page(gfp_mask);
713         if (!spt->shadow_page.page) {
714                 kfree(spt);
715                 return NULL;
716         }
717         return spt;
718 }
719
720 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
721 {
722         __free_page(spt->shadow_page.page);
723         kfree(spt);
724 }
725
726 static int detach_oos_page(struct intel_vgpu *vgpu,
727                 struct intel_vgpu_oos_page *oos_page);
728
729 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
730 {
731         struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev;
732
733         trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
734
735         dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
736                        PCI_DMA_BIDIRECTIONAL);
737
738         radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
739
740         if (spt->guest_page.gfn) {
741                 if (spt->guest_page.oos_page)
742                         detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
743
744                 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
745         }
746
747         list_del_init(&spt->post_shadow_list);
748         free_spt(spt);
749 }
750
751 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
752 {
753         struct intel_vgpu_ppgtt_spt *spt, *spn;
754         struct radix_tree_iter iter;
755         LIST_HEAD(all_spt);
756         void __rcu **slot;
757
758         rcu_read_lock();
759         radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
760                 spt = radix_tree_deref_slot(slot);
761                 list_move(&spt->post_shadow_list, &all_spt);
762         }
763         rcu_read_unlock();
764
765         list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
766                 ppgtt_free_spt(spt);
767 }
768
769 static int ppgtt_handle_guest_write_page_table_bytes(
770                 struct intel_vgpu_ppgtt_spt *spt,
771                 u64 pa, void *p_data, int bytes);
772
773 static int ppgtt_write_protection_handler(
774                 struct intel_vgpu_page_track *page_track,
775                 u64 gpa, void *data, int bytes)
776 {
777         struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
778
779         int ret;
780
781         if (bytes != 4 && bytes != 8)
782                 return -EINVAL;
783
784         ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
785         if (ret)
786                 return ret;
787         return ret;
788 }
789
790 /* Find a spt by guest gfn. */
791 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
792                 struct intel_vgpu *vgpu, unsigned long gfn)
793 {
794         struct intel_vgpu_page_track *track;
795
796         track = intel_vgpu_find_page_track(vgpu, gfn);
797         if (track && track->handler == ppgtt_write_protection_handler)
798                 return track->priv_data;
799
800         return NULL;
801 }
802
803 /* Find the spt by shadow page mfn. */
804 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
805                 struct intel_vgpu *vgpu, unsigned long mfn)
806 {
807         return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
808 }
809
810 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
811
812 /* Allocate shadow page table without guest page. */
813 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
814                 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
815 {
816         struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
817         struct intel_vgpu_ppgtt_spt *spt = NULL;
818         dma_addr_t daddr;
819         int ret;
820
821 retry:
822         spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
823         if (!spt) {
824                 if (reclaim_one_ppgtt_mm(vgpu->gvt))
825                         goto retry;
826
827                 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
828                 return ERR_PTR(-ENOMEM);
829         }
830
831         spt->vgpu = vgpu;
832         atomic_set(&spt->refcount, 1);
833         INIT_LIST_HEAD(&spt->post_shadow_list);
834
835         /*
836          * Init shadow_page.
837          */
838         spt->shadow_page.type = type;
839         daddr = dma_map_page(kdev, spt->shadow_page.page,
840                              0, 4096, PCI_DMA_BIDIRECTIONAL);
841         if (dma_mapping_error(kdev, daddr)) {
842                 gvt_vgpu_err("fail to map dma addr\n");
843                 ret = -EINVAL;
844                 goto err_free_spt;
845         }
846         spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
847         spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
848
849         ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
850         if (ret)
851                 goto err_unmap_dma;
852
853         return spt;
854
855 err_unmap_dma:
856         dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
857 err_free_spt:
858         free_spt(spt);
859         return ERR_PTR(ret);
860 }
861
862 /* Allocate shadow page table associated with specific gfn. */
863 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
864                 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
865                 unsigned long gfn, bool guest_pde_ips)
866 {
867         struct intel_vgpu_ppgtt_spt *spt;
868         int ret;
869
870         spt = ppgtt_alloc_spt(vgpu, type);
871         if (IS_ERR(spt))
872                 return spt;
873
874         /*
875          * Init guest_page.
876          */
877         ret = intel_vgpu_register_page_track(vgpu, gfn,
878                         ppgtt_write_protection_handler, spt);
879         if (ret) {
880                 ppgtt_free_spt(spt);
881                 return ERR_PTR(ret);
882         }
883
884         spt->guest_page.type = type;
885         spt->guest_page.gfn = gfn;
886         spt->guest_page.pde_ips = guest_pde_ips;
887
888         trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
889
890         return spt;
891 }
892
893 #define pt_entry_size_shift(spt) \
894         ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
895
896 #define pt_entries(spt) \
897         (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
898
899 #define for_each_present_guest_entry(spt, e, i) \
900         for (i = 0; i < pt_entries(spt); \
901              i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
902                 if (!ppgtt_get_guest_entry(spt, e, i) && \
903                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
904
905 #define for_each_present_shadow_entry(spt, e, i) \
906         for (i = 0; i < pt_entries(spt); \
907              i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
908                 if (!ppgtt_get_shadow_entry(spt, e, i) && \
909                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
910
911 #define for_each_shadow_entry(spt, e, i) \
912         for (i = 0; i < pt_entries(spt); \
913              i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
914                 if (!ppgtt_get_shadow_entry(spt, e, i))
915
916 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
917 {
918         int v = atomic_read(&spt->refcount);
919
920         trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
921         atomic_inc(&spt->refcount);
922 }
923
924 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
925 {
926         int v = atomic_read(&spt->refcount);
927
928         trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
929         return atomic_dec_return(&spt->refcount);
930 }
931
932 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
933
934 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
935                 struct intel_gvt_gtt_entry *e)
936 {
937         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
938         struct intel_vgpu_ppgtt_spt *s;
939         enum intel_gvt_gtt_type cur_pt_type;
940
941         GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
942
943         if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
944                 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
945                 cur_pt_type = get_next_pt_type(e->type) + 1;
946                 if (ops->get_pfn(e) ==
947                         vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
948                         return 0;
949         }
950         s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
951         if (!s) {
952                 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
953                                 ops->get_pfn(e));
954                 return -ENXIO;
955         }
956         return ppgtt_invalidate_spt(s);
957 }
958
959 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
960                 struct intel_gvt_gtt_entry *entry)
961 {
962         struct intel_vgpu *vgpu = spt->vgpu;
963         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
964         unsigned long pfn;
965         int type;
966
967         pfn = ops->get_pfn(entry);
968         type = spt->shadow_page.type;
969
970         /* Uninitialized spte or unshadowed spte. */
971         if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
972                 return;
973
974         intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
975 }
976
977 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
978 {
979         struct intel_vgpu *vgpu = spt->vgpu;
980         struct intel_gvt_gtt_entry e;
981         unsigned long index;
982         int ret;
983
984         trace_spt_change(spt->vgpu->id, "die", spt,
985                         spt->guest_page.gfn, spt->shadow_page.type);
986
987         if (ppgtt_put_spt(spt) > 0)
988                 return 0;
989
990         for_each_present_shadow_entry(spt, &e, index) {
991                 switch (e.type) {
992                 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
993                         gvt_vdbg_mm("invalidate 4K entry\n");
994                         ppgtt_invalidate_pte(spt, &e);
995                         break;
996                 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
997                         /* We don't setup 64K shadow entry so far. */
998                         WARN(1, "suspicious 64K gtt entry\n");
999                         continue;
1000                 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1001                         gvt_vdbg_mm("invalidate 2M entry\n");
1002                         continue;
1003                 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1004                         WARN(1, "GVT doesn't support 1GB page\n");
1005                         continue;
1006                 case GTT_TYPE_PPGTT_PML4_ENTRY:
1007                 case GTT_TYPE_PPGTT_PDP_ENTRY:
1008                 case GTT_TYPE_PPGTT_PDE_ENTRY:
1009                         gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1010                         ret = ppgtt_invalidate_spt_by_shadow_entry(
1011                                         spt->vgpu, &e);
1012                         if (ret)
1013                                 goto fail;
1014                         break;
1015                 default:
1016                         GEM_BUG_ON(1);
1017                 }
1018         }
1019
1020         trace_spt_change(spt->vgpu->id, "release", spt,
1021                          spt->guest_page.gfn, spt->shadow_page.type);
1022         ppgtt_free_spt(spt);
1023         return 0;
1024 fail:
1025         gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1026                         spt, e.val64, e.type);
1027         return ret;
1028 }
1029
1030 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1031 {
1032         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1033
1034         if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1035                 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1036                         GAMW_ECO_ENABLE_64K_IPS_FIELD;
1037
1038                 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1039         } else if (INTEL_GEN(dev_priv) >= 11) {
1040                 /* 64K paging only controlled by IPS bit in PTE now. */
1041                 return true;
1042         } else
1043                 return false;
1044 }
1045
1046 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1047
1048 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1049                 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1050 {
1051         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1052         struct intel_vgpu_ppgtt_spt *spt = NULL;
1053         bool ips = false;
1054         int ret;
1055
1056         GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1057
1058         if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1059                 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1060
1061         spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1062         if (spt) {
1063                 ppgtt_get_spt(spt);
1064
1065                 if (ips != spt->guest_page.pde_ips) {
1066                         spt->guest_page.pde_ips = ips;
1067
1068                         gvt_dbg_mm("reshadow PDE since ips changed\n");
1069                         clear_page(spt->shadow_page.vaddr);
1070                         ret = ppgtt_populate_spt(spt);
1071                         if (ret) {
1072                                 ppgtt_put_spt(spt);
1073                                 goto err;
1074                         }
1075                 }
1076         } else {
1077                 int type = get_next_pt_type(we->type);
1078
1079                 if (!gtt_type_is_pt(type))
1080                         goto err;
1081
1082                 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1083                 if (IS_ERR(spt)) {
1084                         ret = PTR_ERR(spt);
1085                         goto err;
1086                 }
1087
1088                 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1089                 if (ret)
1090                         goto err_free_spt;
1091
1092                 ret = ppgtt_populate_spt(spt);
1093                 if (ret)
1094                         goto err_free_spt;
1095
1096                 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1097                                  spt->shadow_page.type);
1098         }
1099         return spt;
1100
1101 err_free_spt:
1102         ppgtt_free_spt(spt);
1103 err:
1104         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1105                      spt, we->val64, we->type);
1106         return ERR_PTR(ret);
1107 }
1108
1109 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1110                 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1111 {
1112         struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1113
1114         se->type = ge->type;
1115         se->val64 = ge->val64;
1116
1117         /* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1118         if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1119                 ops->clear_ips(se);
1120
1121         ops->set_pfn(se, s->shadow_page.mfn);
1122 }
1123
1124 /**
1125  * Check if can do 2M page
1126  * @vgpu: target vgpu
1127  * @entry: target pfn's gtt entry
1128  *
1129  * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1130  * negtive if found err.
1131  */
1132 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1133         struct intel_gvt_gtt_entry *entry)
1134 {
1135         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1136         unsigned long pfn;
1137
1138         if (!HAS_PAGE_SIZES(vgpu->gvt->dev_priv, I915_GTT_PAGE_SIZE_2M))
1139                 return 0;
1140
1141         pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1142         if (pfn == INTEL_GVT_INVALID_ADDR)
1143                 return -EINVAL;
1144
1145         return PageTransHuge(pfn_to_page(pfn));
1146 }
1147
1148 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1149         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1150         struct intel_gvt_gtt_entry *se)
1151 {
1152         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1153         struct intel_vgpu_ppgtt_spt *sub_spt;
1154         struct intel_gvt_gtt_entry sub_se;
1155         unsigned long start_gfn;
1156         dma_addr_t dma_addr;
1157         unsigned long sub_index;
1158         int ret;
1159
1160         gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1161
1162         start_gfn = ops->get_pfn(se);
1163
1164         sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1165         if (IS_ERR(sub_spt))
1166                 return PTR_ERR(sub_spt);
1167
1168         for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1169                 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1170                                 start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1171                 if (ret) {
1172                         ppgtt_invalidate_spt(spt);
1173                         return ret;
1174                 }
1175                 sub_se.val64 = se->val64;
1176
1177                 /* Copy the PAT field from PDE. */
1178                 sub_se.val64 &= ~_PAGE_PAT;
1179                 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1180
1181                 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1182                 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1183         }
1184
1185         /* Clear dirty field. */
1186         se->val64 &= ~_PAGE_DIRTY;
1187
1188         ops->clear_pse(se);
1189         ops->clear_ips(se);
1190         ops->set_pfn(se, sub_spt->shadow_page.mfn);
1191         ppgtt_set_shadow_entry(spt, se, index);
1192         return 0;
1193 }
1194
1195 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1196         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1197         struct intel_gvt_gtt_entry *se)
1198 {
1199         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1200         struct intel_gvt_gtt_entry entry = *se;
1201         unsigned long start_gfn;
1202         dma_addr_t dma_addr;
1203         int i, ret;
1204
1205         gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1206
1207         GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1208
1209         start_gfn = ops->get_pfn(se);
1210
1211         entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1212         ops->set_64k_splited(&entry);
1213
1214         for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1215                 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1216                                         start_gfn + i, PAGE_SIZE, &dma_addr);
1217                 if (ret)
1218                         return ret;
1219
1220                 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1221                 ppgtt_set_shadow_entry(spt, &entry, index + i);
1222         }
1223         return 0;
1224 }
1225
1226 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1227         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1228         struct intel_gvt_gtt_entry *ge)
1229 {
1230         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1231         struct intel_gvt_gtt_entry se = *ge;
1232         unsigned long gfn, page_size = PAGE_SIZE;
1233         dma_addr_t dma_addr;
1234         int ret;
1235
1236         if (!pte_ops->test_present(ge))
1237                 return 0;
1238
1239         gfn = pte_ops->get_pfn(ge);
1240
1241         switch (ge->type) {
1242         case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1243                 gvt_vdbg_mm("shadow 4K gtt entry\n");
1244                 break;
1245         case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1246                 gvt_vdbg_mm("shadow 64K gtt entry\n");
1247                 /*
1248                  * The layout of 64K page is special, the page size is
1249                  * controlled by uper PDE. To be simple, we always split
1250                  * 64K page to smaller 4K pages in shadow PT.
1251                  */
1252                 return split_64KB_gtt_entry(vgpu, spt, index, &se);
1253         case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1254                 gvt_vdbg_mm("shadow 2M gtt entry\n");
1255                 ret = is_2MB_gtt_possible(vgpu, ge);
1256                 if (ret == 0)
1257                         return split_2MB_gtt_entry(vgpu, spt, index, &se);
1258                 else if (ret < 0)
1259                         return ret;
1260                 page_size = I915_GTT_PAGE_SIZE_2M;
1261                 break;
1262         case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1263                 gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1264                 return -EINVAL;
1265         default:
1266                 GEM_BUG_ON(1);
1267         };
1268
1269         /* direct shadow */
1270         ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1271                                                       &dma_addr);
1272         if (ret)
1273                 return -ENXIO;
1274
1275         pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1276         ppgtt_set_shadow_entry(spt, &se, index);
1277         return 0;
1278 }
1279
1280 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1281 {
1282         struct intel_vgpu *vgpu = spt->vgpu;
1283         struct intel_gvt *gvt = vgpu->gvt;
1284         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1285         struct intel_vgpu_ppgtt_spt *s;
1286         struct intel_gvt_gtt_entry se, ge;
1287         unsigned long gfn, i;
1288         int ret;
1289
1290         trace_spt_change(spt->vgpu->id, "born", spt,
1291                          spt->guest_page.gfn, spt->shadow_page.type);
1292
1293         for_each_present_guest_entry(spt, &ge, i) {
1294                 if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1295                         s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1296                         if (IS_ERR(s)) {
1297                                 ret = PTR_ERR(s);
1298                                 goto fail;
1299                         }
1300                         ppgtt_get_shadow_entry(spt, &se, i);
1301                         ppgtt_generate_shadow_entry(&se, s, &ge);
1302                         ppgtt_set_shadow_entry(spt, &se, i);
1303                 } else {
1304                         gfn = ops->get_pfn(&ge);
1305                         if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1306                                 ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1307                                 ppgtt_set_shadow_entry(spt, &se, i);
1308                                 continue;
1309                         }
1310
1311                         ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1312                         if (ret)
1313                                 goto fail;
1314                 }
1315         }
1316         return 0;
1317 fail:
1318         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1319                         spt, ge.val64, ge.type);
1320         return ret;
1321 }
1322
1323 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1324                 struct intel_gvt_gtt_entry *se, unsigned long index)
1325 {
1326         struct intel_vgpu *vgpu = spt->vgpu;
1327         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1328         int ret;
1329
1330         trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1331                                spt->shadow_page.type, se->val64, index);
1332
1333         gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1334                     se->type, index, se->val64);
1335
1336         if (!ops->test_present(se))
1337                 return 0;
1338
1339         if (ops->get_pfn(se) ==
1340             vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1341                 return 0;
1342
1343         if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1344                 struct intel_vgpu_ppgtt_spt *s =
1345                         intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1346                 if (!s) {
1347                         gvt_vgpu_err("fail to find guest page\n");
1348                         ret = -ENXIO;
1349                         goto fail;
1350                 }
1351                 ret = ppgtt_invalidate_spt(s);
1352                 if (ret)
1353                         goto fail;
1354         } else {
1355                 /* We don't setup 64K shadow entry so far. */
1356                 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1357                      "suspicious 64K entry\n");
1358                 ppgtt_invalidate_pte(spt, se);
1359         }
1360
1361         return 0;
1362 fail:
1363         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1364                         spt, se->val64, se->type);
1365         return ret;
1366 }
1367
1368 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1369                 struct intel_gvt_gtt_entry *we, unsigned long index)
1370 {
1371         struct intel_vgpu *vgpu = spt->vgpu;
1372         struct intel_gvt_gtt_entry m;
1373         struct intel_vgpu_ppgtt_spt *s;
1374         int ret;
1375
1376         trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1377                                we->val64, index);
1378
1379         gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1380                     we->type, index, we->val64);
1381
1382         if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1383                 s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1384                 if (IS_ERR(s)) {
1385                         ret = PTR_ERR(s);
1386                         goto fail;
1387                 }
1388                 ppgtt_get_shadow_entry(spt, &m, index);
1389                 ppgtt_generate_shadow_entry(&m, s, we);
1390                 ppgtt_set_shadow_entry(spt, &m, index);
1391         } else {
1392                 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1393                 if (ret)
1394                         goto fail;
1395         }
1396         return 0;
1397 fail:
1398         gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1399                 spt, we->val64, we->type);
1400         return ret;
1401 }
1402
1403 static int sync_oos_page(struct intel_vgpu *vgpu,
1404                 struct intel_vgpu_oos_page *oos_page)
1405 {
1406         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1407         struct intel_gvt *gvt = vgpu->gvt;
1408         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1409         struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1410         struct intel_gvt_gtt_entry old, new;
1411         int index;
1412         int ret;
1413
1414         trace_oos_change(vgpu->id, "sync", oos_page->id,
1415                          spt, spt->guest_page.type);
1416
1417         old.type = new.type = get_entry_type(spt->guest_page.type);
1418         old.val64 = new.val64 = 0;
1419
1420         for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1421                                 info->gtt_entry_size_shift); index++) {
1422                 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1423                 ops->get_entry(NULL, &new, index, true,
1424                                spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1425
1426                 if (old.val64 == new.val64
1427                         && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1428                         continue;
1429
1430                 trace_oos_sync(vgpu->id, oos_page->id,
1431                                 spt, spt->guest_page.type,
1432                                 new.val64, index);
1433
1434                 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1435                 if (ret)
1436                         return ret;
1437
1438                 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1439         }
1440
1441         spt->guest_page.write_cnt = 0;
1442         list_del_init(&spt->post_shadow_list);
1443         return 0;
1444 }
1445
1446 static int detach_oos_page(struct intel_vgpu *vgpu,
1447                 struct intel_vgpu_oos_page *oos_page)
1448 {
1449         struct intel_gvt *gvt = vgpu->gvt;
1450         struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1451
1452         trace_oos_change(vgpu->id, "detach", oos_page->id,
1453                          spt, spt->guest_page.type);
1454
1455         spt->guest_page.write_cnt = 0;
1456         spt->guest_page.oos_page = NULL;
1457         oos_page->spt = NULL;
1458
1459         list_del_init(&oos_page->vm_list);
1460         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1461
1462         return 0;
1463 }
1464
1465 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1466                 struct intel_vgpu_ppgtt_spt *spt)
1467 {
1468         struct intel_gvt *gvt = spt->vgpu->gvt;
1469         int ret;
1470
1471         ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1472                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1473                         oos_page->mem, I915_GTT_PAGE_SIZE);
1474         if (ret)
1475                 return ret;
1476
1477         oos_page->spt = spt;
1478         spt->guest_page.oos_page = oos_page;
1479
1480         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1481
1482         trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1483                          spt, spt->guest_page.type);
1484         return 0;
1485 }
1486
1487 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1488 {
1489         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1490         int ret;
1491
1492         ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1493         if (ret)
1494                 return ret;
1495
1496         trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1497                          spt, spt->guest_page.type);
1498
1499         list_del_init(&oos_page->vm_list);
1500         return sync_oos_page(spt->vgpu, oos_page);
1501 }
1502
1503 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1504 {
1505         struct intel_gvt *gvt = spt->vgpu->gvt;
1506         struct intel_gvt_gtt *gtt = &gvt->gtt;
1507         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1508         int ret;
1509
1510         WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1511
1512         if (list_empty(&gtt->oos_page_free_list_head)) {
1513                 oos_page = container_of(gtt->oos_page_use_list_head.next,
1514                         struct intel_vgpu_oos_page, list);
1515                 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1516                 if (ret)
1517                         return ret;
1518                 ret = detach_oos_page(spt->vgpu, oos_page);
1519                 if (ret)
1520                         return ret;
1521         } else
1522                 oos_page = container_of(gtt->oos_page_free_list_head.next,
1523                         struct intel_vgpu_oos_page, list);
1524         return attach_oos_page(oos_page, spt);
1525 }
1526
1527 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1528 {
1529         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1530
1531         if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1532                 return -EINVAL;
1533
1534         trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1535                          spt, spt->guest_page.type);
1536
1537         list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1538         return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1539 }
1540
1541 /**
1542  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1543  * @vgpu: a vGPU
1544  *
1545  * This function is called before submitting a guest workload to host,
1546  * to sync all the out-of-synced shadow for vGPU
1547  *
1548  * Returns:
1549  * Zero on success, negative error code if failed.
1550  */
1551 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1552 {
1553         struct list_head *pos, *n;
1554         struct intel_vgpu_oos_page *oos_page;
1555         int ret;
1556
1557         if (!enable_out_of_sync)
1558                 return 0;
1559
1560         list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1561                 oos_page = container_of(pos,
1562                                 struct intel_vgpu_oos_page, vm_list);
1563                 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1564                 if (ret)
1565                         return ret;
1566         }
1567         return 0;
1568 }
1569
1570 /*
1571  * The heart of PPGTT shadow page table.
1572  */
1573 static int ppgtt_handle_guest_write_page_table(
1574                 struct intel_vgpu_ppgtt_spt *spt,
1575                 struct intel_gvt_gtt_entry *we, unsigned long index)
1576 {
1577         struct intel_vgpu *vgpu = spt->vgpu;
1578         int type = spt->shadow_page.type;
1579         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1580         struct intel_gvt_gtt_entry old_se;
1581         int new_present;
1582         int i, ret;
1583
1584         new_present = ops->test_present(we);
1585
1586         /*
1587          * Adding the new entry first and then removing the old one, that can
1588          * guarantee the ppgtt table is validated during the window between
1589          * adding and removal.
1590          */
1591         ppgtt_get_shadow_entry(spt, &old_se, index);
1592
1593         if (new_present) {
1594                 ret = ppgtt_handle_guest_entry_add(spt, we, index);
1595                 if (ret)
1596                         goto fail;
1597         }
1598
1599         ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1600         if (ret)
1601                 goto fail;
1602
1603         if (!new_present) {
1604                 /* For 64KB splited entries, we need clear them all. */
1605                 if (ops->test_64k_splited(&old_se) &&
1606                     !(index % GTT_64K_PTE_STRIDE)) {
1607                         gvt_vdbg_mm("remove splited 64K shadow entries\n");
1608                         for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1609                                 ops->clear_64k_splited(&old_se);
1610                                 ops->set_pfn(&old_se,
1611                                         vgpu->gtt.scratch_pt[type].page_mfn);
1612                                 ppgtt_set_shadow_entry(spt, &old_se, index + i);
1613                         }
1614                 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1615                            old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1616                         ops->clear_pse(&old_se);
1617                         ops->set_pfn(&old_se,
1618                                      vgpu->gtt.scratch_pt[type].page_mfn);
1619                         ppgtt_set_shadow_entry(spt, &old_se, index);
1620                 } else {
1621                         ops->set_pfn(&old_se,
1622                                      vgpu->gtt.scratch_pt[type].page_mfn);
1623                         ppgtt_set_shadow_entry(spt, &old_se, index);
1624                 }
1625         }
1626
1627         return 0;
1628 fail:
1629         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1630                         spt, we->val64, we->type);
1631         return ret;
1632 }
1633
1634
1635
1636 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1637 {
1638         return enable_out_of_sync
1639                 && gtt_type_is_pte_pt(spt->guest_page.type)
1640                 && spt->guest_page.write_cnt >= 2;
1641 }
1642
1643 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1644                 unsigned long index)
1645 {
1646         set_bit(index, spt->post_shadow_bitmap);
1647         if (!list_empty(&spt->post_shadow_list))
1648                 return;
1649
1650         list_add_tail(&spt->post_shadow_list,
1651                         &spt->vgpu->gtt.post_shadow_list_head);
1652 }
1653
1654 /**
1655  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1656  * @vgpu: a vGPU
1657  *
1658  * This function is called before submitting a guest workload to host,
1659  * to flush all the post shadows for a vGPU.
1660  *
1661  * Returns:
1662  * Zero on success, negative error code if failed.
1663  */
1664 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1665 {
1666         struct list_head *pos, *n;
1667         struct intel_vgpu_ppgtt_spt *spt;
1668         struct intel_gvt_gtt_entry ge;
1669         unsigned long index;
1670         int ret;
1671
1672         list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1673                 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1674                                 post_shadow_list);
1675
1676                 for_each_set_bit(index, spt->post_shadow_bitmap,
1677                                 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1678                         ppgtt_get_guest_entry(spt, &ge, index);
1679
1680                         ret = ppgtt_handle_guest_write_page_table(spt,
1681                                                         &ge, index);
1682                         if (ret)
1683                                 return ret;
1684                         clear_bit(index, spt->post_shadow_bitmap);
1685                 }
1686                 list_del_init(&spt->post_shadow_list);
1687         }
1688         return 0;
1689 }
1690
1691 static int ppgtt_handle_guest_write_page_table_bytes(
1692                 struct intel_vgpu_ppgtt_spt *spt,
1693                 u64 pa, void *p_data, int bytes)
1694 {
1695         struct intel_vgpu *vgpu = spt->vgpu;
1696         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1697         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1698         struct intel_gvt_gtt_entry we, se;
1699         unsigned long index;
1700         int ret;
1701
1702         index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1703
1704         ppgtt_get_guest_entry(spt, &we, index);
1705
1706         /*
1707          * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1708          * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1709          * ignored.
1710          */
1711         if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1712             (index % GTT_64K_PTE_STRIDE)) {
1713                 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1714                             index);
1715                 return 0;
1716         }
1717
1718         if (bytes == info->gtt_entry_size) {
1719                 ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1720                 if (ret)
1721                         return ret;
1722         } else {
1723                 if (!test_bit(index, spt->post_shadow_bitmap)) {
1724                         int type = spt->shadow_page.type;
1725
1726                         ppgtt_get_shadow_entry(spt, &se, index);
1727                         ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1728                         if (ret)
1729                                 return ret;
1730                         ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1731                         ppgtt_set_shadow_entry(spt, &se, index);
1732                 }
1733                 ppgtt_set_post_shadow(spt, index);
1734         }
1735
1736         if (!enable_out_of_sync)
1737                 return 0;
1738
1739         spt->guest_page.write_cnt++;
1740
1741         if (spt->guest_page.oos_page)
1742                 ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1743                                 false, 0, vgpu);
1744
1745         if (can_do_out_of_sync(spt)) {
1746                 if (!spt->guest_page.oos_page)
1747                         ppgtt_allocate_oos_page(spt);
1748
1749                 ret = ppgtt_set_guest_page_oos(spt);
1750                 if (ret < 0)
1751                         return ret;
1752         }
1753         return 0;
1754 }
1755
1756 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1757 {
1758         struct intel_vgpu *vgpu = mm->vgpu;
1759         struct intel_gvt *gvt = vgpu->gvt;
1760         struct intel_gvt_gtt *gtt = &gvt->gtt;
1761         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1762         struct intel_gvt_gtt_entry se;
1763         int index;
1764
1765         if (!mm->ppgtt_mm.shadowed)
1766                 return;
1767
1768         for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1769                 ppgtt_get_shadow_root_entry(mm, &se, index);
1770
1771                 if (!ops->test_present(&se))
1772                         continue;
1773
1774                 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1775                 se.val64 = 0;
1776                 ppgtt_set_shadow_root_entry(mm, &se, index);
1777
1778                 trace_spt_guest_change(vgpu->id, "destroy root pointer",
1779                                        NULL, se.type, se.val64, index);
1780         }
1781
1782         mm->ppgtt_mm.shadowed = false;
1783 }
1784
1785
1786 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1787 {
1788         struct intel_vgpu *vgpu = mm->vgpu;
1789         struct intel_gvt *gvt = vgpu->gvt;
1790         struct intel_gvt_gtt *gtt = &gvt->gtt;
1791         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1792         struct intel_vgpu_ppgtt_spt *spt;
1793         struct intel_gvt_gtt_entry ge, se;
1794         int index, ret;
1795
1796         if (mm->ppgtt_mm.shadowed)
1797                 return 0;
1798
1799         mm->ppgtt_mm.shadowed = true;
1800
1801         for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1802                 ppgtt_get_guest_root_entry(mm, &ge, index);
1803
1804                 if (!ops->test_present(&ge))
1805                         continue;
1806
1807                 trace_spt_guest_change(vgpu->id, __func__, NULL,
1808                                        ge.type, ge.val64, index);
1809
1810                 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1811                 if (IS_ERR(spt)) {
1812                         gvt_vgpu_err("fail to populate guest root pointer\n");
1813                         ret = PTR_ERR(spt);
1814                         goto fail;
1815                 }
1816                 ppgtt_generate_shadow_entry(&se, spt, &ge);
1817                 ppgtt_set_shadow_root_entry(mm, &se, index);
1818
1819                 trace_spt_guest_change(vgpu->id, "populate root pointer",
1820                                        NULL, se.type, se.val64, index);
1821         }
1822
1823         return 0;
1824 fail:
1825         invalidate_ppgtt_mm(mm);
1826         return ret;
1827 }
1828
1829 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1830 {
1831         struct intel_vgpu_mm *mm;
1832
1833         mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1834         if (!mm)
1835                 return NULL;
1836
1837         mm->vgpu = vgpu;
1838         kref_init(&mm->ref);
1839         atomic_set(&mm->pincount, 0);
1840
1841         return mm;
1842 }
1843
1844 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1845 {
1846         kfree(mm);
1847 }
1848
1849 /**
1850  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1851  * @vgpu: a vGPU
1852  * @root_entry_type: ppgtt root entry type
1853  * @pdps: guest pdps.
1854  *
1855  * This function is used to create a ppgtt mm object for a vGPU.
1856  *
1857  * Returns:
1858  * Zero on success, negative error code in pointer if failed.
1859  */
1860 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1861                 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1862 {
1863         struct intel_gvt *gvt = vgpu->gvt;
1864         struct intel_vgpu_mm *mm;
1865         int ret;
1866
1867         mm = vgpu_alloc_mm(vgpu);
1868         if (!mm)
1869                 return ERR_PTR(-ENOMEM);
1870
1871         mm->type = INTEL_GVT_MM_PPGTT;
1872
1873         GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1874                    root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1875         mm->ppgtt_mm.root_entry_type = root_entry_type;
1876
1877         INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1878         INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1879
1880         if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1881                 mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1882         else
1883                 memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1884                        sizeof(mm->ppgtt_mm.guest_pdps));
1885
1886         ret = shadow_ppgtt_mm(mm);
1887         if (ret) {
1888                 gvt_vgpu_err("failed to shadow ppgtt mm\n");
1889                 vgpu_free_mm(mm);
1890                 return ERR_PTR(ret);
1891         }
1892
1893         list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1894
1895         mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1896         list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1897         mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1898
1899         return mm;
1900 }
1901
1902 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1903 {
1904         struct intel_vgpu_mm *mm;
1905         unsigned long nr_entries;
1906
1907         mm = vgpu_alloc_mm(vgpu);
1908         if (!mm)
1909                 return ERR_PTR(-ENOMEM);
1910
1911         mm->type = INTEL_GVT_MM_GGTT;
1912
1913         nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1914         mm->ggtt_mm.virtual_ggtt =
1915                 vzalloc(array_size(nr_entries,
1916                                    vgpu->gvt->device_info.gtt_entry_size));
1917         if (!mm->ggtt_mm.virtual_ggtt) {
1918                 vgpu_free_mm(mm);
1919                 return ERR_PTR(-ENOMEM);
1920         }
1921
1922         return mm;
1923 }
1924
1925 /**
1926  * _intel_vgpu_mm_release - destroy a mm object
1927  * @mm_ref: a kref object
1928  *
1929  * This function is used to destroy a mm object for vGPU
1930  *
1931  */
1932 void _intel_vgpu_mm_release(struct kref *mm_ref)
1933 {
1934         struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1935
1936         if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1937                 gvt_err("vgpu mm pin count bug detected\n");
1938
1939         if (mm->type == INTEL_GVT_MM_PPGTT) {
1940                 list_del(&mm->ppgtt_mm.list);
1941                 list_del(&mm->ppgtt_mm.lru_list);
1942                 invalidate_ppgtt_mm(mm);
1943         } else {
1944                 vfree(mm->ggtt_mm.virtual_ggtt);
1945         }
1946
1947         vgpu_free_mm(mm);
1948 }
1949
1950 /**
1951  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1952  * @mm: a vGPU mm object
1953  *
1954  * This function is called when user doesn't want to use a vGPU mm object
1955  */
1956 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1957 {
1958         atomic_dec_if_positive(&mm->pincount);
1959 }
1960
1961 /**
1962  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1963  * @mm: target vgpu mm
1964  *
1965  * This function is called when user wants to use a vGPU mm object. If this
1966  * mm object hasn't been shadowed yet, the shadow will be populated at this
1967  * time.
1968  *
1969  * Returns:
1970  * Zero on success, negative error code if failed.
1971  */
1972 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1973 {
1974         int ret;
1975
1976         atomic_inc(&mm->pincount);
1977
1978         if (mm->type == INTEL_GVT_MM_PPGTT) {
1979                 ret = shadow_ppgtt_mm(mm);
1980                 if (ret)
1981                         return ret;
1982
1983                 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1984                 list_move_tail(&mm->ppgtt_mm.lru_list,
1985                                &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
1986                 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1987         }
1988
1989         return 0;
1990 }
1991
1992 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
1993 {
1994         struct intel_vgpu_mm *mm;
1995         struct list_head *pos, *n;
1996
1997         mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1998
1999         list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2000                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2001
2002                 if (atomic_read(&mm->pincount))
2003                         continue;
2004
2005                 list_del_init(&mm->ppgtt_mm.lru_list);
2006                 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2007                 invalidate_ppgtt_mm(mm);
2008                 return 1;
2009         }
2010         mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2011         return 0;
2012 }
2013
2014 /*
2015  * GMA translation APIs.
2016  */
2017 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2018                 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2019 {
2020         struct intel_vgpu *vgpu = mm->vgpu;
2021         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2022         struct intel_vgpu_ppgtt_spt *s;
2023
2024         s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2025         if (!s)
2026                 return -ENXIO;
2027
2028         if (!guest)
2029                 ppgtt_get_shadow_entry(s, e, index);
2030         else
2031                 ppgtt_get_guest_entry(s, e, index);
2032         return 0;
2033 }
2034
2035 /**
2036  * intel_vgpu_gma_to_gpa - translate a gma to GPA
2037  * @mm: mm object. could be a PPGTT or GGTT mm object
2038  * @gma: graphics memory address in this mm object
2039  *
2040  * This function is used to translate a graphics memory address in specific
2041  * graphics memory space to guest physical address.
2042  *
2043  * Returns:
2044  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2045  */
2046 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2047 {
2048         struct intel_vgpu *vgpu = mm->vgpu;
2049         struct intel_gvt *gvt = vgpu->gvt;
2050         struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2051         struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2052         unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2053         unsigned long gma_index[4];
2054         struct intel_gvt_gtt_entry e;
2055         int i, levels = 0;
2056         int ret;
2057
2058         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2059                    mm->type != INTEL_GVT_MM_PPGTT);
2060
2061         if (mm->type == INTEL_GVT_MM_GGTT) {
2062                 if (!vgpu_gmadr_is_valid(vgpu, gma))
2063                         goto err;
2064
2065                 ggtt_get_guest_entry(mm, &e,
2066                         gma_ops->gma_to_ggtt_pte_index(gma));
2067
2068                 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2069                         + (gma & ~I915_GTT_PAGE_MASK);
2070
2071                 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2072         } else {
2073                 switch (mm->ppgtt_mm.root_entry_type) {
2074                 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2075                         ppgtt_get_shadow_root_entry(mm, &e, 0);
2076
2077                         gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2078                         gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2079                         gma_index[2] = gma_ops->gma_to_pde_index(gma);
2080                         gma_index[3] = gma_ops->gma_to_pte_index(gma);
2081                         levels = 4;
2082                         break;
2083                 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2084                         ppgtt_get_shadow_root_entry(mm, &e,
2085                                         gma_ops->gma_to_l3_pdp_index(gma));
2086
2087                         gma_index[0] = gma_ops->gma_to_pde_index(gma);
2088                         gma_index[1] = gma_ops->gma_to_pte_index(gma);
2089                         levels = 2;
2090                         break;
2091                 default:
2092                         GEM_BUG_ON(1);
2093                 }
2094
2095                 /* walk the shadow page table and get gpa from guest entry */
2096                 for (i = 0; i < levels; i++) {
2097                         ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2098                                 (i == levels - 1));
2099                         if (ret)
2100                                 goto err;
2101
2102                         if (!pte_ops->test_present(&e)) {
2103                                 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2104                                 goto err;
2105                         }
2106                 }
2107
2108                 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2109                                         (gma & ~I915_GTT_PAGE_MASK);
2110                 trace_gma_translate(vgpu->id, "ppgtt", 0,
2111                                     mm->ppgtt_mm.root_entry_type, gma, gpa);
2112         }
2113
2114         return gpa;
2115 err:
2116         gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2117         return INTEL_GVT_INVALID_ADDR;
2118 }
2119
2120 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2121         unsigned int off, void *p_data, unsigned int bytes)
2122 {
2123         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2124         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2125         unsigned long index = off >> info->gtt_entry_size_shift;
2126         struct intel_gvt_gtt_entry e;
2127
2128         if (bytes != 4 && bytes != 8)
2129                 return -EINVAL;
2130
2131         ggtt_get_guest_entry(ggtt_mm, &e, index);
2132         memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2133                         bytes);
2134         return 0;
2135 }
2136
2137 /**
2138  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2139  * @vgpu: a vGPU
2140  * @off: register offset
2141  * @p_data: data will be returned to guest
2142  * @bytes: data length
2143  *
2144  * This function is used to emulate the GTT MMIO register read
2145  *
2146  * Returns:
2147  * Zero on success, error code if failed.
2148  */
2149 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2150         void *p_data, unsigned int bytes)
2151 {
2152         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2153         int ret;
2154
2155         if (bytes != 4 && bytes != 8)
2156                 return -EINVAL;
2157
2158         off -= info->gtt_start_offset;
2159         ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2160         return ret;
2161 }
2162
2163 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2164                 struct intel_gvt_gtt_entry *entry)
2165 {
2166         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2167         unsigned long pfn;
2168
2169         pfn = pte_ops->get_pfn(entry);
2170         if (pfn != vgpu->gvt->gtt.scratch_mfn)
2171                 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2172                                                 pfn << PAGE_SHIFT);
2173 }
2174
2175 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2176         void *p_data, unsigned int bytes)
2177 {
2178         struct intel_gvt *gvt = vgpu->gvt;
2179         const struct intel_gvt_device_info *info = &gvt->device_info;
2180         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2181         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2182         unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2183         unsigned long gma, gfn;
2184         struct intel_gvt_gtt_entry e, m;
2185         dma_addr_t dma_addr;
2186         int ret;
2187         struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2188         bool partial_update = false;
2189
2190         if (bytes != 4 && bytes != 8)
2191                 return -EINVAL;
2192
2193         gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2194
2195         /* the VM may configure the whole GM space when ballooning is used */
2196         if (!vgpu_gmadr_is_valid(vgpu, gma))
2197                 return 0;
2198
2199         e.type = GTT_TYPE_GGTT_PTE;
2200         memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2201                         bytes);
2202
2203         /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2204          * write, save the first 4 bytes in a list and update virtual
2205          * PTE. Only update shadow PTE when the second 4 bytes comes.
2206          */
2207         if (bytes < info->gtt_entry_size) {
2208                 bool found = false;
2209
2210                 list_for_each_entry_safe(pos, n,
2211                                 &ggtt_mm->ggtt_mm.partial_pte_list, list) {
2212                         if (g_gtt_index == pos->offset >>
2213                                         info->gtt_entry_size_shift) {
2214                                 if (off != pos->offset) {
2215                                         /* the second partial part*/
2216                                         int last_off = pos->offset &
2217                                                 (info->gtt_entry_size - 1);
2218
2219                                         memcpy((void *)&e.val64 + last_off,
2220                                                 (void *)&pos->data + last_off,
2221                                                 bytes);
2222
2223                                         list_del(&pos->list);
2224                                         kfree(pos);
2225                                         found = true;
2226                                         break;
2227                                 }
2228
2229                                 /* update of the first partial part */
2230                                 pos->data = e.val64;
2231                                 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2232                                 return 0;
2233                         }
2234                 }
2235
2236                 if (!found) {
2237                         /* the first partial part */
2238                         partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2239                         if (!partial_pte)
2240                                 return -ENOMEM;
2241                         partial_pte->offset = off;
2242                         partial_pte->data = e.val64;
2243                         list_add_tail(&partial_pte->list,
2244                                 &ggtt_mm->ggtt_mm.partial_pte_list);
2245                         partial_update = true;
2246                 }
2247         }
2248
2249         if (!partial_update && (ops->test_present(&e))) {
2250                 gfn = ops->get_pfn(&e);
2251                 m = e;
2252
2253                 /* one PTE update may be issued in multiple writes and the
2254                  * first write may not construct a valid gfn
2255                  */
2256                 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2257                         ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2258                         goto out;
2259                 }
2260
2261                 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2262                                                         PAGE_SIZE, &dma_addr);
2263                 if (ret) {
2264                         gvt_vgpu_err("fail to populate guest ggtt entry\n");
2265                         /* guest driver may read/write the entry when partial
2266                          * update the entry in this situation p2m will fail
2267                          * settting the shadow entry to point to a scratch page
2268                          */
2269                         ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2270                 } else
2271                         ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2272         } else {
2273                 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2274                 ops->clear_present(&m);
2275         }
2276
2277 out:
2278         ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2279
2280         ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2281         ggtt_invalidate_pte(vgpu, &e);
2282
2283         ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2284         ggtt_invalidate(gvt->dev_priv);
2285         return 0;
2286 }
2287
2288 /*
2289  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2290  * @vgpu: a vGPU
2291  * @off: register offset
2292  * @p_data: data from guest write
2293  * @bytes: data length
2294  *
2295  * This function is used to emulate the GTT MMIO register write
2296  *
2297  * Returns:
2298  * Zero on success, error code if failed.
2299  */
2300 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2301                 unsigned int off, void *p_data, unsigned int bytes)
2302 {
2303         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2304         int ret;
2305
2306         if (bytes != 4 && bytes != 8)
2307                 return -EINVAL;
2308
2309         off -= info->gtt_start_offset;
2310         ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2311         return ret;
2312 }
2313
2314 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2315                 enum intel_gvt_gtt_type type)
2316 {
2317         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2318         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2319         int page_entry_num = I915_GTT_PAGE_SIZE >>
2320                                 vgpu->gvt->device_info.gtt_entry_size_shift;
2321         void *scratch_pt;
2322         int i;
2323         struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2324         dma_addr_t daddr;
2325
2326         if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2327                 return -EINVAL;
2328
2329         scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2330         if (!scratch_pt) {
2331                 gvt_vgpu_err("fail to allocate scratch page\n");
2332                 return -ENOMEM;
2333         }
2334
2335         daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2336                         4096, PCI_DMA_BIDIRECTIONAL);
2337         if (dma_mapping_error(dev, daddr)) {
2338                 gvt_vgpu_err("fail to dmamap scratch_pt\n");
2339                 __free_page(virt_to_page(scratch_pt));
2340                 return -ENOMEM;
2341         }
2342         gtt->scratch_pt[type].page_mfn =
2343                 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2344         gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2345         gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2346                         vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2347
2348         /* Build the tree by full filled the scratch pt with the entries which
2349          * point to the next level scratch pt or scratch page. The
2350          * scratch_pt[type] indicate the scratch pt/scratch page used by the
2351          * 'type' pt.
2352          * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2353          * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2354          * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2355          */
2356         if (type > GTT_TYPE_PPGTT_PTE_PT) {
2357                 struct intel_gvt_gtt_entry se;
2358
2359                 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2360                 se.type = get_entry_type(type - 1);
2361                 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2362
2363                 /* The entry parameters like present/writeable/cache type
2364                  * set to the same as i915's scratch page tree.
2365                  */
2366                 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2367                 if (type == GTT_TYPE_PPGTT_PDE_PT)
2368                         se.val64 |= PPAT_CACHED;
2369
2370                 for (i = 0; i < page_entry_num; i++)
2371                         ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2372         }
2373
2374         return 0;
2375 }
2376
2377 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2378 {
2379         int i;
2380         struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2381         dma_addr_t daddr;
2382
2383         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2384                 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2385                         daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2386                                         I915_GTT_PAGE_SHIFT);
2387                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2388                         __free_page(vgpu->gtt.scratch_pt[i].page);
2389                         vgpu->gtt.scratch_pt[i].page = NULL;
2390                         vgpu->gtt.scratch_pt[i].page_mfn = 0;
2391                 }
2392         }
2393
2394         return 0;
2395 }
2396
2397 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2398 {
2399         int i, ret;
2400
2401         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2402                 ret = alloc_scratch_pages(vgpu, i);
2403                 if (ret)
2404                         goto err;
2405         }
2406
2407         return 0;
2408
2409 err:
2410         release_scratch_page_tree(vgpu);
2411         return ret;
2412 }
2413
2414 /**
2415  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2416  * @vgpu: a vGPU
2417  *
2418  * This function is used to initialize per-vGPU graphics memory virtualization
2419  * components.
2420  *
2421  * Returns:
2422  * Zero on success, error code if failed.
2423  */
2424 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2425 {
2426         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2427
2428         INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2429
2430         INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2431         INIT_LIST_HEAD(&gtt->oos_page_list_head);
2432         INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2433
2434         gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2435         if (IS_ERR(gtt->ggtt_mm)) {
2436                 gvt_vgpu_err("fail to create mm for ggtt.\n");
2437                 return PTR_ERR(gtt->ggtt_mm);
2438         }
2439
2440         intel_vgpu_reset_ggtt(vgpu, false);
2441
2442         INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2443
2444         return create_scratch_page_tree(vgpu);
2445 }
2446
2447 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2448 {
2449         struct list_head *pos, *n;
2450         struct intel_vgpu_mm *mm;
2451
2452         list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2453                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2454                 intel_vgpu_destroy_mm(mm);
2455         }
2456
2457         if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2458                 gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2459
2460         if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2461                 gvt_err("Why we still has spt not freed?\n");
2462                 ppgtt_free_all_spt(vgpu);
2463         }
2464 }
2465
2466 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2467 {
2468         struct intel_gvt_partial_pte *pos, *next;
2469
2470         list_for_each_entry_safe(pos, next,
2471                                  &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2472                                  list) {
2473                 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2474                         pos->offset, pos->data);
2475                 kfree(pos);
2476         }
2477         intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2478         vgpu->gtt.ggtt_mm = NULL;
2479 }
2480
2481 /**
2482  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2483  * @vgpu: a vGPU
2484  *
2485  * This function is used to clean up per-vGPU graphics memory virtualization
2486  * components.
2487  *
2488  * Returns:
2489  * Zero on success, error code if failed.
2490  */
2491 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2492 {
2493         intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2494         intel_vgpu_destroy_ggtt_mm(vgpu);
2495         release_scratch_page_tree(vgpu);
2496 }
2497
2498 static void clean_spt_oos(struct intel_gvt *gvt)
2499 {
2500         struct intel_gvt_gtt *gtt = &gvt->gtt;
2501         struct list_head *pos, *n;
2502         struct intel_vgpu_oos_page *oos_page;
2503
2504         WARN(!list_empty(&gtt->oos_page_use_list_head),
2505                 "someone is still using oos page\n");
2506
2507         list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2508                 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2509                 list_del(&oos_page->list);
2510                 free_page((unsigned long)oos_page->mem);
2511                 kfree(oos_page);
2512         }
2513 }
2514
2515 static int setup_spt_oos(struct intel_gvt *gvt)
2516 {
2517         struct intel_gvt_gtt *gtt = &gvt->gtt;
2518         struct intel_vgpu_oos_page *oos_page;
2519         int i;
2520         int ret;
2521
2522         INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2523         INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2524
2525         for (i = 0; i < preallocated_oos_pages; i++) {
2526                 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2527                 if (!oos_page) {
2528                         ret = -ENOMEM;
2529                         goto fail;
2530                 }
2531                 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2532                 if (!oos_page->mem) {
2533                         ret = -ENOMEM;
2534                         kfree(oos_page);
2535                         goto fail;
2536                 }
2537
2538                 INIT_LIST_HEAD(&oos_page->list);
2539                 INIT_LIST_HEAD(&oos_page->vm_list);
2540                 oos_page->id = i;
2541                 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2542         }
2543
2544         gvt_dbg_mm("%d oos pages preallocated\n", i);
2545
2546         return 0;
2547 fail:
2548         clean_spt_oos(gvt);
2549         return ret;
2550 }
2551
2552 /**
2553  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2554  * @vgpu: a vGPU
2555  * @pdps: pdp root array
2556  *
2557  * This function is used to find a PPGTT mm object from mm object pool
2558  *
2559  * Returns:
2560  * pointer to mm object on success, NULL if failed.
2561  */
2562 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2563                 u64 pdps[])
2564 {
2565         struct intel_vgpu_mm *mm;
2566         struct list_head *pos;
2567
2568         list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2569                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2570
2571                 switch (mm->ppgtt_mm.root_entry_type) {
2572                 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2573                         if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2574                                 return mm;
2575                         break;
2576                 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2577                         if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2578                                     sizeof(mm->ppgtt_mm.guest_pdps)))
2579                                 return mm;
2580                         break;
2581                 default:
2582                         GEM_BUG_ON(1);
2583                 }
2584         }
2585         return NULL;
2586 }
2587
2588 /**
2589  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2590  * @vgpu: a vGPU
2591  * @root_entry_type: ppgtt root entry type
2592  * @pdps: guest pdps
2593  *
2594  * This function is used to find or create a PPGTT mm object from a guest.
2595  *
2596  * Returns:
2597  * Zero on success, negative error code if failed.
2598  */
2599 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2600                 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2601 {
2602         struct intel_vgpu_mm *mm;
2603
2604         mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2605         if (mm) {
2606                 intel_vgpu_mm_get(mm);
2607         } else {
2608                 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2609                 if (IS_ERR(mm))
2610                         gvt_vgpu_err("fail to create mm\n");
2611         }
2612         return mm;
2613 }
2614
2615 /**
2616  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2617  * @vgpu: a vGPU
2618  * @pdps: guest pdps
2619  *
2620  * This function is used to find a PPGTT mm object from a guest and destroy it.
2621  *
2622  * Returns:
2623  * Zero on success, negative error code if failed.
2624  */
2625 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2626 {
2627         struct intel_vgpu_mm *mm;
2628
2629         mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2630         if (!mm) {
2631                 gvt_vgpu_err("fail to find ppgtt instance.\n");
2632                 return -EINVAL;
2633         }
2634         intel_vgpu_mm_put(mm);
2635         return 0;
2636 }
2637
2638 /**
2639  * intel_gvt_init_gtt - initialize mm components of a GVT device
2640  * @gvt: GVT device
2641  *
2642  * This function is called at the initialization stage, to initialize
2643  * the mm components of a GVT device.
2644  *
2645  * Returns:
2646  * zero on success, negative error code if failed.
2647  */
2648 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2649 {
2650         int ret;
2651         void *page;
2652         struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2653         dma_addr_t daddr;
2654
2655         gvt_dbg_core("init gtt\n");
2656
2657         gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2658         gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2659
2660         page = (void *)get_zeroed_page(GFP_KERNEL);
2661         if (!page) {
2662                 gvt_err("fail to allocate scratch ggtt page\n");
2663                 return -ENOMEM;
2664         }
2665
2666         daddr = dma_map_page(dev, virt_to_page(page), 0,
2667                         4096, PCI_DMA_BIDIRECTIONAL);
2668         if (dma_mapping_error(dev, daddr)) {
2669                 gvt_err("fail to dmamap scratch ggtt page\n");
2670                 __free_page(virt_to_page(page));
2671                 return -ENOMEM;
2672         }
2673
2674         gvt->gtt.scratch_page = virt_to_page(page);
2675         gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2676
2677         if (enable_out_of_sync) {
2678                 ret = setup_spt_oos(gvt);
2679                 if (ret) {
2680                         gvt_err("fail to initialize SPT oos\n");
2681                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2682                         __free_page(gvt->gtt.scratch_page);
2683                         return ret;
2684                 }
2685         }
2686         INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2687         mutex_init(&gvt->gtt.ppgtt_mm_lock);
2688         return 0;
2689 }
2690
2691 /**
2692  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2693  * @gvt: GVT device
2694  *
2695  * This function is called at the driver unloading stage, to clean up the
2696  * the mm components of a GVT device.
2697  *
2698  */
2699 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2700 {
2701         struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2702         dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2703                                         I915_GTT_PAGE_SHIFT);
2704
2705         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2706
2707         __free_page(gvt->gtt.scratch_page);
2708
2709         if (enable_out_of_sync)
2710                 clean_spt_oos(gvt);
2711 }
2712
2713 /**
2714  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2715  * @vgpu: a vGPU
2716  *
2717  * This function is called when invalidate all PPGTT instances of a vGPU.
2718  *
2719  */
2720 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2721 {
2722         struct list_head *pos, *n;
2723         struct intel_vgpu_mm *mm;
2724
2725         list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2726                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2727                 if (mm->type == INTEL_GVT_MM_PPGTT) {
2728                         mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2729                         list_del_init(&mm->ppgtt_mm.lru_list);
2730                         mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2731                         if (mm->ppgtt_mm.shadowed)
2732                                 invalidate_ppgtt_mm(mm);
2733                 }
2734         }
2735 }
2736
2737 /**
2738  * intel_vgpu_reset_ggtt - reset the GGTT entry
2739  * @vgpu: a vGPU
2740  * @invalidate_old: invalidate old entries
2741  *
2742  * This function is called at the vGPU create stage
2743  * to reset all the GGTT entries.
2744  *
2745  */
2746 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2747 {
2748         struct intel_gvt *gvt = vgpu->gvt;
2749         struct drm_i915_private *dev_priv = gvt->dev_priv;
2750         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2751         struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2752         struct intel_gvt_gtt_entry old_entry;
2753         u32 index;
2754         u32 num_entries;
2755
2756         pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2757         pte_ops->set_present(&entry);
2758
2759         index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2760         num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2761         while (num_entries--) {
2762                 if (invalidate_old) {
2763                         ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2764                         ggtt_invalidate_pte(vgpu, &old_entry);
2765                 }
2766                 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2767         }
2768
2769         index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2770         num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2771         while (num_entries--) {
2772                 if (invalidate_old) {
2773                         ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2774                         ggtt_invalidate_pte(vgpu, &old_entry);
2775                 }
2776                 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2777         }
2778
2779         ggtt_invalidate(dev_priv);
2780 }
2781
2782 /**
2783  * intel_vgpu_reset_gtt - reset the all GTT related status
2784  * @vgpu: a vGPU
2785  *
2786  * This function is called from vfio core to reset reset all
2787  * GTT related status, including GGTT, PPGTT, scratch page.
2788  *
2789  */
2790 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2791 {
2792         /* Shadow pages are only created when there is no page
2793          * table tracking data, so remove page tracking data after
2794          * removing the shadow pages.
2795          */
2796         intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2797         intel_vgpu_reset_ggtt(vgpu, true);
2798 }