drm/i915/gvt: clean up intel_gvt.h as interface for i915 core
[linux-2.6-block.git] / drivers / gpu / drm / i915 / gvt / gtt.c
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 static bool enable_out_of_sync = false;
42 static int preallocated_oos_pages = 8192;
43
44 /*
45  * validate a gm address and related range size,
46  * translate it to host gm address
47  */
48 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
49 {
50         if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
51                         && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
52                 gvt_err("vgpu%d: invalid range gmadr 0x%llx size 0x%x\n",
53                                 vgpu->id, addr, size);
54                 return false;
55         }
56         return true;
57 }
58
59 /* translate a guest gmadr to host gmadr */
60 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
61 {
62         if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
63                  "invalid guest gmadr %llx\n", g_addr))
64                 return -EACCES;
65
66         if (vgpu_gmadr_is_aperture(vgpu, g_addr))
67                 *h_addr = vgpu_aperture_gmadr_base(vgpu)
68                           + (g_addr - vgpu_aperture_offset(vgpu));
69         else
70                 *h_addr = vgpu_hidden_gmadr_base(vgpu)
71                           + (g_addr - vgpu_hidden_offset(vgpu));
72         return 0;
73 }
74
75 /* translate a host gmadr to guest gmadr */
76 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
77 {
78         if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
79                  "invalid host gmadr %llx\n", h_addr))
80                 return -EACCES;
81
82         if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
83                 *g_addr = vgpu_aperture_gmadr_base(vgpu)
84                         + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
85         else
86                 *g_addr = vgpu_hidden_gmadr_base(vgpu)
87                         + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
88         return 0;
89 }
90
91 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
92                              unsigned long *h_index)
93 {
94         u64 h_addr;
95         int ret;
96
97         ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << GTT_PAGE_SHIFT,
98                                        &h_addr);
99         if (ret)
100                 return ret;
101
102         *h_index = h_addr >> GTT_PAGE_SHIFT;
103         return 0;
104 }
105
106 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
107                              unsigned long *g_index)
108 {
109         u64 g_addr;
110         int ret;
111
112         ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << GTT_PAGE_SHIFT,
113                                        &g_addr);
114         if (ret)
115                 return ret;
116
117         *g_index = g_addr >> GTT_PAGE_SHIFT;
118         return 0;
119 }
120
121 #define gtt_type_is_entry(type) \
122         (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
123          && type != GTT_TYPE_PPGTT_PTE_ENTRY \
124          && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
125
126 #define gtt_type_is_pt(type) \
127         (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
128
129 #define gtt_type_is_pte_pt(type) \
130         (type == GTT_TYPE_PPGTT_PTE_PT)
131
132 #define gtt_type_is_root_pointer(type) \
133         (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
134
135 #define gtt_init_entry(e, t, p, v) do { \
136         (e)->type = t; \
137         (e)->pdev = p; \
138         memcpy(&(e)->val64, &v, sizeof(v)); \
139 } while (0)
140
141 enum {
142         GTT_TYPE_INVALID = -1,
143
144         GTT_TYPE_GGTT_PTE,
145
146         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
147         GTT_TYPE_PPGTT_PTE_2M_ENTRY,
148         GTT_TYPE_PPGTT_PTE_1G_ENTRY,
149
150         GTT_TYPE_PPGTT_PTE_ENTRY,
151
152         GTT_TYPE_PPGTT_PDE_ENTRY,
153         GTT_TYPE_PPGTT_PDP_ENTRY,
154         GTT_TYPE_PPGTT_PML4_ENTRY,
155
156         GTT_TYPE_PPGTT_ROOT_ENTRY,
157
158         GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
159         GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
160
161         GTT_TYPE_PPGTT_ENTRY,
162
163         GTT_TYPE_PPGTT_PTE_PT,
164         GTT_TYPE_PPGTT_PDE_PT,
165         GTT_TYPE_PPGTT_PDP_PT,
166         GTT_TYPE_PPGTT_PML4_PT,
167
168         GTT_TYPE_MAX,
169 };
170
171 /*
172  * Mappings between GTT_TYPE* enumerations.
173  * Following information can be found according to the given type:
174  * - type of next level page table
175  * - type of entry inside this level page table
176  * - type of entry with PSE set
177  *
178  * If the given type doesn't have such a kind of information,
179  * e.g. give a l4 root entry type, then request to get its PSE type,
180  * give a PTE page table type, then request to get its next level page
181  * table type, as we know l4 root entry doesn't have a PSE bit,
182  * and a PTE page table doesn't have a next level page table type,
183  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
184  * page table.
185  */
186
187 struct gtt_type_table_entry {
188         int entry_type;
189         int next_pt_type;
190         int pse_entry_type;
191 };
192
193 #define GTT_TYPE_TABLE_ENTRY(type, e_type, npt_type, pse_type) \
194         [type] = { \
195                 .entry_type = e_type, \
196                 .next_pt_type = npt_type, \
197                 .pse_entry_type = pse_type, \
198         }
199
200 static struct gtt_type_table_entry gtt_type_table[] = {
201         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
202                         GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
203                         GTT_TYPE_PPGTT_PML4_PT,
204                         GTT_TYPE_INVALID),
205         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
206                         GTT_TYPE_PPGTT_PML4_ENTRY,
207                         GTT_TYPE_PPGTT_PDP_PT,
208                         GTT_TYPE_INVALID),
209         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
210                         GTT_TYPE_PPGTT_PML4_ENTRY,
211                         GTT_TYPE_PPGTT_PDP_PT,
212                         GTT_TYPE_INVALID),
213         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
214                         GTT_TYPE_PPGTT_PDP_ENTRY,
215                         GTT_TYPE_PPGTT_PDE_PT,
216                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
217         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
218                         GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
219                         GTT_TYPE_PPGTT_PDE_PT,
220                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
221         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
222                         GTT_TYPE_PPGTT_PDP_ENTRY,
223                         GTT_TYPE_PPGTT_PDE_PT,
224                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
225         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
226                         GTT_TYPE_PPGTT_PDE_ENTRY,
227                         GTT_TYPE_PPGTT_PTE_PT,
228                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
229         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
230                         GTT_TYPE_PPGTT_PDE_ENTRY,
231                         GTT_TYPE_PPGTT_PTE_PT,
232                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
233         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
234                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
235                         GTT_TYPE_INVALID,
236                         GTT_TYPE_INVALID),
237         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
238                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
239                         GTT_TYPE_INVALID,
240                         GTT_TYPE_INVALID),
241         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
242                         GTT_TYPE_PPGTT_PDE_ENTRY,
243                         GTT_TYPE_INVALID,
244                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
245         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
246                         GTT_TYPE_PPGTT_PDP_ENTRY,
247                         GTT_TYPE_INVALID,
248                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
249         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
250                         GTT_TYPE_GGTT_PTE,
251                         GTT_TYPE_INVALID,
252                         GTT_TYPE_INVALID),
253 };
254
255 static inline int get_next_pt_type(int type)
256 {
257         return gtt_type_table[type].next_pt_type;
258 }
259
260 static inline int get_entry_type(int type)
261 {
262         return gtt_type_table[type].entry_type;
263 }
264
265 static inline int get_pse_type(int type)
266 {
267         return gtt_type_table[type].pse_entry_type;
268 }
269
270 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
271 {
272         void *addr = (u64 *)dev_priv->ggtt.gsm + index;
273         u64 pte;
274
275 #ifdef readq
276         pte = readq(addr);
277 #else
278         pte = ioread32(addr);
279         pte |= ioread32(addr + 4) << 32;
280 #endif
281         return pte;
282 }
283
284 static void write_pte64(struct drm_i915_private *dev_priv,
285                 unsigned long index, u64 pte)
286 {
287         void *addr = (u64 *)dev_priv->ggtt.gsm + index;
288
289 #ifdef writeq
290         writeq(pte, addr);
291 #else
292         iowrite32((u32)pte, addr);
293         iowrite32(pte >> 32, addr + 4);
294 #endif
295         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
296         POSTING_READ(GFX_FLSH_CNTL_GEN6);
297 }
298
299 static inline struct intel_gvt_gtt_entry *gtt_get_entry64(void *pt,
300                 struct intel_gvt_gtt_entry *e,
301                 unsigned long index, bool hypervisor_access, unsigned long gpa,
302                 struct intel_vgpu *vgpu)
303 {
304         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
305         int ret;
306
307         if (WARN_ON(info->gtt_entry_size != 8))
308                 return e;
309
310         if (hypervisor_access) {
311                 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
312                                 (index << info->gtt_entry_size_shift),
313                                 &e->val64, 8);
314                 WARN_ON(ret);
315         } else if (!pt) {
316                 e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
317         } else {
318                 e->val64 = *((u64 *)pt + index);
319         }
320         return e;
321 }
322
323 static inline struct intel_gvt_gtt_entry *gtt_set_entry64(void *pt,
324                 struct intel_gvt_gtt_entry *e,
325                 unsigned long index, bool hypervisor_access, unsigned long gpa,
326                 struct intel_vgpu *vgpu)
327 {
328         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
329         int ret;
330
331         if (WARN_ON(info->gtt_entry_size != 8))
332                 return e;
333
334         if (hypervisor_access) {
335                 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
336                                 (index << info->gtt_entry_size_shift),
337                                 &e->val64, 8);
338                 WARN_ON(ret);
339         } else if (!pt) {
340                 write_pte64(vgpu->gvt->dev_priv, index, e->val64);
341         } else {
342                 *((u64 *)pt + index) = e->val64;
343         }
344         return e;
345 }
346
347 #define GTT_HAW 46
348
349 #define ADDR_1G_MASK (((1UL << (GTT_HAW - 30 + 1)) - 1) << 30)
350 #define ADDR_2M_MASK (((1UL << (GTT_HAW - 21 + 1)) - 1) << 21)
351 #define ADDR_4K_MASK (((1UL << (GTT_HAW - 12 + 1)) - 1) << 12)
352
353 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
354 {
355         unsigned long pfn;
356
357         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
358                 pfn = (e->val64 & ADDR_1G_MASK) >> 12;
359         else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
360                 pfn = (e->val64 & ADDR_2M_MASK) >> 12;
361         else
362                 pfn = (e->val64 & ADDR_4K_MASK) >> 12;
363         return pfn;
364 }
365
366 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
367 {
368         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
369                 e->val64 &= ~ADDR_1G_MASK;
370                 pfn &= (ADDR_1G_MASK >> 12);
371         } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
372                 e->val64 &= ~ADDR_2M_MASK;
373                 pfn &= (ADDR_2M_MASK >> 12);
374         } else {
375                 e->val64 &= ~ADDR_4K_MASK;
376                 pfn &= (ADDR_4K_MASK >> 12);
377         }
378
379         e->val64 |= (pfn << 12);
380 }
381
382 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
383 {
384         /* Entry doesn't have PSE bit. */
385         if (get_pse_type(e->type) == GTT_TYPE_INVALID)
386                 return false;
387
388         e->type = get_entry_type(e->type);
389         if (!(e->val64 & (1 << 7)))
390                 return false;
391
392         e->type = get_pse_type(e->type);
393         return true;
394 }
395
396 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
397 {
398         /*
399          * i915 writes PDP root pointer registers without present bit,
400          * it also works, so we need to treat root pointer entry
401          * specifically.
402          */
403         if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
404                         || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
405                 return (e->val64 != 0);
406         else
407                 return (e->val64 & (1 << 0));
408 }
409
410 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
411 {
412         e->val64 &= ~(1 << 0);
413 }
414
415 /*
416  * Per-platform GMA routines.
417  */
418 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
419 {
420         unsigned long x = (gma >> GTT_PAGE_SHIFT);
421
422         trace_gma_index(__func__, gma, x);
423         return x;
424 }
425
426 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
427 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
428 { \
429         unsigned long x = (exp); \
430         trace_gma_index(__func__, gma, x); \
431         return x; \
432 }
433
434 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
435 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
436 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
437 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
438 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
439
440 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
441         .get_entry = gtt_get_entry64,
442         .set_entry = gtt_set_entry64,
443         .clear_present = gtt_entry_clear_present,
444         .test_present = gen8_gtt_test_present,
445         .test_pse = gen8_gtt_test_pse,
446         .get_pfn = gen8_gtt_get_pfn,
447         .set_pfn = gen8_gtt_set_pfn,
448 };
449
450 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
451         .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
452         .gma_to_pte_index = gen8_gma_to_pte_index,
453         .gma_to_pde_index = gen8_gma_to_pde_index,
454         .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
455         .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
456         .gma_to_pml4_index = gen8_gma_to_pml4_index,
457 };
458
459 static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p,
460                 struct intel_gvt_gtt_entry *m)
461 {
462         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
463         unsigned long gfn, mfn;
464
465         *m = *p;
466
467         if (!ops->test_present(p))
468                 return 0;
469
470         gfn = ops->get_pfn(p);
471
472         mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn);
473         if (mfn == INTEL_GVT_INVALID_ADDR) {
474                 gvt_err("fail to translate gfn: 0x%lx\n", gfn);
475                 return -ENXIO;
476         }
477
478         ops->set_pfn(m, mfn);
479         return 0;
480 }
481
482 /*
483  * MM helpers.
484  */
485 struct intel_gvt_gtt_entry *intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm,
486                 void *page_table, struct intel_gvt_gtt_entry *e,
487                 unsigned long index)
488 {
489         struct intel_gvt *gvt = mm->vgpu->gvt;
490         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
491
492         e->type = mm->page_table_entry_type;
493
494         ops->get_entry(page_table, e, index, false, 0, mm->vgpu);
495         ops->test_pse(e);
496         return e;
497 }
498
499 struct intel_gvt_gtt_entry *intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm,
500                 void *page_table, struct intel_gvt_gtt_entry *e,
501                 unsigned long index)
502 {
503         struct intel_gvt *gvt = mm->vgpu->gvt;
504         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
505
506         return ops->set_entry(page_table, e, index, false, 0, mm->vgpu);
507 }
508
509 /*
510  * PPGTT shadow page table helpers.
511  */
512 static inline struct intel_gvt_gtt_entry *ppgtt_spt_get_entry(
513                 struct intel_vgpu_ppgtt_spt *spt,
514                 void *page_table, int type,
515                 struct intel_gvt_gtt_entry *e, unsigned long index,
516                 bool guest)
517 {
518         struct intel_gvt *gvt = spt->vgpu->gvt;
519         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
520
521         e->type = get_entry_type(type);
522
523         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
524                 return e;
525
526         ops->get_entry(page_table, e, index, guest,
527                         spt->guest_page.gfn << GTT_PAGE_SHIFT,
528                         spt->vgpu);
529         ops->test_pse(e);
530         return e;
531 }
532
533 static inline struct intel_gvt_gtt_entry *ppgtt_spt_set_entry(
534                 struct intel_vgpu_ppgtt_spt *spt,
535                 void *page_table, int type,
536                 struct intel_gvt_gtt_entry *e, unsigned long index,
537                 bool guest)
538 {
539         struct intel_gvt *gvt = spt->vgpu->gvt;
540         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
541
542         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
543                 return e;
544
545         return ops->set_entry(page_table, e, index, guest,
546                         spt->guest_page.gfn << GTT_PAGE_SHIFT,
547                         spt->vgpu);
548 }
549
550 #define ppgtt_get_guest_entry(spt, e, index) \
551         ppgtt_spt_get_entry(spt, NULL, \
552                 spt->guest_page_type, e, index, true)
553
554 #define ppgtt_set_guest_entry(spt, e, index) \
555         ppgtt_spt_set_entry(spt, NULL, \
556                 spt->guest_page_type, e, index, true)
557
558 #define ppgtt_get_shadow_entry(spt, e, index) \
559         ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
560                 spt->shadow_page.type, e, index, false)
561
562 #define ppgtt_set_shadow_entry(spt, e, index) \
563         ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
564                 spt->shadow_page.type, e, index, false)
565
566 /**
567  * intel_vgpu_init_guest_page - init a guest page data structure
568  * @vgpu: a vGPU
569  * @p: a guest page data structure
570  * @gfn: guest memory page frame number
571  * @handler: function will be called when target guest memory page has
572  * been modified.
573  *
574  * This function is called when user wants to track a guest memory page.
575  *
576  * Returns:
577  * Zero on success, negative error code if failed.
578  */
579 int intel_vgpu_init_guest_page(struct intel_vgpu *vgpu,
580                 struct intel_vgpu_guest_page *p,
581                 unsigned long gfn,
582                 int (*handler)(void *, u64, void *, int),
583                 void *data)
584 {
585         INIT_HLIST_NODE(&p->node);
586
587         p->writeprotection = false;
588         p->gfn = gfn;
589         p->handler = handler;
590         p->data = data;
591         p->oos_page = NULL;
592         p->write_cnt = 0;
593
594         hash_add(vgpu->gtt.guest_page_hash_table, &p->node, p->gfn);
595         return 0;
596 }
597
598 static int detach_oos_page(struct intel_vgpu *vgpu,
599                 struct intel_vgpu_oos_page *oos_page);
600
601 /**
602  * intel_vgpu_clean_guest_page - release the resource owned by guest page data
603  * structure
604  * @vgpu: a vGPU
605  * @p: a tracked guest page
606  *
607  * This function is called when user tries to stop tracking a guest memory
608  * page.
609  */
610 void intel_vgpu_clean_guest_page(struct intel_vgpu *vgpu,
611                 struct intel_vgpu_guest_page *p)
612 {
613         if (!hlist_unhashed(&p->node))
614                 hash_del(&p->node);
615
616         if (p->oos_page)
617                 detach_oos_page(vgpu, p->oos_page);
618
619         if (p->writeprotection)
620                 intel_gvt_hypervisor_unset_wp_page(vgpu, p);
621 }
622
623 /**
624  * intel_vgpu_find_guest_page - find a guest page data structure by GFN.
625  * @vgpu: a vGPU
626  * @gfn: guest memory page frame number
627  *
628  * This function is called when emulation logic wants to know if a trapped GFN
629  * is a tracked guest page.
630  *
631  * Returns:
632  * Pointer to guest page data structure, NULL if failed.
633  */
634 struct intel_vgpu_guest_page *intel_vgpu_find_guest_page(
635                 struct intel_vgpu *vgpu, unsigned long gfn)
636 {
637         struct intel_vgpu_guest_page *p;
638
639         hash_for_each_possible(vgpu->gtt.guest_page_hash_table,
640                 p, node, gfn) {
641                 if (p->gfn == gfn)
642                         return p;
643         }
644         return NULL;
645 }
646
647 static inline int init_shadow_page(struct intel_vgpu *vgpu,
648                 struct intel_vgpu_shadow_page *p, int type)
649 {
650         p->vaddr = page_address(p->page);
651         p->type = type;
652
653         INIT_HLIST_NODE(&p->node);
654
655         p->mfn = intel_gvt_hypervisor_virt_to_mfn(p->vaddr);
656         if (p->mfn == INTEL_GVT_INVALID_ADDR)
657                 return -EFAULT;
658
659         hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn);
660         return 0;
661 }
662
663 static inline void clean_shadow_page(struct intel_vgpu_shadow_page *p)
664 {
665         if (!hlist_unhashed(&p->node))
666                 hash_del(&p->node);
667 }
668
669 static inline struct intel_vgpu_shadow_page *find_shadow_page(
670                 struct intel_vgpu *vgpu, unsigned long mfn)
671 {
672         struct intel_vgpu_shadow_page *p;
673
674         hash_for_each_possible(vgpu->gtt.shadow_page_hash_table,
675                 p, node, mfn) {
676                 if (p->mfn == mfn)
677                         return p;
678         }
679         return NULL;
680 }
681
682 #define guest_page_to_ppgtt_spt(ptr) \
683         container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page)
684
685 #define shadow_page_to_ppgtt_spt(ptr) \
686         container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page)
687
688 static void *alloc_spt(gfp_t gfp_mask)
689 {
690         struct intel_vgpu_ppgtt_spt *spt;
691
692         spt = kzalloc(sizeof(*spt), gfp_mask);
693         if (!spt)
694                 return NULL;
695
696         spt->shadow_page.page = alloc_page(gfp_mask);
697         if (!spt->shadow_page.page) {
698                 kfree(spt);
699                 return NULL;
700         }
701         return spt;
702 }
703
704 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
705 {
706         __free_page(spt->shadow_page.page);
707         kfree(spt);
708 }
709
710 static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
711 {
712         trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type);
713
714         clean_shadow_page(&spt->shadow_page);
715         intel_vgpu_clean_guest_page(spt->vgpu, &spt->guest_page);
716         list_del_init(&spt->post_shadow_list);
717
718         free_spt(spt);
719 }
720
721 static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu)
722 {
723         struct hlist_node *n;
724         struct intel_vgpu_shadow_page *sp;
725         int i;
726
727         hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node)
728                 ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp));
729 }
730
731 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
732                 u64 pa, void *p_data, int bytes);
733
734 static int ppgtt_write_protection_handler(void *gp, u64 pa,
735                 void *p_data, int bytes)
736 {
737         struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
738         int ret;
739
740         if (bytes != 4 && bytes != 8)
741                 return -EINVAL;
742
743         if (!gpt->writeprotection)
744                 return -EINVAL;
745
746         ret = ppgtt_handle_guest_write_page_table_bytes(gp,
747                 pa, p_data, bytes);
748         if (ret)
749                 return ret;
750         return ret;
751 }
752
753 static int reclaim_one_mm(struct intel_gvt *gvt);
754
755 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page(
756                 struct intel_vgpu *vgpu, int type, unsigned long gfn)
757 {
758         struct intel_vgpu_ppgtt_spt *spt = NULL;
759         int ret;
760
761 retry:
762         spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
763         if (!spt) {
764                 if (reclaim_one_mm(vgpu->gvt))
765                         goto retry;
766
767                 gvt_err("fail to allocate ppgtt shadow page\n");
768                 return ERR_PTR(-ENOMEM);
769         }
770
771         spt->vgpu = vgpu;
772         spt->guest_page_type = type;
773         atomic_set(&spt->refcount, 1);
774         INIT_LIST_HEAD(&spt->post_shadow_list);
775
776         /*
777          * TODO: guest page type may be different with shadow page type,
778          *       when we support PSE page in future.
779          */
780         ret = init_shadow_page(vgpu, &spt->shadow_page, type);
781         if (ret) {
782                 gvt_err("fail to initialize shadow page for spt\n");
783                 goto err;
784         }
785
786         ret = intel_vgpu_init_guest_page(vgpu, &spt->guest_page,
787                         gfn, ppgtt_write_protection_handler, NULL);
788         if (ret) {
789                 gvt_err("fail to initialize guest page for spt\n");
790                 goto err;
791         }
792
793         trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
794         return spt;
795 err:
796         ppgtt_free_shadow_page(spt);
797         return ERR_PTR(ret);
798 }
799
800 static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page(
801                 struct intel_vgpu *vgpu, unsigned long mfn)
802 {
803         struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn);
804
805         if (p)
806                 return shadow_page_to_ppgtt_spt(p);
807
808         gvt_err("vgpu%d: fail to find ppgtt shadow page: 0x%lx\n",
809                         vgpu->id, mfn);
810         return NULL;
811 }
812
813 #define pt_entry_size_shift(spt) \
814         ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
815
816 #define pt_entries(spt) \
817         (GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
818
819 #define for_each_present_guest_entry(spt, e, i) \
820         for (i = 0; i < pt_entries(spt); i++) \
821         if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
822                 ppgtt_get_guest_entry(spt, e, i)))
823
824 #define for_each_present_shadow_entry(spt, e, i) \
825         for (i = 0; i < pt_entries(spt); i++) \
826         if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
827                 ppgtt_get_shadow_entry(spt, e, i)))
828
829 static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
830 {
831         int v = atomic_read(&spt->refcount);
832
833         trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
834
835         atomic_inc(&spt->refcount);
836 }
837
838 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
839
840 static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu,
841                 struct intel_gvt_gtt_entry *e)
842 {
843         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
844         struct intel_vgpu_ppgtt_spt *s;
845
846         if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type))))
847                 return -EINVAL;
848
849         if (ops->get_pfn(e) == vgpu->gtt.scratch_page_mfn)
850                 return 0;
851
852         s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
853         if (!s) {
854                 gvt_err("vgpu%d: fail to find shadow page: mfn: 0x%lx\n",
855                                 vgpu->id, ops->get_pfn(e));
856                 return -ENXIO;
857         }
858         return ppgtt_invalidate_shadow_page(s);
859 }
860
861 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
862 {
863         struct intel_gvt_gtt_entry e;
864         unsigned long index;
865         int ret;
866         int v = atomic_read(&spt->refcount);
867
868         trace_spt_change(spt->vgpu->id, "die", spt,
869                         spt->guest_page.gfn, spt->shadow_page.type);
870
871         trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
872
873         if (atomic_dec_return(&spt->refcount) > 0)
874                 return 0;
875
876         if (gtt_type_is_pte_pt(spt->shadow_page.type))
877                 goto release;
878
879         for_each_present_shadow_entry(spt, &e, index) {
880                 if (!gtt_type_is_pt(get_next_pt_type(e.type))) {
881                         gvt_err("GVT doesn't support pse bit for now\n");
882                         return -EINVAL;
883                 }
884                 ret = ppgtt_invalidate_shadow_page_by_shadow_entry(
885                                 spt->vgpu, &e);
886                 if (ret)
887                         goto fail;
888         }
889 release:
890         trace_spt_change(spt->vgpu->id, "release", spt,
891                         spt->guest_page.gfn, spt->shadow_page.type);
892         ppgtt_free_shadow_page(spt);
893         return 0;
894 fail:
895         gvt_err("vgpu%d: fail: shadow page %p shadow entry 0x%llx type %d\n",
896                         spt->vgpu->id, spt, e.val64, e.type);
897         return ret;
898 }
899
900 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
901
902 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry(
903                 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
904 {
905         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
906         struct intel_vgpu_ppgtt_spt *s = NULL;
907         struct intel_vgpu_guest_page *g;
908         int ret;
909
910         if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) {
911                 ret = -EINVAL;
912                 goto fail;
913         }
914
915         g = intel_vgpu_find_guest_page(vgpu, ops->get_pfn(we));
916         if (g) {
917                 s = guest_page_to_ppgtt_spt(g);
918                 ppgtt_get_shadow_page(s);
919         } else {
920                 int type = get_next_pt_type(we->type);
921
922                 s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we));
923                 if (IS_ERR(s)) {
924                         ret = PTR_ERR(s);
925                         goto fail;
926                 }
927
928                 ret = intel_gvt_hypervisor_set_wp_page(vgpu, &s->guest_page);
929                 if (ret)
930                         goto fail;
931
932                 ret = ppgtt_populate_shadow_page(s);
933                 if (ret)
934                         goto fail;
935
936                 trace_spt_change(vgpu->id, "new", s, s->guest_page.gfn,
937                         s->shadow_page.type);
938         }
939         return s;
940 fail:
941         gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d\n",
942                         vgpu->id, s, we->val64, we->type);
943         return ERR_PTR(ret);
944 }
945
946 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
947                 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
948 {
949         struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
950
951         se->type = ge->type;
952         se->val64 = ge->val64;
953
954         ops->set_pfn(se, s->shadow_page.mfn);
955 }
956
957 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
958 {
959         struct intel_vgpu *vgpu = spt->vgpu;
960         struct intel_vgpu_ppgtt_spt *s;
961         struct intel_gvt_gtt_entry se, ge;
962         unsigned long i;
963         int ret;
964
965         trace_spt_change(spt->vgpu->id, "born", spt,
966                         spt->guest_page.gfn, spt->shadow_page.type);
967
968         if (gtt_type_is_pte_pt(spt->shadow_page.type)) {
969                 for_each_present_guest_entry(spt, &ge, i) {
970                         ret = gtt_entry_p2m(vgpu, &ge, &se);
971                         if (ret)
972                                 goto fail;
973                         ppgtt_set_shadow_entry(spt, &se, i);
974                 }
975                 return 0;
976         }
977
978         for_each_present_guest_entry(spt, &ge, i) {
979                 if (!gtt_type_is_pt(get_next_pt_type(ge.type))) {
980                         gvt_err("GVT doesn't support pse bit now\n");
981                         ret = -EINVAL;
982                         goto fail;
983                 }
984
985                 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
986                 if (IS_ERR(s)) {
987                         ret = PTR_ERR(s);
988                         goto fail;
989                 }
990                 ppgtt_get_shadow_entry(spt, &se, i);
991                 ppgtt_generate_shadow_entry(&se, s, &ge);
992                 ppgtt_set_shadow_entry(spt, &se, i);
993         }
994         return 0;
995 fail:
996         gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d\n",
997                         vgpu->id, spt, ge.val64, ge.type);
998         return ret;
999 }
1000
1001 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt,
1002                 struct intel_gvt_gtt_entry *we, unsigned long index)
1003 {
1004         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1005         struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1006         struct intel_vgpu *vgpu = spt->vgpu;
1007         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1008         struct intel_gvt_gtt_entry e;
1009         int ret;
1010
1011         trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type,
1012                 we->val64, index);
1013
1014         ppgtt_get_shadow_entry(spt, &e, index);
1015         if (!ops->test_present(&e))
1016                 return 0;
1017
1018         if (ops->get_pfn(&e) == vgpu->gtt.scratch_page_mfn)
1019                 return 0;
1020
1021         if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1022                 struct intel_vgpu_guest_page *g =
1023                         intel_vgpu_find_guest_page(vgpu, ops->get_pfn(we));
1024                 if (!g) {
1025                         gvt_err("fail to find guest page\n");
1026                         ret = -ENXIO;
1027                         goto fail;
1028                 }
1029                 ret = ppgtt_invalidate_shadow_page(guest_page_to_ppgtt_spt(g));
1030                 if (ret)
1031                         goto fail;
1032         }
1033         ops->set_pfn(&e, vgpu->gtt.scratch_page_mfn);
1034         ppgtt_set_shadow_entry(spt, &e, index);
1035         return 0;
1036 fail:
1037         gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d\n",
1038                         vgpu->id, spt, we->val64, we->type);
1039         return ret;
1040 }
1041
1042 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt,
1043                 struct intel_gvt_gtt_entry *we, unsigned long index)
1044 {
1045         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1046         struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1047         struct intel_vgpu *vgpu = spt->vgpu;
1048         struct intel_gvt_gtt_entry m;
1049         struct intel_vgpu_ppgtt_spt *s;
1050         int ret;
1051
1052         trace_gpt_change(spt->vgpu->id, "add", spt, sp->type,
1053                 we->val64, index);
1054
1055         if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1056                 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we);
1057                 if (IS_ERR(s)) {
1058                         ret = PTR_ERR(s);
1059                         goto fail;
1060                 }
1061                 ppgtt_get_shadow_entry(spt, &m, index);
1062                 ppgtt_generate_shadow_entry(&m, s, we);
1063                 ppgtt_set_shadow_entry(spt, &m, index);
1064         } else {
1065                 ret = gtt_entry_p2m(vgpu, we, &m);
1066                 if (ret)
1067                         goto fail;
1068                 ppgtt_set_shadow_entry(spt, &m, index);
1069         }
1070         return 0;
1071 fail:
1072         gvt_err("vgpu%d: fail: spt %p guest entry 0x%llx type %d\n", vgpu->id,
1073                         spt, we->val64, we->type);
1074         return ret;
1075 }
1076
1077 static int sync_oos_page(struct intel_vgpu *vgpu,
1078                 struct intel_vgpu_oos_page *oos_page)
1079 {
1080         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1081         struct intel_gvt *gvt = vgpu->gvt;
1082         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1083         struct intel_vgpu_ppgtt_spt *spt =
1084                 guest_page_to_ppgtt_spt(oos_page->guest_page);
1085         struct intel_gvt_gtt_entry old, new, m;
1086         int index;
1087         int ret;
1088
1089         trace_oos_change(vgpu->id, "sync", oos_page->id,
1090                         oos_page->guest_page, spt->guest_page_type);
1091
1092         old.type = new.type = get_entry_type(spt->guest_page_type);
1093         old.val64 = new.val64 = 0;
1094
1095         for (index = 0; index < (GTT_PAGE_SIZE >> info->gtt_entry_size_shift);
1096                 index++) {
1097                 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1098                 ops->get_entry(NULL, &new, index, true,
1099                         oos_page->guest_page->gfn << PAGE_SHIFT, vgpu);
1100
1101                 if (old.val64 == new.val64
1102                         && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1103                         continue;
1104
1105                 trace_oos_sync(vgpu->id, oos_page->id,
1106                                 oos_page->guest_page, spt->guest_page_type,
1107                                 new.val64, index);
1108
1109                 ret = gtt_entry_p2m(vgpu, &new, &m);
1110                 if (ret)
1111                         return ret;
1112
1113                 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1114                 ppgtt_set_shadow_entry(spt, &m, index);
1115         }
1116
1117         oos_page->guest_page->write_cnt = 0;
1118         list_del_init(&spt->post_shadow_list);
1119         return 0;
1120 }
1121
1122 static int detach_oos_page(struct intel_vgpu *vgpu,
1123                 struct intel_vgpu_oos_page *oos_page)
1124 {
1125         struct intel_gvt *gvt = vgpu->gvt;
1126         struct intel_vgpu_ppgtt_spt *spt =
1127                 guest_page_to_ppgtt_spt(oos_page->guest_page);
1128
1129         trace_oos_change(vgpu->id, "detach", oos_page->id,
1130                         oos_page->guest_page, spt->guest_page_type);
1131
1132         oos_page->guest_page->write_cnt = 0;
1133         oos_page->guest_page->oos_page = NULL;
1134         oos_page->guest_page = NULL;
1135
1136         list_del_init(&oos_page->vm_list);
1137         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1138
1139         return 0;
1140 }
1141
1142 static int attach_oos_page(struct intel_vgpu *vgpu,
1143                 struct intel_vgpu_oos_page *oos_page,
1144                 struct intel_vgpu_guest_page *gpt)
1145 {
1146         struct intel_gvt *gvt = vgpu->gvt;
1147         int ret;
1148
1149         ret = intel_gvt_hypervisor_read_gpa(vgpu, gpt->gfn << GTT_PAGE_SHIFT,
1150                 oos_page->mem, GTT_PAGE_SIZE);
1151         if (ret)
1152                 return ret;
1153
1154         oos_page->guest_page = gpt;
1155         gpt->oos_page = oos_page;
1156
1157         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1158
1159         trace_oos_change(vgpu->id, "attach", gpt->oos_page->id,
1160                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1161         return 0;
1162 }
1163
1164 static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu,
1165                 struct intel_vgpu_guest_page *gpt)
1166 {
1167         int ret;
1168
1169         ret = intel_gvt_hypervisor_set_wp_page(vgpu, gpt);
1170         if (ret)
1171                 return ret;
1172
1173         trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id,
1174                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1175
1176         list_del_init(&gpt->oos_page->vm_list);
1177         return sync_oos_page(vgpu, gpt->oos_page);
1178 }
1179
1180 static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu,
1181                 struct intel_vgpu_guest_page *gpt)
1182 {
1183         struct intel_gvt *gvt = vgpu->gvt;
1184         struct intel_gvt_gtt *gtt = &gvt->gtt;
1185         struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1186         int ret;
1187
1188         WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1189
1190         if (list_empty(&gtt->oos_page_free_list_head)) {
1191                 oos_page = container_of(gtt->oos_page_use_list_head.next,
1192                         struct intel_vgpu_oos_page, list);
1193                 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1194                 if (ret)
1195                         return ret;
1196                 ret = detach_oos_page(vgpu, oos_page);
1197                 if (ret)
1198                         return ret;
1199         } else
1200                 oos_page = container_of(gtt->oos_page_free_list_head.next,
1201                         struct intel_vgpu_oos_page, list);
1202         return attach_oos_page(vgpu, oos_page, gpt);
1203 }
1204
1205 static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu,
1206                 struct intel_vgpu_guest_page *gpt)
1207 {
1208         struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1209
1210         if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1211                 return -EINVAL;
1212
1213         trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id,
1214                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1215
1216         list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head);
1217         return intel_gvt_hypervisor_unset_wp_page(vgpu, gpt);
1218 }
1219
1220 /**
1221  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1222  * @vgpu: a vGPU
1223  *
1224  * This function is called before submitting a guest workload to host,
1225  * to sync all the out-of-synced shadow for vGPU
1226  *
1227  * Returns:
1228  * Zero on success, negative error code if failed.
1229  */
1230 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1231 {
1232         struct list_head *pos, *n;
1233         struct intel_vgpu_oos_page *oos_page;
1234         int ret;
1235
1236         if (!enable_out_of_sync)
1237                 return 0;
1238
1239         list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1240                 oos_page = container_of(pos,
1241                                 struct intel_vgpu_oos_page, vm_list);
1242                 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1243                 if (ret)
1244                         return ret;
1245         }
1246         return 0;
1247 }
1248
1249 /*
1250  * The heart of PPGTT shadow page table.
1251  */
1252 static int ppgtt_handle_guest_write_page_table(
1253                 struct intel_vgpu_guest_page *gpt,
1254                 struct intel_gvt_gtt_entry *we, unsigned long index)
1255 {
1256         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1257         struct intel_vgpu *vgpu = spt->vgpu;
1258         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1259         struct intel_gvt_gtt_entry ge;
1260
1261         int old_present, new_present;
1262         int ret;
1263
1264         ppgtt_get_guest_entry(spt, &ge, index);
1265
1266         old_present = ops->test_present(&ge);
1267         new_present = ops->test_present(we);
1268
1269         ppgtt_set_guest_entry(spt, we, index);
1270
1271         if (old_present) {
1272                 ret = ppgtt_handle_guest_entry_removal(gpt, &ge, index);
1273                 if (ret)
1274                         goto fail;
1275         }
1276         if (new_present) {
1277                 ret = ppgtt_handle_guest_entry_add(gpt, we, index);
1278                 if (ret)
1279                         goto fail;
1280         }
1281         return 0;
1282 fail:
1283         gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d.\n",
1284                         vgpu->id, spt, we->val64, we->type);
1285         return ret;
1286 }
1287
1288 static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt)
1289 {
1290         return enable_out_of_sync
1291                 && gtt_type_is_pte_pt(
1292                         guest_page_to_ppgtt_spt(gpt)->guest_page_type)
1293                 && gpt->write_cnt >= 2;
1294 }
1295
1296 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1297                 unsigned long index)
1298 {
1299         set_bit(index, spt->post_shadow_bitmap);
1300         if (!list_empty(&spt->post_shadow_list))
1301                 return;
1302
1303         list_add_tail(&spt->post_shadow_list,
1304                         &spt->vgpu->gtt.post_shadow_list_head);
1305 }
1306
1307 /**
1308  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1309  * @vgpu: a vGPU
1310  *
1311  * This function is called before submitting a guest workload to host,
1312  * to flush all the post shadows for a vGPU.
1313  *
1314  * Returns:
1315  * Zero on success, negative error code if failed.
1316  */
1317 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1318 {
1319         struct list_head *pos, *n;
1320         struct intel_vgpu_ppgtt_spt *spt;
1321         struct intel_gvt_gtt_entry ge, e;
1322         unsigned long index;
1323         int ret;
1324
1325         list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1326                 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1327                                 post_shadow_list);
1328
1329                 for_each_set_bit(index, spt->post_shadow_bitmap,
1330                                 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1331                         ppgtt_get_guest_entry(spt, &ge, index);
1332                         e = ge;
1333                         e.val64 = 0;
1334                         ppgtt_set_guest_entry(spt, &e, index);
1335
1336                         ret = ppgtt_handle_guest_write_page_table(
1337                                         &spt->guest_page, &ge, index);
1338                         if (ret)
1339                                 return ret;
1340                         clear_bit(index, spt->post_shadow_bitmap);
1341                 }
1342                 list_del_init(&spt->post_shadow_list);
1343         }
1344         return 0;
1345 }
1346
1347 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
1348                 u64 pa, void *p_data, int bytes)
1349 {
1350         struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
1351         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1352         struct intel_vgpu *vgpu = spt->vgpu;
1353         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1354         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1355         struct intel_gvt_gtt_entry we;
1356         unsigned long index;
1357         int ret;
1358
1359         index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1360
1361         ppgtt_get_guest_entry(spt, &we, index);
1362         memcpy((void *)&we.val64 + (pa & (info->gtt_entry_size - 1)),
1363                         p_data, bytes);
1364
1365         ops->test_pse(&we);
1366
1367         if (bytes == info->gtt_entry_size) {
1368                 ret = ppgtt_handle_guest_write_page_table(gpt, &we, index);
1369                 if (ret)
1370                         return ret;
1371         } else {
1372                 struct intel_gvt_gtt_entry ge;
1373
1374                 ppgtt_get_guest_entry(spt, &ge, index);
1375
1376                 if (!test_bit(index, spt->post_shadow_bitmap)) {
1377                         ret = ppgtt_handle_guest_entry_removal(gpt,
1378                                         &ge, index);
1379                         if (ret)
1380                                 return ret;
1381                 }
1382
1383                 ppgtt_set_post_shadow(spt, index);
1384                 ppgtt_set_guest_entry(spt, &we, index);
1385         }
1386
1387         if (!enable_out_of_sync)
1388                 return 0;
1389
1390         gpt->write_cnt++;
1391
1392         if (gpt->oos_page)
1393                 ops->set_entry(gpt->oos_page->mem, &we, index,
1394                                 false, 0, vgpu);
1395
1396         if (can_do_out_of_sync(gpt)) {
1397                 if (!gpt->oos_page)
1398                         ppgtt_allocate_oos_page(vgpu, gpt);
1399
1400                 ret = ppgtt_set_guest_page_oos(vgpu, gpt);
1401                 if (ret < 0)
1402                         return ret;
1403         }
1404         return 0;
1405 }
1406
1407 /*
1408  * mm page table allocation policy for bdw+
1409  *  - for ggtt, only virtual page table will be allocated.
1410  *  - for ppgtt, dedicated virtual/shadow page table will be allocated.
1411  */
1412 static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm)
1413 {
1414         struct intel_vgpu *vgpu = mm->vgpu;
1415         struct intel_gvt *gvt = vgpu->gvt;
1416         const struct intel_gvt_device_info *info = &gvt->device_info;
1417         void *mem;
1418
1419         if (mm->type == INTEL_GVT_MM_PPGTT) {
1420                 mm->page_table_entry_cnt = 4;
1421                 mm->page_table_entry_size = mm->page_table_entry_cnt *
1422                         info->gtt_entry_size;
1423                 mem = kzalloc(mm->has_shadow_page_table ?
1424                         mm->page_table_entry_size * 2
1425                                 : mm->page_table_entry_size,
1426                         GFP_ATOMIC);
1427                 if (!mem)
1428                         return -ENOMEM;
1429                 mm->virtual_page_table = mem;
1430                 if (!mm->has_shadow_page_table)
1431                         return 0;
1432                 mm->shadow_page_table = mem + mm->page_table_entry_size;
1433         } else if (mm->type == INTEL_GVT_MM_GGTT) {
1434                 mm->page_table_entry_cnt =
1435                         (gvt_ggtt_gm_sz(gvt) >> GTT_PAGE_SHIFT);
1436                 mm->page_table_entry_size = mm->page_table_entry_cnt *
1437                         info->gtt_entry_size;
1438                 mem = vzalloc(mm->page_table_entry_size);
1439                 if (!mem)
1440                         return -ENOMEM;
1441                 mm->virtual_page_table = mem;
1442         }
1443         return 0;
1444 }
1445
1446 static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm)
1447 {
1448         if (mm->type == INTEL_GVT_MM_PPGTT) {
1449                 kfree(mm->virtual_page_table);
1450         } else if (mm->type == INTEL_GVT_MM_GGTT) {
1451                 if (mm->virtual_page_table)
1452                         vfree(mm->virtual_page_table);
1453         }
1454         mm->virtual_page_table = mm->shadow_page_table = NULL;
1455 }
1456
1457 static void invalidate_mm(struct intel_vgpu_mm *mm)
1458 {
1459         struct intel_vgpu *vgpu = mm->vgpu;
1460         struct intel_gvt *gvt = vgpu->gvt;
1461         struct intel_gvt_gtt *gtt = &gvt->gtt;
1462         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1463         struct intel_gvt_gtt_entry se;
1464         int i;
1465
1466         if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed))
1467                 return;
1468
1469         for (i = 0; i < mm->page_table_entry_cnt; i++) {
1470                 ppgtt_get_shadow_root_entry(mm, &se, i);
1471                 if (!ops->test_present(&se))
1472                         continue;
1473                 ppgtt_invalidate_shadow_page_by_shadow_entry(
1474                                 vgpu, &se);
1475                 se.val64 = 0;
1476                 ppgtt_set_shadow_root_entry(mm, &se, i);
1477
1478                 trace_gpt_change(vgpu->id, "destroy root pointer",
1479                                 NULL, se.type, se.val64, i);
1480         }
1481         mm->shadowed = false;
1482 }
1483
1484 /**
1485  * intel_vgpu_destroy_mm - destroy a mm object
1486  * @mm: a kref object
1487  *
1488  * This function is used to destroy a mm object for vGPU
1489  *
1490  */
1491 void intel_vgpu_destroy_mm(struct kref *mm_ref)
1492 {
1493         struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1494         struct intel_vgpu *vgpu = mm->vgpu;
1495         struct intel_gvt *gvt = vgpu->gvt;
1496         struct intel_gvt_gtt *gtt = &gvt->gtt;
1497
1498         if (!mm->initialized)
1499                 goto out;
1500
1501         list_del(&mm->list);
1502         list_del(&mm->lru_list);
1503
1504         if (mm->has_shadow_page_table)
1505                 invalidate_mm(mm);
1506
1507         gtt->mm_free_page_table(mm);
1508 out:
1509         kfree(mm);
1510 }
1511
1512 static int shadow_mm(struct intel_vgpu_mm *mm)
1513 {
1514         struct intel_vgpu *vgpu = mm->vgpu;
1515         struct intel_gvt *gvt = vgpu->gvt;
1516         struct intel_gvt_gtt *gtt = &gvt->gtt;
1517         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1518         struct intel_vgpu_ppgtt_spt *spt;
1519         struct intel_gvt_gtt_entry ge, se;
1520         int i;
1521         int ret;
1522
1523         if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed))
1524                 return 0;
1525
1526         mm->shadowed = true;
1527
1528         for (i = 0; i < mm->page_table_entry_cnt; i++) {
1529                 ppgtt_get_guest_root_entry(mm, &ge, i);
1530                 if (!ops->test_present(&ge))
1531                         continue;
1532
1533                 trace_gpt_change(vgpu->id, __func__, NULL,
1534                                 ge.type, ge.val64, i);
1535
1536                 spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1537                 if (IS_ERR(spt)) {
1538                         gvt_err("fail to populate guest root pointer\n");
1539                         ret = PTR_ERR(spt);
1540                         goto fail;
1541                 }
1542                 ppgtt_generate_shadow_entry(&se, spt, &ge);
1543                 ppgtt_set_shadow_root_entry(mm, &se, i);
1544
1545                 trace_gpt_change(vgpu->id, "populate root pointer",
1546                                 NULL, se.type, se.val64, i);
1547         }
1548         return 0;
1549 fail:
1550         invalidate_mm(mm);
1551         return ret;
1552 }
1553
1554 /**
1555  * intel_vgpu_create_mm - create a mm object for a vGPU
1556  * @vgpu: a vGPU
1557  * @mm_type: mm object type, should be PPGTT or GGTT
1558  * @virtual_page_table: page table root pointers. Could be NULL if user wants
1559  *      to populate shadow later.
1560  * @page_table_level: describe the page table level of the mm object
1561  * @pde_base_index: pde root pointer base in GGTT MMIO.
1562  *
1563  * This function is used to create a mm object for a vGPU.
1564  *
1565  * Returns:
1566  * Zero on success, negative error code in pointer if failed.
1567  */
1568 struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu,
1569                 int mm_type, void *virtual_page_table, int page_table_level,
1570                 u32 pde_base_index)
1571 {
1572         struct intel_gvt *gvt = vgpu->gvt;
1573         struct intel_gvt_gtt *gtt = &gvt->gtt;
1574         struct intel_vgpu_mm *mm;
1575         int ret;
1576
1577         mm = kzalloc(sizeof(*mm), GFP_ATOMIC);
1578         if (!mm) {
1579                 ret = -ENOMEM;
1580                 goto fail;
1581         }
1582
1583         mm->type = mm_type;
1584
1585         if (page_table_level == 1)
1586                 mm->page_table_entry_type = GTT_TYPE_GGTT_PTE;
1587         else if (page_table_level == 3)
1588                 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1589         else if (page_table_level == 4)
1590                 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1591         else {
1592                 WARN_ON(1);
1593                 ret = -EINVAL;
1594                 goto fail;
1595         }
1596
1597         mm->page_table_level = page_table_level;
1598         mm->pde_base_index = pde_base_index;
1599
1600         mm->vgpu = vgpu;
1601         mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT);
1602
1603         kref_init(&mm->ref);
1604         atomic_set(&mm->pincount, 0);
1605         INIT_LIST_HEAD(&mm->list);
1606         INIT_LIST_HEAD(&mm->lru_list);
1607         list_add_tail(&mm->list, &vgpu->gtt.mm_list_head);
1608
1609         ret = gtt->mm_alloc_page_table(mm);
1610         if (ret) {
1611                 gvt_err("fail to allocate page table for mm\n");
1612                 goto fail;
1613         }
1614
1615         mm->initialized = true;
1616
1617         if (virtual_page_table)
1618                 memcpy(mm->virtual_page_table, virtual_page_table,
1619                                 mm->page_table_entry_size);
1620
1621         if (mm->has_shadow_page_table) {
1622                 ret = shadow_mm(mm);
1623                 if (ret)
1624                         goto fail;
1625                 list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head);
1626         }
1627         return mm;
1628 fail:
1629         gvt_err("fail to create mm\n");
1630         if (mm)
1631                 intel_gvt_mm_unreference(mm);
1632         return ERR_PTR(ret);
1633 }
1634
1635 /**
1636  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1637  * @mm: a vGPU mm object
1638  *
1639  * This function is called when user doesn't want to use a vGPU mm object
1640  */
1641 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1642 {
1643         if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1644                 return;
1645
1646         atomic_dec(&mm->pincount);
1647 }
1648
1649 /**
1650  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1651  * @vgpu: a vGPU
1652  *
1653  * This function is called when user wants to use a vGPU mm object. If this
1654  * mm object hasn't been shadowed yet, the shadow will be populated at this
1655  * time.
1656  *
1657  * Returns:
1658  * Zero on success, negative error code if failed.
1659  */
1660 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1661 {
1662         int ret;
1663
1664         if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1665                 return 0;
1666
1667         atomic_inc(&mm->pincount);
1668
1669         if (!mm->shadowed) {
1670                 ret = shadow_mm(mm);
1671                 if (ret)
1672                         return ret;
1673         }
1674
1675         list_del_init(&mm->lru_list);
1676         list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head);
1677         return 0;
1678 }
1679
1680 static int reclaim_one_mm(struct intel_gvt *gvt)
1681 {
1682         struct intel_vgpu_mm *mm;
1683         struct list_head *pos, *n;
1684
1685         list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) {
1686                 mm = container_of(pos, struct intel_vgpu_mm, lru_list);
1687
1688                 if (mm->type != INTEL_GVT_MM_PPGTT)
1689                         continue;
1690                 if (atomic_read(&mm->pincount))
1691                         continue;
1692
1693                 list_del_init(&mm->lru_list);
1694                 invalidate_mm(mm);
1695                 return 1;
1696         }
1697         return 0;
1698 }
1699
1700 /*
1701  * GMA translation APIs.
1702  */
1703 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1704                 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1705 {
1706         struct intel_vgpu *vgpu = mm->vgpu;
1707         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1708         struct intel_vgpu_ppgtt_spt *s;
1709
1710         if (WARN_ON(!mm->has_shadow_page_table))
1711                 return -EINVAL;
1712
1713         s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
1714         if (!s)
1715                 return -ENXIO;
1716
1717         if (!guest)
1718                 ppgtt_get_shadow_entry(s, e, index);
1719         else
1720                 ppgtt_get_guest_entry(s, e, index);
1721         return 0;
1722 }
1723
1724 /**
1725  * intel_vgpu_gma_to_gpa - translate a gma to GPA
1726  * @mm: mm object. could be a PPGTT or GGTT mm object
1727  * @gma: graphics memory address in this mm object
1728  *
1729  * This function is used to translate a graphics memory address in specific
1730  * graphics memory space to guest physical address.
1731  *
1732  * Returns:
1733  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1734  */
1735 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1736 {
1737         struct intel_vgpu *vgpu = mm->vgpu;
1738         struct intel_gvt *gvt = vgpu->gvt;
1739         struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1740         struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1741         unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1742         unsigned long gma_index[4];
1743         struct intel_gvt_gtt_entry e;
1744         int i, index;
1745         int ret;
1746
1747         if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT)
1748                 return INTEL_GVT_INVALID_ADDR;
1749
1750         if (mm->type == INTEL_GVT_MM_GGTT) {
1751                 if (!vgpu_gmadr_is_valid(vgpu, gma))
1752                         goto err;
1753
1754                 ggtt_get_guest_entry(mm, &e,
1755                         gma_ops->gma_to_ggtt_pte_index(gma));
1756                 gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1757                         + (gma & ~GTT_PAGE_MASK);
1758
1759                 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1760                 return gpa;
1761         }
1762
1763         switch (mm->page_table_level) {
1764         case 4:
1765                 ppgtt_get_shadow_root_entry(mm, &e, 0);
1766                 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1767                 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1768                 gma_index[2] = gma_ops->gma_to_pde_index(gma);
1769                 gma_index[3] = gma_ops->gma_to_pte_index(gma);
1770                 index = 4;
1771                 break;
1772         case 3:
1773                 ppgtt_get_shadow_root_entry(mm, &e,
1774                                 gma_ops->gma_to_l3_pdp_index(gma));
1775                 gma_index[0] = gma_ops->gma_to_pde_index(gma);
1776                 gma_index[1] = gma_ops->gma_to_pte_index(gma);
1777                 index = 2;
1778                 break;
1779         case 2:
1780                 ppgtt_get_shadow_root_entry(mm, &e,
1781                                 gma_ops->gma_to_pde_index(gma));
1782                 gma_index[0] = gma_ops->gma_to_pte_index(gma);
1783                 index = 1;
1784                 break;
1785         default:
1786                 WARN_ON(1);
1787                 goto err;
1788         }
1789
1790         /* walk into the shadow page table and get gpa from guest entry */
1791         for (i = 0; i < index; i++) {
1792                 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1793                         (i == index - 1));
1794                 if (ret)
1795                         goto err;
1796         }
1797
1798         gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1799                 + (gma & ~GTT_PAGE_MASK);
1800
1801         trace_gma_translate(vgpu->id, "ppgtt", 0,
1802                         mm->page_table_level, gma, gpa);
1803         return gpa;
1804 err:
1805         gvt_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1806         return INTEL_GVT_INVALID_ADDR;
1807 }
1808
1809 static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu,
1810         unsigned int off, void *p_data, unsigned int bytes)
1811 {
1812         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1813         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1814         unsigned long index = off >> info->gtt_entry_size_shift;
1815         struct intel_gvt_gtt_entry e;
1816
1817         if (bytes != 4 && bytes != 8)
1818                 return -EINVAL;
1819
1820         ggtt_get_guest_entry(ggtt_mm, &e, index);
1821         memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1822                         bytes);
1823         return 0;
1824 }
1825
1826 /**
1827  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1828  * @vgpu: a vGPU
1829  * @off: register offset
1830  * @p_data: data will be returned to guest
1831  * @bytes: data length
1832  *
1833  * This function is used to emulate the GTT MMIO register read
1834  *
1835  * Returns:
1836  * Zero on success, error code if failed.
1837  */
1838 int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1839         void *p_data, unsigned int bytes)
1840 {
1841         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1842         int ret;
1843
1844         if (bytes != 4 && bytes != 8)
1845                 return -EINVAL;
1846
1847         off -= info->gtt_start_offset;
1848         ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes);
1849         return ret;
1850 }
1851
1852 static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1853         void *p_data, unsigned int bytes)
1854 {
1855         struct intel_gvt *gvt = vgpu->gvt;
1856         const struct intel_gvt_device_info *info = &gvt->device_info;
1857         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1858         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1859         unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1860         unsigned long gma;
1861         struct intel_gvt_gtt_entry e, m;
1862         int ret;
1863
1864         if (bytes != 4 && bytes != 8)
1865                 return -EINVAL;
1866
1867         gma = g_gtt_index << GTT_PAGE_SHIFT;
1868
1869         /* the VM may configure the whole GM space when ballooning is used */
1870         if (WARN_ONCE(!vgpu_gmadr_is_valid(vgpu, gma),
1871                                 "vgpu%d: found oob ggtt write, offset %x\n",
1872                                 vgpu->id, off)) {
1873                 return 0;
1874         }
1875
1876         ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1877
1878         memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1879                         bytes);
1880
1881         if (ops->test_present(&e)) {
1882                 ret = gtt_entry_p2m(vgpu, &e, &m);
1883                 if (ret) {
1884                         gvt_err("vgpu%d: fail to translate guest gtt entry\n",
1885                                         vgpu->id);
1886                         return ret;
1887                 }
1888         } else {
1889                 m = e;
1890                 m.val64 = 0;
1891         }
1892
1893         ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index);
1894         ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1895         return 0;
1896 }
1897
1898 /*
1899  * intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write
1900  * @vgpu: a vGPU
1901  * @off: register offset
1902  * @p_data: data from guest write
1903  * @bytes: data length
1904  *
1905  * This function is used to emulate the GTT MMIO register write
1906  *
1907  * Returns:
1908  * Zero on success, error code if failed.
1909  */
1910 int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1911         void *p_data, unsigned int bytes)
1912 {
1913         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1914         int ret;
1915
1916         if (bytes != 4 && bytes != 8)
1917                 return -EINVAL;
1918
1919         off -= info->gtt_start_offset;
1920         ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes);
1921         return ret;
1922 }
1923
1924 bool intel_gvt_create_scratch_page(struct intel_vgpu *vgpu)
1925 {
1926         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1927         void *p;
1928         void *vaddr;
1929         unsigned long mfn;
1930
1931         gtt->scratch_page = alloc_page(GFP_KERNEL);
1932         if (!gtt->scratch_page) {
1933                 gvt_err("Failed to allocate scratch page.\n");
1934                 return -ENOMEM;
1935         }
1936
1937         /* set to zero */
1938         p = kmap_atomic(gtt->scratch_page);
1939         memset(p, 0, PAGE_SIZE);
1940         kunmap_atomic(p);
1941
1942         /* translate page to mfn */
1943         vaddr = page_address(gtt->scratch_page);
1944         mfn = intel_gvt_hypervisor_virt_to_mfn(vaddr);
1945
1946         if (mfn == INTEL_GVT_INVALID_ADDR) {
1947                 gvt_err("fail to translate vaddr:0x%llx\n", (u64)vaddr);
1948                 __free_page(gtt->scratch_page);
1949                 gtt->scratch_page = NULL;
1950                 return -ENXIO;
1951         }
1952
1953         gtt->scratch_page_mfn = mfn;
1954         gvt_dbg_core("vgpu%d create scratch page: mfn=0x%lx\n", vgpu->id, mfn);
1955         return 0;
1956 }
1957
1958 void intel_gvt_release_scratch_page(struct intel_vgpu *vgpu)
1959 {
1960         if (vgpu->gtt.scratch_page != NULL) {
1961                 __free_page(vgpu->gtt.scratch_page);
1962                 vgpu->gtt.scratch_page = NULL;
1963                 vgpu->gtt.scratch_page_mfn = 0;
1964         }
1965 }
1966
1967 /**
1968  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
1969  * @vgpu: a vGPU
1970  *
1971  * This function is used to initialize per-vGPU graphics memory virtualization
1972  * components.
1973  *
1974  * Returns:
1975  * Zero on success, error code if failed.
1976  */
1977 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
1978 {
1979         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1980         struct intel_vgpu_mm *ggtt_mm;
1981
1982         hash_init(gtt->guest_page_hash_table);
1983         hash_init(gtt->shadow_page_hash_table);
1984
1985         INIT_LIST_HEAD(&gtt->mm_list_head);
1986         INIT_LIST_HEAD(&gtt->oos_page_list_head);
1987         INIT_LIST_HEAD(&gtt->post_shadow_list_head);
1988
1989         ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT,
1990                         NULL, 1, 0);
1991         if (IS_ERR(ggtt_mm)) {
1992                 gvt_err("fail to create mm for ggtt.\n");
1993                 return PTR_ERR(ggtt_mm);
1994         }
1995
1996         gtt->ggtt_mm = ggtt_mm;
1997
1998         intel_gvt_create_scratch_page(vgpu);
1999         return 0;
2000 }
2001
2002 /**
2003  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2004  * @vgpu: a vGPU
2005  *
2006  * This function is used to clean up per-vGPU graphics memory virtualization
2007  * components.
2008  *
2009  * Returns:
2010  * Zero on success, error code if failed.
2011  */
2012 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2013 {
2014         struct list_head *pos, *n;
2015         struct intel_vgpu_mm *mm;
2016
2017         ppgtt_free_all_shadow_page(vgpu);
2018         intel_gvt_release_scratch_page(vgpu);
2019
2020         list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) {
2021                 mm = container_of(pos, struct intel_vgpu_mm, list);
2022                 vgpu->gvt->gtt.mm_free_page_table(mm);
2023                 list_del(&mm->list);
2024                 list_del(&mm->lru_list);
2025                 kfree(mm);
2026         }
2027 }
2028
2029 static void clean_spt_oos(struct intel_gvt *gvt)
2030 {
2031         struct intel_gvt_gtt *gtt = &gvt->gtt;
2032         struct list_head *pos, *n;
2033         struct intel_vgpu_oos_page *oos_page;
2034
2035         WARN(!list_empty(&gtt->oos_page_use_list_head),
2036                 "someone is still using oos page\n");
2037
2038         list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2039                 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2040                 list_del(&oos_page->list);
2041                 kfree(oos_page);
2042         }
2043 }
2044
2045 static int setup_spt_oos(struct intel_gvt *gvt)
2046 {
2047         struct intel_gvt_gtt *gtt = &gvt->gtt;
2048         struct intel_vgpu_oos_page *oos_page;
2049         int i;
2050         int ret;
2051
2052         INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2053         INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2054
2055         for (i = 0; i < preallocated_oos_pages; i++) {
2056                 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2057                 if (!oos_page) {
2058                         gvt_err("fail to pre-allocate oos page\n");
2059                         ret = -ENOMEM;
2060                         goto fail;
2061                 }
2062
2063                 INIT_LIST_HEAD(&oos_page->list);
2064                 INIT_LIST_HEAD(&oos_page->vm_list);
2065                 oos_page->id = i;
2066                 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2067         }
2068
2069         gvt_dbg_mm("%d oos pages preallocated\n", i);
2070
2071         return 0;
2072 fail:
2073         clean_spt_oos(gvt);
2074         return ret;
2075 }
2076
2077 /**
2078  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2079  * @vgpu: a vGPU
2080  * @page_table_level: PPGTT page table level
2081  * @root_entry: PPGTT page table root pointers
2082  *
2083  * This function is used to find a PPGTT mm object from mm object pool
2084  *
2085  * Returns:
2086  * pointer to mm object on success, NULL if failed.
2087  */
2088 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2089                 int page_table_level, void *root_entry)
2090 {
2091         struct list_head *pos;
2092         struct intel_vgpu_mm *mm;
2093         u64 *src, *dst;
2094
2095         list_for_each(pos, &vgpu->gtt.mm_list_head) {
2096                 mm = container_of(pos, struct intel_vgpu_mm, list);
2097                 if (mm->type != INTEL_GVT_MM_PPGTT)
2098                         continue;
2099
2100                 if (mm->page_table_level != page_table_level)
2101                         continue;
2102
2103                 src = root_entry;
2104                 dst = mm->virtual_page_table;
2105
2106                 if (page_table_level == 3) {
2107                         if (src[0] == dst[0]
2108                                         && src[1] == dst[1]
2109                                         && src[2] == dst[2]
2110                                         && src[3] == dst[3])
2111                                 return mm;
2112                 } else {
2113                         if (src[0] == dst[0])
2114                                 return mm;
2115                 }
2116         }
2117         return NULL;
2118 }
2119
2120 /**
2121  * intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from
2122  * g2v notification
2123  * @vgpu: a vGPU
2124  * @page_table_level: PPGTT page table level
2125  *
2126  * This function is used to create a PPGTT mm object from a guest to GVT-g
2127  * notification.
2128  *
2129  * Returns:
2130  * Zero on success, negative error code if failed.
2131  */
2132 int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu,
2133                 int page_table_level)
2134 {
2135         u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2136         struct intel_vgpu_mm *mm;
2137
2138         if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2139                 return -EINVAL;
2140
2141         mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2142         if (mm) {
2143                 intel_gvt_mm_reference(mm);
2144         } else {
2145                 mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT,
2146                                 pdp, page_table_level, 0);
2147                 if (IS_ERR(mm)) {
2148                         gvt_err("fail to create mm\n");
2149                         return PTR_ERR(mm);
2150                 }
2151         }
2152         return 0;
2153 }
2154
2155 /**
2156  * intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from
2157  * g2v notification
2158  * @vgpu: a vGPU
2159  * @page_table_level: PPGTT page table level
2160  *
2161  * This function is used to create a PPGTT mm object from a guest to GVT-g
2162  * notification.
2163  *
2164  * Returns:
2165  * Zero on success, negative error code if failed.
2166  */
2167 int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu,
2168                 int page_table_level)
2169 {
2170         u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2171         struct intel_vgpu_mm *mm;
2172
2173         if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2174                 return -EINVAL;
2175
2176         mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2177         if (!mm) {
2178                 gvt_err("fail to find ppgtt instance.\n");
2179                 return -EINVAL;
2180         }
2181         intel_gvt_mm_unreference(mm);
2182         return 0;
2183 }
2184
2185 /**
2186  * intel_gvt_init_gtt - initialize mm components of a GVT device
2187  * @gvt: GVT device
2188  *
2189  * This function is called at the initialization stage, to initialize
2190  * the mm components of a GVT device.
2191  *
2192  * Returns:
2193  * zero on success, negative error code if failed.
2194  */
2195 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2196 {
2197         int ret;
2198
2199         gvt_dbg_core("init gtt\n");
2200
2201         if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)) {
2202                 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2203                 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2204                 gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table;
2205                 gvt->gtt.mm_free_page_table = gen8_mm_free_page_table;
2206         } else {
2207                 return -ENODEV;
2208         }
2209
2210         if (enable_out_of_sync) {
2211                 ret = setup_spt_oos(gvt);
2212                 if (ret) {
2213                         gvt_err("fail to initialize SPT oos\n");
2214                         return ret;
2215                 }
2216         }
2217         INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head);
2218         return 0;
2219 }
2220
2221 /**
2222  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2223  * @gvt: GVT device
2224  *
2225  * This function is called at the driver unloading stage, to clean up the
2226  * the mm components of a GVT device.
2227  *
2228  */
2229 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2230 {
2231         if (enable_out_of_sync)
2232                 clean_spt_oos(gvt);
2233 }