f25ee2953baf5282726952434597d47503f6a425
[linux-2.6-block.git] / drivers / gpu / drm / i915 / gvt / cmd_parser.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36
37 #include <linux/slab.h>
38
39 #include "i915_drv.h"
40 #include "i915_reg.h"
41 #include "gt/intel_engine_regs.h"
42 #include "gt/intel_gpu_commands.h"
43 #include "gt/intel_gt_regs.h"
44 #include "gt/intel_lrc.h"
45 #include "gt/intel_ring.h"
46 #include "gt/intel_gt_requests.h"
47 #include "gt/shmem_utils.h"
48 #include "gvt.h"
49 #include "i915_pvinfo.h"
50 #include "trace.h"
51
52 #include "display/i9xx_plane_regs.h"
53 #include "display/intel_sprite_regs.h"
54 #include "gem/i915_gem_context.h"
55 #include "gem/i915_gem_pm.h"
56 #include "gt/intel_context.h"
57
58 #define INVALID_OP    (~0U)
59
60 #define OP_LEN_MI           9
61 #define OP_LEN_2D           10
62 #define OP_LEN_3D_MEDIA     16
63 #define OP_LEN_MFX_VC       16
64 #define OP_LEN_VEBOX        16
65
66 #define CMD_TYPE(cmd)   (((cmd) >> 29) & 7)
67
68 struct sub_op_bits {
69         int hi;
70         int low;
71 };
72 struct decode_info {
73         const char *name;
74         int op_len;
75         int nr_sub_op;
76         const struct sub_op_bits *sub_op;
77 };
78
79 #define   MAX_CMD_BUDGET                        0x7fffffff
80 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
81 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
82 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
83
84 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
85 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
86 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
87
88 /* Render Command Map */
89
90 /* MI_* command Opcode (28:23) */
91 #define OP_MI_NOOP                          0x0
92 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
93 #define OP_MI_USER_INTERRUPT                0x2
94 #define OP_MI_WAIT_FOR_EVENT                0x3
95 #define OP_MI_FLUSH                         0x4
96 #define OP_MI_ARB_CHECK                     0x5
97 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
98 #define OP_MI_REPORT_HEAD                   0x7
99 #define OP_MI_ARB_ON_OFF                    0x8
100 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
101 #define OP_MI_BATCH_BUFFER_END              0xA
102 #define OP_MI_SUSPEND_FLUSH                 0xB
103 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
104 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
105 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
106 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
107 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
108 #define OP_MI_DISPLAY_FLIP                  0x14
109 #define OP_MI_SEMAPHORE_MBOX                0x16
110 #define OP_MI_SET_CONTEXT                   0x18
111 #define OP_MI_MATH                          0x1A
112 #define OP_MI_URB_CLEAR                     0x19
113 #define OP_MI_SEMAPHORE_SIGNAL              0x1B  /* BDW+ */
114 #define OP_MI_SEMAPHORE_WAIT                0x1C  /* BDW+ */
115
116 #define OP_MI_STORE_DATA_IMM                0x20
117 #define OP_MI_STORE_DATA_INDEX              0x21
118 #define OP_MI_LOAD_REGISTER_IMM             0x22
119 #define OP_MI_UPDATE_GTT                    0x23
120 #define OP_MI_STORE_REGISTER_MEM            0x24
121 #define OP_MI_FLUSH_DW                      0x26
122 #define OP_MI_CLFLUSH                       0x27
123 #define OP_MI_REPORT_PERF_COUNT             0x28
124 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
125 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
126 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
127 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
128 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
129 #define OP_MI_2E                            0x2E  /* BDW+ */
130 #define OP_MI_2F                            0x2F  /* BDW+ */
131 #define OP_MI_BATCH_BUFFER_START            0x31
132
133 /* Bit definition for dword 0 */
134 #define _CMDBIT_BB_START_IN_PPGTT       (1UL << 8)
135
136 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
137
138 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
139 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
140 #define BATCH_BUFFER_ADR_SPACE_BIT(x)   (((x) >> 8) & 1U)
141 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
142
143 /* 2D command: Opcode (28:22) */
144 #define OP_2D(x)    ((2<<7) | x)
145
146 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
147 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
148 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
149 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
150 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
151 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
152 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
153 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
154 #define OP_XY_PAT_BLT                               OP_2D(0x51)
155 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
156 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
157 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
158 #define OP_XY_FULL_BLT                              OP_2D(0x55)
159 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
160 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
161 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
162 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
163 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
164 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
165 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
166 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
167 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
168 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
169 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
170
171 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
172 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
173         ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
174
175 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
176
177 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
178 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
179 #define OP_3D_MEDIA_0_1_4                       OP_3D_MEDIA(0x0, 0x1, 0x04)
180 #define OP_SWTESS_BASE_ADDRESS                  OP_3D_MEDIA(0x0, 0x1, 0x03)
181
182 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
183
184 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
185
186 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
187 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
188 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
189 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
190 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
191 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
192
193 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
194 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
195 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
196 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
197
198 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
199 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
200 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
201 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
202 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
203 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
204 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
205 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
206 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
207 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
208 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
209 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
210 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
211 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
212 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
213 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
214 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
215 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
216 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
217 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
218 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
219 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
220 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
221 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
222 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
223 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
224 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
225 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
226 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
227 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
228 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
229 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
230 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
231 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
232 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
233 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
234 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
235 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
236 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
237 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
238 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
239 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
240 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
241 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
242 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
243 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
244 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
245 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
246 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
247 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
248 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
249 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
250 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
251 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
252 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
253 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
254 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
255 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
256 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
257 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
258 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
259 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
260 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
261 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
262 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
263 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
264
265 #define OP_3DSTATE_VF_INSTANCING                OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
266 #define OP_3DSTATE_VF_SGVS                      OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
267 #define OP_3DSTATE_VF_TOPOLOGY                  OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
268 #define OP_3DSTATE_WM_CHROMAKEY                 OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
269 #define OP_3DSTATE_PS_BLEND                     OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
270 #define OP_3DSTATE_WM_DEPTH_STENCIL             OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
271 #define OP_3DSTATE_PS_EXTRA                     OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
272 #define OP_3DSTATE_RASTER                       OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
273 #define OP_3DSTATE_SBE_SWIZ                     OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
274 #define OP_3DSTATE_WM_HZ_OP                     OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
275 #define OP_3DSTATE_COMPONENT_PACKING            OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
276
277 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
278 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
279 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
280 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
281 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
282 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
283 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
284 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
285 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
286 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
287 #define OP_3DSTATE_MULTISAMPLE_BDW              OP_3D_MEDIA(0x3, 0x0, 0x0D)
288 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
289 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
290 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
291 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
292 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
293 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
294 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
295 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
296 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
297 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
298 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
299 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
300 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
301 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
302 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
303 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
304 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
305
306 /* VCCP Command Parser */
307
308 /*
309  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
310  * git://anongit.freedesktop.org/vaapi/intel-driver
311  * src/i965_defines.h
312  *
313  */
314
315 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
316         (3 << 13 | \
317          (pipeline) << 11 | \
318          (op) << 8 | \
319          (sub_opa) << 5 | \
320          (sub_opb))
321
322 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
323 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
324 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
325 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
326 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
327 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
328 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
329 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
330 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
331 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
332 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
333
334 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
335
336 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
337 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
338 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
339 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
340 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
341 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
342 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
343 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
344 #define OP_MFD_AVC_DPB_STATE                       OP_MFX(2, 1, 1, 6) /* IVB+ */
345 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
346 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
347 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
348
349 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
350 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
351 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
352 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
353 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
354
355 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
356 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
357 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
358 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
359 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
360
361 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
362 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
363 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
364
365 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
366 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
367 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
368
369 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
370         (3 << 13 | \
371          (pipeline) << 11 | \
372          (op) << 8 | \
373          (sub_opa) << 5 | \
374          (sub_opb))
375
376 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
377 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
378 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
379
380 struct parser_exec_state;
381
382 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
383
384 #define GVT_CMD_HASH_BITS   7
385
386 /* which DWords need address fix */
387 #define ADDR_FIX_1(x1)                  (1 << (x1))
388 #define ADDR_FIX_2(x1, x2)              (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
389 #define ADDR_FIX_3(x1, x2, x3)          (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
390 #define ADDR_FIX_4(x1, x2, x3, x4)      (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
391 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
392
393 #define DWORD_FIELD(dword, end, start) \
394         FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
395
396 #define OP_LENGTH_BIAS 2
397 #define CMD_LEN(value)  (value + OP_LENGTH_BIAS)
398
399 static int gvt_check_valid_cmd_length(int len, int valid_len)
400 {
401         if (valid_len != len) {
402                 gvt_err("len is not valid:  len=%u  valid_len=%u\n",
403                         len, valid_len);
404                 return -EFAULT;
405         }
406         return 0;
407 }
408
409 struct cmd_info {
410         const char *name;
411         u32 opcode;
412
413 #define F_LEN_MASK      3U
414 #define F_LEN_CONST  1U
415 #define F_LEN_VAR    0U
416 /* value is const although LEN maybe variable */
417 #define F_LEN_VAR_FIXED    (1<<1)
418
419 /*
420  * command has its own ip advance logic
421  * e.g. MI_BATCH_START, MI_BATCH_END
422  */
423 #define F_IP_ADVANCE_CUSTOM (1<<2)
424         u32 flag;
425
426 #define R_RCS   BIT(RCS0)
427 #define R_VCS1  BIT(VCS0)
428 #define R_VCS2  BIT(VCS1)
429 #define R_VCS   (R_VCS1 | R_VCS2)
430 #define R_BCS   BIT(BCS0)
431 #define R_VECS  BIT(VECS0)
432 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
433         /* rings that support this cmd: BLT/RCS/VCS/VECS */
434         intel_engine_mask_t rings;
435
436         /* devices that support this cmd: SNB/IVB/HSW/... */
437         u16 devices;
438
439         /* which DWords are address that need fix up.
440          * bit 0 means a 32-bit non address operand in command
441          * bit 1 means address operand, which could be 32-bit
442          * or 64-bit depending on different architectures.(
443          * defined by "gmadr_bytes_in_cmd" in intel_gvt.
444          * No matter the address length, each address only takes
445          * one bit in the bitmap.
446          */
447         u16 addr_bitmap;
448
449         /* flag == F_LEN_CONST : command length
450          * flag == F_LEN_VAR : length bias bits
451          * Note: length is in DWord
452          */
453         u32 len;
454
455         parser_cmd_handler handler;
456
457         /* valid length in DWord */
458         u32 valid_len;
459 };
460
461 struct cmd_entry {
462         struct hlist_node hlist;
463         const struct cmd_info *info;
464 };
465
466 enum {
467         RING_BUFFER_INSTRUCTION,
468         BATCH_BUFFER_INSTRUCTION,
469         BATCH_BUFFER_2ND_LEVEL,
470         RING_BUFFER_CTX,
471 };
472
473 enum {
474         GTT_BUFFER,
475         PPGTT_BUFFER
476 };
477
478 struct parser_exec_state {
479         struct intel_vgpu *vgpu;
480         const struct intel_engine_cs *engine;
481
482         int buf_type;
483
484         /* batch buffer address type */
485         int buf_addr_type;
486
487         /* graphics memory address of ring buffer start */
488         unsigned long ring_start;
489         unsigned long ring_size;
490         unsigned long ring_head;
491         unsigned long ring_tail;
492
493         /* instruction graphics memory address */
494         unsigned long ip_gma;
495
496         /* mapped va of the instr_gma */
497         void *ip_va;
498         void *rb_va;
499
500         void *ret_bb_va;
501         /* next instruction when return from  batch buffer to ring buffer */
502         unsigned long ret_ip_gma_ring;
503
504         /* next instruction when return from 2nd batch buffer to batch buffer */
505         unsigned long ret_ip_gma_bb;
506
507         /* batch buffer address type (GTT or PPGTT)
508          * used when ret from 2nd level batch buffer
509          */
510         int saved_buf_addr_type;
511         bool is_ctx_wa;
512         bool is_init_ctx;
513
514         const struct cmd_info *info;
515
516         struct intel_vgpu_workload *workload;
517 };
518
519 #define gmadr_dw_number(s)      \
520         (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
521
522 static unsigned long bypass_scan_mask = 0;
523
524 /* ring ALL, type = 0 */
525 static const struct sub_op_bits sub_op_mi[] = {
526         {31, 29},
527         {28, 23},
528 };
529
530 static const struct decode_info decode_info_mi = {
531         "MI",
532         OP_LEN_MI,
533         ARRAY_SIZE(sub_op_mi),
534         sub_op_mi,
535 };
536
537 /* ring RCS, command type 2 */
538 static const struct sub_op_bits sub_op_2d[] = {
539         {31, 29},
540         {28, 22},
541 };
542
543 static const struct decode_info decode_info_2d = {
544         "2D",
545         OP_LEN_2D,
546         ARRAY_SIZE(sub_op_2d),
547         sub_op_2d,
548 };
549
550 /* ring RCS, command type 3 */
551 static const struct sub_op_bits sub_op_3d_media[] = {
552         {31, 29},
553         {28, 27},
554         {26, 24},
555         {23, 16},
556 };
557
558 static const struct decode_info decode_info_3d_media = {
559         "3D_Media",
560         OP_LEN_3D_MEDIA,
561         ARRAY_SIZE(sub_op_3d_media),
562         sub_op_3d_media,
563 };
564
565 /* ring VCS, command type 3 */
566 static const struct sub_op_bits sub_op_mfx_vc[] = {
567         {31, 29},
568         {28, 27},
569         {26, 24},
570         {23, 21},
571         {20, 16},
572 };
573
574 static const struct decode_info decode_info_mfx_vc = {
575         "MFX_VC",
576         OP_LEN_MFX_VC,
577         ARRAY_SIZE(sub_op_mfx_vc),
578         sub_op_mfx_vc,
579 };
580
581 /* ring VECS, command type 3 */
582 static const struct sub_op_bits sub_op_vebox[] = {
583         {31, 29},
584         {28, 27},
585         {26, 24},
586         {23, 21},
587         {20, 16},
588 };
589
590 static const struct decode_info decode_info_vebox = {
591         "VEBOX",
592         OP_LEN_VEBOX,
593         ARRAY_SIZE(sub_op_vebox),
594         sub_op_vebox,
595 };
596
597 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
598         [RCS0] = {
599                 &decode_info_mi,
600                 NULL,
601                 NULL,
602                 &decode_info_3d_media,
603                 NULL,
604                 NULL,
605                 NULL,
606                 NULL,
607         },
608
609         [VCS0] = {
610                 &decode_info_mi,
611                 NULL,
612                 NULL,
613                 &decode_info_mfx_vc,
614                 NULL,
615                 NULL,
616                 NULL,
617                 NULL,
618         },
619
620         [BCS0] = {
621                 &decode_info_mi,
622                 NULL,
623                 &decode_info_2d,
624                 NULL,
625                 NULL,
626                 NULL,
627                 NULL,
628                 NULL,
629         },
630
631         [VECS0] = {
632                 &decode_info_mi,
633                 NULL,
634                 NULL,
635                 &decode_info_vebox,
636                 NULL,
637                 NULL,
638                 NULL,
639                 NULL,
640         },
641
642         [VCS1] = {
643                 &decode_info_mi,
644                 NULL,
645                 NULL,
646                 &decode_info_mfx_vc,
647                 NULL,
648                 NULL,
649                 NULL,
650                 NULL,
651         },
652 };
653
654 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
655 {
656         const struct decode_info *d_info;
657
658         d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
659         if (d_info == NULL)
660                 return INVALID_OP;
661
662         return cmd >> (32 - d_info->op_len);
663 }
664
665 static inline const struct cmd_info *
666 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
667                const struct intel_engine_cs *engine)
668 {
669         struct cmd_entry *e;
670
671         hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
672                 if (opcode == e->info->opcode &&
673                     e->info->rings & engine->mask)
674                         return e->info;
675         }
676         return NULL;
677 }
678
679 static inline const struct cmd_info *
680 get_cmd_info(struct intel_gvt *gvt, u32 cmd,
681              const struct intel_engine_cs *engine)
682 {
683         u32 opcode;
684
685         opcode = get_opcode(cmd, engine);
686         if (opcode == INVALID_OP)
687                 return NULL;
688
689         return find_cmd_entry(gvt, opcode, engine);
690 }
691
692 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
693 {
694         return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
695 }
696
697 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
698 {
699         const struct decode_info *d_info;
700         int i;
701
702         d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
703         if (d_info == NULL)
704                 return;
705
706         gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
707                         cmd >> (32 - d_info->op_len), d_info->name);
708
709         for (i = 0; i < d_info->nr_sub_op; i++)
710                 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
711                                         d_info->sub_op[i].low));
712
713         pr_err("\n");
714 }
715
716 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
717 {
718         return s->ip_va + (index << 2);
719 }
720
721 static inline u32 cmd_val(struct parser_exec_state *s, int index)
722 {
723         return *cmd_ptr(s, index);
724 }
725
726 static inline bool is_init_ctx(struct parser_exec_state *s)
727 {
728         return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx);
729 }
730
731 static void parser_exec_state_dump(struct parser_exec_state *s)
732 {
733         int cnt = 0;
734         int i;
735
736         gvt_dbg_cmd("  vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
737                     " ring_head(%08lx) ring_tail(%08lx)\n",
738                     s->vgpu->id, s->engine->name,
739                     s->ring_start, s->ring_start + s->ring_size,
740                     s->ring_head, s->ring_tail);
741
742         gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
743                         s->buf_type == RING_BUFFER_INSTRUCTION ?
744                         "RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ?
745                                 "CTX_BUFFER" : "BATCH_BUFFER"),
746                         s->buf_addr_type == GTT_BUFFER ?
747                         "GTT" : "PPGTT", s->ip_gma);
748
749         if (s->ip_va == NULL) {
750                 gvt_dbg_cmd(" ip_va(NULL)");
751                 return;
752         }
753
754         gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
755                         s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
756                         cmd_val(s, 2), cmd_val(s, 3));
757
758         print_opcode(cmd_val(s, 0), s->engine);
759
760         s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
761
762         while (cnt < 1024) {
763                 gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
764                 for (i = 0; i < 8; i++)
765                         gvt_dbg_cmd("%08x ", cmd_val(s, i));
766                 gvt_dbg_cmd("\n");
767
768                 s->ip_va += 8 * sizeof(u32);
769                 cnt += 8;
770         }
771 }
772
773 static inline void update_ip_va(struct parser_exec_state *s)
774 {
775         unsigned long len = 0;
776
777         if (WARN_ON(s->ring_head == s->ring_tail))
778                 return;
779
780         if (s->buf_type == RING_BUFFER_INSTRUCTION ||
781                         s->buf_type == RING_BUFFER_CTX) {
782                 unsigned long ring_top = s->ring_start + s->ring_size;
783
784                 if (s->ring_head > s->ring_tail) {
785                         if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
786                                 len = (s->ip_gma - s->ring_head);
787                         else if (s->ip_gma >= s->ring_start &&
788                                         s->ip_gma <= s->ring_tail)
789                                 len = (ring_top - s->ring_head) +
790                                         (s->ip_gma - s->ring_start);
791                 } else
792                         len = (s->ip_gma - s->ring_head);
793
794                 s->ip_va = s->rb_va + len;
795         } else {/* shadow batch buffer */
796                 s->ip_va = s->ret_bb_va;
797         }
798 }
799
800 static inline int ip_gma_set(struct parser_exec_state *s,
801                 unsigned long ip_gma)
802 {
803         WARN_ON(!IS_ALIGNED(ip_gma, 4));
804
805         s->ip_gma = ip_gma;
806         update_ip_va(s);
807         return 0;
808 }
809
810 static inline int ip_gma_advance(struct parser_exec_state *s,
811                 unsigned int dw_len)
812 {
813         s->ip_gma += (dw_len << 2);
814
815         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
816                 if (s->ip_gma >= s->ring_start + s->ring_size)
817                         s->ip_gma -= s->ring_size;
818                 update_ip_va(s);
819         } else {
820                 s->ip_va += (dw_len << 2);
821         }
822
823         return 0;
824 }
825
826 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
827 {
828         if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
829                 return info->len;
830         else
831                 return (cmd & ((1U << info->len) - 1)) + 2;
832         return 0;
833 }
834
835 static inline int cmd_length(struct parser_exec_state *s)
836 {
837         return get_cmd_length(s->info, cmd_val(s, 0));
838 }
839
840 /* do not remove this, some platform may need clflush here */
841 #define patch_value(s, addr, val) do { \
842         *addr = val; \
843 } while (0)
844
845 static inline bool is_mocs_mmio(unsigned int offset)
846 {
847         return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
848                 ((offset >= 0xb020) && (offset <= 0xb0a0));
849 }
850
851 static int is_cmd_update_pdps(unsigned int offset,
852                               struct parser_exec_state *s)
853 {
854         u32 base = s->workload->engine->mmio_base;
855         return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
856 }
857
858 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
859                                        unsigned int offset, unsigned int index)
860 {
861         struct intel_vgpu *vgpu = s->vgpu;
862         struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
863         struct intel_vgpu_mm *mm;
864         u64 pdps[GEN8_3LVL_PDPES];
865
866         if (shadow_mm->ppgtt_mm.root_entry_type ==
867             GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
868                 pdps[0] = (u64)cmd_val(s, 2) << 32;
869                 pdps[0] |= cmd_val(s, 4);
870
871                 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
872                 if (!mm) {
873                         gvt_vgpu_err("failed to get the 4-level shadow vm\n");
874                         return -EINVAL;
875                 }
876                 intel_vgpu_mm_get(mm);
877                 list_add_tail(&mm->ppgtt_mm.link,
878                               &s->workload->lri_shadow_mm);
879                 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
880                 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
881         } else {
882                 /* Currently all guests use PML4 table and now can't
883                  * have a guest with 3-level table but uses LRI for
884                  * PPGTT update. So this is simply un-testable. */
885                 GEM_BUG_ON(1);
886                 gvt_vgpu_err("invalid shared shadow vm type\n");
887                 return -EINVAL;
888         }
889         return 0;
890 }
891
892 static int cmd_reg_handler(struct parser_exec_state *s,
893         unsigned int offset, unsigned int index, char *cmd)
894 {
895         struct intel_vgpu *vgpu = s->vgpu;
896         struct intel_gvt *gvt = vgpu->gvt;
897         u32 ctx_sr_ctl;
898         u32 *vreg, vreg_old;
899
900         if (offset + 4 > gvt->device_info.mmio_size) {
901                 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
902                                 cmd, offset);
903                 return -EFAULT;
904         }
905
906         if (is_init_ctx(s)) {
907                 struct intel_gvt_mmio_info *mmio_info;
908
909                 intel_gvt_mmio_set_cmd_accessible(gvt, offset);
910                 mmio_info = intel_gvt_find_mmio_info(gvt, offset);
911                 if (mmio_info && mmio_info->write)
912                         intel_gvt_mmio_set_cmd_write_patch(gvt, offset);
913                 return 0;
914         }
915
916         if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
917                 gvt_vgpu_err("%s access to non-render register (%x)\n",
918                                 cmd, offset);
919                 return -EBADRQC;
920         }
921
922         if (!strncmp(cmd, "srm", 3) ||
923                         !strncmp(cmd, "lrm", 3)) {
924                 if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) ||
925                     offset == 0x21f0 ||
926                     (IS_BROADWELL(gvt->gt->i915) &&
927                      offset == i915_mmio_reg_offset(INSTPM)))
928                         return 0;
929                 else {
930                         gvt_vgpu_err("%s access to register (%x)\n",
931                                         cmd, offset);
932                         return -EPERM;
933                 }
934         }
935
936         if (!strncmp(cmd, "lrr-src", 7) ||
937                         !strncmp(cmd, "lrr-dst", 7)) {
938                 if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c)
939                         return 0;
940                 else {
941                         gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset);
942                         return -EPERM;
943                 }
944         }
945
946         if (!strncmp(cmd, "pipe_ctrl", 9)) {
947                 /* TODO: add LRI POST logic here */
948                 return 0;
949         }
950
951         if (strncmp(cmd, "lri", 3))
952                 return -EPERM;
953
954         /* below are all lri handlers */
955         vreg = &vgpu_vreg(s->vgpu, offset);
956
957         if (is_cmd_update_pdps(offset, s) &&
958             cmd_pdp_mmio_update_handler(s, offset, index))
959                 return -EINVAL;
960
961         if (offset == i915_mmio_reg_offset(DERRMR) ||
962                 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
963                 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
964                 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
965         }
966
967         if (is_mocs_mmio(offset))
968                 *vreg = cmd_val(s, index + 1);
969
970         vreg_old = *vreg;
971
972         if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) {
973                 u32 cmdval_new, cmdval;
974                 struct intel_gvt_mmio_info *mmio_info;
975
976                 cmdval = cmd_val(s, index + 1);
977
978                 mmio_info = intel_gvt_find_mmio_info(gvt, offset);
979                 if (!mmio_info) {
980                         cmdval_new = cmdval;
981                 } else {
982                         u64 ro_mask = mmio_info->ro_mask;
983                         int ret;
984
985                         if (likely(!ro_mask))
986                                 ret = mmio_info->write(s->vgpu, offset,
987                                                 &cmdval, 4);
988                         else {
989                                 gvt_vgpu_err("try to write RO reg %x\n",
990                                                 offset);
991                                 ret = -EBADRQC;
992                         }
993                         if (ret)
994                                 return ret;
995                         cmdval_new = *vreg;
996                 }
997                 if (cmdval_new != cmdval)
998                         patch_value(s, cmd_ptr(s, index+1), cmdval_new);
999         }
1000
1001         /* only patch cmd. restore vreg value if changed in mmio write handler*/
1002         *vreg = vreg_old;
1003
1004         /* TODO
1005          * In order to let workload with inhibit context to generate
1006          * correct image data into memory, vregs values will be loaded to
1007          * hw via LRIs in the workload with inhibit context. But as
1008          * indirect context is loaded prior to LRIs in workload, we don't
1009          * want reg values specified in indirect context overwritten by
1010          * LRIs in workloads. So, when scanning an indirect context, we
1011          * update reg values in it into vregs, so LRIs in workload with
1012          * inhibit context will restore with correct values
1013          */
1014         if (GRAPHICS_VER(s->engine->i915) == 9 &&
1015             intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
1016             !strncmp(cmd, "lri", 3)) {
1017                 intel_gvt_read_gpa(s->vgpu,
1018                         s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
1019                 /* check inhibit context */
1020                 if (ctx_sr_ctl & 1) {
1021                         u32 data = cmd_val(s, index + 1);
1022
1023                         if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
1024                                 intel_vgpu_mask_mmio_write(vgpu,
1025                                                         offset, &data, 4);
1026                         else
1027                                 vgpu_vreg(vgpu, offset) = data;
1028                 }
1029         }
1030
1031         return 0;
1032 }
1033
1034 #define cmd_reg(s, i) \
1035         (cmd_val(s, i) & GENMASK(22, 2))
1036
1037 #define cmd_reg_inhibit(s, i) \
1038         (cmd_val(s, i) & GENMASK(22, 18))
1039
1040 #define cmd_gma(s, i) \
1041         (cmd_val(s, i) & GENMASK(31, 2))
1042
1043 #define cmd_gma_hi(s, i) \
1044         (cmd_val(s, i) & GENMASK(15, 0))
1045
1046 static int cmd_handler_lri(struct parser_exec_state *s)
1047 {
1048         int i, ret = 0;
1049         int cmd_len = cmd_length(s);
1050
1051         for (i = 1; i < cmd_len; i += 2) {
1052                 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1053                         if (s->engine->id == BCS0 &&
1054                             cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1055                                 ret |= 0;
1056                         else
1057                                 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1058                 }
1059                 if (ret)
1060                         break;
1061                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1062                 if (ret)
1063                         break;
1064         }
1065         return ret;
1066 }
1067
1068 static int cmd_handler_lrr(struct parser_exec_state *s)
1069 {
1070         int i, ret = 0;
1071         int cmd_len = cmd_length(s);
1072
1073         for (i = 1; i < cmd_len; i += 2) {
1074                 if (IS_BROADWELL(s->engine->i915))
1075                         ret |= ((cmd_reg_inhibit(s, i) ||
1076                                  (cmd_reg_inhibit(s, i + 1)))) ?
1077                                 -EBADRQC : 0;
1078                 if (ret)
1079                         break;
1080                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1081                 if (ret)
1082                         break;
1083                 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1084                 if (ret)
1085                         break;
1086         }
1087         return ret;
1088 }
1089
1090 static inline int cmd_address_audit(struct parser_exec_state *s,
1091                 unsigned long guest_gma, int op_size, bool index_mode);
1092
1093 static int cmd_handler_lrm(struct parser_exec_state *s)
1094 {
1095         struct intel_gvt *gvt = s->vgpu->gvt;
1096         int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1097         unsigned long gma;
1098         int i, ret = 0;
1099         int cmd_len = cmd_length(s);
1100
1101         for (i = 1; i < cmd_len;) {
1102                 if (IS_BROADWELL(s->engine->i915))
1103                         ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1104                 if (ret)
1105                         break;
1106                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1107                 if (ret)
1108                         break;
1109                 if (cmd_val(s, 0) & (1 << 22)) {
1110                         gma = cmd_gma(s, i + 1);
1111                         if (gmadr_bytes == 8)
1112                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1113                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1114                         if (ret)
1115                                 break;
1116                 }
1117                 i += gmadr_dw_number(s) + 1;
1118         }
1119         return ret;
1120 }
1121
1122 static int cmd_handler_srm(struct parser_exec_state *s)
1123 {
1124         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1125         unsigned long gma;
1126         int i, ret = 0;
1127         int cmd_len = cmd_length(s);
1128
1129         for (i = 1; i < cmd_len;) {
1130                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1131                 if (ret)
1132                         break;
1133                 if (cmd_val(s, 0) & (1 << 22)) {
1134                         gma = cmd_gma(s, i + 1);
1135                         if (gmadr_bytes == 8)
1136                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1137                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1138                         if (ret)
1139                                 break;
1140                 }
1141                 i += gmadr_dw_number(s) + 1;
1142         }
1143         return ret;
1144 }
1145
1146 struct cmd_interrupt_event {
1147         int pipe_control_notify;
1148         int mi_flush_dw;
1149         int mi_user_interrupt;
1150 };
1151
1152 static const struct cmd_interrupt_event cmd_interrupt_events[] = {
1153         [RCS0] = {
1154                 .pipe_control_notify = RCS_PIPE_CONTROL,
1155                 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1156                 .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1157         },
1158         [BCS0] = {
1159                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1160                 .mi_flush_dw = BCS_MI_FLUSH_DW,
1161                 .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1162         },
1163         [VCS0] = {
1164                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1165                 .mi_flush_dw = VCS_MI_FLUSH_DW,
1166                 .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1167         },
1168         [VCS1] = {
1169                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1170                 .mi_flush_dw = VCS2_MI_FLUSH_DW,
1171                 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1172         },
1173         [VECS0] = {
1174                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1175                 .mi_flush_dw = VECS_MI_FLUSH_DW,
1176                 .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1177         },
1178 };
1179
1180 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1181 {
1182         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1183         unsigned long gma;
1184         bool index_mode = false;
1185         unsigned int post_sync;
1186         int ret = 0;
1187         u32 hws_pga, val;
1188
1189         post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1190
1191         /* LRI post sync */
1192         if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1193                 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1194         /* post sync */
1195         else if (post_sync) {
1196                 if (post_sync == 2)
1197                         ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1198                 else if (post_sync == 3)
1199                         ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1200                 else if (post_sync == 1) {
1201                         /* check ggtt*/
1202                         if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1203                                 gma = cmd_val(s, 2) & GENMASK(31, 3);
1204                                 if (gmadr_bytes == 8)
1205                                         gma |= (cmd_gma_hi(s, 3)) << 32;
1206                                 /* Store Data Index */
1207                                 if (cmd_val(s, 1) & (1 << 21))
1208                                         index_mode = true;
1209                                 ret |= cmd_address_audit(s, gma, sizeof(u64),
1210                                                 index_mode);
1211                                 if (ret)
1212                                         return ret;
1213                                 if (index_mode) {
1214                                         hws_pga = s->vgpu->hws_pga[s->engine->id];
1215                                         gma = hws_pga + gma;
1216                                         patch_value(s, cmd_ptr(s, 2), gma);
1217                                         val = cmd_val(s, 1) & (~(1 << 21));
1218                                         patch_value(s, cmd_ptr(s, 1), val);
1219                                 }
1220                         }
1221                 }
1222         }
1223
1224         if (ret)
1225                 return ret;
1226
1227         if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1228                 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1229                         s->workload->pending_events);
1230         return 0;
1231 }
1232
1233 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1234 {
1235         set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1236                 s->workload->pending_events);
1237         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1238         return 0;
1239 }
1240
1241 static int cmd_advance_default(struct parser_exec_state *s)
1242 {
1243         return ip_gma_advance(s, cmd_length(s));
1244 }
1245
1246 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1247 {
1248         int ret;
1249
1250         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1251                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1252                 ret = ip_gma_set(s, s->ret_ip_gma_bb);
1253                 s->buf_addr_type = s->saved_buf_addr_type;
1254         } else if (s->buf_type == RING_BUFFER_CTX) {
1255                 ret = ip_gma_set(s, s->ring_tail);
1256         } else {
1257                 s->buf_type = RING_BUFFER_INSTRUCTION;
1258                 s->buf_addr_type = GTT_BUFFER;
1259                 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1260                         s->ret_ip_gma_ring -= s->ring_size;
1261                 ret = ip_gma_set(s, s->ret_ip_gma_ring);
1262         }
1263         return ret;
1264 }
1265
1266 struct mi_display_flip_command_info {
1267         int pipe;
1268         int plane;
1269         int event;
1270         i915_reg_t stride_reg;
1271         i915_reg_t ctrl_reg;
1272         i915_reg_t surf_reg;
1273         u64 stride_val;
1274         u64 tile_val;
1275         u64 surf_val;
1276         bool async_flip;
1277 };
1278
1279 struct plane_code_mapping {
1280         int pipe;
1281         int plane;
1282         int event;
1283 };
1284
1285 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1286                 struct mi_display_flip_command_info *info)
1287 {
1288         struct drm_i915_private *dev_priv = s->engine->i915;
1289         struct intel_display *display = &dev_priv->display;
1290         struct plane_code_mapping gen8_plane_code[] = {
1291                 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1292                 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1293                 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1294                 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1295                 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1296                 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1297         };
1298         u32 dword0, dword1, dword2;
1299         u32 v;
1300
1301         dword0 = cmd_val(s, 0);
1302         dword1 = cmd_val(s, 1);
1303         dword2 = cmd_val(s, 2);
1304
1305         v = (dword0 & GENMASK(21, 19)) >> 19;
1306         if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1307                 return -EBADRQC;
1308
1309         info->pipe = gen8_plane_code[v].pipe;
1310         info->plane = gen8_plane_code[v].plane;
1311         info->event = gen8_plane_code[v].event;
1312         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1313         info->tile_val = (dword1 & 0x1);
1314         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1315         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1316
1317         if (info->plane == PLANE_A) {
1318                 info->ctrl_reg = DSPCNTR(display, info->pipe);
1319                 info->stride_reg = DSPSTRIDE(display, info->pipe);
1320                 info->surf_reg = DSPSURF(display, info->pipe);
1321         } else if (info->plane == PLANE_B) {
1322                 info->ctrl_reg = SPRCTL(info->pipe);
1323                 info->stride_reg = SPRSTRIDE(info->pipe);
1324                 info->surf_reg = SPRSURF(info->pipe);
1325         } else {
1326                 drm_WARN_ON(&dev_priv->drm, 1);
1327                 return -EBADRQC;
1328         }
1329         return 0;
1330 }
1331
1332 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1333                 struct mi_display_flip_command_info *info)
1334 {
1335         struct drm_i915_private *dev_priv = s->engine->i915;
1336         struct intel_display *display = &dev_priv->display;
1337         struct intel_vgpu *vgpu = s->vgpu;
1338         u32 dword0 = cmd_val(s, 0);
1339         u32 dword1 = cmd_val(s, 1);
1340         u32 dword2 = cmd_val(s, 2);
1341         u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1342
1343         info->plane = PRIMARY_PLANE;
1344
1345         switch (plane) {
1346         case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1347                 info->pipe = PIPE_A;
1348                 info->event = PRIMARY_A_FLIP_DONE;
1349                 break;
1350         case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1351                 info->pipe = PIPE_B;
1352                 info->event = PRIMARY_B_FLIP_DONE;
1353                 break;
1354         case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1355                 info->pipe = PIPE_C;
1356                 info->event = PRIMARY_C_FLIP_DONE;
1357                 break;
1358
1359         case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1360                 info->pipe = PIPE_A;
1361                 info->event = SPRITE_A_FLIP_DONE;
1362                 info->plane = SPRITE_PLANE;
1363                 break;
1364         case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1365                 info->pipe = PIPE_B;
1366                 info->event = SPRITE_B_FLIP_DONE;
1367                 info->plane = SPRITE_PLANE;
1368                 break;
1369         case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1370                 info->pipe = PIPE_C;
1371                 info->event = SPRITE_C_FLIP_DONE;
1372                 info->plane = SPRITE_PLANE;
1373                 break;
1374
1375         default:
1376                 gvt_vgpu_err("unknown plane code %d\n", plane);
1377                 return -EBADRQC;
1378         }
1379
1380         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1381         info->tile_val = (dword1 & GENMASK(2, 0));
1382         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1383         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1384
1385         info->ctrl_reg = DSPCNTR(display, info->pipe);
1386         info->stride_reg = DSPSTRIDE(display, info->pipe);
1387         info->surf_reg = DSPSURF(display, info->pipe);
1388
1389         return 0;
1390 }
1391
1392 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1393                 struct mi_display_flip_command_info *info)
1394 {
1395         u32 stride, tile;
1396
1397         if (!info->async_flip)
1398                 return 0;
1399
1400         if (GRAPHICS_VER(s->engine->i915) >= 9) {
1401                 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1402                 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1403                                 GENMASK(12, 10)) >> 10;
1404         } else {
1405                 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1406                                 GENMASK(15, 6)) >> 6;
1407                 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1408         }
1409
1410         if (stride != info->stride_val)
1411                 gvt_dbg_cmd("cannot change stride during async flip\n");
1412
1413         if (tile != info->tile_val)
1414                 gvt_dbg_cmd("cannot change tile during async flip\n");
1415
1416         return 0;
1417 }
1418
1419 static int gen8_update_plane_mmio_from_mi_display_flip(
1420                 struct parser_exec_state *s,
1421                 struct mi_display_flip_command_info *info)
1422 {
1423         struct drm_i915_private *dev_priv = s->engine->i915;
1424         struct intel_display *display = &dev_priv->display;
1425         struct intel_vgpu *vgpu = s->vgpu;
1426
1427         set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1428                       info->surf_val << 12);
1429         if (GRAPHICS_VER(dev_priv) >= 9) {
1430                 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1431                               info->stride_val);
1432                 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1433                               info->tile_val << 10);
1434         } else {
1435                 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1436                               info->stride_val << 6);
1437                 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1438                               info->tile_val << 10);
1439         }
1440
1441         if (info->plane == PLANE_PRIMARY)
1442                 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(display, info->pipe))++;
1443
1444         if (info->async_flip)
1445                 intel_vgpu_trigger_virtual_event(vgpu, info->event);
1446         else
1447                 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1448
1449         return 0;
1450 }
1451
1452 static int decode_mi_display_flip(struct parser_exec_state *s,
1453                 struct mi_display_flip_command_info *info)
1454 {
1455         if (IS_BROADWELL(s->engine->i915))
1456                 return gen8_decode_mi_display_flip(s, info);
1457         if (GRAPHICS_VER(s->engine->i915) >= 9)
1458                 return skl_decode_mi_display_flip(s, info);
1459
1460         return -ENODEV;
1461 }
1462
1463 static int check_mi_display_flip(struct parser_exec_state *s,
1464                 struct mi_display_flip_command_info *info)
1465 {
1466         return gen8_check_mi_display_flip(s, info);
1467 }
1468
1469 static int update_plane_mmio_from_mi_display_flip(
1470                 struct parser_exec_state *s,
1471                 struct mi_display_flip_command_info *info)
1472 {
1473         return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1474 }
1475
1476 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1477 {
1478         struct mi_display_flip_command_info info;
1479         struct intel_vgpu *vgpu = s->vgpu;
1480         int ret;
1481         int i;
1482         int len = cmd_length(s);
1483         u32 valid_len = CMD_LEN(1);
1484
1485         /* Flip Type == Stereo 3D Flip */
1486         if (DWORD_FIELD(2, 1, 0) == 2)
1487                 valid_len++;
1488         ret = gvt_check_valid_cmd_length(cmd_length(s),
1489                         valid_len);
1490         if (ret)
1491                 return ret;
1492
1493         ret = decode_mi_display_flip(s, &info);
1494         if (ret) {
1495                 gvt_vgpu_err("fail to decode MI display flip command\n");
1496                 return ret;
1497         }
1498
1499         ret = check_mi_display_flip(s, &info);
1500         if (ret) {
1501                 gvt_vgpu_err("invalid MI display flip command\n");
1502                 return ret;
1503         }
1504
1505         ret = update_plane_mmio_from_mi_display_flip(s, &info);
1506         if (ret) {
1507                 gvt_vgpu_err("fail to update plane mmio\n");
1508                 return ret;
1509         }
1510
1511         for (i = 0; i < len; i++)
1512                 patch_value(s, cmd_ptr(s, i), MI_NOOP);
1513         return 0;
1514 }
1515
1516 static bool is_wait_for_flip_pending(u32 cmd)
1517 {
1518         return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1519                         MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1520                         MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1521                         MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1522                         MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1523                         MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1524 }
1525
1526 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1527 {
1528         u32 cmd = cmd_val(s, 0);
1529
1530         if (!is_wait_for_flip_pending(cmd))
1531                 return 0;
1532
1533         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1534         return 0;
1535 }
1536
1537 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1538 {
1539         unsigned long addr;
1540         unsigned long gma_high, gma_low;
1541         struct intel_vgpu *vgpu = s->vgpu;
1542         int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1543
1544         if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1545                 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1546                 return INTEL_GVT_INVALID_ADDR;
1547         }
1548
1549         gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1550         if (gmadr_bytes == 4) {
1551                 addr = gma_low;
1552         } else {
1553                 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1554                 addr = (((unsigned long)gma_high) << 32) | gma_low;
1555         }
1556         return addr;
1557 }
1558
1559 static inline int cmd_address_audit(struct parser_exec_state *s,
1560                 unsigned long guest_gma, int op_size, bool index_mode)
1561 {
1562         struct intel_vgpu *vgpu = s->vgpu;
1563         u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1564         int i;
1565         int ret;
1566
1567         if (op_size > max_surface_size) {
1568                 gvt_vgpu_err("command address audit fail name %s\n",
1569                         s->info->name);
1570                 return -EFAULT;
1571         }
1572
1573         if (index_mode) {
1574                 if (guest_gma >= I915_GTT_PAGE_SIZE) {
1575                         ret = -EFAULT;
1576                         goto err;
1577                 }
1578         } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1579                 ret = -EFAULT;
1580                 goto err;
1581         }
1582
1583         return 0;
1584
1585 err:
1586         gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1587                         s->info->name, guest_gma, op_size);
1588
1589         pr_err("cmd dump: ");
1590         for (i = 0; i < cmd_length(s); i++) {
1591                 if (!(i % 4))
1592                         pr_err("\n%08x ", cmd_val(s, i));
1593                 else
1594                         pr_err("%08x ", cmd_val(s, i));
1595         }
1596         pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1597                         vgpu->id,
1598                         vgpu_aperture_gmadr_base(vgpu),
1599                         vgpu_aperture_gmadr_end(vgpu),
1600                         vgpu_hidden_gmadr_base(vgpu),
1601                         vgpu_hidden_gmadr_end(vgpu));
1602         return ret;
1603 }
1604
1605 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1606 {
1607         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1608         int op_size = (cmd_length(s) - 3) * sizeof(u32);
1609         int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1610         unsigned long gma, gma_low, gma_high;
1611         u32 valid_len = CMD_LEN(2);
1612         int ret = 0;
1613
1614         /* check ppggt */
1615         if (!(cmd_val(s, 0) & (1 << 22)))
1616                 return 0;
1617
1618         /* check if QWORD */
1619         if (DWORD_FIELD(0, 21, 21))
1620                 valid_len++;
1621         ret = gvt_check_valid_cmd_length(cmd_length(s),
1622                         valid_len);
1623         if (ret)
1624                 return ret;
1625
1626         gma = cmd_val(s, 2) & GENMASK(31, 2);
1627
1628         if (gmadr_bytes == 8) {
1629                 gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1630                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1631                 gma = (gma_high << 32) | gma_low;
1632                 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1633         }
1634         ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1635         return ret;
1636 }
1637
1638 static inline int unexpected_cmd(struct parser_exec_state *s)
1639 {
1640         struct intel_vgpu *vgpu = s->vgpu;
1641
1642         gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1643
1644         return -EBADRQC;
1645 }
1646
1647 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1648 {
1649         return unexpected_cmd(s);
1650 }
1651
1652 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1653 {
1654         return unexpected_cmd(s);
1655 }
1656
1657 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1658 {
1659         return unexpected_cmd(s);
1660 }
1661
1662 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1663 {
1664         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1665         int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1666                         sizeof(u32);
1667         unsigned long gma, gma_high;
1668         u32 valid_len = CMD_LEN(1);
1669         int ret = 0;
1670
1671         if (!(cmd_val(s, 0) & (1 << 22)))
1672                 return ret;
1673
1674         /* check inline data */
1675         if (cmd_val(s, 0) & BIT(18))
1676                 valid_len = CMD_LEN(9);
1677         ret = gvt_check_valid_cmd_length(cmd_length(s),
1678                         valid_len);
1679         if (ret)
1680                 return ret;
1681
1682         gma = cmd_val(s, 1) & GENMASK(31, 2);
1683         if (gmadr_bytes == 8) {
1684                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1685                 gma = (gma_high << 32) | gma;
1686         }
1687         ret = cmd_address_audit(s, gma, op_size, false);
1688         return ret;
1689 }
1690
1691 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1692 {
1693         return unexpected_cmd(s);
1694 }
1695
1696 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1697 {
1698         return unexpected_cmd(s);
1699 }
1700
1701 static int cmd_handler_mi_conditional_batch_buffer_end(
1702                 struct parser_exec_state *s)
1703 {
1704         return unexpected_cmd(s);
1705 }
1706
1707 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1708 {
1709         return unexpected_cmd(s);
1710 }
1711
1712 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1713 {
1714         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1715         unsigned long gma;
1716         bool index_mode = false;
1717         int ret = 0;
1718         u32 hws_pga, val;
1719         u32 valid_len = CMD_LEN(2);
1720
1721         ret = gvt_check_valid_cmd_length(cmd_length(s),
1722                         valid_len);
1723         if (ret) {
1724                 /* Check again for Qword */
1725                 ret = gvt_check_valid_cmd_length(cmd_length(s),
1726                         ++valid_len);
1727                 return ret;
1728         }
1729
1730         /* Check post-sync and ppgtt bit */
1731         if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1732                 gma = cmd_val(s, 1) & GENMASK(31, 3);
1733                 if (gmadr_bytes == 8)
1734                         gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1735                 /* Store Data Index */
1736                 if (cmd_val(s, 0) & (1 << 21))
1737                         index_mode = true;
1738                 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1739                 if (ret)
1740                         return ret;
1741                 if (index_mode) {
1742                         hws_pga = s->vgpu->hws_pga[s->engine->id];
1743                         gma = hws_pga + gma;
1744                         patch_value(s, cmd_ptr(s, 1), gma);
1745                         val = cmd_val(s, 0) & (~(1 << 21));
1746                         patch_value(s, cmd_ptr(s, 0), val);
1747                 }
1748         }
1749         /* Check notify bit */
1750         if ((cmd_val(s, 0) & (1 << 8)))
1751                 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1752                         s->workload->pending_events);
1753         return ret;
1754 }
1755
1756 static void addr_type_update_snb(struct parser_exec_state *s)
1757 {
1758         if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1759                         (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1760                 s->buf_addr_type = PPGTT_BUFFER;
1761         }
1762 }
1763
1764
1765 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1766                 unsigned long gma, unsigned long end_gma, void *va)
1767 {
1768         unsigned long copy_len, offset;
1769         unsigned long len = 0;
1770         unsigned long gpa;
1771
1772         while (gma != end_gma) {
1773                 gpa = intel_vgpu_gma_to_gpa(mm, gma);
1774                 if (gpa == INTEL_GVT_INVALID_ADDR) {
1775                         gvt_vgpu_err("invalid gma address: %lx\n", gma);
1776                         return -EFAULT;
1777                 }
1778
1779                 offset = gma & (I915_GTT_PAGE_SIZE - 1);
1780
1781                 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1782                         I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1783
1784                 intel_gvt_read_gpa(vgpu, gpa, va + len, copy_len);
1785
1786                 len += copy_len;
1787                 gma += copy_len;
1788         }
1789         return len;
1790 }
1791
1792
1793 /*
1794  * Check whether a batch buffer needs to be scanned. Currently
1795  * the only criteria is based on privilege.
1796  */
1797 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1798 {
1799         /* Decide privilege based on address space */
1800         if (cmd_val(s, 0) & BIT(8) &&
1801             !(s->vgpu->scan_nonprivbb & s->engine->mask))
1802                 return 0;
1803
1804         return 1;
1805 }
1806
1807 static const char *repr_addr_type(unsigned int type)
1808 {
1809         return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1810 }
1811
1812 static int find_bb_size(struct parser_exec_state *s,
1813                         unsigned long *bb_size,
1814                         unsigned long *bb_end_cmd_offset)
1815 {
1816         unsigned long gma = 0;
1817         const struct cmd_info *info;
1818         u32 cmd_len = 0;
1819         bool bb_end = false;
1820         struct intel_vgpu *vgpu = s->vgpu;
1821         u32 cmd;
1822         struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1823                 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1824
1825         *bb_size = 0;
1826         *bb_end_cmd_offset = 0;
1827
1828         /* get the start gm address of the batch buffer */
1829         gma = get_gma_bb_from_cmd(s, 1);
1830         if (gma == INTEL_GVT_INVALID_ADDR)
1831                 return -EFAULT;
1832
1833         cmd = cmd_val(s, 0);
1834         info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1835         if (info == NULL) {
1836                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1837                              cmd, get_opcode(cmd, s->engine),
1838                              repr_addr_type(s->buf_addr_type),
1839                              s->engine->name, s->workload);
1840                 return -EBADRQC;
1841         }
1842         do {
1843                 if (copy_gma_to_hva(s->vgpu, mm,
1844                                     gma, gma + 4, &cmd) < 0)
1845                         return -EFAULT;
1846                 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1847                 if (info == NULL) {
1848                         gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1849                                      cmd, get_opcode(cmd, s->engine),
1850                                      repr_addr_type(s->buf_addr_type),
1851                                      s->engine->name, s->workload);
1852                         return -EBADRQC;
1853                 }
1854
1855                 if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1856                         bb_end = true;
1857                 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1858                         if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1859                                 /* chained batch buffer */
1860                                 bb_end = true;
1861                 }
1862
1863                 if (bb_end)
1864                         *bb_end_cmd_offset = *bb_size;
1865
1866                 cmd_len = get_cmd_length(info, cmd) << 2;
1867                 *bb_size += cmd_len;
1868                 gma += cmd_len;
1869         } while (!bb_end);
1870
1871         return 0;
1872 }
1873
1874 static int audit_bb_end(struct parser_exec_state *s, void *va)
1875 {
1876         struct intel_vgpu *vgpu = s->vgpu;
1877         u32 cmd = *(u32 *)va;
1878         const struct cmd_info *info;
1879
1880         info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1881         if (info == NULL) {
1882                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1883                              cmd, get_opcode(cmd, s->engine),
1884                              repr_addr_type(s->buf_addr_type),
1885                              s->engine->name, s->workload);
1886                 return -EBADRQC;
1887         }
1888
1889         if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1890             ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1891              (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1892                 return 0;
1893
1894         return -EBADRQC;
1895 }
1896
1897 static int perform_bb_shadow(struct parser_exec_state *s)
1898 {
1899         struct intel_vgpu *vgpu = s->vgpu;
1900         struct intel_vgpu_shadow_bb *bb;
1901         unsigned long gma = 0;
1902         unsigned long bb_size;
1903         unsigned long bb_end_cmd_offset;
1904         int ret = 0;
1905         struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1906                 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1907         unsigned long start_offset = 0;
1908
1909         /* Get the start gm address of the batch buffer */
1910         gma = get_gma_bb_from_cmd(s, 1);
1911         if (gma == INTEL_GVT_INVALID_ADDR)
1912                 return -EFAULT;
1913
1914         ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1915         if (ret)
1916                 return ret;
1917
1918         bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1919         if (!bb)
1920                 return -ENOMEM;
1921
1922         bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1923
1924         /*
1925          * The start_offset stores the batch buffer's start gma's
1926          * offset relative to page boundary. So for non-privileged batch
1927          * buffer, the shadowed gem object holds exactly the same page
1928          * layout as original gem object. This is for the convenience of
1929          * replacing the whole non-privilged batch buffer page to this
1930          * shadowed one in PPGTT at the same gma address. (This replacing
1931          * action is not implemented yet now, but may be necessary in
1932          * future).
1933          * For prileged batch buffer, we just change start gma address to
1934          * that of shadowed page.
1935          */
1936         if (bb->ppgtt)
1937                 start_offset = gma & ~I915_GTT_PAGE_MASK;
1938
1939         bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1940                                                round_up(bb_size + start_offset,
1941                                                         PAGE_SIZE));
1942         if (IS_ERR(bb->obj)) {
1943                 ret = PTR_ERR(bb->obj);
1944                 goto err_free_bb;
1945         }
1946
1947         bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1948         if (IS_ERR(bb->va)) {
1949                 ret = PTR_ERR(bb->va);
1950                 goto err_free_obj;
1951         }
1952
1953         ret = copy_gma_to_hva(s->vgpu, mm,
1954                               gma, gma + bb_size,
1955                               bb->va + start_offset);
1956         if (ret < 0) {
1957                 gvt_vgpu_err("fail to copy guest ring buffer\n");
1958                 ret = -EFAULT;
1959                 goto err_unmap;
1960         }
1961
1962         ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1963         if (ret)
1964                 goto err_unmap;
1965
1966         i915_gem_object_unlock(bb->obj);
1967         INIT_LIST_HEAD(&bb->list);
1968         list_add(&bb->list, &s->workload->shadow_bb);
1969
1970         bb->bb_start_cmd_va = s->ip_va;
1971
1972         if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1973                 bb->bb_offset = s->ip_va - s->rb_va;
1974         else
1975                 bb->bb_offset = 0;
1976
1977         /*
1978          * ip_va saves the virtual address of the shadow batch buffer, while
1979          * ip_gma saves the graphics address of the original batch buffer.
1980          * As the shadow batch buffer is just a copy from the original one,
1981          * it should be right to use shadow batch buffer'va and original batch
1982          * buffer's gma in pair. After all, we don't want to pin the shadow
1983          * buffer here (too early).
1984          */
1985         s->ip_va = bb->va + start_offset;
1986         s->ip_gma = gma;
1987         return 0;
1988 err_unmap:
1989         i915_gem_object_unpin_map(bb->obj);
1990 err_free_obj:
1991         i915_gem_object_put(bb->obj);
1992 err_free_bb:
1993         kfree(bb);
1994         return ret;
1995 }
1996
1997 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1998 {
1999         bool second_level;
2000         int ret = 0;
2001         struct intel_vgpu *vgpu = s->vgpu;
2002
2003         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
2004                 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
2005                 return -EFAULT;
2006         }
2007
2008         second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
2009         if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
2010                 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
2011                 return -EFAULT;
2012         }
2013
2014         s->saved_buf_addr_type = s->buf_addr_type;
2015         addr_type_update_snb(s);
2016         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2017                 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
2018                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
2019         } else if (second_level) {
2020                 s->buf_type = BATCH_BUFFER_2ND_LEVEL;
2021                 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
2022                 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
2023         }
2024
2025         if (batch_buffer_needs_scan(s)) {
2026                 ret = perform_bb_shadow(s);
2027                 if (ret < 0)
2028                         gvt_vgpu_err("invalid shadow batch buffer\n");
2029         } else {
2030                 /* emulate a batch buffer end to do return right */
2031                 ret = cmd_handler_mi_batch_buffer_end(s);
2032                 if (ret < 0)
2033                         return ret;
2034         }
2035         return ret;
2036 }
2037
2038 static int mi_noop_index;
2039
2040 static const struct cmd_info cmd_info[] = {
2041         {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2042
2043         {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2044                 0, 1, NULL},
2045
2046         {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2047                 0, 1, cmd_handler_mi_user_interrupt},
2048
2049         {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2050                 D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2051
2052         {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2053
2054         {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2055                 NULL},
2056
2057         {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2058                 NULL},
2059
2060         {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2061                 NULL},
2062
2063         {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2064                 NULL},
2065
2066         {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2067                 D_ALL, 0, 1, NULL},
2068
2069         {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2070                 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2071                 cmd_handler_mi_batch_buffer_end},
2072
2073         {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2074                 0, 1, NULL},
2075
2076         {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2077                 NULL},
2078
2079         {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2080                 D_ALL, 0, 1, NULL},
2081
2082         {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2083                 NULL},
2084
2085         {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2086                 NULL},
2087
2088         {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2089                 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2090
2091         {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2092                 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2093
2094         {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2095
2096         {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2097                 D_ALL, 0, 8, NULL, CMD_LEN(0)},
2098
2099         {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2100                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2101                 NULL, CMD_LEN(0)},
2102
2103         {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2104                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2105                 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2106
2107         {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2108                 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2109
2110         {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2111                 0, 8, cmd_handler_mi_store_data_index},
2112
2113         {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2114                 D_ALL, 0, 8, cmd_handler_lri},
2115
2116         {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2117                 cmd_handler_mi_update_gtt},
2118
2119         {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2120                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2121                 cmd_handler_srm, CMD_LEN(2)},
2122
2123         {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2124                 cmd_handler_mi_flush_dw},
2125
2126         {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2127                 10, cmd_handler_mi_clflush},
2128
2129         {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2130                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2131                 cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2132
2133         {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2134                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2135                 cmd_handler_lrm, CMD_LEN(2)},
2136
2137         {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2138                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2139                 cmd_handler_lrr, CMD_LEN(1)},
2140
2141         {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2142                 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2143                 8, NULL, CMD_LEN(2)},
2144
2145         {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2146                 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2147
2148         {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2149                 ADDR_FIX_1(2), 8, NULL},
2150
2151         {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2152                 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2153
2154         {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2155                 8, cmd_handler_mi_op_2f},
2156
2157         {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2158                 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2159                 cmd_handler_mi_batch_buffer_start},
2160
2161         {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2162                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2163                 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2164
2165         {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2166                 R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2167
2168         {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2169                 ADDR_FIX_2(4, 7), 8, NULL},
2170
2171         {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2172                 0, 8, NULL},
2173
2174         {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2175                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2176
2177         {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2178
2179         {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2180                 0, 8, NULL},
2181
2182         {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2183                 ADDR_FIX_1(3), 8, NULL},
2184
2185         {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2186                 D_ALL, 0, 8, NULL},
2187
2188         {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2189                 ADDR_FIX_1(4), 8, NULL},
2190
2191         {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2192                 ADDR_FIX_2(4, 5), 8, NULL},
2193
2194         {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2195                 ADDR_FIX_1(4), 8, NULL},
2196
2197         {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2198                 ADDR_FIX_2(4, 7), 8, NULL},
2199
2200         {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2201                 D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2202
2203         {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2204
2205         {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2206                 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2207
2208         {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2209                 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2210
2211         {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2212                 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2213                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2214
2215         {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2216                 D_ALL, ADDR_FIX_1(4), 8, NULL},
2217
2218         {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2219                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2220
2221         {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2222                 D_ALL, ADDR_FIX_1(4), 8, NULL},
2223
2224         {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2225                 D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2226
2227         {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2228                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2229
2230         {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2231                 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2232                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2233
2234         {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2235                 ADDR_FIX_2(4, 5), 8, NULL},
2236
2237         {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2238                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2239
2240         {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2241                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2242                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2243
2244         {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2245                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2246                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2247
2248         {"3DSTATE_BLEND_STATE_POINTERS",
2249                 OP_3DSTATE_BLEND_STATE_POINTERS,
2250                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2251
2252         {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2253                 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2254                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2255
2256         {"3DSTATE_BINDING_TABLE_POINTERS_VS",
2257                 OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2258                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2259
2260         {"3DSTATE_BINDING_TABLE_POINTERS_HS",
2261                 OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2262                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2263
2264         {"3DSTATE_BINDING_TABLE_POINTERS_DS",
2265                 OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2266                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2267
2268         {"3DSTATE_BINDING_TABLE_POINTERS_GS",
2269                 OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2270                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2271
2272         {"3DSTATE_BINDING_TABLE_POINTERS_PS",
2273                 OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2274                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2275
2276         {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2277                 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2278                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2279
2280         {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2281                 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2282                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2283
2284         {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2285                 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2286                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2287
2288         {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2289                 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2290                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2291
2292         {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2293                 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2294                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2295
2296         {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2297                 0, 8, NULL},
2298
2299         {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2300                 0, 8, NULL},
2301
2302         {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2303                 0, 8, NULL},
2304
2305         {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2306                 0, 8, NULL},
2307
2308         {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2309                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2310
2311         {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2312                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2313
2314         {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2315                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2316
2317         {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2318                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2319
2320         {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2321                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2322
2323         {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2324                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2325
2326         {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2327                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2328
2329         {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2330                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2331
2332         {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2333                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2334
2335         {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2336                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2337
2338         {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2339                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2340
2341         {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2342                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2343
2344         {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2345                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2346
2347         {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2348                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2349
2350         {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2351                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2352
2353         {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2354                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2355
2356         {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2357                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2358
2359         {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2360                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2361
2362         {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2363                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2364
2365         {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2366                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2367
2368         {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2369                 D_BDW_PLUS, 0, 8, NULL},
2370
2371         {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2372                 NULL},
2373
2374         {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2375                 D_BDW_PLUS, 0, 8, NULL},
2376
2377         {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2378                 D_BDW_PLUS, 0, 8, NULL},
2379
2380         {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2381                 8, NULL},
2382
2383         {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2384                 R_RCS, D_BDW_PLUS, 0, 8, NULL},
2385
2386         {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2387                 8, NULL},
2388
2389         {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2390                 NULL},
2391
2392         {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2393                 NULL},
2394
2395         {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2396                 NULL},
2397
2398         {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2399                 D_BDW_PLUS, 0, 8, NULL},
2400
2401         {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2402                 R_RCS, D_ALL, 0, 8, NULL},
2403
2404         {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2405                 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2406
2407         {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2408                 R_RCS, D_ALL, 0, 1, NULL},
2409
2410         {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2411
2412         {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2413                 R_RCS, D_ALL, 0, 8, NULL},
2414
2415         {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2416                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2417
2418         {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2419
2420         {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2421
2422         {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2423
2424         {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2425                 D_BDW_PLUS, 0, 8, NULL},
2426
2427         {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2428                 D_BDW_PLUS, 0, 8, NULL},
2429
2430         {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2431                 D_ALL, 0, 8, NULL},
2432
2433         {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2434                 D_BDW_PLUS, 0, 8, NULL},
2435
2436         {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2437                 D_BDW_PLUS, 0, 8, NULL},
2438
2439         {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2440
2441         {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2442
2443         {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2444
2445         {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2446                 D_ALL, 0, 8, NULL},
2447
2448         {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2449
2450         {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2451
2452         {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2453                 R_RCS, D_ALL, 0, 8, NULL},
2454
2455         {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2456                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2457
2458         {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2459                 0, 8, NULL},
2460
2461         {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2462                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2463
2464         {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2465                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2466
2467         {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2468                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2469
2470         {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2471                 D_ALL, 0, 8, NULL},
2472
2473         {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2474                 D_ALL, 0, 8, NULL},
2475
2476         {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2477                 D_ALL, 0, 8, NULL},
2478
2479         {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2480                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2481
2482         {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2483                 D_BDW_PLUS, 0, 8, NULL},
2484
2485         {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2486                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2487
2488         {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2489                 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2490
2491         {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2492                 R_RCS, D_ALL, 0, 8, NULL},
2493
2494         {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2495                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2496
2497         {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2498                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2499
2500         {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2501                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2502
2503         {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2504                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2505
2506         {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2507                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2508
2509         {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2510                 R_RCS, D_ALL, 0, 8, NULL},
2511
2512         {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2513                 D_ALL, 0, 9, NULL},
2514
2515         {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2516                 ADDR_FIX_2(2, 4), 8, NULL},
2517
2518         {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2519                 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2520                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2521
2522         {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2523                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2524
2525         {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2526                 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2527                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2528
2529         {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2530                 D_BDW_PLUS, 0, 8, NULL},
2531
2532         {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2533                 ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2534
2535         {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2536
2537         {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2538                 1, NULL},
2539
2540         {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2541                 ADDR_FIX_1(1), 8, NULL},
2542
2543         {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2544
2545         {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2546                 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2547
2548         {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2549                 ADDR_FIX_1(1), 8, NULL},
2550
2551         {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2552                 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2553
2554         {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2555
2556         {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2557
2558         {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2559                 0, 8, NULL},
2560
2561         {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2562                 D_SKL_PLUS, 0, 8, NULL},
2563
2564         {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2565                 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2566
2567         {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2568                 0, 16, NULL},
2569
2570         {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2571                 0, 16, NULL},
2572
2573         {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2574                 0, 16, NULL},
2575
2576         {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2577
2578         {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2579                 0, 16, NULL},
2580
2581         {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2582                 0, 16, NULL},
2583
2584         {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2585                 0, 16, NULL},
2586
2587         {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2588                 0, 8, NULL},
2589
2590         {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2591                 NULL},
2592
2593         {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2594                 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2595
2596         {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2597                 R_VCS, D_ALL, 0, 12, NULL},
2598
2599         {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2600                 R_VCS, D_ALL, 0, 12, NULL},
2601
2602         {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2603                 R_VCS, D_BDW_PLUS, 0, 12, NULL},
2604
2605         {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2606                 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2607
2608         {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2609                 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2610
2611         {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2612
2613         {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2614                 R_VCS, D_ALL, 0, 12, NULL},
2615
2616         {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2617                 R_VCS, D_ALL, 0, 12, NULL},
2618
2619         {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2620                 R_VCS, D_ALL, 0, 12, NULL},
2621
2622         {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2623                 R_VCS, D_ALL, 0, 12, NULL},
2624
2625         {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2626                 R_VCS, D_ALL, 0, 12, NULL},
2627
2628         {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2629                 R_VCS, D_ALL, 0, 12, NULL},
2630
2631         {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2632                 R_VCS, D_ALL, 0, 6, NULL},
2633
2634         {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2635                 R_VCS, D_ALL, 0, 12, NULL},
2636
2637         {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2638                 R_VCS, D_ALL, 0, 12, NULL},
2639
2640         {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2641                 R_VCS, D_ALL, 0, 12, NULL},
2642
2643         {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2644                 R_VCS, D_ALL, 0, 12, NULL},
2645
2646         {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2647                 R_VCS, D_ALL, 0, 12, NULL},
2648
2649         {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2650                 R_VCS, D_ALL, 0, 12, NULL},
2651
2652         {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2653                 R_VCS, D_ALL, 0, 12, NULL},
2654         {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2655                 R_VCS, D_ALL, 0, 12, NULL},
2656
2657         {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2658                 R_VCS, D_ALL, 0, 12, NULL},
2659
2660         {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2661                 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2662
2663         {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2664                 R_VCS, D_ALL, 0, 12, NULL},
2665
2666         {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2667                 R_VCS, D_ALL, 0, 12, NULL},
2668
2669         {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2670                 R_VCS, D_ALL, 0, 12, NULL},
2671
2672         {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2673                 R_VCS, D_ALL, 0, 12, NULL},
2674
2675         {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2676                 R_VCS, D_ALL, 0, 12, NULL},
2677
2678         {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2679                 R_VCS, D_ALL, 0, 12, NULL},
2680
2681         {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2682                 R_VCS, D_ALL, 0, 12, NULL},
2683
2684         {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2685                 R_VCS, D_ALL, 0, 12, NULL},
2686
2687         {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2688                 R_VCS, D_ALL, 0, 12, NULL},
2689
2690         {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2691                 R_VCS, D_ALL, 0, 12, NULL},
2692
2693         {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2694                 R_VCS, D_ALL, 0, 12, NULL},
2695
2696         {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2697                 0, 16, NULL},
2698
2699         {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2700
2701         {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2702
2703         {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2704                 R_VCS, D_ALL, 0, 12, NULL},
2705
2706         {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2707                 R_VCS, D_ALL, 0, 12, NULL},
2708
2709         {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2710                 R_VCS, D_ALL, 0, 12, NULL},
2711
2712         {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2713
2714         {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2715                 0, 12, NULL},
2716
2717         {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2718                 0, 12, NULL},
2719 };
2720
2721 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2722 {
2723         hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2724 }
2725
2726 /* call the cmd handler, and advance ip */
2727 static int cmd_parser_exec(struct parser_exec_state *s)
2728 {
2729         struct intel_vgpu *vgpu = s->vgpu;
2730         const struct cmd_info *info;
2731         u32 cmd;
2732         int ret = 0;
2733
2734         cmd = cmd_val(s, 0);
2735
2736         /* fastpath for MI_NOOP */
2737         if (cmd == MI_NOOP)
2738                 info = &cmd_info[mi_noop_index];
2739         else
2740                 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2741
2742         if (info == NULL) {
2743                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2744                              cmd, get_opcode(cmd, s->engine),
2745                              repr_addr_type(s->buf_addr_type),
2746                              s->engine->name, s->workload);
2747                 return -EBADRQC;
2748         }
2749
2750         s->info = info;
2751
2752         trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2753                           cmd_length(s), s->buf_type, s->buf_addr_type,
2754                           s->workload, info->name);
2755
2756         if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2757                 ret = gvt_check_valid_cmd_length(cmd_length(s),
2758                                                  info->valid_len);
2759                 if (ret)
2760                         return ret;
2761         }
2762
2763         if (info->handler) {
2764                 ret = info->handler(s);
2765                 if (ret < 0) {
2766                         gvt_vgpu_err("%s handler error\n", info->name);
2767                         return ret;
2768                 }
2769         }
2770
2771         if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2772                 ret = cmd_advance_default(s);
2773                 if (ret) {
2774                         gvt_vgpu_err("%s IP advance error\n", info->name);
2775                         return ret;
2776                 }
2777         }
2778         return 0;
2779 }
2780
2781 static inline bool gma_out_of_range(unsigned long gma,
2782                 unsigned long gma_head, unsigned int gma_tail)
2783 {
2784         if (gma_tail >= gma_head)
2785                 return (gma < gma_head) || (gma > gma_tail);
2786         else
2787                 return (gma > gma_tail) && (gma < gma_head);
2788 }
2789
2790 /* Keep the consistent return type, e.g EBADRQC for unknown
2791  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2792  * works as the input of VM healthy status.
2793  */
2794 static int command_scan(struct parser_exec_state *s,
2795                 unsigned long rb_head, unsigned long rb_tail,
2796                 unsigned long rb_start, unsigned long rb_len)
2797 {
2798
2799         unsigned long gma_head, gma_tail, gma_bottom;
2800         int ret = 0;
2801         struct intel_vgpu *vgpu = s->vgpu;
2802
2803         gma_head = rb_start + rb_head;
2804         gma_tail = rb_start + rb_tail;
2805         gma_bottom = rb_start +  rb_len;
2806
2807         while (s->ip_gma != gma_tail) {
2808                 if (s->buf_type == RING_BUFFER_INSTRUCTION ||
2809                                 s->buf_type == RING_BUFFER_CTX) {
2810                         if (!(s->ip_gma >= rb_start) ||
2811                                 !(s->ip_gma < gma_bottom)) {
2812                                 gvt_vgpu_err("ip_gma %lx out of ring scope."
2813                                         "(base:0x%lx, bottom: 0x%lx)\n",
2814                                         s->ip_gma, rb_start,
2815                                         gma_bottom);
2816                                 parser_exec_state_dump(s);
2817                                 return -EFAULT;
2818                         }
2819                         if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2820                                 gvt_vgpu_err("ip_gma %lx out of range."
2821                                         "base 0x%lx head 0x%lx tail 0x%lx\n",
2822                                         s->ip_gma, rb_start,
2823                                         rb_head, rb_tail);
2824                                 parser_exec_state_dump(s);
2825                                 break;
2826                         }
2827                 }
2828                 ret = cmd_parser_exec(s);
2829                 if (ret) {
2830                         gvt_vgpu_err("cmd parser error\n");
2831                         parser_exec_state_dump(s);
2832                         break;
2833                 }
2834         }
2835
2836         return ret;
2837 }
2838
2839 static int scan_workload(struct intel_vgpu_workload *workload)
2840 {
2841         unsigned long gma_head, gma_tail;
2842         struct parser_exec_state s;
2843         int ret = 0;
2844
2845         /* ring base is page aligned */
2846         if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2847                 return -EINVAL;
2848
2849         gma_head = workload->rb_start + workload->rb_head;
2850         gma_tail = workload->rb_start + workload->rb_tail;
2851
2852         s.buf_type = RING_BUFFER_INSTRUCTION;
2853         s.buf_addr_type = GTT_BUFFER;
2854         s.vgpu = workload->vgpu;
2855         s.engine = workload->engine;
2856         s.ring_start = workload->rb_start;
2857         s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2858         s.ring_head = gma_head;
2859         s.ring_tail = gma_tail;
2860         s.rb_va = workload->shadow_ring_buffer_va;
2861         s.workload = workload;
2862         s.is_ctx_wa = false;
2863
2864         if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2865                 return 0;
2866
2867         ret = ip_gma_set(&s, gma_head);
2868         if (ret)
2869                 goto out;
2870
2871         ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2872                 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2873
2874 out:
2875         return ret;
2876 }
2877
2878 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2879 {
2880
2881         unsigned long gma_head, gma_tail, ring_size, ring_tail;
2882         struct parser_exec_state s;
2883         int ret = 0;
2884         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2885                                 struct intel_vgpu_workload,
2886                                 wa_ctx);
2887
2888         /* ring base is page aligned */
2889         if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2890                                         I915_GTT_PAGE_SIZE)))
2891                 return -EINVAL;
2892
2893         ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2894         ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2895                         PAGE_SIZE);
2896         gma_head = wa_ctx->indirect_ctx.guest_gma;
2897         gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2898
2899         s.buf_type = RING_BUFFER_INSTRUCTION;
2900         s.buf_addr_type = GTT_BUFFER;
2901         s.vgpu = workload->vgpu;
2902         s.engine = workload->engine;
2903         s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2904         s.ring_size = ring_size;
2905         s.ring_head = gma_head;
2906         s.ring_tail = gma_tail;
2907         s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2908         s.workload = workload;
2909         s.is_ctx_wa = true;
2910
2911         ret = ip_gma_set(&s, gma_head);
2912         if (ret)
2913                 goto out;
2914
2915         ret = command_scan(&s, 0, ring_tail,
2916                 wa_ctx->indirect_ctx.guest_gma, ring_size);
2917 out:
2918         return ret;
2919 }
2920
2921 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2922 {
2923         struct intel_vgpu *vgpu = workload->vgpu;
2924         struct intel_vgpu_submission *s = &vgpu->submission;
2925         unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2926         void *shadow_ring_buffer_va;
2927         int ret;
2928
2929         guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2930
2931         /* calculate workload ring buffer size */
2932         workload->rb_len = (workload->rb_tail + guest_rb_size -
2933                         workload->rb_head) % guest_rb_size;
2934
2935         gma_head = workload->rb_start + workload->rb_head;
2936         gma_tail = workload->rb_start + workload->rb_tail;
2937         gma_top = workload->rb_start + guest_rb_size;
2938
2939         if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2940                 void *p;
2941
2942                 /* realloc the new ring buffer if needed */
2943                 p = krealloc(s->ring_scan_buffer[workload->engine->id],
2944                              workload->rb_len, GFP_KERNEL);
2945                 if (!p) {
2946                         gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2947                         return -ENOMEM;
2948                 }
2949                 s->ring_scan_buffer[workload->engine->id] = p;
2950                 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2951         }
2952
2953         shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2954
2955         /* get shadow ring buffer va */
2956         workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2957
2958         /* head > tail --> copy head <-> top */
2959         if (gma_head > gma_tail) {
2960                 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2961                                       gma_head, gma_top, shadow_ring_buffer_va);
2962                 if (ret < 0) {
2963                         gvt_vgpu_err("fail to copy guest ring buffer\n");
2964                         return ret;
2965                 }
2966                 shadow_ring_buffer_va += ret;
2967                 gma_head = workload->rb_start;
2968         }
2969
2970         /* copy head or start <-> tail */
2971         ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2972                                 shadow_ring_buffer_va);
2973         if (ret < 0) {
2974                 gvt_vgpu_err("fail to copy guest ring buffer\n");
2975                 return ret;
2976         }
2977         return 0;
2978 }
2979
2980 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2981 {
2982         int ret;
2983         struct intel_vgpu *vgpu = workload->vgpu;
2984
2985         ret = shadow_workload_ring_buffer(workload);
2986         if (ret) {
2987                 gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2988                 return ret;
2989         }
2990
2991         ret = scan_workload(workload);
2992         if (ret) {
2993                 gvt_vgpu_err("scan workload error\n");
2994                 return ret;
2995         }
2996         return 0;
2997 }
2998
2999 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3000 {
3001         int ctx_size = wa_ctx->indirect_ctx.size;
3002         unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
3003         struct intel_vgpu_workload *workload = container_of(wa_ctx,
3004                                         struct intel_vgpu_workload,
3005                                         wa_ctx);
3006         struct intel_vgpu *vgpu = workload->vgpu;
3007         struct drm_i915_gem_object *obj;
3008         int ret = 0;
3009         void *map;
3010
3011         obj = i915_gem_object_create_shmem(workload->engine->i915,
3012                                            roundup(ctx_size + CACHELINE_BYTES,
3013                                                    PAGE_SIZE));
3014         if (IS_ERR(obj))
3015                 return PTR_ERR(obj);
3016
3017         /* get the va of the shadow batch buffer */
3018         map = i915_gem_object_pin_map(obj, I915_MAP_WB);
3019         if (IS_ERR(map)) {
3020                 gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
3021                 ret = PTR_ERR(map);
3022                 goto put_obj;
3023         }
3024
3025         i915_gem_object_lock(obj, NULL);
3026         ret = i915_gem_object_set_to_cpu_domain(obj, false);
3027         i915_gem_object_unlock(obj);
3028         if (ret) {
3029                 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
3030                 goto unmap_src;
3031         }
3032
3033         ret = copy_gma_to_hva(workload->vgpu,
3034                                 workload->vgpu->gtt.ggtt_mm,
3035                                 guest_gma, guest_gma + ctx_size,
3036                                 map);
3037         if (ret < 0) {
3038                 gvt_vgpu_err("fail to copy guest indirect ctx\n");
3039                 goto unmap_src;
3040         }
3041
3042         wa_ctx->indirect_ctx.obj = obj;
3043         wa_ctx->indirect_ctx.shadow_va = map;
3044         return 0;
3045
3046 unmap_src:
3047         i915_gem_object_unpin_map(obj);
3048 put_obj:
3049         i915_gem_object_put(obj);
3050         return ret;
3051 }
3052
3053 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3054 {
3055         u32 per_ctx_start[CACHELINE_DWORDS] = {};
3056         unsigned char *bb_start_sva;
3057
3058         if (!wa_ctx->per_ctx.valid)
3059                 return 0;
3060
3061         per_ctx_start[0] = 0x18800001;
3062         per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3063
3064         bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3065                                 wa_ctx->indirect_ctx.size;
3066
3067         memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3068
3069         return 0;
3070 }
3071
3072 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3073 {
3074         int ret;
3075         struct intel_vgpu_workload *workload = container_of(wa_ctx,
3076                                         struct intel_vgpu_workload,
3077                                         wa_ctx);
3078         struct intel_vgpu *vgpu = workload->vgpu;
3079
3080         if (wa_ctx->indirect_ctx.size == 0)
3081                 return 0;
3082
3083         ret = shadow_indirect_ctx(wa_ctx);
3084         if (ret) {
3085                 gvt_vgpu_err("fail to shadow indirect ctx\n");
3086                 return ret;
3087         }
3088
3089         combine_wa_ctx(wa_ctx);
3090
3091         ret = scan_wa_ctx(wa_ctx);
3092         if (ret) {
3093                 gvt_vgpu_err("scan wa ctx error\n");
3094                 return ret;
3095         }
3096
3097         return 0;
3098 }
3099
3100 /* generate dummy contexts by sending empty requests to HW, and let
3101  * the HW to fill Engine Contexts. This dummy contexts are used for
3102  * initialization purpose (update reg whitelist), so referred to as
3103  * init context here
3104  */
3105 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu)
3106 {
3107         const unsigned long start = LRC_STATE_PN * PAGE_SIZE;
3108         struct intel_gvt *gvt = vgpu->gvt;
3109         struct intel_engine_cs *engine;
3110         enum intel_engine_id id;
3111
3112         if (gvt->is_reg_whitelist_updated)
3113                 return;
3114
3115         /* scan init ctx to update cmd accessible list */
3116         for_each_engine(engine, gvt->gt, id) {
3117                 struct parser_exec_state s;
3118                 void *vaddr;
3119                 int ret;
3120
3121                 if (!engine->default_state)
3122                         continue;
3123
3124                 vaddr = shmem_pin_map(engine->default_state);
3125                 if (!vaddr) {
3126                         gvt_err("failed to map %s->default state\n",
3127                                 engine->name);
3128                         return;
3129                 }
3130
3131                 s.buf_type = RING_BUFFER_CTX;
3132                 s.buf_addr_type = GTT_BUFFER;
3133                 s.vgpu = vgpu;
3134                 s.engine = engine;
3135                 s.ring_start = 0;
3136                 s.ring_size = engine->context_size - start;
3137                 s.ring_head = 0;
3138                 s.ring_tail = s.ring_size;
3139                 s.rb_va = vaddr + start;
3140                 s.workload = NULL;
3141                 s.is_ctx_wa = false;
3142                 s.is_init_ctx = true;
3143
3144                 /* skipping the first RING_CTX_SIZE(0x50) dwords */
3145                 ret = ip_gma_set(&s, RING_CTX_SIZE);
3146                 if (ret == 0) {
3147                         ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size);
3148                         if (ret)
3149                                 gvt_err("Scan init ctx error\n");
3150                 }
3151
3152                 shmem_unpin_map(engine->default_state, vaddr);
3153                 if (ret)
3154                         return;
3155         }
3156
3157         gvt->is_reg_whitelist_updated = true;
3158 }
3159
3160 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload)
3161 {
3162         struct intel_vgpu *vgpu = workload->vgpu;
3163         unsigned long gma_head, gma_tail, gma_start, ctx_size;
3164         struct parser_exec_state s;
3165         int ring_id = workload->engine->id;
3166         struct intel_context *ce = vgpu->submission.shadow[ring_id];
3167         int ret;
3168
3169         GEM_BUG_ON(atomic_read(&ce->pin_count) < 0);
3170
3171         ctx_size = workload->engine->context_size - PAGE_SIZE;
3172
3173         /* Only ring contxt is loaded to HW for inhibit context, no need to
3174          * scan engine context
3175          */
3176         if (is_inhibit_context(ce))
3177                 return 0;
3178
3179         gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE;
3180         gma_head = 0;
3181         gma_tail = ctx_size;
3182
3183         s.buf_type = RING_BUFFER_CTX;
3184         s.buf_addr_type = GTT_BUFFER;
3185         s.vgpu = workload->vgpu;
3186         s.engine = workload->engine;
3187         s.ring_start = gma_start;
3188         s.ring_size = ctx_size;
3189         s.ring_head = gma_start + gma_head;
3190         s.ring_tail = gma_start + gma_tail;
3191         s.rb_va = ce->lrc_reg_state;
3192         s.workload = workload;
3193         s.is_ctx_wa = false;
3194         s.is_init_ctx = false;
3195
3196         /* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring
3197          * context
3198          */
3199         ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE);
3200         if (ret)
3201                 goto out;
3202
3203         ret = command_scan(&s, gma_head, gma_tail,
3204                 gma_start, ctx_size);
3205 out:
3206         if (ret)
3207                 gvt_vgpu_err("scan shadow ctx error\n");
3208
3209         return ret;
3210 }
3211
3212 static int init_cmd_table(struct intel_gvt *gvt)
3213 {
3214         unsigned int gen_type = intel_gvt_get_device_type(gvt);
3215         int i;
3216
3217         for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3218                 struct cmd_entry *e;
3219
3220                 if (!(cmd_info[i].devices & gen_type))
3221                         continue;
3222
3223                 e = kzalloc(sizeof(*e), GFP_KERNEL);
3224                 if (!e)
3225                         return -ENOMEM;
3226
3227                 e->info = &cmd_info[i];
3228                 if (cmd_info[i].opcode == OP_MI_NOOP)
3229                         mi_noop_index = i;
3230
3231                 INIT_HLIST_NODE(&e->hlist);
3232                 add_cmd_entry(gvt, e);
3233                 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3234                             e->info->name, e->info->opcode, e->info->flag,
3235                             e->info->devices, e->info->rings);
3236         }
3237
3238         return 0;
3239 }
3240
3241 static void clean_cmd_table(struct intel_gvt *gvt)
3242 {
3243         struct hlist_node *tmp;
3244         struct cmd_entry *e;
3245         int i;
3246
3247         hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3248                 kfree(e);
3249
3250         hash_init(gvt->cmd_table);
3251 }
3252
3253 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3254 {
3255         clean_cmd_table(gvt);
3256 }
3257
3258 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3259 {
3260         int ret;
3261
3262         ret = init_cmd_table(gvt);
3263         if (ret) {
3264                 intel_gvt_clean_cmd_parser(gvt);
3265                 return ret;
3266         }
3267         return 0;
3268 }