Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-block.git] / drivers / gpu / drm / i915 / gvt / cmd_parser.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36
37 #include <linux/slab.h>
38
39 #include "i915_drv.h"
40 #include "i915_reg.h"
41 #include "gt/intel_engine_regs.h"
42 #include "gt/intel_gpu_commands.h"
43 #include "gt/intel_gt_regs.h"
44 #include "gt/intel_lrc.h"
45 #include "gt/intel_ring.h"
46 #include "gt/intel_gt_requests.h"
47 #include "gt/shmem_utils.h"
48 #include "gvt.h"
49 #include "i915_pvinfo.h"
50 #include "trace.h"
51
52 #include "display/intel_display.h"
53 #include "gem/i915_gem_context.h"
54 #include "gem/i915_gem_pm.h"
55 #include "gt/intel_context.h"
56
57 #define INVALID_OP    (~0U)
58
59 #define OP_LEN_MI           9
60 #define OP_LEN_2D           10
61 #define OP_LEN_3D_MEDIA     16
62 #define OP_LEN_MFX_VC       16
63 #define OP_LEN_VEBOX        16
64
65 #define CMD_TYPE(cmd)   (((cmd) >> 29) & 7)
66
67 struct sub_op_bits {
68         int hi;
69         int low;
70 };
71 struct decode_info {
72         const char *name;
73         int op_len;
74         int nr_sub_op;
75         const struct sub_op_bits *sub_op;
76 };
77
78 #define   MAX_CMD_BUDGET                        0x7fffffff
79 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
80 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
81 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
82
83 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
84 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
85 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
86
87 /* Render Command Map */
88
89 /* MI_* command Opcode (28:23) */
90 #define OP_MI_NOOP                          0x0
91 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
92 #define OP_MI_USER_INTERRUPT                0x2
93 #define OP_MI_WAIT_FOR_EVENT                0x3
94 #define OP_MI_FLUSH                         0x4
95 #define OP_MI_ARB_CHECK                     0x5
96 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
97 #define OP_MI_REPORT_HEAD                   0x7
98 #define OP_MI_ARB_ON_OFF                    0x8
99 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
100 #define OP_MI_BATCH_BUFFER_END              0xA
101 #define OP_MI_SUSPEND_FLUSH                 0xB
102 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
103 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
104 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
105 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
106 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
107 #define OP_MI_DISPLAY_FLIP                  0x14
108 #define OP_MI_SEMAPHORE_MBOX                0x16
109 #define OP_MI_SET_CONTEXT                   0x18
110 #define OP_MI_MATH                          0x1A
111 #define OP_MI_URB_CLEAR                     0x19
112 #define OP_MI_SEMAPHORE_SIGNAL              0x1B  /* BDW+ */
113 #define OP_MI_SEMAPHORE_WAIT                0x1C  /* BDW+ */
114
115 #define OP_MI_STORE_DATA_IMM                0x20
116 #define OP_MI_STORE_DATA_INDEX              0x21
117 #define OP_MI_LOAD_REGISTER_IMM             0x22
118 #define OP_MI_UPDATE_GTT                    0x23
119 #define OP_MI_STORE_REGISTER_MEM            0x24
120 #define OP_MI_FLUSH_DW                      0x26
121 #define OP_MI_CLFLUSH                       0x27
122 #define OP_MI_REPORT_PERF_COUNT             0x28
123 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
124 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
125 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
126 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
127 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
128 #define OP_MI_2E                            0x2E  /* BDW+ */
129 #define OP_MI_2F                            0x2F  /* BDW+ */
130 #define OP_MI_BATCH_BUFFER_START            0x31
131
132 /* Bit definition for dword 0 */
133 #define _CMDBIT_BB_START_IN_PPGTT       (1UL << 8)
134
135 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
136
137 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
138 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
139 #define BATCH_BUFFER_ADR_SPACE_BIT(x)   (((x) >> 8) & 1U)
140 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
141
142 /* 2D command: Opcode (28:22) */
143 #define OP_2D(x)    ((2<<7) | x)
144
145 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
146 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
147 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
148 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
149 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
150 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
151 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
152 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
153 #define OP_XY_PAT_BLT                               OP_2D(0x51)
154 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
155 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
156 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
157 #define OP_XY_FULL_BLT                              OP_2D(0x55)
158 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
159 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
160 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
161 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
162 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
163 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
164 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
165 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
166 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
167 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
168 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
169
170 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
171 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
172         ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
173
174 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
175
176 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
177 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
178 #define OP_3D_MEDIA_0_1_4                       OP_3D_MEDIA(0x0, 0x1, 0x04)
179 #define OP_SWTESS_BASE_ADDRESS                  OP_3D_MEDIA(0x0, 0x1, 0x03)
180
181 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
182
183 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
184
185 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
186 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
187 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
188 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
189 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
190 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
191
192 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
193 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
194 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
195 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
196
197 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
198 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
199 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
200 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
201 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
202 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
203 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
204 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
205 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
206 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
207 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
208 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
209 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
210 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
211 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
212 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
213 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
214 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
215 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
216 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
217 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
218 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
219 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
220 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
221 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
222 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
223 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
224 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
225 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
226 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
227 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
228 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
229 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
230 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
231 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
232 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
233 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
234 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
235 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
236 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
237 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
238 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
239 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
240 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
241 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
242 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
243 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
244 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
245 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
246 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
247 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
248 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
249 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
250 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
251 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
252 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
253 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
254 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
255 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
256 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
257 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
258 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
259 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
260 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
261 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
262 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
263
264 #define OP_3DSTATE_VF_INSTANCING                OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
265 #define OP_3DSTATE_VF_SGVS                      OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
266 #define OP_3DSTATE_VF_TOPOLOGY                  OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
267 #define OP_3DSTATE_WM_CHROMAKEY                 OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
268 #define OP_3DSTATE_PS_BLEND                     OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
269 #define OP_3DSTATE_WM_DEPTH_STENCIL             OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
270 #define OP_3DSTATE_PS_EXTRA                     OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
271 #define OP_3DSTATE_RASTER                       OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
272 #define OP_3DSTATE_SBE_SWIZ                     OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
273 #define OP_3DSTATE_WM_HZ_OP                     OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
274 #define OP_3DSTATE_COMPONENT_PACKING            OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
275
276 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
277 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
278 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
279 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
280 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
281 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
282 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
283 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
284 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
285 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
286 #define OP_3DSTATE_MULTISAMPLE_BDW              OP_3D_MEDIA(0x3, 0x0, 0x0D)
287 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
288 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
289 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
290 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
291 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
292 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
293 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
294 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
295 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
296 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
297 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
298 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
299 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
300 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
301 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
302 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
303 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
304
305 /* VCCP Command Parser */
306
307 /*
308  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
309  * git://anongit.freedesktop.org/vaapi/intel-driver
310  * src/i965_defines.h
311  *
312  */
313
314 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
315         (3 << 13 | \
316          (pipeline) << 11 | \
317          (op) << 8 | \
318          (sub_opa) << 5 | \
319          (sub_opb))
320
321 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
322 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
323 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
324 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
325 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
326 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
327 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
328 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
329 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
330 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
331 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
332
333 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
334
335 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
336 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
337 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
338 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
339 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
340 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
341 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
342 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
343 #define OP_MFD_AVC_DPB_STATE                       OP_MFX(2, 1, 1, 6) /* IVB+ */
344 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
345 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
346 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
347
348 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
349 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
350 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
351 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
352 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
353
354 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
355 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
356 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
357 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
358 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
359
360 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
361 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
362 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
363
364 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
365 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
366 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
367
368 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
369         (3 << 13 | \
370          (pipeline) << 11 | \
371          (op) << 8 | \
372          (sub_opa) << 5 | \
373          (sub_opb))
374
375 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
376 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
377 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
378
379 struct parser_exec_state;
380
381 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
382
383 #define GVT_CMD_HASH_BITS   7
384
385 /* which DWords need address fix */
386 #define ADDR_FIX_1(x1)                  (1 << (x1))
387 #define ADDR_FIX_2(x1, x2)              (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
388 #define ADDR_FIX_3(x1, x2, x3)          (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
389 #define ADDR_FIX_4(x1, x2, x3, x4)      (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
390 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
391
392 #define DWORD_FIELD(dword, end, start) \
393         FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
394
395 #define OP_LENGTH_BIAS 2
396 #define CMD_LEN(value)  (value + OP_LENGTH_BIAS)
397
398 static int gvt_check_valid_cmd_length(int len, int valid_len)
399 {
400         if (valid_len != len) {
401                 gvt_err("len is not valid:  len=%u  valid_len=%u\n",
402                         len, valid_len);
403                 return -EFAULT;
404         }
405         return 0;
406 }
407
408 struct cmd_info {
409         const char *name;
410         u32 opcode;
411
412 #define F_LEN_MASK      3U
413 #define F_LEN_CONST  1U
414 #define F_LEN_VAR    0U
415 /* value is const although LEN maybe variable */
416 #define F_LEN_VAR_FIXED    (1<<1)
417
418 /*
419  * command has its own ip advance logic
420  * e.g. MI_BATCH_START, MI_BATCH_END
421  */
422 #define F_IP_ADVANCE_CUSTOM (1<<2)
423         u32 flag;
424
425 #define R_RCS   BIT(RCS0)
426 #define R_VCS1  BIT(VCS0)
427 #define R_VCS2  BIT(VCS1)
428 #define R_VCS   (R_VCS1 | R_VCS2)
429 #define R_BCS   BIT(BCS0)
430 #define R_VECS  BIT(VECS0)
431 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
432         /* rings that support this cmd: BLT/RCS/VCS/VECS */
433         intel_engine_mask_t rings;
434
435         /* devices that support this cmd: SNB/IVB/HSW/... */
436         u16 devices;
437
438         /* which DWords are address that need fix up.
439          * bit 0 means a 32-bit non address operand in command
440          * bit 1 means address operand, which could be 32-bit
441          * or 64-bit depending on different architectures.(
442          * defined by "gmadr_bytes_in_cmd" in intel_gvt.
443          * No matter the address length, each address only takes
444          * one bit in the bitmap.
445          */
446         u16 addr_bitmap;
447
448         /* flag == F_LEN_CONST : command length
449          * flag == F_LEN_VAR : length bias bits
450          * Note: length is in DWord
451          */
452         u32 len;
453
454         parser_cmd_handler handler;
455
456         /* valid length in DWord */
457         u32 valid_len;
458 };
459
460 struct cmd_entry {
461         struct hlist_node hlist;
462         const struct cmd_info *info;
463 };
464
465 enum {
466         RING_BUFFER_INSTRUCTION,
467         BATCH_BUFFER_INSTRUCTION,
468         BATCH_BUFFER_2ND_LEVEL,
469         RING_BUFFER_CTX,
470 };
471
472 enum {
473         GTT_BUFFER,
474         PPGTT_BUFFER
475 };
476
477 struct parser_exec_state {
478         struct intel_vgpu *vgpu;
479         const struct intel_engine_cs *engine;
480
481         int buf_type;
482
483         /* batch buffer address type */
484         int buf_addr_type;
485
486         /* graphics memory address of ring buffer start */
487         unsigned long ring_start;
488         unsigned long ring_size;
489         unsigned long ring_head;
490         unsigned long ring_tail;
491
492         /* instruction graphics memory address */
493         unsigned long ip_gma;
494
495         /* mapped va of the instr_gma */
496         void *ip_va;
497         void *rb_va;
498
499         void *ret_bb_va;
500         /* next instruction when return from  batch buffer to ring buffer */
501         unsigned long ret_ip_gma_ring;
502
503         /* next instruction when return from 2nd batch buffer to batch buffer */
504         unsigned long ret_ip_gma_bb;
505
506         /* batch buffer address type (GTT or PPGTT)
507          * used when ret from 2nd level batch buffer
508          */
509         int saved_buf_addr_type;
510         bool is_ctx_wa;
511         bool is_init_ctx;
512
513         const struct cmd_info *info;
514
515         struct intel_vgpu_workload *workload;
516 };
517
518 #define gmadr_dw_number(s)      \
519         (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
520
521 static unsigned long bypass_scan_mask = 0;
522
523 /* ring ALL, type = 0 */
524 static const struct sub_op_bits sub_op_mi[] = {
525         {31, 29},
526         {28, 23},
527 };
528
529 static const struct decode_info decode_info_mi = {
530         "MI",
531         OP_LEN_MI,
532         ARRAY_SIZE(sub_op_mi),
533         sub_op_mi,
534 };
535
536 /* ring RCS, command type 2 */
537 static const struct sub_op_bits sub_op_2d[] = {
538         {31, 29},
539         {28, 22},
540 };
541
542 static const struct decode_info decode_info_2d = {
543         "2D",
544         OP_LEN_2D,
545         ARRAY_SIZE(sub_op_2d),
546         sub_op_2d,
547 };
548
549 /* ring RCS, command type 3 */
550 static const struct sub_op_bits sub_op_3d_media[] = {
551         {31, 29},
552         {28, 27},
553         {26, 24},
554         {23, 16},
555 };
556
557 static const struct decode_info decode_info_3d_media = {
558         "3D_Media",
559         OP_LEN_3D_MEDIA,
560         ARRAY_SIZE(sub_op_3d_media),
561         sub_op_3d_media,
562 };
563
564 /* ring VCS, command type 3 */
565 static const struct sub_op_bits sub_op_mfx_vc[] = {
566         {31, 29},
567         {28, 27},
568         {26, 24},
569         {23, 21},
570         {20, 16},
571 };
572
573 static const struct decode_info decode_info_mfx_vc = {
574         "MFX_VC",
575         OP_LEN_MFX_VC,
576         ARRAY_SIZE(sub_op_mfx_vc),
577         sub_op_mfx_vc,
578 };
579
580 /* ring VECS, command type 3 */
581 static const struct sub_op_bits sub_op_vebox[] = {
582         {31, 29},
583         {28, 27},
584         {26, 24},
585         {23, 21},
586         {20, 16},
587 };
588
589 static const struct decode_info decode_info_vebox = {
590         "VEBOX",
591         OP_LEN_VEBOX,
592         ARRAY_SIZE(sub_op_vebox),
593         sub_op_vebox,
594 };
595
596 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
597         [RCS0] = {
598                 &decode_info_mi,
599                 NULL,
600                 NULL,
601                 &decode_info_3d_media,
602                 NULL,
603                 NULL,
604                 NULL,
605                 NULL,
606         },
607
608         [VCS0] = {
609                 &decode_info_mi,
610                 NULL,
611                 NULL,
612                 &decode_info_mfx_vc,
613                 NULL,
614                 NULL,
615                 NULL,
616                 NULL,
617         },
618
619         [BCS0] = {
620                 &decode_info_mi,
621                 NULL,
622                 &decode_info_2d,
623                 NULL,
624                 NULL,
625                 NULL,
626                 NULL,
627                 NULL,
628         },
629
630         [VECS0] = {
631                 &decode_info_mi,
632                 NULL,
633                 NULL,
634                 &decode_info_vebox,
635                 NULL,
636                 NULL,
637                 NULL,
638                 NULL,
639         },
640
641         [VCS1] = {
642                 &decode_info_mi,
643                 NULL,
644                 NULL,
645                 &decode_info_mfx_vc,
646                 NULL,
647                 NULL,
648                 NULL,
649                 NULL,
650         },
651 };
652
653 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
654 {
655         const struct decode_info *d_info;
656
657         d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
658         if (d_info == NULL)
659                 return INVALID_OP;
660
661         return cmd >> (32 - d_info->op_len);
662 }
663
664 static inline const struct cmd_info *
665 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
666                const struct intel_engine_cs *engine)
667 {
668         struct cmd_entry *e;
669
670         hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
671                 if (opcode == e->info->opcode &&
672                     e->info->rings & engine->mask)
673                         return e->info;
674         }
675         return NULL;
676 }
677
678 static inline const struct cmd_info *
679 get_cmd_info(struct intel_gvt *gvt, u32 cmd,
680              const struct intel_engine_cs *engine)
681 {
682         u32 opcode;
683
684         opcode = get_opcode(cmd, engine);
685         if (opcode == INVALID_OP)
686                 return NULL;
687
688         return find_cmd_entry(gvt, opcode, engine);
689 }
690
691 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
692 {
693         return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
694 }
695
696 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
697 {
698         const struct decode_info *d_info;
699         int i;
700
701         d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
702         if (d_info == NULL)
703                 return;
704
705         gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
706                         cmd >> (32 - d_info->op_len), d_info->name);
707
708         for (i = 0; i < d_info->nr_sub_op; i++)
709                 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
710                                         d_info->sub_op[i].low));
711
712         pr_err("\n");
713 }
714
715 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
716 {
717         return s->ip_va + (index << 2);
718 }
719
720 static inline u32 cmd_val(struct parser_exec_state *s, int index)
721 {
722         return *cmd_ptr(s, index);
723 }
724
725 static inline bool is_init_ctx(struct parser_exec_state *s)
726 {
727         return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx);
728 }
729
730 static void parser_exec_state_dump(struct parser_exec_state *s)
731 {
732         int cnt = 0;
733         int i;
734
735         gvt_dbg_cmd("  vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
736                     " ring_head(%08lx) ring_tail(%08lx)\n",
737                     s->vgpu->id, s->engine->name,
738                     s->ring_start, s->ring_start + s->ring_size,
739                     s->ring_head, s->ring_tail);
740
741         gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
742                         s->buf_type == RING_BUFFER_INSTRUCTION ?
743                         "RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ?
744                                 "CTX_BUFFER" : "BATCH_BUFFER"),
745                         s->buf_addr_type == GTT_BUFFER ?
746                         "GTT" : "PPGTT", s->ip_gma);
747
748         if (s->ip_va == NULL) {
749                 gvt_dbg_cmd(" ip_va(NULL)");
750                 return;
751         }
752
753         gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
754                         s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
755                         cmd_val(s, 2), cmd_val(s, 3));
756
757         print_opcode(cmd_val(s, 0), s->engine);
758
759         s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
760
761         while (cnt < 1024) {
762                 gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
763                 for (i = 0; i < 8; i++)
764                         gvt_dbg_cmd("%08x ", cmd_val(s, i));
765                 gvt_dbg_cmd("\n");
766
767                 s->ip_va += 8 * sizeof(u32);
768                 cnt += 8;
769         }
770 }
771
772 static inline void update_ip_va(struct parser_exec_state *s)
773 {
774         unsigned long len = 0;
775
776         if (WARN_ON(s->ring_head == s->ring_tail))
777                 return;
778
779         if (s->buf_type == RING_BUFFER_INSTRUCTION ||
780                         s->buf_type == RING_BUFFER_CTX) {
781                 unsigned long ring_top = s->ring_start + s->ring_size;
782
783                 if (s->ring_head > s->ring_tail) {
784                         if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
785                                 len = (s->ip_gma - s->ring_head);
786                         else if (s->ip_gma >= s->ring_start &&
787                                         s->ip_gma <= s->ring_tail)
788                                 len = (ring_top - s->ring_head) +
789                                         (s->ip_gma - s->ring_start);
790                 } else
791                         len = (s->ip_gma - s->ring_head);
792
793                 s->ip_va = s->rb_va + len;
794         } else {/* shadow batch buffer */
795                 s->ip_va = s->ret_bb_va;
796         }
797 }
798
799 static inline int ip_gma_set(struct parser_exec_state *s,
800                 unsigned long ip_gma)
801 {
802         WARN_ON(!IS_ALIGNED(ip_gma, 4));
803
804         s->ip_gma = ip_gma;
805         update_ip_va(s);
806         return 0;
807 }
808
809 static inline int ip_gma_advance(struct parser_exec_state *s,
810                 unsigned int dw_len)
811 {
812         s->ip_gma += (dw_len << 2);
813
814         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
815                 if (s->ip_gma >= s->ring_start + s->ring_size)
816                         s->ip_gma -= s->ring_size;
817                 update_ip_va(s);
818         } else {
819                 s->ip_va += (dw_len << 2);
820         }
821
822         return 0;
823 }
824
825 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
826 {
827         if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
828                 return info->len;
829         else
830                 return (cmd & ((1U << info->len) - 1)) + 2;
831         return 0;
832 }
833
834 static inline int cmd_length(struct parser_exec_state *s)
835 {
836         return get_cmd_length(s->info, cmd_val(s, 0));
837 }
838
839 /* do not remove this, some platform may need clflush here */
840 #define patch_value(s, addr, val) do { \
841         *addr = val; \
842 } while (0)
843
844 static inline bool is_mocs_mmio(unsigned int offset)
845 {
846         return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
847                 ((offset >= 0xb020) && (offset <= 0xb0a0));
848 }
849
850 static int is_cmd_update_pdps(unsigned int offset,
851                               struct parser_exec_state *s)
852 {
853         u32 base = s->workload->engine->mmio_base;
854         return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
855 }
856
857 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
858                                        unsigned int offset, unsigned int index)
859 {
860         struct intel_vgpu *vgpu = s->vgpu;
861         struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
862         struct intel_vgpu_mm *mm;
863         u64 pdps[GEN8_3LVL_PDPES];
864
865         if (shadow_mm->ppgtt_mm.root_entry_type ==
866             GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
867                 pdps[0] = (u64)cmd_val(s, 2) << 32;
868                 pdps[0] |= cmd_val(s, 4);
869
870                 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
871                 if (!mm) {
872                         gvt_vgpu_err("failed to get the 4-level shadow vm\n");
873                         return -EINVAL;
874                 }
875                 intel_vgpu_mm_get(mm);
876                 list_add_tail(&mm->ppgtt_mm.link,
877                               &s->workload->lri_shadow_mm);
878                 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
879                 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
880         } else {
881                 /* Currently all guests use PML4 table and now can't
882                  * have a guest with 3-level table but uses LRI for
883                  * PPGTT update. So this is simply un-testable. */
884                 GEM_BUG_ON(1);
885                 gvt_vgpu_err("invalid shared shadow vm type\n");
886                 return -EINVAL;
887         }
888         return 0;
889 }
890
891 static int cmd_reg_handler(struct parser_exec_state *s,
892         unsigned int offset, unsigned int index, char *cmd)
893 {
894         struct intel_vgpu *vgpu = s->vgpu;
895         struct intel_gvt *gvt = vgpu->gvt;
896         u32 ctx_sr_ctl;
897         u32 *vreg, vreg_old;
898
899         if (offset + 4 > gvt->device_info.mmio_size) {
900                 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
901                                 cmd, offset);
902                 return -EFAULT;
903         }
904
905         if (is_init_ctx(s)) {
906                 struct intel_gvt_mmio_info *mmio_info;
907
908                 intel_gvt_mmio_set_cmd_accessible(gvt, offset);
909                 mmio_info = intel_gvt_find_mmio_info(gvt, offset);
910                 if (mmio_info && mmio_info->write)
911                         intel_gvt_mmio_set_cmd_write_patch(gvt, offset);
912                 return 0;
913         }
914
915         if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
916                 gvt_vgpu_err("%s access to non-render register (%x)\n",
917                                 cmd, offset);
918                 return -EBADRQC;
919         }
920
921         if (!strncmp(cmd, "srm", 3) ||
922                         !strncmp(cmd, "lrm", 3)) {
923                 if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) ||
924                     offset == 0x21f0 ||
925                     (IS_BROADWELL(gvt->gt->i915) &&
926                      offset == i915_mmio_reg_offset(INSTPM)))
927                         return 0;
928                 else {
929                         gvt_vgpu_err("%s access to register (%x)\n",
930                                         cmd, offset);
931                         return -EPERM;
932                 }
933         }
934
935         if (!strncmp(cmd, "lrr-src", 7) ||
936                         !strncmp(cmd, "lrr-dst", 7)) {
937                 if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c)
938                         return 0;
939                 else {
940                         gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset);
941                         return -EPERM;
942                 }
943         }
944
945         if (!strncmp(cmd, "pipe_ctrl", 9)) {
946                 /* TODO: add LRI POST logic here */
947                 return 0;
948         }
949
950         if (strncmp(cmd, "lri", 3))
951                 return -EPERM;
952
953         /* below are all lri handlers */
954         vreg = &vgpu_vreg(s->vgpu, offset);
955
956         if (is_cmd_update_pdps(offset, s) &&
957             cmd_pdp_mmio_update_handler(s, offset, index))
958                 return -EINVAL;
959
960         if (offset == i915_mmio_reg_offset(DERRMR) ||
961                 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
962                 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
963                 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
964         }
965
966         if (is_mocs_mmio(offset))
967                 *vreg = cmd_val(s, index + 1);
968
969         vreg_old = *vreg;
970
971         if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) {
972                 u32 cmdval_new, cmdval;
973                 struct intel_gvt_mmio_info *mmio_info;
974
975                 cmdval = cmd_val(s, index + 1);
976
977                 mmio_info = intel_gvt_find_mmio_info(gvt, offset);
978                 if (!mmio_info) {
979                         cmdval_new = cmdval;
980                 } else {
981                         u64 ro_mask = mmio_info->ro_mask;
982                         int ret;
983
984                         if (likely(!ro_mask))
985                                 ret = mmio_info->write(s->vgpu, offset,
986                                                 &cmdval, 4);
987                         else {
988                                 gvt_vgpu_err("try to write RO reg %x\n",
989                                                 offset);
990                                 ret = -EBADRQC;
991                         }
992                         if (ret)
993                                 return ret;
994                         cmdval_new = *vreg;
995                 }
996                 if (cmdval_new != cmdval)
997                         patch_value(s, cmd_ptr(s, index+1), cmdval_new);
998         }
999
1000         /* only patch cmd. restore vreg value if changed in mmio write handler*/
1001         *vreg = vreg_old;
1002
1003         /* TODO
1004          * In order to let workload with inhibit context to generate
1005          * correct image data into memory, vregs values will be loaded to
1006          * hw via LRIs in the workload with inhibit context. But as
1007          * indirect context is loaded prior to LRIs in workload, we don't
1008          * want reg values specified in indirect context overwritten by
1009          * LRIs in workloads. So, when scanning an indirect context, we
1010          * update reg values in it into vregs, so LRIs in workload with
1011          * inhibit context will restore with correct values
1012          */
1013         if (GRAPHICS_VER(s->engine->i915) == 9 &&
1014             intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
1015             !strncmp(cmd, "lri", 3)) {
1016                 intel_gvt_read_gpa(s->vgpu,
1017                         s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
1018                 /* check inhibit context */
1019                 if (ctx_sr_ctl & 1) {
1020                         u32 data = cmd_val(s, index + 1);
1021
1022                         if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
1023                                 intel_vgpu_mask_mmio_write(vgpu,
1024                                                         offset, &data, 4);
1025                         else
1026                                 vgpu_vreg(vgpu, offset) = data;
1027                 }
1028         }
1029
1030         return 0;
1031 }
1032
1033 #define cmd_reg(s, i) \
1034         (cmd_val(s, i) & GENMASK(22, 2))
1035
1036 #define cmd_reg_inhibit(s, i) \
1037         (cmd_val(s, i) & GENMASK(22, 18))
1038
1039 #define cmd_gma(s, i) \
1040         (cmd_val(s, i) & GENMASK(31, 2))
1041
1042 #define cmd_gma_hi(s, i) \
1043         (cmd_val(s, i) & GENMASK(15, 0))
1044
1045 static int cmd_handler_lri(struct parser_exec_state *s)
1046 {
1047         int i, ret = 0;
1048         int cmd_len = cmd_length(s);
1049
1050         for (i = 1; i < cmd_len; i += 2) {
1051                 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1052                         if (s->engine->id == BCS0 &&
1053                             cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1054                                 ret |= 0;
1055                         else
1056                                 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1057                 }
1058                 if (ret)
1059                         break;
1060                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1061                 if (ret)
1062                         break;
1063         }
1064         return ret;
1065 }
1066
1067 static int cmd_handler_lrr(struct parser_exec_state *s)
1068 {
1069         int i, ret = 0;
1070         int cmd_len = cmd_length(s);
1071
1072         for (i = 1; i < cmd_len; i += 2) {
1073                 if (IS_BROADWELL(s->engine->i915))
1074                         ret |= ((cmd_reg_inhibit(s, i) ||
1075                                  (cmd_reg_inhibit(s, i + 1)))) ?
1076                                 -EBADRQC : 0;
1077                 if (ret)
1078                         break;
1079                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1080                 if (ret)
1081                         break;
1082                 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1083                 if (ret)
1084                         break;
1085         }
1086         return ret;
1087 }
1088
1089 static inline int cmd_address_audit(struct parser_exec_state *s,
1090                 unsigned long guest_gma, int op_size, bool index_mode);
1091
1092 static int cmd_handler_lrm(struct parser_exec_state *s)
1093 {
1094         struct intel_gvt *gvt = s->vgpu->gvt;
1095         int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1096         unsigned long gma;
1097         int i, ret = 0;
1098         int cmd_len = cmd_length(s);
1099
1100         for (i = 1; i < cmd_len;) {
1101                 if (IS_BROADWELL(s->engine->i915))
1102                         ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1103                 if (ret)
1104                         break;
1105                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1106                 if (ret)
1107                         break;
1108                 if (cmd_val(s, 0) & (1 << 22)) {
1109                         gma = cmd_gma(s, i + 1);
1110                         if (gmadr_bytes == 8)
1111                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1112                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1113                         if (ret)
1114                                 break;
1115                 }
1116                 i += gmadr_dw_number(s) + 1;
1117         }
1118         return ret;
1119 }
1120
1121 static int cmd_handler_srm(struct parser_exec_state *s)
1122 {
1123         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1124         unsigned long gma;
1125         int i, ret = 0;
1126         int cmd_len = cmd_length(s);
1127
1128         for (i = 1; i < cmd_len;) {
1129                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1130                 if (ret)
1131                         break;
1132                 if (cmd_val(s, 0) & (1 << 22)) {
1133                         gma = cmd_gma(s, i + 1);
1134                         if (gmadr_bytes == 8)
1135                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1136                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1137                         if (ret)
1138                                 break;
1139                 }
1140                 i += gmadr_dw_number(s) + 1;
1141         }
1142         return ret;
1143 }
1144
1145 struct cmd_interrupt_event {
1146         int pipe_control_notify;
1147         int mi_flush_dw;
1148         int mi_user_interrupt;
1149 };
1150
1151 static const struct cmd_interrupt_event cmd_interrupt_events[] = {
1152         [RCS0] = {
1153                 .pipe_control_notify = RCS_PIPE_CONTROL,
1154                 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1155                 .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1156         },
1157         [BCS0] = {
1158                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1159                 .mi_flush_dw = BCS_MI_FLUSH_DW,
1160                 .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1161         },
1162         [VCS0] = {
1163                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1164                 .mi_flush_dw = VCS_MI_FLUSH_DW,
1165                 .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1166         },
1167         [VCS1] = {
1168                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1169                 .mi_flush_dw = VCS2_MI_FLUSH_DW,
1170                 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1171         },
1172         [VECS0] = {
1173                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1174                 .mi_flush_dw = VECS_MI_FLUSH_DW,
1175                 .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1176         },
1177 };
1178
1179 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1180 {
1181         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1182         unsigned long gma;
1183         bool index_mode = false;
1184         unsigned int post_sync;
1185         int ret = 0;
1186         u32 hws_pga, val;
1187
1188         post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1189
1190         /* LRI post sync */
1191         if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1192                 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1193         /* post sync */
1194         else if (post_sync) {
1195                 if (post_sync == 2)
1196                         ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1197                 else if (post_sync == 3)
1198                         ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1199                 else if (post_sync == 1) {
1200                         /* check ggtt*/
1201                         if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1202                                 gma = cmd_val(s, 2) & GENMASK(31, 3);
1203                                 if (gmadr_bytes == 8)
1204                                         gma |= (cmd_gma_hi(s, 3)) << 32;
1205                                 /* Store Data Index */
1206                                 if (cmd_val(s, 1) & (1 << 21))
1207                                         index_mode = true;
1208                                 ret |= cmd_address_audit(s, gma, sizeof(u64),
1209                                                 index_mode);
1210                                 if (ret)
1211                                         return ret;
1212                                 if (index_mode) {
1213                                         hws_pga = s->vgpu->hws_pga[s->engine->id];
1214                                         gma = hws_pga + gma;
1215                                         patch_value(s, cmd_ptr(s, 2), gma);
1216                                         val = cmd_val(s, 1) & (~(1 << 21));
1217                                         patch_value(s, cmd_ptr(s, 1), val);
1218                                 }
1219                         }
1220                 }
1221         }
1222
1223         if (ret)
1224                 return ret;
1225
1226         if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1227                 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1228                         s->workload->pending_events);
1229         return 0;
1230 }
1231
1232 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1233 {
1234         set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1235                 s->workload->pending_events);
1236         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1237         return 0;
1238 }
1239
1240 static int cmd_advance_default(struct parser_exec_state *s)
1241 {
1242         return ip_gma_advance(s, cmd_length(s));
1243 }
1244
1245 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1246 {
1247         int ret;
1248
1249         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1250                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1251                 ret = ip_gma_set(s, s->ret_ip_gma_bb);
1252                 s->buf_addr_type = s->saved_buf_addr_type;
1253         } else if (s->buf_type == RING_BUFFER_CTX) {
1254                 ret = ip_gma_set(s, s->ring_tail);
1255         } else {
1256                 s->buf_type = RING_BUFFER_INSTRUCTION;
1257                 s->buf_addr_type = GTT_BUFFER;
1258                 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1259                         s->ret_ip_gma_ring -= s->ring_size;
1260                 ret = ip_gma_set(s, s->ret_ip_gma_ring);
1261         }
1262         return ret;
1263 }
1264
1265 struct mi_display_flip_command_info {
1266         int pipe;
1267         int plane;
1268         int event;
1269         i915_reg_t stride_reg;
1270         i915_reg_t ctrl_reg;
1271         i915_reg_t surf_reg;
1272         u64 stride_val;
1273         u64 tile_val;
1274         u64 surf_val;
1275         bool async_flip;
1276 };
1277
1278 struct plane_code_mapping {
1279         int pipe;
1280         int plane;
1281         int event;
1282 };
1283
1284 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1285                 struct mi_display_flip_command_info *info)
1286 {
1287         struct drm_i915_private *dev_priv = s->engine->i915;
1288         struct plane_code_mapping gen8_plane_code[] = {
1289                 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1290                 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1291                 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1292                 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1293                 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1294                 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1295         };
1296         u32 dword0, dword1, dword2;
1297         u32 v;
1298
1299         dword0 = cmd_val(s, 0);
1300         dword1 = cmd_val(s, 1);
1301         dword2 = cmd_val(s, 2);
1302
1303         v = (dword0 & GENMASK(21, 19)) >> 19;
1304         if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1305                 return -EBADRQC;
1306
1307         info->pipe = gen8_plane_code[v].pipe;
1308         info->plane = gen8_plane_code[v].plane;
1309         info->event = gen8_plane_code[v].event;
1310         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1311         info->tile_val = (dword1 & 0x1);
1312         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1313         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1314
1315         if (info->plane == PLANE_A) {
1316                 info->ctrl_reg = DSPCNTR(info->pipe);
1317                 info->stride_reg = DSPSTRIDE(info->pipe);
1318                 info->surf_reg = DSPSURF(info->pipe);
1319         } else if (info->plane == PLANE_B) {
1320                 info->ctrl_reg = SPRCTL(info->pipe);
1321                 info->stride_reg = SPRSTRIDE(info->pipe);
1322                 info->surf_reg = SPRSURF(info->pipe);
1323         } else {
1324                 drm_WARN_ON(&dev_priv->drm, 1);
1325                 return -EBADRQC;
1326         }
1327         return 0;
1328 }
1329
1330 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1331                 struct mi_display_flip_command_info *info)
1332 {
1333         struct drm_i915_private *dev_priv = s->engine->i915;
1334         struct intel_vgpu *vgpu = s->vgpu;
1335         u32 dword0 = cmd_val(s, 0);
1336         u32 dword1 = cmd_val(s, 1);
1337         u32 dword2 = cmd_val(s, 2);
1338         u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1339
1340         info->plane = PRIMARY_PLANE;
1341
1342         switch (plane) {
1343         case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1344                 info->pipe = PIPE_A;
1345                 info->event = PRIMARY_A_FLIP_DONE;
1346                 break;
1347         case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1348                 info->pipe = PIPE_B;
1349                 info->event = PRIMARY_B_FLIP_DONE;
1350                 break;
1351         case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1352                 info->pipe = PIPE_C;
1353                 info->event = PRIMARY_C_FLIP_DONE;
1354                 break;
1355
1356         case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1357                 info->pipe = PIPE_A;
1358                 info->event = SPRITE_A_FLIP_DONE;
1359                 info->plane = SPRITE_PLANE;
1360                 break;
1361         case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1362                 info->pipe = PIPE_B;
1363                 info->event = SPRITE_B_FLIP_DONE;
1364                 info->plane = SPRITE_PLANE;
1365                 break;
1366         case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1367                 info->pipe = PIPE_C;
1368                 info->event = SPRITE_C_FLIP_DONE;
1369                 info->plane = SPRITE_PLANE;
1370                 break;
1371
1372         default:
1373                 gvt_vgpu_err("unknown plane code %d\n", plane);
1374                 return -EBADRQC;
1375         }
1376
1377         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1378         info->tile_val = (dword1 & GENMASK(2, 0));
1379         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1380         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1381
1382         info->ctrl_reg = DSPCNTR(info->pipe);
1383         info->stride_reg = DSPSTRIDE(info->pipe);
1384         info->surf_reg = DSPSURF(info->pipe);
1385
1386         return 0;
1387 }
1388
1389 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1390                 struct mi_display_flip_command_info *info)
1391 {
1392         u32 stride, tile;
1393
1394         if (!info->async_flip)
1395                 return 0;
1396
1397         if (GRAPHICS_VER(s->engine->i915) >= 9) {
1398                 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1399                 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1400                                 GENMASK(12, 10)) >> 10;
1401         } else {
1402                 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1403                                 GENMASK(15, 6)) >> 6;
1404                 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1405         }
1406
1407         if (stride != info->stride_val)
1408                 gvt_dbg_cmd("cannot change stride during async flip\n");
1409
1410         if (tile != info->tile_val)
1411                 gvt_dbg_cmd("cannot change tile during async flip\n");
1412
1413         return 0;
1414 }
1415
1416 static int gen8_update_plane_mmio_from_mi_display_flip(
1417                 struct parser_exec_state *s,
1418                 struct mi_display_flip_command_info *info)
1419 {
1420         struct drm_i915_private *dev_priv = s->engine->i915;
1421         struct intel_vgpu *vgpu = s->vgpu;
1422
1423         set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1424                       info->surf_val << 12);
1425         if (GRAPHICS_VER(dev_priv) >= 9) {
1426                 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1427                               info->stride_val);
1428                 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1429                               info->tile_val << 10);
1430         } else {
1431                 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1432                               info->stride_val << 6);
1433                 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1434                               info->tile_val << 10);
1435         }
1436
1437         if (info->plane == PLANE_PRIMARY)
1438                 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1439
1440         if (info->async_flip)
1441                 intel_vgpu_trigger_virtual_event(vgpu, info->event);
1442         else
1443                 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1444
1445         return 0;
1446 }
1447
1448 static int decode_mi_display_flip(struct parser_exec_state *s,
1449                 struct mi_display_flip_command_info *info)
1450 {
1451         if (IS_BROADWELL(s->engine->i915))
1452                 return gen8_decode_mi_display_flip(s, info);
1453         if (GRAPHICS_VER(s->engine->i915) >= 9)
1454                 return skl_decode_mi_display_flip(s, info);
1455
1456         return -ENODEV;
1457 }
1458
1459 static int check_mi_display_flip(struct parser_exec_state *s,
1460                 struct mi_display_flip_command_info *info)
1461 {
1462         return gen8_check_mi_display_flip(s, info);
1463 }
1464
1465 static int update_plane_mmio_from_mi_display_flip(
1466                 struct parser_exec_state *s,
1467                 struct mi_display_flip_command_info *info)
1468 {
1469         return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1470 }
1471
1472 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1473 {
1474         struct mi_display_flip_command_info info;
1475         struct intel_vgpu *vgpu = s->vgpu;
1476         int ret;
1477         int i;
1478         int len = cmd_length(s);
1479         u32 valid_len = CMD_LEN(1);
1480
1481         /* Flip Type == Stereo 3D Flip */
1482         if (DWORD_FIELD(2, 1, 0) == 2)
1483                 valid_len++;
1484         ret = gvt_check_valid_cmd_length(cmd_length(s),
1485                         valid_len);
1486         if (ret)
1487                 return ret;
1488
1489         ret = decode_mi_display_flip(s, &info);
1490         if (ret) {
1491                 gvt_vgpu_err("fail to decode MI display flip command\n");
1492                 return ret;
1493         }
1494
1495         ret = check_mi_display_flip(s, &info);
1496         if (ret) {
1497                 gvt_vgpu_err("invalid MI display flip command\n");
1498                 return ret;
1499         }
1500
1501         ret = update_plane_mmio_from_mi_display_flip(s, &info);
1502         if (ret) {
1503                 gvt_vgpu_err("fail to update plane mmio\n");
1504                 return ret;
1505         }
1506
1507         for (i = 0; i < len; i++)
1508                 patch_value(s, cmd_ptr(s, i), MI_NOOP);
1509         return 0;
1510 }
1511
1512 static bool is_wait_for_flip_pending(u32 cmd)
1513 {
1514         return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1515                         MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1516                         MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1517                         MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1518                         MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1519                         MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1520 }
1521
1522 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1523 {
1524         u32 cmd = cmd_val(s, 0);
1525
1526         if (!is_wait_for_flip_pending(cmd))
1527                 return 0;
1528
1529         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1530         return 0;
1531 }
1532
1533 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1534 {
1535         unsigned long addr;
1536         unsigned long gma_high, gma_low;
1537         struct intel_vgpu *vgpu = s->vgpu;
1538         int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1539
1540         if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1541                 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1542                 return INTEL_GVT_INVALID_ADDR;
1543         }
1544
1545         gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1546         if (gmadr_bytes == 4) {
1547                 addr = gma_low;
1548         } else {
1549                 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1550                 addr = (((unsigned long)gma_high) << 32) | gma_low;
1551         }
1552         return addr;
1553 }
1554
1555 static inline int cmd_address_audit(struct parser_exec_state *s,
1556                 unsigned long guest_gma, int op_size, bool index_mode)
1557 {
1558         struct intel_vgpu *vgpu = s->vgpu;
1559         u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1560         int i;
1561         int ret;
1562
1563         if (op_size > max_surface_size) {
1564                 gvt_vgpu_err("command address audit fail name %s\n",
1565                         s->info->name);
1566                 return -EFAULT;
1567         }
1568
1569         if (index_mode) {
1570                 if (guest_gma >= I915_GTT_PAGE_SIZE) {
1571                         ret = -EFAULT;
1572                         goto err;
1573                 }
1574         } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1575                 ret = -EFAULT;
1576                 goto err;
1577         }
1578
1579         return 0;
1580
1581 err:
1582         gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1583                         s->info->name, guest_gma, op_size);
1584
1585         pr_err("cmd dump: ");
1586         for (i = 0; i < cmd_length(s); i++) {
1587                 if (!(i % 4))
1588                         pr_err("\n%08x ", cmd_val(s, i));
1589                 else
1590                         pr_err("%08x ", cmd_val(s, i));
1591         }
1592         pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1593                         vgpu->id,
1594                         vgpu_aperture_gmadr_base(vgpu),
1595                         vgpu_aperture_gmadr_end(vgpu),
1596                         vgpu_hidden_gmadr_base(vgpu),
1597                         vgpu_hidden_gmadr_end(vgpu));
1598         return ret;
1599 }
1600
1601 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1602 {
1603         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1604         int op_size = (cmd_length(s) - 3) * sizeof(u32);
1605         int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1606         unsigned long gma, gma_low, gma_high;
1607         u32 valid_len = CMD_LEN(2);
1608         int ret = 0;
1609
1610         /* check ppggt */
1611         if (!(cmd_val(s, 0) & (1 << 22)))
1612                 return 0;
1613
1614         /* check if QWORD */
1615         if (DWORD_FIELD(0, 21, 21))
1616                 valid_len++;
1617         ret = gvt_check_valid_cmd_length(cmd_length(s),
1618                         valid_len);
1619         if (ret)
1620                 return ret;
1621
1622         gma = cmd_val(s, 2) & GENMASK(31, 2);
1623
1624         if (gmadr_bytes == 8) {
1625                 gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1626                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1627                 gma = (gma_high << 32) | gma_low;
1628                 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1629         }
1630         ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1631         return ret;
1632 }
1633
1634 static inline int unexpected_cmd(struct parser_exec_state *s)
1635 {
1636         struct intel_vgpu *vgpu = s->vgpu;
1637
1638         gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1639
1640         return -EBADRQC;
1641 }
1642
1643 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1644 {
1645         return unexpected_cmd(s);
1646 }
1647
1648 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1649 {
1650         return unexpected_cmd(s);
1651 }
1652
1653 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1654 {
1655         return unexpected_cmd(s);
1656 }
1657
1658 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1659 {
1660         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1661         int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1662                         sizeof(u32);
1663         unsigned long gma, gma_high;
1664         u32 valid_len = CMD_LEN(1);
1665         int ret = 0;
1666
1667         if (!(cmd_val(s, 0) & (1 << 22)))
1668                 return ret;
1669
1670         /* check inline data */
1671         if (cmd_val(s, 0) & BIT(18))
1672                 valid_len = CMD_LEN(9);
1673         ret = gvt_check_valid_cmd_length(cmd_length(s),
1674                         valid_len);
1675         if (ret)
1676                 return ret;
1677
1678         gma = cmd_val(s, 1) & GENMASK(31, 2);
1679         if (gmadr_bytes == 8) {
1680                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1681                 gma = (gma_high << 32) | gma;
1682         }
1683         ret = cmd_address_audit(s, gma, op_size, false);
1684         return ret;
1685 }
1686
1687 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1688 {
1689         return unexpected_cmd(s);
1690 }
1691
1692 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1693 {
1694         return unexpected_cmd(s);
1695 }
1696
1697 static int cmd_handler_mi_conditional_batch_buffer_end(
1698                 struct parser_exec_state *s)
1699 {
1700         return unexpected_cmd(s);
1701 }
1702
1703 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1704 {
1705         return unexpected_cmd(s);
1706 }
1707
1708 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1709 {
1710         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1711         unsigned long gma;
1712         bool index_mode = false;
1713         int ret = 0;
1714         u32 hws_pga, val;
1715         u32 valid_len = CMD_LEN(2);
1716
1717         ret = gvt_check_valid_cmd_length(cmd_length(s),
1718                         valid_len);
1719         if (ret) {
1720                 /* Check again for Qword */
1721                 ret = gvt_check_valid_cmd_length(cmd_length(s),
1722                         ++valid_len);
1723                 return ret;
1724         }
1725
1726         /* Check post-sync and ppgtt bit */
1727         if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1728                 gma = cmd_val(s, 1) & GENMASK(31, 3);
1729                 if (gmadr_bytes == 8)
1730                         gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1731                 /* Store Data Index */
1732                 if (cmd_val(s, 0) & (1 << 21))
1733                         index_mode = true;
1734                 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1735                 if (ret)
1736                         return ret;
1737                 if (index_mode) {
1738                         hws_pga = s->vgpu->hws_pga[s->engine->id];
1739                         gma = hws_pga + gma;
1740                         patch_value(s, cmd_ptr(s, 1), gma);
1741                         val = cmd_val(s, 0) & (~(1 << 21));
1742                         patch_value(s, cmd_ptr(s, 0), val);
1743                 }
1744         }
1745         /* Check notify bit */
1746         if ((cmd_val(s, 0) & (1 << 8)))
1747                 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1748                         s->workload->pending_events);
1749         return ret;
1750 }
1751
1752 static void addr_type_update_snb(struct parser_exec_state *s)
1753 {
1754         if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1755                         (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1756                 s->buf_addr_type = PPGTT_BUFFER;
1757         }
1758 }
1759
1760
1761 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1762                 unsigned long gma, unsigned long end_gma, void *va)
1763 {
1764         unsigned long copy_len, offset;
1765         unsigned long len = 0;
1766         unsigned long gpa;
1767
1768         while (gma != end_gma) {
1769                 gpa = intel_vgpu_gma_to_gpa(mm, gma);
1770                 if (gpa == INTEL_GVT_INVALID_ADDR) {
1771                         gvt_vgpu_err("invalid gma address: %lx\n", gma);
1772                         return -EFAULT;
1773                 }
1774
1775                 offset = gma & (I915_GTT_PAGE_SIZE - 1);
1776
1777                 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1778                         I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1779
1780                 intel_gvt_read_gpa(vgpu, gpa, va + len, copy_len);
1781
1782                 len += copy_len;
1783                 gma += copy_len;
1784         }
1785         return len;
1786 }
1787
1788
1789 /*
1790  * Check whether a batch buffer needs to be scanned. Currently
1791  * the only criteria is based on privilege.
1792  */
1793 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1794 {
1795         /* Decide privilege based on address space */
1796         if (cmd_val(s, 0) & BIT(8) &&
1797             !(s->vgpu->scan_nonprivbb & s->engine->mask))
1798                 return 0;
1799
1800         return 1;
1801 }
1802
1803 static const char *repr_addr_type(unsigned int type)
1804 {
1805         return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1806 }
1807
1808 static int find_bb_size(struct parser_exec_state *s,
1809                         unsigned long *bb_size,
1810                         unsigned long *bb_end_cmd_offset)
1811 {
1812         unsigned long gma = 0;
1813         const struct cmd_info *info;
1814         u32 cmd_len = 0;
1815         bool bb_end = false;
1816         struct intel_vgpu *vgpu = s->vgpu;
1817         u32 cmd;
1818         struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1819                 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1820
1821         *bb_size = 0;
1822         *bb_end_cmd_offset = 0;
1823
1824         /* get the start gm address of the batch buffer */
1825         gma = get_gma_bb_from_cmd(s, 1);
1826         if (gma == INTEL_GVT_INVALID_ADDR)
1827                 return -EFAULT;
1828
1829         cmd = cmd_val(s, 0);
1830         info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1831         if (info == NULL) {
1832                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1833                              cmd, get_opcode(cmd, s->engine),
1834                              repr_addr_type(s->buf_addr_type),
1835                              s->engine->name, s->workload);
1836                 return -EBADRQC;
1837         }
1838         do {
1839                 if (copy_gma_to_hva(s->vgpu, mm,
1840                                     gma, gma + 4, &cmd) < 0)
1841                         return -EFAULT;
1842                 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1843                 if (info == NULL) {
1844                         gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1845                                      cmd, get_opcode(cmd, s->engine),
1846                                      repr_addr_type(s->buf_addr_type),
1847                                      s->engine->name, s->workload);
1848                         return -EBADRQC;
1849                 }
1850
1851                 if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1852                         bb_end = true;
1853                 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1854                         if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1855                                 /* chained batch buffer */
1856                                 bb_end = true;
1857                 }
1858
1859                 if (bb_end)
1860                         *bb_end_cmd_offset = *bb_size;
1861
1862                 cmd_len = get_cmd_length(info, cmd) << 2;
1863                 *bb_size += cmd_len;
1864                 gma += cmd_len;
1865         } while (!bb_end);
1866
1867         return 0;
1868 }
1869
1870 static int audit_bb_end(struct parser_exec_state *s, void *va)
1871 {
1872         struct intel_vgpu *vgpu = s->vgpu;
1873         u32 cmd = *(u32 *)va;
1874         const struct cmd_info *info;
1875
1876         info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1877         if (info == NULL) {
1878                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1879                              cmd, get_opcode(cmd, s->engine),
1880                              repr_addr_type(s->buf_addr_type),
1881                              s->engine->name, s->workload);
1882                 return -EBADRQC;
1883         }
1884
1885         if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1886             ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1887              (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1888                 return 0;
1889
1890         return -EBADRQC;
1891 }
1892
1893 static int perform_bb_shadow(struct parser_exec_state *s)
1894 {
1895         struct intel_vgpu *vgpu = s->vgpu;
1896         struct intel_vgpu_shadow_bb *bb;
1897         unsigned long gma = 0;
1898         unsigned long bb_size;
1899         unsigned long bb_end_cmd_offset;
1900         int ret = 0;
1901         struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1902                 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1903         unsigned long start_offset = 0;
1904
1905         /* get the start gm address of the batch buffer */
1906         gma = get_gma_bb_from_cmd(s, 1);
1907         if (gma == INTEL_GVT_INVALID_ADDR)
1908                 return -EFAULT;
1909
1910         ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1911         if (ret)
1912                 return ret;
1913
1914         bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1915         if (!bb)
1916                 return -ENOMEM;
1917
1918         bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1919
1920         /* the start_offset stores the batch buffer's start gma's
1921          * offset relative to page boundary. so for non-privileged batch
1922          * buffer, the shadowed gem object holds exactly the same page
1923          * layout as original gem object. This is for the convience of
1924          * replacing the whole non-privilged batch buffer page to this
1925          * shadowed one in PPGTT at the same gma address. (this replacing
1926          * action is not implemented yet now, but may be necessary in
1927          * future).
1928          * for prileged batch buffer, we just change start gma address to
1929          * that of shadowed page.
1930          */
1931         if (bb->ppgtt)
1932                 start_offset = gma & ~I915_GTT_PAGE_MASK;
1933
1934         bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1935                                                round_up(bb_size + start_offset,
1936                                                         PAGE_SIZE));
1937         if (IS_ERR(bb->obj)) {
1938                 ret = PTR_ERR(bb->obj);
1939                 goto err_free_bb;
1940         }
1941
1942         bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1943         if (IS_ERR(bb->va)) {
1944                 ret = PTR_ERR(bb->va);
1945                 goto err_free_obj;
1946         }
1947
1948         ret = copy_gma_to_hva(s->vgpu, mm,
1949                               gma, gma + bb_size,
1950                               bb->va + start_offset);
1951         if (ret < 0) {
1952                 gvt_vgpu_err("fail to copy guest ring buffer\n");
1953                 ret = -EFAULT;
1954                 goto err_unmap;
1955         }
1956
1957         ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1958         if (ret)
1959                 goto err_unmap;
1960
1961         i915_gem_object_unlock(bb->obj);
1962         INIT_LIST_HEAD(&bb->list);
1963         list_add(&bb->list, &s->workload->shadow_bb);
1964
1965         bb->bb_start_cmd_va = s->ip_va;
1966
1967         if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1968                 bb->bb_offset = s->ip_va - s->rb_va;
1969         else
1970                 bb->bb_offset = 0;
1971
1972         /*
1973          * ip_va saves the virtual address of the shadow batch buffer, while
1974          * ip_gma saves the graphics address of the original batch buffer.
1975          * As the shadow batch buffer is just a copy from the originial one,
1976          * it should be right to use shadow batch buffer'va and original batch
1977          * buffer's gma in pair. After all, we don't want to pin the shadow
1978          * buffer here (too early).
1979          */
1980         s->ip_va = bb->va + start_offset;
1981         s->ip_gma = gma;
1982         return 0;
1983 err_unmap:
1984         i915_gem_object_unpin_map(bb->obj);
1985 err_free_obj:
1986         i915_gem_object_put(bb->obj);
1987 err_free_bb:
1988         kfree(bb);
1989         return ret;
1990 }
1991
1992 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1993 {
1994         bool second_level;
1995         int ret = 0;
1996         struct intel_vgpu *vgpu = s->vgpu;
1997
1998         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1999                 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
2000                 return -EFAULT;
2001         }
2002
2003         second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
2004         if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
2005                 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
2006                 return -EFAULT;
2007         }
2008
2009         s->saved_buf_addr_type = s->buf_addr_type;
2010         addr_type_update_snb(s);
2011         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2012                 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
2013                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
2014         } else if (second_level) {
2015                 s->buf_type = BATCH_BUFFER_2ND_LEVEL;
2016                 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
2017                 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
2018         }
2019
2020         if (batch_buffer_needs_scan(s)) {
2021                 ret = perform_bb_shadow(s);
2022                 if (ret < 0)
2023                         gvt_vgpu_err("invalid shadow batch buffer\n");
2024         } else {
2025                 /* emulate a batch buffer end to do return right */
2026                 ret = cmd_handler_mi_batch_buffer_end(s);
2027                 if (ret < 0)
2028                         return ret;
2029         }
2030         return ret;
2031 }
2032
2033 static int mi_noop_index;
2034
2035 static const struct cmd_info cmd_info[] = {
2036         {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2037
2038         {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2039                 0, 1, NULL},
2040
2041         {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2042                 0, 1, cmd_handler_mi_user_interrupt},
2043
2044         {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2045                 D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2046
2047         {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2048
2049         {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2050                 NULL},
2051
2052         {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2053                 NULL},
2054
2055         {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2056                 NULL},
2057
2058         {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2059                 NULL},
2060
2061         {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2062                 D_ALL, 0, 1, NULL},
2063
2064         {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2065                 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2066                 cmd_handler_mi_batch_buffer_end},
2067
2068         {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2069                 0, 1, NULL},
2070
2071         {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2072                 NULL},
2073
2074         {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2075                 D_ALL, 0, 1, NULL},
2076
2077         {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2078                 NULL},
2079
2080         {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2081                 NULL},
2082
2083         {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2084                 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2085
2086         {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2087                 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2088
2089         {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2090
2091         {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2092                 D_ALL, 0, 8, NULL, CMD_LEN(0)},
2093
2094         {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2095                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2096                 NULL, CMD_LEN(0)},
2097
2098         {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2099                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2100                 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2101
2102         {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2103                 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2104
2105         {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2106                 0, 8, cmd_handler_mi_store_data_index},
2107
2108         {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2109                 D_ALL, 0, 8, cmd_handler_lri},
2110
2111         {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2112                 cmd_handler_mi_update_gtt},
2113
2114         {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2115                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2116                 cmd_handler_srm, CMD_LEN(2)},
2117
2118         {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2119                 cmd_handler_mi_flush_dw},
2120
2121         {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2122                 10, cmd_handler_mi_clflush},
2123
2124         {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2125                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2126                 cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2127
2128         {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2129                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2130                 cmd_handler_lrm, CMD_LEN(2)},
2131
2132         {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2133                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2134                 cmd_handler_lrr, CMD_LEN(1)},
2135
2136         {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2137                 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2138                 8, NULL, CMD_LEN(2)},
2139
2140         {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2141                 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2142
2143         {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2144                 ADDR_FIX_1(2), 8, NULL},
2145
2146         {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2147                 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2148
2149         {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2150                 8, cmd_handler_mi_op_2f},
2151
2152         {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2153                 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2154                 cmd_handler_mi_batch_buffer_start},
2155
2156         {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2157                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2158                 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2159
2160         {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2161                 R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2162
2163         {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2164                 ADDR_FIX_2(4, 7), 8, NULL},
2165
2166         {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2167                 0, 8, NULL},
2168
2169         {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2170                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2171
2172         {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2173
2174         {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2175                 0, 8, NULL},
2176
2177         {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2178                 ADDR_FIX_1(3), 8, NULL},
2179
2180         {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2181                 D_ALL, 0, 8, NULL},
2182
2183         {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2184                 ADDR_FIX_1(4), 8, NULL},
2185
2186         {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2187                 ADDR_FIX_2(4, 5), 8, NULL},
2188
2189         {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2190                 ADDR_FIX_1(4), 8, NULL},
2191
2192         {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2193                 ADDR_FIX_2(4, 7), 8, NULL},
2194
2195         {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2196                 D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2197
2198         {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2199
2200         {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2201                 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2202
2203         {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2204                 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2205
2206         {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2207                 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2208                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2209
2210         {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2211                 D_ALL, ADDR_FIX_1(4), 8, NULL},
2212
2213         {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2214                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2215
2216         {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2217                 D_ALL, ADDR_FIX_1(4), 8, NULL},
2218
2219         {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2220                 D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2221
2222         {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2223                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2224
2225         {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2226                 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2227                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2228
2229         {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2230                 ADDR_FIX_2(4, 5), 8, NULL},
2231
2232         {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2233                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2234
2235         {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2236                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2237                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2238
2239         {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2240                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2241                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2242
2243         {"3DSTATE_BLEND_STATE_POINTERS",
2244                 OP_3DSTATE_BLEND_STATE_POINTERS,
2245                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2246
2247         {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2248                 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2249                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2250
2251         {"3DSTATE_BINDING_TABLE_POINTERS_VS",
2252                 OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2253                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2254
2255         {"3DSTATE_BINDING_TABLE_POINTERS_HS",
2256                 OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2257                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2258
2259         {"3DSTATE_BINDING_TABLE_POINTERS_DS",
2260                 OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2261                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2262
2263         {"3DSTATE_BINDING_TABLE_POINTERS_GS",
2264                 OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2265                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2266
2267         {"3DSTATE_BINDING_TABLE_POINTERS_PS",
2268                 OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2269                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2270
2271         {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2272                 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2273                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2274
2275         {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2276                 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2277                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2278
2279         {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2280                 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2281                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2282
2283         {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2284                 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2285                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2286
2287         {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2288                 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2289                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2290
2291         {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2292                 0, 8, NULL},
2293
2294         {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2295                 0, 8, NULL},
2296
2297         {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2298                 0, 8, NULL},
2299
2300         {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2301                 0, 8, NULL},
2302
2303         {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2304                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2305
2306         {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2307                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2308
2309         {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2310                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2311
2312         {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2313                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2314
2315         {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2316                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2317
2318         {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2319                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2320
2321         {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2322                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2323
2324         {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2325                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2326
2327         {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2328                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2329
2330         {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2331                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2332
2333         {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2334                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2335
2336         {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2337                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2338
2339         {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2340                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2341
2342         {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2343                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2344
2345         {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2346                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2347
2348         {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2349                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2350
2351         {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2352                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2353
2354         {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2355                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2356
2357         {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2358                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2359
2360         {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2361                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2362
2363         {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2364                 D_BDW_PLUS, 0, 8, NULL},
2365
2366         {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2367                 NULL},
2368
2369         {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2370                 D_BDW_PLUS, 0, 8, NULL},
2371
2372         {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2373                 D_BDW_PLUS, 0, 8, NULL},
2374
2375         {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2376                 8, NULL},
2377
2378         {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2379                 R_RCS, D_BDW_PLUS, 0, 8, NULL},
2380
2381         {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2382                 8, NULL},
2383
2384         {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2385                 NULL},
2386
2387         {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2388                 NULL},
2389
2390         {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2391                 NULL},
2392
2393         {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2394                 D_BDW_PLUS, 0, 8, NULL},
2395
2396         {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2397                 R_RCS, D_ALL, 0, 8, NULL},
2398
2399         {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2400                 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2401
2402         {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2403                 R_RCS, D_ALL, 0, 1, NULL},
2404
2405         {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2406
2407         {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2408                 R_RCS, D_ALL, 0, 8, NULL},
2409
2410         {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2411                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2412
2413         {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2414
2415         {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2416
2417         {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2418
2419         {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2420                 D_BDW_PLUS, 0, 8, NULL},
2421
2422         {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2423                 D_BDW_PLUS, 0, 8, NULL},
2424
2425         {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2426                 D_ALL, 0, 8, NULL},
2427
2428         {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2429                 D_BDW_PLUS, 0, 8, NULL},
2430
2431         {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2432                 D_BDW_PLUS, 0, 8, NULL},
2433
2434         {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2435
2436         {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2437
2438         {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2439
2440         {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2441                 D_ALL, 0, 8, NULL},
2442
2443         {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2444
2445         {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2446
2447         {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2448                 R_RCS, D_ALL, 0, 8, NULL},
2449
2450         {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2451                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2452
2453         {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2454                 0, 8, NULL},
2455
2456         {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2457                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2458
2459         {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2460                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2461
2462         {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2463                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2464
2465         {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2466                 D_ALL, 0, 8, NULL},
2467
2468         {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2469                 D_ALL, 0, 8, NULL},
2470
2471         {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2472                 D_ALL, 0, 8, NULL},
2473
2474         {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2475                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2476
2477         {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2478                 D_BDW_PLUS, 0, 8, NULL},
2479
2480         {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2481                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2482
2483         {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2484                 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2485
2486         {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2487                 R_RCS, D_ALL, 0, 8, NULL},
2488
2489         {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2490                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2491
2492         {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2493                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2494
2495         {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2496                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2497
2498         {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2499                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2500
2501         {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2502                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2503
2504         {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2505                 R_RCS, D_ALL, 0, 8, NULL},
2506
2507         {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2508                 D_ALL, 0, 9, NULL},
2509
2510         {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2511                 ADDR_FIX_2(2, 4), 8, NULL},
2512
2513         {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2514                 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2515                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2516
2517         {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2518                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2519
2520         {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2521                 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2522                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2523
2524         {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2525                 D_BDW_PLUS, 0, 8, NULL},
2526
2527         {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2528                 ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2529
2530         {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2531
2532         {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2533                 1, NULL},
2534
2535         {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2536                 ADDR_FIX_1(1), 8, NULL},
2537
2538         {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2539
2540         {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2541                 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2542
2543         {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2544                 ADDR_FIX_1(1), 8, NULL},
2545
2546         {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2547                 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2548
2549         {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2550
2551         {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2552
2553         {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2554                 0, 8, NULL},
2555
2556         {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2557                 D_SKL_PLUS, 0, 8, NULL},
2558
2559         {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2560                 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2561
2562         {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2563                 0, 16, NULL},
2564
2565         {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2566                 0, 16, NULL},
2567
2568         {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2569                 0, 16, NULL},
2570
2571         {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2572
2573         {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2574                 0, 16, NULL},
2575
2576         {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2577                 0, 16, NULL},
2578
2579         {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2580                 0, 16, NULL},
2581
2582         {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2583                 0, 8, NULL},
2584
2585         {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2586                 NULL},
2587
2588         {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2589                 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2590
2591         {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2592                 R_VCS, D_ALL, 0, 12, NULL},
2593
2594         {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2595                 R_VCS, D_ALL, 0, 12, NULL},
2596
2597         {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2598                 R_VCS, D_BDW_PLUS, 0, 12, NULL},
2599
2600         {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2601                 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2602
2603         {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2604                 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2605
2606         {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2607
2608         {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2609                 R_VCS, D_ALL, 0, 12, NULL},
2610
2611         {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2612                 R_VCS, D_ALL, 0, 12, NULL},
2613
2614         {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2615                 R_VCS, D_ALL, 0, 12, NULL},
2616
2617         {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2618                 R_VCS, D_ALL, 0, 12, NULL},
2619
2620         {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2621                 R_VCS, D_ALL, 0, 12, NULL},
2622
2623         {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2624                 R_VCS, D_ALL, 0, 12, NULL},
2625
2626         {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2627                 R_VCS, D_ALL, 0, 6, NULL},
2628
2629         {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2630                 R_VCS, D_ALL, 0, 12, NULL},
2631
2632         {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2633                 R_VCS, D_ALL, 0, 12, NULL},
2634
2635         {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2636                 R_VCS, D_ALL, 0, 12, NULL},
2637
2638         {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2639                 R_VCS, D_ALL, 0, 12, NULL},
2640
2641         {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2642                 R_VCS, D_ALL, 0, 12, NULL},
2643
2644         {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2645                 R_VCS, D_ALL, 0, 12, NULL},
2646
2647         {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2648                 R_VCS, D_ALL, 0, 12, NULL},
2649         {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2650                 R_VCS, D_ALL, 0, 12, NULL},
2651
2652         {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2653                 R_VCS, D_ALL, 0, 12, NULL},
2654
2655         {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2656                 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2657
2658         {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2659                 R_VCS, D_ALL, 0, 12, NULL},
2660
2661         {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2662                 R_VCS, D_ALL, 0, 12, NULL},
2663
2664         {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2665                 R_VCS, D_ALL, 0, 12, NULL},
2666
2667         {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2668                 R_VCS, D_ALL, 0, 12, NULL},
2669
2670         {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2671                 R_VCS, D_ALL, 0, 12, NULL},
2672
2673         {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2674                 R_VCS, D_ALL, 0, 12, NULL},
2675
2676         {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2677                 R_VCS, D_ALL, 0, 12, NULL},
2678
2679         {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2680                 R_VCS, D_ALL, 0, 12, NULL},
2681
2682         {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2683                 R_VCS, D_ALL, 0, 12, NULL},
2684
2685         {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2686                 R_VCS, D_ALL, 0, 12, NULL},
2687
2688         {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2689                 R_VCS, D_ALL, 0, 12, NULL},
2690
2691         {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2692                 0, 16, NULL},
2693
2694         {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2695
2696         {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2697
2698         {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2699                 R_VCS, D_ALL, 0, 12, NULL},
2700
2701         {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2702                 R_VCS, D_ALL, 0, 12, NULL},
2703
2704         {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2705                 R_VCS, D_ALL, 0, 12, NULL},
2706
2707         {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2708
2709         {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2710                 0, 12, NULL},
2711
2712         {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2713                 0, 12, NULL},
2714 };
2715
2716 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2717 {
2718         hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2719 }
2720
2721 /* call the cmd handler, and advance ip */
2722 static int cmd_parser_exec(struct parser_exec_state *s)
2723 {
2724         struct intel_vgpu *vgpu = s->vgpu;
2725         const struct cmd_info *info;
2726         u32 cmd;
2727         int ret = 0;
2728
2729         cmd = cmd_val(s, 0);
2730
2731         /* fastpath for MI_NOOP */
2732         if (cmd == MI_NOOP)
2733                 info = &cmd_info[mi_noop_index];
2734         else
2735                 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2736
2737         if (info == NULL) {
2738                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2739                              cmd, get_opcode(cmd, s->engine),
2740                              repr_addr_type(s->buf_addr_type),
2741                              s->engine->name, s->workload);
2742                 return -EBADRQC;
2743         }
2744
2745         s->info = info;
2746
2747         trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2748                           cmd_length(s), s->buf_type, s->buf_addr_type,
2749                           s->workload, info->name);
2750
2751         if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2752                 ret = gvt_check_valid_cmd_length(cmd_length(s),
2753                                                  info->valid_len);
2754                 if (ret)
2755                         return ret;
2756         }
2757
2758         if (info->handler) {
2759                 ret = info->handler(s);
2760                 if (ret < 0) {
2761                         gvt_vgpu_err("%s handler error\n", info->name);
2762                         return ret;
2763                 }
2764         }
2765
2766         if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2767                 ret = cmd_advance_default(s);
2768                 if (ret) {
2769                         gvt_vgpu_err("%s IP advance error\n", info->name);
2770                         return ret;
2771                 }
2772         }
2773         return 0;
2774 }
2775
2776 static inline bool gma_out_of_range(unsigned long gma,
2777                 unsigned long gma_head, unsigned int gma_tail)
2778 {
2779         if (gma_tail >= gma_head)
2780                 return (gma < gma_head) || (gma > gma_tail);
2781         else
2782                 return (gma > gma_tail) && (gma < gma_head);
2783 }
2784
2785 /* Keep the consistent return type, e.g EBADRQC for unknown
2786  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2787  * works as the input of VM healthy status.
2788  */
2789 static int command_scan(struct parser_exec_state *s,
2790                 unsigned long rb_head, unsigned long rb_tail,
2791                 unsigned long rb_start, unsigned long rb_len)
2792 {
2793
2794         unsigned long gma_head, gma_tail, gma_bottom;
2795         int ret = 0;
2796         struct intel_vgpu *vgpu = s->vgpu;
2797
2798         gma_head = rb_start + rb_head;
2799         gma_tail = rb_start + rb_tail;
2800         gma_bottom = rb_start +  rb_len;
2801
2802         while (s->ip_gma != gma_tail) {
2803                 if (s->buf_type == RING_BUFFER_INSTRUCTION ||
2804                                 s->buf_type == RING_BUFFER_CTX) {
2805                         if (!(s->ip_gma >= rb_start) ||
2806                                 !(s->ip_gma < gma_bottom)) {
2807                                 gvt_vgpu_err("ip_gma %lx out of ring scope."
2808                                         "(base:0x%lx, bottom: 0x%lx)\n",
2809                                         s->ip_gma, rb_start,
2810                                         gma_bottom);
2811                                 parser_exec_state_dump(s);
2812                                 return -EFAULT;
2813                         }
2814                         if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2815                                 gvt_vgpu_err("ip_gma %lx out of range."
2816                                         "base 0x%lx head 0x%lx tail 0x%lx\n",
2817                                         s->ip_gma, rb_start,
2818                                         rb_head, rb_tail);
2819                                 parser_exec_state_dump(s);
2820                                 break;
2821                         }
2822                 }
2823                 ret = cmd_parser_exec(s);
2824                 if (ret) {
2825                         gvt_vgpu_err("cmd parser error\n");
2826                         parser_exec_state_dump(s);
2827                         break;
2828                 }
2829         }
2830
2831         return ret;
2832 }
2833
2834 static int scan_workload(struct intel_vgpu_workload *workload)
2835 {
2836         unsigned long gma_head, gma_tail;
2837         struct parser_exec_state s;
2838         int ret = 0;
2839
2840         /* ring base is page aligned */
2841         if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2842                 return -EINVAL;
2843
2844         gma_head = workload->rb_start + workload->rb_head;
2845         gma_tail = workload->rb_start + workload->rb_tail;
2846
2847         s.buf_type = RING_BUFFER_INSTRUCTION;
2848         s.buf_addr_type = GTT_BUFFER;
2849         s.vgpu = workload->vgpu;
2850         s.engine = workload->engine;
2851         s.ring_start = workload->rb_start;
2852         s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2853         s.ring_head = gma_head;
2854         s.ring_tail = gma_tail;
2855         s.rb_va = workload->shadow_ring_buffer_va;
2856         s.workload = workload;
2857         s.is_ctx_wa = false;
2858
2859         if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2860                 return 0;
2861
2862         ret = ip_gma_set(&s, gma_head);
2863         if (ret)
2864                 goto out;
2865
2866         ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2867                 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2868
2869 out:
2870         return ret;
2871 }
2872
2873 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2874 {
2875
2876         unsigned long gma_head, gma_tail, ring_size, ring_tail;
2877         struct parser_exec_state s;
2878         int ret = 0;
2879         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2880                                 struct intel_vgpu_workload,
2881                                 wa_ctx);
2882
2883         /* ring base is page aligned */
2884         if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2885                                         I915_GTT_PAGE_SIZE)))
2886                 return -EINVAL;
2887
2888         ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2889         ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2890                         PAGE_SIZE);
2891         gma_head = wa_ctx->indirect_ctx.guest_gma;
2892         gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2893
2894         s.buf_type = RING_BUFFER_INSTRUCTION;
2895         s.buf_addr_type = GTT_BUFFER;
2896         s.vgpu = workload->vgpu;
2897         s.engine = workload->engine;
2898         s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2899         s.ring_size = ring_size;
2900         s.ring_head = gma_head;
2901         s.ring_tail = gma_tail;
2902         s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2903         s.workload = workload;
2904         s.is_ctx_wa = true;
2905
2906         ret = ip_gma_set(&s, gma_head);
2907         if (ret)
2908                 goto out;
2909
2910         ret = command_scan(&s, 0, ring_tail,
2911                 wa_ctx->indirect_ctx.guest_gma, ring_size);
2912 out:
2913         return ret;
2914 }
2915
2916 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2917 {
2918         struct intel_vgpu *vgpu = workload->vgpu;
2919         struct intel_vgpu_submission *s = &vgpu->submission;
2920         unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2921         void *shadow_ring_buffer_va;
2922         int ret;
2923
2924         guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2925
2926         /* calculate workload ring buffer size */
2927         workload->rb_len = (workload->rb_tail + guest_rb_size -
2928                         workload->rb_head) % guest_rb_size;
2929
2930         gma_head = workload->rb_start + workload->rb_head;
2931         gma_tail = workload->rb_start + workload->rb_tail;
2932         gma_top = workload->rb_start + guest_rb_size;
2933
2934         if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2935                 void *p;
2936
2937                 /* realloc the new ring buffer if needed */
2938                 p = krealloc(s->ring_scan_buffer[workload->engine->id],
2939                              workload->rb_len, GFP_KERNEL);
2940                 if (!p) {
2941                         gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2942                         return -ENOMEM;
2943                 }
2944                 s->ring_scan_buffer[workload->engine->id] = p;
2945                 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2946         }
2947
2948         shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2949
2950         /* get shadow ring buffer va */
2951         workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2952
2953         /* head > tail --> copy head <-> top */
2954         if (gma_head > gma_tail) {
2955                 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2956                                       gma_head, gma_top, shadow_ring_buffer_va);
2957                 if (ret < 0) {
2958                         gvt_vgpu_err("fail to copy guest ring buffer\n");
2959                         return ret;
2960                 }
2961                 shadow_ring_buffer_va += ret;
2962                 gma_head = workload->rb_start;
2963         }
2964
2965         /* copy head or start <-> tail */
2966         ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2967                                 shadow_ring_buffer_va);
2968         if (ret < 0) {
2969                 gvt_vgpu_err("fail to copy guest ring buffer\n");
2970                 return ret;
2971         }
2972         return 0;
2973 }
2974
2975 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2976 {
2977         int ret;
2978         struct intel_vgpu *vgpu = workload->vgpu;
2979
2980         ret = shadow_workload_ring_buffer(workload);
2981         if (ret) {
2982                 gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2983                 return ret;
2984         }
2985
2986         ret = scan_workload(workload);
2987         if (ret) {
2988                 gvt_vgpu_err("scan workload error\n");
2989                 return ret;
2990         }
2991         return 0;
2992 }
2993
2994 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2995 {
2996         int ctx_size = wa_ctx->indirect_ctx.size;
2997         unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2998         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2999                                         struct intel_vgpu_workload,
3000                                         wa_ctx);
3001         struct intel_vgpu *vgpu = workload->vgpu;
3002         struct drm_i915_gem_object *obj;
3003         int ret = 0;
3004         void *map;
3005
3006         obj = i915_gem_object_create_shmem(workload->engine->i915,
3007                                            roundup(ctx_size + CACHELINE_BYTES,
3008                                                    PAGE_SIZE));
3009         if (IS_ERR(obj))
3010                 return PTR_ERR(obj);
3011
3012         /* get the va of the shadow batch buffer */
3013         map = i915_gem_object_pin_map(obj, I915_MAP_WB);
3014         if (IS_ERR(map)) {
3015                 gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
3016                 ret = PTR_ERR(map);
3017                 goto put_obj;
3018         }
3019
3020         i915_gem_object_lock(obj, NULL);
3021         ret = i915_gem_object_set_to_cpu_domain(obj, false);
3022         i915_gem_object_unlock(obj);
3023         if (ret) {
3024                 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
3025                 goto unmap_src;
3026         }
3027
3028         ret = copy_gma_to_hva(workload->vgpu,
3029                                 workload->vgpu->gtt.ggtt_mm,
3030                                 guest_gma, guest_gma + ctx_size,
3031                                 map);
3032         if (ret < 0) {
3033                 gvt_vgpu_err("fail to copy guest indirect ctx\n");
3034                 goto unmap_src;
3035         }
3036
3037         wa_ctx->indirect_ctx.obj = obj;
3038         wa_ctx->indirect_ctx.shadow_va = map;
3039         return 0;
3040
3041 unmap_src:
3042         i915_gem_object_unpin_map(obj);
3043 put_obj:
3044         i915_gem_object_put(obj);
3045         return ret;
3046 }
3047
3048 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3049 {
3050         u32 per_ctx_start[CACHELINE_DWORDS] = {0};
3051         unsigned char *bb_start_sva;
3052
3053         if (!wa_ctx->per_ctx.valid)
3054                 return 0;
3055
3056         per_ctx_start[0] = 0x18800001;
3057         per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3058
3059         bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3060                                 wa_ctx->indirect_ctx.size;
3061
3062         memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3063
3064         return 0;
3065 }
3066
3067 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3068 {
3069         int ret;
3070         struct intel_vgpu_workload *workload = container_of(wa_ctx,
3071                                         struct intel_vgpu_workload,
3072                                         wa_ctx);
3073         struct intel_vgpu *vgpu = workload->vgpu;
3074
3075         if (wa_ctx->indirect_ctx.size == 0)
3076                 return 0;
3077
3078         ret = shadow_indirect_ctx(wa_ctx);
3079         if (ret) {
3080                 gvt_vgpu_err("fail to shadow indirect ctx\n");
3081                 return ret;
3082         }
3083
3084         combine_wa_ctx(wa_ctx);
3085
3086         ret = scan_wa_ctx(wa_ctx);
3087         if (ret) {
3088                 gvt_vgpu_err("scan wa ctx error\n");
3089                 return ret;
3090         }
3091
3092         return 0;
3093 }
3094
3095 /* generate dummy contexts by sending empty requests to HW, and let
3096  * the HW to fill Engine Contexts. This dummy contexts are used for
3097  * initialization purpose (update reg whitelist), so referred to as
3098  * init context here
3099  */
3100 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu)
3101 {
3102         const unsigned long start = LRC_STATE_PN * PAGE_SIZE;
3103         struct intel_gvt *gvt = vgpu->gvt;
3104         struct intel_engine_cs *engine;
3105         enum intel_engine_id id;
3106
3107         if (gvt->is_reg_whitelist_updated)
3108                 return;
3109
3110         /* scan init ctx to update cmd accessible list */
3111         for_each_engine(engine, gvt->gt, id) {
3112                 struct parser_exec_state s;
3113                 void *vaddr;
3114                 int ret;
3115
3116                 if (!engine->default_state)
3117                         continue;
3118
3119                 vaddr = shmem_pin_map(engine->default_state);
3120                 if (!vaddr) {
3121                         gvt_err("failed to map %s->default state\n",
3122                                 engine->name);
3123                         return;
3124                 }
3125
3126                 s.buf_type = RING_BUFFER_CTX;
3127                 s.buf_addr_type = GTT_BUFFER;
3128                 s.vgpu = vgpu;
3129                 s.engine = engine;
3130                 s.ring_start = 0;
3131                 s.ring_size = engine->context_size - start;
3132                 s.ring_head = 0;
3133                 s.ring_tail = s.ring_size;
3134                 s.rb_va = vaddr + start;
3135                 s.workload = NULL;
3136                 s.is_ctx_wa = false;
3137                 s.is_init_ctx = true;
3138
3139                 /* skipping the first RING_CTX_SIZE(0x50) dwords */
3140                 ret = ip_gma_set(&s, RING_CTX_SIZE);
3141                 if (ret == 0) {
3142                         ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size);
3143                         if (ret)
3144                                 gvt_err("Scan init ctx error\n");
3145                 }
3146
3147                 shmem_unpin_map(engine->default_state, vaddr);
3148                 if (ret)
3149                         return;
3150         }
3151
3152         gvt->is_reg_whitelist_updated = true;
3153 }
3154
3155 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload)
3156 {
3157         struct intel_vgpu *vgpu = workload->vgpu;
3158         unsigned long gma_head, gma_tail, gma_start, ctx_size;
3159         struct parser_exec_state s;
3160         int ring_id = workload->engine->id;
3161         struct intel_context *ce = vgpu->submission.shadow[ring_id];
3162         int ret;
3163
3164         GEM_BUG_ON(atomic_read(&ce->pin_count) < 0);
3165
3166         ctx_size = workload->engine->context_size - PAGE_SIZE;
3167
3168         /* Only ring contxt is loaded to HW for inhibit context, no need to
3169          * scan engine context
3170          */
3171         if (is_inhibit_context(ce))
3172                 return 0;
3173
3174         gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE;
3175         gma_head = 0;
3176         gma_tail = ctx_size;
3177
3178         s.buf_type = RING_BUFFER_CTX;
3179         s.buf_addr_type = GTT_BUFFER;
3180         s.vgpu = workload->vgpu;
3181         s.engine = workload->engine;
3182         s.ring_start = gma_start;
3183         s.ring_size = ctx_size;
3184         s.ring_head = gma_start + gma_head;
3185         s.ring_tail = gma_start + gma_tail;
3186         s.rb_va = ce->lrc_reg_state;
3187         s.workload = workload;
3188         s.is_ctx_wa = false;
3189         s.is_init_ctx = false;
3190
3191         /* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring
3192          * context
3193          */
3194         ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE);
3195         if (ret)
3196                 goto out;
3197
3198         ret = command_scan(&s, gma_head, gma_tail,
3199                 gma_start, ctx_size);
3200 out:
3201         if (ret)
3202                 gvt_vgpu_err("scan shadow ctx error\n");
3203
3204         return ret;
3205 }
3206
3207 static int init_cmd_table(struct intel_gvt *gvt)
3208 {
3209         unsigned int gen_type = intel_gvt_get_device_type(gvt);
3210         int i;
3211
3212         for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3213                 struct cmd_entry *e;
3214
3215                 if (!(cmd_info[i].devices & gen_type))
3216                         continue;
3217
3218                 e = kzalloc(sizeof(*e), GFP_KERNEL);
3219                 if (!e)
3220                         return -ENOMEM;
3221
3222                 e->info = &cmd_info[i];
3223                 if (cmd_info[i].opcode == OP_MI_NOOP)
3224                         mi_noop_index = i;
3225
3226                 INIT_HLIST_NODE(&e->hlist);
3227                 add_cmd_entry(gvt, e);
3228                 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3229                             e->info->name, e->info->opcode, e->info->flag,
3230                             e->info->devices, e->info->rings);
3231         }
3232
3233         return 0;
3234 }
3235
3236 static void clean_cmd_table(struct intel_gvt *gvt)
3237 {
3238         struct hlist_node *tmp;
3239         struct cmd_entry *e;
3240         int i;
3241
3242         hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3243                 kfree(e);
3244
3245         hash_init(gvt->cmd_table);
3246 }
3247
3248 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3249 {
3250         clean_cmd_table(gvt);
3251 }
3252
3253 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3254 {
3255         int ret;
3256
3257         ret = init_cmd_table(gvt);
3258         if (ret) {
3259                 intel_gvt_clean_cmd_parser(gvt);
3260                 return ret;
3261         }
3262         return 0;
3263 }