Merge tag 'trace-v5.4-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux-2.6-block.git] / drivers / gpu / drm / i915 / gt / uc / intel_guc_submission.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5
6 #include <linux/circ_buf.h>
7
8 #include "gem/i915_gem_context.h"
9
10 #include "gt/intel_context.h"
11 #include "gt/intel_engine_pm.h"
12 #include "gt/intel_gt.h"
13 #include "gt/intel_gt_pm.h"
14 #include "gt/intel_lrc_reg.h"
15 #include "intel_guc_submission.h"
16
17 #include "i915_drv.h"
18 #include "i915_trace.h"
19
20 enum {
21         GUC_PREEMPT_NONE = 0,
22         GUC_PREEMPT_INPROGRESS,
23         GUC_PREEMPT_FINISHED,
24 };
25 #define GUC_PREEMPT_BREADCRUMB_DWORDS   0x8
26 #define GUC_PREEMPT_BREADCRUMB_BYTES    \
27         (sizeof(u32) * GUC_PREEMPT_BREADCRUMB_DWORDS)
28
29 /**
30  * DOC: GuC-based command submission
31  *
32  * GuC client:
33  * A intel_guc_client refers to a submission path through GuC. Currently, there
34  * is only one client, which is charged with all submissions to the GuC. This
35  * struct is the owner of a doorbell, a process descriptor and a workqueue (all
36  * of them inside a single gem object that contains all required pages for these
37  * elements).
38  *
39  * GuC stage descriptor:
40  * During initialization, the driver allocates a static pool of 1024 such
41  * descriptors, and shares them with the GuC.
42  * Currently, there exists a 1:1 mapping between a intel_guc_client and a
43  * guc_stage_desc (via the client's stage_id), so effectively only one
44  * gets used. This stage descriptor lets the GuC know about the doorbell,
45  * workqueue and process descriptor. Theoretically, it also lets the GuC
46  * know about our HW contexts (context ID, etc...), but we actually
47  * employ a kind of submission where the GuC uses the LRCA sent via the work
48  * item instead (the single guc_stage_desc associated to execbuf client
49  * contains information about the default kernel context only, but this is
50  * essentially unused). This is called a "proxy" submission.
51  *
52  * The Scratch registers:
53  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
54  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
55  * triggers an interrupt on the GuC via another register write (0xC4C8).
56  * Firmware writes a success/fail code back to the action register after
57  * processes the request. The kernel driver polls waiting for this update and
58  * then proceeds.
59  * See intel_guc_send()
60  *
61  * Doorbells:
62  * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
63  * mapped into process space.
64  *
65  * Work Items:
66  * There are several types of work items that the host may place into a
67  * workqueue, each with its own requirements and limitations. Currently only
68  * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
69  * represents in-order queue. The kernel driver packs ring tail pointer and an
70  * ELSP context descriptor dword into Work Item.
71  * See guc_add_request()
72  *
73  */
74
75 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
76 {
77         return rb_entry(rb, struct i915_priolist, node);
78 }
79
80 static inline bool is_high_priority(struct intel_guc_client *client)
81 {
82         return (client->priority == GUC_CLIENT_PRIORITY_KMD_HIGH ||
83                 client->priority == GUC_CLIENT_PRIORITY_HIGH);
84 }
85
86 static int reserve_doorbell(struct intel_guc_client *client)
87 {
88         unsigned long offset;
89         unsigned long end;
90         u16 id;
91
92         GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);
93
94         /*
95          * The bitmap tracks which doorbell registers are currently in use.
96          * It is split into two halves; the first half is used for normal
97          * priority contexts, the second half for high-priority ones.
98          */
99         offset = 0;
100         end = GUC_NUM_DOORBELLS / 2;
101         if (is_high_priority(client)) {
102                 offset = end;
103                 end += offset;
104         }
105
106         id = find_next_zero_bit(client->guc->doorbell_bitmap, end, offset);
107         if (id == end)
108                 return -ENOSPC;
109
110         __set_bit(id, client->guc->doorbell_bitmap);
111         client->doorbell_id = id;
112         DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
113                          client->stage_id, yesno(is_high_priority(client)),
114                          id);
115         return 0;
116 }
117
118 static bool has_doorbell(struct intel_guc_client *client)
119 {
120         if (client->doorbell_id == GUC_DOORBELL_INVALID)
121                 return false;
122
123         return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
124 }
125
126 static void unreserve_doorbell(struct intel_guc_client *client)
127 {
128         GEM_BUG_ON(!has_doorbell(client));
129
130         __clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
131         client->doorbell_id = GUC_DOORBELL_INVALID;
132 }
133
134 /*
135  * Tell the GuC to allocate or deallocate a specific doorbell
136  */
137
138 static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id)
139 {
140         u32 action[] = {
141                 INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
142                 stage_id
143         };
144
145         return intel_guc_send(guc, action, ARRAY_SIZE(action));
146 }
147
148 static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id)
149 {
150         u32 action[] = {
151                 INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
152                 stage_id
153         };
154
155         return intel_guc_send(guc, action, ARRAY_SIZE(action));
156 }
157
158 static struct guc_stage_desc *__get_stage_desc(struct intel_guc_client *client)
159 {
160         struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr;
161
162         return &base[client->stage_id];
163 }
164
165 /*
166  * Initialise, update, or clear doorbell data shared with the GuC
167  *
168  * These functions modify shared data and so need access to the mapped
169  * client object which contains the page being used for the doorbell
170  */
171
172 static void __update_doorbell_desc(struct intel_guc_client *client, u16 new_id)
173 {
174         struct guc_stage_desc *desc;
175
176         /* Update the GuC's idea of the doorbell ID */
177         desc = __get_stage_desc(client);
178         desc->db_id = new_id;
179 }
180
181 static struct guc_doorbell_info *__get_doorbell(struct intel_guc_client *client)
182 {
183         return client->vaddr + client->doorbell_offset;
184 }
185
186 static bool __doorbell_valid(struct intel_guc *guc, u16 db_id)
187 {
188         struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
189
190         GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS);
191         return intel_uncore_read(uncore, GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID;
192 }
193
194 static void __init_doorbell(struct intel_guc_client *client)
195 {
196         struct guc_doorbell_info *doorbell;
197
198         doorbell = __get_doorbell(client);
199         doorbell->db_status = GUC_DOORBELL_ENABLED;
200         doorbell->cookie = 0;
201 }
202
203 static void __fini_doorbell(struct intel_guc_client *client)
204 {
205         struct guc_doorbell_info *doorbell;
206         u16 db_id = client->doorbell_id;
207
208         doorbell = __get_doorbell(client);
209         doorbell->db_status = GUC_DOORBELL_DISABLED;
210
211         /* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
212          * to go to zero after updating db_status before we call the GuC to
213          * release the doorbell
214          */
215         if (wait_for_us(!__doorbell_valid(client->guc, db_id), 10))
216                 WARN_ONCE(true, "Doorbell never became invalid after disable\n");
217 }
218
219 static int create_doorbell(struct intel_guc_client *client)
220 {
221         int ret;
222
223         if (WARN_ON(!has_doorbell(client)))
224                 return -ENODEV; /* internal setup error, should never happen */
225
226         __update_doorbell_desc(client, client->doorbell_id);
227         __init_doorbell(client);
228
229         ret = __guc_allocate_doorbell(client->guc, client->stage_id);
230         if (ret) {
231                 __fini_doorbell(client);
232                 __update_doorbell_desc(client, GUC_DOORBELL_INVALID);
233                 DRM_DEBUG_DRIVER("Couldn't create client %u doorbell: %d\n",
234                                  client->stage_id, ret);
235                 return ret;
236         }
237
238         return 0;
239 }
240
241 static int destroy_doorbell(struct intel_guc_client *client)
242 {
243         int ret;
244
245         GEM_BUG_ON(!has_doorbell(client));
246
247         __fini_doorbell(client);
248         ret = __guc_deallocate_doorbell(client->guc, client->stage_id);
249         if (ret)
250                 DRM_ERROR("Couldn't destroy client %u doorbell: %d\n",
251                           client->stage_id, ret);
252
253         __update_doorbell_desc(client, GUC_DOORBELL_INVALID);
254
255         return ret;
256 }
257
258 static unsigned long __select_cacheline(struct intel_guc *guc)
259 {
260         unsigned long offset;
261
262         /* Doorbell uses a single cache line within a page */
263         offset = offset_in_page(guc->db_cacheline);
264
265         /* Moving to next cache line to reduce contention */
266         guc->db_cacheline += cache_line_size();
267
268         DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
269                          offset, guc->db_cacheline, cache_line_size());
270         return offset;
271 }
272
273 static inline struct guc_process_desc *
274 __get_process_desc(struct intel_guc_client *client)
275 {
276         return client->vaddr + client->proc_desc_offset;
277 }
278
279 /*
280  * Initialise the process descriptor shared with the GuC firmware.
281  */
282 static void guc_proc_desc_init(struct intel_guc_client *client)
283 {
284         struct guc_process_desc *desc;
285
286         desc = memset(__get_process_desc(client), 0, sizeof(*desc));
287
288         /*
289          * XXX: pDoorbell and WQVBaseAddress are pointers in process address
290          * space for ring3 clients (set them as in mmap_ioctl) or kernel
291          * space for kernel clients (map on demand instead? May make debug
292          * easier to have it mapped).
293          */
294         desc->wq_base_addr = 0;
295         desc->db_base_addr = 0;
296
297         desc->stage_id = client->stage_id;
298         desc->wq_size_bytes = GUC_WQ_SIZE;
299         desc->wq_status = WQ_STATUS_ACTIVE;
300         desc->priority = client->priority;
301 }
302
303 static void guc_proc_desc_fini(struct intel_guc_client *client)
304 {
305         struct guc_process_desc *desc;
306
307         desc = __get_process_desc(client);
308         memset(desc, 0, sizeof(*desc));
309 }
310
311 static int guc_stage_desc_pool_create(struct intel_guc *guc)
312 {
313         struct i915_vma *vma;
314         void *vaddr;
315
316         vma = intel_guc_allocate_vma(guc,
317                                      PAGE_ALIGN(sizeof(struct guc_stage_desc) *
318                                      GUC_MAX_STAGE_DESCRIPTORS));
319         if (IS_ERR(vma))
320                 return PTR_ERR(vma);
321
322         vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
323         if (IS_ERR(vaddr)) {
324                 i915_vma_unpin_and_release(&vma, 0);
325                 return PTR_ERR(vaddr);
326         }
327
328         guc->stage_desc_pool = vma;
329         guc->stage_desc_pool_vaddr = vaddr;
330         ida_init(&guc->stage_ids);
331
332         return 0;
333 }
334
335 static void guc_stage_desc_pool_destroy(struct intel_guc *guc)
336 {
337         ida_destroy(&guc->stage_ids);
338         i915_vma_unpin_and_release(&guc->stage_desc_pool, I915_VMA_RELEASE_MAP);
339 }
340
341 /*
342  * Initialise/clear the stage descriptor shared with the GuC firmware.
343  *
344  * This descriptor tells the GuC where (in GGTT space) to find the important
345  * data structures relating to this client (doorbell, process descriptor,
346  * write queue, etc).
347  */
348 static void guc_stage_desc_init(struct intel_guc_client *client)
349 {
350         struct intel_guc *guc = client->guc;
351         struct guc_stage_desc *desc;
352         u32 gfx_addr;
353
354         desc = __get_stage_desc(client);
355         memset(desc, 0, sizeof(*desc));
356
357         desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE |
358                           GUC_STAGE_DESC_ATTR_KERNEL;
359         if (is_high_priority(client))
360                 desc->attribute |= GUC_STAGE_DESC_ATTR_PREEMPT;
361         desc->stage_id = client->stage_id;
362         desc->priority = client->priority;
363         desc->db_id = client->doorbell_id;
364
365         /*
366          * The doorbell, process descriptor, and workqueue are all parts
367          * of the client object, which the GuC will reference via the GGTT
368          */
369         gfx_addr = intel_guc_ggtt_offset(guc, client->vma);
370         desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
371                                 client->doorbell_offset;
372         desc->db_trigger_cpu = ptr_to_u64(__get_doorbell(client));
373         desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
374         desc->process_desc = gfx_addr + client->proc_desc_offset;
375         desc->wq_addr = gfx_addr + GUC_DB_SIZE;
376         desc->wq_size = GUC_WQ_SIZE;
377
378         desc->desc_private = ptr_to_u64(client);
379 }
380
381 static void guc_stage_desc_fini(struct intel_guc_client *client)
382 {
383         struct guc_stage_desc *desc;
384
385         desc = __get_stage_desc(client);
386         memset(desc, 0, sizeof(*desc));
387 }
388
389 /* Construct a Work Item and append it to the GuC's Work Queue */
390 static void guc_wq_item_append(struct intel_guc_client *client,
391                                u32 target_engine, u32 context_desc,
392                                u32 ring_tail, u32 fence_id)
393 {
394         /* wqi_len is in DWords, and does not include the one-word header */
395         const size_t wqi_size = sizeof(struct guc_wq_item);
396         const u32 wqi_len = wqi_size / sizeof(u32) - 1;
397         struct guc_process_desc *desc = __get_process_desc(client);
398         struct guc_wq_item *wqi;
399         u32 wq_off;
400
401         lockdep_assert_held(&client->wq_lock);
402
403         /* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
404          * should not have the case where structure wqi is across page, neither
405          * wrapped to the beginning. This simplifies the implementation below.
406          *
407          * XXX: if not the case, we need save data to a temp wqi and copy it to
408          * workqueue buffer dw by dw.
409          */
410         BUILD_BUG_ON(wqi_size != 16);
411
412         /* We expect the WQ to be active if we're appending items to it */
413         GEM_BUG_ON(desc->wq_status != WQ_STATUS_ACTIVE);
414
415         /* Free space is guaranteed. */
416         wq_off = READ_ONCE(desc->tail);
417         GEM_BUG_ON(CIRC_SPACE(wq_off, READ_ONCE(desc->head),
418                               GUC_WQ_SIZE) < wqi_size);
419         GEM_BUG_ON(wq_off & (wqi_size - 1));
420
421         /* WQ starts from the page after doorbell / process_desc */
422         wqi = client->vaddr + wq_off + GUC_DB_SIZE;
423
424         if (I915_SELFTEST_ONLY(client->use_nop_wqi)) {
425                 wqi->header = WQ_TYPE_NOOP | (wqi_len << WQ_LEN_SHIFT);
426         } else {
427                 /* Now fill in the 4-word work queue item */
428                 wqi->header = WQ_TYPE_INORDER |
429                               (wqi_len << WQ_LEN_SHIFT) |
430                               (target_engine << WQ_TARGET_SHIFT) |
431                               WQ_NO_WCFLUSH_WAIT;
432                 wqi->context_desc = context_desc;
433                 wqi->submit_element_info = ring_tail << WQ_RING_TAIL_SHIFT;
434                 GEM_BUG_ON(ring_tail > WQ_RING_TAIL_MAX);
435                 wqi->fence_id = fence_id;
436         }
437
438         /* Make the update visible to GuC */
439         WRITE_ONCE(desc->tail, (wq_off + wqi_size) & (GUC_WQ_SIZE - 1));
440 }
441
442 static void guc_ring_doorbell(struct intel_guc_client *client)
443 {
444         struct guc_doorbell_info *db;
445         u32 cookie;
446
447         lockdep_assert_held(&client->wq_lock);
448
449         /* pointer of current doorbell cacheline */
450         db = __get_doorbell(client);
451
452         /*
453          * We're not expecting the doorbell cookie to change behind our back,
454          * we also need to treat 0 as a reserved value.
455          */
456         cookie = READ_ONCE(db->cookie);
457         WARN_ON_ONCE(xchg(&db->cookie, cookie + 1 ?: cookie + 2) != cookie);
458
459         /* XXX: doorbell was lost and need to acquire it again */
460         GEM_BUG_ON(db->db_status != GUC_DOORBELL_ENABLED);
461 }
462
463 static void guc_add_request(struct intel_guc *guc, struct i915_request *rq)
464 {
465         struct intel_guc_client *client = guc->execbuf_client;
466         struct intel_engine_cs *engine = rq->engine;
467         u32 ctx_desc = lower_32_bits(rq->hw_context->lrc_desc);
468         u32 ring_tail = intel_ring_set_tail(rq->ring, rq->tail) / sizeof(u64);
469
470         guc_wq_item_append(client, engine->guc_id, ctx_desc,
471                            ring_tail, rq->fence.seqno);
472         guc_ring_doorbell(client);
473 }
474
475 /*
476  * When we're doing submissions using regular execlists backend, writing to
477  * ELSP from CPU side is enough to make sure that writes to ringbuffer pages
478  * pinned in mappable aperture portion of GGTT are visible to command streamer.
479  * Writes done by GuC on our behalf are not guaranteeing such ordering,
480  * therefore, to ensure the flush, we're issuing a POSTING READ.
481  */
482 static void flush_ggtt_writes(struct i915_vma *vma)
483 {
484         struct drm_i915_private *i915 = vma->vm->i915;
485
486         if (i915_vma_is_map_and_fenceable(vma))
487                 intel_uncore_posting_read_fw(&i915->uncore, GUC_STATUS);
488 }
489
490 static void guc_submit(struct intel_engine_cs *engine,
491                        struct i915_request **out,
492                        struct i915_request **end)
493 {
494         struct intel_guc *guc = &engine->gt->uc.guc;
495         struct intel_guc_client *client = guc->execbuf_client;
496
497         spin_lock(&client->wq_lock);
498
499         do {
500                 struct i915_request *rq = *out++;
501
502                 flush_ggtt_writes(rq->ring->vma);
503                 guc_add_request(guc, rq);
504         } while (out != end);
505
506         spin_unlock(&client->wq_lock);
507 }
508
509 static inline int rq_prio(const struct i915_request *rq)
510 {
511         return rq->sched.attr.priority | __NO_PREEMPTION;
512 }
513
514 static struct i915_request *schedule_in(struct i915_request *rq, int idx)
515 {
516         trace_i915_request_in(rq, idx);
517
518         /*
519          * Currently we are not tracking the rq->context being inflight
520          * (ce->inflight = rq->engine). It is only used by the execlists
521          * backend at the moment, a similar counting strategy would be
522          * required if we generalise the inflight tracking.
523          */
524
525         intel_gt_pm_get(rq->engine->gt);
526         return i915_request_get(rq);
527 }
528
529 static void schedule_out(struct i915_request *rq)
530 {
531         trace_i915_request_out(rq);
532
533         intel_gt_pm_put(rq->engine->gt);
534         i915_request_put(rq);
535 }
536
537 static void __guc_dequeue(struct intel_engine_cs *engine)
538 {
539         struct intel_engine_execlists * const execlists = &engine->execlists;
540         struct i915_request **first = execlists->inflight;
541         struct i915_request ** const last_port = first + execlists->port_mask;
542         struct i915_request *last = first[0];
543         struct i915_request **port;
544         bool submit = false;
545         struct rb_node *rb;
546
547         lockdep_assert_held(&engine->active.lock);
548
549         if (last) {
550                 if (*++first)
551                         return;
552
553                 last = NULL;
554         }
555
556         /*
557          * We write directly into the execlists->inflight queue and don't use
558          * the execlists->pending queue, as we don't have a distinct switch
559          * event.
560          */
561         port = first;
562         while ((rb = rb_first_cached(&execlists->queue))) {
563                 struct i915_priolist *p = to_priolist(rb);
564                 struct i915_request *rq, *rn;
565                 int i;
566
567                 priolist_for_each_request_consume(rq, rn, p, i) {
568                         if (last && rq->hw_context != last->hw_context) {
569                                 if (port == last_port)
570                                         goto done;
571
572                                 *port = schedule_in(last,
573                                                     port - execlists->inflight);
574                                 port++;
575                         }
576
577                         list_del_init(&rq->sched.link);
578                         __i915_request_submit(rq);
579                         submit = true;
580                         last = rq;
581                 }
582
583                 rb_erase_cached(&p->node, &execlists->queue);
584                 i915_priolist_free(p);
585         }
586 done:
587         execlists->queue_priority_hint =
588                 rb ? to_priolist(rb)->priority : INT_MIN;
589         if (submit) {
590                 *port = schedule_in(last, port - execlists->inflight);
591                 *++port = NULL;
592                 guc_submit(engine, first, port);
593         }
594         execlists->active = execlists->inflight;
595 }
596
597 static void guc_submission_tasklet(unsigned long data)
598 {
599         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
600         struct intel_engine_execlists * const execlists = &engine->execlists;
601         struct i915_request **port, *rq;
602         unsigned long flags;
603
604         spin_lock_irqsave(&engine->active.lock, flags);
605
606         for (port = execlists->inflight; (rq = *port); port++) {
607                 if (!i915_request_completed(rq))
608                         break;
609
610                 schedule_out(rq);
611         }
612         if (port != execlists->inflight) {
613                 int idx = port - execlists->inflight;
614                 int rem = ARRAY_SIZE(execlists->inflight) - idx;
615                 memmove(execlists->inflight, port, rem * sizeof(*port));
616         }
617
618         __guc_dequeue(engine);
619
620         spin_unlock_irqrestore(&engine->active.lock, flags);
621 }
622
623 static void guc_reset_prepare(struct intel_engine_cs *engine)
624 {
625         struct intel_engine_execlists * const execlists = &engine->execlists;
626
627         GEM_TRACE("%s\n", engine->name);
628
629         /*
630          * Prevent request submission to the hardware until we have
631          * completed the reset in i915_gem_reset_finish(). If a request
632          * is completed by one engine, it may then queue a request
633          * to a second via its execlists->tasklet *just* as we are
634          * calling engine->init_hw() and also writing the ELSP.
635          * Turning off the execlists->tasklet until the reset is over
636          * prevents the race.
637          */
638         __tasklet_disable_sync_once(&execlists->tasklet);
639 }
640
641 static void
642 cancel_port_requests(struct intel_engine_execlists * const execlists)
643 {
644         struct i915_request * const *port, *rq;
645
646         /* Note we are only using the inflight and not the pending queue */
647
648         for (port = execlists->active; (rq = *port); port++)
649                 schedule_out(rq);
650         execlists->active =
651                 memset(execlists->inflight, 0, sizeof(execlists->inflight));
652 }
653
654 static void guc_reset(struct intel_engine_cs *engine, bool stalled)
655 {
656         struct intel_engine_execlists * const execlists = &engine->execlists;
657         struct i915_request *rq;
658         unsigned long flags;
659
660         spin_lock_irqsave(&engine->active.lock, flags);
661
662         cancel_port_requests(execlists);
663
664         /* Push back any incomplete requests for replay after the reset. */
665         rq = execlists_unwind_incomplete_requests(execlists);
666         if (!rq)
667                 goto out_unlock;
668
669         if (!i915_request_started(rq))
670                 stalled = false;
671
672         __i915_request_reset(rq, stalled);
673         intel_lr_context_reset(engine, rq->hw_context, rq->head, stalled);
674
675 out_unlock:
676         spin_unlock_irqrestore(&engine->active.lock, flags);
677 }
678
679 static void guc_cancel_requests(struct intel_engine_cs *engine)
680 {
681         struct intel_engine_execlists * const execlists = &engine->execlists;
682         struct i915_request *rq, *rn;
683         struct rb_node *rb;
684         unsigned long flags;
685
686         GEM_TRACE("%s\n", engine->name);
687
688         /*
689          * Before we call engine->cancel_requests(), we should have exclusive
690          * access to the submission state. This is arranged for us by the
691          * caller disabling the interrupt generation, the tasklet and other
692          * threads that may then access the same state, giving us a free hand
693          * to reset state. However, we still need to let lockdep be aware that
694          * we know this state may be accessed in hardirq context, so we
695          * disable the irq around this manipulation and we want to keep
696          * the spinlock focused on its duties and not accidentally conflate
697          * coverage to the submission's irq state. (Similarly, although we
698          * shouldn't need to disable irq around the manipulation of the
699          * submission's irq state, we also wish to remind ourselves that
700          * it is irq state.)
701          */
702         spin_lock_irqsave(&engine->active.lock, flags);
703
704         /* Cancel the requests on the HW and clear the ELSP tracker. */
705         cancel_port_requests(execlists);
706
707         /* Mark all executing requests as skipped. */
708         list_for_each_entry(rq, &engine->active.requests, sched.link) {
709                 if (!i915_request_signaled(rq))
710                         dma_fence_set_error(&rq->fence, -EIO);
711
712                 i915_request_mark_complete(rq);
713         }
714
715         /* Flush the queued requests to the timeline list (for retiring). */
716         while ((rb = rb_first_cached(&execlists->queue))) {
717                 struct i915_priolist *p = to_priolist(rb);
718                 int i;
719
720                 priolist_for_each_request_consume(rq, rn, p, i) {
721                         list_del_init(&rq->sched.link);
722                         __i915_request_submit(rq);
723                         dma_fence_set_error(&rq->fence, -EIO);
724                         i915_request_mark_complete(rq);
725                 }
726
727                 rb_erase_cached(&p->node, &execlists->queue);
728                 i915_priolist_free(p);
729         }
730
731         /* Remaining _unready_ requests will be nop'ed when submitted */
732
733         execlists->queue_priority_hint = INT_MIN;
734         execlists->queue = RB_ROOT_CACHED;
735
736         spin_unlock_irqrestore(&engine->active.lock, flags);
737 }
738
739 static void guc_reset_finish(struct intel_engine_cs *engine)
740 {
741         struct intel_engine_execlists * const execlists = &engine->execlists;
742
743         if (__tasklet_enable(&execlists->tasklet))
744                 /* And kick in case we missed a new request submission. */
745                 tasklet_hi_schedule(&execlists->tasklet);
746
747         GEM_TRACE("%s: depth->%d\n", engine->name,
748                   atomic_read(&execlists->tasklet.count));
749 }
750
751 /*
752  * Everything below here is concerned with setup & teardown, and is
753  * therefore not part of the somewhat time-critical batch-submission
754  * path of guc_submit() above.
755  */
756
757 /* Check that a doorbell register is in the expected state */
758 static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
759 {
760         bool valid;
761
762         GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS);
763
764         valid = __doorbell_valid(guc, db_id);
765
766         if (test_bit(db_id, guc->doorbell_bitmap) == valid)
767                 return true;
768
769         DRM_DEBUG_DRIVER("Doorbell %u has unexpected state: valid=%s\n",
770                          db_id, yesno(valid));
771
772         return false;
773 }
774
775 static bool guc_verify_doorbells(struct intel_guc *guc)
776 {
777         bool doorbells_ok = true;
778         u16 db_id;
779
780         for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
781                 if (!doorbell_ok(guc, db_id))
782                         doorbells_ok = false;
783
784         return doorbells_ok;
785 }
786
787 /**
788  * guc_client_alloc() - Allocate an intel_guc_client
789  * @guc:        the intel_guc structure
790  * @priority:   four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
791  *              The kernel client to replace ExecList submission is created with
792  *              NORMAL priority. Priority of a client for scheduler can be HIGH,
793  *              while a preemption context can use CRITICAL.
794  *
795  * Return:      An intel_guc_client object if success, else NULL.
796  */
797 static struct intel_guc_client *
798 guc_client_alloc(struct intel_guc *guc, u32 priority)
799 {
800         struct intel_guc_client *client;
801         struct i915_vma *vma;
802         void *vaddr;
803         int ret;
804
805         client = kzalloc(sizeof(*client), GFP_KERNEL);
806         if (!client)
807                 return ERR_PTR(-ENOMEM);
808
809         client->guc = guc;
810         client->priority = priority;
811         client->doorbell_id = GUC_DOORBELL_INVALID;
812         spin_lock_init(&client->wq_lock);
813
814         ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS,
815                              GFP_KERNEL);
816         if (ret < 0)
817                 goto err_client;
818
819         client->stage_id = ret;
820
821         /* The first page is doorbell/proc_desc. Two followed pages are wq. */
822         vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
823         if (IS_ERR(vma)) {
824                 ret = PTR_ERR(vma);
825                 goto err_id;
826         }
827
828         /* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
829         client->vma = vma;
830
831         vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
832         if (IS_ERR(vaddr)) {
833                 ret = PTR_ERR(vaddr);
834                 goto err_vma;
835         }
836         client->vaddr = vaddr;
837
838         ret = reserve_doorbell(client);
839         if (ret)
840                 goto err_vaddr;
841
842         client->doorbell_offset = __select_cacheline(guc);
843
844         /*
845          * Since the doorbell only requires a single cacheline, we can save
846          * space by putting the application process descriptor in the same
847          * page. Use the half of the page that doesn't include the doorbell.
848          */
849         if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
850                 client->proc_desc_offset = 0;
851         else
852                 client->proc_desc_offset = (GUC_DB_SIZE / 2);
853
854         DRM_DEBUG_DRIVER("new priority %u client %p: stage_id %u\n",
855                          priority, client, client->stage_id);
856         DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
857                          client->doorbell_id, client->doorbell_offset);
858
859         return client;
860
861 err_vaddr:
862         i915_gem_object_unpin_map(client->vma->obj);
863 err_vma:
864         i915_vma_unpin_and_release(&client->vma, 0);
865 err_id:
866         ida_simple_remove(&guc->stage_ids, client->stage_id);
867 err_client:
868         kfree(client);
869         return ERR_PTR(ret);
870 }
871
872 static void guc_client_free(struct intel_guc_client *client)
873 {
874         unreserve_doorbell(client);
875         i915_vma_unpin_and_release(&client->vma, I915_VMA_RELEASE_MAP);
876         ida_simple_remove(&client->guc->stage_ids, client->stage_id);
877         kfree(client);
878 }
879
880 static inline bool ctx_save_restore_disabled(struct intel_context *ce)
881 {
882         u32 sr = ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1];
883
884 #define SR_DISABLED \
885         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT | \
886                            CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)
887
888         return (sr & SR_DISABLED) == SR_DISABLED;
889
890 #undef SR_DISABLED
891 }
892
893 static int guc_clients_create(struct intel_guc *guc)
894 {
895         struct intel_guc_client *client;
896
897         GEM_BUG_ON(guc->execbuf_client);
898
899         client = guc_client_alloc(guc, GUC_CLIENT_PRIORITY_KMD_NORMAL);
900         if (IS_ERR(client)) {
901                 DRM_ERROR("Failed to create GuC client for submission!\n");
902                 return PTR_ERR(client);
903         }
904         guc->execbuf_client = client;
905
906         return 0;
907 }
908
909 static void guc_clients_destroy(struct intel_guc *guc)
910 {
911         struct intel_guc_client *client;
912
913         client = fetch_and_zero(&guc->execbuf_client);
914         if (client)
915                 guc_client_free(client);
916 }
917
918 static int __guc_client_enable(struct intel_guc_client *client)
919 {
920         int ret;
921
922         guc_proc_desc_init(client);
923         guc_stage_desc_init(client);
924
925         ret = create_doorbell(client);
926         if (ret)
927                 goto fail;
928
929         return 0;
930
931 fail:
932         guc_stage_desc_fini(client);
933         guc_proc_desc_fini(client);
934         return ret;
935 }
936
937 static void __guc_client_disable(struct intel_guc_client *client)
938 {
939         /*
940          * By the time we're here, GuC may have already been reset. if that is
941          * the case, instead of trying (in vain) to communicate with it, let's
942          * just cleanup the doorbell HW and our internal state.
943          */
944         if (intel_guc_is_running(client->guc))
945                 destroy_doorbell(client);
946         else
947                 __fini_doorbell(client);
948
949         guc_stage_desc_fini(client);
950         guc_proc_desc_fini(client);
951 }
952
953 static int guc_clients_enable(struct intel_guc *guc)
954 {
955         return __guc_client_enable(guc->execbuf_client);
956 }
957
958 static void guc_clients_disable(struct intel_guc *guc)
959 {
960         if (guc->execbuf_client)
961                 __guc_client_disable(guc->execbuf_client);
962 }
963
964 /*
965  * Set up the memory resources to be shared with the GuC (via the GGTT)
966  * at firmware loading time.
967  */
968 int intel_guc_submission_init(struct intel_guc *guc)
969 {
970         int ret;
971
972         if (guc->stage_desc_pool)
973                 return 0;
974
975         ret = guc_stage_desc_pool_create(guc);
976         if (ret)
977                 return ret;
978         /*
979          * Keep static analysers happy, let them know that we allocated the
980          * vma after testing that it didn't exist earlier.
981          */
982         GEM_BUG_ON(!guc->stage_desc_pool);
983
984         WARN_ON(!guc_verify_doorbells(guc));
985         ret = guc_clients_create(guc);
986         if (ret)
987                 goto err_pool;
988
989         return 0;
990
991 err_pool:
992         guc_stage_desc_pool_destroy(guc);
993         return ret;
994 }
995
996 void intel_guc_submission_fini(struct intel_guc *guc)
997 {
998         guc_clients_destroy(guc);
999         WARN_ON(!guc_verify_doorbells(guc));
1000
1001         if (guc->stage_desc_pool)
1002                 guc_stage_desc_pool_destroy(guc);
1003 }
1004
1005 static void guc_interrupts_capture(struct intel_gt *gt)
1006 {
1007         struct intel_rps *rps = &gt->i915->gt_pm.rps;
1008         struct intel_uncore *uncore = gt->uncore;
1009         struct intel_engine_cs *engine;
1010         enum intel_engine_id id;
1011         int irqs;
1012
1013         /* tell all command streamers to forward interrupts (but not vblank)
1014          * to GuC
1015          */
1016         irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
1017         for_each_engine(engine, gt->i915, id)
1018                 ENGINE_WRITE(engine, RING_MODE_GEN7, irqs);
1019
1020         /* route USER_INTERRUPT to Host, all others are sent to GuC. */
1021         irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
1022                GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1023         /* These three registers have the same bit definitions */
1024         intel_uncore_write(uncore, GUC_BCS_RCS_IER, ~irqs);
1025         intel_uncore_write(uncore, GUC_VCS2_VCS1_IER, ~irqs);
1026         intel_uncore_write(uncore, GUC_WD_VECS_IER, ~irqs);
1027
1028         /*
1029          * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
1030          * (unmasked) PM interrupts to the GuC. All other bits of this
1031          * register *disable* generation of a specific interrupt.
1032          *
1033          * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
1034          * writing to the PM interrupt mask register, i.e. interrupts
1035          * that must not be disabled.
1036          *
1037          * If the GuC is handling these interrupts, then we must not let
1038          * the PM code disable ANY interrupt that the GuC is expecting.
1039          * So for each ENABLED (0) bit in this register, we must SET the
1040          * bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
1041          * GuC needs ARAT expired interrupt unmasked hence it is set in
1042          * pm_intrmsk_mbz.
1043          *
1044          * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
1045          * result in the register bit being left SET!
1046          */
1047         rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1048         rps->pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1049 }
1050
1051 static void guc_interrupts_release(struct intel_gt *gt)
1052 {
1053         struct intel_rps *rps = &gt->i915->gt_pm.rps;
1054         struct intel_uncore *uncore = gt->uncore;
1055         struct intel_engine_cs *engine;
1056         enum intel_engine_id id;
1057         int irqs;
1058
1059         /*
1060          * tell all command streamers NOT to forward interrupts or vblank
1061          * to GuC.
1062          */
1063         irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
1064         irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
1065         for_each_engine(engine, gt->i915, id)
1066                 ENGINE_WRITE(engine, RING_MODE_GEN7, irqs);
1067
1068         /* route all GT interrupts to the host */
1069         intel_uncore_write(uncore, GUC_BCS_RCS_IER, 0);
1070         intel_uncore_write(uncore, GUC_VCS2_VCS1_IER, 0);
1071         intel_uncore_write(uncore, GUC_WD_VECS_IER, 0);
1072
1073         rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1074         rps->pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
1075 }
1076
1077 static void guc_set_default_submission(struct intel_engine_cs *engine)
1078 {
1079         /*
1080          * We inherit a bunch of functions from execlists that we'd like
1081          * to keep using:
1082          *
1083          *    engine->submit_request = execlists_submit_request;
1084          *    engine->cancel_requests = execlists_cancel_requests;
1085          *    engine->schedule = execlists_schedule;
1086          *
1087          * But we need to override the actual submission backend in order
1088          * to talk to the GuC.
1089          */
1090         intel_execlists_set_default_submission(engine);
1091
1092         engine->execlists.tasklet.func = guc_submission_tasklet;
1093
1094         /* do not use execlists park/unpark */
1095         engine->park = engine->unpark = NULL;
1096
1097         engine->reset.prepare = guc_reset_prepare;
1098         engine->reset.reset = guc_reset;
1099         engine->reset.finish = guc_reset_finish;
1100
1101         engine->cancel_requests = guc_cancel_requests;
1102
1103         engine->flags &= ~I915_ENGINE_SUPPORTS_STATS;
1104         engine->flags |= I915_ENGINE_NEEDS_BREADCRUMB_TASKLET;
1105
1106         /*
1107          * For the breadcrumb irq to work we need the interrupts to stay
1108          * enabled. However, on all platforms on which we'll have support for
1109          * GuC submission we don't allow disabling the interrupts at runtime, so
1110          * we're always safe with the current flow.
1111          */
1112         GEM_BUG_ON(engine->irq_enable || engine->irq_disable);
1113 }
1114
1115 int intel_guc_submission_enable(struct intel_guc *guc)
1116 {
1117         struct intel_gt *gt = guc_to_gt(guc);
1118         struct intel_engine_cs *engine;
1119         enum intel_engine_id id;
1120         int err;
1121
1122         err = i915_inject_load_error(gt->i915, -ENXIO);
1123         if (err)
1124                 return err;
1125
1126         /*
1127          * We're using GuC work items for submitting work through GuC. Since
1128          * we're coalescing multiple requests from a single context into a
1129          * single work item prior to assigning it to execlist_port, we can
1130          * never have more work items than the total number of ports (for all
1131          * engines). The GuC firmware is controlling the HEAD of work queue,
1132          * and it is guaranteed that it will remove the work item from the
1133          * queue before our request is completed.
1134          */
1135         BUILD_BUG_ON(ARRAY_SIZE(engine->execlists.inflight) *
1136                      sizeof(struct guc_wq_item) *
1137                      I915_NUM_ENGINES > GUC_WQ_SIZE);
1138
1139         GEM_BUG_ON(!guc->execbuf_client);
1140
1141         err = guc_clients_enable(guc);
1142         if (err)
1143                 return err;
1144
1145         /* Take over from manual control of ELSP (execlists) */
1146         guc_interrupts_capture(gt);
1147
1148         for_each_engine(engine, gt->i915, id) {
1149                 engine->set_default_submission = guc_set_default_submission;
1150                 engine->set_default_submission(engine);
1151         }
1152
1153         return 0;
1154 }
1155
1156 void intel_guc_submission_disable(struct intel_guc *guc)
1157 {
1158         struct intel_gt *gt = guc_to_gt(guc);
1159
1160         GEM_BUG_ON(gt->awake); /* GT should be parked first */
1161
1162         guc_interrupts_release(gt);
1163         guc_clients_disable(guc);
1164 }
1165
1166 static bool __guc_submission_support(struct intel_guc *guc)
1167 {
1168         /* XXX: GuC submission is unavailable for now */
1169         return false;
1170
1171         if (!intel_guc_is_supported(guc))
1172                 return false;
1173
1174         return i915_modparams.enable_guc & ENABLE_GUC_SUBMISSION;
1175 }
1176
1177 void intel_guc_submission_init_early(struct intel_guc *guc)
1178 {
1179         guc->submission_supported = __guc_submission_support(guc);
1180 }
1181
1182 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1183 #include "selftest_guc.c"
1184 #endif