drm/i915/guc: Create the guc_to_i915() wrapper
[linux-2.6-block.git] / drivers / gpu / drm / i915 / gt / uc / intel_guc_submission.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5
6 #include <linux/circ_buf.h>
7
8 #include "gem/i915_gem_context.h"
9 #include "gem/i915_gem_lmem.h"
10 #include "gt/gen8_engine_cs.h"
11 #include "gt/intel_breadcrumbs.h"
12 #include "gt/intel_context.h"
13 #include "gt/intel_engine_heartbeat.h"
14 #include "gt/intel_engine_pm.h"
15 #include "gt/intel_engine_regs.h"
16 #include "gt/intel_gpu_commands.h"
17 #include "gt/intel_gt.h"
18 #include "gt/intel_gt_clock_utils.h"
19 #include "gt/intel_gt_irq.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_gt_regs.h"
22 #include "gt/intel_gt_requests.h"
23 #include "gt/intel_lrc.h"
24 #include "gt/intel_lrc_reg.h"
25 #include "gt/intel_mocs.h"
26 #include "gt/intel_ring.h"
27
28 #include "intel_guc_ads.h"
29 #include "intel_guc_capture.h"
30 #include "intel_guc_print.h"
31 #include "intel_guc_submission.h"
32
33 #include "i915_drv.h"
34 #include "i915_reg.h"
35 #include "i915_irq.h"
36 #include "i915_trace.h"
37
38 /**
39  * DOC: GuC-based command submission
40  *
41  * The Scratch registers:
42  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
43  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
44  * triggers an interrupt on the GuC via another register write (0xC4C8).
45  * Firmware writes a success/fail code back to the action register after
46  * processes the request. The kernel driver polls waiting for this update and
47  * then proceeds.
48  *
49  * Command Transport buffers (CTBs):
50  * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
51  * - G2H) are a message interface between the i915 and GuC.
52  *
53  * Context registration:
54  * Before a context can be submitted it must be registered with the GuC via a
55  * H2G. A unique guc_id is associated with each context. The context is either
56  * registered at request creation time (normal operation) or at submission time
57  * (abnormal operation, e.g. after a reset).
58  *
59  * Context submission:
60  * The i915 updates the LRC tail value in memory. The i915 must enable the
61  * scheduling of the context within the GuC for the GuC to actually consider it.
62  * Therefore, the first time a disabled context is submitted we use a schedule
63  * enable H2G, while follow up submissions are done via the context submit H2G,
64  * which informs the GuC that a previously enabled context has new work
65  * available.
66  *
67  * Context unpin:
68  * To unpin a context a H2G is used to disable scheduling. When the
69  * corresponding G2H returns indicating the scheduling disable operation has
70  * completed it is safe to unpin the context. While a disable is in flight it
71  * isn't safe to resubmit the context so a fence is used to stall all future
72  * requests of that context until the G2H is returned. Because this interaction
73  * with the GuC takes a non-zero amount of time we delay the disabling of
74  * scheduling after the pin count goes to zero by a configurable period of time
75  * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of
76  * time to resubmit something on the context before doing this costly operation.
77  * This delay is only done if the context isn't closed and the guc_id usage is
78  * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD).
79  *
80  * Context deregistration:
81  * Before a context can be destroyed or if we steal its guc_id we must
82  * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
83  * safe to submit anything to this guc_id until the deregister completes so a
84  * fence is used to stall all requests associated with this guc_id until the
85  * corresponding G2H returns indicating the guc_id has been deregistered.
86  *
87  * submission_state.guc_ids:
88  * Unique number associated with private GuC context data passed in during
89  * context registration / submission / deregistration. 64k available. Simple ida
90  * is used for allocation.
91  *
92  * Stealing guc_ids:
93  * If no guc_ids are available they can be stolen from another context at
94  * request creation time if that context is unpinned. If a guc_id can't be found
95  * we punt this problem to the user as we believe this is near impossible to hit
96  * during normal use cases.
97  *
98  * Locking:
99  * In the GuC submission code we have 3 basic spin locks which protect
100  * everything. Details about each below.
101  *
102  * sched_engine->lock
103  * This is the submission lock for all contexts that share an i915 schedule
104  * engine (sched_engine), thus only one of the contexts which share a
105  * sched_engine can be submitting at a time. Currently only one sched_engine is
106  * used for all of GuC submission but that could change in the future.
107  *
108  * guc->submission_state.lock
109  * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
110  * list.
111  *
112  * ce->guc_state.lock
113  * Protects everything under ce->guc_state. Ensures that a context is in the
114  * correct state before issuing a H2G. e.g. We don't issue a schedule disable
115  * on a disabled context (bad idea), we don't issue a schedule enable when a
116  * schedule disable is in flight, etc... Also protects list of inflight requests
117  * on the context and the priority management state. Lock is individual to each
118  * context.
119  *
120  * Lock ordering rules:
121  * sched_engine->lock -> ce->guc_state.lock
122  * guc->submission_state.lock -> ce->guc_state.lock
123  *
124  * Reset races:
125  * When a full GT reset is triggered it is assumed that some G2H responses to
126  * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
127  * fatal as we do certain operations upon receiving a G2H (e.g. destroy
128  * contexts, release guc_ids, etc...). When this occurs we can scrub the
129  * context state and cleanup appropriately, however this is quite racey.
130  * To avoid races, the reset code must disable submission before scrubbing for
131  * the missing G2H, while the submission code must check for submission being
132  * disabled and skip sending H2Gs and updating context states when it is. Both
133  * sides must also make sure to hold the relevant locks.
134  */
135
136 /* GuC Virtual Engine */
137 struct guc_virtual_engine {
138         struct intel_engine_cs base;
139         struct intel_context context;
140 };
141
142 static struct intel_context *
143 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
144                    unsigned long flags);
145
146 static struct intel_context *
147 guc_create_parallel(struct intel_engine_cs **engines,
148                     unsigned int num_siblings,
149                     unsigned int width);
150
151 #define GUC_REQUEST_SIZE 64 /* bytes */
152
153 /*
154  * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
155  * per the GuC submission interface. A different allocation algorithm is used
156  * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
157  * partition the guc_id space. We believe the number of multi-lrc contexts in
158  * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
159  * multi-lrc.
160  */
161 #define NUMBER_MULTI_LRC_GUC_ID(guc)    \
162         ((guc)->submission_state.num_guc_ids / 16)
163
164 /*
165  * Below is a set of functions which control the GuC scheduling state which
166  * require a lock.
167  */
168 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER     BIT(0)
169 #define SCHED_STATE_DESTROYED                           BIT(1)
170 #define SCHED_STATE_PENDING_DISABLE                     BIT(2)
171 #define SCHED_STATE_BANNED                              BIT(3)
172 #define SCHED_STATE_ENABLED                             BIT(4)
173 #define SCHED_STATE_PENDING_ENABLE                      BIT(5)
174 #define SCHED_STATE_REGISTERED                          BIT(6)
175 #define SCHED_STATE_POLICY_REQUIRED                     BIT(7)
176 #define SCHED_STATE_CLOSED                              BIT(8)
177 #define SCHED_STATE_BLOCKED_SHIFT                       9
178 #define SCHED_STATE_BLOCKED             BIT(SCHED_STATE_BLOCKED_SHIFT)
179 #define SCHED_STATE_BLOCKED_MASK        (0xfff << SCHED_STATE_BLOCKED_SHIFT)
180
181 static inline void init_sched_state(struct intel_context *ce)
182 {
183         lockdep_assert_held(&ce->guc_state.lock);
184         ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
185 }
186
187 /*
188  * Kernel contexts can have SCHED_STATE_REGISTERED after suspend.
189  * A context close can race with the submission path, so SCHED_STATE_CLOSED
190  * can be set immediately before we try to register.
191  */
192 #define SCHED_STATE_VALID_INIT \
193         (SCHED_STATE_BLOCKED_MASK | \
194          SCHED_STATE_CLOSED | \
195          SCHED_STATE_REGISTERED)
196
197 __maybe_unused
198 static bool sched_state_is_init(struct intel_context *ce)
199 {
200         return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT);
201 }
202
203 static inline bool
204 context_wait_for_deregister_to_register(struct intel_context *ce)
205 {
206         return ce->guc_state.sched_state &
207                 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
208 }
209
210 static inline void
211 set_context_wait_for_deregister_to_register(struct intel_context *ce)
212 {
213         lockdep_assert_held(&ce->guc_state.lock);
214         ce->guc_state.sched_state |=
215                 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
216 }
217
218 static inline void
219 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
220 {
221         lockdep_assert_held(&ce->guc_state.lock);
222         ce->guc_state.sched_state &=
223                 ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
224 }
225
226 static inline bool
227 context_destroyed(struct intel_context *ce)
228 {
229         return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
230 }
231
232 static inline void
233 set_context_destroyed(struct intel_context *ce)
234 {
235         lockdep_assert_held(&ce->guc_state.lock);
236         ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
237 }
238
239 static inline bool context_pending_disable(struct intel_context *ce)
240 {
241         return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
242 }
243
244 static inline void set_context_pending_disable(struct intel_context *ce)
245 {
246         lockdep_assert_held(&ce->guc_state.lock);
247         ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
248 }
249
250 static inline void clr_context_pending_disable(struct intel_context *ce)
251 {
252         lockdep_assert_held(&ce->guc_state.lock);
253         ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
254 }
255
256 static inline bool context_banned(struct intel_context *ce)
257 {
258         return ce->guc_state.sched_state & SCHED_STATE_BANNED;
259 }
260
261 static inline void set_context_banned(struct intel_context *ce)
262 {
263         lockdep_assert_held(&ce->guc_state.lock);
264         ce->guc_state.sched_state |= SCHED_STATE_BANNED;
265 }
266
267 static inline void clr_context_banned(struct intel_context *ce)
268 {
269         lockdep_assert_held(&ce->guc_state.lock);
270         ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
271 }
272
273 static inline bool context_enabled(struct intel_context *ce)
274 {
275         return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
276 }
277
278 static inline void set_context_enabled(struct intel_context *ce)
279 {
280         lockdep_assert_held(&ce->guc_state.lock);
281         ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
282 }
283
284 static inline void clr_context_enabled(struct intel_context *ce)
285 {
286         lockdep_assert_held(&ce->guc_state.lock);
287         ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
288 }
289
290 static inline bool context_pending_enable(struct intel_context *ce)
291 {
292         return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
293 }
294
295 static inline void set_context_pending_enable(struct intel_context *ce)
296 {
297         lockdep_assert_held(&ce->guc_state.lock);
298         ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
299 }
300
301 static inline void clr_context_pending_enable(struct intel_context *ce)
302 {
303         lockdep_assert_held(&ce->guc_state.lock);
304         ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
305 }
306
307 static inline bool context_registered(struct intel_context *ce)
308 {
309         return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
310 }
311
312 static inline void set_context_registered(struct intel_context *ce)
313 {
314         lockdep_assert_held(&ce->guc_state.lock);
315         ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
316 }
317
318 static inline void clr_context_registered(struct intel_context *ce)
319 {
320         lockdep_assert_held(&ce->guc_state.lock);
321         ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
322 }
323
324 static inline bool context_policy_required(struct intel_context *ce)
325 {
326         return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
327 }
328
329 static inline void set_context_policy_required(struct intel_context *ce)
330 {
331         lockdep_assert_held(&ce->guc_state.lock);
332         ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
333 }
334
335 static inline void clr_context_policy_required(struct intel_context *ce)
336 {
337         lockdep_assert_held(&ce->guc_state.lock);
338         ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
339 }
340
341 static inline bool context_close_done(struct intel_context *ce)
342 {
343         return ce->guc_state.sched_state & SCHED_STATE_CLOSED;
344 }
345
346 static inline void set_context_close_done(struct intel_context *ce)
347 {
348         lockdep_assert_held(&ce->guc_state.lock);
349         ce->guc_state.sched_state |= SCHED_STATE_CLOSED;
350 }
351
352 static inline u32 context_blocked(struct intel_context *ce)
353 {
354         return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
355                 SCHED_STATE_BLOCKED_SHIFT;
356 }
357
358 static inline void incr_context_blocked(struct intel_context *ce)
359 {
360         lockdep_assert_held(&ce->guc_state.lock);
361
362         ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
363
364         GEM_BUG_ON(!context_blocked(ce));       /* Overflow check */
365 }
366
367 static inline void decr_context_blocked(struct intel_context *ce)
368 {
369         lockdep_assert_held(&ce->guc_state.lock);
370
371         GEM_BUG_ON(!context_blocked(ce));       /* Underflow check */
372
373         ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
374 }
375
376 static struct intel_context *
377 request_to_scheduling_context(struct i915_request *rq)
378 {
379         return intel_context_to_parent(rq->context);
380 }
381
382 static inline bool context_guc_id_invalid(struct intel_context *ce)
383 {
384         return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
385 }
386
387 static inline void set_context_guc_id_invalid(struct intel_context *ce)
388 {
389         ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
390 }
391
392 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
393 {
394         return &ce->engine->gt->uc.guc;
395 }
396
397 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
398 {
399         return rb_entry(rb, struct i915_priolist, node);
400 }
401
402 /*
403  * When using multi-lrc submission a scratch memory area is reserved in the
404  * parent's context state for the process descriptor, work queue, and handshake
405  * between the parent + children contexts to insert safe preemption points
406  * between each of the BBs. Currently the scratch area is sized to a page.
407  *
408  * The layout of this scratch area is below:
409  * 0                                            guc_process_desc
410  * + sizeof(struct guc_process_desc)            child go
411  * + CACHELINE_BYTES                            child join[0]
412  * ...
413  * + CACHELINE_BYTES                            child join[n - 1]
414  * ...                                          unused
415  * PARENT_SCRATCH_SIZE / 2                      work queue start
416  * ...                                          work queue
417  * PARENT_SCRATCH_SIZE - 1                      work queue end
418  */
419 #define WQ_SIZE                 (PARENT_SCRATCH_SIZE / 2)
420 #define WQ_OFFSET               (PARENT_SCRATCH_SIZE - WQ_SIZE)
421
422 struct sync_semaphore {
423         u32 semaphore;
424         u8 unused[CACHELINE_BYTES - sizeof(u32)];
425 };
426
427 struct parent_scratch {
428         union guc_descs {
429                 struct guc_sched_wq_desc wq_desc;
430                 struct guc_process_desc_v69 pdesc;
431         } descs;
432
433         struct sync_semaphore go;
434         struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
435
436         u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
437                 sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
438
439         u32 wq[WQ_SIZE / sizeof(u32)];
440 };
441
442 static u32 __get_parent_scratch_offset(struct intel_context *ce)
443 {
444         GEM_BUG_ON(!ce->parallel.guc.parent_page);
445
446         return ce->parallel.guc.parent_page * PAGE_SIZE;
447 }
448
449 static u32 __get_wq_offset(struct intel_context *ce)
450 {
451         BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
452
453         return __get_parent_scratch_offset(ce) + WQ_OFFSET;
454 }
455
456 static struct parent_scratch *
457 __get_parent_scratch(struct intel_context *ce)
458 {
459         BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
460         BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
461
462         /*
463          * Need to subtract LRC_STATE_OFFSET here as the
464          * parallel.guc.parent_page is the offset into ce->state while
465          * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
466          */
467         return (struct parent_scratch *)
468                 (ce->lrc_reg_state +
469                  ((__get_parent_scratch_offset(ce) -
470                    LRC_STATE_OFFSET) / sizeof(u32)));
471 }
472
473 static struct guc_process_desc_v69 *
474 __get_process_desc_v69(struct intel_context *ce)
475 {
476         struct parent_scratch *ps = __get_parent_scratch(ce);
477
478         return &ps->descs.pdesc;
479 }
480
481 static struct guc_sched_wq_desc *
482 __get_wq_desc_v70(struct intel_context *ce)
483 {
484         struct parent_scratch *ps = __get_parent_scratch(ce);
485
486         return &ps->descs.wq_desc;
487 }
488
489 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
490 {
491         /*
492          * Check for space in work queue. Caching a value of head pointer in
493          * intel_context structure in order reduce the number accesses to shared
494          * GPU memory which may be across a PCIe bus.
495          */
496 #define AVAILABLE_SPACE \
497         CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
498         if (wqi_size > AVAILABLE_SPACE) {
499                 ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
500
501                 if (wqi_size > AVAILABLE_SPACE)
502                         return NULL;
503         }
504 #undef AVAILABLE_SPACE
505
506         return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
507 }
508
509 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
510 {
511         struct intel_context *ce = xa_load(&guc->context_lookup, id);
512
513         GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
514
515         return ce;
516 }
517
518 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
519 {
520         struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
521
522         if (!base)
523                 return NULL;
524
525         GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
526
527         return &base[index];
528 }
529
530 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
531 {
532         u32 size;
533         int ret;
534
535         size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
536                           GUC_MAX_CONTEXT_ID);
537         ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
538                                              (void **)&guc->lrc_desc_pool_vaddr_v69);
539         if (ret)
540                 return ret;
541
542         return 0;
543 }
544
545 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
546 {
547         if (!guc->lrc_desc_pool_vaddr_v69)
548                 return;
549
550         guc->lrc_desc_pool_vaddr_v69 = NULL;
551         i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
552 }
553
554 static inline bool guc_submission_initialized(struct intel_guc *guc)
555 {
556         return guc->submission_initialized;
557 }
558
559 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
560 {
561         struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
562
563         if (desc)
564                 memset(desc, 0, sizeof(*desc));
565 }
566
567 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
568 {
569         return __get_context(guc, id);
570 }
571
572 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
573                                       struct intel_context *ce)
574 {
575         unsigned long flags;
576
577         /*
578          * xarray API doesn't have xa_save_irqsave wrapper, so calling the
579          * lower level functions directly.
580          */
581         xa_lock_irqsave(&guc->context_lookup, flags);
582         __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
583         xa_unlock_irqrestore(&guc->context_lookup, flags);
584 }
585
586 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
587 {
588         unsigned long flags;
589
590         if (unlikely(!guc_submission_initialized(guc)))
591                 return;
592
593         _reset_lrc_desc_v69(guc, id);
594
595         /*
596          * xarray API doesn't have xa_erase_irqsave wrapper, so calling
597          * the lower level functions directly.
598          */
599         xa_lock_irqsave(&guc->context_lookup, flags);
600         __xa_erase(&guc->context_lookup, id);
601         xa_unlock_irqrestore(&guc->context_lookup, flags);
602 }
603
604 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
605 {
606         if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
607                 wake_up_all(&guc->ct.wq);
608 }
609
610 static int guc_submission_send_busy_loop(struct intel_guc *guc,
611                                          const u32 *action,
612                                          u32 len,
613                                          u32 g2h_len_dw,
614                                          bool loop)
615 {
616         /*
617          * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
618          * so we don't handle the case where we don't get a reply because we
619          * aborted the send due to the channel being busy.
620          */
621         GEM_BUG_ON(g2h_len_dw && !loop);
622
623         if (g2h_len_dw)
624                 atomic_inc(&guc->outstanding_submission_g2h);
625
626         return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
627 }
628
629 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
630                                    atomic_t *wait_var,
631                                    bool interruptible,
632                                    long timeout)
633 {
634         const int state = interruptible ?
635                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
636         DEFINE_WAIT(wait);
637
638         might_sleep();
639         GEM_BUG_ON(timeout < 0);
640
641         if (!atomic_read(wait_var))
642                 return 0;
643
644         if (!timeout)
645                 return -ETIME;
646
647         for (;;) {
648                 prepare_to_wait(&guc->ct.wq, &wait, state);
649
650                 if (!atomic_read(wait_var))
651                         break;
652
653                 if (signal_pending_state(state, current)) {
654                         timeout = -EINTR;
655                         break;
656                 }
657
658                 if (!timeout) {
659                         timeout = -ETIME;
660                         break;
661                 }
662
663                 timeout = io_schedule_timeout(timeout);
664         }
665         finish_wait(&guc->ct.wq, &wait);
666
667         return (timeout < 0) ? timeout : 0;
668 }
669
670 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
671 {
672         if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
673                 return 0;
674
675         return intel_guc_wait_for_pending_msg(guc,
676                                               &guc->outstanding_submission_g2h,
677                                               true, timeout);
678 }
679
680 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
681 static int try_context_registration(struct intel_context *ce, bool loop);
682
683 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
684 {
685         int err = 0;
686         struct intel_context *ce = request_to_scheduling_context(rq);
687         u32 action[3];
688         int len = 0;
689         u32 g2h_len_dw = 0;
690         bool enabled;
691
692         lockdep_assert_held(&rq->engine->sched_engine->lock);
693
694         /*
695          * Corner case where requests were sitting in the priority list or a
696          * request resubmitted after the context was banned.
697          */
698         if (unlikely(!intel_context_is_schedulable(ce))) {
699                 i915_request_put(i915_request_mark_eio(rq));
700                 intel_engine_signal_breadcrumbs(ce->engine);
701                 return 0;
702         }
703
704         GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
705         GEM_BUG_ON(context_guc_id_invalid(ce));
706
707         if (context_policy_required(ce)) {
708                 err = guc_context_policy_init_v70(ce, false);
709                 if (err)
710                         return err;
711         }
712
713         spin_lock(&ce->guc_state.lock);
714
715         /*
716          * The request / context will be run on the hardware when scheduling
717          * gets enabled in the unblock. For multi-lrc we still submit the
718          * context to move the LRC tails.
719          */
720         if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
721                 goto out;
722
723         enabled = context_enabled(ce) || context_blocked(ce);
724
725         if (!enabled) {
726                 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
727                 action[len++] = ce->guc_id.id;
728                 action[len++] = GUC_CONTEXT_ENABLE;
729                 set_context_pending_enable(ce);
730                 intel_context_get(ce);
731                 g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
732         } else {
733                 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
734                 action[len++] = ce->guc_id.id;
735         }
736
737         err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
738         if (!enabled && !err) {
739                 trace_intel_context_sched_enable(ce);
740                 atomic_inc(&guc->outstanding_submission_g2h);
741                 set_context_enabled(ce);
742
743                 /*
744                  * Without multi-lrc KMD does the submission step (moving the
745                  * lrc tail) so enabling scheduling is sufficient to submit the
746                  * context. This isn't the case in multi-lrc submission as the
747                  * GuC needs to move the tails, hence the need for another H2G
748                  * to submit a multi-lrc context after enabling scheduling.
749                  */
750                 if (intel_context_is_parent(ce)) {
751                         action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
752                         err = intel_guc_send_nb(guc, action, len - 1, 0);
753                 }
754         } else if (!enabled) {
755                 clr_context_pending_enable(ce);
756                 intel_context_put(ce);
757         }
758         if (likely(!err))
759                 trace_i915_request_guc_submit(rq);
760
761 out:
762         spin_unlock(&ce->guc_state.lock);
763         return err;
764 }
765
766 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
767 {
768         int ret = __guc_add_request(guc, rq);
769
770         if (unlikely(ret == -EBUSY)) {
771                 guc->stalled_request = rq;
772                 guc->submission_stall_reason = STALL_ADD_REQUEST;
773         }
774
775         return ret;
776 }
777
778 static inline void guc_set_lrc_tail(struct i915_request *rq)
779 {
780         rq->context->lrc_reg_state[CTX_RING_TAIL] =
781                 intel_ring_set_tail(rq->ring, rq->tail);
782 }
783
784 static inline int rq_prio(const struct i915_request *rq)
785 {
786         return rq->sched.attr.priority;
787 }
788
789 static bool is_multi_lrc_rq(struct i915_request *rq)
790 {
791         return intel_context_is_parallel(rq->context);
792 }
793
794 static bool can_merge_rq(struct i915_request *rq,
795                          struct i915_request *last)
796 {
797         return request_to_scheduling_context(rq) ==
798                 request_to_scheduling_context(last);
799 }
800
801 static u32 wq_space_until_wrap(struct intel_context *ce)
802 {
803         return (WQ_SIZE - ce->parallel.guc.wqi_tail);
804 }
805
806 static void write_wqi(struct intel_context *ce, u32 wqi_size)
807 {
808         BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
809
810         /*
811          * Ensure WQI are visible before updating tail
812          */
813         intel_guc_write_barrier(ce_to_guc(ce));
814
815         ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
816                 (WQ_SIZE - 1);
817         WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
818 }
819
820 static int guc_wq_noop_append(struct intel_context *ce)
821 {
822         u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
823         u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
824
825         if (!wqi)
826                 return -EBUSY;
827
828         GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
829
830         *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
831                 FIELD_PREP(WQ_LEN_MASK, len_dw);
832         ce->parallel.guc.wqi_tail = 0;
833
834         return 0;
835 }
836
837 static int __guc_wq_item_append(struct i915_request *rq)
838 {
839         struct intel_context *ce = request_to_scheduling_context(rq);
840         struct intel_context *child;
841         unsigned int wqi_size = (ce->parallel.number_children + 4) *
842                 sizeof(u32);
843         u32 *wqi;
844         u32 len_dw = (wqi_size / sizeof(u32)) - 1;
845         int ret;
846
847         /* Ensure context is in correct state updating work queue */
848         GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
849         GEM_BUG_ON(context_guc_id_invalid(ce));
850         GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
851         GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
852
853         /* Insert NOOP if this work queue item will wrap the tail pointer. */
854         if (wqi_size > wq_space_until_wrap(ce)) {
855                 ret = guc_wq_noop_append(ce);
856                 if (ret)
857                         return ret;
858         }
859
860         wqi = get_wq_pointer(ce, wqi_size);
861         if (!wqi)
862                 return -EBUSY;
863
864         GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
865
866         *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
867                 FIELD_PREP(WQ_LEN_MASK, len_dw);
868         *wqi++ = ce->lrc.lrca;
869         *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
870                FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
871         *wqi++ = 0;     /* fence_id */
872         for_each_child(ce, child)
873                 *wqi++ = child->ring->tail / sizeof(u64);
874
875         write_wqi(ce, wqi_size);
876
877         return 0;
878 }
879
880 static int guc_wq_item_append(struct intel_guc *guc,
881                               struct i915_request *rq)
882 {
883         struct intel_context *ce = request_to_scheduling_context(rq);
884         int ret;
885
886         if (unlikely(!intel_context_is_schedulable(ce)))
887                 return 0;
888
889         ret = __guc_wq_item_append(rq);
890         if (unlikely(ret == -EBUSY)) {
891                 guc->stalled_request = rq;
892                 guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
893         }
894
895         return ret;
896 }
897
898 static bool multi_lrc_submit(struct i915_request *rq)
899 {
900         struct intel_context *ce = request_to_scheduling_context(rq);
901
902         intel_ring_set_tail(rq->ring, rq->tail);
903
904         /*
905          * We expect the front end (execbuf IOCTL) to set this flag on the last
906          * request generated from a multi-BB submission. This indicates to the
907          * backend (GuC interface) that we should submit this context thus
908          * submitting all the requests generated in parallel.
909          */
910         return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
911                !intel_context_is_schedulable(ce);
912 }
913
914 static int guc_dequeue_one_context(struct intel_guc *guc)
915 {
916         struct i915_sched_engine * const sched_engine = guc->sched_engine;
917         struct i915_request *last = NULL;
918         bool submit = false;
919         struct rb_node *rb;
920         int ret;
921
922         lockdep_assert_held(&sched_engine->lock);
923
924         if (guc->stalled_request) {
925                 submit = true;
926                 last = guc->stalled_request;
927
928                 switch (guc->submission_stall_reason) {
929                 case STALL_REGISTER_CONTEXT:
930                         goto register_context;
931                 case STALL_MOVE_LRC_TAIL:
932                         goto move_lrc_tail;
933                 case STALL_ADD_REQUEST:
934                         goto add_request;
935                 default:
936                         MISSING_CASE(guc->submission_stall_reason);
937                 }
938         }
939
940         while ((rb = rb_first_cached(&sched_engine->queue))) {
941                 struct i915_priolist *p = to_priolist(rb);
942                 struct i915_request *rq, *rn;
943
944                 priolist_for_each_request_consume(rq, rn, p) {
945                         if (last && !can_merge_rq(rq, last))
946                                 goto register_context;
947
948                         list_del_init(&rq->sched.link);
949
950                         __i915_request_submit(rq);
951
952                         trace_i915_request_in(rq, 0);
953                         last = rq;
954
955                         if (is_multi_lrc_rq(rq)) {
956                                 /*
957                                  * We need to coalesce all multi-lrc requests in
958                                  * a relationship into a single H2G. We are
959                                  * guaranteed that all of these requests will be
960                                  * submitted sequentially.
961                                  */
962                                 if (multi_lrc_submit(rq)) {
963                                         submit = true;
964                                         goto register_context;
965                                 }
966                         } else {
967                                 submit = true;
968                         }
969                 }
970
971                 rb_erase_cached(&p->node, &sched_engine->queue);
972                 i915_priolist_free(p);
973         }
974
975 register_context:
976         if (submit) {
977                 struct intel_context *ce = request_to_scheduling_context(last);
978
979                 if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
980                              intel_context_is_schedulable(ce))) {
981                         ret = try_context_registration(ce, false);
982                         if (unlikely(ret == -EPIPE)) {
983                                 goto deadlk;
984                         } else if (ret == -EBUSY) {
985                                 guc->stalled_request = last;
986                                 guc->submission_stall_reason =
987                                         STALL_REGISTER_CONTEXT;
988                                 goto schedule_tasklet;
989                         } else if (ret != 0) {
990                                 GEM_WARN_ON(ret);       /* Unexpected */
991                                 goto deadlk;
992                         }
993                 }
994
995 move_lrc_tail:
996                 if (is_multi_lrc_rq(last)) {
997                         ret = guc_wq_item_append(guc, last);
998                         if (ret == -EBUSY) {
999                                 goto schedule_tasklet;
1000                         } else if (ret != 0) {
1001                                 GEM_WARN_ON(ret);       /* Unexpected */
1002                                 goto deadlk;
1003                         }
1004                 } else {
1005                         guc_set_lrc_tail(last);
1006                 }
1007
1008 add_request:
1009                 ret = guc_add_request(guc, last);
1010                 if (unlikely(ret == -EPIPE)) {
1011                         goto deadlk;
1012                 } else if (ret == -EBUSY) {
1013                         goto schedule_tasklet;
1014                 } else if (ret != 0) {
1015                         GEM_WARN_ON(ret);       /* Unexpected */
1016                         goto deadlk;
1017                 }
1018         }
1019
1020         guc->stalled_request = NULL;
1021         guc->submission_stall_reason = STALL_NONE;
1022         return submit;
1023
1024 deadlk:
1025         sched_engine->tasklet.callback = NULL;
1026         tasklet_disable_nosync(&sched_engine->tasklet);
1027         return false;
1028
1029 schedule_tasklet:
1030         tasklet_schedule(&sched_engine->tasklet);
1031         return false;
1032 }
1033
1034 static void guc_submission_tasklet(struct tasklet_struct *t)
1035 {
1036         struct i915_sched_engine *sched_engine =
1037                 from_tasklet(sched_engine, t, tasklet);
1038         unsigned long flags;
1039         bool loop;
1040
1041         spin_lock_irqsave(&sched_engine->lock, flags);
1042
1043         do {
1044                 loop = guc_dequeue_one_context(sched_engine->private_data);
1045         } while (loop);
1046
1047         i915_sched_engine_reset_on_empty(sched_engine);
1048
1049         spin_unlock_irqrestore(&sched_engine->lock, flags);
1050 }
1051
1052 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1053 {
1054         if (iir & GT_RENDER_USER_INTERRUPT)
1055                 intel_engine_signal_breadcrumbs(engine);
1056 }
1057
1058 static void __guc_context_destroy(struct intel_context *ce);
1059 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1060 static void guc_signal_context_fence(struct intel_context *ce);
1061 static void guc_cancel_context_requests(struct intel_context *ce);
1062 static void guc_blocked_fence_complete(struct intel_context *ce);
1063
1064 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1065 {
1066         struct intel_context *ce;
1067         unsigned long index, flags;
1068         bool pending_disable, pending_enable, deregister, destroyed, banned;
1069
1070         xa_lock_irqsave(&guc->context_lookup, flags);
1071         xa_for_each(&guc->context_lookup, index, ce) {
1072                 /*
1073                  * Corner case where the ref count on the object is zero but and
1074                  * deregister G2H was lost. In this case we don't touch the ref
1075                  * count and finish the destroy of the context.
1076                  */
1077                 bool do_put = kref_get_unless_zero(&ce->ref);
1078
1079                 xa_unlock(&guc->context_lookup);
1080
1081                 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
1082                     (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) {
1083                         /* successful cancel so jump straight to close it */
1084                         intel_context_sched_disable_unpin(ce);
1085                 }
1086
1087                 spin_lock(&ce->guc_state.lock);
1088
1089                 /*
1090                  * Once we are at this point submission_disabled() is guaranteed
1091                  * to be visible to all callers who set the below flags (see above
1092                  * flush and flushes in reset_prepare). If submission_disabled()
1093                  * is set, the caller shouldn't set these flags.
1094                  */
1095
1096                 destroyed = context_destroyed(ce);
1097                 pending_enable = context_pending_enable(ce);
1098                 pending_disable = context_pending_disable(ce);
1099                 deregister = context_wait_for_deregister_to_register(ce);
1100                 banned = context_banned(ce);
1101                 init_sched_state(ce);
1102
1103                 spin_unlock(&ce->guc_state.lock);
1104
1105                 if (pending_enable || destroyed || deregister) {
1106                         decr_outstanding_submission_g2h(guc);
1107                         if (deregister)
1108                                 guc_signal_context_fence(ce);
1109                         if (destroyed) {
1110                                 intel_gt_pm_put_async_untracked(guc_to_gt(guc));
1111                                 release_guc_id(guc, ce);
1112                                 __guc_context_destroy(ce);
1113                         }
1114                         if (pending_enable || deregister)
1115                                 intel_context_put(ce);
1116                 }
1117
1118                 /* Not mutualy exclusive with above if statement. */
1119                 if (pending_disable) {
1120                         guc_signal_context_fence(ce);
1121                         if (banned) {
1122                                 guc_cancel_context_requests(ce);
1123                                 intel_engine_signal_breadcrumbs(ce->engine);
1124                         }
1125                         intel_context_sched_disable_unpin(ce);
1126                         decr_outstanding_submission_g2h(guc);
1127
1128                         spin_lock(&ce->guc_state.lock);
1129                         guc_blocked_fence_complete(ce);
1130                         spin_unlock(&ce->guc_state.lock);
1131
1132                         intel_context_put(ce);
1133                 }
1134
1135                 if (do_put)
1136                         intel_context_put(ce);
1137                 xa_lock(&guc->context_lookup);
1138         }
1139         xa_unlock_irqrestore(&guc->context_lookup, flags);
1140 }
1141
1142 /*
1143  * GuC stores busyness stats for each engine at context in/out boundaries. A
1144  * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1145  * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1146  * GuC.
1147  *
1148  * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1149  * is valid (!= ~0) and start is non-zero, the engine is considered to be
1150  * active. For an active engine total busyness = total + (now - start), where
1151  * 'now' is the time at which the busyness is sampled. For inactive engine,
1152  * total busyness = total.
1153  *
1154  * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1155  *
1156  * The start and total values provided by GuC are 32 bits and wrap around in a
1157  * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1158  * increasing ns values, there is a need for this implementation to account for
1159  * overflows and extend the GuC provided values to 64 bits before returning
1160  * busyness to the user. In order to do that, a worker runs periodically at
1161  * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1162  * 27 seconds for a gt clock frequency of 19.2 MHz).
1163  */
1164
1165 #define WRAP_TIME_CLKS U32_MAX
1166 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1167
1168 static void
1169 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1170 {
1171         u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1172         u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1173
1174         if (new_start == lower_32_bits(*prev_start))
1175                 return;
1176
1177         /*
1178          * When gt is unparked, we update the gt timestamp and start the ping
1179          * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1180          * is unparked, all switched in contexts will have a start time that is
1181          * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1182          *
1183          * If neither gt_stamp nor new_start has rolled over, then the
1184          * gt_stamp_hi does not need to be adjusted, however if one of them has
1185          * rolled over, we need to adjust gt_stamp_hi accordingly.
1186          *
1187          * The below conditions address the cases of new_start rollover and
1188          * gt_stamp_last rollover respectively.
1189          */
1190         if (new_start < gt_stamp_last &&
1191             (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1192                 gt_stamp_hi++;
1193
1194         if (new_start > gt_stamp_last &&
1195             (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1196                 gt_stamp_hi--;
1197
1198         *prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1199 }
1200
1201 #define record_read(map_, field_) \
1202         iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1203
1204 /*
1205  * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1206  * we run into a race where the value read is inconsistent. Sometimes the
1207  * inconsistency is in reading the upper MSB bytes of the last_in value when
1208  * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1209  * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1210  * determine validity of these values. Instead we read the values multiple times
1211  * until they are consistent. In test runs, 3 attempts results in consistent
1212  * values. The upper bound is set to 6 attempts and may need to be tuned as per
1213  * any new occurences.
1214  */
1215 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1216                                       u32 *last_in, u32 *id, u32 *total)
1217 {
1218         struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1219         int i = 0;
1220
1221         do {
1222                 *last_in = record_read(&rec_map, last_switch_in_stamp);
1223                 *id = record_read(&rec_map, current_context_index);
1224                 *total = record_read(&rec_map, total_runtime);
1225
1226                 if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1227                     record_read(&rec_map, current_context_index) == *id &&
1228                     record_read(&rec_map, total_runtime) == *total)
1229                         break;
1230         } while (++i < 6);
1231 }
1232
1233 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1234 {
1235         struct intel_engine_guc_stats *stats = &engine->stats.guc;
1236         struct intel_guc *guc = &engine->gt->uc.guc;
1237         u32 last_switch, ctx_id, total;
1238
1239         lockdep_assert_held(&guc->timestamp.lock);
1240
1241         __get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1242
1243         stats->running = ctx_id != ~0U && last_switch;
1244         if (stats->running)
1245                 __extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1246
1247         /*
1248          * Instead of adjusting the total for overflow, just add the
1249          * difference from previous sample stats->total_gt_clks
1250          */
1251         if (total && total != ~0U) {
1252                 stats->total_gt_clks += (u32)(total - stats->prev_total);
1253                 stats->prev_total = total;
1254         }
1255 }
1256
1257 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1258 {
1259         intel_wakeref_t wakeref;
1260         u32 reg, shift;
1261
1262         with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1263                 reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1264
1265         shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1266                 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1267
1268         return 3 - shift;
1269 }
1270
1271 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1272 {
1273         struct intel_gt *gt = guc_to_gt(guc);
1274         u32 gt_stamp_lo, gt_stamp_hi;
1275         u64 gpm_ts;
1276
1277         lockdep_assert_held(&guc->timestamp.lock);
1278
1279         gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1280         gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1281                                           MISC_STATUS1) >> guc->timestamp.shift;
1282         gt_stamp_lo = lower_32_bits(gpm_ts);
1283         *now = ktime_get();
1284
1285         if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1286                 gt_stamp_hi++;
1287
1288         guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1289 }
1290
1291 /*
1292  * Unlike the execlist mode of submission total and active times are in terms of
1293  * gt clocks. The *now parameter is retained to return the cpu time at which the
1294  * busyness was sampled.
1295  */
1296 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1297 {
1298         struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1299         struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1300         struct intel_gt *gt = engine->gt;
1301         struct intel_guc *guc = &gt->uc.guc;
1302         u64 total, gt_stamp_saved;
1303         unsigned long flags;
1304         u32 reset_count;
1305         bool in_reset;
1306         intel_wakeref_t wakeref;
1307
1308         spin_lock_irqsave(&guc->timestamp.lock, flags);
1309
1310         /*
1311          * If a reset happened, we risk reading partially updated engine
1312          * busyness from GuC, so we just use the driver stored copy of busyness.
1313          * Synchronize with gt reset using reset_count and the
1314          * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1315          * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1316          * usable by checking the flag afterwards.
1317          */
1318         reset_count = i915_reset_count(gpu_error);
1319         in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1320
1321         *now = ktime_get();
1322
1323         /*
1324          * The active busyness depends on start_gt_clk and gt_stamp.
1325          * gt_stamp is updated by i915 only when gt is awake and the
1326          * start_gt_clk is derived from GuC state. To get a consistent
1327          * view of activity, we query the GuC state only if gt is awake.
1328          */
1329         wakeref = in_reset ? 0 : intel_gt_pm_get_if_awake(gt);
1330         if (wakeref) {
1331                 stats_saved = *stats;
1332                 gt_stamp_saved = guc->timestamp.gt_stamp;
1333                 /*
1334                  * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1335                  * start_gt_clk' calculation below for active engines.
1336                  */
1337                 guc_update_engine_gt_clks(engine);
1338                 guc_update_pm_timestamp(guc, now);
1339                 intel_gt_pm_put_async(gt, wakeref);
1340                 if (i915_reset_count(gpu_error) != reset_count) {
1341                         *stats = stats_saved;
1342                         guc->timestamp.gt_stamp = gt_stamp_saved;
1343                 }
1344         }
1345
1346         total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1347         if (stats->running) {
1348                 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1349
1350                 total += intel_gt_clock_interval_to_ns(gt, clk);
1351         }
1352
1353         spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1354
1355         return ns_to_ktime(total);
1356 }
1357
1358 static void guc_enable_busyness_worker(struct intel_guc *guc)
1359 {
1360         mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay);
1361 }
1362
1363 static void guc_cancel_busyness_worker(struct intel_guc *guc)
1364 {
1365         cancel_delayed_work_sync(&guc->timestamp.work);
1366 }
1367
1368 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1369 {
1370         struct intel_gt *gt = guc_to_gt(guc);
1371         struct intel_engine_cs *engine;
1372         enum intel_engine_id id;
1373         unsigned long flags;
1374         ktime_t unused;
1375
1376         guc_cancel_busyness_worker(guc);
1377
1378         spin_lock_irqsave(&guc->timestamp.lock, flags);
1379
1380         guc_update_pm_timestamp(guc, &unused);
1381         for_each_engine(engine, gt, id) {
1382                 guc_update_engine_gt_clks(engine);
1383                 engine->stats.guc.prev_total = 0;
1384         }
1385
1386         spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1387 }
1388
1389 static void __update_guc_busyness_stats(struct intel_guc *guc)
1390 {
1391         struct intel_gt *gt = guc_to_gt(guc);
1392         struct intel_engine_cs *engine;
1393         enum intel_engine_id id;
1394         unsigned long flags;
1395         ktime_t unused;
1396
1397         guc->timestamp.last_stat_jiffies = jiffies;
1398
1399         spin_lock_irqsave(&guc->timestamp.lock, flags);
1400
1401         guc_update_pm_timestamp(guc, &unused);
1402         for_each_engine(engine, gt, id)
1403                 guc_update_engine_gt_clks(engine);
1404
1405         spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1406 }
1407
1408 static void __guc_context_update_stats(struct intel_context *ce)
1409 {
1410         struct intel_guc *guc = ce_to_guc(ce);
1411         unsigned long flags;
1412
1413         spin_lock_irqsave(&guc->timestamp.lock, flags);
1414         lrc_update_runtime(ce);
1415         spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1416 }
1417
1418 static void guc_context_update_stats(struct intel_context *ce)
1419 {
1420         if (!intel_context_pin_if_active(ce))
1421                 return;
1422
1423         __guc_context_update_stats(ce);
1424         intel_context_unpin(ce);
1425 }
1426
1427 static void guc_timestamp_ping(struct work_struct *wrk)
1428 {
1429         struct intel_guc *guc = container_of(wrk, typeof(*guc),
1430                                              timestamp.work.work);
1431         struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1432         struct intel_gt *gt = guc_to_gt(guc);
1433         struct intel_context *ce;
1434         intel_wakeref_t wakeref;
1435         unsigned long index;
1436         int srcu, ret;
1437
1438         /*
1439          * Ideally the busyness worker should take a gt pm wakeref because the
1440          * worker only needs to be active while gt is awake. However, the
1441          * gt_park path cancels the worker synchronously and this complicates
1442          * the flow if the worker is also running at the same time. The cancel
1443          * waits for the worker and when the worker releases the wakeref, that
1444          * would call gt_park and would lead to a deadlock.
1445          *
1446          * The resolution is to take the global pm wakeref if runtime pm is
1447          * already active. If not, we don't need to update the busyness stats as
1448          * the stats would already be updated when the gt was parked.
1449          *
1450          * Note:
1451          * - We do not requeue the worker if we cannot take a reference to runtime
1452          *   pm since intel_guc_busyness_unpark would requeue the worker in the
1453          *   resume path.
1454          *
1455          * - If the gt was parked longer than time taken for GT timestamp to roll
1456          *   over, we ignore those rollovers since we don't care about tracking
1457          *   the exact GT time. We only care about roll overs when the gt is
1458          *   active and running workloads.
1459          *
1460          * - There is a window of time between gt_park and runtime suspend,
1461          *   where the worker may run. This is acceptable since the worker will
1462          *   not find any new data to update busyness.
1463          */
1464         wakeref = intel_runtime_pm_get_if_active(&gt->i915->runtime_pm);
1465         if (!wakeref)
1466                 return;
1467
1468         /*
1469          * Synchronize with gt reset to make sure the worker does not
1470          * corrupt the engine/guc stats. NB: can't actually block waiting
1471          * for a reset to complete as the reset requires flushing out
1472          * this worker thread if started. So waiting would deadlock.
1473          */
1474         ret = intel_gt_reset_trylock(gt, &srcu);
1475         if (ret)
1476                 goto err_trylock;
1477
1478         __update_guc_busyness_stats(guc);
1479
1480         /* adjust context stats for overflow */
1481         xa_for_each(&guc->context_lookup, index, ce)
1482                 guc_context_update_stats(ce);
1483
1484         intel_gt_reset_unlock(gt, srcu);
1485
1486         guc_enable_busyness_worker(guc);
1487
1488 err_trylock:
1489         intel_runtime_pm_put(&gt->i915->runtime_pm, wakeref);
1490 }
1491
1492 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1493 {
1494         u32 offset = intel_guc_engine_usage_offset(guc);
1495         u32 action[] = {
1496                 INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1497                 offset,
1498                 0,
1499         };
1500
1501         return intel_guc_send(guc, action, ARRAY_SIZE(action));
1502 }
1503
1504 static int guc_init_engine_stats(struct intel_guc *guc)
1505 {
1506         struct intel_gt *gt = guc_to_gt(guc);
1507         intel_wakeref_t wakeref;
1508         int ret;
1509
1510         with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
1511                 ret = guc_action_enable_usage_stats(guc);
1512
1513         if (ret)
1514                 guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret));
1515         else
1516                 guc_enable_busyness_worker(guc);
1517
1518         return ret;
1519 }
1520
1521 static void guc_fini_engine_stats(struct intel_guc *guc)
1522 {
1523         guc_cancel_busyness_worker(guc);
1524 }
1525
1526 void intel_guc_busyness_park(struct intel_gt *gt)
1527 {
1528         struct intel_guc *guc = &gt->uc.guc;
1529
1530         if (!guc_submission_initialized(guc))
1531                 return;
1532
1533         /*
1534          * There is a race with suspend flow where the worker runs after suspend
1535          * and causes an unclaimed register access warning. Cancel the worker
1536          * synchronously here.
1537          */
1538         guc_cancel_busyness_worker(guc);
1539
1540         /*
1541          * Before parking, we should sample engine busyness stats if we need to.
1542          * We can skip it if we are less than half a ping from the last time we
1543          * sampled the busyness stats.
1544          */
1545         if (guc->timestamp.last_stat_jiffies &&
1546             !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1547                         (guc->timestamp.ping_delay / 2)))
1548                 return;
1549
1550         __update_guc_busyness_stats(guc);
1551 }
1552
1553 void intel_guc_busyness_unpark(struct intel_gt *gt)
1554 {
1555         struct intel_guc *guc = &gt->uc.guc;
1556         unsigned long flags;
1557         ktime_t unused;
1558
1559         if (!guc_submission_initialized(guc))
1560                 return;
1561
1562         spin_lock_irqsave(&guc->timestamp.lock, flags);
1563         guc_update_pm_timestamp(guc, &unused);
1564         spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1565         guc_enable_busyness_worker(guc);
1566 }
1567
1568 static inline bool
1569 submission_disabled(struct intel_guc *guc)
1570 {
1571         struct i915_sched_engine * const sched_engine = guc->sched_engine;
1572
1573         return unlikely(!sched_engine ||
1574                         !__tasklet_is_enabled(&sched_engine->tasklet) ||
1575                         intel_gt_is_wedged(guc_to_gt(guc)));
1576 }
1577
1578 static void disable_submission(struct intel_guc *guc)
1579 {
1580         struct i915_sched_engine * const sched_engine = guc->sched_engine;
1581
1582         if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1583                 GEM_BUG_ON(!guc->ct.enabled);
1584                 __tasklet_disable_sync_once(&sched_engine->tasklet);
1585                 sched_engine->tasklet.callback = NULL;
1586         }
1587 }
1588
1589 static void enable_submission(struct intel_guc *guc)
1590 {
1591         struct i915_sched_engine * const sched_engine = guc->sched_engine;
1592         unsigned long flags;
1593
1594         spin_lock_irqsave(&guc->sched_engine->lock, flags);
1595         sched_engine->tasklet.callback = guc_submission_tasklet;
1596         wmb();  /* Make sure callback visible */
1597         if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1598             __tasklet_enable(&sched_engine->tasklet)) {
1599                 GEM_BUG_ON(!guc->ct.enabled);
1600
1601                 /* And kick in case we missed a new request submission. */
1602                 tasklet_hi_schedule(&sched_engine->tasklet);
1603         }
1604         spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1605 }
1606
1607 static void guc_flush_submissions(struct intel_guc *guc)
1608 {
1609         struct i915_sched_engine * const sched_engine = guc->sched_engine;
1610         unsigned long flags;
1611
1612         spin_lock_irqsave(&sched_engine->lock, flags);
1613         spin_unlock_irqrestore(&sched_engine->lock, flags);
1614 }
1615
1616 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1617
1618 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1619 {
1620         if (unlikely(!guc_submission_initialized(guc))) {
1621                 /* Reset called during driver load? GuC not yet initialised! */
1622                 return;
1623         }
1624
1625         intel_gt_park_heartbeats(guc_to_gt(guc));
1626         disable_submission(guc);
1627         guc->interrupts.disable(guc);
1628         __reset_guc_busyness_stats(guc);
1629
1630         /* Flush IRQ handler */
1631         spin_lock_irq(guc_to_gt(guc)->irq_lock);
1632         spin_unlock_irq(guc_to_gt(guc)->irq_lock);
1633
1634         guc_flush_submissions(guc);
1635         guc_flush_destroyed_contexts(guc);
1636         flush_work(&guc->ct.requests.worker);
1637
1638         scrub_guc_desc_for_outstanding_g2h(guc);
1639 }
1640
1641 static struct intel_engine_cs *
1642 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1643 {
1644         struct intel_engine_cs *engine;
1645         intel_engine_mask_t tmp, mask = ve->mask;
1646         unsigned int num_siblings = 0;
1647
1648         for_each_engine_masked(engine, ve->gt, mask, tmp)
1649                 if (num_siblings++ == sibling)
1650                         return engine;
1651
1652         return NULL;
1653 }
1654
1655 static inline struct intel_engine_cs *
1656 __context_to_physical_engine(struct intel_context *ce)
1657 {
1658         struct intel_engine_cs *engine = ce->engine;
1659
1660         if (intel_engine_is_virtual(engine))
1661                 engine = guc_virtual_get_sibling(engine, 0);
1662
1663         return engine;
1664 }
1665
1666 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1667 {
1668         struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1669
1670         if (!intel_context_is_schedulable(ce))
1671                 return;
1672
1673         GEM_BUG_ON(!intel_context_is_pinned(ce));
1674
1675         /*
1676          * We want a simple context + ring to execute the breadcrumb update.
1677          * We cannot rely on the context being intact across the GPU hang,
1678          * so clear it and rebuild just what we need for the breadcrumb.
1679          * All pending requests for this context will be zapped, and any
1680          * future request will be after userspace has had the opportunity
1681          * to recreate its own state.
1682          */
1683         if (scrub)
1684                 lrc_init_regs(ce, engine, true);
1685
1686         /* Rerun the request; its payload has been neutered (if guilty). */
1687         lrc_update_regs(ce, engine, head);
1688 }
1689
1690 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1691 {
1692         /*
1693          * Wa_22011802037: In addition to stopping the cs, we need
1694          * to wait for any pending mi force wakeups
1695          */
1696         if (intel_engine_reset_needs_wa_22011802037(engine->gt)) {
1697                 intel_engine_stop_cs(engine);
1698                 intel_engine_wait_for_pending_mi_fw(engine);
1699         }
1700 }
1701
1702 static void guc_reset_nop(struct intel_engine_cs *engine)
1703 {
1704 }
1705
1706 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1707 {
1708 }
1709
1710 static void
1711 __unwind_incomplete_requests(struct intel_context *ce)
1712 {
1713         struct i915_request *rq, *rn;
1714         struct list_head *pl;
1715         int prio = I915_PRIORITY_INVALID;
1716         struct i915_sched_engine * const sched_engine =
1717                 ce->engine->sched_engine;
1718         unsigned long flags;
1719
1720         spin_lock_irqsave(&sched_engine->lock, flags);
1721         spin_lock(&ce->guc_state.lock);
1722         list_for_each_entry_safe_reverse(rq, rn,
1723                                          &ce->guc_state.requests,
1724                                          sched.link) {
1725                 if (i915_request_completed(rq))
1726                         continue;
1727
1728                 list_del_init(&rq->sched.link);
1729                 __i915_request_unsubmit(rq);
1730
1731                 /* Push the request back into the queue for later resubmission. */
1732                 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1733                 if (rq_prio(rq) != prio) {
1734                         prio = rq_prio(rq);
1735                         pl = i915_sched_lookup_priolist(sched_engine, prio);
1736                 }
1737                 GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1738
1739                 list_add(&rq->sched.link, pl);
1740                 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1741         }
1742         spin_unlock(&ce->guc_state.lock);
1743         spin_unlock_irqrestore(&sched_engine->lock, flags);
1744 }
1745
1746 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1747 {
1748         bool guilty;
1749         struct i915_request *rq;
1750         unsigned long flags;
1751         u32 head;
1752         int i, number_children = ce->parallel.number_children;
1753         struct intel_context *parent = ce;
1754
1755         GEM_BUG_ON(intel_context_is_child(ce));
1756
1757         intel_context_get(ce);
1758
1759         /*
1760          * GuC will implicitly mark the context as non-schedulable when it sends
1761          * the reset notification. Make sure our state reflects this change. The
1762          * context will be marked enabled on resubmission.
1763          */
1764         spin_lock_irqsave(&ce->guc_state.lock, flags);
1765         clr_context_enabled(ce);
1766         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1767
1768         /*
1769          * For each context in the relationship find the hanging request
1770          * resetting each context / request as needed
1771          */
1772         for (i = 0; i < number_children + 1; ++i) {
1773                 if (!intel_context_is_pinned(ce))
1774                         goto next_context;
1775
1776                 guilty = false;
1777                 rq = intel_context_get_active_request(ce);
1778                 if (!rq) {
1779                         head = ce->ring->tail;
1780                         goto out_replay;
1781                 }
1782
1783                 if (i915_request_started(rq))
1784                         guilty = stalled & ce->engine->mask;
1785
1786                 GEM_BUG_ON(i915_active_is_idle(&ce->active));
1787                 head = intel_ring_wrap(ce->ring, rq->head);
1788
1789                 __i915_request_reset(rq, guilty);
1790                 i915_request_put(rq);
1791 out_replay:
1792                 guc_reset_state(ce, head, guilty);
1793 next_context:
1794                 if (i != number_children)
1795                         ce = list_next_entry(ce, parallel.child_link);
1796         }
1797
1798         __unwind_incomplete_requests(parent);
1799         intel_context_put(parent);
1800 }
1801
1802 void wake_up_all_tlb_invalidate(struct intel_guc *guc)
1803 {
1804         struct intel_guc_tlb_wait *wait;
1805         unsigned long i;
1806
1807         if (!intel_guc_tlb_invalidation_is_available(guc))
1808                 return;
1809
1810         xa_lock_irq(&guc->tlb_lookup);
1811         xa_for_each(&guc->tlb_lookup, i, wait)
1812                 wake_up(&wait->wq);
1813         xa_unlock_irq(&guc->tlb_lookup);
1814 }
1815
1816 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1817 {
1818         struct intel_context *ce;
1819         unsigned long index;
1820         unsigned long flags;
1821
1822         if (unlikely(!guc_submission_initialized(guc))) {
1823                 /* Reset called during driver load? GuC not yet initialised! */
1824                 return;
1825         }
1826
1827         xa_lock_irqsave(&guc->context_lookup, flags);
1828         xa_for_each(&guc->context_lookup, index, ce) {
1829                 if (!kref_get_unless_zero(&ce->ref))
1830                         continue;
1831
1832                 xa_unlock(&guc->context_lookup);
1833
1834                 if (intel_context_is_pinned(ce) &&
1835                     !intel_context_is_child(ce))
1836                         __guc_reset_context(ce, stalled);
1837
1838                 intel_context_put(ce);
1839
1840                 xa_lock(&guc->context_lookup);
1841         }
1842         xa_unlock_irqrestore(&guc->context_lookup, flags);
1843
1844         /* GuC is blown away, drop all references to contexts */
1845         xa_destroy(&guc->context_lookup);
1846 }
1847
1848 static void guc_cancel_context_requests(struct intel_context *ce)
1849 {
1850         struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1851         struct i915_request *rq;
1852         unsigned long flags;
1853
1854         /* Mark all executing requests as skipped. */
1855         spin_lock_irqsave(&sched_engine->lock, flags);
1856         spin_lock(&ce->guc_state.lock);
1857         list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1858                 i915_request_put(i915_request_mark_eio(rq));
1859         spin_unlock(&ce->guc_state.lock);
1860         spin_unlock_irqrestore(&sched_engine->lock, flags);
1861 }
1862
1863 static void
1864 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1865 {
1866         struct i915_request *rq, *rn;
1867         struct rb_node *rb;
1868         unsigned long flags;
1869
1870         /* Can be called during boot if GuC fails to load */
1871         if (!sched_engine)
1872                 return;
1873
1874         /*
1875          * Before we call engine->cancel_requests(), we should have exclusive
1876          * access to the submission state. This is arranged for us by the
1877          * caller disabling the interrupt generation, the tasklet and other
1878          * threads that may then access the same state, giving us a free hand
1879          * to reset state. However, we still need to let lockdep be aware that
1880          * we know this state may be accessed in hardirq context, so we
1881          * disable the irq around this manipulation and we want to keep
1882          * the spinlock focused on its duties and not accidentally conflate
1883          * coverage to the submission's irq state. (Similarly, although we
1884          * shouldn't need to disable irq around the manipulation of the
1885          * submission's irq state, we also wish to remind ourselves that
1886          * it is irq state.)
1887          */
1888         spin_lock_irqsave(&sched_engine->lock, flags);
1889
1890         /* Flush the queued requests to the timeline list (for retiring). */
1891         while ((rb = rb_first_cached(&sched_engine->queue))) {
1892                 struct i915_priolist *p = to_priolist(rb);
1893
1894                 priolist_for_each_request_consume(rq, rn, p) {
1895                         list_del_init(&rq->sched.link);
1896
1897                         __i915_request_submit(rq);
1898
1899                         i915_request_put(i915_request_mark_eio(rq));
1900                 }
1901
1902                 rb_erase_cached(&p->node, &sched_engine->queue);
1903                 i915_priolist_free(p);
1904         }
1905
1906         /* Remaining _unready_ requests will be nop'ed when submitted */
1907
1908         sched_engine->queue_priority_hint = INT_MIN;
1909         sched_engine->queue = RB_ROOT_CACHED;
1910
1911         spin_unlock_irqrestore(&sched_engine->lock, flags);
1912 }
1913
1914 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1915 {
1916         struct intel_context *ce;
1917         unsigned long index;
1918         unsigned long flags;
1919
1920         xa_lock_irqsave(&guc->context_lookup, flags);
1921         xa_for_each(&guc->context_lookup, index, ce) {
1922                 if (!kref_get_unless_zero(&ce->ref))
1923                         continue;
1924
1925                 xa_unlock(&guc->context_lookup);
1926
1927                 if (intel_context_is_pinned(ce) &&
1928                     !intel_context_is_child(ce))
1929                         guc_cancel_context_requests(ce);
1930
1931                 intel_context_put(ce);
1932
1933                 xa_lock(&guc->context_lookup);
1934         }
1935         xa_unlock_irqrestore(&guc->context_lookup, flags);
1936
1937         guc_cancel_sched_engine_requests(guc->sched_engine);
1938
1939         /* GuC is blown away, drop all references to contexts */
1940         xa_destroy(&guc->context_lookup);
1941
1942         /*
1943          * Wedged GT won't respond to any TLB invalidation request. Simply
1944          * release all the blocked waiters.
1945          */
1946         wake_up_all_tlb_invalidate(guc);
1947 }
1948
1949 void intel_guc_submission_reset_finish(struct intel_guc *guc)
1950 {
1951         /* Reset called during driver load or during wedge? */
1952         if (unlikely(!guc_submission_initialized(guc) ||
1953                      intel_gt_is_wedged(guc_to_gt(guc)))) {
1954                 return;
1955         }
1956
1957         /*
1958          * Technically possible for either of these values to be non-zero here,
1959          * but very unlikely + harmless. Regardless let's add a warn so we can
1960          * see in CI if this happens frequently / a precursor to taking down the
1961          * machine.
1962          */
1963         GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h));
1964         atomic_set(&guc->outstanding_submission_g2h, 0);
1965
1966         intel_guc_global_policies_update(guc);
1967         enable_submission(guc);
1968         intel_gt_unpark_heartbeats(guc_to_gt(guc));
1969
1970         /*
1971          * The full GT reset will have cleared the TLB caches and flushed the
1972          * G2H message queue; we can release all the blocked waiters.
1973          */
1974         wake_up_all_tlb_invalidate(guc);
1975 }
1976
1977 static void destroyed_worker_func(struct work_struct *w);
1978 static void reset_fail_worker_func(struct work_struct *w);
1979
1980 bool intel_guc_tlb_invalidation_is_available(struct intel_guc *guc)
1981 {
1982         return HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915) &&
1983                 intel_guc_is_ready(guc);
1984 }
1985
1986 static int init_tlb_lookup(struct intel_guc *guc)
1987 {
1988         struct intel_guc_tlb_wait *wait;
1989         int err;
1990
1991         if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
1992                 return 0;
1993
1994         xa_init_flags(&guc->tlb_lookup, XA_FLAGS_ALLOC);
1995
1996         wait = kzalloc(sizeof(*wait), GFP_KERNEL);
1997         if (!wait)
1998                 return -ENOMEM;
1999
2000         init_waitqueue_head(&wait->wq);
2001
2002         /* Preallocate a shared id for use under memory pressure. */
2003         err = xa_alloc_cyclic_irq(&guc->tlb_lookup, &guc->serial_slot, wait,
2004                                   xa_limit_32b, &guc->next_seqno, GFP_KERNEL);
2005         if (err < 0) {
2006                 kfree(wait);
2007                 return err;
2008         }
2009
2010         return 0;
2011 }
2012
2013 static void fini_tlb_lookup(struct intel_guc *guc)
2014 {
2015         struct intel_guc_tlb_wait *wait;
2016
2017         if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915))
2018                 return;
2019
2020         wait = xa_load(&guc->tlb_lookup, guc->serial_slot);
2021         if (wait && wait->busy)
2022                 guc_err(guc, "Unexpected busy item in tlb_lookup on fini\n");
2023         kfree(wait);
2024
2025         xa_destroy(&guc->tlb_lookup);
2026 }
2027
2028 /*
2029  * Set up the memory resources to be shared with the GuC (via the GGTT)
2030  * at firmware loading time.
2031  */
2032 int intel_guc_submission_init(struct intel_guc *guc)
2033 {
2034         struct intel_gt *gt = guc_to_gt(guc);
2035         int ret;
2036
2037         if (guc->submission_initialized)
2038                 return 0;
2039
2040         if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) {
2041                 ret = guc_lrc_desc_pool_create_v69(guc);
2042                 if (ret)
2043                         return ret;
2044         }
2045
2046         ret = init_tlb_lookup(guc);
2047         if (ret)
2048                 goto destroy_pool;
2049
2050         guc->submission_state.guc_ids_bitmap =
2051                 bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
2052         if (!guc->submission_state.guc_ids_bitmap) {
2053                 ret = -ENOMEM;
2054                 goto destroy_tlb;
2055         }
2056
2057         guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
2058         guc->timestamp.shift = gpm_timestamp_shift(gt);
2059         guc->submission_initialized = true;
2060
2061         return 0;
2062
2063 destroy_tlb:
2064         fini_tlb_lookup(guc);
2065 destroy_pool:
2066         guc_lrc_desc_pool_destroy_v69(guc);
2067         return ret;
2068 }
2069
2070 void intel_guc_submission_fini(struct intel_guc *guc)
2071 {
2072         if (!guc->submission_initialized)
2073                 return;
2074
2075         guc_flush_destroyed_contexts(guc);
2076         guc_lrc_desc_pool_destroy_v69(guc);
2077         i915_sched_engine_put(guc->sched_engine);
2078         bitmap_free(guc->submission_state.guc_ids_bitmap);
2079         fini_tlb_lookup(guc);
2080         guc->submission_initialized = false;
2081 }
2082
2083 static inline void queue_request(struct i915_sched_engine *sched_engine,
2084                                  struct i915_request *rq,
2085                                  int prio)
2086 {
2087         GEM_BUG_ON(!list_empty(&rq->sched.link));
2088         list_add_tail(&rq->sched.link,
2089                       i915_sched_lookup_priolist(sched_engine, prio));
2090         set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2091         tasklet_hi_schedule(&sched_engine->tasklet);
2092 }
2093
2094 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
2095                                      struct i915_request *rq)
2096 {
2097         int ret = 0;
2098
2099         __i915_request_submit(rq);
2100
2101         trace_i915_request_in(rq, 0);
2102
2103         if (is_multi_lrc_rq(rq)) {
2104                 if (multi_lrc_submit(rq)) {
2105                         ret = guc_wq_item_append(guc, rq);
2106                         if (!ret)
2107                                 ret = guc_add_request(guc, rq);
2108                 }
2109         } else {
2110                 guc_set_lrc_tail(rq);
2111                 ret = guc_add_request(guc, rq);
2112         }
2113
2114         if (unlikely(ret == -EPIPE))
2115                 disable_submission(guc);
2116
2117         return ret;
2118 }
2119
2120 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
2121 {
2122         struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2123         struct intel_context *ce = request_to_scheduling_context(rq);
2124
2125         return submission_disabled(guc) || guc->stalled_request ||
2126                 !i915_sched_engine_is_empty(sched_engine) ||
2127                 !ctx_id_mapped(guc, ce->guc_id.id);
2128 }
2129
2130 static void guc_submit_request(struct i915_request *rq)
2131 {
2132         struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2133         struct intel_guc *guc = &rq->engine->gt->uc.guc;
2134         unsigned long flags;
2135
2136         /* Will be called from irq-context when using foreign fences. */
2137         spin_lock_irqsave(&sched_engine->lock, flags);
2138
2139         if (need_tasklet(guc, rq))
2140                 queue_request(sched_engine, rq, rq_prio(rq));
2141         else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
2142                 tasklet_hi_schedule(&sched_engine->tasklet);
2143
2144         spin_unlock_irqrestore(&sched_engine->lock, flags);
2145 }
2146
2147 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
2148 {
2149         int ret;
2150
2151         GEM_BUG_ON(intel_context_is_child(ce));
2152
2153         if (intel_context_is_parent(ce))
2154                 ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
2155                                               NUMBER_MULTI_LRC_GUC_ID(guc),
2156                                               order_base_2(ce->parallel.number_children
2157                                                            + 1));
2158         else
2159                 ret = ida_simple_get(&guc->submission_state.guc_ids,
2160                                      NUMBER_MULTI_LRC_GUC_ID(guc),
2161                                      guc->submission_state.num_guc_ids,
2162                                      GFP_KERNEL | __GFP_RETRY_MAYFAIL |
2163                                      __GFP_NOWARN);
2164         if (unlikely(ret < 0))
2165                 return ret;
2166
2167         if (!intel_context_is_parent(ce))
2168                 ++guc->submission_state.guc_ids_in_use;
2169
2170         ce->guc_id.id = ret;
2171         return 0;
2172 }
2173
2174 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2175 {
2176         GEM_BUG_ON(intel_context_is_child(ce));
2177
2178         if (!context_guc_id_invalid(ce)) {
2179                 if (intel_context_is_parent(ce)) {
2180                         bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2181                                               ce->guc_id.id,
2182                                               order_base_2(ce->parallel.number_children
2183                                                            + 1));
2184                 } else {
2185                         --guc->submission_state.guc_ids_in_use;
2186                         ida_simple_remove(&guc->submission_state.guc_ids,
2187                                           ce->guc_id.id);
2188                 }
2189                 clr_ctx_id_mapping(guc, ce->guc_id.id);
2190                 set_context_guc_id_invalid(ce);
2191         }
2192         if (!list_empty(&ce->guc_id.link))
2193                 list_del_init(&ce->guc_id.link);
2194 }
2195
2196 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2197 {
2198         unsigned long flags;
2199
2200         spin_lock_irqsave(&guc->submission_state.lock, flags);
2201         __release_guc_id(guc, ce);
2202         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2203 }
2204
2205 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2206 {
2207         struct intel_context *cn;
2208
2209         lockdep_assert_held(&guc->submission_state.lock);
2210         GEM_BUG_ON(intel_context_is_child(ce));
2211         GEM_BUG_ON(intel_context_is_parent(ce));
2212
2213         if (!list_empty(&guc->submission_state.guc_id_list)) {
2214                 cn = list_first_entry(&guc->submission_state.guc_id_list,
2215                                       struct intel_context,
2216                                       guc_id.link);
2217
2218                 GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2219                 GEM_BUG_ON(context_guc_id_invalid(cn));
2220                 GEM_BUG_ON(intel_context_is_child(cn));
2221                 GEM_BUG_ON(intel_context_is_parent(cn));
2222
2223                 list_del_init(&cn->guc_id.link);
2224                 ce->guc_id.id = cn->guc_id.id;
2225
2226                 spin_lock(&cn->guc_state.lock);
2227                 clr_context_registered(cn);
2228                 spin_unlock(&cn->guc_state.lock);
2229
2230                 set_context_guc_id_invalid(cn);
2231
2232 #ifdef CONFIG_DRM_I915_SELFTEST
2233                 guc->number_guc_id_stolen++;
2234 #endif
2235
2236                 return 0;
2237         } else {
2238                 return -EAGAIN;
2239         }
2240 }
2241
2242 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2243 {
2244         int ret;
2245
2246         lockdep_assert_held(&guc->submission_state.lock);
2247         GEM_BUG_ON(intel_context_is_child(ce));
2248
2249         ret = new_guc_id(guc, ce);
2250         if (unlikely(ret < 0)) {
2251                 if (intel_context_is_parent(ce))
2252                         return -ENOSPC;
2253
2254                 ret = steal_guc_id(guc, ce);
2255                 if (ret < 0)
2256                         return ret;
2257         }
2258
2259         if (intel_context_is_parent(ce)) {
2260                 struct intel_context *child;
2261                 int i = 1;
2262
2263                 for_each_child(ce, child)
2264                         child->guc_id.id = ce->guc_id.id + i++;
2265         }
2266
2267         return 0;
2268 }
2269
2270 #define PIN_GUC_ID_TRIES        4
2271 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2272 {
2273         int ret = 0;
2274         unsigned long flags, tries = PIN_GUC_ID_TRIES;
2275
2276         GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2277
2278 try_again:
2279         spin_lock_irqsave(&guc->submission_state.lock, flags);
2280
2281         might_lock(&ce->guc_state.lock);
2282
2283         if (context_guc_id_invalid(ce)) {
2284                 ret = assign_guc_id(guc, ce);
2285                 if (ret)
2286                         goto out_unlock;
2287                 ret = 1;        /* Indidcates newly assigned guc_id */
2288         }
2289         if (!list_empty(&ce->guc_id.link))
2290                 list_del_init(&ce->guc_id.link);
2291         atomic_inc(&ce->guc_id.ref);
2292
2293 out_unlock:
2294         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2295
2296         /*
2297          * -EAGAIN indicates no guc_id are available, let's retire any
2298          * outstanding requests to see if that frees up a guc_id. If the first
2299          * retire didn't help, insert a sleep with the timeslice duration before
2300          * attempting to retire more requests. Double the sleep period each
2301          * subsequent pass before finally giving up. The sleep period has max of
2302          * 100ms and minimum of 1ms.
2303          */
2304         if (ret == -EAGAIN && --tries) {
2305                 if (PIN_GUC_ID_TRIES - tries > 1) {
2306                         unsigned int timeslice_shifted =
2307                                 ce->engine->props.timeslice_duration_ms <<
2308                                 (PIN_GUC_ID_TRIES - tries - 2);
2309                         unsigned int max = min_t(unsigned int, 100,
2310                                                  timeslice_shifted);
2311
2312                         msleep(max_t(unsigned int, max, 1));
2313                 }
2314                 intel_gt_retire_requests(guc_to_gt(guc));
2315                 goto try_again;
2316         }
2317
2318         return ret;
2319 }
2320
2321 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2322 {
2323         unsigned long flags;
2324
2325         GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2326         GEM_BUG_ON(intel_context_is_child(ce));
2327
2328         if (unlikely(context_guc_id_invalid(ce) ||
2329                      intel_context_is_parent(ce)))
2330                 return;
2331
2332         spin_lock_irqsave(&guc->submission_state.lock, flags);
2333         if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2334             !atomic_read(&ce->guc_id.ref))
2335                 list_add_tail(&ce->guc_id.link,
2336                               &guc->submission_state.guc_id_list);
2337         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2338 }
2339
2340 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2341                                                struct intel_context *ce,
2342                                                u32 guc_id,
2343                                                u32 offset,
2344                                                bool loop)
2345 {
2346         struct intel_context *child;
2347         u32 action[4 + MAX_ENGINE_INSTANCE];
2348         int len = 0;
2349
2350         GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2351
2352         action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2353         action[len++] = guc_id;
2354         action[len++] = ce->parallel.number_children + 1;
2355         action[len++] = offset;
2356         for_each_child(ce, child) {
2357                 offset += sizeof(struct guc_lrc_desc_v69);
2358                 action[len++] = offset;
2359         }
2360
2361         return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2362 }
2363
2364 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2365                                                struct intel_context *ce,
2366                                                struct guc_ctxt_registration_info *info,
2367                                                bool loop)
2368 {
2369         struct intel_context *child;
2370         u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2371         int len = 0;
2372         u32 next_id;
2373
2374         GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2375
2376         action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2377         action[len++] = info->flags;
2378         action[len++] = info->context_idx;
2379         action[len++] = info->engine_class;
2380         action[len++] = info->engine_submit_mask;
2381         action[len++] = info->wq_desc_lo;
2382         action[len++] = info->wq_desc_hi;
2383         action[len++] = info->wq_base_lo;
2384         action[len++] = info->wq_base_hi;
2385         action[len++] = info->wq_size;
2386         action[len++] = ce->parallel.number_children + 1;
2387         action[len++] = info->hwlrca_lo;
2388         action[len++] = info->hwlrca_hi;
2389
2390         next_id = info->context_idx + 1;
2391         for_each_child(ce, child) {
2392                 GEM_BUG_ON(next_id++ != child->guc_id.id);
2393
2394                 /*
2395                  * NB: GuC interface supports 64 bit LRCA even though i915/HW
2396                  * only supports 32 bit currently.
2397                  */
2398                 action[len++] = lower_32_bits(child->lrc.lrca);
2399                 action[len++] = upper_32_bits(child->lrc.lrca);
2400         }
2401
2402         GEM_BUG_ON(len > ARRAY_SIZE(action));
2403
2404         return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2405 }
2406
2407 static int __guc_action_register_context_v69(struct intel_guc *guc,
2408                                              u32 guc_id,
2409                                              u32 offset,
2410                                              bool loop)
2411 {
2412         u32 action[] = {
2413                 INTEL_GUC_ACTION_REGISTER_CONTEXT,
2414                 guc_id,
2415                 offset,
2416         };
2417
2418         return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2419                                              0, loop);
2420 }
2421
2422 static int __guc_action_register_context_v70(struct intel_guc *guc,
2423                                              struct guc_ctxt_registration_info *info,
2424                                              bool loop)
2425 {
2426         u32 action[] = {
2427                 INTEL_GUC_ACTION_REGISTER_CONTEXT,
2428                 info->flags,
2429                 info->context_idx,
2430                 info->engine_class,
2431                 info->engine_submit_mask,
2432                 info->wq_desc_lo,
2433                 info->wq_desc_hi,
2434                 info->wq_base_lo,
2435                 info->wq_base_hi,
2436                 info->wq_size,
2437                 info->hwlrca_lo,
2438                 info->hwlrca_hi,
2439         };
2440
2441         return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2442                                              0, loop);
2443 }
2444
2445 static void prepare_context_registration_info_v69(struct intel_context *ce);
2446 static void prepare_context_registration_info_v70(struct intel_context *ce,
2447                                                   struct guc_ctxt_registration_info *info);
2448
2449 static int
2450 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2451 {
2452         u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2453                 ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2454
2455         prepare_context_registration_info_v69(ce);
2456
2457         if (intel_context_is_parent(ce))
2458                 return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2459                                                            offset, loop);
2460         else
2461                 return __guc_action_register_context_v69(guc, ce->guc_id.id,
2462                                                          offset, loop);
2463 }
2464
2465 static int
2466 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2467 {
2468         struct guc_ctxt_registration_info info;
2469
2470         prepare_context_registration_info_v70(ce, &info);
2471
2472         if (intel_context_is_parent(ce))
2473                 return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2474         else
2475                 return __guc_action_register_context_v70(guc, &info, loop);
2476 }
2477
2478 static int register_context(struct intel_context *ce, bool loop)
2479 {
2480         struct intel_guc *guc = ce_to_guc(ce);
2481         int ret;
2482
2483         GEM_BUG_ON(intel_context_is_child(ce));
2484         trace_intel_context_register(ce);
2485
2486         if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2487                 ret = register_context_v70(guc, ce, loop);
2488         else
2489                 ret = register_context_v69(guc, ce, loop);
2490
2491         if (likely(!ret)) {
2492                 unsigned long flags;
2493
2494                 spin_lock_irqsave(&ce->guc_state.lock, flags);
2495                 set_context_registered(ce);
2496                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2497
2498                 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2499                         guc_context_policy_init_v70(ce, loop);
2500         }
2501
2502         return ret;
2503 }
2504
2505 static int __guc_action_deregister_context(struct intel_guc *guc,
2506                                            u32 guc_id)
2507 {
2508         u32 action[] = {
2509                 INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2510                 guc_id,
2511         };
2512
2513         return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2514                                              G2H_LEN_DW_DEREGISTER_CONTEXT,
2515                                              true);
2516 }
2517
2518 static int deregister_context(struct intel_context *ce, u32 guc_id)
2519 {
2520         struct intel_guc *guc = ce_to_guc(ce);
2521
2522         GEM_BUG_ON(intel_context_is_child(ce));
2523         trace_intel_context_deregister(ce);
2524
2525         return __guc_action_deregister_context(guc, guc_id);
2526 }
2527
2528 static inline void clear_children_join_go_memory(struct intel_context *ce)
2529 {
2530         struct parent_scratch *ps = __get_parent_scratch(ce);
2531         int i;
2532
2533         ps->go.semaphore = 0;
2534         for (i = 0; i < ce->parallel.number_children + 1; ++i)
2535                 ps->join[i].semaphore = 0;
2536 }
2537
2538 static inline u32 get_children_go_value(struct intel_context *ce)
2539 {
2540         return __get_parent_scratch(ce)->go.semaphore;
2541 }
2542
2543 static inline u32 get_children_join_value(struct intel_context *ce,
2544                                           u8 child_index)
2545 {
2546         return __get_parent_scratch(ce)->join[child_index].semaphore;
2547 }
2548
2549 struct context_policy {
2550         u32 count;
2551         struct guc_update_context_policy h2g;
2552 };
2553
2554 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2555 {
2556         size_t bytes = sizeof(policy->h2g.header) +
2557                        (sizeof(policy->h2g.klv[0]) * policy->count);
2558
2559         return bytes / sizeof(u32);
2560 }
2561
2562 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2563 {
2564         policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2565         policy->h2g.header.ctx_id = guc_id;
2566         policy->count = 0;
2567 }
2568
2569 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2570 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2571 { \
2572         GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2573         policy->h2g.klv[policy->count].kl = \
2574                 FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2575                 FIELD_PREP(GUC_KLV_0_LEN, 1); \
2576         policy->h2g.klv[policy->count].value = data; \
2577         policy->count++; \
2578 }
2579
2580 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2581 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2582 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2583 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2584
2585 #undef MAKE_CONTEXT_POLICY_ADD
2586
2587 static int __guc_context_set_context_policies(struct intel_guc *guc,
2588                                               struct context_policy *policy,
2589                                               bool loop)
2590 {
2591         return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2592                                         __guc_context_policy_action_size(policy),
2593                                         0, loop);
2594 }
2595
2596 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2597 {
2598         struct intel_engine_cs *engine = ce->engine;
2599         struct intel_guc *guc = &engine->gt->uc.guc;
2600         struct context_policy policy;
2601         u32 execution_quantum;
2602         u32 preemption_timeout;
2603         unsigned long flags;
2604         int ret;
2605
2606         /* NB: For both of these, zero means disabled. */
2607         GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2608                                   execution_quantum));
2609         GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2610                                   preemption_timeout));
2611         execution_quantum = engine->props.timeslice_duration_ms * 1000;
2612         preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2613
2614         __guc_context_policy_start_klv(&policy, ce->guc_id.id);
2615
2616         __guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2617         __guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2618         __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2619
2620         if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2621                 __guc_context_policy_add_preempt_to_idle(&policy, 1);
2622
2623         ret = __guc_context_set_context_policies(guc, &policy, loop);
2624
2625         spin_lock_irqsave(&ce->guc_state.lock, flags);
2626         if (ret != 0)
2627                 set_context_policy_required(ce);
2628         else
2629                 clr_context_policy_required(ce);
2630         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2631
2632         return ret;
2633 }
2634
2635 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2636                                         struct guc_lrc_desc_v69 *desc)
2637 {
2638         desc->policy_flags = 0;
2639
2640         if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2641                 desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2642
2643         /* NB: For both of these, zero means disabled. */
2644         GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2645                                   desc->execution_quantum));
2646         GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2647                                   desc->preemption_timeout));
2648         desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2649         desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2650 }
2651
2652 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2653 {
2654         /*
2655          * this matches the mapping we do in map_i915_prio_to_guc_prio()
2656          * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2657          */
2658         switch (prio) {
2659         default:
2660                 MISSING_CASE(prio);
2661                 fallthrough;
2662         case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2663                 return GEN12_CTX_PRIORITY_NORMAL;
2664         case GUC_CLIENT_PRIORITY_NORMAL:
2665                 return GEN12_CTX_PRIORITY_LOW;
2666         case GUC_CLIENT_PRIORITY_HIGH:
2667         case GUC_CLIENT_PRIORITY_KMD_HIGH:
2668                 return GEN12_CTX_PRIORITY_HIGH;
2669         }
2670 }
2671
2672 static void prepare_context_registration_info_v69(struct intel_context *ce)
2673 {
2674         struct intel_engine_cs *engine = ce->engine;
2675         struct intel_guc *guc = &engine->gt->uc.guc;
2676         u32 ctx_id = ce->guc_id.id;
2677         struct guc_lrc_desc_v69 *desc;
2678         struct intel_context *child;
2679
2680         GEM_BUG_ON(!engine->mask);
2681
2682         /*
2683          * Ensure LRC + CT vmas are is same region as write barrier is done
2684          * based on CT vma region.
2685          */
2686         GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2687                    i915_gem_object_is_lmem(ce->ring->vma->obj));
2688
2689         desc = __get_lrc_desc_v69(guc, ctx_id);
2690         GEM_BUG_ON(!desc);
2691         desc->engine_class = engine_class_to_guc_class(engine->class);
2692         desc->engine_submit_mask = engine->logical_mask;
2693         desc->hw_context_desc = ce->lrc.lrca;
2694         desc->priority = ce->guc_state.prio;
2695         desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2696         guc_context_policy_init_v69(engine, desc);
2697
2698         /*
2699          * If context is a parent, we need to register a process descriptor
2700          * describing a work queue and register all child contexts.
2701          */
2702         if (intel_context_is_parent(ce)) {
2703                 struct guc_process_desc_v69 *pdesc;
2704
2705                 ce->parallel.guc.wqi_tail = 0;
2706                 ce->parallel.guc.wqi_head = 0;
2707
2708                 desc->process_desc = i915_ggtt_offset(ce->state) +
2709                         __get_parent_scratch_offset(ce);
2710                 desc->wq_addr = i915_ggtt_offset(ce->state) +
2711                         __get_wq_offset(ce);
2712                 desc->wq_size = WQ_SIZE;
2713
2714                 pdesc = __get_process_desc_v69(ce);
2715                 memset(pdesc, 0, sizeof(*(pdesc)));
2716                 pdesc->stage_id = ce->guc_id.id;
2717                 pdesc->wq_base_addr = desc->wq_addr;
2718                 pdesc->wq_size_bytes = desc->wq_size;
2719                 pdesc->wq_status = WQ_STATUS_ACTIVE;
2720
2721                 ce->parallel.guc.wq_head = &pdesc->head;
2722                 ce->parallel.guc.wq_tail = &pdesc->tail;
2723                 ce->parallel.guc.wq_status = &pdesc->wq_status;
2724
2725                 for_each_child(ce, child) {
2726                         desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2727
2728                         desc->engine_class =
2729                                 engine_class_to_guc_class(engine->class);
2730                         desc->hw_context_desc = child->lrc.lrca;
2731                         desc->priority = ce->guc_state.prio;
2732                         desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2733                         guc_context_policy_init_v69(engine, desc);
2734                 }
2735
2736                 clear_children_join_go_memory(ce);
2737         }
2738 }
2739
2740 static void prepare_context_registration_info_v70(struct intel_context *ce,
2741                                                   struct guc_ctxt_registration_info *info)
2742 {
2743         struct intel_engine_cs *engine = ce->engine;
2744         struct intel_guc *guc = &engine->gt->uc.guc;
2745         u32 ctx_id = ce->guc_id.id;
2746
2747         GEM_BUG_ON(!engine->mask);
2748
2749         /*
2750          * Ensure LRC + CT vmas are is same region as write barrier is done
2751          * based on CT vma region.
2752          */
2753         GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2754                    i915_gem_object_is_lmem(ce->ring->vma->obj));
2755
2756         memset(info, 0, sizeof(*info));
2757         info->context_idx = ctx_id;
2758         info->engine_class = engine_class_to_guc_class(engine->class);
2759         info->engine_submit_mask = engine->logical_mask;
2760         /*
2761          * NB: GuC interface supports 64 bit LRCA even though i915/HW
2762          * only supports 32 bit currently.
2763          */
2764         info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2765         info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2766         if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2767                 info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2768         info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2769
2770         /*
2771          * If context is a parent, we need to register a process descriptor
2772          * describing a work queue and register all child contexts.
2773          */
2774         if (intel_context_is_parent(ce)) {
2775                 struct guc_sched_wq_desc *wq_desc;
2776                 u64 wq_desc_offset, wq_base_offset;
2777
2778                 ce->parallel.guc.wqi_tail = 0;
2779                 ce->parallel.guc.wqi_head = 0;
2780
2781                 wq_desc_offset = i915_ggtt_offset(ce->state) +
2782                                  __get_parent_scratch_offset(ce);
2783                 wq_base_offset = i915_ggtt_offset(ce->state) +
2784                                  __get_wq_offset(ce);
2785                 info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2786                 info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2787                 info->wq_base_lo = lower_32_bits(wq_base_offset);
2788                 info->wq_base_hi = upper_32_bits(wq_base_offset);
2789                 info->wq_size = WQ_SIZE;
2790
2791                 wq_desc = __get_wq_desc_v70(ce);
2792                 memset(wq_desc, 0, sizeof(*wq_desc));
2793                 wq_desc->wq_status = WQ_STATUS_ACTIVE;
2794
2795                 ce->parallel.guc.wq_head = &wq_desc->head;
2796                 ce->parallel.guc.wq_tail = &wq_desc->tail;
2797                 ce->parallel.guc.wq_status = &wq_desc->wq_status;
2798
2799                 clear_children_join_go_memory(ce);
2800         }
2801 }
2802
2803 static int try_context_registration(struct intel_context *ce, bool loop)
2804 {
2805         struct intel_engine_cs *engine = ce->engine;
2806         struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2807         struct intel_guc *guc = &engine->gt->uc.guc;
2808         intel_wakeref_t wakeref;
2809         u32 ctx_id = ce->guc_id.id;
2810         bool context_registered;
2811         int ret = 0;
2812
2813         GEM_BUG_ON(!sched_state_is_init(ce));
2814
2815         context_registered = ctx_id_mapped(guc, ctx_id);
2816
2817         clr_ctx_id_mapping(guc, ctx_id);
2818         set_ctx_id_mapping(guc, ctx_id, ce);
2819
2820         /*
2821          * The context_lookup xarray is used to determine if the hardware
2822          * context is currently registered. There are two cases in which it
2823          * could be registered either the guc_id has been stolen from another
2824          * context or the lrc descriptor address of this context has changed. In
2825          * either case the context needs to be deregistered with the GuC before
2826          * registering this context.
2827          */
2828         if (context_registered) {
2829                 bool disabled;
2830                 unsigned long flags;
2831
2832                 trace_intel_context_steal_guc_id(ce);
2833                 GEM_BUG_ON(!loop);
2834
2835                 /* Seal race with Reset */
2836                 spin_lock_irqsave(&ce->guc_state.lock, flags);
2837                 disabled = submission_disabled(guc);
2838                 if (likely(!disabled)) {
2839                         set_context_wait_for_deregister_to_register(ce);
2840                         intel_context_get(ce);
2841                 }
2842                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2843                 if (unlikely(disabled)) {
2844                         clr_ctx_id_mapping(guc, ctx_id);
2845                         return 0;       /* Will get registered later */
2846                 }
2847
2848                 /*
2849                  * If stealing the guc_id, this ce has the same guc_id as the
2850                  * context whose guc_id was stolen.
2851                  */
2852                 with_intel_runtime_pm(runtime_pm, wakeref)
2853                         ret = deregister_context(ce, ce->guc_id.id);
2854                 if (unlikely(ret == -ENODEV))
2855                         ret = 0;        /* Will get registered later */
2856         } else {
2857                 with_intel_runtime_pm(runtime_pm, wakeref)
2858                         ret = register_context(ce, loop);
2859                 if (unlikely(ret == -EBUSY)) {
2860                         clr_ctx_id_mapping(guc, ctx_id);
2861                 } else if (unlikely(ret == -ENODEV)) {
2862                         clr_ctx_id_mapping(guc, ctx_id);
2863                         ret = 0;        /* Will get registered later */
2864                 }
2865         }
2866
2867         return ret;
2868 }
2869
2870 static int __guc_context_pre_pin(struct intel_context *ce,
2871                                  struct intel_engine_cs *engine,
2872                                  struct i915_gem_ww_ctx *ww,
2873                                  void **vaddr)
2874 {
2875         return lrc_pre_pin(ce, engine, ww, vaddr);
2876 }
2877
2878 static int __guc_context_pin(struct intel_context *ce,
2879                              struct intel_engine_cs *engine,
2880                              void *vaddr)
2881 {
2882         if (i915_ggtt_offset(ce->state) !=
2883             (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
2884                 set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
2885
2886         /*
2887          * GuC context gets pinned in guc_request_alloc. See that function for
2888          * explaination of why.
2889          */
2890
2891         return lrc_pin(ce, engine, vaddr);
2892 }
2893
2894 static int guc_context_pre_pin(struct intel_context *ce,
2895                                struct i915_gem_ww_ctx *ww,
2896                                void **vaddr)
2897 {
2898         return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
2899 }
2900
2901 static int guc_context_pin(struct intel_context *ce, void *vaddr)
2902 {
2903         int ret = __guc_context_pin(ce, ce->engine, vaddr);
2904
2905         if (likely(!ret && !intel_context_is_barrier(ce)))
2906                 intel_engine_pm_get(ce->engine);
2907
2908         return ret;
2909 }
2910
2911 static void guc_context_unpin(struct intel_context *ce)
2912 {
2913         struct intel_guc *guc = ce_to_guc(ce);
2914
2915         __guc_context_update_stats(ce);
2916         unpin_guc_id(guc, ce);
2917         lrc_unpin(ce);
2918
2919         if (likely(!intel_context_is_barrier(ce)))
2920                 intel_engine_pm_put_async(ce->engine);
2921 }
2922
2923 static void guc_context_post_unpin(struct intel_context *ce)
2924 {
2925         lrc_post_unpin(ce);
2926 }
2927
2928 static void __guc_context_sched_enable(struct intel_guc *guc,
2929                                        struct intel_context *ce)
2930 {
2931         u32 action[] = {
2932                 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2933                 ce->guc_id.id,
2934                 GUC_CONTEXT_ENABLE
2935         };
2936
2937         trace_intel_context_sched_enable(ce);
2938
2939         guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2940                                       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2941 }
2942
2943 static void __guc_context_sched_disable(struct intel_guc *guc,
2944                                         struct intel_context *ce,
2945                                         u16 guc_id)
2946 {
2947         u32 action[] = {
2948                 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2949                 guc_id, /* ce->guc_id.id not stable */
2950                 GUC_CONTEXT_DISABLE
2951         };
2952
2953         GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
2954
2955         GEM_BUG_ON(intel_context_is_child(ce));
2956         trace_intel_context_sched_disable(ce);
2957
2958         guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2959                                       G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2960 }
2961
2962 static void guc_blocked_fence_complete(struct intel_context *ce)
2963 {
2964         lockdep_assert_held(&ce->guc_state.lock);
2965
2966         if (!i915_sw_fence_done(&ce->guc_state.blocked))
2967                 i915_sw_fence_complete(&ce->guc_state.blocked);
2968 }
2969
2970 static void guc_blocked_fence_reinit(struct intel_context *ce)
2971 {
2972         lockdep_assert_held(&ce->guc_state.lock);
2973         GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
2974
2975         /*
2976          * This fence is always complete unless a pending schedule disable is
2977          * outstanding. We arm the fence here and complete it when we receive
2978          * the pending schedule disable complete message.
2979          */
2980         i915_sw_fence_fini(&ce->guc_state.blocked);
2981         i915_sw_fence_reinit(&ce->guc_state.blocked);
2982         i915_sw_fence_await(&ce->guc_state.blocked);
2983         i915_sw_fence_commit(&ce->guc_state.blocked);
2984 }
2985
2986 static u16 prep_context_pending_disable(struct intel_context *ce)
2987 {
2988         lockdep_assert_held(&ce->guc_state.lock);
2989
2990         set_context_pending_disable(ce);
2991         clr_context_enabled(ce);
2992         guc_blocked_fence_reinit(ce);
2993         intel_context_get(ce);
2994
2995         return ce->guc_id.id;
2996 }
2997
2998 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
2999 {
3000         struct intel_guc *guc = ce_to_guc(ce);
3001         unsigned long flags;
3002         struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3003         intel_wakeref_t wakeref;
3004         u16 guc_id;
3005         bool enabled;
3006
3007         GEM_BUG_ON(intel_context_is_child(ce));
3008
3009         spin_lock_irqsave(&ce->guc_state.lock, flags);
3010
3011         incr_context_blocked(ce);
3012
3013         enabled = context_enabled(ce);
3014         if (unlikely(!enabled || submission_disabled(guc))) {
3015                 if (enabled)
3016                         clr_context_enabled(ce);
3017                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3018                 return &ce->guc_state.blocked;
3019         }
3020
3021         /*
3022          * We add +2 here as the schedule disable complete CTB handler calls
3023          * intel_context_sched_disable_unpin (-2 to pin_count).
3024          */
3025         atomic_add(2, &ce->pin_count);
3026
3027         guc_id = prep_context_pending_disable(ce);
3028
3029         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3030
3031         with_intel_runtime_pm(runtime_pm, wakeref)
3032                 __guc_context_sched_disable(guc, ce, guc_id);
3033
3034         return &ce->guc_state.blocked;
3035 }
3036
3037 #define SCHED_STATE_MULTI_BLOCKED_MASK \
3038         (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
3039 #define SCHED_STATE_NO_UNBLOCK \
3040         (SCHED_STATE_MULTI_BLOCKED_MASK | \
3041          SCHED_STATE_PENDING_DISABLE | \
3042          SCHED_STATE_BANNED)
3043
3044 static bool context_cant_unblock(struct intel_context *ce)
3045 {
3046         lockdep_assert_held(&ce->guc_state.lock);
3047
3048         return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
3049                 context_guc_id_invalid(ce) ||
3050                 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
3051                 !intel_context_is_pinned(ce);
3052 }
3053
3054 static void guc_context_unblock(struct intel_context *ce)
3055 {
3056         struct intel_guc *guc = ce_to_guc(ce);
3057         unsigned long flags;
3058         struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
3059         intel_wakeref_t wakeref;
3060         bool enable;
3061
3062         GEM_BUG_ON(context_enabled(ce));
3063         GEM_BUG_ON(intel_context_is_child(ce));
3064
3065         spin_lock_irqsave(&ce->guc_state.lock, flags);
3066
3067         if (unlikely(submission_disabled(guc) ||
3068                      context_cant_unblock(ce))) {
3069                 enable = false;
3070         } else {
3071                 enable = true;
3072                 set_context_pending_enable(ce);
3073                 set_context_enabled(ce);
3074                 intel_context_get(ce);
3075         }
3076
3077         decr_context_blocked(ce);
3078
3079         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3080
3081         if (enable) {
3082                 with_intel_runtime_pm(runtime_pm, wakeref)
3083                         __guc_context_sched_enable(guc, ce);
3084         }
3085 }
3086
3087 static void guc_context_cancel_request(struct intel_context *ce,
3088                                        struct i915_request *rq)
3089 {
3090         struct intel_context *block_context =
3091                 request_to_scheduling_context(rq);
3092
3093         if (i915_sw_fence_signaled(&rq->submit)) {
3094                 struct i915_sw_fence *fence;
3095
3096                 intel_context_get(ce);
3097                 fence = guc_context_block(block_context);
3098                 i915_sw_fence_wait(fence);
3099                 if (!i915_request_completed(rq)) {
3100                         __i915_request_skip(rq);
3101                         guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
3102                                         true);
3103                 }
3104
3105                 guc_context_unblock(block_context);
3106                 intel_context_put(ce);
3107         }
3108 }
3109
3110 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
3111                                                  u16 guc_id,
3112                                                  u32 preemption_timeout)
3113 {
3114         if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3115                 struct context_policy policy;
3116
3117                 __guc_context_policy_start_klv(&policy, guc_id);
3118                 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
3119                 __guc_context_set_context_policies(guc, &policy, true);
3120         } else {
3121                 u32 action[] = {
3122                         INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
3123                         guc_id,
3124                         preemption_timeout
3125                 };
3126
3127                 intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3128         }
3129 }
3130
3131 static void
3132 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
3133                    unsigned int preempt_timeout_ms)
3134 {
3135         struct intel_guc *guc = ce_to_guc(ce);
3136         struct intel_runtime_pm *runtime_pm =
3137                 &ce->engine->gt->i915->runtime_pm;
3138         intel_wakeref_t wakeref;
3139         unsigned long flags;
3140
3141         GEM_BUG_ON(intel_context_is_child(ce));
3142
3143         guc_flush_submissions(guc);
3144
3145         spin_lock_irqsave(&ce->guc_state.lock, flags);
3146         set_context_banned(ce);
3147
3148         if (submission_disabled(guc) ||
3149             (!context_enabled(ce) && !context_pending_disable(ce))) {
3150                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3151
3152                 guc_cancel_context_requests(ce);
3153                 intel_engine_signal_breadcrumbs(ce->engine);
3154         } else if (!context_pending_disable(ce)) {
3155                 u16 guc_id;
3156
3157                 /*
3158                  * We add +2 here as the schedule disable complete CTB handler
3159                  * calls intel_context_sched_disable_unpin (-2 to pin_count).
3160                  */
3161                 atomic_add(2, &ce->pin_count);
3162
3163                 guc_id = prep_context_pending_disable(ce);
3164                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3165
3166                 /*
3167                  * In addition to disabling scheduling, set the preemption
3168                  * timeout to the minimum value (1 us) so the banned context
3169                  * gets kicked off the HW ASAP.
3170                  */
3171                 with_intel_runtime_pm(runtime_pm, wakeref) {
3172                         __guc_context_set_preemption_timeout(guc, guc_id,
3173                                                              preempt_timeout_ms);
3174                         __guc_context_sched_disable(guc, ce, guc_id);
3175                 }
3176         } else {
3177                 if (!context_guc_id_invalid(ce))
3178                         with_intel_runtime_pm(runtime_pm, wakeref)
3179                                 __guc_context_set_preemption_timeout(guc,
3180                                                                      ce->guc_id.id,
3181                                                                      preempt_timeout_ms);
3182                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3183         }
3184 }
3185
3186 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce,
3187                              unsigned long flags)
3188         __releases(ce->guc_state.lock)
3189 {
3190         struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3191         intel_wakeref_t wakeref;
3192         u16 guc_id;
3193
3194         lockdep_assert_held(&ce->guc_state.lock);
3195         guc_id = prep_context_pending_disable(ce);
3196
3197         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3198
3199         with_intel_runtime_pm(runtime_pm, wakeref)
3200                 __guc_context_sched_disable(guc, ce, guc_id);
3201 }
3202
3203 static bool bypass_sched_disable(struct intel_guc *guc,
3204                                  struct intel_context *ce)
3205 {
3206         lockdep_assert_held(&ce->guc_state.lock);
3207         GEM_BUG_ON(intel_context_is_child(ce));
3208
3209         if (submission_disabled(guc) || context_guc_id_invalid(ce) ||
3210             !ctx_id_mapped(guc, ce->guc_id.id)) {
3211                 clr_context_enabled(ce);
3212                 return true;
3213         }
3214
3215         return !context_enabled(ce);
3216 }
3217
3218 static void __delay_sched_disable(struct work_struct *wrk)
3219 {
3220         struct intel_context *ce =
3221                 container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work);
3222         struct intel_guc *guc = ce_to_guc(ce);
3223         unsigned long flags;
3224
3225         spin_lock_irqsave(&ce->guc_state.lock, flags);
3226
3227         if (bypass_sched_disable(guc, ce)) {
3228                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3229                 intel_context_sched_disable_unpin(ce);
3230         } else {
3231                 do_sched_disable(guc, ce, flags);
3232         }
3233 }
3234
3235 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce)
3236 {
3237         /*
3238          * parent contexts are perma-pinned, if we are unpinning do schedule
3239          * disable immediately.
3240          */
3241         if (intel_context_is_parent(ce))
3242                 return true;
3243
3244         /*
3245          * If we are beyond the threshold for avail guc_ids, do schedule disable immediately.
3246          */
3247         return guc->submission_state.guc_ids_in_use >
3248                 guc->submission_state.sched_disable_gucid_threshold;
3249 }
3250
3251 static void guc_context_sched_disable(struct intel_context *ce)
3252 {
3253         struct intel_guc *guc = ce_to_guc(ce);
3254         u64 delay = guc->submission_state.sched_disable_delay_ms;
3255         unsigned long flags;
3256
3257         spin_lock_irqsave(&ce->guc_state.lock, flags);
3258
3259         if (bypass_sched_disable(guc, ce)) {
3260                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3261                 intel_context_sched_disable_unpin(ce);
3262         } else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) &&
3263                    delay) {
3264                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3265                 mod_delayed_work(system_unbound_wq,
3266                                  &ce->guc_state.sched_disable_delay_work,
3267                                  msecs_to_jiffies(delay));
3268         } else {
3269                 do_sched_disable(guc, ce, flags);
3270         }
3271 }
3272
3273 static void guc_context_close(struct intel_context *ce)
3274 {
3275         unsigned long flags;
3276
3277         if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
3278             cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))
3279                 __delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work);
3280
3281         spin_lock_irqsave(&ce->guc_state.lock, flags);
3282         set_context_close_done(ce);
3283         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3284 }
3285
3286 static inline void guc_lrc_desc_unpin(struct intel_context *ce)
3287 {
3288         struct intel_guc *guc = ce_to_guc(ce);
3289         struct intel_gt *gt = guc_to_gt(guc);
3290         unsigned long flags;
3291         bool disabled;
3292
3293         GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3294         GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3295         GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3296         GEM_BUG_ON(context_enabled(ce));
3297
3298         /* Seal race with Reset */
3299         spin_lock_irqsave(&ce->guc_state.lock, flags);
3300         disabled = submission_disabled(guc);
3301         if (likely(!disabled)) {
3302                 __intel_gt_pm_get(gt);
3303                 set_context_destroyed(ce);
3304                 clr_context_registered(ce);
3305         }
3306         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3307         if (unlikely(disabled)) {
3308                 release_guc_id(guc, ce);
3309                 __guc_context_destroy(ce);
3310                 return;
3311         }
3312
3313         deregister_context(ce, ce->guc_id.id);
3314 }
3315
3316 static void __guc_context_destroy(struct intel_context *ce)
3317 {
3318         GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3319                    ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3320                    ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3321                    ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3322
3323         lrc_fini(ce);
3324         intel_context_fini(ce);
3325
3326         if (intel_engine_is_virtual(ce->engine)) {
3327                 struct guc_virtual_engine *ve =
3328                         container_of(ce, typeof(*ve), context);
3329
3330                 if (ve->base.breadcrumbs)
3331                         intel_breadcrumbs_put(ve->base.breadcrumbs);
3332
3333                 kfree(ve);
3334         } else {
3335                 intel_context_free(ce);
3336         }
3337 }
3338
3339 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3340 {
3341         struct intel_context *ce;
3342         unsigned long flags;
3343
3344         GEM_BUG_ON(!submission_disabled(guc) &&
3345                    guc_submission_initialized(guc));
3346
3347         while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3348                 spin_lock_irqsave(&guc->submission_state.lock, flags);
3349                 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3350                                               struct intel_context,
3351                                               destroyed_link);
3352                 if (ce)
3353                         list_del_init(&ce->destroyed_link);
3354                 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3355
3356                 if (!ce)
3357                         break;
3358
3359                 release_guc_id(guc, ce);
3360                 __guc_context_destroy(ce);
3361         }
3362 }
3363
3364 static void deregister_destroyed_contexts(struct intel_guc *guc)
3365 {
3366         struct intel_context *ce;
3367         unsigned long flags;
3368
3369         while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3370                 spin_lock_irqsave(&guc->submission_state.lock, flags);
3371                 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3372                                               struct intel_context,
3373                                               destroyed_link);
3374                 if (ce)
3375                         list_del_init(&ce->destroyed_link);
3376                 spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3377
3378                 if (!ce)
3379                         break;
3380
3381                 guc_lrc_desc_unpin(ce);
3382         }
3383 }
3384
3385 static void destroyed_worker_func(struct work_struct *w)
3386 {
3387         struct intel_guc *guc = container_of(w, struct intel_guc,
3388                                              submission_state.destroyed_worker);
3389         struct intel_gt *gt = guc_to_gt(guc);
3390         intel_wakeref_t wakeref;
3391
3392         with_intel_gt_pm(gt, wakeref)
3393                 deregister_destroyed_contexts(guc);
3394 }
3395
3396 static void guc_context_destroy(struct kref *kref)
3397 {
3398         struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3399         struct intel_guc *guc = ce_to_guc(ce);
3400         unsigned long flags;
3401         bool destroy;
3402
3403         /*
3404          * If the guc_id is invalid this context has been stolen and we can free
3405          * it immediately. Also can be freed immediately if the context is not
3406          * registered with the GuC or the GuC is in the middle of a reset.
3407          */
3408         spin_lock_irqsave(&guc->submission_state.lock, flags);
3409         destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3410                 !ctx_id_mapped(guc, ce->guc_id.id);
3411         if (likely(!destroy)) {
3412                 if (!list_empty(&ce->guc_id.link))
3413                         list_del_init(&ce->guc_id.link);
3414                 list_add_tail(&ce->destroyed_link,
3415                               &guc->submission_state.destroyed_contexts);
3416         } else {
3417                 __release_guc_id(guc, ce);
3418         }
3419         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3420         if (unlikely(destroy)) {
3421                 __guc_context_destroy(ce);
3422                 return;
3423         }
3424
3425         /*
3426          * We use a worker to issue the H2G to deregister the context as we can
3427          * take the GT PM for the first time which isn't allowed from an atomic
3428          * context.
3429          */
3430         queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3431 }
3432
3433 static int guc_context_alloc(struct intel_context *ce)
3434 {
3435         return lrc_alloc(ce, ce->engine);
3436 }
3437
3438 static void __guc_context_set_prio(struct intel_guc *guc,
3439                                    struct intel_context *ce)
3440 {
3441         if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3442                 struct context_policy policy;
3443
3444                 __guc_context_policy_start_klv(&policy, ce->guc_id.id);
3445                 __guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3446                 __guc_context_set_context_policies(guc, &policy, true);
3447         } else {
3448                 u32 action[] = {
3449                         INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3450                         ce->guc_id.id,
3451                         ce->guc_state.prio,
3452                 };
3453
3454                 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3455         }
3456 }
3457
3458 static void guc_context_set_prio(struct intel_guc *guc,
3459                                  struct intel_context *ce,
3460                                  u8 prio)
3461 {
3462         GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3463                    prio > GUC_CLIENT_PRIORITY_NORMAL);
3464         lockdep_assert_held(&ce->guc_state.lock);
3465
3466         if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3467             !context_registered(ce)) {
3468                 ce->guc_state.prio = prio;
3469                 return;
3470         }
3471
3472         ce->guc_state.prio = prio;
3473         __guc_context_set_prio(guc, ce);
3474
3475         trace_intel_context_set_prio(ce);
3476 }
3477
3478 static inline u8 map_i915_prio_to_guc_prio(int prio)
3479 {
3480         if (prio == I915_PRIORITY_NORMAL)
3481                 return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3482         else if (prio < I915_PRIORITY_NORMAL)
3483                 return GUC_CLIENT_PRIORITY_NORMAL;
3484         else if (prio < I915_PRIORITY_DISPLAY)
3485                 return GUC_CLIENT_PRIORITY_HIGH;
3486         else
3487                 return GUC_CLIENT_PRIORITY_KMD_HIGH;
3488 }
3489
3490 static inline void add_context_inflight_prio(struct intel_context *ce,
3491                                              u8 guc_prio)
3492 {
3493         lockdep_assert_held(&ce->guc_state.lock);
3494         GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3495
3496         ++ce->guc_state.prio_count[guc_prio];
3497
3498         /* Overflow protection */
3499         GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3500 }
3501
3502 static inline void sub_context_inflight_prio(struct intel_context *ce,
3503                                              u8 guc_prio)
3504 {
3505         lockdep_assert_held(&ce->guc_state.lock);
3506         GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3507
3508         /* Underflow protection */
3509         GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3510
3511         --ce->guc_state.prio_count[guc_prio];
3512 }
3513
3514 static inline void update_context_prio(struct intel_context *ce)
3515 {
3516         struct intel_guc *guc = &ce->engine->gt->uc.guc;
3517         int i;
3518
3519         BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3520         BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3521
3522         lockdep_assert_held(&ce->guc_state.lock);
3523
3524         for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3525                 if (ce->guc_state.prio_count[i]) {
3526                         guc_context_set_prio(guc, ce, i);
3527                         break;
3528                 }
3529         }
3530 }
3531
3532 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3533 {
3534         /* Lower value is higher priority */
3535         return new_guc_prio < old_guc_prio;
3536 }
3537
3538 static void add_to_context(struct i915_request *rq)
3539 {
3540         struct intel_context *ce = request_to_scheduling_context(rq);
3541         u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3542
3543         GEM_BUG_ON(intel_context_is_child(ce));
3544         GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3545
3546         spin_lock(&ce->guc_state.lock);
3547         list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3548
3549         if (rq->guc_prio == GUC_PRIO_INIT) {
3550                 rq->guc_prio = new_guc_prio;
3551                 add_context_inflight_prio(ce, rq->guc_prio);
3552         } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3553                 sub_context_inflight_prio(ce, rq->guc_prio);
3554                 rq->guc_prio = new_guc_prio;
3555                 add_context_inflight_prio(ce, rq->guc_prio);
3556         }
3557         update_context_prio(ce);
3558
3559         spin_unlock(&ce->guc_state.lock);
3560 }
3561
3562 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3563 {
3564         lockdep_assert_held(&ce->guc_state.lock);
3565
3566         if (rq->guc_prio != GUC_PRIO_INIT &&
3567             rq->guc_prio != GUC_PRIO_FINI) {
3568                 sub_context_inflight_prio(ce, rq->guc_prio);
3569                 update_context_prio(ce);
3570         }
3571         rq->guc_prio = GUC_PRIO_FINI;
3572 }
3573
3574 static void remove_from_context(struct i915_request *rq)
3575 {
3576         struct intel_context *ce = request_to_scheduling_context(rq);
3577
3578         GEM_BUG_ON(intel_context_is_child(ce));
3579
3580         spin_lock_irq(&ce->guc_state.lock);
3581
3582         list_del_init(&rq->sched.link);
3583         clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3584
3585         /* Prevent further __await_execution() registering a cb, then flush */
3586         set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3587
3588         guc_prio_fini(rq, ce);
3589
3590         spin_unlock_irq(&ce->guc_state.lock);
3591
3592         atomic_dec(&ce->guc_id.ref);
3593         i915_request_notify_execute_cb_imm(rq);
3594 }
3595
3596 static const struct intel_context_ops guc_context_ops = {
3597         .flags = COPS_RUNTIME_CYCLES,
3598         .alloc = guc_context_alloc,
3599
3600         .close = guc_context_close,
3601
3602         .pre_pin = guc_context_pre_pin,
3603         .pin = guc_context_pin,
3604         .unpin = guc_context_unpin,
3605         .post_unpin = guc_context_post_unpin,
3606
3607         .revoke = guc_context_revoke,
3608
3609         .cancel_request = guc_context_cancel_request,
3610
3611         .enter = intel_context_enter_engine,
3612         .exit = intel_context_exit_engine,
3613
3614         .sched_disable = guc_context_sched_disable,
3615
3616         .update_stats = guc_context_update_stats,
3617
3618         .reset = lrc_reset,
3619         .destroy = guc_context_destroy,
3620
3621         .create_virtual = guc_create_virtual,
3622         .create_parallel = guc_create_parallel,
3623 };
3624
3625 static void submit_work_cb(struct irq_work *wrk)
3626 {
3627         struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3628
3629         might_lock(&rq->engine->sched_engine->lock);
3630         i915_sw_fence_complete(&rq->submit);
3631 }
3632
3633 static void __guc_signal_context_fence(struct intel_context *ce)
3634 {
3635         struct i915_request *rq, *rn;
3636
3637         lockdep_assert_held(&ce->guc_state.lock);
3638
3639         if (!list_empty(&ce->guc_state.fences))
3640                 trace_intel_context_fence_release(ce);
3641
3642         /*
3643          * Use an IRQ to ensure locking order of sched_engine->lock ->
3644          * ce->guc_state.lock is preserved.
3645          */
3646         list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3647                                  guc_fence_link) {
3648                 list_del(&rq->guc_fence_link);
3649                 irq_work_queue(&rq->submit_work);
3650         }
3651
3652         INIT_LIST_HEAD(&ce->guc_state.fences);
3653 }
3654
3655 static void guc_signal_context_fence(struct intel_context *ce)
3656 {
3657         unsigned long flags;
3658
3659         GEM_BUG_ON(intel_context_is_child(ce));
3660
3661         spin_lock_irqsave(&ce->guc_state.lock, flags);
3662         clr_context_wait_for_deregister_to_register(ce);
3663         __guc_signal_context_fence(ce);
3664         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3665 }
3666
3667 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3668 {
3669         return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3670                 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3671                 !submission_disabled(ce_to_guc(ce));
3672 }
3673
3674 static void guc_context_init(struct intel_context *ce)
3675 {
3676         const struct i915_gem_context *ctx;
3677         int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3678
3679         rcu_read_lock();
3680         ctx = rcu_dereference(ce->gem_context);
3681         if (ctx)
3682                 prio = ctx->sched.priority;
3683         rcu_read_unlock();
3684
3685         ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3686
3687         INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work,
3688                           __delay_sched_disable);
3689
3690         set_bit(CONTEXT_GUC_INIT, &ce->flags);
3691 }
3692
3693 static int guc_request_alloc(struct i915_request *rq)
3694 {
3695         struct intel_context *ce = request_to_scheduling_context(rq);
3696         struct intel_guc *guc = ce_to_guc(ce);
3697         unsigned long flags;
3698         int ret;
3699
3700         GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3701
3702         /*
3703          * Flush enough space to reduce the likelihood of waiting after
3704          * we start building the request - in which case we will just
3705          * have to repeat work.
3706          */
3707         rq->reserved_space += GUC_REQUEST_SIZE;
3708
3709         /*
3710          * Note that after this point, we have committed to using
3711          * this request as it is being used to both track the
3712          * state of engine initialisation and liveness of the
3713          * golden renderstate above. Think twice before you try
3714          * to cancel/unwind this request now.
3715          */
3716
3717         /* Unconditionally invalidate GPU caches and TLBs. */
3718         ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3719         if (ret)
3720                 return ret;
3721
3722         rq->reserved_space -= GUC_REQUEST_SIZE;
3723
3724         if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3725                 guc_context_init(ce);
3726
3727         /*
3728          * If the context gets closed while the execbuf is ongoing, the context
3729          * close code will race with the below code to cancel the delayed work.
3730          * If the context close wins the race and cancels the work, it will
3731          * immediately call the sched disable (see guc_context_close), so there
3732          * is a chance we can get past this check while the sched_disable code
3733          * is being executed. To make sure that code completes before we check
3734          * the status further down, we wait for the close process to complete.
3735          * Else, this code path could send a request down thinking that the
3736          * context is still in a schedule-enable mode while the GuC ends up
3737          * dropping the request completely because the disable did go from the
3738          * context_close path right to GuC just prior. In the event the CT is
3739          * full, we could potentially need to wait up to 1.5 seconds.
3740          */
3741         if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work))
3742                 intel_context_sched_disable_unpin(ce);
3743         else if (intel_context_is_closed(ce))
3744                 if (wait_for(context_close_done(ce), 1500))
3745                         guc_warn(guc, "timed out waiting on context sched close before realloc\n");
3746         /*
3747          * Call pin_guc_id here rather than in the pinning step as with
3748          * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3749          * guc_id and creating horrible race conditions. This is especially bad
3750          * when guc_id are being stolen due to over subscription. By the time
3751          * this function is reached, it is guaranteed that the guc_id will be
3752          * persistent until the generated request is retired. Thus, sealing these
3753          * race conditions. It is still safe to fail here if guc_id are
3754          * exhausted and return -EAGAIN to the user indicating that they can try
3755          * again in the future.
3756          *
3757          * There is no need for a lock here as the timeline mutex ensures at
3758          * most one context can be executing this code path at once. The
3759          * guc_id_ref is incremented once for every request in flight and
3760          * decremented on each retire. When it is zero, a lock around the
3761          * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3762          */
3763         if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3764                 goto out;
3765
3766         ret = pin_guc_id(guc, ce);      /* returns 1 if new guc_id assigned */
3767         if (unlikely(ret < 0))
3768                 return ret;
3769         if (context_needs_register(ce, !!ret)) {
3770                 ret = try_context_registration(ce, true);
3771                 if (unlikely(ret)) {    /* unwind */
3772                         if (ret == -EPIPE) {
3773                                 disable_submission(guc);
3774                                 goto out;       /* GPU will be reset */
3775                         }
3776                         atomic_dec(&ce->guc_id.ref);
3777                         unpin_guc_id(guc, ce);
3778                         return ret;
3779                 }
3780         }
3781
3782         clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3783
3784 out:
3785         /*
3786          * We block all requests on this context if a G2H is pending for a
3787          * schedule disable or context deregistration as the GuC will fail a
3788          * schedule enable or context registration if either G2H is pending
3789          * respectfully. Once a G2H returns, the fence is released that is
3790          * blocking these requests (see guc_signal_context_fence).
3791          */
3792         spin_lock_irqsave(&ce->guc_state.lock, flags);
3793         if (context_wait_for_deregister_to_register(ce) ||
3794             context_pending_disable(ce)) {
3795                 init_irq_work(&rq->submit_work, submit_work_cb);
3796                 i915_sw_fence_await(&rq->submit);
3797
3798                 list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3799         }
3800         spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3801
3802         return 0;
3803 }
3804
3805 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3806                                        struct i915_gem_ww_ctx *ww,
3807                                        void **vaddr)
3808 {
3809         struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3810
3811         return __guc_context_pre_pin(ce, engine, ww, vaddr);
3812 }
3813
3814 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3815 {
3816         struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3817         int ret = __guc_context_pin(ce, engine, vaddr);
3818         intel_engine_mask_t tmp, mask = ce->engine->mask;
3819
3820         if (likely(!ret))
3821                 for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3822                         intel_engine_pm_get(engine);
3823
3824         return ret;
3825 }
3826
3827 static void guc_virtual_context_unpin(struct intel_context *ce)
3828 {
3829         intel_engine_mask_t tmp, mask = ce->engine->mask;
3830         struct intel_engine_cs *engine;
3831         struct intel_guc *guc = ce_to_guc(ce);
3832
3833         GEM_BUG_ON(context_enabled(ce));
3834         GEM_BUG_ON(intel_context_is_barrier(ce));
3835
3836         unpin_guc_id(guc, ce);
3837         lrc_unpin(ce);
3838
3839         for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3840                 intel_engine_pm_put_async(engine);
3841 }
3842
3843 static void guc_virtual_context_enter(struct intel_context *ce)
3844 {
3845         intel_engine_mask_t tmp, mask = ce->engine->mask;
3846         struct intel_engine_cs *engine;
3847
3848         for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3849                 intel_engine_pm_get(engine);
3850
3851         intel_timeline_enter(ce->timeline);
3852 }
3853
3854 static void guc_virtual_context_exit(struct intel_context *ce)
3855 {
3856         intel_engine_mask_t tmp, mask = ce->engine->mask;
3857         struct intel_engine_cs *engine;
3858
3859         for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3860                 intel_engine_pm_put(engine);
3861
3862         intel_timeline_exit(ce->timeline);
3863 }
3864
3865 static int guc_virtual_context_alloc(struct intel_context *ce)
3866 {
3867         struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3868
3869         return lrc_alloc(ce, engine);
3870 }
3871
3872 static const struct intel_context_ops virtual_guc_context_ops = {
3873         .flags = COPS_RUNTIME_CYCLES,
3874         .alloc = guc_virtual_context_alloc,
3875
3876         .close = guc_context_close,
3877
3878         .pre_pin = guc_virtual_context_pre_pin,
3879         .pin = guc_virtual_context_pin,
3880         .unpin = guc_virtual_context_unpin,
3881         .post_unpin = guc_context_post_unpin,
3882
3883         .revoke = guc_context_revoke,
3884
3885         .cancel_request = guc_context_cancel_request,
3886
3887         .enter = guc_virtual_context_enter,
3888         .exit = guc_virtual_context_exit,
3889
3890         .sched_disable = guc_context_sched_disable,
3891         .update_stats = guc_context_update_stats,
3892
3893         .destroy = guc_context_destroy,
3894
3895         .get_sibling = guc_virtual_get_sibling,
3896 };
3897
3898 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
3899 {
3900         struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3901         struct intel_guc *guc = ce_to_guc(ce);
3902         int ret;
3903
3904         GEM_BUG_ON(!intel_context_is_parent(ce));
3905         GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3906
3907         ret = pin_guc_id(guc, ce);
3908         if (unlikely(ret < 0))
3909                 return ret;
3910
3911         return __guc_context_pin(ce, engine, vaddr);
3912 }
3913
3914 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
3915 {
3916         struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3917
3918         GEM_BUG_ON(!intel_context_is_child(ce));
3919         GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3920
3921         __intel_context_pin(ce->parallel.parent);
3922         return __guc_context_pin(ce, engine, vaddr);
3923 }
3924
3925 static void guc_parent_context_unpin(struct intel_context *ce)
3926 {
3927         struct intel_guc *guc = ce_to_guc(ce);
3928
3929         GEM_BUG_ON(context_enabled(ce));
3930         GEM_BUG_ON(intel_context_is_barrier(ce));
3931         GEM_BUG_ON(!intel_context_is_parent(ce));
3932         GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3933
3934         unpin_guc_id(guc, ce);
3935         lrc_unpin(ce);
3936 }
3937
3938 static void guc_child_context_unpin(struct intel_context *ce)
3939 {
3940         GEM_BUG_ON(context_enabled(ce));
3941         GEM_BUG_ON(intel_context_is_barrier(ce));
3942         GEM_BUG_ON(!intel_context_is_child(ce));
3943         GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3944
3945         lrc_unpin(ce);
3946 }
3947
3948 static void guc_child_context_post_unpin(struct intel_context *ce)
3949 {
3950         GEM_BUG_ON(!intel_context_is_child(ce));
3951         GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
3952         GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3953
3954         lrc_post_unpin(ce);
3955         intel_context_unpin(ce->parallel.parent);
3956 }
3957
3958 static void guc_child_context_destroy(struct kref *kref)
3959 {
3960         struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3961
3962         __guc_context_destroy(ce);
3963 }
3964
3965 static const struct intel_context_ops virtual_parent_context_ops = {
3966         .alloc = guc_virtual_context_alloc,
3967
3968         .close = guc_context_close,
3969
3970         .pre_pin = guc_context_pre_pin,
3971         .pin = guc_parent_context_pin,
3972         .unpin = guc_parent_context_unpin,
3973         .post_unpin = guc_context_post_unpin,
3974
3975         .revoke = guc_context_revoke,
3976
3977         .cancel_request = guc_context_cancel_request,
3978
3979         .enter = guc_virtual_context_enter,
3980         .exit = guc_virtual_context_exit,
3981
3982         .sched_disable = guc_context_sched_disable,
3983
3984         .destroy = guc_context_destroy,
3985
3986         .get_sibling = guc_virtual_get_sibling,
3987 };
3988
3989 static const struct intel_context_ops virtual_child_context_ops = {
3990         .alloc = guc_virtual_context_alloc,
3991
3992         .pre_pin = guc_context_pre_pin,
3993         .pin = guc_child_context_pin,
3994         .unpin = guc_child_context_unpin,
3995         .post_unpin = guc_child_context_post_unpin,
3996
3997         .cancel_request = guc_context_cancel_request,
3998
3999         .enter = guc_virtual_context_enter,
4000         .exit = guc_virtual_context_exit,
4001
4002         .destroy = guc_child_context_destroy,
4003
4004         .get_sibling = guc_virtual_get_sibling,
4005 };
4006
4007 /*
4008  * The below override of the breadcrumbs is enabled when the user configures a
4009  * context for parallel submission (multi-lrc, parent-child).
4010  *
4011  * The overridden breadcrumbs implements an algorithm which allows the GuC to
4012  * safely preempt all the hw contexts configured for parallel submission
4013  * between each BB. The contract between the i915 and GuC is if the parent
4014  * context can be preempted, all the children can be preempted, and the GuC will
4015  * always try to preempt the parent before the children. A handshake between the
4016  * parent / children breadcrumbs ensures the i915 holds up its end of the deal
4017  * creating a window to preempt between each set of BBs.
4018  */
4019 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
4020                                                      u64 offset, u32 len,
4021                                                      const unsigned int flags);
4022 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
4023                                                     u64 offset, u32 len,
4024                                                     const unsigned int flags);
4025 static u32 *
4026 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4027                                                  u32 *cs);
4028 static u32 *
4029 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
4030                                                 u32 *cs);
4031
4032 static struct intel_context *
4033 guc_create_parallel(struct intel_engine_cs **engines,
4034                     unsigned int num_siblings,
4035                     unsigned int width)
4036 {
4037         struct intel_engine_cs **siblings = NULL;
4038         struct intel_context *parent = NULL, *ce, *err;
4039         int i, j;
4040
4041         siblings = kmalloc_array(num_siblings,
4042                                  sizeof(*siblings),
4043                                  GFP_KERNEL);
4044         if (!siblings)
4045                 return ERR_PTR(-ENOMEM);
4046
4047         for (i = 0; i < width; ++i) {
4048                 for (j = 0; j < num_siblings; ++j)
4049                         siblings[j] = engines[i * num_siblings + j];
4050
4051                 ce = intel_engine_create_virtual(siblings, num_siblings,
4052                                                  FORCE_VIRTUAL);
4053                 if (IS_ERR(ce)) {
4054                         err = ERR_CAST(ce);
4055                         goto unwind;
4056                 }
4057
4058                 if (i == 0) {
4059                         parent = ce;
4060                         parent->ops = &virtual_parent_context_ops;
4061                 } else {
4062                         ce->ops = &virtual_child_context_ops;
4063                         intel_context_bind_parent_child(parent, ce);
4064                 }
4065         }
4066
4067         parent->parallel.fence_context = dma_fence_context_alloc(1);
4068
4069         parent->engine->emit_bb_start =
4070                 emit_bb_start_parent_no_preempt_mid_batch;
4071         parent->engine->emit_fini_breadcrumb =
4072                 emit_fini_breadcrumb_parent_no_preempt_mid_batch;
4073         parent->engine->emit_fini_breadcrumb_dw =
4074                 12 + 4 * parent->parallel.number_children;
4075         for_each_child(parent, ce) {
4076                 ce->engine->emit_bb_start =
4077                         emit_bb_start_child_no_preempt_mid_batch;
4078                 ce->engine->emit_fini_breadcrumb =
4079                         emit_fini_breadcrumb_child_no_preempt_mid_batch;
4080                 ce->engine->emit_fini_breadcrumb_dw = 16;
4081         }
4082
4083         kfree(siblings);
4084         return parent;
4085
4086 unwind:
4087         if (parent)
4088                 intel_context_put(parent);
4089         kfree(siblings);
4090         return err;
4091 }
4092
4093 static bool
4094 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
4095 {
4096         struct intel_engine_cs *sibling;
4097         intel_engine_mask_t tmp, mask = b->engine_mask;
4098         bool result = false;
4099
4100         for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4101                 result |= intel_engine_irq_enable(sibling);
4102
4103         return result;
4104 }
4105
4106 static void
4107 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
4108 {
4109         struct intel_engine_cs *sibling;
4110         intel_engine_mask_t tmp, mask = b->engine_mask;
4111
4112         for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4113                 intel_engine_irq_disable(sibling);
4114 }
4115
4116 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
4117 {
4118         int i;
4119
4120         /*
4121          * In GuC submission mode we do not know which physical engine a request
4122          * will be scheduled on, this creates a problem because the breadcrumb
4123          * interrupt is per physical engine. To work around this we attach
4124          * requests and direct all breadcrumb interrupts to the first instance
4125          * of an engine per class. In addition all breadcrumb interrupts are
4126          * enabled / disabled across an engine class in unison.
4127          */
4128         for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
4129                 struct intel_engine_cs *sibling =
4130                         engine->gt->engine_class[engine->class][i];
4131
4132                 if (sibling) {
4133                         if (engine->breadcrumbs != sibling->breadcrumbs) {
4134                                 intel_breadcrumbs_put(engine->breadcrumbs);
4135                                 engine->breadcrumbs =
4136                                         intel_breadcrumbs_get(sibling->breadcrumbs);
4137                         }
4138                         break;
4139                 }
4140         }
4141
4142         if (engine->breadcrumbs) {
4143                 engine->breadcrumbs->engine_mask |= engine->mask;
4144                 engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
4145                 engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
4146         }
4147 }
4148
4149 static void guc_bump_inflight_request_prio(struct i915_request *rq,
4150                                            int prio)
4151 {
4152         struct intel_context *ce = request_to_scheduling_context(rq);
4153         u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
4154
4155         /* Short circuit function */
4156         if (prio < I915_PRIORITY_NORMAL ||
4157             rq->guc_prio == GUC_PRIO_FINI ||
4158             (rq->guc_prio != GUC_PRIO_INIT &&
4159              !new_guc_prio_higher(rq->guc_prio, new_guc_prio)))
4160                 return;
4161
4162         spin_lock(&ce->guc_state.lock);
4163         if (rq->guc_prio != GUC_PRIO_FINI) {
4164                 if (rq->guc_prio != GUC_PRIO_INIT)
4165                         sub_context_inflight_prio(ce, rq->guc_prio);
4166                 rq->guc_prio = new_guc_prio;
4167                 add_context_inflight_prio(ce, rq->guc_prio);
4168                 update_context_prio(ce);
4169         }
4170         spin_unlock(&ce->guc_state.lock);
4171 }
4172
4173 static void guc_retire_inflight_request_prio(struct i915_request *rq)
4174 {
4175         struct intel_context *ce = request_to_scheduling_context(rq);
4176
4177         spin_lock(&ce->guc_state.lock);
4178         guc_prio_fini(rq, ce);
4179         spin_unlock(&ce->guc_state.lock);
4180 }
4181
4182 static void sanitize_hwsp(struct intel_engine_cs *engine)
4183 {
4184         struct intel_timeline *tl;
4185
4186         list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
4187                 intel_timeline_reset_seqno(tl);
4188 }
4189
4190 static void guc_sanitize(struct intel_engine_cs *engine)
4191 {
4192         /*
4193          * Poison residual state on resume, in case the suspend didn't!
4194          *
4195          * We have to assume that across suspend/resume (or other loss
4196          * of control) that the contents of our pinned buffers has been
4197          * lost, replaced by garbage. Since this doesn't always happen,
4198          * let's poison such state so that we more quickly spot when
4199          * we falsely assume it has been preserved.
4200          */
4201         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4202                 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
4203
4204         /*
4205          * The kernel_context HWSP is stored in the status_page. As above,
4206          * that may be lost on resume/initialisation, and so we need to
4207          * reset the value in the HWSP.
4208          */
4209         sanitize_hwsp(engine);
4210
4211         /* And scrub the dirty cachelines for the HWSP */
4212         drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
4213
4214         intel_engine_reset_pinned_contexts(engine);
4215 }
4216
4217 static void setup_hwsp(struct intel_engine_cs *engine)
4218 {
4219         intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4220
4221         ENGINE_WRITE_FW(engine,
4222                         RING_HWS_PGA,
4223                         i915_ggtt_offset(engine->status_page.vma));
4224 }
4225
4226 static void start_engine(struct intel_engine_cs *engine)
4227 {
4228         ENGINE_WRITE_FW(engine,
4229                         RING_MODE_GEN7,
4230                         _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
4231
4232         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4233         ENGINE_POSTING_READ(engine, RING_MI_MODE);
4234 }
4235
4236 static int guc_resume(struct intel_engine_cs *engine)
4237 {
4238         assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4239
4240         intel_mocs_init_engine(engine);
4241
4242         intel_breadcrumbs_reset(engine->breadcrumbs);
4243
4244         setup_hwsp(engine);
4245         start_engine(engine);
4246
4247         if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
4248                 xehp_enable_ccs_engines(engine);
4249
4250         return 0;
4251 }
4252
4253 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
4254 {
4255         return !sched_engine->tasklet.callback;
4256 }
4257
4258 static void guc_set_default_submission(struct intel_engine_cs *engine)
4259 {
4260         engine->submit_request = guc_submit_request;
4261 }
4262
4263 static inline int guc_kernel_context_pin(struct intel_guc *guc,
4264                                          struct intel_context *ce)
4265 {
4266         int ret;
4267
4268         /*
4269          * Note: we purposefully do not check the returns below because
4270          * the registration can only fail if a reset is just starting.
4271          * This is called at the end of reset so presumably another reset
4272          * isn't happening and even it did this code would be run again.
4273          */
4274
4275         if (context_guc_id_invalid(ce)) {
4276                 ret = pin_guc_id(guc, ce);
4277
4278                 if (ret < 0)
4279                         return ret;
4280         }
4281
4282         if (!test_bit(CONTEXT_GUC_INIT, &ce->flags))
4283                 guc_context_init(ce);
4284
4285         ret = try_context_registration(ce, true);
4286         if (ret)
4287                 unpin_guc_id(guc, ce);
4288
4289         return ret;
4290 }
4291
4292 static inline int guc_init_submission(struct intel_guc *guc)
4293 {
4294         struct intel_gt *gt = guc_to_gt(guc);
4295         struct intel_engine_cs *engine;
4296         enum intel_engine_id id;
4297
4298         /* make sure all descriptors are clean... */
4299         xa_destroy(&guc->context_lookup);
4300
4301         /*
4302          * A reset might have occurred while we had a pending stalled request,
4303          * so make sure we clean that up.
4304          */
4305         guc->stalled_request = NULL;
4306         guc->submission_stall_reason = STALL_NONE;
4307
4308         /*
4309          * Some contexts might have been pinned before we enabled GuC
4310          * submission, so we need to add them to the GuC bookeeping.
4311          * Also, after a reset the of the GuC we want to make sure that the
4312          * information shared with GuC is properly reset. The kernel LRCs are
4313          * not attached to the gem_context, so they need to be added separately.
4314          */
4315         for_each_engine(engine, gt, id) {
4316                 struct intel_context *ce;
4317
4318                 list_for_each_entry(ce, &engine->pinned_contexts_list,
4319                                     pinned_contexts_link) {
4320                         int ret = guc_kernel_context_pin(guc, ce);
4321
4322                         if (ret) {
4323                                 /* No point in trying to clean up as i915 will wedge on failure */
4324                                 return ret;
4325                         }
4326                 }
4327         }
4328
4329         return 0;
4330 }
4331
4332 static void guc_release(struct intel_engine_cs *engine)
4333 {
4334         engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4335
4336         intel_engine_cleanup_common(engine);
4337         lrc_fini_wa_ctx(engine);
4338 }
4339
4340 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4341 {
4342         struct intel_engine_cs *e;
4343         intel_engine_mask_t tmp, mask = engine->mask;
4344
4345         for_each_engine_masked(e, engine->gt, mask, tmp)
4346                 e->serial++;
4347 }
4348
4349 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4350 {
4351         /* Default vfuncs which can be overridden by each engine. */
4352
4353         engine->resume = guc_resume;
4354
4355         engine->cops = &guc_context_ops;
4356         engine->request_alloc = guc_request_alloc;
4357         engine->add_active_request = add_to_context;
4358         engine->remove_active_request = remove_from_context;
4359
4360         engine->sched_engine->schedule = i915_schedule;
4361
4362         engine->reset.prepare = guc_engine_reset_prepare;
4363         engine->reset.rewind = guc_rewind_nop;
4364         engine->reset.cancel = guc_reset_nop;
4365         engine->reset.finish = guc_reset_nop;
4366
4367         engine->emit_flush = gen8_emit_flush_xcs;
4368         engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4369         engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4370         if (GRAPHICS_VER(engine->i915) >= 12) {
4371                 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4372                 engine->emit_flush = gen12_emit_flush_xcs;
4373         }
4374         engine->set_default_submission = guc_set_default_submission;
4375         engine->busyness = guc_engine_busyness;
4376
4377         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4378         engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4379         engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4380
4381         /* Wa_14014475959:dg2 */
4382         if (engine->class == COMPUTE_CLASS)
4383                 if (IS_GFX_GT_IP_STEP(engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
4384                     IS_DG2(engine->i915))
4385                         engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT;
4386
4387         /*
4388          * TODO: GuC supports timeslicing and semaphores as well, but they're
4389          * handled by the firmware so some minor tweaks are required before
4390          * enabling.
4391          *
4392          * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4393          */
4394
4395         engine->emit_bb_start = gen8_emit_bb_start;
4396         if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
4397                 engine->emit_bb_start = xehp_emit_bb_start;
4398 }
4399
4400 static void rcs_submission_override(struct intel_engine_cs *engine)
4401 {
4402         switch (GRAPHICS_VER(engine->i915)) {
4403         case 12:
4404                 engine->emit_flush = gen12_emit_flush_rcs;
4405                 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4406                 break;
4407         case 11:
4408                 engine->emit_flush = gen11_emit_flush_rcs;
4409                 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4410                 break;
4411         default:
4412                 engine->emit_flush = gen8_emit_flush_rcs;
4413                 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4414                 break;
4415         }
4416 }
4417
4418 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4419 {
4420         engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4421         intel_engine_set_irq_handler(engine, cs_irq_handler);
4422 }
4423
4424 static void guc_sched_engine_destroy(struct kref *kref)
4425 {
4426         struct i915_sched_engine *sched_engine =
4427                 container_of(kref, typeof(*sched_engine), ref);
4428         struct intel_guc *guc = sched_engine->private_data;
4429
4430         guc->sched_engine = NULL;
4431         tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4432         kfree(sched_engine);
4433 }
4434
4435 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4436 {
4437         struct drm_i915_private *i915 = engine->i915;
4438         struct intel_guc *guc = &engine->gt->uc.guc;
4439
4440         /*
4441          * The setup relies on several assumptions (e.g. irqs always enabled)
4442          * that are only valid on gen11+
4443          */
4444         GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4445
4446         if (!guc->sched_engine) {
4447                 guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4448                 if (!guc->sched_engine)
4449                         return -ENOMEM;
4450
4451                 guc->sched_engine->schedule = i915_schedule;
4452                 guc->sched_engine->disabled = guc_sched_engine_disabled;
4453                 guc->sched_engine->private_data = guc;
4454                 guc->sched_engine->destroy = guc_sched_engine_destroy;
4455                 guc->sched_engine->bump_inflight_request_prio =
4456                         guc_bump_inflight_request_prio;
4457                 guc->sched_engine->retire_inflight_request_prio =
4458                         guc_retire_inflight_request_prio;
4459                 tasklet_setup(&guc->sched_engine->tasklet,
4460                               guc_submission_tasklet);
4461         }
4462         i915_sched_engine_put(engine->sched_engine);
4463         engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4464
4465         guc_default_vfuncs(engine);
4466         guc_default_irqs(engine);
4467         guc_init_breadcrumbs(engine);
4468
4469         if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4470                 rcs_submission_override(engine);
4471
4472         lrc_init_wa_ctx(engine);
4473
4474         /* Finally, take ownership and responsibility for cleanup! */
4475         engine->sanitize = guc_sanitize;
4476         engine->release = guc_release;
4477
4478         return 0;
4479 }
4480
4481 struct scheduling_policy {
4482         /* internal data */
4483         u32 max_words, num_words;
4484         u32 count;
4485         /* API data */
4486         struct guc_update_scheduling_policy h2g;
4487 };
4488
4489 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy)
4490 {
4491         u32 *start = (void *)&policy->h2g;
4492         u32 *end = policy->h2g.data + policy->num_words;
4493         size_t delta = end - start;
4494
4495         return delta;
4496 }
4497
4498 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy)
4499 {
4500         policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV;
4501         policy->max_words = ARRAY_SIZE(policy->h2g.data);
4502         policy->num_words = 0;
4503         policy->count = 0;
4504
4505         return policy;
4506 }
4507
4508 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy,
4509                                             u32 action, u32 *data, u32 len)
4510 {
4511         u32 *klv_ptr = policy->h2g.data + policy->num_words;
4512
4513         GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words);
4514         *(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) |
4515                        FIELD_PREP(GUC_KLV_0_LEN, len);
4516         memcpy(klv_ptr, data, sizeof(u32) * len);
4517         policy->num_words += 1 + len;
4518         policy->count++;
4519 }
4520
4521 static int __guc_action_set_scheduling_policies(struct intel_guc *guc,
4522                                                 struct scheduling_policy *policy)
4523 {
4524         int ret;
4525
4526         ret = intel_guc_send(guc, (u32 *)&policy->h2g,
4527                              __guc_scheduling_policy_action_size(policy));
4528         if (ret < 0) {
4529                 guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n",
4530                                 ERR_PTR(ret));
4531                 return ret;
4532         }
4533
4534         if (ret != policy->count) {
4535                 guc_warn(guc, "global scheduler policy processed %d of %d KLVs!",
4536                          ret, policy->count);
4537                 if (ret > policy->count)
4538                         return -EPROTO;
4539         }
4540
4541         return 0;
4542 }
4543
4544 static int guc_init_global_schedule_policy(struct intel_guc *guc)
4545 {
4546         struct scheduling_policy policy;
4547         struct intel_gt *gt = guc_to_gt(guc);
4548         intel_wakeref_t wakeref;
4549         int ret;
4550
4551         if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0))
4552                 return 0;
4553
4554         __guc_scheduling_policy_start_klv(&policy);
4555
4556         with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
4557                 u32 yield[] = {
4558                         GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION,
4559                         GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO,
4560                 };
4561
4562                 __guc_scheduling_policy_add_klv(&policy,
4563                                                 GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD,
4564                                                 yield, ARRAY_SIZE(yield));
4565
4566                 ret = __guc_action_set_scheduling_policies(guc, &policy);
4567         }
4568
4569         return ret;
4570 }
4571
4572 static void guc_route_semaphores(struct intel_guc *guc, bool to_guc)
4573 {
4574         struct intel_gt *gt = guc_to_gt(guc);
4575         u32 val;
4576
4577         if (GRAPHICS_VER(gt->i915) < 12)
4578                 return;
4579
4580         if (to_guc)
4581                 val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL;
4582         else
4583                 val = 0;
4584
4585         intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val);
4586 }
4587
4588 int intel_guc_submission_enable(struct intel_guc *guc)
4589 {
4590         int ret;
4591
4592         /* Semaphore interrupt enable and route to GuC */
4593         guc_route_semaphores(guc, true);
4594
4595         ret = guc_init_submission(guc);
4596         if (ret)
4597                 goto fail_sem;
4598
4599         ret = guc_init_engine_stats(guc);
4600         if (ret)
4601                 goto fail_sem;
4602
4603         ret = guc_init_global_schedule_policy(guc);
4604         if (ret)
4605                 goto fail_stats;
4606
4607         return 0;
4608
4609 fail_stats:
4610         guc_fini_engine_stats(guc);
4611 fail_sem:
4612         guc_route_semaphores(guc, false);
4613         return ret;
4614 }
4615
4616 /* Note: By the time we're here, GuC may have already been reset */
4617 void intel_guc_submission_disable(struct intel_guc *guc)
4618 {
4619         guc_cancel_busyness_worker(guc);
4620
4621         /* Semaphore interrupt disable and route to host */
4622         guc_route_semaphores(guc, false);
4623 }
4624
4625 static bool __guc_submission_supported(struct intel_guc *guc)
4626 {
4627         /* GuC submission is unavailable for pre-Gen11 */
4628         return intel_guc_is_supported(guc) &&
4629                GRAPHICS_VER(guc_to_i915(guc)) >= 11;
4630 }
4631
4632 static bool __guc_submission_selected(struct intel_guc *guc)
4633 {
4634         struct drm_i915_private *i915 = guc_to_i915(guc);
4635
4636         if (!intel_guc_submission_is_supported(guc))
4637                 return false;
4638
4639         return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4640 }
4641
4642 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc)
4643 {
4644         return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc);
4645 }
4646
4647 /*
4648  * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher
4649  * workloads are able to enjoy the latency reduction when delaying the schedule-disable
4650  * operation. This matches the 30fps game-render + encode (real world) workload this
4651  * knob was tested against.
4652  */
4653 #define SCHED_DISABLE_DELAY_MS  34
4654
4655 /*
4656  * A threshold of 75% is a reasonable starting point considering that real world apps
4657  * generally don't get anywhere near this.
4658  */
4659 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \
4660         (((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4)
4661
4662 void intel_guc_submission_init_early(struct intel_guc *guc)
4663 {
4664         xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4665
4666         spin_lock_init(&guc->submission_state.lock);
4667         INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4668         ida_init(&guc->submission_state.guc_ids);
4669         INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4670         INIT_WORK(&guc->submission_state.destroyed_worker,
4671                   destroyed_worker_func);
4672         INIT_WORK(&guc->submission_state.reset_fail_worker,
4673                   reset_fail_worker_func);
4674
4675         spin_lock_init(&guc->timestamp.lock);
4676         INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4677
4678         guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS;
4679         guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4680         guc->submission_state.sched_disable_gucid_threshold =
4681                 NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc);
4682         guc->submission_supported = __guc_submission_supported(guc);
4683         guc->submission_selected = __guc_submission_selected(guc);
4684 }
4685
4686 static inline struct intel_context *
4687 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4688 {
4689         struct intel_context *ce;
4690
4691         if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4692                 guc_err(guc, "Invalid ctx_id %u\n", ctx_id);
4693                 return NULL;
4694         }
4695
4696         ce = __get_context(guc, ctx_id);
4697         if (unlikely(!ce)) {
4698                 guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id);
4699                 return NULL;
4700         }
4701
4702         if (unlikely(intel_context_is_child(ce))) {
4703                 guc_err(guc, "Context is child, ctx_id %u\n", ctx_id);
4704                 return NULL;
4705         }
4706
4707         return ce;
4708 }
4709
4710 static void wait_wake_outstanding_tlb_g2h(struct intel_guc *guc, u32 seqno)
4711 {
4712         struct intel_guc_tlb_wait *wait;
4713         unsigned long flags;
4714
4715         xa_lock_irqsave(&guc->tlb_lookup, flags);
4716         wait = xa_load(&guc->tlb_lookup, seqno);
4717
4718         if (wait)
4719                 wake_up(&wait->wq);
4720         else
4721                 guc_dbg(guc,
4722                         "Stale TLB invalidation response with seqno %d\n", seqno);
4723
4724         xa_unlock_irqrestore(&guc->tlb_lookup, flags);
4725 }
4726
4727 int intel_guc_tlb_invalidation_done(struct intel_guc *guc,
4728                                     const u32 *payload, u32 len)
4729 {
4730         if (len < 1)
4731                 return -EPROTO;
4732
4733         wait_wake_outstanding_tlb_g2h(guc, payload[0]);
4734         return 0;
4735 }
4736
4737 static long must_wait_woken(struct wait_queue_entry *wq_entry, long timeout)
4738 {
4739         /*
4740          * This is equivalent to wait_woken() with the exception that
4741          * we do not wake up early if the kthread task has been completed.
4742          * As we are called from page reclaim in any task context,
4743          * we may be invoked from stopped kthreads, but we *must*
4744          * complete the wait from the HW.
4745          */
4746         do {
4747                 set_current_state(TASK_UNINTERRUPTIBLE);
4748                 if (wq_entry->flags & WQ_FLAG_WOKEN)
4749                         break;
4750
4751                 timeout = schedule_timeout(timeout);
4752         } while (timeout);
4753
4754         /* See wait_woken() and woken_wake_function() */
4755         __set_current_state(TASK_RUNNING);
4756         smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN);
4757
4758         return timeout;
4759 }
4760
4761 static bool intel_gt_is_enabled(const struct intel_gt *gt)
4762 {
4763         /* Check if GT is wedged or suspended */
4764         if (intel_gt_is_wedged(gt) || !intel_irqs_enabled(gt->i915))
4765                 return false;
4766         return true;
4767 }
4768
4769 static int guc_send_invalidate_tlb(struct intel_guc *guc,
4770                                    enum intel_guc_tlb_invalidation_type type)
4771 {
4772         struct intel_guc_tlb_wait _wq, *wq = &_wq;
4773         struct intel_gt *gt = guc_to_gt(guc);
4774         DEFINE_WAIT_FUNC(wait, woken_wake_function);
4775         int err;
4776         u32 seqno;
4777         u32 action[] = {
4778                 INTEL_GUC_ACTION_TLB_INVALIDATION,
4779                 0,
4780                 REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_TYPE_MASK, type) |
4781                         REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_MODE_MASK,
4782                                        INTEL_GUC_TLB_INVAL_MODE_HEAVY) |
4783                         INTEL_GUC_TLB_INVAL_FLUSH_CACHE,
4784         };
4785         u32 size = ARRAY_SIZE(action);
4786
4787         /*
4788          * Early guard against GT enablement.  TLB invalidation should not be
4789          * attempted if the GT is disabled due to suspend/wedge.
4790          */
4791         if (!intel_gt_is_enabled(gt))
4792                 return -EINVAL;
4793
4794         init_waitqueue_head(&_wq.wq);
4795
4796         if (xa_alloc_cyclic_irq(&guc->tlb_lookup, &seqno, wq,
4797                                 xa_limit_32b, &guc->next_seqno,
4798                                 GFP_ATOMIC | __GFP_NOWARN) < 0) {
4799                 /* Under severe memory pressure? Serialise TLB allocations */
4800                 xa_lock_irq(&guc->tlb_lookup);
4801                 wq = xa_load(&guc->tlb_lookup, guc->serial_slot);
4802                 wait_event_lock_irq(wq->wq,
4803                                     !READ_ONCE(wq->busy),
4804                                     guc->tlb_lookup.xa_lock);
4805                 /*
4806                  * Update wq->busy under lock to ensure only one waiter can
4807                  * issue the TLB invalidation command using the serial slot at a
4808                  * time. The condition is set to true before releasing the lock
4809                  * so that other caller continue to wait until woken up again.
4810                  */
4811                 wq->busy = true;
4812                 xa_unlock_irq(&guc->tlb_lookup);
4813
4814                 seqno = guc->serial_slot;
4815         }
4816
4817         action[1] = seqno;
4818
4819         add_wait_queue(&wq->wq, &wait);
4820
4821         /* This is a critical reclaim path and thus we must loop here. */
4822         err = intel_guc_send_busy_loop(guc, action, size, G2H_LEN_DW_INVALIDATE_TLB, true);
4823         if (err)
4824                 goto out;
4825
4826         /*
4827          * Late guard against GT enablement.  It is not an error for the TLB
4828          * invalidation to time out if the GT is disabled during the process
4829          * due to suspend/wedge.  In fact, the TLB invalidation is cancelled
4830          * in this case.
4831          */
4832         if (!must_wait_woken(&wait, intel_guc_ct_max_queue_time_jiffies()) &&
4833             intel_gt_is_enabled(gt)) {
4834                 guc_err(guc,
4835                         "TLB invalidation response timed out for seqno %u\n", seqno);
4836                 err = -ETIME;
4837         }
4838 out:
4839         remove_wait_queue(&wq->wq, &wait);
4840         if (seqno != guc->serial_slot)
4841                 xa_erase_irq(&guc->tlb_lookup, seqno);
4842
4843         return err;
4844 }
4845
4846 /* Send a H2G command to invalidate the TLBs at engine level and beyond. */
4847 int intel_guc_invalidate_tlb_engines(struct intel_guc *guc)
4848 {
4849         return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_ENGINES);
4850 }
4851
4852 /* Send a H2G command to invalidate the GuC's internal TLB. */
4853 int intel_guc_invalidate_tlb_guc(struct intel_guc *guc)
4854 {
4855         return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_GUC);
4856 }
4857
4858 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
4859                                           const u32 *msg,
4860                                           u32 len)
4861 {
4862         struct intel_context *ce;
4863         u32 ctx_id;
4864
4865         if (unlikely(len < 1)) {
4866                 guc_err(guc, "Invalid length %u\n", len);
4867                 return -EPROTO;
4868         }
4869         ctx_id = msg[0];
4870
4871         ce = g2h_context_lookup(guc, ctx_id);
4872         if (unlikely(!ce))
4873                 return -EPROTO;
4874
4875         trace_intel_context_deregister_done(ce);
4876
4877 #ifdef CONFIG_DRM_I915_SELFTEST
4878         if (unlikely(ce->drop_deregister)) {
4879                 ce->drop_deregister = false;
4880                 return 0;
4881         }
4882 #endif
4883
4884         if (context_wait_for_deregister_to_register(ce)) {
4885                 struct intel_runtime_pm *runtime_pm =
4886                         &ce->engine->gt->i915->runtime_pm;
4887                 intel_wakeref_t wakeref;
4888
4889                 /*
4890                  * Previous owner of this guc_id has been deregistered, now safe
4891                  * register this context.
4892                  */
4893                 with_intel_runtime_pm(runtime_pm, wakeref)
4894                         register_context(ce, true);
4895                 guc_signal_context_fence(ce);
4896                 intel_context_put(ce);
4897         } else if (context_destroyed(ce)) {
4898                 /* Context has been destroyed */
4899                 intel_gt_pm_put_async_untracked(guc_to_gt(guc));
4900                 release_guc_id(guc, ce);
4901                 __guc_context_destroy(ce);
4902         }
4903
4904         decr_outstanding_submission_g2h(guc);
4905
4906         return 0;
4907 }
4908
4909 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
4910                                      const u32 *msg,
4911                                      u32 len)
4912 {
4913         struct intel_context *ce;
4914         unsigned long flags;
4915         u32 ctx_id;
4916
4917         if (unlikely(len < 2)) {
4918                 guc_err(guc, "Invalid length %u\n", len);
4919                 return -EPROTO;
4920         }
4921         ctx_id = msg[0];
4922
4923         ce = g2h_context_lookup(guc, ctx_id);
4924         if (unlikely(!ce))
4925                 return -EPROTO;
4926
4927         if (unlikely(context_destroyed(ce) ||
4928                      (!context_pending_enable(ce) &&
4929                      !context_pending_disable(ce)))) {
4930                 guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n",
4931                         ce->guc_state.sched_state, ctx_id);
4932                 return -EPROTO;
4933         }
4934
4935         trace_intel_context_sched_done(ce);
4936
4937         if (context_pending_enable(ce)) {
4938 #ifdef CONFIG_DRM_I915_SELFTEST
4939                 if (unlikely(ce->drop_schedule_enable)) {
4940                         ce->drop_schedule_enable = false;
4941                         return 0;
4942                 }
4943 #endif
4944
4945                 spin_lock_irqsave(&ce->guc_state.lock, flags);
4946                 clr_context_pending_enable(ce);
4947                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4948         } else if (context_pending_disable(ce)) {
4949                 bool banned;
4950
4951 #ifdef CONFIG_DRM_I915_SELFTEST
4952                 if (unlikely(ce->drop_schedule_disable)) {
4953                         ce->drop_schedule_disable = false;
4954                         return 0;
4955                 }
4956 #endif
4957
4958                 /*
4959                  * Unpin must be done before __guc_signal_context_fence,
4960                  * otherwise a race exists between the requests getting
4961                  * submitted + retired before this unpin completes resulting in
4962                  * the pin_count going to zero and the context still being
4963                  * enabled.
4964                  */
4965                 intel_context_sched_disable_unpin(ce);
4966
4967                 spin_lock_irqsave(&ce->guc_state.lock, flags);
4968                 banned = context_banned(ce);
4969                 clr_context_banned(ce);
4970                 clr_context_pending_disable(ce);
4971                 __guc_signal_context_fence(ce);
4972                 guc_blocked_fence_complete(ce);
4973                 spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4974
4975                 if (banned) {
4976                         guc_cancel_context_requests(ce);
4977                         intel_engine_signal_breadcrumbs(ce->engine);
4978                 }
4979         }
4980
4981         decr_outstanding_submission_g2h(guc);
4982         intel_context_put(ce);
4983
4984         return 0;
4985 }
4986
4987 static void capture_error_state(struct intel_guc *guc,
4988                                 struct intel_context *ce)
4989 {
4990         struct intel_gt *gt = guc_to_gt(guc);
4991         struct drm_i915_private *i915 = gt->i915;
4992         intel_wakeref_t wakeref;
4993         intel_engine_mask_t engine_mask;
4994
4995         if (intel_engine_is_virtual(ce->engine)) {
4996                 struct intel_engine_cs *e;
4997                 intel_engine_mask_t tmp, virtual_mask = ce->engine->mask;
4998
4999                 engine_mask = 0;
5000                 for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) {
5001                         bool match = intel_guc_capture_is_matching_engine(gt, ce, e);
5002
5003                         if (match) {
5004                                 intel_engine_set_hung_context(e, ce);
5005                                 engine_mask |= e->mask;
5006                                 i915_increase_reset_engine_count(&i915->gpu_error,
5007                                                                  e);
5008                         }
5009                 }
5010
5011                 if (!engine_mask) {
5012                         guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s",
5013                                  ce->guc_id.id, ce->engine->name);
5014                         engine_mask = ~0U;
5015                 }
5016         } else {
5017                 intel_engine_set_hung_context(ce->engine, ce);
5018                 engine_mask = ce->engine->mask;
5019                 i915_increase_reset_engine_count(&i915->gpu_error, ce->engine);
5020         }
5021
5022         with_intel_runtime_pm(&i915->runtime_pm, wakeref)
5023                 i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
5024 }
5025
5026 static void guc_context_replay(struct intel_context *ce)
5027 {
5028         struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
5029
5030         __guc_reset_context(ce, ce->engine->mask);
5031         tasklet_hi_schedule(&sched_engine->tasklet);
5032 }
5033
5034 static void guc_handle_context_reset(struct intel_guc *guc,
5035                                      struct intel_context *ce)
5036 {
5037         bool capture = intel_context_is_schedulable(ce);
5038
5039         trace_intel_context_reset(ce);
5040
5041         guc_dbg(guc, "%s context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n",
5042                 capture ? "Got" : "Ignoring",
5043                 ce->guc_id.id, ce->engine->name,
5044                 str_yes_no(intel_context_is_exiting(ce)),
5045                 str_yes_no(intel_context_is_banned(ce)));
5046
5047         if (capture) {
5048                 capture_error_state(guc, ce);
5049                 guc_context_replay(ce);
5050         }
5051 }
5052
5053 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
5054                                         const u32 *msg, u32 len)
5055 {
5056         struct intel_context *ce;
5057         unsigned long flags;
5058         int ctx_id;
5059
5060         if (unlikely(len != 1)) {
5061                 guc_err(guc, "Invalid length %u", len);
5062                 return -EPROTO;
5063         }
5064
5065         ctx_id = msg[0];
5066
5067         /*
5068          * The context lookup uses the xarray but lookups only require an RCU lock
5069          * not the full spinlock. So take the lock explicitly and keep it until the
5070          * context has been reference count locked to ensure it can't be destroyed
5071          * asynchronously until the reset is done.
5072          */
5073         xa_lock_irqsave(&guc->context_lookup, flags);
5074         ce = g2h_context_lookup(guc, ctx_id);
5075         if (ce)
5076                 intel_context_get(ce);
5077         xa_unlock_irqrestore(&guc->context_lookup, flags);
5078
5079         if (unlikely(!ce))
5080                 return -EPROTO;
5081
5082         guc_handle_context_reset(guc, ce);
5083         intel_context_put(ce);
5084
5085         return 0;
5086 }
5087
5088 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
5089                                         const u32 *msg, u32 len)
5090 {
5091         u32 status;
5092
5093         if (unlikely(len != 1)) {
5094                 guc_dbg(guc, "Invalid length %u", len);
5095                 return -EPROTO;
5096         }
5097
5098         status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
5099         if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
5100                 guc_warn(guc, "No space for error capture");
5101
5102         intel_guc_capture_process(guc);
5103
5104         return 0;
5105 }
5106
5107 struct intel_engine_cs *
5108 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
5109 {
5110         struct intel_gt *gt = guc_to_gt(guc);
5111         u8 engine_class = guc_class_to_engine_class(guc_class);
5112
5113         /* Class index is checked in class converter */
5114         GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
5115
5116         return gt->engine_class[engine_class][instance];
5117 }
5118
5119 static void reset_fail_worker_func(struct work_struct *w)
5120 {
5121         struct intel_guc *guc = container_of(w, struct intel_guc,
5122                                              submission_state.reset_fail_worker);
5123         struct intel_gt *gt = guc_to_gt(guc);
5124         intel_engine_mask_t reset_fail_mask;
5125         unsigned long flags;
5126
5127         spin_lock_irqsave(&guc->submission_state.lock, flags);
5128         reset_fail_mask = guc->submission_state.reset_fail_mask;
5129         guc->submission_state.reset_fail_mask = 0;
5130         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5131
5132         if (likely(reset_fail_mask)) {
5133                 struct intel_engine_cs *engine;
5134                 enum intel_engine_id id;
5135
5136                 /*
5137                  * GuC is toast at this point - it dead loops after sending the failed
5138                  * reset notification. So need to manually determine the guilty context.
5139                  * Note that it should be reliable to do this here because the GuC is
5140                  * toast and will not be scheduling behind the KMD's back.
5141                  */
5142                 for_each_engine_masked(engine, gt, reset_fail_mask, id)
5143                         intel_guc_find_hung_context(engine);
5144
5145                 intel_gt_handle_error(gt, reset_fail_mask,
5146                                       I915_ERROR_CAPTURE,
5147                                       "GuC failed to reset engine mask=0x%x",
5148                                       reset_fail_mask);
5149         }
5150 }
5151
5152 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
5153                                          const u32 *msg, u32 len)
5154 {
5155         struct intel_engine_cs *engine;
5156         u8 guc_class, instance;
5157         u32 reason;
5158         unsigned long flags;
5159
5160         if (unlikely(len != 3)) {
5161                 guc_err(guc, "Invalid length %u", len);
5162                 return -EPROTO;
5163         }
5164
5165         guc_class = msg[0];
5166         instance = msg[1];
5167         reason = msg[2];
5168
5169         engine = intel_guc_lookup_engine(guc, guc_class, instance);
5170         if (unlikely(!engine)) {
5171                 guc_err(guc, "Invalid engine %d:%d", guc_class, instance);
5172                 return -EPROTO;
5173         }
5174
5175         /*
5176          * This is an unexpected failure of a hardware feature. So, log a real
5177          * error message not just the informational that comes with the reset.
5178          */
5179         guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X",
5180                 guc_class, instance, engine->name, reason);
5181
5182         spin_lock_irqsave(&guc->submission_state.lock, flags);
5183         guc->submission_state.reset_fail_mask |= engine->mask;
5184         spin_unlock_irqrestore(&guc->submission_state.lock, flags);
5185
5186         /*
5187          * A GT reset flushes this worker queue (G2H handler) so we must use
5188          * another worker to trigger a GT reset.
5189          */
5190         queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
5191
5192         return 0;
5193 }
5194
5195 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
5196 {
5197         struct intel_guc *guc = &engine->gt->uc.guc;
5198         struct intel_context *ce;
5199         struct i915_request *rq;
5200         unsigned long index;
5201         unsigned long flags;
5202
5203         /* Reset called during driver load? GuC not yet initialised! */
5204         if (unlikely(!guc_submission_initialized(guc)))
5205                 return;
5206
5207         xa_lock_irqsave(&guc->context_lookup, flags);
5208         xa_for_each(&guc->context_lookup, index, ce) {
5209                 bool found;
5210
5211                 if (!kref_get_unless_zero(&ce->ref))
5212                         continue;
5213
5214                 xa_unlock(&guc->context_lookup);
5215
5216                 if (!intel_context_is_pinned(ce))
5217                         goto next;
5218
5219                 if (intel_engine_is_virtual(ce->engine)) {
5220                         if (!(ce->engine->mask & engine->mask))
5221                                 goto next;
5222                 } else {
5223                         if (ce->engine != engine)
5224                                 goto next;
5225                 }
5226
5227                 found = false;
5228                 spin_lock(&ce->guc_state.lock);
5229                 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
5230                         if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
5231                                 continue;
5232
5233                         found = true;
5234                         break;
5235                 }
5236                 spin_unlock(&ce->guc_state.lock);
5237
5238                 if (found) {
5239                         intel_engine_set_hung_context(engine, ce);
5240
5241                         /* Can only cope with one hang at a time... */
5242                         intel_context_put(ce);
5243                         xa_lock(&guc->context_lookup);
5244                         goto done;
5245                 }
5246
5247 next:
5248                 intel_context_put(ce);
5249                 xa_lock(&guc->context_lookup);
5250         }
5251 done:
5252         xa_unlock_irqrestore(&guc->context_lookup, flags);
5253 }
5254
5255 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
5256                                     struct i915_request *hung_rq,
5257                                     struct drm_printer *m)
5258 {
5259         struct intel_guc *guc = &engine->gt->uc.guc;
5260         struct intel_context *ce;
5261         unsigned long index;
5262         unsigned long flags;
5263
5264         /* Reset called during driver load? GuC not yet initialised! */
5265         if (unlikely(!guc_submission_initialized(guc)))
5266                 return;
5267
5268         xa_lock_irqsave(&guc->context_lookup, flags);
5269         xa_for_each(&guc->context_lookup, index, ce) {
5270                 if (!kref_get_unless_zero(&ce->ref))
5271                         continue;
5272
5273                 xa_unlock(&guc->context_lookup);
5274
5275                 if (!intel_context_is_pinned(ce))
5276                         goto next;
5277
5278                 if (intel_engine_is_virtual(ce->engine)) {
5279                         if (!(ce->engine->mask & engine->mask))
5280                                 goto next;
5281                 } else {
5282                         if (ce->engine != engine)
5283                                 goto next;
5284                 }
5285
5286                 spin_lock(&ce->guc_state.lock);
5287                 intel_engine_dump_active_requests(&ce->guc_state.requests,
5288                                                   hung_rq, m);
5289                 spin_unlock(&ce->guc_state.lock);
5290
5291 next:
5292                 intel_context_put(ce);
5293                 xa_lock(&guc->context_lookup);
5294         }
5295         xa_unlock_irqrestore(&guc->context_lookup, flags);
5296 }
5297
5298 void intel_guc_submission_print_info(struct intel_guc *guc,
5299                                      struct drm_printer *p)
5300 {
5301         struct i915_sched_engine *sched_engine = guc->sched_engine;
5302         struct rb_node *rb;
5303         unsigned long flags;
5304
5305         if (!sched_engine)
5306                 return;
5307
5308         drm_printf(p, "GuC Submission API Version: %d.%d.%d\n",
5309                    guc->submission_version.major, guc->submission_version.minor,
5310                    guc->submission_version.patch);
5311         drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
5312                    atomic_read(&guc->outstanding_submission_g2h));
5313         drm_printf(p, "GuC tasklet count: %u\n",
5314                    atomic_read(&sched_engine->tasklet.count));
5315
5316         spin_lock_irqsave(&sched_engine->lock, flags);
5317         drm_printf(p, "Requests in GuC submit tasklet:\n");
5318         for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
5319                 struct i915_priolist *pl = to_priolist(rb);
5320                 struct i915_request *rq;
5321
5322                 priolist_for_each_request(rq, pl)
5323                         drm_printf(p, "guc_id=%u, seqno=%llu\n",
5324                                    rq->context->guc_id.id,
5325                                    rq->fence.seqno);
5326         }
5327         spin_unlock_irqrestore(&sched_engine->lock, flags);
5328         drm_printf(p, "\n");
5329 }
5330
5331 static inline void guc_log_context_priority(struct drm_printer *p,
5332                                             struct intel_context *ce)
5333 {
5334         int i;
5335
5336         drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
5337         drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
5338         for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
5339              i < GUC_CLIENT_PRIORITY_NUM; ++i) {
5340                 drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
5341                            i, ce->guc_state.prio_count[i]);
5342         }
5343         drm_printf(p, "\n");
5344 }
5345
5346 static inline void guc_log_context(struct drm_printer *p,
5347                                    struct intel_context *ce)
5348 {
5349         drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
5350         drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
5351         drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
5352                    ce->ring->head,
5353                    ce->lrc_reg_state[CTX_RING_HEAD]);
5354         drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
5355                    ce->ring->tail,
5356                    ce->lrc_reg_state[CTX_RING_TAIL]);
5357         drm_printf(p, "\t\tContext Pin Count: %u\n",
5358                    atomic_read(&ce->pin_count));
5359         drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
5360                    atomic_read(&ce->guc_id.ref));
5361         drm_printf(p, "\t\tSchedule State: 0x%x\n",
5362                    ce->guc_state.sched_state);
5363 }
5364
5365 void intel_guc_submission_print_context_info(struct intel_guc *guc,
5366                                              struct drm_printer *p)
5367 {
5368         struct intel_context *ce;
5369         unsigned long index;
5370         unsigned long flags;
5371
5372         xa_lock_irqsave(&guc->context_lookup, flags);
5373         xa_for_each(&guc->context_lookup, index, ce) {
5374                 GEM_BUG_ON(intel_context_is_child(ce));
5375
5376                 guc_log_context(p, ce);
5377                 guc_log_context_priority(p, ce);
5378
5379                 if (intel_context_is_parent(ce)) {
5380                         struct intel_context *child;
5381
5382                         drm_printf(p, "\t\tNumber children: %u\n",
5383                                    ce->parallel.number_children);
5384
5385                         if (ce->parallel.guc.wq_status) {
5386                                 drm_printf(p, "\t\tWQI Head: %u\n",
5387                                            READ_ONCE(*ce->parallel.guc.wq_head));
5388                                 drm_printf(p, "\t\tWQI Tail: %u\n",
5389                                            READ_ONCE(*ce->parallel.guc.wq_tail));
5390                                 drm_printf(p, "\t\tWQI Status: %u\n",
5391                                            READ_ONCE(*ce->parallel.guc.wq_status));
5392                         }
5393
5394                         if (ce->engine->emit_bb_start ==
5395                             emit_bb_start_parent_no_preempt_mid_batch) {
5396                                 u8 i;
5397
5398                                 drm_printf(p, "\t\tChildren Go: %u\n",
5399                                            get_children_go_value(ce));
5400                                 for (i = 0; i < ce->parallel.number_children; ++i)
5401                                         drm_printf(p, "\t\tChildren Join: %u\n",
5402                                                    get_children_join_value(ce, i));
5403                         }
5404
5405                         for_each_child(ce, child)
5406                                 guc_log_context(p, child);
5407                 }
5408         }
5409         xa_unlock_irqrestore(&guc->context_lookup, flags);
5410 }
5411
5412 static inline u32 get_children_go_addr(struct intel_context *ce)
5413 {
5414         GEM_BUG_ON(!intel_context_is_parent(ce));
5415
5416         return i915_ggtt_offset(ce->state) +
5417                 __get_parent_scratch_offset(ce) +
5418                 offsetof(struct parent_scratch, go.semaphore);
5419 }
5420
5421 static inline u32 get_children_join_addr(struct intel_context *ce,
5422                                          u8 child_index)
5423 {
5424         GEM_BUG_ON(!intel_context_is_parent(ce));
5425
5426         return i915_ggtt_offset(ce->state) +
5427                 __get_parent_scratch_offset(ce) +
5428                 offsetof(struct parent_scratch, join[child_index].semaphore);
5429 }
5430
5431 #define PARENT_GO_BB                    1
5432 #define PARENT_GO_FINI_BREADCRUMB       0
5433 #define CHILD_GO_BB                     1
5434 #define CHILD_GO_FINI_BREADCRUMB        0
5435 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
5436                                                      u64 offset, u32 len,
5437                                                      const unsigned int flags)
5438 {
5439         struct intel_context *ce = rq->context;
5440         u32 *cs;
5441         u8 i;
5442
5443         GEM_BUG_ON(!intel_context_is_parent(ce));
5444
5445         cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
5446         if (IS_ERR(cs))
5447                 return PTR_ERR(cs);
5448
5449         /* Wait on children */
5450         for (i = 0; i < ce->parallel.number_children; ++i) {
5451                 *cs++ = (MI_SEMAPHORE_WAIT |
5452                          MI_SEMAPHORE_GLOBAL_GTT |
5453                          MI_SEMAPHORE_POLL |
5454                          MI_SEMAPHORE_SAD_EQ_SDD);
5455                 *cs++ = PARENT_GO_BB;
5456                 *cs++ = get_children_join_addr(ce, i);
5457                 *cs++ = 0;
5458         }
5459
5460         /* Turn off preemption */
5461         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5462         *cs++ = MI_NOOP;
5463
5464         /* Tell children go */
5465         cs = gen8_emit_ggtt_write(cs,
5466                                   CHILD_GO_BB,
5467                                   get_children_go_addr(ce),
5468                                   0);
5469
5470         /* Jump to batch */
5471         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
5472                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5473         *cs++ = lower_32_bits(offset);
5474         *cs++ = upper_32_bits(offset);
5475         *cs++ = MI_NOOP;
5476
5477         intel_ring_advance(rq, cs);
5478
5479         return 0;
5480 }
5481
5482 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
5483                                                     u64 offset, u32 len,
5484                                                     const unsigned int flags)
5485 {
5486         struct intel_context *ce = rq->context;
5487         struct intel_context *parent = intel_context_to_parent(ce);
5488         u32 *cs;
5489
5490         GEM_BUG_ON(!intel_context_is_child(ce));
5491
5492         cs = intel_ring_begin(rq, 12);
5493         if (IS_ERR(cs))
5494                 return PTR_ERR(cs);
5495
5496         /* Signal parent */
5497         cs = gen8_emit_ggtt_write(cs,
5498                                   PARENT_GO_BB,
5499                                   get_children_join_addr(parent,
5500                                                          ce->parallel.child_index),
5501                                   0);
5502
5503         /* Wait on parent for go */
5504         *cs++ = (MI_SEMAPHORE_WAIT |
5505                  MI_SEMAPHORE_GLOBAL_GTT |
5506                  MI_SEMAPHORE_POLL |
5507                  MI_SEMAPHORE_SAD_EQ_SDD);
5508         *cs++ = CHILD_GO_BB;
5509         *cs++ = get_children_go_addr(parent);
5510         *cs++ = 0;
5511
5512         /* Turn off preemption */
5513         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5514
5515         /* Jump to batch */
5516         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
5517                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5518         *cs++ = lower_32_bits(offset);
5519         *cs++ = upper_32_bits(offset);
5520
5521         intel_ring_advance(rq, cs);
5522
5523         return 0;
5524 }
5525
5526 static u32 *
5527 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5528                                                    u32 *cs)
5529 {
5530         struct intel_context *ce = rq->context;
5531         u8 i;
5532
5533         GEM_BUG_ON(!intel_context_is_parent(ce));
5534
5535         /* Wait on children */
5536         for (i = 0; i < ce->parallel.number_children; ++i) {
5537                 *cs++ = (MI_SEMAPHORE_WAIT |
5538                          MI_SEMAPHORE_GLOBAL_GTT |
5539                          MI_SEMAPHORE_POLL |
5540                          MI_SEMAPHORE_SAD_EQ_SDD);
5541                 *cs++ = PARENT_GO_FINI_BREADCRUMB;
5542                 *cs++ = get_children_join_addr(ce, i);
5543                 *cs++ = 0;
5544         }
5545
5546         /* Turn on preemption */
5547         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5548         *cs++ = MI_NOOP;
5549
5550         /* Tell children go */
5551         cs = gen8_emit_ggtt_write(cs,
5552                                   CHILD_GO_FINI_BREADCRUMB,
5553                                   get_children_go_addr(ce),
5554                                   0);
5555
5556         return cs;
5557 }
5558
5559 /*
5560  * If this true, a submission of multi-lrc requests had an error and the
5561  * requests need to be skipped. The front end (execuf IOCTL) should've called
5562  * i915_request_skip which squashes the BB but we still need to emit the fini
5563  * breadrcrumbs seqno write. At this point we don't know how many of the
5564  * requests in the multi-lrc submission were generated so we can't do the
5565  * handshake between the parent and children (e.g. if 4 requests should be
5566  * generated but 2nd hit an error only 1 would be seen by the GuC backend).
5567  * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
5568  * has occurred on any of the requests in submission / relationship.
5569  */
5570 static inline bool skip_handshake(struct i915_request *rq)
5571 {
5572         return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
5573 }
5574
5575 #define NON_SKIP_LEN    6
5576 static u32 *
5577 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5578                                                  u32 *cs)
5579 {
5580         struct intel_context *ce = rq->context;
5581         __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5582         __maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5583
5584         GEM_BUG_ON(!intel_context_is_parent(ce));
5585
5586         if (unlikely(skip_handshake(rq))) {
5587                 /*
5588                  * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
5589                  * the NON_SKIP_LEN comes from the length of the emits below.
5590                  */
5591                 memset(cs, 0, sizeof(u32) *
5592                        (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5593                 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5594         } else {
5595                 cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
5596         }
5597
5598         /* Emit fini breadcrumb */
5599         before_fini_breadcrumb_user_interrupt_cs = cs;
5600         cs = gen8_emit_ggtt_write(cs,
5601                                   rq->fence.seqno,
5602                                   i915_request_active_timeline(rq)->hwsp_offset,
5603                                   0);
5604
5605         /* User interrupt */
5606         *cs++ = MI_USER_INTERRUPT;
5607         *cs++ = MI_NOOP;
5608
5609         /* Ensure our math for skip + emit is correct */
5610         GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5611                    cs);
5612         GEM_BUG_ON(start_fini_breadcrumb_cs +
5613                    ce->engine->emit_fini_breadcrumb_dw != cs);
5614
5615         rq->tail = intel_ring_offset(rq, cs);
5616
5617         return cs;
5618 }
5619
5620 static u32 *
5621 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5622                                                   u32 *cs)
5623 {
5624         struct intel_context *ce = rq->context;
5625         struct intel_context *parent = intel_context_to_parent(ce);
5626
5627         GEM_BUG_ON(!intel_context_is_child(ce));
5628
5629         /* Turn on preemption */
5630         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5631         *cs++ = MI_NOOP;
5632
5633         /* Signal parent */
5634         cs = gen8_emit_ggtt_write(cs,
5635                                   PARENT_GO_FINI_BREADCRUMB,
5636                                   get_children_join_addr(parent,
5637                                                          ce->parallel.child_index),
5638                                   0);
5639
5640         /* Wait parent on for go */
5641         *cs++ = (MI_SEMAPHORE_WAIT |
5642                  MI_SEMAPHORE_GLOBAL_GTT |
5643                  MI_SEMAPHORE_POLL |
5644                  MI_SEMAPHORE_SAD_EQ_SDD);
5645         *cs++ = CHILD_GO_FINI_BREADCRUMB;
5646         *cs++ = get_children_go_addr(parent);
5647         *cs++ = 0;
5648
5649         return cs;
5650 }
5651
5652 static u32 *
5653 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5654                                                 u32 *cs)
5655 {
5656         struct intel_context *ce = rq->context;
5657         __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5658         __maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5659
5660         GEM_BUG_ON(!intel_context_is_child(ce));
5661
5662         if (unlikely(skip_handshake(rq))) {
5663                 /*
5664                  * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5665                  * the NON_SKIP_LEN comes from the length of the emits below.
5666                  */
5667                 memset(cs, 0, sizeof(u32) *
5668                        (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5669                 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5670         } else {
5671                 cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5672         }
5673
5674         /* Emit fini breadcrumb */
5675         before_fini_breadcrumb_user_interrupt_cs = cs;
5676         cs = gen8_emit_ggtt_write(cs,
5677                                   rq->fence.seqno,
5678                                   i915_request_active_timeline(rq)->hwsp_offset,
5679                                   0);
5680
5681         /* User interrupt */
5682         *cs++ = MI_USER_INTERRUPT;
5683         *cs++ = MI_NOOP;
5684
5685         /* Ensure our math for skip + emit is correct */
5686         GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5687                    cs);
5688         GEM_BUG_ON(start_fini_breadcrumb_cs +
5689                    ce->engine->emit_fini_breadcrumb_dw != cs);
5690
5691         rq->tail = intel_ring_offset(rq, cs);
5692
5693         return cs;
5694 }
5695
5696 #undef NON_SKIP_LEN
5697
5698 static struct intel_context *
5699 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5700                    unsigned long flags)
5701 {
5702         struct guc_virtual_engine *ve;
5703         struct intel_guc *guc;
5704         unsigned int n;
5705         int err;
5706
5707         ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5708         if (!ve)
5709                 return ERR_PTR(-ENOMEM);
5710
5711         guc = &siblings[0]->gt->uc.guc;
5712
5713         ve->base.i915 = siblings[0]->i915;
5714         ve->base.gt = siblings[0]->gt;
5715         ve->base.uncore = siblings[0]->uncore;
5716         ve->base.id = -1;
5717
5718         ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5719         ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5720         ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5721         ve->base.saturated = ALL_ENGINES;
5722
5723         snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5724
5725         ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5726
5727         ve->base.cops = &virtual_guc_context_ops;
5728         ve->base.request_alloc = guc_request_alloc;
5729         ve->base.bump_serial = virtual_guc_bump_serial;
5730
5731         ve->base.submit_request = guc_submit_request;
5732
5733         ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5734
5735         BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES);
5736         ve->base.mask = VIRTUAL_ENGINES;
5737
5738         intel_context_init(&ve->context, &ve->base);
5739
5740         for (n = 0; n < count; n++) {
5741                 struct intel_engine_cs *sibling = siblings[n];
5742
5743                 GEM_BUG_ON(!is_power_of_2(sibling->mask));
5744                 if (sibling->mask & ve->base.mask) {
5745                         guc_dbg(guc, "duplicate %s entry in load balancer\n",
5746                                 sibling->name);
5747                         err = -EINVAL;
5748                         goto err_put;
5749                 }
5750
5751                 ve->base.mask |= sibling->mask;
5752                 ve->base.logical_mask |= sibling->logical_mask;
5753
5754                 if (n != 0 && ve->base.class != sibling->class) {
5755                         guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n",
5756                                 sibling->class, ve->base.class);
5757                         err = -EINVAL;
5758                         goto err_put;
5759                 } else if (n == 0) {
5760                         ve->base.class = sibling->class;
5761                         ve->base.uabi_class = sibling->uabi_class;
5762                         snprintf(ve->base.name, sizeof(ve->base.name),
5763                                  "v%dx%d", ve->base.class, count);
5764                         ve->base.context_size = sibling->context_size;
5765
5766                         ve->base.add_active_request =
5767                                 sibling->add_active_request;
5768                         ve->base.remove_active_request =
5769                                 sibling->remove_active_request;
5770                         ve->base.emit_bb_start = sibling->emit_bb_start;
5771                         ve->base.emit_flush = sibling->emit_flush;
5772                         ve->base.emit_init_breadcrumb =
5773                                 sibling->emit_init_breadcrumb;
5774                         ve->base.emit_fini_breadcrumb =
5775                                 sibling->emit_fini_breadcrumb;
5776                         ve->base.emit_fini_breadcrumb_dw =
5777                                 sibling->emit_fini_breadcrumb_dw;
5778                         ve->base.breadcrumbs =
5779                                 intel_breadcrumbs_get(sibling->breadcrumbs);
5780
5781                         ve->base.flags |= sibling->flags;
5782
5783                         ve->base.props.timeslice_duration_ms =
5784                                 sibling->props.timeslice_duration_ms;
5785                         ve->base.props.preempt_timeout_ms =
5786                                 sibling->props.preempt_timeout_ms;
5787                 }
5788         }
5789
5790         return &ve->context;
5791
5792 err_put:
5793         intel_context_put(&ve->context);
5794         return ERR_PTR(err);
5795 }
5796
5797 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5798 {
5799         struct intel_engine_cs *engine;
5800         intel_engine_mask_t tmp, mask = ve->mask;
5801
5802         for_each_engine_masked(engine, ve->gt, mask, tmp)
5803                 if (READ_ONCE(engine->props.heartbeat_interval_ms))
5804                         return true;
5805
5806         return false;
5807 }
5808
5809 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5810 #include "selftest_guc.c"
5811 #include "selftest_guc_multi_lrc.c"
5812 #include "selftest_guc_hangcheck.c"
5813 #endif