drm/i915/gt: Split intel_ring_submission
[linux-2.6-block.git] / drivers / gpu / drm / i915 / gt / uc / intel_guc_submission.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5
6 #include <linux/circ_buf.h>
7
8 #include "gem/i915_gem_context.h"
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_pm.h"
11 #include "gt/intel_gt.h"
12 #include "gt/intel_gt_pm.h"
13 #include "gt/intel_lrc_reg.h"
14 #include "gt/intel_ring.h"
15
16 #include "intel_guc_submission.h"
17
18 #include "i915_drv.h"
19 #include "i915_trace.h"
20
21 enum {
22         GUC_PREEMPT_NONE = 0,
23         GUC_PREEMPT_INPROGRESS,
24         GUC_PREEMPT_FINISHED,
25 };
26 #define GUC_PREEMPT_BREADCRUMB_DWORDS   0x8
27 #define GUC_PREEMPT_BREADCRUMB_BYTES    \
28         (sizeof(u32) * GUC_PREEMPT_BREADCRUMB_DWORDS)
29
30 /**
31  * DOC: GuC-based command submission
32  *
33  * IMPORTANT NOTE: GuC submission is currently not supported in i915. The GuC
34  * firmware is moving to an updated submission interface and we plan to
35  * turn submission back on when that lands. The below documentation (and related
36  * code) matches the old submission model and will be updated as part of the
37  * upgrade to the new flow.
38  *
39  * GuC client:
40  * A intel_guc_client refers to a submission path through GuC. Currently, there
41  * is only one client, which is charged with all submissions to the GuC. This
42  * struct is the owner of a doorbell, a process descriptor and a workqueue (all
43  * of them inside a single gem object that contains all required pages for these
44  * elements).
45  *
46  * GuC stage descriptor:
47  * During initialization, the driver allocates a static pool of 1024 such
48  * descriptors, and shares them with the GuC.
49  * Currently, there exists a 1:1 mapping between a intel_guc_client and a
50  * guc_stage_desc (via the client's stage_id), so effectively only one
51  * gets used. This stage descriptor lets the GuC know about the doorbell,
52  * workqueue and process descriptor. Theoretically, it also lets the GuC
53  * know about our HW contexts (context ID, etc...), but we actually
54  * employ a kind of submission where the GuC uses the LRCA sent via the work
55  * item instead (the single guc_stage_desc associated to execbuf client
56  * contains information about the default kernel context only, but this is
57  * essentially unused). This is called a "proxy" submission.
58  *
59  * The Scratch registers:
60  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
61  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
62  * triggers an interrupt on the GuC via another register write (0xC4C8).
63  * Firmware writes a success/fail code back to the action register after
64  * processes the request. The kernel driver polls waiting for this update and
65  * then proceeds.
66  * See intel_guc_send()
67  *
68  * Doorbells:
69  * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
70  * mapped into process space.
71  *
72  * Work Items:
73  * There are several types of work items that the host may place into a
74  * workqueue, each with its own requirements and limitations. Currently only
75  * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
76  * represents in-order queue. The kernel driver packs ring tail pointer and an
77  * ELSP context descriptor dword into Work Item.
78  * See guc_add_request()
79  *
80  */
81
82 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
83 {
84         return rb_entry(rb, struct i915_priolist, node);
85 }
86
87 static inline bool is_high_priority(struct intel_guc_client *client)
88 {
89         return (client->priority == GUC_CLIENT_PRIORITY_KMD_HIGH ||
90                 client->priority == GUC_CLIENT_PRIORITY_HIGH);
91 }
92
93 static int reserve_doorbell(struct intel_guc_client *client)
94 {
95         unsigned long offset;
96         unsigned long end;
97         u16 id;
98
99         GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);
100
101         /*
102          * The bitmap tracks which doorbell registers are currently in use.
103          * It is split into two halves; the first half is used for normal
104          * priority contexts, the second half for high-priority ones.
105          */
106         offset = 0;
107         end = GUC_NUM_DOORBELLS / 2;
108         if (is_high_priority(client)) {
109                 offset = end;
110                 end += offset;
111         }
112
113         id = find_next_zero_bit(client->guc->doorbell_bitmap, end, offset);
114         if (id == end)
115                 return -ENOSPC;
116
117         __set_bit(id, client->guc->doorbell_bitmap);
118         client->doorbell_id = id;
119         DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
120                          client->stage_id, yesno(is_high_priority(client)),
121                          id);
122         return 0;
123 }
124
125 static bool has_doorbell(struct intel_guc_client *client)
126 {
127         if (client->doorbell_id == GUC_DOORBELL_INVALID)
128                 return false;
129
130         return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
131 }
132
133 static void unreserve_doorbell(struct intel_guc_client *client)
134 {
135         GEM_BUG_ON(!has_doorbell(client));
136
137         __clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
138         client->doorbell_id = GUC_DOORBELL_INVALID;
139 }
140
141 /*
142  * Tell the GuC to allocate or deallocate a specific doorbell
143  */
144
145 static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id)
146 {
147         u32 action[] = {
148                 INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
149                 stage_id
150         };
151
152         return intel_guc_send(guc, action, ARRAY_SIZE(action));
153 }
154
155 static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id)
156 {
157         u32 action[] = {
158                 INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
159                 stage_id
160         };
161
162         return intel_guc_send(guc, action, ARRAY_SIZE(action));
163 }
164
165 static struct guc_stage_desc *__get_stage_desc(struct intel_guc_client *client)
166 {
167         struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr;
168
169         return &base[client->stage_id];
170 }
171
172 /*
173  * Initialise, update, or clear doorbell data shared with the GuC
174  *
175  * These functions modify shared data and so need access to the mapped
176  * client object which contains the page being used for the doorbell
177  */
178
179 static void __update_doorbell_desc(struct intel_guc_client *client, u16 new_id)
180 {
181         struct guc_stage_desc *desc;
182
183         /* Update the GuC's idea of the doorbell ID */
184         desc = __get_stage_desc(client);
185         desc->db_id = new_id;
186 }
187
188 static struct guc_doorbell_info *__get_doorbell(struct intel_guc_client *client)
189 {
190         return client->vaddr + client->doorbell_offset;
191 }
192
193 static bool __doorbell_valid(struct intel_guc *guc, u16 db_id)
194 {
195         struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
196
197         GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS);
198         return intel_uncore_read(uncore, GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID;
199 }
200
201 static void __init_doorbell(struct intel_guc_client *client)
202 {
203         struct guc_doorbell_info *doorbell;
204
205         doorbell = __get_doorbell(client);
206         doorbell->db_status = GUC_DOORBELL_ENABLED;
207         doorbell->cookie = 0;
208 }
209
210 static void __fini_doorbell(struct intel_guc_client *client)
211 {
212         struct guc_doorbell_info *doorbell;
213         u16 db_id = client->doorbell_id;
214
215         doorbell = __get_doorbell(client);
216         doorbell->db_status = GUC_DOORBELL_DISABLED;
217
218         /* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
219          * to go to zero after updating db_status before we call the GuC to
220          * release the doorbell
221          */
222         if (wait_for_us(!__doorbell_valid(client->guc, db_id), 10))
223                 WARN_ONCE(true, "Doorbell never became invalid after disable\n");
224 }
225
226 static int create_doorbell(struct intel_guc_client *client)
227 {
228         int ret;
229
230         if (WARN_ON(!has_doorbell(client)))
231                 return -ENODEV; /* internal setup error, should never happen */
232
233         __update_doorbell_desc(client, client->doorbell_id);
234         __init_doorbell(client);
235
236         ret = __guc_allocate_doorbell(client->guc, client->stage_id);
237         if (ret) {
238                 __fini_doorbell(client);
239                 __update_doorbell_desc(client, GUC_DOORBELL_INVALID);
240                 DRM_DEBUG_DRIVER("Couldn't create client %u doorbell: %d\n",
241                                  client->stage_id, ret);
242                 return ret;
243         }
244
245         return 0;
246 }
247
248 static int destroy_doorbell(struct intel_guc_client *client)
249 {
250         int ret;
251
252         GEM_BUG_ON(!has_doorbell(client));
253
254         __fini_doorbell(client);
255         ret = __guc_deallocate_doorbell(client->guc, client->stage_id);
256         if (ret)
257                 DRM_ERROR("Couldn't destroy client %u doorbell: %d\n",
258                           client->stage_id, ret);
259
260         __update_doorbell_desc(client, GUC_DOORBELL_INVALID);
261
262         return ret;
263 }
264
265 static unsigned long __select_cacheline(struct intel_guc *guc)
266 {
267         unsigned long offset;
268
269         /* Doorbell uses a single cache line within a page */
270         offset = offset_in_page(guc->db_cacheline);
271
272         /* Moving to next cache line to reduce contention */
273         guc->db_cacheline += cache_line_size();
274
275         DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
276                          offset, guc->db_cacheline, cache_line_size());
277         return offset;
278 }
279
280 static inline struct guc_process_desc *
281 __get_process_desc(struct intel_guc_client *client)
282 {
283         return client->vaddr + client->proc_desc_offset;
284 }
285
286 /*
287  * Initialise the process descriptor shared with the GuC firmware.
288  */
289 static void guc_proc_desc_init(struct intel_guc_client *client)
290 {
291         struct guc_process_desc *desc;
292
293         desc = memset(__get_process_desc(client), 0, sizeof(*desc));
294
295         /*
296          * XXX: pDoorbell and WQVBaseAddress are pointers in process address
297          * space for ring3 clients (set them as in mmap_ioctl) or kernel
298          * space for kernel clients (map on demand instead? May make debug
299          * easier to have it mapped).
300          */
301         desc->wq_base_addr = 0;
302         desc->db_base_addr = 0;
303
304         desc->stage_id = client->stage_id;
305         desc->wq_size_bytes = GUC_WQ_SIZE;
306         desc->wq_status = WQ_STATUS_ACTIVE;
307         desc->priority = client->priority;
308 }
309
310 static void guc_proc_desc_fini(struct intel_guc_client *client)
311 {
312         struct guc_process_desc *desc;
313
314         desc = __get_process_desc(client);
315         memset(desc, 0, sizeof(*desc));
316 }
317
318 static int guc_stage_desc_pool_create(struct intel_guc *guc)
319 {
320         struct i915_vma *vma;
321         void *vaddr;
322
323         vma = intel_guc_allocate_vma(guc,
324                                      PAGE_ALIGN(sizeof(struct guc_stage_desc) *
325                                      GUC_MAX_STAGE_DESCRIPTORS));
326         if (IS_ERR(vma))
327                 return PTR_ERR(vma);
328
329         vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
330         if (IS_ERR(vaddr)) {
331                 i915_vma_unpin_and_release(&vma, 0);
332                 return PTR_ERR(vaddr);
333         }
334
335         guc->stage_desc_pool = vma;
336         guc->stage_desc_pool_vaddr = vaddr;
337         ida_init(&guc->stage_ids);
338
339         return 0;
340 }
341
342 static void guc_stage_desc_pool_destroy(struct intel_guc *guc)
343 {
344         ida_destroy(&guc->stage_ids);
345         i915_vma_unpin_and_release(&guc->stage_desc_pool, I915_VMA_RELEASE_MAP);
346 }
347
348 /*
349  * Initialise/clear the stage descriptor shared with the GuC firmware.
350  *
351  * This descriptor tells the GuC where (in GGTT space) to find the important
352  * data structures relating to this client (doorbell, process descriptor,
353  * write queue, etc).
354  */
355 static void guc_stage_desc_init(struct intel_guc_client *client)
356 {
357         struct intel_guc *guc = client->guc;
358         struct guc_stage_desc *desc;
359         u32 gfx_addr;
360
361         desc = __get_stage_desc(client);
362         memset(desc, 0, sizeof(*desc));
363
364         desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE |
365                           GUC_STAGE_DESC_ATTR_KERNEL;
366         if (is_high_priority(client))
367                 desc->attribute |= GUC_STAGE_DESC_ATTR_PREEMPT;
368         desc->stage_id = client->stage_id;
369         desc->priority = client->priority;
370         desc->db_id = client->doorbell_id;
371
372         /*
373          * The doorbell, process descriptor, and workqueue are all parts
374          * of the client object, which the GuC will reference via the GGTT
375          */
376         gfx_addr = intel_guc_ggtt_offset(guc, client->vma);
377         desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
378                                 client->doorbell_offset;
379         desc->db_trigger_cpu = ptr_to_u64(__get_doorbell(client));
380         desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
381         desc->process_desc = gfx_addr + client->proc_desc_offset;
382         desc->wq_addr = gfx_addr + GUC_DB_SIZE;
383         desc->wq_size = GUC_WQ_SIZE;
384
385         desc->desc_private = ptr_to_u64(client);
386 }
387
388 static void guc_stage_desc_fini(struct intel_guc_client *client)
389 {
390         struct guc_stage_desc *desc;
391
392         desc = __get_stage_desc(client);
393         memset(desc, 0, sizeof(*desc));
394 }
395
396 /* Construct a Work Item and append it to the GuC's Work Queue */
397 static void guc_wq_item_append(struct intel_guc_client *client,
398                                u32 target_engine, u32 context_desc,
399                                u32 ring_tail, u32 fence_id)
400 {
401         /* wqi_len is in DWords, and does not include the one-word header */
402         const size_t wqi_size = sizeof(struct guc_wq_item);
403         const u32 wqi_len = wqi_size / sizeof(u32) - 1;
404         struct guc_process_desc *desc = __get_process_desc(client);
405         struct guc_wq_item *wqi;
406         u32 wq_off;
407
408         lockdep_assert_held(&client->wq_lock);
409
410         /* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
411          * should not have the case where structure wqi is across page, neither
412          * wrapped to the beginning. This simplifies the implementation below.
413          *
414          * XXX: if not the case, we need save data to a temp wqi and copy it to
415          * workqueue buffer dw by dw.
416          */
417         BUILD_BUG_ON(wqi_size != 16);
418
419         /* We expect the WQ to be active if we're appending items to it */
420         GEM_BUG_ON(desc->wq_status != WQ_STATUS_ACTIVE);
421
422         /* Free space is guaranteed. */
423         wq_off = READ_ONCE(desc->tail);
424         GEM_BUG_ON(CIRC_SPACE(wq_off, READ_ONCE(desc->head),
425                               GUC_WQ_SIZE) < wqi_size);
426         GEM_BUG_ON(wq_off & (wqi_size - 1));
427
428         /* WQ starts from the page after doorbell / process_desc */
429         wqi = client->vaddr + wq_off + GUC_DB_SIZE;
430
431         if (I915_SELFTEST_ONLY(client->use_nop_wqi)) {
432                 wqi->header = WQ_TYPE_NOOP | (wqi_len << WQ_LEN_SHIFT);
433         } else {
434                 /* Now fill in the 4-word work queue item */
435                 wqi->header = WQ_TYPE_INORDER |
436                               (wqi_len << WQ_LEN_SHIFT) |
437                               (target_engine << WQ_TARGET_SHIFT) |
438                               WQ_NO_WCFLUSH_WAIT;
439                 wqi->context_desc = context_desc;
440                 wqi->submit_element_info = ring_tail << WQ_RING_TAIL_SHIFT;
441                 GEM_BUG_ON(ring_tail > WQ_RING_TAIL_MAX);
442                 wqi->fence_id = fence_id;
443         }
444
445         /* Make the update visible to GuC */
446         WRITE_ONCE(desc->tail, (wq_off + wqi_size) & (GUC_WQ_SIZE - 1));
447 }
448
449 static void guc_ring_doorbell(struct intel_guc_client *client)
450 {
451         struct guc_doorbell_info *db;
452         u32 cookie;
453
454         lockdep_assert_held(&client->wq_lock);
455
456         /* pointer of current doorbell cacheline */
457         db = __get_doorbell(client);
458
459         /*
460          * We're not expecting the doorbell cookie to change behind our back,
461          * we also need to treat 0 as a reserved value.
462          */
463         cookie = READ_ONCE(db->cookie);
464         WARN_ON_ONCE(xchg(&db->cookie, cookie + 1 ?: cookie + 2) != cookie);
465
466         /* XXX: doorbell was lost and need to acquire it again */
467         GEM_BUG_ON(db->db_status != GUC_DOORBELL_ENABLED);
468 }
469
470 static void guc_add_request(struct intel_guc *guc, struct i915_request *rq)
471 {
472         struct intel_guc_client *client = guc->execbuf_client;
473         struct intel_engine_cs *engine = rq->engine;
474         u32 ctx_desc = lower_32_bits(rq->hw_context->lrc_desc);
475         u32 ring_tail = intel_ring_set_tail(rq->ring, rq->tail) / sizeof(u64);
476
477         guc_wq_item_append(client, engine->guc_id, ctx_desc,
478                            ring_tail, rq->fence.seqno);
479         guc_ring_doorbell(client);
480 }
481
482 /*
483  * When we're doing submissions using regular execlists backend, writing to
484  * ELSP from CPU side is enough to make sure that writes to ringbuffer pages
485  * pinned in mappable aperture portion of GGTT are visible to command streamer.
486  * Writes done by GuC on our behalf are not guaranteeing such ordering,
487  * therefore, to ensure the flush, we're issuing a POSTING READ.
488  */
489 static void flush_ggtt_writes(struct i915_vma *vma)
490 {
491         struct drm_i915_private *i915 = vma->vm->i915;
492
493         if (i915_vma_is_map_and_fenceable(vma))
494                 intel_uncore_posting_read_fw(&i915->uncore, GUC_STATUS);
495 }
496
497 static void guc_submit(struct intel_engine_cs *engine,
498                        struct i915_request **out,
499                        struct i915_request **end)
500 {
501         struct intel_guc *guc = &engine->gt->uc.guc;
502         struct intel_guc_client *client = guc->execbuf_client;
503
504         spin_lock(&client->wq_lock);
505
506         do {
507                 struct i915_request *rq = *out++;
508
509                 flush_ggtt_writes(rq->ring->vma);
510                 guc_add_request(guc, rq);
511         } while (out != end);
512
513         spin_unlock(&client->wq_lock);
514 }
515
516 static inline int rq_prio(const struct i915_request *rq)
517 {
518         return rq->sched.attr.priority | __NO_PREEMPTION;
519 }
520
521 static struct i915_request *schedule_in(struct i915_request *rq, int idx)
522 {
523         trace_i915_request_in(rq, idx);
524
525         /*
526          * Currently we are not tracking the rq->context being inflight
527          * (ce->inflight = rq->engine). It is only used by the execlists
528          * backend at the moment, a similar counting strategy would be
529          * required if we generalise the inflight tracking.
530          */
531
532         intel_gt_pm_get(rq->engine->gt);
533         return i915_request_get(rq);
534 }
535
536 static void schedule_out(struct i915_request *rq)
537 {
538         trace_i915_request_out(rq);
539
540         intel_gt_pm_put(rq->engine->gt);
541         i915_request_put(rq);
542 }
543
544 static void __guc_dequeue(struct intel_engine_cs *engine)
545 {
546         struct intel_engine_execlists * const execlists = &engine->execlists;
547         struct i915_request **first = execlists->inflight;
548         struct i915_request ** const last_port = first + execlists->port_mask;
549         struct i915_request *last = first[0];
550         struct i915_request **port;
551         bool submit = false;
552         struct rb_node *rb;
553
554         lockdep_assert_held(&engine->active.lock);
555
556         if (last) {
557                 if (*++first)
558                         return;
559
560                 last = NULL;
561         }
562
563         /*
564          * We write directly into the execlists->inflight queue and don't use
565          * the execlists->pending queue, as we don't have a distinct switch
566          * event.
567          */
568         port = first;
569         while ((rb = rb_first_cached(&execlists->queue))) {
570                 struct i915_priolist *p = to_priolist(rb);
571                 struct i915_request *rq, *rn;
572                 int i;
573
574                 priolist_for_each_request_consume(rq, rn, p, i) {
575                         if (last && rq->hw_context != last->hw_context) {
576                                 if (port == last_port)
577                                         goto done;
578
579                                 *port = schedule_in(last,
580                                                     port - execlists->inflight);
581                                 port++;
582                         }
583
584                         list_del_init(&rq->sched.link);
585                         __i915_request_submit(rq);
586                         submit = true;
587                         last = rq;
588                 }
589
590                 rb_erase_cached(&p->node, &execlists->queue);
591                 i915_priolist_free(p);
592         }
593 done:
594         execlists->queue_priority_hint =
595                 rb ? to_priolist(rb)->priority : INT_MIN;
596         if (submit) {
597                 *port = schedule_in(last, port - execlists->inflight);
598                 *++port = NULL;
599                 guc_submit(engine, first, port);
600         }
601         execlists->active = execlists->inflight;
602 }
603
604 static void guc_submission_tasklet(unsigned long data)
605 {
606         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
607         struct intel_engine_execlists * const execlists = &engine->execlists;
608         struct i915_request **port, *rq;
609         unsigned long flags;
610
611         spin_lock_irqsave(&engine->active.lock, flags);
612
613         for (port = execlists->inflight; (rq = *port); port++) {
614                 if (!i915_request_completed(rq))
615                         break;
616
617                 schedule_out(rq);
618         }
619         if (port != execlists->inflight) {
620                 int idx = port - execlists->inflight;
621                 int rem = ARRAY_SIZE(execlists->inflight) - idx;
622                 memmove(execlists->inflight, port, rem * sizeof(*port));
623         }
624
625         __guc_dequeue(engine);
626
627         spin_unlock_irqrestore(&engine->active.lock, flags);
628 }
629
630 static void guc_reset_prepare(struct intel_engine_cs *engine)
631 {
632         struct intel_engine_execlists * const execlists = &engine->execlists;
633
634         GEM_TRACE("%s\n", engine->name);
635
636         /*
637          * Prevent request submission to the hardware until we have
638          * completed the reset in i915_gem_reset_finish(). If a request
639          * is completed by one engine, it may then queue a request
640          * to a second via its execlists->tasklet *just* as we are
641          * calling engine->init_hw() and also writing the ELSP.
642          * Turning off the execlists->tasklet until the reset is over
643          * prevents the race.
644          */
645         __tasklet_disable_sync_once(&execlists->tasklet);
646 }
647
648 static void
649 cancel_port_requests(struct intel_engine_execlists * const execlists)
650 {
651         struct i915_request * const *port, *rq;
652
653         /* Note we are only using the inflight and not the pending queue */
654
655         for (port = execlists->active; (rq = *port); port++)
656                 schedule_out(rq);
657         execlists->active =
658                 memset(execlists->inflight, 0, sizeof(execlists->inflight));
659 }
660
661 static void guc_reset(struct intel_engine_cs *engine, bool stalled)
662 {
663         struct intel_engine_execlists * const execlists = &engine->execlists;
664         struct i915_request *rq;
665         unsigned long flags;
666
667         spin_lock_irqsave(&engine->active.lock, flags);
668
669         cancel_port_requests(execlists);
670
671         /* Push back any incomplete requests for replay after the reset. */
672         rq = execlists_unwind_incomplete_requests(execlists);
673         if (!rq)
674                 goto out_unlock;
675
676         if (!i915_request_started(rq))
677                 stalled = false;
678
679         __i915_request_reset(rq, stalled);
680         intel_lr_context_reset(engine, rq->hw_context, rq->head, stalled);
681
682 out_unlock:
683         spin_unlock_irqrestore(&engine->active.lock, flags);
684 }
685
686 static void guc_cancel_requests(struct intel_engine_cs *engine)
687 {
688         struct intel_engine_execlists * const execlists = &engine->execlists;
689         struct i915_request *rq, *rn;
690         struct rb_node *rb;
691         unsigned long flags;
692
693         GEM_TRACE("%s\n", engine->name);
694
695         /*
696          * Before we call engine->cancel_requests(), we should have exclusive
697          * access to the submission state. This is arranged for us by the
698          * caller disabling the interrupt generation, the tasklet and other
699          * threads that may then access the same state, giving us a free hand
700          * to reset state. However, we still need to let lockdep be aware that
701          * we know this state may be accessed in hardirq context, so we
702          * disable the irq around this manipulation and we want to keep
703          * the spinlock focused on its duties and not accidentally conflate
704          * coverage to the submission's irq state. (Similarly, although we
705          * shouldn't need to disable irq around the manipulation of the
706          * submission's irq state, we also wish to remind ourselves that
707          * it is irq state.)
708          */
709         spin_lock_irqsave(&engine->active.lock, flags);
710
711         /* Cancel the requests on the HW and clear the ELSP tracker. */
712         cancel_port_requests(execlists);
713
714         /* Mark all executing requests as skipped. */
715         list_for_each_entry(rq, &engine->active.requests, sched.link) {
716                 if (!i915_request_signaled(rq))
717                         dma_fence_set_error(&rq->fence, -EIO);
718
719                 i915_request_mark_complete(rq);
720         }
721
722         /* Flush the queued requests to the timeline list (for retiring). */
723         while ((rb = rb_first_cached(&execlists->queue))) {
724                 struct i915_priolist *p = to_priolist(rb);
725                 int i;
726
727                 priolist_for_each_request_consume(rq, rn, p, i) {
728                         list_del_init(&rq->sched.link);
729                         __i915_request_submit(rq);
730                         dma_fence_set_error(&rq->fence, -EIO);
731                         i915_request_mark_complete(rq);
732                 }
733
734                 rb_erase_cached(&p->node, &execlists->queue);
735                 i915_priolist_free(p);
736         }
737
738         /* Remaining _unready_ requests will be nop'ed when submitted */
739
740         execlists->queue_priority_hint = INT_MIN;
741         execlists->queue = RB_ROOT_CACHED;
742
743         spin_unlock_irqrestore(&engine->active.lock, flags);
744 }
745
746 static void guc_reset_finish(struct intel_engine_cs *engine)
747 {
748         struct intel_engine_execlists * const execlists = &engine->execlists;
749
750         if (__tasklet_enable(&execlists->tasklet))
751                 /* And kick in case we missed a new request submission. */
752                 tasklet_hi_schedule(&execlists->tasklet);
753
754         GEM_TRACE("%s: depth->%d\n", engine->name,
755                   atomic_read(&execlists->tasklet.count));
756 }
757
758 /*
759  * Everything below here is concerned with setup & teardown, and is
760  * therefore not part of the somewhat time-critical batch-submission
761  * path of guc_submit() above.
762  */
763
764 /* Check that a doorbell register is in the expected state */
765 static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
766 {
767         bool valid;
768
769         GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS);
770
771         valid = __doorbell_valid(guc, db_id);
772
773         if (test_bit(db_id, guc->doorbell_bitmap) == valid)
774                 return true;
775
776         DRM_DEBUG_DRIVER("Doorbell %u has unexpected state: valid=%s\n",
777                          db_id, yesno(valid));
778
779         return false;
780 }
781
782 static bool guc_verify_doorbells(struct intel_guc *guc)
783 {
784         bool doorbells_ok = true;
785         u16 db_id;
786
787         for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
788                 if (!doorbell_ok(guc, db_id))
789                         doorbells_ok = false;
790
791         return doorbells_ok;
792 }
793
794 /**
795  * guc_client_alloc() - Allocate an intel_guc_client
796  * @guc:        the intel_guc structure
797  * @priority:   four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
798  *              The kernel client to replace ExecList submission is created with
799  *              NORMAL priority. Priority of a client for scheduler can be HIGH,
800  *              while a preemption context can use CRITICAL.
801  *
802  * Return:      An intel_guc_client object if success, else NULL.
803  */
804 static struct intel_guc_client *
805 guc_client_alloc(struct intel_guc *guc, u32 priority)
806 {
807         struct intel_guc_client *client;
808         struct i915_vma *vma;
809         void *vaddr;
810         int ret;
811
812         client = kzalloc(sizeof(*client), GFP_KERNEL);
813         if (!client)
814                 return ERR_PTR(-ENOMEM);
815
816         client->guc = guc;
817         client->priority = priority;
818         client->doorbell_id = GUC_DOORBELL_INVALID;
819         spin_lock_init(&client->wq_lock);
820
821         ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS,
822                              GFP_KERNEL);
823         if (ret < 0)
824                 goto err_client;
825
826         client->stage_id = ret;
827
828         /* The first page is doorbell/proc_desc. Two followed pages are wq. */
829         vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
830         if (IS_ERR(vma)) {
831                 ret = PTR_ERR(vma);
832                 goto err_id;
833         }
834
835         /* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
836         client->vma = vma;
837
838         vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
839         if (IS_ERR(vaddr)) {
840                 ret = PTR_ERR(vaddr);
841                 goto err_vma;
842         }
843         client->vaddr = vaddr;
844
845         ret = reserve_doorbell(client);
846         if (ret)
847                 goto err_vaddr;
848
849         client->doorbell_offset = __select_cacheline(guc);
850
851         /*
852          * Since the doorbell only requires a single cacheline, we can save
853          * space by putting the application process descriptor in the same
854          * page. Use the half of the page that doesn't include the doorbell.
855          */
856         if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
857                 client->proc_desc_offset = 0;
858         else
859                 client->proc_desc_offset = (GUC_DB_SIZE / 2);
860
861         DRM_DEBUG_DRIVER("new priority %u client %p: stage_id %u\n",
862                          priority, client, client->stage_id);
863         DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
864                          client->doorbell_id, client->doorbell_offset);
865
866         return client;
867
868 err_vaddr:
869         i915_gem_object_unpin_map(client->vma->obj);
870 err_vma:
871         i915_vma_unpin_and_release(&client->vma, 0);
872 err_id:
873         ida_simple_remove(&guc->stage_ids, client->stage_id);
874 err_client:
875         kfree(client);
876         return ERR_PTR(ret);
877 }
878
879 static void guc_client_free(struct intel_guc_client *client)
880 {
881         unreserve_doorbell(client);
882         i915_vma_unpin_and_release(&client->vma, I915_VMA_RELEASE_MAP);
883         ida_simple_remove(&client->guc->stage_ids, client->stage_id);
884         kfree(client);
885 }
886
887 static inline bool ctx_save_restore_disabled(struct intel_context *ce)
888 {
889         u32 sr = ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1];
890
891 #define SR_DISABLED \
892         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT | \
893                            CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)
894
895         return (sr & SR_DISABLED) == SR_DISABLED;
896
897 #undef SR_DISABLED
898 }
899
900 static int guc_clients_create(struct intel_guc *guc)
901 {
902         struct intel_guc_client *client;
903
904         GEM_BUG_ON(guc->execbuf_client);
905
906         client = guc_client_alloc(guc, GUC_CLIENT_PRIORITY_KMD_NORMAL);
907         if (IS_ERR(client)) {
908                 DRM_ERROR("Failed to create GuC client for submission!\n");
909                 return PTR_ERR(client);
910         }
911         guc->execbuf_client = client;
912
913         return 0;
914 }
915
916 static void guc_clients_destroy(struct intel_guc *guc)
917 {
918         struct intel_guc_client *client;
919
920         client = fetch_and_zero(&guc->execbuf_client);
921         if (client)
922                 guc_client_free(client);
923 }
924
925 static int __guc_client_enable(struct intel_guc_client *client)
926 {
927         int ret;
928
929         guc_proc_desc_init(client);
930         guc_stage_desc_init(client);
931
932         ret = create_doorbell(client);
933         if (ret)
934                 goto fail;
935
936         return 0;
937
938 fail:
939         guc_stage_desc_fini(client);
940         guc_proc_desc_fini(client);
941         return ret;
942 }
943
944 static void __guc_client_disable(struct intel_guc_client *client)
945 {
946         /*
947          * By the time we're here, GuC may have already been reset. if that is
948          * the case, instead of trying (in vain) to communicate with it, let's
949          * just cleanup the doorbell HW and our internal state.
950          */
951         if (intel_guc_is_running(client->guc))
952                 destroy_doorbell(client);
953         else
954                 __fini_doorbell(client);
955
956         guc_stage_desc_fini(client);
957         guc_proc_desc_fini(client);
958 }
959
960 static int guc_clients_enable(struct intel_guc *guc)
961 {
962         return __guc_client_enable(guc->execbuf_client);
963 }
964
965 static void guc_clients_disable(struct intel_guc *guc)
966 {
967         if (guc->execbuf_client)
968                 __guc_client_disable(guc->execbuf_client);
969 }
970
971 /*
972  * Set up the memory resources to be shared with the GuC (via the GGTT)
973  * at firmware loading time.
974  */
975 int intel_guc_submission_init(struct intel_guc *guc)
976 {
977         int ret;
978
979         if (guc->stage_desc_pool)
980                 return 0;
981
982         ret = guc_stage_desc_pool_create(guc);
983         if (ret)
984                 return ret;
985         /*
986          * Keep static analysers happy, let them know that we allocated the
987          * vma after testing that it didn't exist earlier.
988          */
989         GEM_BUG_ON(!guc->stage_desc_pool);
990
991         WARN_ON(!guc_verify_doorbells(guc));
992         ret = guc_clients_create(guc);
993         if (ret)
994                 goto err_pool;
995
996         return 0;
997
998 err_pool:
999         guc_stage_desc_pool_destroy(guc);
1000         return ret;
1001 }
1002
1003 void intel_guc_submission_fini(struct intel_guc *guc)
1004 {
1005         guc_clients_destroy(guc);
1006         WARN_ON(!guc_verify_doorbells(guc));
1007
1008         if (guc->stage_desc_pool)
1009                 guc_stage_desc_pool_destroy(guc);
1010 }
1011
1012 static void guc_interrupts_capture(struct intel_gt *gt)
1013 {
1014         struct intel_rps *rps = &gt->i915->gt_pm.rps;
1015         struct intel_uncore *uncore = gt->uncore;
1016         struct intel_engine_cs *engine;
1017         enum intel_engine_id id;
1018         int irqs;
1019
1020         /* tell all command streamers to forward interrupts (but not vblank)
1021          * to GuC
1022          */
1023         irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
1024         for_each_engine(engine, gt, id)
1025                 ENGINE_WRITE(engine, RING_MODE_GEN7, irqs);
1026
1027         /* route USER_INTERRUPT to Host, all others are sent to GuC. */
1028         irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
1029                GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1030         /* These three registers have the same bit definitions */
1031         intel_uncore_write(uncore, GUC_BCS_RCS_IER, ~irqs);
1032         intel_uncore_write(uncore, GUC_VCS2_VCS1_IER, ~irqs);
1033         intel_uncore_write(uncore, GUC_WD_VECS_IER, ~irqs);
1034
1035         /*
1036          * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
1037          * (unmasked) PM interrupts to the GuC. All other bits of this
1038          * register *disable* generation of a specific interrupt.
1039          *
1040          * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
1041          * writing to the PM interrupt mask register, i.e. interrupts
1042          * that must not be disabled.
1043          *
1044          * If the GuC is handling these interrupts, then we must not let
1045          * the PM code disable ANY interrupt that the GuC is expecting.
1046          * So for each ENABLED (0) bit in this register, we must SET the
1047          * bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
1048          * GuC needs ARAT expired interrupt unmasked hence it is set in
1049          * pm_intrmsk_mbz.
1050          *
1051          * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
1052          * result in the register bit being left SET!
1053          */
1054         rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1055         rps->pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1056 }
1057
1058 static void guc_interrupts_release(struct intel_gt *gt)
1059 {
1060         struct intel_rps *rps = &gt->i915->gt_pm.rps;
1061         struct intel_uncore *uncore = gt->uncore;
1062         struct intel_engine_cs *engine;
1063         enum intel_engine_id id;
1064         int irqs;
1065
1066         /*
1067          * tell all command streamers NOT to forward interrupts or vblank
1068          * to GuC.
1069          */
1070         irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
1071         irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
1072         for_each_engine(engine, gt, id)
1073                 ENGINE_WRITE(engine, RING_MODE_GEN7, irqs);
1074
1075         /* route all GT interrupts to the host */
1076         intel_uncore_write(uncore, GUC_BCS_RCS_IER, 0);
1077         intel_uncore_write(uncore, GUC_VCS2_VCS1_IER, 0);
1078         intel_uncore_write(uncore, GUC_WD_VECS_IER, 0);
1079
1080         rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1081         rps->pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
1082 }
1083
1084 static void guc_set_default_submission(struct intel_engine_cs *engine)
1085 {
1086         /*
1087          * We inherit a bunch of functions from execlists that we'd like
1088          * to keep using:
1089          *
1090          *    engine->submit_request = execlists_submit_request;
1091          *    engine->cancel_requests = execlists_cancel_requests;
1092          *    engine->schedule = execlists_schedule;
1093          *
1094          * But we need to override the actual submission backend in order
1095          * to talk to the GuC.
1096          */
1097         intel_execlists_set_default_submission(engine);
1098
1099         engine->execlists.tasklet.func = guc_submission_tasklet;
1100
1101         /* do not use execlists park/unpark */
1102         engine->park = engine->unpark = NULL;
1103
1104         engine->reset.prepare = guc_reset_prepare;
1105         engine->reset.reset = guc_reset;
1106         engine->reset.finish = guc_reset_finish;
1107
1108         engine->cancel_requests = guc_cancel_requests;
1109
1110         engine->flags &= ~I915_ENGINE_SUPPORTS_STATS;
1111         engine->flags |= I915_ENGINE_NEEDS_BREADCRUMB_TASKLET;
1112
1113         /*
1114          * For the breadcrumb irq to work we need the interrupts to stay
1115          * enabled. However, on all platforms on which we'll have support for
1116          * GuC submission we don't allow disabling the interrupts at runtime, so
1117          * we're always safe with the current flow.
1118          */
1119         GEM_BUG_ON(engine->irq_enable || engine->irq_disable);
1120 }
1121
1122 int intel_guc_submission_enable(struct intel_guc *guc)
1123 {
1124         struct intel_gt *gt = guc_to_gt(guc);
1125         struct intel_engine_cs *engine;
1126         enum intel_engine_id id;
1127         int err;
1128
1129         err = i915_inject_load_error(gt->i915, -ENXIO);
1130         if (err)
1131                 return err;
1132
1133         /*
1134          * We're using GuC work items for submitting work through GuC. Since
1135          * we're coalescing multiple requests from a single context into a
1136          * single work item prior to assigning it to execlist_port, we can
1137          * never have more work items than the total number of ports (for all
1138          * engines). The GuC firmware is controlling the HEAD of work queue,
1139          * and it is guaranteed that it will remove the work item from the
1140          * queue before our request is completed.
1141          */
1142         BUILD_BUG_ON(ARRAY_SIZE(engine->execlists.inflight) *
1143                      sizeof(struct guc_wq_item) *
1144                      I915_NUM_ENGINES > GUC_WQ_SIZE);
1145
1146         GEM_BUG_ON(!guc->execbuf_client);
1147
1148         err = guc_clients_enable(guc);
1149         if (err)
1150                 return err;
1151
1152         /* Take over from manual control of ELSP (execlists) */
1153         guc_interrupts_capture(gt);
1154
1155         for_each_engine(engine, gt, id) {
1156                 engine->set_default_submission = guc_set_default_submission;
1157                 engine->set_default_submission(engine);
1158         }
1159
1160         return 0;
1161 }
1162
1163 void intel_guc_submission_disable(struct intel_guc *guc)
1164 {
1165         struct intel_gt *gt = guc_to_gt(guc);
1166
1167         GEM_BUG_ON(gt->awake); /* GT should be parked first */
1168
1169         guc_interrupts_release(gt);
1170         guc_clients_disable(guc);
1171 }
1172
1173 static bool __guc_submission_support(struct intel_guc *guc)
1174 {
1175         /* XXX: GuC submission is unavailable for now */
1176         return false;
1177
1178         if (!intel_guc_is_supported(guc))
1179                 return false;
1180
1181         return i915_modparams.enable_guc & ENABLE_GUC_SUBMISSION;
1182 }
1183
1184 void intel_guc_submission_init_early(struct intel_guc *guc)
1185 {
1186         guc->submission_supported = __guc_submission_support(guc);
1187 }
1188
1189 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1190 #include "selftest_guc.c"
1191 #endif