Merge tag 'drm-intel-gt-next-2022-08-24' of git://anongit.freedesktop.org/drm/drm...
[linux-block.git] / drivers / gpu / drm / i915 / gt / uc / intel_guc.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2019 Intel Corporation
4  */
5
6 #include "gem/i915_gem_lmem.h"
7 #include "gt/intel_gt.h"
8 #include "gt/intel_gt_irq.h"
9 #include "gt/intel_gt_pm_irq.h"
10 #include "gt/intel_gt_regs.h"
11 #include "intel_guc.h"
12 #include "intel_guc_ads.h"
13 #include "intel_guc_capture.h"
14 #include "intel_guc_slpc.h"
15 #include "intel_guc_submission.h"
16 #include "i915_drv.h"
17 #include "i915_irq.h"
18
19 /**
20  * DOC: GuC
21  *
22  * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
23  * designed to offload some of the functionality usually performed by the host
24  * driver; currently the main operations it can take care of are:
25  *
26  * - Authentication of the HuC, which is required to fully enable HuC usage.
27  * - Low latency graphics context scheduling (a.k.a. GuC submission).
28  * - GT Power management.
29  *
30  * The enable_guc module parameter can be used to select which of those
31  * operations to enable within GuC. Note that not all the operations are
32  * supported on all gen9+ platforms.
33  *
34  * Enabling the GuC is not mandatory and therefore the firmware is only loaded
35  * if at least one of the operations is selected. However, not loading the GuC
36  * might result in the loss of some features that do require the GuC (currently
37  * just the HuC, but more are expected to land in the future).
38  */
39
40 void intel_guc_notify(struct intel_guc *guc)
41 {
42         struct intel_gt *gt = guc_to_gt(guc);
43
44         /*
45          * On Gen11+, the value written to the register is passes as a payload
46          * to the FW. However, the FW currently treats all values the same way
47          * (H2G interrupt), so we can just write the value that the HW expects
48          * on older gens.
49          */
50         intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
51 }
52
53 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
54 {
55         GEM_BUG_ON(!guc->send_regs.base);
56         GEM_BUG_ON(!guc->send_regs.count);
57         GEM_BUG_ON(i >= guc->send_regs.count);
58
59         return _MMIO(guc->send_regs.base + 4 * i);
60 }
61
62 void intel_guc_init_send_regs(struct intel_guc *guc)
63 {
64         struct intel_gt *gt = guc_to_gt(guc);
65         enum forcewake_domains fw_domains = 0;
66         unsigned int i;
67
68         GEM_BUG_ON(!guc->send_regs.base);
69         GEM_BUG_ON(!guc->send_regs.count);
70
71         for (i = 0; i < guc->send_regs.count; i++) {
72                 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
73                                         guc_send_reg(guc, i),
74                                         FW_REG_READ | FW_REG_WRITE);
75         }
76         guc->send_regs.fw_domains = fw_domains;
77 }
78
79 static void gen9_reset_guc_interrupts(struct intel_guc *guc)
80 {
81         struct intel_gt *gt = guc_to_gt(guc);
82
83         assert_rpm_wakelock_held(&gt->i915->runtime_pm);
84
85         spin_lock_irq(&gt->irq_lock);
86         gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
87         spin_unlock_irq(&gt->irq_lock);
88 }
89
90 static void gen9_enable_guc_interrupts(struct intel_guc *guc)
91 {
92         struct intel_gt *gt = guc_to_gt(guc);
93
94         assert_rpm_wakelock_held(&gt->i915->runtime_pm);
95
96         spin_lock_irq(&gt->irq_lock);
97         WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
98                      gt->pm_guc_events);
99         gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
100         spin_unlock_irq(&gt->irq_lock);
101 }
102
103 static void gen9_disable_guc_interrupts(struct intel_guc *guc)
104 {
105         struct intel_gt *gt = guc_to_gt(guc);
106
107         assert_rpm_wakelock_held(&gt->i915->runtime_pm);
108
109         spin_lock_irq(&gt->irq_lock);
110
111         gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
112
113         spin_unlock_irq(&gt->irq_lock);
114         intel_synchronize_irq(gt->i915);
115
116         gen9_reset_guc_interrupts(guc);
117 }
118
119 static void gen11_reset_guc_interrupts(struct intel_guc *guc)
120 {
121         struct intel_gt *gt = guc_to_gt(guc);
122
123         spin_lock_irq(&gt->irq_lock);
124         gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
125         spin_unlock_irq(&gt->irq_lock);
126 }
127
128 static void gen11_enable_guc_interrupts(struct intel_guc *guc)
129 {
130         struct intel_gt *gt = guc_to_gt(guc);
131         u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
132
133         spin_lock_irq(&gt->irq_lock);
134         WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
135         intel_uncore_write(gt->uncore,
136                            GEN11_GUC_SG_INTR_ENABLE, events);
137         intel_uncore_write(gt->uncore,
138                            GEN11_GUC_SG_INTR_MASK, ~events);
139         spin_unlock_irq(&gt->irq_lock);
140 }
141
142 static void gen11_disable_guc_interrupts(struct intel_guc *guc)
143 {
144         struct intel_gt *gt = guc_to_gt(guc);
145
146         spin_lock_irq(&gt->irq_lock);
147
148         intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
149         intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
150
151         spin_unlock_irq(&gt->irq_lock);
152         intel_synchronize_irq(gt->i915);
153
154         gen11_reset_guc_interrupts(guc);
155 }
156
157 void intel_guc_init_early(struct intel_guc *guc)
158 {
159         struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
160
161         intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC);
162         intel_guc_ct_init_early(&guc->ct);
163         intel_guc_log_init_early(&guc->log);
164         intel_guc_submission_init_early(guc);
165         intel_guc_slpc_init_early(&guc->slpc);
166         intel_guc_rc_init_early(guc);
167
168         mutex_init(&guc->send_mutex);
169         spin_lock_init(&guc->irq_lock);
170         if (GRAPHICS_VER(i915) >= 11) {
171                 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
172                 guc->interrupts.reset = gen11_reset_guc_interrupts;
173                 guc->interrupts.enable = gen11_enable_guc_interrupts;
174                 guc->interrupts.disable = gen11_disable_guc_interrupts;
175                 guc->send_regs.base =
176                         i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
177                 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
178
179         } else {
180                 guc->notify_reg = GUC_SEND_INTERRUPT;
181                 guc->interrupts.reset = gen9_reset_guc_interrupts;
182                 guc->interrupts.enable = gen9_enable_guc_interrupts;
183                 guc->interrupts.disable = gen9_disable_guc_interrupts;
184                 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
185                 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
186                 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
187         }
188
189         intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION |
190                                   INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
191 }
192
193 void intel_guc_init_late(struct intel_guc *guc)
194 {
195         intel_guc_ads_init_late(guc);
196 }
197
198 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
199 {
200         u32 level = intel_guc_log_get_level(&guc->log);
201         u32 flags = 0;
202
203         if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
204                 flags |= GUC_LOG_DISABLED;
205         else
206                 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
207                          GUC_LOG_VERBOSITY_SHIFT;
208
209         return flags;
210 }
211
212 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
213 {
214         u32 flags = 0;
215
216         if (!intel_guc_submission_is_used(guc))
217                 flags |= GUC_CTL_DISABLE_SCHEDULER;
218
219         if (intel_guc_slpc_is_used(guc))
220                 flags |= GUC_CTL_ENABLE_SLPC;
221
222         return flags;
223 }
224
225 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
226 {
227         u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
228         u32 flags;
229
230         #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
231         #define LOG_UNIT SZ_1M
232         #define LOG_FLAG GUC_LOG_LOG_ALLOC_UNITS
233         #else
234         #define LOG_UNIT SZ_4K
235         #define LOG_FLAG 0
236         #endif
237
238         #if (((CAPTURE_BUFFER_SIZE) % SZ_1M) == 0)
239         #define CAPTURE_UNIT SZ_1M
240         #define CAPTURE_FLAG GUC_LOG_CAPTURE_ALLOC_UNITS
241         #else
242         #define CAPTURE_UNIT SZ_4K
243         #define CAPTURE_FLAG 0
244         #endif
245
246         BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
247         BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, LOG_UNIT));
248         BUILD_BUG_ON(!DEBUG_BUFFER_SIZE);
249         BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, LOG_UNIT));
250         BUILD_BUG_ON(!CAPTURE_BUFFER_SIZE);
251         BUILD_BUG_ON(!IS_ALIGNED(CAPTURE_BUFFER_SIZE, CAPTURE_UNIT));
252
253         BUILD_BUG_ON((CRASH_BUFFER_SIZE / LOG_UNIT - 1) >
254                         (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
255         BUILD_BUG_ON((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) >
256                         (GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT));
257         BUILD_BUG_ON((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) >
258                         (GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT));
259
260         flags = GUC_LOG_VALID |
261                 GUC_LOG_NOTIFY_ON_HALF_FULL |
262                 CAPTURE_FLAG |
263                 LOG_FLAG |
264                 ((CRASH_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
265                 ((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_DEBUG_SHIFT) |
266                 ((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) << GUC_LOG_CAPTURE_SHIFT) |
267                 (offset << GUC_LOG_BUF_ADDR_SHIFT);
268
269         #undef LOG_UNIT
270         #undef LOG_FLAG
271         #undef CAPTURE_UNIT
272         #undef CAPTURE_FLAG
273
274         return flags;
275 }
276
277 static u32 guc_ctl_ads_flags(struct intel_guc *guc)
278 {
279         u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
280         u32 flags = ads << GUC_ADS_ADDR_SHIFT;
281
282         return flags;
283 }
284
285 static u32 guc_ctl_wa_flags(struct intel_guc *guc)
286 {
287         struct intel_gt *gt = guc_to_gt(guc);
288         u32 flags = 0;
289
290         /* Wa_22012773006:gen11,gen12 < XeHP */
291         if (GRAPHICS_VER(gt->i915) >= 11 &&
292             GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50))
293                 flags |= GUC_WA_POLLCS;
294
295         /* Wa_16011759253:dg2_g10:a0 */
296         if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0))
297                 flags |= GUC_WA_GAM_CREDITS;
298
299         /* Wa_14014475959:dg2 */
300         if (IS_DG2(gt->i915))
301                 flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
302
303         /*
304          * Wa_14012197797:dg2_g10:a0,dg2_g11:a0
305          * Wa_22011391025:dg2_g10,dg2_g11,dg2_g12
306          *
307          * The same WA bit is used for both and 22011391025 is applicable to
308          * all DG2.
309          */
310         if (IS_DG2(gt->i915))
311                 flags |= GUC_WA_DUAL_QUEUE;
312
313         /* Wa_22011802037: graphics version 11/12 */
314         if (IS_GRAPHICS_VER(gt->i915, 11, 12))
315                 flags |= GUC_WA_PRE_PARSER;
316
317         /* Wa_16011777198:dg2 */
318         if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
319             IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))
320                 flags |= GUC_WA_RCS_RESET_BEFORE_RC6;
321
322         /*
323          * Wa_22012727170:dg2_g10[a0-c0), dg2_g11[a0..)
324          * Wa_22012727685:dg2_g11[a0..)
325          */
326         if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
327             IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_FOREVER))
328                 flags |= GUC_WA_CONTEXT_ISOLATION;
329
330         /* Wa_16015675438 */
331         if (!RCS_MASK(gt))
332                 flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
333
334         return flags;
335 }
336
337 static u32 guc_ctl_devid(struct intel_guc *guc)
338 {
339         struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
340
341         return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915);
342 }
343
344 /*
345  * Initialise the GuC parameter block before starting the firmware
346  * transfer. These parameters are read by the firmware on startup
347  * and cannot be changed thereafter.
348  */
349 static void guc_init_params(struct intel_guc *guc)
350 {
351         u32 *params = guc->params;
352         int i;
353
354         BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
355
356         params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
357         params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
358         params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
359         params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
360         params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
361         params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
362
363         for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
364                 DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
365 }
366
367 /*
368  * Initialise the GuC parameter block before starting the firmware
369  * transfer. These parameters are read by the firmware on startup
370  * and cannot be changed thereafter.
371  */
372 void intel_guc_write_params(struct intel_guc *guc)
373 {
374         struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
375         int i;
376
377         /*
378          * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and
379          * they are power context saved so it's ok to release forcewake
380          * when we are done here and take it again at xfer time.
381          */
382         intel_uncore_forcewake_get(uncore, FORCEWAKE_GT);
383
384         intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
385
386         for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
387                 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
388
389         intel_uncore_forcewake_put(uncore, FORCEWAKE_GT);
390 }
391
392 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p)
393 {
394         struct intel_gt *gt = guc_to_gt(guc);
395         intel_wakeref_t wakeref;
396         u32 stamp = 0;
397         u64 ktime;
398
399         intel_device_info_print_runtime(RUNTIME_INFO(gt->i915), p);
400
401         with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
402                 stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP);
403         ktime = ktime_get_boottime_ns();
404
405         drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime);
406         drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp);
407         drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n",
408                    gt->clock_frequency, gt->clock_period_ns);
409 }
410
411 int intel_guc_init(struct intel_guc *guc)
412 {
413         struct intel_gt *gt = guc_to_gt(guc);
414         int ret;
415
416         ret = intel_uc_fw_init(&guc->fw);
417         if (ret)
418                 goto out;
419
420         ret = intel_guc_log_create(&guc->log);
421         if (ret)
422                 goto err_fw;
423
424         ret = intel_guc_capture_init(guc);
425         if (ret)
426                 goto err_log;
427
428         ret = intel_guc_ads_create(guc);
429         if (ret)
430                 goto err_capture;
431
432         GEM_BUG_ON(!guc->ads_vma);
433
434         ret = intel_guc_ct_init(&guc->ct);
435         if (ret)
436                 goto err_ads;
437
438         if (intel_guc_submission_is_used(guc)) {
439                 /*
440                  * This is stuff we need to have available at fw load time
441                  * if we are planning to enable submission later
442                  */
443                 ret = intel_guc_submission_init(guc);
444                 if (ret)
445                         goto err_ct;
446         }
447
448         if (intel_guc_slpc_is_used(guc)) {
449                 ret = intel_guc_slpc_init(&guc->slpc);
450                 if (ret)
451                         goto err_submission;
452         }
453
454         /* now that everything is perma-pinned, initialize the parameters */
455         guc_init_params(guc);
456
457         /* We need to notify the guc whenever we change the GGTT */
458         i915_ggtt_enable_guc(gt->ggtt);
459
460         intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
461
462         return 0;
463
464 err_submission:
465         intel_guc_submission_fini(guc);
466 err_ct:
467         intel_guc_ct_fini(&guc->ct);
468 err_ads:
469         intel_guc_ads_destroy(guc);
470 err_capture:
471         intel_guc_capture_destroy(guc);
472 err_log:
473         intel_guc_log_destroy(&guc->log);
474 err_fw:
475         intel_uc_fw_fini(&guc->fw);
476 out:
477         i915_probe_error(gt->i915, "failed with %d\n", ret);
478         return ret;
479 }
480
481 void intel_guc_fini(struct intel_guc *guc)
482 {
483         struct intel_gt *gt = guc_to_gt(guc);
484
485         if (!intel_uc_fw_is_loadable(&guc->fw))
486                 return;
487
488         i915_ggtt_disable_guc(gt->ggtt);
489
490         if (intel_guc_slpc_is_used(guc))
491                 intel_guc_slpc_fini(&guc->slpc);
492
493         if (intel_guc_submission_is_used(guc))
494                 intel_guc_submission_fini(guc);
495
496         intel_guc_ct_fini(&guc->ct);
497
498         intel_guc_ads_destroy(guc);
499         intel_guc_capture_destroy(guc);
500         intel_guc_log_destroy(&guc->log);
501         intel_uc_fw_fini(&guc->fw);
502 }
503
504 /*
505  * This function implements the MMIO based host to GuC interface.
506  */
507 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len,
508                         u32 *response_buf, u32 response_buf_size)
509 {
510         struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
511         struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
512         u32 header;
513         int i;
514         int ret;
515
516         GEM_BUG_ON(!len);
517         GEM_BUG_ON(len > guc->send_regs.count);
518
519         GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST);
520         GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST);
521
522         mutex_lock(&guc->send_mutex);
523         intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
524
525 retry:
526         for (i = 0; i < len; i++)
527                 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]);
528
529         intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
530
531         intel_guc_notify(guc);
532
533         /*
534          * No GuC command should ever take longer than 10ms.
535          * Fast commands should still complete in 10us.
536          */
537         ret = __intel_wait_for_register_fw(uncore,
538                                            guc_send_reg(guc, 0),
539                                            GUC_HXG_MSG_0_ORIGIN,
540                                            FIELD_PREP(GUC_HXG_MSG_0_ORIGIN,
541                                                       GUC_HXG_ORIGIN_GUC),
542                                            10, 10, &header);
543         if (unlikely(ret)) {
544 timeout:
545                 drm_err(&i915->drm, "mmio request %#x: no reply %x\n",
546                         request[0], header);
547                 goto out;
548         }
549
550         if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
551 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \
552                 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \
553                 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; })
554
555                 ret = wait_for(done, 1000);
556                 if (unlikely(ret))
557                         goto timeout;
558                 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
559                                        GUC_HXG_ORIGIN_GUC))
560                         goto proto;
561 #undef done
562         }
563
564         if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
565                 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
566
567                 drm_dbg(&i915->drm, "mmio request %#x: retrying, reason %u\n",
568                         request[0], reason);
569                 goto retry;
570         }
571
572         if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) {
573                 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
574                 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
575
576                 drm_err(&i915->drm, "mmio request %#x: failure %x/%u\n",
577                         request[0], error, hint);
578                 ret = -ENXIO;
579                 goto out;
580         }
581
582         if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
583 proto:
584                 drm_err(&i915->drm, "mmio request %#x: unexpected reply %#x\n",
585                         request[0], header);
586                 ret = -EPROTO;
587                 goto out;
588         }
589
590         if (response_buf) {
591                 int count = min(response_buf_size, guc->send_regs.count);
592
593                 GEM_BUG_ON(!count);
594
595                 response_buf[0] = header;
596
597                 for (i = 1; i < count; i++)
598                         response_buf[i] = intel_uncore_read(uncore,
599                                                             guc_send_reg(guc, i));
600
601                 /* Use number of copied dwords as our return value */
602                 ret = count;
603         } else {
604                 /* Use data from the GuC response as our return value */
605                 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
606         }
607
608 out:
609         intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
610         mutex_unlock(&guc->send_mutex);
611
612         return ret;
613 }
614
615 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
616                                        const u32 *payload, u32 len)
617 {
618         u32 msg;
619
620         if (unlikely(!len))
621                 return -EPROTO;
622
623         /* Make sure to handle only enabled messages */
624         msg = payload[0] & guc->msg_enabled_mask;
625
626         if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)
627                 drm_err(&guc_to_gt(guc)->i915->drm, "Received early GuC crash dump notification!\n");
628         if (msg & INTEL_GUC_RECV_MSG_EXCEPTION)
629                 drm_err(&guc_to_gt(guc)->i915->drm, "Received early GuC exception notification!\n");
630
631         return 0;
632 }
633
634 /**
635  * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
636  * @guc: intel_guc structure
637  * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
638  *
639  * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
640  * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
641  * intel_huc_auth().
642  *
643  * Return:      non-zero code on error
644  */
645 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
646 {
647         u32 action[] = {
648                 INTEL_GUC_ACTION_AUTHENTICATE_HUC,
649                 rsa_offset
650         };
651
652         return intel_guc_send(guc, action, ARRAY_SIZE(action));
653 }
654
655 /**
656  * intel_guc_suspend() - notify GuC entering suspend state
657  * @guc:        the guc
658  */
659 int intel_guc_suspend(struct intel_guc *guc)
660 {
661         int ret;
662         u32 action[] = {
663                 INTEL_GUC_ACTION_CLIENT_SOFT_RESET,
664         };
665
666         if (!intel_guc_is_ready(guc))
667                 return 0;
668
669         if (intel_guc_submission_is_used(guc)) {
670                 /*
671                  * This H2G MMIO command tears down the GuC in two steps. First it will
672                  * generate a G2H CTB for every active context indicating a reset. In
673                  * practice the i915 shouldn't ever get a G2H as suspend should only be
674                  * called when the GPU is idle. Next, it tears down the CTBs and this
675                  * H2G MMIO command completes.
676                  *
677                  * Don't abort on a failure code from the GuC. Keep going and do the
678                  * clean up in santize() and re-initialisation on resume and hopefully
679                  * the error here won't be problematic.
680                  */
681                 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0);
682                 if (ret)
683                         DRM_ERROR("GuC suspend: RESET_CLIENT action failed with error %d!\n", ret);
684         }
685
686         /* Signal that the GuC isn't running. */
687         intel_guc_sanitize(guc);
688
689         return 0;
690 }
691
692 /**
693  * intel_guc_resume() - notify GuC resuming from suspend state
694  * @guc:        the guc
695  */
696 int intel_guc_resume(struct intel_guc *guc)
697 {
698         /*
699          * NB: This function can still be called even if GuC submission is
700          * disabled, e.g. if GuC is enabled for HuC authentication only. Thus,
701          * if any code is later added here, it must be support doing nothing
702          * if submission is disabled (as per intel_guc_suspend).
703          */
704         return 0;
705 }
706
707 /**
708  * DOC: GuC Memory Management
709  *
710  * GuC can't allocate any memory for its own usage, so all the allocations must
711  * be handled by the host driver. GuC accesses the memory via the GGTT, with the
712  * exception of the top and bottom parts of the 4GB address space, which are
713  * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
714  * or other parts of the HW. The driver must take care not to place objects that
715  * the GuC is going to access in these reserved ranges. The layout of the GuC
716  * address space is shown below:
717  *
718  * ::
719  *
720  *     +===========> +====================+ <== FFFF_FFFF
721  *     ^             |      Reserved      |
722  *     |             +====================+ <== GUC_GGTT_TOP
723  *     |             |                    |
724  *     |             |        DRAM        |
725  *    GuC            |                    |
726  *  Address    +===> +====================+ <== GuC ggtt_pin_bias
727  *   Space     ^     |                    |
728  *     |       |     |                    |
729  *     |      GuC    |        GuC         |
730  *     |     WOPCM   |       WOPCM        |
731  *     |      Size   |                    |
732  *     |       |     |                    |
733  *     v       v     |                    |
734  *     +=======+===> +====================+ <== 0000_0000
735  *
736  * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
737  * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
738  * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
739  */
740
741 /**
742  * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
743  * @guc:        the guc
744  * @size:       size of area to allocate (both virtual space and memory)
745  *
746  * This is a wrapper to create an object for use with the GuC. In order to
747  * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
748  * both some backing storage and a range inside the Global GTT. We must pin
749  * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
750  * range is reserved inside GuC.
751  *
752  * Return:      A i915_vma if successful, otherwise an ERR_PTR.
753  */
754 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
755 {
756         struct intel_gt *gt = guc_to_gt(guc);
757         struct drm_i915_gem_object *obj;
758         struct i915_vma *vma;
759         u64 flags;
760         int ret;
761
762         if (HAS_LMEM(gt->i915))
763                 obj = i915_gem_object_create_lmem(gt->i915, size,
764                                                   I915_BO_ALLOC_CPU_CLEAR |
765                                                   I915_BO_ALLOC_CONTIGUOUS |
766                                                   I915_BO_ALLOC_PM_EARLY);
767         else
768                 obj = i915_gem_object_create_shmem(gt->i915, size);
769
770         if (IS_ERR(obj))
771                 return ERR_CAST(obj);
772
773         vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
774         if (IS_ERR(vma))
775                 goto err;
776
777         flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
778         ret = i915_ggtt_pin(vma, NULL, 0, flags);
779         if (ret) {
780                 vma = ERR_PTR(ret);
781                 goto err;
782         }
783
784         return i915_vma_make_unshrinkable(vma);
785
786 err:
787         i915_gem_object_put(obj);
788         return vma;
789 }
790
791 /**
792  * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
793  * @guc:        the guc
794  * @size:       size of area to allocate (both virtual space and memory)
795  * @out_vma:    return variable for the allocated vma pointer
796  * @out_vaddr:  return variable for the obj mapping
797  *
798  * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
799  * object with I915_MAP_WB.
800  *
801  * Return:      0 if successful, a negative errno code otherwise.
802  */
803 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
804                                    struct i915_vma **out_vma, void **out_vaddr)
805 {
806         struct i915_vma *vma;
807         void *vaddr;
808
809         vma = intel_guc_allocate_vma(guc, size);
810         if (IS_ERR(vma))
811                 return PTR_ERR(vma);
812
813         vaddr = i915_gem_object_pin_map_unlocked(vma->obj,
814                                                  i915_coherent_map_type(guc_to_gt(guc)->i915,
815                                                                         vma->obj, true));
816         if (IS_ERR(vaddr)) {
817                 i915_vma_unpin_and_release(&vma, 0);
818                 return PTR_ERR(vaddr);
819         }
820
821         *out_vma = vma;
822         *out_vaddr = vaddr;
823
824         return 0;
825 }
826
827 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
828 {
829         u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
830                 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
831                 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
832                 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG),
833                 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
834                 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
835                 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)),
836                 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)),
837         };
838         int ret;
839
840         GEM_BUG_ON(len > 2);
841         GEM_BUG_ON(len == 1 && upper_32_bits(value));
842
843         /* Self config must go over MMIO */
844         ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
845
846         if (unlikely(ret < 0))
847                 return ret;
848         if (unlikely(ret > 1))
849                 return -EPROTO;
850         if (unlikely(!ret))
851                 return -ENOKEY;
852
853         return 0;
854 }
855
856 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
857 {
858         struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
859         int err = __guc_action_self_cfg(guc, key, len, value);
860
861         if (unlikely(err))
862                 i915_probe_error(i915, "Unsuccessful self-config (%pe) key %#hx value %#llx\n",
863                                  ERR_PTR(err), key, value);
864         return err;
865 }
866
867 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value)
868 {
869         return __guc_self_cfg(guc, key, 1, value);
870 }
871
872 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value)
873 {
874         return __guc_self_cfg(guc, key, 2, value);
875 }
876
877 /**
878  * intel_guc_load_status - dump information about GuC load status
879  * @guc: the GuC
880  * @p: the &drm_printer
881  *
882  * Pretty printer for GuC load status.
883  */
884 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
885 {
886         struct intel_gt *gt = guc_to_gt(guc);
887         struct intel_uncore *uncore = gt->uncore;
888         intel_wakeref_t wakeref;
889
890         if (!intel_guc_is_supported(guc)) {
891                 drm_printf(p, "GuC not supported\n");
892                 return;
893         }
894
895         if (!intel_guc_is_wanted(guc)) {
896                 drm_printf(p, "GuC disabled\n");
897                 return;
898         }
899
900         intel_uc_fw_dump(&guc->fw, p);
901
902         with_intel_runtime_pm(uncore->rpm, wakeref) {
903                 u32 status = intel_uncore_read(uncore, GUC_STATUS);
904                 u32 i;
905
906                 drm_printf(p, "\nGuC status 0x%08x:\n", status);
907                 drm_printf(p, "\tBootrom status = 0x%x\n",
908                            (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
909                 drm_printf(p, "\tuKernel status = 0x%x\n",
910                            (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
911                 drm_printf(p, "\tMIA Core status = 0x%x\n",
912                            (status & GS_MIA_MASK) >> GS_MIA_SHIFT);
913                 drm_puts(p, "\nScratch registers:\n");
914                 for (i = 0; i < 16; i++) {
915                         drm_printf(p, "\t%2d: \t0x%x\n",
916                                    i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
917                 }
918         }
919 }
920
921 void intel_guc_write_barrier(struct intel_guc *guc)
922 {
923         struct intel_gt *gt = guc_to_gt(guc);
924
925         if (i915_gem_object_is_lmem(guc->ct.vma->obj)) {
926                 /*
927                  * Ensure intel_uncore_write_fw can be used rather than
928                  * intel_uncore_write.
929                  */
930                 GEM_BUG_ON(guc->send_regs.fw_domains);
931
932                 /*
933                  * This register is used by the i915 and GuC for MMIO based
934                  * communication. Once we are in this code CTBs are the only
935                  * method the i915 uses to communicate with the GuC so it is
936                  * safe to write to this register (a value of 0 is NOP for MMIO
937                  * communication). If we ever start mixing CTBs and MMIOs a new
938                  * register will have to be chosen. This function is also used
939                  * to enforce ordering of a work queue item write and an update
940                  * to the process descriptor. When a work queue is being used,
941                  * CTBs are also the only mechanism of communication.
942                  */
943                 intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0);
944         } else {
945                 /* wmb() sufficient for a barrier if in smem */
946                 wmb();
947         }
948 }