drm/i915: Add Wa_14019877138
[linux-block.git] / drivers / gpu / drm / i915 / gt / intel_workarounds.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2018 Intel Corporation
4  */
5
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_context.h"
9 #include "intel_engine_pm.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gpu_commands.h"
12 #include "intel_gt.h"
13 #include "intel_gt_mcr.h"
14 #include "intel_gt_print.h"
15 #include "intel_gt_regs.h"
16 #include "intel_ring.h"
17 #include "intel_workarounds.h"
18
19 /**
20  * DOC: Hardware workarounds
21  *
22  * Hardware workarounds are register programming documented to be executed in
23  * the driver that fall outside of the normal programming sequences for a
24  * platform. There are some basic categories of workarounds, depending on
25  * how/when they are applied:
26  *
27  * - Context workarounds: workarounds that touch registers that are
28  *   saved/restored to/from the HW context image. The list is emitted (via Load
29  *   Register Immediate commands) once when initializing the device and saved in
30  *   the default context. That default context is then used on every context
31  *   creation to have a "primed golden context", i.e. a context image that
32  *   already contains the changes needed to all the registers.
33  *
34  *   Context workarounds should be implemented in the \*_ctx_workarounds_init()
35  *   variants respective to the targeted platforms.
36  *
37  * - Engine workarounds: the list of these WAs is applied whenever the specific
38  *   engine is reset. It's also possible that a set of engine classes share a
39  *   common power domain and they are reset together. This happens on some
40  *   platforms with render and compute engines. In this case (at least) one of
41  *   them need to keeep the workaround programming: the approach taken in the
42  *   driver is to tie those workarounds to the first compute/render engine that
43  *   is registered.  When executing with GuC submission, engine resets are
44  *   outside of kernel driver control, hence the list of registers involved in
45  *   written once, on engine initialization, and then passed to GuC, that
46  *   saves/restores their values before/after the reset takes place. See
47  *   ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference.
48  *
49  *   Workarounds for registers specific to RCS and CCS should be implemented in
50  *   rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for
51  *   registers belonging to BCS, VCS or VECS should be implemented in
52  *   xcs_engine_wa_init(). Workarounds for registers not belonging to a specific
53  *   engine's MMIO range but that are part of of the common RCS/CCS reset domain
54  *   should be implemented in general_render_compute_wa_init().
55  *
56  * - GT workarounds: the list of these WAs is applied whenever these registers
57  *   revert to their default values: on GPU reset, suspend/resume [1]_, etc.
58  *
59  *   GT workarounds should be implemented in the \*_gt_workarounds_init()
60  *   variants respective to the targeted platforms.
61  *
62  * - Register whitelist: some workarounds need to be implemented in userspace,
63  *   but need to touch privileged registers. The whitelist in the kernel
64  *   instructs the hardware to allow the access to happen. From the kernel side,
65  *   this is just a special case of a MMIO workaround (as we write the list of
66  *   these to/be-whitelisted registers to some special HW registers).
67  *
68  *   Register whitelisting should be done in the \*_whitelist_build() variants
69  *   respective to the targeted platforms.
70  *
71  * - Workaround batchbuffers: buffers that get executed automatically by the
72  *   hardware on every HW context restore. These buffers are created and
73  *   programmed in the default context so the hardware always go through those
74  *   programming sequences when switching contexts. The support for workaround
75  *   batchbuffers is enabled these hardware mechanisms:
76  *
77  *   #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default
78  *      context, pointing the hardware to jump to that location when that offset
79  *      is reached in the context restore. Workaround batchbuffer in the driver
80  *      currently uses this mechanism for all platforms.
81  *
82  *   #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context,
83  *      pointing the hardware to a buffer to continue executing after the
84  *      engine registers are restored in a context restore sequence. This is
85  *      currently not used in the driver.
86  *
87  * - Other:  There are WAs that, due to their nature, cannot be applied from a
88  *   central place. Those are peppered around the rest of the code, as needed.
89  *   Workarounds related to the display IP are the main example.
90  *
91  * .. [1] Technically, some registers are powercontext saved & restored, so they
92  *    survive a suspend/resume. In practice, writing them again is not too
93  *    costly and simplifies things, so it's the approach taken in the driver.
94  */
95
96 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt,
97                           const char *name, const char *engine_name)
98 {
99         wal->gt = gt;
100         wal->name = name;
101         wal->engine_name = engine_name;
102 }
103
104 #define WA_LIST_CHUNK (1 << 4)
105
106 static void wa_init_finish(struct i915_wa_list *wal)
107 {
108         /* Trim unused entries. */
109         if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) {
110                 struct i915_wa *list = kmemdup(wal->list,
111                                                wal->count * sizeof(*list),
112                                                GFP_KERNEL);
113
114                 if (list) {
115                         kfree(wal->list);
116                         wal->list = list;
117                 }
118         }
119
120         if (!wal->count)
121                 return;
122
123         gt_dbg(wal->gt, "Initialized %u %s workarounds on %s\n",
124                wal->wa_count, wal->name, wal->engine_name);
125 }
126
127 static enum forcewake_domains
128 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal)
129 {
130         enum forcewake_domains fw = 0;
131         struct i915_wa *wa;
132         unsigned int i;
133
134         for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
135                 fw |= intel_uncore_forcewake_for_reg(uncore,
136                                                      wa->reg,
137                                                      FW_REG_READ |
138                                                      FW_REG_WRITE);
139
140         return fw;
141 }
142
143 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa)
144 {
145         unsigned int addr = i915_mmio_reg_offset(wa->reg);
146         struct drm_i915_private *i915 = wal->gt->i915;
147         unsigned int start = 0, end = wal->count;
148         const unsigned int grow = WA_LIST_CHUNK;
149         struct i915_wa *wa_;
150
151         GEM_BUG_ON(!is_power_of_2(grow));
152
153         if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */
154                 struct i915_wa *list;
155
156                 list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa),
157                                      GFP_KERNEL);
158                 if (!list) {
159                         drm_err(&i915->drm, "No space for workaround init!\n");
160                         return;
161                 }
162
163                 if (wal->list) {
164                         memcpy(list, wal->list, sizeof(*wa) * wal->count);
165                         kfree(wal->list);
166                 }
167
168                 wal->list = list;
169         }
170
171         while (start < end) {
172                 unsigned int mid = start + (end - start) / 2;
173
174                 if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) {
175                         start = mid + 1;
176                 } else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) {
177                         end = mid;
178                 } else {
179                         wa_ = &wal->list[mid];
180
181                         if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) {
182                                 drm_err(&i915->drm,
183                                         "Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n",
184                                         i915_mmio_reg_offset(wa_->reg),
185                                         wa_->clr, wa_->set);
186
187                                 wa_->set &= ~wa->clr;
188                         }
189
190                         wal->wa_count++;
191                         wa_->set |= wa->set;
192                         wa_->clr |= wa->clr;
193                         wa_->read |= wa->read;
194                         return;
195                 }
196         }
197
198         wal->wa_count++;
199         wa_ = &wal->list[wal->count++];
200         *wa_ = *wa;
201
202         while (wa_-- > wal->list) {
203                 GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) ==
204                            i915_mmio_reg_offset(wa_[1].reg));
205                 if (i915_mmio_reg_offset(wa_[1].reg) >
206                     i915_mmio_reg_offset(wa_[0].reg))
207                         break;
208
209                 swap(wa_[1], wa_[0]);
210         }
211 }
212
213 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg,
214                    u32 clear, u32 set, u32 read_mask, bool masked_reg)
215 {
216         struct i915_wa wa = {
217                 .reg  = reg,
218                 .clr  = clear,
219                 .set  = set,
220                 .read = read_mask,
221                 .masked_reg = masked_reg,
222         };
223
224         _wa_add(wal, &wa);
225 }
226
227 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg,
228                        u32 clear, u32 set, u32 read_mask, bool masked_reg)
229 {
230         struct i915_wa wa = {
231                 .mcr_reg = reg,
232                 .clr  = clear,
233                 .set  = set,
234                 .read = read_mask,
235                 .masked_reg = masked_reg,
236                 .is_mcr = 1,
237         };
238
239         _wa_add(wal, &wa);
240 }
241
242 static void
243 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set)
244 {
245         wa_add(wal, reg, clear, set, clear | set, false);
246 }
247
248 static void
249 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set)
250 {
251         wa_mcr_add(wal, reg, clear, set, clear | set, false);
252 }
253
254 static void
255 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
256 {
257         wa_write_clr_set(wal, reg, ~0, set);
258 }
259
260 static void
261 wa_mcr_write(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
262 {
263         wa_mcr_write_clr_set(wal, reg, ~0, set);
264 }
265
266 static void
267 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
268 {
269         wa_write_clr_set(wal, reg, set, set);
270 }
271
272 static void
273 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
274 {
275         wa_mcr_write_clr_set(wal, reg, set, set);
276 }
277
278 static void
279 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr)
280 {
281         wa_write_clr_set(wal, reg, clr, 0);
282 }
283
284 static void
285 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr)
286 {
287         wa_mcr_write_clr_set(wal, reg, clr, 0);
288 }
289
290 /*
291  * WA operations on "masked register". A masked register has the upper 16 bits
292  * documented as "masked" in b-spec. Its purpose is to allow writing to just a
293  * portion of the register without a rmw: you simply write in the upper 16 bits
294  * the mask of bits you are going to modify.
295  *
296  * The wa_masked_* family of functions already does the necessary operations to
297  * calculate the mask based on the parameters passed, so user only has to
298  * provide the lower 16 bits of that register.
299  */
300
301 static void
302 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
303 {
304         wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
305 }
306
307 static void
308 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
309 {
310         wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
311 }
312
313 static void
314 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
315 {
316         wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
317 }
318
319 static void
320 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
321 {
322         wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
323 }
324
325 static void
326 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg,
327                     u32 mask, u32 val)
328 {
329         wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
330 }
331
332 static void
333 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg,
334                         u32 mask, u32 val)
335 {
336         wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
337 }
338
339 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine,
340                                       struct i915_wa_list *wal)
341 {
342         wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
343 }
344
345 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine,
346                                       struct i915_wa_list *wal)
347 {
348         wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
349 }
350
351 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine,
352                                       struct i915_wa_list *wal)
353 {
354         wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
355
356         /* WaDisableAsyncFlipPerfMode:bdw,chv */
357         wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE);
358
359         /* WaDisablePartialInstShootdown:bdw,chv */
360         wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
361                          PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
362
363         /* Use Force Non-Coherent whenever executing a 3D context. This is a
364          * workaround for a possible hang in the unlikely event a TLB
365          * invalidation occurs during a PSD flush.
366          */
367         /* WaForceEnableNonCoherent:bdw,chv */
368         /* WaHdcDisableFetchWhenMasked:bdw,chv */
369         wa_masked_en(wal, HDC_CHICKEN0,
370                      HDC_DONOT_FETCH_MEM_WHEN_MASKED |
371                      HDC_FORCE_NON_COHERENT);
372
373         /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
374          * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
375          *  polygons in the same 8x4 pixel/sample area to be processed without
376          *  stalling waiting for the earlier ones to write to Hierarchical Z
377          *  buffer."
378          *
379          * This optimization is off by default for BDW and CHV; turn it on.
380          */
381         wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
382
383         /* Wa4x4STCOptimizationDisable:bdw,chv */
384         wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
385
386         /*
387          * BSpec recommends 8x4 when MSAA is used,
388          * however in practice 16x4 seems fastest.
389          *
390          * Note that PS/WM thread counts depend on the WIZ hashing
391          * disable bit, which we don't touch here, but it's good
392          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
393          */
394         wa_masked_field_set(wal, GEN7_GT_MODE,
395                             GEN6_WIZ_HASHING_MASK,
396                             GEN6_WIZ_HASHING_16x4);
397 }
398
399 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine,
400                                      struct i915_wa_list *wal)
401 {
402         struct drm_i915_private *i915 = engine->i915;
403
404         gen8_ctx_workarounds_init(engine, wal);
405
406         /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
407         wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
408
409         /* WaDisableDopClockGating:bdw
410          *
411          * Also see the related UCGTCL1 write in bdw_init_clock_gating()
412          * to disable EUTC clock gating.
413          */
414         wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
415                          DOP_CLOCK_GATING_DISABLE);
416
417         wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
418                          GEN8_SAMPLER_POWER_BYPASS_DIS);
419
420         wa_masked_en(wal, HDC_CHICKEN0,
421                      /* WaForceContextSaveRestoreNonCoherent:bdw */
422                      HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
423                      /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
424                      (IS_BROADWELL_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
425 }
426
427 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine,
428                                      struct i915_wa_list *wal)
429 {
430         gen8_ctx_workarounds_init(engine, wal);
431
432         /* WaDisableThreadStallDopClockGating:chv */
433         wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
434
435         /* Improve HiZ throughput on CHV. */
436         wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
437 }
438
439 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine,
440                                       struct i915_wa_list *wal)
441 {
442         struct drm_i915_private *i915 = engine->i915;
443
444         if (HAS_LLC(i915)) {
445                 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
446                  *
447                  * Must match Display Engine. See
448                  * WaCompressedResourceDisplayNewHashMode.
449                  */
450                 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
451                              GEN9_PBE_COMPRESSED_HASH_SELECTION);
452                 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
453                                  GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
454         }
455
456         /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
457         /* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
458         wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
459                          FLOW_CONTROL_ENABLE |
460                          PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
461
462         /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
463         /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
464         wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
465                          GEN9_ENABLE_YV12_BUGFIX |
466                          GEN9_ENABLE_GPGPU_PREEMPTION);
467
468         /* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
469         /* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
470         wa_masked_en(wal, CACHE_MODE_1,
471                      GEN8_4x4_STC_OPTIMIZATION_DISABLE |
472                      GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
473
474         /* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
475         wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5,
476                           GEN9_CCS_TLB_PREFETCH_ENABLE);
477
478         /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
479         wa_masked_en(wal, HDC_CHICKEN0,
480                      HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
481                      HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
482
483         /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
484          * both tied to WaForceContextSaveRestoreNonCoherent
485          * in some hsds for skl. We keep the tie for all gen9. The
486          * documentation is a bit hazy and so we want to get common behaviour,
487          * even though there is no clear evidence we would need both on kbl/bxt.
488          * This area has been source of system hangs so we play it safe
489          * and mimic the skl regardless of what bspec says.
490          *
491          * Use Force Non-Coherent whenever executing a 3D context. This
492          * is a workaround for a possible hang in the unlikely event
493          * a TLB invalidation occurs during a PSD flush.
494          */
495
496         /* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
497         wa_masked_en(wal, HDC_CHICKEN0,
498                      HDC_FORCE_NON_COHERENT);
499
500         /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
501         if (IS_SKYLAKE(i915) ||
502             IS_KABYLAKE(i915) ||
503             IS_COFFEELAKE(i915) ||
504             IS_COMETLAKE(i915))
505                 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
506                                  GEN8_SAMPLER_POWER_BYPASS_DIS);
507
508         /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
509         wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
510
511         /*
512          * Supporting preemption with fine-granularity requires changes in the
513          * batch buffer programming. Since we can't break old userspace, we
514          * need to set our default preemption level to safe value. Userspace is
515          * still able to use more fine-grained preemption levels, since in
516          * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
517          * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
518          * not real HW workarounds, but merely a way to start using preemption
519          * while maintaining old contract with userspace.
520          */
521
522         /* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
523         wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
524
525         /* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
526         wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
527                             GEN9_PREEMPT_GPGPU_LEVEL_MASK,
528                             GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
529
530         /* WaClearHIZ_WM_CHICKEN3:bxt,glk */
531         if (IS_GEN9_LP(i915))
532                 wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ);
533 }
534
535 static void skl_tune_iz_hashing(struct intel_engine_cs *engine,
536                                 struct i915_wa_list *wal)
537 {
538         struct intel_gt *gt = engine->gt;
539         u8 vals[3] = { 0, 0, 0 };
540         unsigned int i;
541
542         for (i = 0; i < 3; i++) {
543                 u8 ss;
544
545                 /*
546                  * Only consider slices where one, and only one, subslice has 7
547                  * EUs
548                  */
549                 if (!is_power_of_2(gt->info.sseu.subslice_7eu[i]))
550                         continue;
551
552                 /*
553                  * subslice_7eu[i] != 0 (because of the check above) and
554                  * ss_max == 4 (maximum number of subslices possible per slice)
555                  *
556                  * ->    0 <= ss <= 3;
557                  */
558                 ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1;
559                 vals[i] = 3 - ss;
560         }
561
562         if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
563                 return;
564
565         /* Tune IZ hashing. See intel_device_info_runtime_init() */
566         wa_masked_field_set(wal, GEN7_GT_MODE,
567                             GEN9_IZ_HASHING_MASK(2) |
568                             GEN9_IZ_HASHING_MASK(1) |
569                             GEN9_IZ_HASHING_MASK(0),
570                             GEN9_IZ_HASHING(2, vals[2]) |
571                             GEN9_IZ_HASHING(1, vals[1]) |
572                             GEN9_IZ_HASHING(0, vals[0]));
573 }
574
575 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine,
576                                      struct i915_wa_list *wal)
577 {
578         gen9_ctx_workarounds_init(engine, wal);
579         skl_tune_iz_hashing(engine, wal);
580 }
581
582 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine,
583                                      struct i915_wa_list *wal)
584 {
585         gen9_ctx_workarounds_init(engine, wal);
586
587         /* WaDisableThreadStallDopClockGating:bxt */
588         wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
589                          STALL_DOP_GATING_DISABLE);
590
591         /* WaToEnableHwFixForPushConstHWBug:bxt */
592         wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
593                      GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
594 }
595
596 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine,
597                                      struct i915_wa_list *wal)
598 {
599         struct drm_i915_private *i915 = engine->i915;
600
601         gen9_ctx_workarounds_init(engine, wal);
602
603         /* WaToEnableHwFixForPushConstHWBug:kbl */
604         if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER))
605                 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
606                              GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
607
608         /* WaDisableSbeCacheDispatchPortSharing:kbl */
609         wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
610                          GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
611 }
612
613 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine,
614                                      struct i915_wa_list *wal)
615 {
616         gen9_ctx_workarounds_init(engine, wal);
617
618         /* WaToEnableHwFixForPushConstHWBug:glk */
619         wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
620                      GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
621 }
622
623 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine,
624                                      struct i915_wa_list *wal)
625 {
626         gen9_ctx_workarounds_init(engine, wal);
627
628         /* WaToEnableHwFixForPushConstHWBug:cfl */
629         wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
630                      GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
631
632         /* WaDisableSbeCacheDispatchPortSharing:cfl */
633         wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
634                          GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
635 }
636
637 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine,
638                                      struct i915_wa_list *wal)
639 {
640         /* Wa_1406697149 (WaDisableBankHangMode:icl) */
641         wa_write(wal, GEN8_L3CNTLREG, GEN8_ERRDETBCTRL);
642
643         /* WaForceEnableNonCoherent:icl
644          * This is not the same workaround as in early Gen9 platforms, where
645          * lacking this could cause system hangs, but coherency performance
646          * overhead is high and only a few compute workloads really need it
647          * (the register is whitelisted in hardware now, so UMDs can opt in
648          * for coherency if they have a good reason).
649          */
650         wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT);
651
652         /* WaEnableFloatBlendOptimization:icl */
653         wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
654                    _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE),
655                    0 /* write-only, so skip validation */,
656                    true);
657
658         /* WaDisableGPGPUMidThreadPreemption:icl */
659         wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
660                             GEN9_PREEMPT_GPGPU_LEVEL_MASK,
661                             GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
662
663         /* allow headerless messages for preemptible GPGPU context */
664         wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
665                          GEN11_SAMPLER_ENABLE_HEADLESS_MSG);
666
667         /* Wa_1604278689:icl,ehl */
668         wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID);
669         wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER,
670                          0,
671                          0xFFFFFFFF);
672
673         /* Wa_1406306137:icl,ehl */
674         wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU);
675 }
676
677 /*
678  * These settings aren't actually workarounds, but general tuning settings that
679  * need to be programmed on dg2 platform.
680  */
681 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine,
682                                    struct i915_wa_list *wal)
683 {
684         wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP);
685         wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK,
686                              REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f));
687         wa_mcr_write_clr_set(wal, XEHP_FF_MODE2, FF_MODE2_TDS_TIMER_MASK,
688                              FF_MODE2_TDS_TIMER_128);
689 }
690
691 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine,
692                                        struct i915_wa_list *wal)
693 {
694         struct drm_i915_private *i915 = engine->i915;
695
696         /*
697          * Wa_1409142259:tgl,dg1,adl-p
698          * Wa_1409347922:tgl,dg1,adl-p
699          * Wa_1409252684:tgl,dg1,adl-p
700          * Wa_1409217633:tgl,dg1,adl-p
701          * Wa_1409207793:tgl,dg1,adl-p
702          * Wa_1409178076:tgl,dg1,adl-p
703          * Wa_1408979724:tgl,dg1,adl-p
704          * Wa_14010443199:tgl,rkl,dg1,adl-p
705          * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p
706          * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p
707          */
708         wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
709                      GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
710
711         /* WaDisableGPGPUMidThreadPreemption:gen12 */
712         wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
713                             GEN9_PREEMPT_GPGPU_LEVEL_MASK,
714                             GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
715
716         /*
717          * Wa_16011163337 - GS_TIMER
718          *
719          * TDS_TIMER: Although some platforms refer to it as Wa_1604555607, we
720          * need to program it even on those that don't explicitly list that
721          * workaround.
722          *
723          * Note that the programming of GEN12_FF_MODE2 is further modified
724          * according to the FF_MODE2 guidance given by Wa_1608008084.
725          * Wa_1608008084 tells us the FF_MODE2 register will return the wrong
726          * value when read from the CPU.
727          *
728          * The default value for this register is zero for all fields.
729          * So instead of doing a RMW we should just write the desired values
730          * for TDS and GS timers. Note that since the readback can't be trusted,
731          * the clear mask is just set to ~0 to make sure other bits are not
732          * inadvertently set. For the same reason read verification is ignored.
733          */
734         wa_add(wal,
735                GEN12_FF_MODE2,
736                ~0,
737                FF_MODE2_TDS_TIMER_128 | FF_MODE2_GS_TIMER_224,
738                0, false);
739
740         if (!IS_DG1(i915)) {
741                 /* Wa_1806527549 */
742                 wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE);
743
744                 /* Wa_1606376872 */
745                 wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC);
746         }
747 }
748
749 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine,
750                                      struct i915_wa_list *wal)
751 {
752         gen12_ctx_workarounds_init(engine, wal);
753
754         /* Wa_1409044764 */
755         wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3,
756                       DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN);
757
758         /* Wa_22010493298 */
759         wa_masked_en(wal, HIZ_CHICKEN,
760                      DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE);
761 }
762
763 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine,
764                                      struct i915_wa_list *wal)
765 {
766         dg2_ctx_gt_tuning_init(engine, wal);
767
768         /* Wa_16013271637:dg2 */
769         wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
770                          MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
771
772         /* Wa_14014947963:dg2 */
773         wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000);
774
775         /* Wa_18018764978:dg2 */
776         wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
777
778         /* Wa_18019271663:dg2 */
779         wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
780
781         /* Wa_14019877138:dg2 */
782         wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
783 }
784
785 static void xelpg_ctx_gt_tuning_init(struct intel_engine_cs *engine,
786                                      struct i915_wa_list *wal)
787 {
788         struct intel_gt *gt = engine->gt;
789
790         dg2_ctx_gt_tuning_init(engine, wal);
791
792         if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_B0, STEP_FOREVER) ||
793             IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_B0, STEP_FOREVER))
794                 wa_add(wal, DRAW_WATERMARK, VERT_WM_VAL, 0x3FF, 0, false);
795 }
796
797 static void xelpg_ctx_workarounds_init(struct intel_engine_cs *engine,
798                                        struct i915_wa_list *wal)
799 {
800         struct intel_gt *gt = engine->gt;
801
802         xelpg_ctx_gt_tuning_init(engine, wal);
803
804         if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
805             IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
806                 /* Wa_14014947963 */
807                 wa_masked_field_set(wal, VF_PREEMPTION,
808                                     PREEMPTION_VERTEX_COUNT, 0x4000);
809
810                 /* Wa_16013271637 */
811                 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
812                                  MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
813
814                 /* Wa_18019627453 */
815                 wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS);
816
817                 /* Wa_18018764978 */
818                 wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
819         }
820
821         /* Wa_18019271663 */
822         wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
823 }
824
825 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine,
826                                          struct i915_wa_list *wal)
827 {
828         /*
829          * This is a "fake" workaround defined by software to ensure we
830          * maintain reliable, backward-compatible behavior for userspace with
831          * regards to how nested MI_BATCH_BUFFER_START commands are handled.
832          *
833          * The per-context setting of MI_MODE[12] determines whether the bits
834          * of a nested MI_BATCH_BUFFER_START instruction should be interpreted
835          * in the traditional manner or whether they should instead use a new
836          * tgl+ meaning that breaks backward compatibility, but allows nesting
837          * into 3rd-level batchbuffers.  When this new capability was first
838          * added in TGL, it remained off by default unless a context
839          * intentionally opted in to the new behavior.  However Xe_HPG now
840          * flips this on by default and requires that we explicitly opt out if
841          * we don't want the new behavior.
842          *
843          * From a SW perspective, we want to maintain the backward-compatible
844          * behavior for userspace, so we'll apply a fake workaround to set it
845          * back to the legacy behavior on platforms where the hardware default
846          * is to break compatibility.  At the moment there is no Linux
847          * userspace that utilizes third-level batchbuffers, so this will avoid
848          * userspace from needing to make any changes.  using the legacy
849          * meaning is the correct thing to do.  If/when we have userspace
850          * consumers that want to utilize third-level batch nesting, we can
851          * provide a context parameter to allow them to opt-in.
852          */
853         wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN);
854 }
855
856 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine,
857                                    struct i915_wa_list *wal)
858 {
859         u8 mocs;
860
861         /*
862          * Some blitter commands do not have a field for MOCS, those
863          * commands will use MOCS index pointed by BLIT_CCTL.
864          * BLIT_CCTL registers are needed to be programmed to un-cached.
865          */
866         if (engine->class == COPY_ENGINE_CLASS) {
867                 mocs = engine->gt->mocs.uc_index;
868                 wa_write_clr_set(wal,
869                                  BLIT_CCTL(engine->mmio_base),
870                                  BLIT_CCTL_MASK,
871                                  BLIT_CCTL_MOCS(mocs, mocs));
872         }
873 }
874
875 /*
876  * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround
877  * defined by the hardware team, but it programming general context registers.
878  * Adding those context register programming in context workaround
879  * allow us to use the wa framework for proper application and validation.
880  */
881 static void
882 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine,
883                           struct i915_wa_list *wal)
884 {
885         if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
886                 fakewa_disable_nestedbb_mode(engine, wal);
887
888         gen12_ctx_gt_mocs_init(engine, wal);
889 }
890
891 static void
892 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine,
893                            struct i915_wa_list *wal,
894                            const char *name)
895 {
896         struct drm_i915_private *i915 = engine->i915;
897
898         wa_init_start(wal, engine->gt, name, engine->name);
899
900         /* Applies to all engines */
901         /*
902          * Fake workarounds are not the actual workaround but
903          * programming of context registers using workaround framework.
904          */
905         if (GRAPHICS_VER(i915) >= 12)
906                 gen12_ctx_gt_fake_wa_init(engine, wal);
907
908         if (engine->class != RENDER_CLASS)
909                 goto done;
910
911         if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 71)))
912                 xelpg_ctx_workarounds_init(engine, wal);
913         else if (IS_PONTEVECCHIO(i915))
914                 ; /* noop; none at this time */
915         else if (IS_DG2(i915))
916                 dg2_ctx_workarounds_init(engine, wal);
917         else if (IS_XEHPSDV(i915))
918                 ; /* noop; none at this time */
919         else if (IS_DG1(i915))
920                 dg1_ctx_workarounds_init(engine, wal);
921         else if (GRAPHICS_VER(i915) == 12)
922                 gen12_ctx_workarounds_init(engine, wal);
923         else if (GRAPHICS_VER(i915) == 11)
924                 icl_ctx_workarounds_init(engine, wal);
925         else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
926                 cfl_ctx_workarounds_init(engine, wal);
927         else if (IS_GEMINILAKE(i915))
928                 glk_ctx_workarounds_init(engine, wal);
929         else if (IS_KABYLAKE(i915))
930                 kbl_ctx_workarounds_init(engine, wal);
931         else if (IS_BROXTON(i915))
932                 bxt_ctx_workarounds_init(engine, wal);
933         else if (IS_SKYLAKE(i915))
934                 skl_ctx_workarounds_init(engine, wal);
935         else if (IS_CHERRYVIEW(i915))
936                 chv_ctx_workarounds_init(engine, wal);
937         else if (IS_BROADWELL(i915))
938                 bdw_ctx_workarounds_init(engine, wal);
939         else if (GRAPHICS_VER(i915) == 7)
940                 gen7_ctx_workarounds_init(engine, wal);
941         else if (GRAPHICS_VER(i915) == 6)
942                 gen6_ctx_workarounds_init(engine, wal);
943         else if (GRAPHICS_VER(i915) < 8)
944                 ;
945         else
946                 MISSING_CASE(GRAPHICS_VER(i915));
947
948 done:
949         wa_init_finish(wal);
950 }
951
952 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine)
953 {
954         __intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context");
955 }
956
957 int intel_engine_emit_ctx_wa(struct i915_request *rq)
958 {
959         struct i915_wa_list *wal = &rq->engine->ctx_wa_list;
960         struct intel_uncore *uncore = rq->engine->uncore;
961         enum forcewake_domains fw;
962         unsigned long flags;
963         struct i915_wa *wa;
964         unsigned int i;
965         u32 *cs;
966         int ret;
967
968         if (wal->count == 0)
969                 return 0;
970
971         ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
972         if (ret)
973                 return ret;
974
975         cs = intel_ring_begin(rq, (wal->count * 2 + 2));
976         if (IS_ERR(cs))
977                 return PTR_ERR(cs);
978
979         fw = wal_get_fw_for_rmw(uncore, wal);
980
981         intel_gt_mcr_lock(wal->gt, &flags);
982         spin_lock(&uncore->lock);
983         intel_uncore_forcewake_get__locked(uncore, fw);
984
985         *cs++ = MI_LOAD_REGISTER_IMM(wal->count);
986         for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
987                 u32 val;
988
989                 /* Skip reading the register if it's not really needed */
990                 if (wa->masked_reg || (wa->clr | wa->set) == U32_MAX) {
991                         val = wa->set;
992                 } else {
993                         val = wa->is_mcr ?
994                                 intel_gt_mcr_read_any_fw(wal->gt, wa->mcr_reg) :
995                                 intel_uncore_read_fw(uncore, wa->reg);
996                         val &= ~wa->clr;
997                         val |= wa->set;
998                 }
999
1000                 *cs++ = i915_mmio_reg_offset(wa->reg);
1001                 *cs++ = val;
1002         }
1003         *cs++ = MI_NOOP;
1004
1005         intel_uncore_forcewake_put__locked(uncore, fw);
1006         spin_unlock(&uncore->lock);
1007         intel_gt_mcr_unlock(wal->gt, flags);
1008
1009         intel_ring_advance(rq, cs);
1010
1011         ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
1012         if (ret)
1013                 return ret;
1014
1015         return 0;
1016 }
1017
1018 static void
1019 gen4_gt_workarounds_init(struct intel_gt *gt,
1020                          struct i915_wa_list *wal)
1021 {
1022         /* WaDisable_RenderCache_OperationalFlush:gen4,ilk */
1023         wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
1024 }
1025
1026 static void
1027 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1028 {
1029         gen4_gt_workarounds_init(gt, wal);
1030
1031         /* WaDisableRenderCachePipelinedFlush:g4x,ilk */
1032         wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE);
1033 }
1034
1035 static void
1036 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1037 {
1038         g4x_gt_workarounds_init(gt, wal);
1039
1040         wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED);
1041 }
1042
1043 static void
1044 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1045 {
1046 }
1047
1048 static void
1049 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1050 {
1051         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
1052         wa_masked_dis(wal,
1053                       GEN7_COMMON_SLICE_CHICKEN1,
1054                       GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
1055
1056         /* WaApplyL3ControlAndL3ChickenMode:ivb */
1057         wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
1058         wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
1059
1060         /* WaForceL3Serialization:ivb */
1061         wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1062 }
1063
1064 static void
1065 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1066 {
1067         /* WaForceL3Serialization:vlv */
1068         wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1069
1070         /*
1071          * WaIncreaseL3CreditsForVLVB0:vlv
1072          * This is the hardware default actually.
1073          */
1074         wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
1075 }
1076
1077 static void
1078 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1079 {
1080         /* L3 caching of data atomics doesn't work -- disable it. */
1081         wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
1082
1083         wa_add(wal,
1084                HSW_ROW_CHICKEN3, 0,
1085                _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
1086                0 /* XXX does this reg exist? */, true);
1087
1088         /* WaVSRefCountFullforceMissDisable:hsw */
1089         wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME);
1090 }
1091
1092 static void
1093 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal)
1094 {
1095         const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu;
1096         unsigned int slice, subslice;
1097         u32 mcr, mcr_mask;
1098
1099         GEM_BUG_ON(GRAPHICS_VER(i915) != 9);
1100
1101         /*
1102          * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml
1103          * Before any MMIO read into slice/subslice specific registers, MCR
1104          * packet control register needs to be programmed to point to any
1105          * enabled s/ss pair. Otherwise, incorrect values will be returned.
1106          * This means each subsequent MMIO read will be forwarded to an
1107          * specific s/ss combination, but this is OK since these registers
1108          * are consistent across s/ss in almost all cases. In the rare
1109          * occasions, such as INSTDONE, where this value is dependent
1110          * on s/ss combo, the read should be done with read_subslice_reg.
1111          */
1112         slice = ffs(sseu->slice_mask) - 1;
1113         GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw));
1114         subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice));
1115         GEM_BUG_ON(!subslice);
1116         subslice--;
1117
1118         /*
1119          * We use GEN8_MCR..() macros to calculate the |mcr| value for
1120          * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads
1121          */
1122         mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1123         mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1124
1125         drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr);
1126
1127         wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr);
1128 }
1129
1130 static void
1131 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1132 {
1133         struct drm_i915_private *i915 = gt->i915;
1134
1135         /* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */
1136         gen9_wa_init_mcr(i915, wal);
1137
1138         /* WaDisableKillLogic:bxt,skl,kbl */
1139         if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915))
1140                 wa_write_or(wal,
1141                             GAM_ECOCHK,
1142                             ECOCHK_DIS_TLB);
1143
1144         if (HAS_LLC(i915)) {
1145                 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
1146                  *
1147                  * Must match Display Engine. See
1148                  * WaCompressedResourceDisplayNewHashMode.
1149                  */
1150                 wa_write_or(wal,
1151                             MMCD_MISC_CTRL,
1152                             MMCD_PCLA | MMCD_HOTSPOT_EN);
1153         }
1154
1155         /* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
1156         wa_write_or(wal,
1157                     GAM_ECOCHK,
1158                     BDW_DISABLE_HDC_INVALIDATION);
1159 }
1160
1161 static void
1162 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1163 {
1164         gen9_gt_workarounds_init(gt, wal);
1165
1166         /* WaDisableGafsUnitClkGating:skl */
1167         wa_write_or(wal,
1168                     GEN7_UCGCTL4,
1169                     GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1170
1171         /* WaInPlaceDecompressionHang:skl */
1172         if (IS_SKYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0))
1173                 wa_write_or(wal,
1174                             GEN9_GAMT_ECO_REG_RW_IA,
1175                             GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1176 }
1177
1178 static void
1179 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1180 {
1181         gen9_gt_workarounds_init(gt, wal);
1182
1183         /* WaDisableDynamicCreditSharing:kbl */
1184         if (IS_KABYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, 0, STEP_C0))
1185                 wa_write_or(wal,
1186                             GAMT_CHKN_BIT_REG,
1187                             GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1188
1189         /* WaDisableGafsUnitClkGating:kbl */
1190         wa_write_or(wal,
1191                     GEN7_UCGCTL4,
1192                     GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1193
1194         /* WaInPlaceDecompressionHang:kbl */
1195         wa_write_or(wal,
1196                     GEN9_GAMT_ECO_REG_RW_IA,
1197                     GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1198 }
1199
1200 static void
1201 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1202 {
1203         gen9_gt_workarounds_init(gt, wal);
1204 }
1205
1206 static void
1207 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1208 {
1209         gen9_gt_workarounds_init(gt, wal);
1210
1211         /* WaDisableGafsUnitClkGating:cfl */
1212         wa_write_or(wal,
1213                     GEN7_UCGCTL4,
1214                     GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1215
1216         /* WaInPlaceDecompressionHang:cfl */
1217         wa_write_or(wal,
1218                     GEN9_GAMT_ECO_REG_RW_IA,
1219                     GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1220 }
1221
1222 static void __set_mcr_steering(struct i915_wa_list *wal,
1223                                i915_reg_t steering_reg,
1224                                unsigned int slice, unsigned int subslice)
1225 {
1226         u32 mcr, mcr_mask;
1227
1228         mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1229         mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1230
1231         wa_write_clr_set(wal, steering_reg, mcr_mask, mcr);
1232 }
1233
1234 static void debug_dump_steering(struct intel_gt *gt)
1235 {
1236         struct drm_printer p = drm_debug_printer("MCR Steering:");
1237
1238         if (drm_debug_enabled(DRM_UT_DRIVER))
1239                 intel_gt_mcr_report_steering(&p, gt, false);
1240 }
1241
1242 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal,
1243                          unsigned int slice, unsigned int subslice)
1244 {
1245         __set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice);
1246
1247         gt->default_steering.groupid = slice;
1248         gt->default_steering.instanceid = subslice;
1249
1250         debug_dump_steering(gt);
1251 }
1252
1253 static void
1254 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1255 {
1256         const struct sseu_dev_info *sseu = &gt->info.sseu;
1257         unsigned int subslice;
1258
1259         GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11);
1260         GEM_BUG_ON(hweight8(sseu->slice_mask) > 1);
1261
1262         /*
1263          * Although a platform may have subslices, we need to always steer
1264          * reads to the lowest instance that isn't fused off.  When Render
1265          * Power Gating is enabled, grabbing forcewake will only power up a
1266          * single subslice (the "minconfig") if there isn't a real workload
1267          * that needs to be run; this means that if we steer register reads to
1268          * one of the higher subslices, we run the risk of reading back 0's or
1269          * random garbage.
1270          */
1271         subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0));
1272
1273         /*
1274          * If the subslice we picked above also steers us to a valid L3 bank,
1275          * then we can just rely on the default steering and won't need to
1276          * worry about explicitly re-steering L3BANK reads later.
1277          */
1278         if (gt->info.l3bank_mask & BIT(subslice))
1279                 gt->steering_table[L3BANK] = NULL;
1280
1281         __add_mcr_wa(gt, wal, 0, subslice);
1282 }
1283
1284 static void
1285 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1286 {
1287         const struct sseu_dev_info *sseu = &gt->info.sseu;
1288         unsigned long slice, subslice = 0, slice_mask = 0;
1289         u32 lncf_mask = 0;
1290         int i;
1291
1292         /*
1293          * On Xe_HP the steering increases in complexity. There are now several
1294          * more units that require steering and we're not guaranteed to be able
1295          * to find a common setting for all of them. These are:
1296          * - GSLICE (fusable)
1297          * - DSS (sub-unit within gslice; fusable)
1298          * - L3 Bank (fusable)
1299          * - MSLICE (fusable)
1300          * - LNCF (sub-unit within mslice; always present if mslice is present)
1301          *
1302          * We'll do our default/implicit steering based on GSLICE (in the
1303          * sliceid field) and DSS (in the subsliceid field).  If we can
1304          * find overlap between the valid MSLICE and/or LNCF values with
1305          * a suitable GSLICE, then we can just re-use the default value and
1306          * skip and explicit steering at runtime.
1307          *
1308          * We only need to look for overlap between GSLICE/MSLICE/LNCF to find
1309          * a valid sliceid value.  DSS steering is the only type of steering
1310          * that utilizes the 'subsliceid' bits.
1311          *
1312          * Also note that, even though the steering domain is called "GSlice"
1313          * and it is encoded in the register using the gslice format, the spec
1314          * says that the combined (geometry | compute) fuse should be used to
1315          * select the steering.
1316          */
1317
1318         /* Find the potential gslice candidates */
1319         slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask,
1320                                                        GEN_DSS_PER_GSLICE);
1321
1322         /*
1323          * Find the potential LNCF candidates.  Either LNCF within a valid
1324          * mslice is fine.
1325          */
1326         for_each_set_bit(i, &gt->info.mslice_mask, GEN12_MAX_MSLICES)
1327                 lncf_mask |= (0x3 << (i * 2));
1328
1329         /*
1330          * Are there any sliceid values that work for both GSLICE and LNCF
1331          * steering?
1332          */
1333         if (slice_mask & lncf_mask) {
1334                 slice_mask &= lncf_mask;
1335                 gt->steering_table[LNCF] = NULL;
1336         }
1337
1338         /* How about sliceid values that also work for MSLICE steering? */
1339         if (slice_mask & gt->info.mslice_mask) {
1340                 slice_mask &= gt->info.mslice_mask;
1341                 gt->steering_table[MSLICE] = NULL;
1342         }
1343
1344         if (IS_XEHPSDV(gt->i915) && slice_mask & BIT(0))
1345                 gt->steering_table[GAM] = NULL;
1346
1347         slice = __ffs(slice_mask);
1348         subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) %
1349                 GEN_DSS_PER_GSLICE;
1350
1351         __add_mcr_wa(gt, wal, slice, subslice);
1352
1353         /*
1354          * SQIDI ranges are special because they use different steering
1355          * registers than everything else we work with.  On XeHP SDV and
1356          * DG2-G10, any value in the steering registers will work fine since
1357          * all instances are present, but DG2-G11 only has SQIDI instances at
1358          * ID's 2 and 3, so we need to steer to one of those.  For simplicity
1359          * we'll just steer to a hardcoded "2" since that value will work
1360          * everywhere.
1361          */
1362         __set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2);
1363         __set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2);
1364
1365         /*
1366          * On DG2, GAM registers have a dedicated steering control register
1367          * and must always be programmed to a hardcoded groupid of "1."
1368          */
1369         if (IS_DG2(gt->i915))
1370                 __set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0);
1371 }
1372
1373 static void
1374 pvc_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1375 {
1376         unsigned int dss;
1377
1378         /*
1379          * Setup implicit steering for COMPUTE and DSS ranges to the first
1380          * non-fused-off DSS.  All other types of MCR registers will be
1381          * explicitly steered.
1382          */
1383         dss = intel_sseu_find_first_xehp_dss(&gt->info.sseu, 0, 0);
1384         __add_mcr_wa(gt, wal, dss / GEN_DSS_PER_CSLICE, dss % GEN_DSS_PER_CSLICE);
1385 }
1386
1387 static void
1388 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1389 {
1390         struct drm_i915_private *i915 = gt->i915;
1391
1392         icl_wa_init_mcr(gt, wal);
1393
1394         /* WaModifyGamTlbPartitioning:icl */
1395         wa_write_clr_set(wal,
1396                          GEN11_GACB_PERF_CTRL,
1397                          GEN11_HASH_CTRL_MASK,
1398                          GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4);
1399
1400         /* Wa_1405766107:icl
1401          * Formerly known as WaCL2SFHalfMaxAlloc
1402          */
1403         wa_write_or(wal,
1404                     GEN11_LSN_UNSLCVC,
1405                     GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC |
1406                     GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC);
1407
1408         /* Wa_220166154:icl
1409          * Formerly known as WaDisCtxReload
1410          */
1411         wa_write_or(wal,
1412                     GEN8_GAMW_ECO_DEV_RW_IA,
1413                     GAMW_ECO_DEV_CTX_RELOAD_DISABLE);
1414
1415         /* Wa_1406463099:icl
1416          * Formerly known as WaGamTlbPendError
1417          */
1418         wa_write_or(wal,
1419                     GAMT_CHKN_BIT_REG,
1420                     GAMT_CHKN_DISABLE_L3_COH_PIPE);
1421
1422         /*
1423          * Wa_1408615072:icl,ehl  (vsunit)
1424          * Wa_1407596294:icl,ehl  (hsunit)
1425          */
1426         wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1427                     VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
1428
1429         /* Wa_1407352427:icl,ehl */
1430         wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1431                     PSDUNIT_CLKGATE_DIS);
1432
1433         /* Wa_1406680159:icl,ehl */
1434         wa_mcr_write_or(wal,
1435                         GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1436                         GWUNIT_CLKGATE_DIS);
1437
1438         /* Wa_1607087056:icl,ehl,jsl */
1439         if (IS_ICELAKE(i915) ||
1440                 ((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) &&
1441                 IS_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)))
1442                 wa_write_or(wal,
1443                             GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1444                             L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1445
1446         /*
1447          * This is not a documented workaround, but rather an optimization
1448          * to reduce sampler power.
1449          */
1450         wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1451 }
1452
1453 /*
1454  * Though there are per-engine instances of these registers,
1455  * they retain their value through engine resets and should
1456  * only be provided on the GT workaround list rather than
1457  * the engine-specific workaround list.
1458  */
1459 static void
1460 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal)
1461 {
1462         struct intel_engine_cs *engine;
1463         int id;
1464
1465         for_each_engine(engine, gt, id) {
1466                 if (engine->class != VIDEO_DECODE_CLASS ||
1467                     (engine->instance % 2))
1468                         continue;
1469
1470                 wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base),
1471                             IECPUNIT_CLKGATE_DIS);
1472         }
1473 }
1474
1475 static void
1476 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1477 {
1478         icl_wa_init_mcr(gt, wal);
1479
1480         /* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */
1481         wa_14011060649(gt, wal);
1482
1483         /* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */
1484         wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1485
1486         /*
1487          * Wa_14015795083
1488          *
1489          * Firmware on some gen12 platforms locks the MISCCPCTL register,
1490          * preventing i915 from modifying it for this workaround.  Skip the
1491          * readback verification for this workaround on debug builds; if the
1492          * workaround doesn't stick due to firmware behavior, it's not an error
1493          * that we want CI to flag.
1494          */
1495         wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1496                0, 0, false);
1497 }
1498
1499 static void
1500 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1501 {
1502         gen12_gt_workarounds_init(gt, wal);
1503
1504         /* Wa_1409420604:dg1 */
1505         wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2,
1506                         CPSSUNIT_CLKGATE_DIS);
1507
1508         /* Wa_1408615072:dg1 */
1509         /* Empirical testing shows this register is unaffected by engine reset. */
1510         wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL);
1511 }
1512
1513 static void
1514 xehpsdv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1515 {
1516         struct drm_i915_private *i915 = gt->i915;
1517
1518         xehp_init_mcr(gt, wal);
1519
1520         /* Wa_1409757795:xehpsdv */
1521         wa_mcr_write_or(wal, SCCGCTL94DC, CG3DDISURB);
1522
1523         /* Wa_18011725039:xehpsdv */
1524         if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_B0)) {
1525                 wa_mcr_masked_dis(wal, MLTICTXCTL, TDONRENDER);
1526                 wa_mcr_write_or(wal, L3SQCREG1_CCS0, FLUSHALLNONCOH);
1527         }
1528
1529         /* Wa_16011155590:xehpsdv */
1530         if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1531                 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1532                             TSGUNIT_CLKGATE_DIS);
1533
1534         /* Wa_14011780169:xehpsdv */
1535         if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_B0, STEP_FOREVER)) {
1536                 wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS |
1537                             GAMTLBVDBOX7_CLKGATE_DIS |
1538                             GAMTLBVDBOX6_CLKGATE_DIS |
1539                             GAMTLBVDBOX5_CLKGATE_DIS |
1540                             GAMTLBVDBOX4_CLKGATE_DIS |
1541                             GAMTLBVDBOX3_CLKGATE_DIS |
1542                             GAMTLBVDBOX2_CLKGATE_DIS |
1543                             GAMTLBVDBOX1_CLKGATE_DIS |
1544                             GAMTLBVDBOX0_CLKGATE_DIS |
1545                             GAMTLBKCR_CLKGATE_DIS |
1546                             GAMTLBGUC_CLKGATE_DIS |
1547                             GAMTLBBLT_CLKGATE_DIS);
1548                 wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS |
1549                             GAMTLBGFXA1_CLKGATE_DIS |
1550                             GAMTLBCOMPA0_CLKGATE_DIS |
1551                             GAMTLBCOMPA1_CLKGATE_DIS |
1552                             GAMTLBCOMPB0_CLKGATE_DIS |
1553                             GAMTLBCOMPB1_CLKGATE_DIS |
1554                             GAMTLBCOMPC0_CLKGATE_DIS |
1555                             GAMTLBCOMPC1_CLKGATE_DIS |
1556                             GAMTLBCOMPD0_CLKGATE_DIS |
1557                             GAMTLBCOMPD1_CLKGATE_DIS |
1558                             GAMTLBMERT_CLKGATE_DIS   |
1559                             GAMTLBVEBOX3_CLKGATE_DIS |
1560                             GAMTLBVEBOX2_CLKGATE_DIS |
1561                             GAMTLBVEBOX1_CLKGATE_DIS |
1562                             GAMTLBVEBOX0_CLKGATE_DIS);
1563         }
1564
1565         /* Wa_16012725990:xehpsdv */
1566         if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_FOREVER))
1567                 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, VFUNIT_CLKGATE_DIS);
1568
1569         /* Wa_14011060649:xehpsdv */
1570         wa_14011060649(gt, wal);
1571
1572         /* Wa_14012362059:xehpsdv */
1573         wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB);
1574
1575         /* Wa_14014368820:xehpsdv */
1576         wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1577                         INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1578
1579         /* Wa_14010670810:xehpsdv */
1580         wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1581 }
1582
1583 static void
1584 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1585 {
1586         xehp_init_mcr(gt, wal);
1587
1588         /* Wa_14011060649:dg2 */
1589         wa_14011060649(gt, wal);
1590
1591         if (IS_DG2_G10(gt->i915)) {
1592                 /* Wa_22010523718:dg2 */
1593                 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1594                             CG3DDISCFEG_CLKGATE_DIS);
1595
1596                 /* Wa_14011006942:dg2 */
1597                 wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1598                                 DSS_ROUTER_CLKGATE_DIS);
1599         }
1600
1601         /* Wa_14014830051:dg2 */
1602         wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1603
1604         /*
1605          * Wa_14015795083
1606          * Skip verification for possibly locked register.
1607          */
1608         wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1609                0, 0, false);
1610
1611         /* Wa_18018781329 */
1612         wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1613         wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1614         wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1615         wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1616
1617         /* Wa_1509235366:dg2 */
1618         wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1619                         INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1620
1621         /* Wa_14010648519:dg2 */
1622         wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1623 }
1624
1625 static void
1626 pvc_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1627 {
1628         pvc_init_mcr(gt, wal);
1629
1630         /* Wa_14015795083 */
1631         wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1632
1633         /* Wa_18018781329 */
1634         wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1635         wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1636         wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1637         wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1638
1639         /* Wa_16016694945 */
1640         wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_OVRLSCCC);
1641 }
1642
1643 static void
1644 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1645 {
1646         /* Wa_14018778641 / Wa_18018781329 */
1647         wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1648
1649         /* Wa_22016670082 */
1650         wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1651
1652         if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
1653             IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
1654                 /* Wa_14014830051 */
1655                 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1656
1657                 /* Wa_14015795083 */
1658                 wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1659         }
1660
1661         /*
1662          * Unlike older platforms, we no longer setup implicit steering here;
1663          * all MCR accesses are explicitly steered.
1664          */
1665         debug_dump_steering(gt);
1666 }
1667
1668 static void
1669 wa_16021867713(struct intel_gt *gt, struct i915_wa_list *wal)
1670 {
1671         struct intel_engine_cs *engine;
1672         int id;
1673
1674         for_each_engine(engine, gt, id)
1675                 if (engine->class == VIDEO_DECODE_CLASS)
1676                         wa_write_or(wal, VDBOX_CGCTL3F1C(engine->mmio_base),
1677                                     MFXPIPE_CLKGATE_DIS);
1678 }
1679
1680 static void
1681 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1682 {
1683         wa_16021867713(gt, wal);
1684
1685         /*
1686          * Wa_14018778641
1687          * Wa_18018781329
1688          *
1689          * Note that although these registers are MCR on the primary
1690          * GT, the media GT's versions are regular singleton registers.
1691          */
1692         wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB);
1693
1694         /* Wa_22016670082 */
1695         wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1696
1697         debug_dump_steering(gt);
1698 }
1699
1700 /*
1701  * The bspec performance guide has recommended MMIO tuning settings.  These
1702  * aren't truly "workarounds" but we want to program them through the
1703  * workaround infrastructure to make sure they're (re)applied at the proper
1704  * times.
1705  *
1706  * The programming in this function is for settings that persist through
1707  * engine resets and also are not part of any engine's register state context.
1708  * I.e., settings that only need to be re-applied in the event of a full GT
1709  * reset.
1710  */
1711 static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal)
1712 {
1713         if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71))) {
1714                 wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1715                 wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1716         }
1717
1718         if (IS_PONTEVECCHIO(gt->i915)) {
1719                 wa_mcr_write(wal, XEHPC_L3SCRUB,
1720                              SCRUB_CL_DWNGRADE_SHARED | SCRUB_RATE_4B_PER_CLK);
1721                 wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_HOSTCACHEEN);
1722         }
1723
1724         if (IS_DG2(gt->i915)) {
1725                 wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1726                 wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1727         }
1728 }
1729
1730 static void
1731 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal)
1732 {
1733         struct drm_i915_private *i915 = gt->i915;
1734
1735         gt_tuning_settings(gt, wal);
1736
1737         if (gt->type == GT_MEDIA) {
1738                 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0))
1739                         xelpmp_gt_workarounds_init(gt, wal);
1740                 else
1741                         MISSING_CASE(MEDIA_VER_FULL(i915));
1742
1743                 return;
1744         }
1745
1746         if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)))
1747                 xelpg_gt_workarounds_init(gt, wal);
1748         else if (IS_PONTEVECCHIO(i915))
1749                 pvc_gt_workarounds_init(gt, wal);
1750         else if (IS_DG2(i915))
1751                 dg2_gt_workarounds_init(gt, wal);
1752         else if (IS_XEHPSDV(i915))
1753                 xehpsdv_gt_workarounds_init(gt, wal);
1754         else if (IS_DG1(i915))
1755                 dg1_gt_workarounds_init(gt, wal);
1756         else if (GRAPHICS_VER(i915) == 12)
1757                 gen12_gt_workarounds_init(gt, wal);
1758         else if (GRAPHICS_VER(i915) == 11)
1759                 icl_gt_workarounds_init(gt, wal);
1760         else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
1761                 cfl_gt_workarounds_init(gt, wal);
1762         else if (IS_GEMINILAKE(i915))
1763                 glk_gt_workarounds_init(gt, wal);
1764         else if (IS_KABYLAKE(i915))
1765                 kbl_gt_workarounds_init(gt, wal);
1766         else if (IS_BROXTON(i915))
1767                 gen9_gt_workarounds_init(gt, wal);
1768         else if (IS_SKYLAKE(i915))
1769                 skl_gt_workarounds_init(gt, wal);
1770         else if (IS_HASWELL(i915))
1771                 hsw_gt_workarounds_init(gt, wal);
1772         else if (IS_VALLEYVIEW(i915))
1773                 vlv_gt_workarounds_init(gt, wal);
1774         else if (IS_IVYBRIDGE(i915))
1775                 ivb_gt_workarounds_init(gt, wal);
1776         else if (GRAPHICS_VER(i915) == 6)
1777                 snb_gt_workarounds_init(gt, wal);
1778         else if (GRAPHICS_VER(i915) == 5)
1779                 ilk_gt_workarounds_init(gt, wal);
1780         else if (IS_G4X(i915))
1781                 g4x_gt_workarounds_init(gt, wal);
1782         else if (GRAPHICS_VER(i915) == 4)
1783                 gen4_gt_workarounds_init(gt, wal);
1784         else if (GRAPHICS_VER(i915) <= 8)
1785                 ;
1786         else
1787                 MISSING_CASE(GRAPHICS_VER(i915));
1788 }
1789
1790 void intel_gt_init_workarounds(struct intel_gt *gt)
1791 {
1792         struct i915_wa_list *wal = &gt->wa_list;
1793
1794         wa_init_start(wal, gt, "GT", "global");
1795         gt_init_workarounds(gt, wal);
1796         wa_init_finish(wal);
1797 }
1798
1799 static bool
1800 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur,
1801           const char *name, const char *from)
1802 {
1803         if ((cur ^ wa->set) & wa->read) {
1804                 gt_err(gt,
1805                        "%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n",
1806                        name, from, i915_mmio_reg_offset(wa->reg),
1807                        cur, cur & wa->read, wa->set & wa->read);
1808
1809                 return false;
1810         }
1811
1812         return true;
1813 }
1814
1815 static void wa_list_apply(const struct i915_wa_list *wal)
1816 {
1817         struct intel_gt *gt = wal->gt;
1818         struct intel_uncore *uncore = gt->uncore;
1819         enum forcewake_domains fw;
1820         unsigned long flags;
1821         struct i915_wa *wa;
1822         unsigned int i;
1823
1824         if (!wal->count)
1825                 return;
1826
1827         fw = wal_get_fw_for_rmw(uncore, wal);
1828
1829         intel_gt_mcr_lock(gt, &flags);
1830         spin_lock(&uncore->lock);
1831         intel_uncore_forcewake_get__locked(uncore, fw);
1832
1833         for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1834                 u32 val, old = 0;
1835
1836                 /* open-coded rmw due to steering */
1837                 if (wa->clr)
1838                         old = wa->is_mcr ?
1839                                 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1840                                 intel_uncore_read_fw(uncore, wa->reg);
1841                 val = (old & ~wa->clr) | wa->set;
1842                 if (val != old || !wa->clr) {
1843                         if (wa->is_mcr)
1844                                 intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val);
1845                         else
1846                                 intel_uncore_write_fw(uncore, wa->reg, val);
1847                 }
1848
1849                 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
1850                         u32 val = wa->is_mcr ?
1851                                 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1852                                 intel_uncore_read_fw(uncore, wa->reg);
1853
1854                         wa_verify(gt, wa, val, wal->name, "application");
1855                 }
1856         }
1857
1858         intel_uncore_forcewake_put__locked(uncore, fw);
1859         spin_unlock(&uncore->lock);
1860         intel_gt_mcr_unlock(gt, flags);
1861 }
1862
1863 void intel_gt_apply_workarounds(struct intel_gt *gt)
1864 {
1865         wa_list_apply(&gt->wa_list);
1866 }
1867
1868 static bool wa_list_verify(struct intel_gt *gt,
1869                            const struct i915_wa_list *wal,
1870                            const char *from)
1871 {
1872         struct intel_uncore *uncore = gt->uncore;
1873         struct i915_wa *wa;
1874         enum forcewake_domains fw;
1875         unsigned long flags;
1876         unsigned int i;
1877         bool ok = true;
1878
1879         fw = wal_get_fw_for_rmw(uncore, wal);
1880
1881         intel_gt_mcr_lock(gt, &flags);
1882         spin_lock(&uncore->lock);
1883         intel_uncore_forcewake_get__locked(uncore, fw);
1884
1885         for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1886                 ok &= wa_verify(wal->gt, wa, wa->is_mcr ?
1887                                 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1888                                 intel_uncore_read_fw(uncore, wa->reg),
1889                                 wal->name, from);
1890
1891         intel_uncore_forcewake_put__locked(uncore, fw);
1892         spin_unlock(&uncore->lock);
1893         intel_gt_mcr_unlock(gt, flags);
1894
1895         return ok;
1896 }
1897
1898 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from)
1899 {
1900         return wa_list_verify(gt, &gt->wa_list, from);
1901 }
1902
1903 __maybe_unused
1904 static bool is_nonpriv_flags_valid(u32 flags)
1905 {
1906         /* Check only valid flag bits are set */
1907         if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID)
1908                 return false;
1909
1910         /* NB: Only 3 out of 4 enum values are valid for access field */
1911         if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) ==
1912             RING_FORCE_TO_NONPRIV_ACCESS_INVALID)
1913                 return false;
1914
1915         return true;
1916 }
1917
1918 static void
1919 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags)
1920 {
1921         struct i915_wa wa = {
1922                 .reg = reg
1923         };
1924
1925         if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1926                 return;
1927
1928         if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1929                 return;
1930
1931         wa.reg.reg |= flags;
1932         _wa_add(wal, &wa);
1933 }
1934
1935 static void
1936 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags)
1937 {
1938         struct i915_wa wa = {
1939                 .mcr_reg = reg,
1940                 .is_mcr = 1,
1941         };
1942
1943         if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1944                 return;
1945
1946         if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1947                 return;
1948
1949         wa.mcr_reg.reg |= flags;
1950         _wa_add(wal, &wa);
1951 }
1952
1953 static void
1954 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg)
1955 {
1956         whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1957 }
1958
1959 static void
1960 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg)
1961 {
1962         whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1963 }
1964
1965 static void gen9_whitelist_build(struct i915_wa_list *w)
1966 {
1967         /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
1968         whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
1969
1970         /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
1971         whitelist_reg(w, GEN8_CS_CHICKEN1);
1972
1973         /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
1974         whitelist_reg(w, GEN8_HDC_CHICKEN1);
1975
1976         /* WaSendPushConstantsFromMMIO:skl,bxt */
1977         whitelist_reg(w, COMMON_SLICE_CHICKEN2);
1978 }
1979
1980 static void skl_whitelist_build(struct intel_engine_cs *engine)
1981 {
1982         struct i915_wa_list *w = &engine->whitelist;
1983
1984         if (engine->class != RENDER_CLASS)
1985                 return;
1986
1987         gen9_whitelist_build(w);
1988
1989         /* WaDisableLSQCROPERFforOCL:skl */
1990         whitelist_mcr_reg(w, GEN8_L3SQCREG4);
1991 }
1992
1993 static void bxt_whitelist_build(struct intel_engine_cs *engine)
1994 {
1995         if (engine->class != RENDER_CLASS)
1996                 return;
1997
1998         gen9_whitelist_build(&engine->whitelist);
1999 }
2000
2001 static void kbl_whitelist_build(struct intel_engine_cs *engine)
2002 {
2003         struct i915_wa_list *w = &engine->whitelist;
2004
2005         if (engine->class != RENDER_CLASS)
2006                 return;
2007
2008         gen9_whitelist_build(w);
2009
2010         /* WaDisableLSQCROPERFforOCL:kbl */
2011         whitelist_mcr_reg(w, GEN8_L3SQCREG4);
2012 }
2013
2014 static void glk_whitelist_build(struct intel_engine_cs *engine)
2015 {
2016         struct i915_wa_list *w = &engine->whitelist;
2017
2018         if (engine->class != RENDER_CLASS)
2019                 return;
2020
2021         gen9_whitelist_build(w);
2022
2023         /* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
2024         whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2025 }
2026
2027 static void cfl_whitelist_build(struct intel_engine_cs *engine)
2028 {
2029         struct i915_wa_list *w = &engine->whitelist;
2030
2031         if (engine->class != RENDER_CLASS)
2032                 return;
2033
2034         gen9_whitelist_build(w);
2035
2036         /*
2037          * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml
2038          *
2039          * This covers 4 register which are next to one another :
2040          *   - PS_INVOCATION_COUNT
2041          *   - PS_INVOCATION_COUNT_UDW
2042          *   - PS_DEPTH_COUNT
2043          *   - PS_DEPTH_COUNT_UDW
2044          */
2045         whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2046                           RING_FORCE_TO_NONPRIV_ACCESS_RD |
2047                           RING_FORCE_TO_NONPRIV_RANGE_4);
2048 }
2049
2050 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine)
2051 {
2052         struct i915_wa_list *w = &engine->whitelist;
2053
2054         if (engine->class != RENDER_CLASS)
2055                 whitelist_reg_ext(w,
2056                                   RING_CTX_TIMESTAMP(engine->mmio_base),
2057                                   RING_FORCE_TO_NONPRIV_ACCESS_RD);
2058 }
2059
2060 static void cml_whitelist_build(struct intel_engine_cs *engine)
2061 {
2062         allow_read_ctx_timestamp(engine);
2063
2064         cfl_whitelist_build(engine);
2065 }
2066
2067 static void icl_whitelist_build(struct intel_engine_cs *engine)
2068 {
2069         struct i915_wa_list *w = &engine->whitelist;
2070
2071         allow_read_ctx_timestamp(engine);
2072
2073         switch (engine->class) {
2074         case RENDER_CLASS:
2075                 /* WaAllowUMDToModifyHalfSliceChicken7:icl */
2076                 whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7);
2077
2078                 /* WaAllowUMDToModifySamplerMode:icl */
2079                 whitelist_mcr_reg(w, GEN10_SAMPLER_MODE);
2080
2081                 /* WaEnableStateCacheRedirectToCS:icl */
2082                 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2083
2084                 /*
2085                  * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl
2086                  *
2087                  * This covers 4 register which are next to one another :
2088                  *   - PS_INVOCATION_COUNT
2089                  *   - PS_INVOCATION_COUNT_UDW
2090                  *   - PS_DEPTH_COUNT
2091                  *   - PS_DEPTH_COUNT_UDW
2092                  */
2093                 whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2094                                   RING_FORCE_TO_NONPRIV_ACCESS_RD |
2095                                   RING_FORCE_TO_NONPRIV_RANGE_4);
2096                 break;
2097
2098         case VIDEO_DECODE_CLASS:
2099                 /* hucStatusRegOffset */
2100                 whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base),
2101                                   RING_FORCE_TO_NONPRIV_ACCESS_RD);
2102                 /* hucUKernelHdrInfoRegOffset */
2103                 whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base),
2104                                   RING_FORCE_TO_NONPRIV_ACCESS_RD);
2105                 /* hucStatus2RegOffset */
2106                 whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base),
2107                                   RING_FORCE_TO_NONPRIV_ACCESS_RD);
2108                 break;
2109
2110         default:
2111                 break;
2112         }
2113 }
2114
2115 static void tgl_whitelist_build(struct intel_engine_cs *engine)
2116 {
2117         struct i915_wa_list *w = &engine->whitelist;
2118
2119         allow_read_ctx_timestamp(engine);
2120
2121         switch (engine->class) {
2122         case RENDER_CLASS:
2123                 /*
2124                  * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl
2125                  * Wa_1408556865:tgl
2126                  *
2127                  * This covers 4 registers which are next to one another :
2128                  *   - PS_INVOCATION_COUNT
2129                  *   - PS_INVOCATION_COUNT_UDW
2130                  *   - PS_DEPTH_COUNT
2131                  *   - PS_DEPTH_COUNT_UDW
2132                  */
2133                 whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2134                                   RING_FORCE_TO_NONPRIV_ACCESS_RD |
2135                                   RING_FORCE_TO_NONPRIV_RANGE_4);
2136
2137                 /*
2138                  * Wa_1808121037:tgl
2139                  * Wa_14012131227:dg1
2140                  * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p
2141                  */
2142                 whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2143
2144                 /* Wa_1806527549:tgl */
2145                 whitelist_reg(w, HIZ_CHICKEN);
2146
2147                 /* Required by recommended tuning setting (not a workaround) */
2148                 whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3);
2149
2150                 break;
2151         default:
2152                 break;
2153         }
2154 }
2155
2156 static void dg2_whitelist_build(struct intel_engine_cs *engine)
2157 {
2158         struct i915_wa_list *w = &engine->whitelist;
2159
2160         switch (engine->class) {
2161         case RENDER_CLASS:
2162                 /* Required by recommended tuning setting (not a workaround) */
2163                 whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2164
2165                 break;
2166         default:
2167                 break;
2168         }
2169 }
2170
2171 static void blacklist_trtt(struct intel_engine_cs *engine)
2172 {
2173         struct i915_wa_list *w = &engine->whitelist;
2174
2175         /*
2176          * Prevent read/write access to [0x4400, 0x4600) which covers
2177          * the TRTT range across all engines. Note that normally userspace
2178          * cannot access the other engines' trtt control, but for simplicity
2179          * we cover the entire range on each engine.
2180          */
2181         whitelist_reg_ext(w, _MMIO(0x4400),
2182                           RING_FORCE_TO_NONPRIV_DENY |
2183                           RING_FORCE_TO_NONPRIV_RANGE_64);
2184         whitelist_reg_ext(w, _MMIO(0x4500),
2185                           RING_FORCE_TO_NONPRIV_DENY |
2186                           RING_FORCE_TO_NONPRIV_RANGE_64);
2187 }
2188
2189 static void pvc_whitelist_build(struct intel_engine_cs *engine)
2190 {
2191         /* Wa_16014440446:pvc */
2192         blacklist_trtt(engine);
2193 }
2194
2195 static void xelpg_whitelist_build(struct intel_engine_cs *engine)
2196 {
2197         struct i915_wa_list *w = &engine->whitelist;
2198
2199         switch (engine->class) {
2200         case RENDER_CLASS:
2201                 /* Required by recommended tuning setting (not a workaround) */
2202                 whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2203
2204                 break;
2205         default:
2206                 break;
2207         }
2208 }
2209
2210 void intel_engine_init_whitelist(struct intel_engine_cs *engine)
2211 {
2212         struct drm_i915_private *i915 = engine->i915;
2213         struct i915_wa_list *w = &engine->whitelist;
2214
2215         wa_init_start(w, engine->gt, "whitelist", engine->name);
2216
2217         if (engine->gt->type == GT_MEDIA)
2218                 ; /* none yet */
2219         else if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 71)))
2220                 xelpg_whitelist_build(engine);
2221         else if (IS_PONTEVECCHIO(i915))
2222                 pvc_whitelist_build(engine);
2223         else if (IS_DG2(i915))
2224                 dg2_whitelist_build(engine);
2225         else if (IS_XEHPSDV(i915))
2226                 ; /* none needed */
2227         else if (GRAPHICS_VER(i915) == 12)
2228                 tgl_whitelist_build(engine);
2229         else if (GRAPHICS_VER(i915) == 11)
2230                 icl_whitelist_build(engine);
2231         else if (IS_COMETLAKE(i915))
2232                 cml_whitelist_build(engine);
2233         else if (IS_COFFEELAKE(i915))
2234                 cfl_whitelist_build(engine);
2235         else if (IS_GEMINILAKE(i915))
2236                 glk_whitelist_build(engine);
2237         else if (IS_KABYLAKE(i915))
2238                 kbl_whitelist_build(engine);
2239         else if (IS_BROXTON(i915))
2240                 bxt_whitelist_build(engine);
2241         else if (IS_SKYLAKE(i915))
2242                 skl_whitelist_build(engine);
2243         else if (GRAPHICS_VER(i915) <= 8)
2244                 ;
2245         else
2246                 MISSING_CASE(GRAPHICS_VER(i915));
2247
2248         wa_init_finish(w);
2249 }
2250
2251 void intel_engine_apply_whitelist(struct intel_engine_cs *engine)
2252 {
2253         const struct i915_wa_list *wal = &engine->whitelist;
2254         struct intel_uncore *uncore = engine->uncore;
2255         const u32 base = engine->mmio_base;
2256         struct i915_wa *wa;
2257         unsigned int i;
2258
2259         if (!wal->count)
2260                 return;
2261
2262         for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
2263                 intel_uncore_write(uncore,
2264                                    RING_FORCE_TO_NONPRIV(base, i),
2265                                    i915_mmio_reg_offset(wa->reg));
2266
2267         /* And clear the rest just in case of garbage */
2268         for (; i < RING_MAX_NONPRIV_SLOTS; i++)
2269                 intel_uncore_write(uncore,
2270                                    RING_FORCE_TO_NONPRIV(base, i),
2271                                    i915_mmio_reg_offset(RING_NOPID(base)));
2272 }
2273
2274 /*
2275  * engine_fake_wa_init(), a place holder to program the registers
2276  * which are not part of an official workaround defined by the
2277  * hardware team.
2278  * Adding programming of those register inside workaround will
2279  * allow utilizing wa framework to proper application and verification.
2280  */
2281 static void
2282 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2283 {
2284         u8 mocs_w, mocs_r;
2285
2286         /*
2287          * RING_CMD_CCTL specifies the default MOCS entry that will be used
2288          * by the command streamer when executing commands that don't have
2289          * a way to explicitly specify a MOCS setting.  The default should
2290          * usually reference whichever MOCS entry corresponds to uncached
2291          * behavior, although use of a WB cached entry is recommended by the
2292          * spec in certain circumstances on specific platforms.
2293          */
2294         if (GRAPHICS_VER(engine->i915) >= 12) {
2295                 mocs_r = engine->gt->mocs.uc_index;
2296                 mocs_w = engine->gt->mocs.uc_index;
2297
2298                 if (HAS_L3_CCS_READ(engine->i915) &&
2299                     engine->class == COMPUTE_CLASS) {
2300                         mocs_r = engine->gt->mocs.wb_index;
2301
2302                         /*
2303                          * Even on the few platforms where MOCS 0 is a
2304                          * legitimate table entry, it's never the correct
2305                          * setting to use here; we can assume the MOCS init
2306                          * just forgot to initialize wb_index.
2307                          */
2308                         drm_WARN_ON(&engine->i915->drm, mocs_r == 0);
2309                 }
2310
2311                 wa_masked_field_set(wal,
2312                                     RING_CMD_CCTL(engine->mmio_base),
2313                                     CMD_CCTL_MOCS_MASK,
2314                                     CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r));
2315         }
2316 }
2317
2318 static void
2319 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2320 {
2321         struct drm_i915_private *i915 = engine->i915;
2322         struct intel_gt *gt = engine->gt;
2323
2324         if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2325             IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
2326                 /* Wa_22014600077 */
2327                 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2328                                  ENABLE_EU_COUNT_FOR_TDL_FLUSH);
2329         }
2330
2331         if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2332             IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2333             IS_DG2(i915)) {
2334                 /* Wa_1509727124 */
2335                 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2336                                  SC_DISABLE_POWER_OPTIMIZATION_EBB);
2337         }
2338
2339         if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2340             IS_DG2(i915)) {
2341                 /* Wa_22012856258 */
2342                 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2343                                  GEN12_DISABLE_READ_SUPPRESSION);
2344         }
2345
2346         if (IS_DG2(i915)) {
2347                 /*
2348                  * Wa_22010960976:dg2
2349                  * Wa_14013347512:dg2
2350                  */
2351                 wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0,
2352                                   LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK);
2353         }
2354
2355         if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)) ||
2356             IS_DG2(i915)) {
2357                 /* Wa_14015150844 */
2358                 wa_mcr_add(wal, XEHP_HDC_CHICKEN0, 0,
2359                            _MASKED_BIT_ENABLE(DIS_ATOMIC_CHAINING_TYPED_WRITES),
2360                            0, true);
2361         }
2362
2363         if (IS_DG2(i915) || IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2364             IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2365                 /*
2366                  * Wa_1606700617:tgl,dg1,adl-p
2367                  * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p
2368                  * Wa_14010826681:tgl,dg1,rkl,adl-p
2369                  * Wa_18019627453:dg2
2370                  */
2371                 wa_masked_en(wal,
2372                              GEN9_CS_DEBUG_MODE1,
2373                              FF_DOP_CLOCK_GATE_DISABLE);
2374         }
2375
2376         if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) ||
2377             IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2378                 /* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */
2379                 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ);
2380
2381                 /*
2382                  * Wa_1407928979:tgl A*
2383                  * Wa_18011464164:tgl[B0+],dg1[B0+]
2384                  * Wa_22010931296:tgl[B0+],dg1[B0+]
2385                  * Wa_14010919138:rkl,dg1,adl-s,adl-p
2386                  */
2387                 wa_write_or(wal, GEN7_FF_THREAD_MODE,
2388                             GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2389
2390                 /* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */
2391                 wa_mcr_masked_en(wal,
2392                                  GEN10_SAMPLER_MODE,
2393                                  ENABLE_SMALLPL);
2394         }
2395
2396         if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2397             IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2398                 /* Wa_1409804808 */
2399                 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2400                                  GEN12_PUSH_CONST_DEREF_HOLD_DIS);
2401
2402                 /* Wa_14010229206 */
2403                 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH);
2404         }
2405
2406         if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) {
2407                 /*
2408                  * Wa_1607297627
2409                  *
2410                  * On TGL and RKL there are multiple entries for this WA in the
2411                  * BSpec; some indicate this is an A0-only WA, others indicate
2412                  * it applies to all steppings so we trust the "all steppings."
2413                  */
2414                 wa_masked_en(wal,
2415                              RING_PSMI_CTL(RENDER_RING_BASE),
2416                              GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE |
2417                              GEN8_RC_SEMA_IDLE_MSG_DISABLE);
2418         }
2419
2420         if (GRAPHICS_VER(i915) == 11) {
2421                 /* This is not an Wa. Enable for better image quality */
2422                 wa_masked_en(wal,
2423                              _3D_CHICKEN3,
2424                              _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE);
2425
2426                 /*
2427                  * Wa_1405543622:icl
2428                  * Formerly known as WaGAPZPriorityScheme
2429                  */
2430                 wa_write_or(wal,
2431                             GEN8_GARBCNTL,
2432                             GEN11_ARBITRATION_PRIO_ORDER_MASK);
2433
2434                 /*
2435                  * Wa_1604223664:icl
2436                  * Formerly known as WaL3BankAddressHashing
2437                  */
2438                 wa_write_clr_set(wal,
2439                                  GEN8_GARBCNTL,
2440                                  GEN11_HASH_CTRL_EXCL_MASK,
2441                                  GEN11_HASH_CTRL_EXCL_BIT0);
2442                 wa_write_clr_set(wal,
2443                                  GEN11_GLBLINVL,
2444                                  GEN11_BANK_HASH_ADDR_EXCL_MASK,
2445                                  GEN11_BANK_HASH_ADDR_EXCL_BIT0);
2446
2447                 /*
2448                  * Wa_1405733216:icl
2449                  * Formerly known as WaDisableCleanEvicts
2450                  */
2451                 wa_mcr_write_or(wal,
2452                                 GEN8_L3SQCREG4,
2453                                 GEN11_LQSC_CLEAN_EVICT_DISABLE);
2454
2455                 /* Wa_1606682166:icl */
2456                 wa_write_or(wal,
2457                             GEN7_SARCHKMD,
2458                             GEN7_DISABLE_SAMPLER_PREFETCH);
2459
2460                 /* Wa_1409178092:icl */
2461                 wa_mcr_write_clr_set(wal,
2462                                      GEN11_SCRATCH2,
2463                                      GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE,
2464                                      0);
2465
2466                 /* WaEnable32PlaneMode:icl */
2467                 wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS,
2468                              GEN11_ENABLE_32_PLANE_MODE);
2469
2470                 /*
2471                  * Wa_1408767742:icl[a2..forever],ehl[all]
2472                  * Wa_1605460711:icl[a0..c0]
2473                  */
2474                 wa_write_or(wal,
2475                             GEN7_FF_THREAD_MODE,
2476                             GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2477
2478                 /* Wa_22010271021 */
2479                 wa_masked_en(wal,
2480                              GEN9_CS_DEBUG_MODE1,
2481                              FF_DOP_CLOCK_GATE_DISABLE);
2482         }
2483
2484         /*
2485          * Intel platforms that support fine-grained preemption (i.e., gen9 and
2486          * beyond) allow the kernel-mode driver to choose between two different
2487          * options for controlling preemption granularity and behavior.
2488          *
2489          * Option 1 (hardware default):
2490          *   Preemption settings are controlled in a global manner via
2491          *   kernel-only register CS_DEBUG_MODE1 (0x20EC).  Any granularity
2492          *   and settings chosen by the kernel-mode driver will apply to all
2493          *   userspace clients.
2494          *
2495          * Option 2:
2496          *   Preemption settings are controlled on a per-context basis via
2497          *   register CS_CHICKEN1 (0x2580).  CS_CHICKEN1 is saved/restored on
2498          *   context switch and is writable by userspace (e.g., via
2499          *   MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer)
2500          *   which allows different userspace drivers/clients to select
2501          *   different settings, or to change those settings on the fly in
2502          *   response to runtime needs.  This option was known by name
2503          *   "FtrPerCtxtPreemptionGranularityControl" at one time, although
2504          *   that name is somewhat misleading as other non-granularity
2505          *   preemption settings are also impacted by this decision.
2506          *
2507          * On Linux, our policy has always been to let userspace drivers
2508          * control preemption granularity/settings (Option 2).  This was
2509          * originally mandatory on gen9 to prevent ABI breakage (old gen9
2510          * userspace developed before object-level preemption was enabled would
2511          * not behave well if i915 were to go with Option 1 and enable that
2512          * preemption in a global manner).  On gen9 each context would have
2513          * object-level preemption disabled by default (see
2514          * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but
2515          * userspace drivers could opt-in to object-level preemption as they
2516          * saw fit.  For post-gen9 platforms, we continue to utilize Option 2;
2517          * even though it is no longer necessary for ABI compatibility when
2518          * enabling a new platform, it does ensure that userspace will be able
2519          * to implement any workarounds that show up requiring temporary
2520          * adjustments to preemption behavior at runtime.
2521          *
2522          * Notes/Workarounds:
2523          *  - Wa_14015141709:  On DG2 and early steppings of MTL,
2524          *      CS_CHICKEN1[0] does not disable object-level preemption as
2525          *      it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been
2526          *      using Option 1).  Effectively this means userspace is unable
2527          *      to disable object-level preemption on these platforms/steppings
2528          *      despite the setting here.
2529          *
2530          *  - Wa_16013994831:  May require that userspace program
2531          *      CS_CHICKEN1[10] when certain runtime conditions are true.
2532          *      Userspace requires Option 2 to be in effect for their update of
2533          *      CS_CHICKEN1[10] to be effective.
2534          *
2535          * Other workarounds may appear in the future that will also require
2536          * Option 2 behavior to allow proper userspace implementation.
2537          */
2538         if (GRAPHICS_VER(i915) >= 9)
2539                 wa_masked_en(wal,
2540                              GEN7_FF_SLICE_CS_CHICKEN1,
2541                              GEN9_FFSC_PERCTX_PREEMPT_CTRL);
2542
2543         if (IS_SKYLAKE(i915) ||
2544             IS_KABYLAKE(i915) ||
2545             IS_COFFEELAKE(i915) ||
2546             IS_COMETLAKE(i915)) {
2547                 /* WaEnableGapsTsvCreditFix:skl,kbl,cfl */
2548                 wa_write_or(wal,
2549                             GEN8_GARBCNTL,
2550                             GEN9_GAPS_TSV_CREDIT_DISABLE);
2551         }
2552
2553         if (IS_BROXTON(i915)) {
2554                 /* WaDisablePooledEuLoadBalancingFix:bxt */
2555                 wa_masked_en(wal,
2556                              FF_SLICE_CS_CHICKEN2,
2557                              GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
2558         }
2559
2560         if (GRAPHICS_VER(i915) == 9) {
2561                 /* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
2562                 wa_masked_en(wal,
2563                              GEN9_CSFE_CHICKEN1_RCS,
2564                              GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE);
2565
2566                 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
2567                 wa_mcr_write_or(wal,
2568                                 BDW_SCRATCH1,
2569                                 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
2570
2571                 /* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
2572                 if (IS_GEN9_LP(i915))
2573                         wa_mcr_write_clr_set(wal,
2574                                              GEN8_L3SQCREG1,
2575                                              L3_PRIO_CREDITS_MASK,
2576                                              L3_GENERAL_PRIO_CREDITS(62) |
2577                                              L3_HIGH_PRIO_CREDITS(2));
2578
2579                 /* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
2580                 wa_mcr_write_or(wal,
2581                                 GEN8_L3SQCREG4,
2582                                 GEN8_LQSC_FLUSH_COHERENT_LINES);
2583
2584                 /* Disable atomics in L3 to prevent unrecoverable hangs */
2585                 wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1,
2586                                  GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2587                 wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4,
2588                                      GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2589                 wa_mcr_write_clr_set(wal, GEN9_SCRATCH1,
2590                                      EVICTION_PERF_FIX_ENABLE, 0);
2591         }
2592
2593         if (IS_HASWELL(i915)) {
2594                 /* WaSampleCChickenBitEnable:hsw */
2595                 wa_masked_en(wal,
2596                              HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE);
2597
2598                 wa_masked_dis(wal,
2599                               CACHE_MODE_0_GEN7,
2600                               /* enable HiZ Raw Stall Optimization */
2601                               HIZ_RAW_STALL_OPT_DISABLE);
2602         }
2603
2604         if (IS_VALLEYVIEW(i915)) {
2605                 /* WaDisableEarlyCull:vlv */
2606                 wa_masked_en(wal,
2607                              _3D_CHICKEN3,
2608                              _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2609
2610                 /*
2611                  * WaVSThreadDispatchOverride:ivb,vlv
2612                  *
2613                  * This actually overrides the dispatch
2614                  * mode for all thread types.
2615                  */
2616                 wa_write_clr_set(wal,
2617                                  GEN7_FF_THREAD_MODE,
2618                                  GEN7_FF_SCHED_MASK,
2619                                  GEN7_FF_TS_SCHED_HW |
2620                                  GEN7_FF_VS_SCHED_HW |
2621                                  GEN7_FF_DS_SCHED_HW);
2622
2623                 /* WaPsdDispatchEnable:vlv */
2624                 /* WaDisablePSDDualDispatchEnable:vlv */
2625                 wa_masked_en(wal,
2626                              GEN7_HALF_SLICE_CHICKEN1,
2627                              GEN7_MAX_PS_THREAD_DEP |
2628                              GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2629         }
2630
2631         if (IS_IVYBRIDGE(i915)) {
2632                 /* WaDisableEarlyCull:ivb */
2633                 wa_masked_en(wal,
2634                              _3D_CHICKEN3,
2635                              _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2636
2637                 if (0) { /* causes HiZ corruption on ivb:gt1 */
2638                         /* enable HiZ Raw Stall Optimization */
2639                         wa_masked_dis(wal,
2640                                       CACHE_MODE_0_GEN7,
2641                                       HIZ_RAW_STALL_OPT_DISABLE);
2642                 }
2643
2644                 /*
2645                  * WaVSThreadDispatchOverride:ivb,vlv
2646                  *
2647                  * This actually overrides the dispatch
2648                  * mode for all thread types.
2649                  */
2650                 wa_write_clr_set(wal,
2651                                  GEN7_FF_THREAD_MODE,
2652                                  GEN7_FF_SCHED_MASK,
2653                                  GEN7_FF_TS_SCHED_HW |
2654                                  GEN7_FF_VS_SCHED_HW |
2655                                  GEN7_FF_DS_SCHED_HW);
2656
2657                 /* WaDisablePSDDualDispatchEnable:ivb */
2658                 if (IS_IVB_GT1(i915))
2659                         wa_masked_en(wal,
2660                                      GEN7_HALF_SLICE_CHICKEN1,
2661                                      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2662         }
2663
2664         if (GRAPHICS_VER(i915) == 7) {
2665                 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
2666                 wa_masked_en(wal,
2667                              RING_MODE_GEN7(RENDER_RING_BASE),
2668                              GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE);
2669
2670                 /* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */
2671                 wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE);
2672
2673                 /*
2674                  * BSpec says this must be set, even though
2675                  * WaDisable4x2SubspanOptimization:ivb,hsw
2676                  * WaDisable4x2SubspanOptimization isn't listed for VLV.
2677                  */
2678                 wa_masked_en(wal,
2679                              CACHE_MODE_1,
2680                              PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
2681
2682                 /*
2683                  * BSpec recommends 8x4 when MSAA is used,
2684                  * however in practice 16x4 seems fastest.
2685                  *
2686                  * Note that PS/WM thread counts depend on the WIZ hashing
2687                  * disable bit, which we don't touch here, but it's good
2688                  * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2689                  */
2690                 wa_masked_field_set(wal,
2691                                     GEN7_GT_MODE,
2692                                     GEN6_WIZ_HASHING_MASK,
2693                                     GEN6_WIZ_HASHING_16x4);
2694         }
2695
2696         if (IS_GRAPHICS_VER(i915, 6, 7))
2697                 /*
2698                  * We need to disable the AsyncFlip performance optimisations in
2699                  * order to use MI_WAIT_FOR_EVENT within the CS. It should
2700                  * already be programmed to '1' on all products.
2701                  *
2702                  * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
2703                  */
2704                 wa_masked_en(wal,
2705                              RING_MI_MODE(RENDER_RING_BASE),
2706                              ASYNC_FLIP_PERF_DISABLE);
2707
2708         if (GRAPHICS_VER(i915) == 6) {
2709                 /*
2710                  * Required for the hardware to program scanline values for
2711                  * waiting
2712                  * WaEnableFlushTlbInvalidationMode:snb
2713                  */
2714                 wa_masked_en(wal,
2715                              GFX_MODE,
2716                              GFX_TLB_INVALIDATE_EXPLICIT);
2717
2718                 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
2719                 wa_masked_en(wal,
2720                              _3D_CHICKEN,
2721                              _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB);
2722
2723                 wa_masked_en(wal,
2724                              _3D_CHICKEN3,
2725                              /* WaStripsFansDisableFastClipPerformanceFix:snb */
2726                              _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL |
2727                              /*
2728                               * Bspec says:
2729                               * "This bit must be set if 3DSTATE_CLIP clip mode is set
2730                               * to normal and 3DSTATE_SF number of SF output attributes
2731                               * is more than 16."
2732                               */
2733                              _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH);
2734
2735                 /*
2736                  * BSpec recommends 8x4 when MSAA is used,
2737                  * however in practice 16x4 seems fastest.
2738                  *
2739                  * Note that PS/WM thread counts depend on the WIZ hashing
2740                  * disable bit, which we don't touch here, but it's good
2741                  * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2742                  */
2743                 wa_masked_field_set(wal,
2744                                     GEN6_GT_MODE,
2745                                     GEN6_WIZ_HASHING_MASK,
2746                                     GEN6_WIZ_HASHING_16x4);
2747
2748                 /* WaDisable_RenderCache_OperationalFlush:snb */
2749                 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
2750
2751                 /*
2752                  * From the Sandybridge PRM, volume 1 part 3, page 24:
2753                  * "If this bit is set, STCunit will have LRA as replacement
2754                  *  policy. [...] This bit must be reset. LRA replacement
2755                  *  policy is not supported."
2756                  */
2757                 wa_masked_dis(wal,
2758                               CACHE_MODE_0,
2759                               CM0_STC_EVICT_DISABLE_LRA_SNB);
2760         }
2761
2762         if (IS_GRAPHICS_VER(i915, 4, 6))
2763                 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
2764                 wa_add(wal, RING_MI_MODE(RENDER_RING_BASE),
2765                        0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH),
2766                        /* XXX bit doesn't stick on Broadwater */
2767                        IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true);
2768
2769         if (GRAPHICS_VER(i915) == 4)
2770                 /*
2771                  * Disable CONSTANT_BUFFER before it is loaded from the context
2772                  * image. For as it is loaded, it is executed and the stored
2773                  * address may no longer be valid, leading to a GPU hang.
2774                  *
2775                  * This imposes the requirement that userspace reload their
2776                  * CONSTANT_BUFFER on every batch, fortunately a requirement
2777                  * they are already accustomed to from before contexts were
2778                  * enabled.
2779                  */
2780                 wa_add(wal, ECOSKPD(RENDER_RING_BASE),
2781                        0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE),
2782                        0 /* XXX bit doesn't stick on Broadwater */,
2783                        true);
2784 }
2785
2786 static void
2787 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2788 {
2789         struct drm_i915_private *i915 = engine->i915;
2790
2791         /* WaKBLVECSSemaphoreWaitPoll:kbl */
2792         if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) {
2793                 wa_write(wal,
2794                          RING_SEMA_WAIT_POLL(engine->mmio_base),
2795                          1);
2796         }
2797         /* Wa_16018031267, Wa_16018063123 */
2798         if (NEEDS_FASTCOLOR_BLT_WABB(engine))
2799                 wa_masked_field_set(wal, ECOSKPD(engine->mmio_base),
2800                                     XEHP_BLITTER_SCHEDULING_MODE_MASK,
2801                                     XEHP_BLITTER_ROUND_ROBIN_MODE);
2802 }
2803
2804 static void
2805 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2806 {
2807         if (IS_PVC_CT_STEP(engine->i915, STEP_A0, STEP_C0)) {
2808                 /* Wa_14014999345:pvc */
2809                 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, DISABLE_ECC);
2810         }
2811 }
2812
2813 /*
2814  * The bspec performance guide has recommended MMIO tuning settings.  These
2815  * aren't truly "workarounds" but we want to program them with the same
2816  * workaround infrastructure to ensure that they're automatically added to
2817  * the GuC save/restore lists, re-applied at the right times, and checked for
2818  * any conflicting programming requested by real workarounds.
2819  *
2820  * Programming settings should be added here only if their registers are not
2821  * part of an engine's register state context.  If a register is part of a
2822  * context, then any tuning settings should be programmed in an appropriate
2823  * function invoked by __intel_engine_init_ctx_wa().
2824  */
2825 static void
2826 add_render_compute_tuning_settings(struct intel_gt *gt,
2827                                    struct i915_wa_list *wal)
2828 {
2829         struct drm_i915_private *i915 = gt->i915;
2830
2831         if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)) || IS_DG2(i915))
2832                 wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512);
2833
2834         /*
2835          * This tuning setting proves beneficial only on ATS-M designs; the
2836          * default "age based" setting is optimal on regular DG2 and other
2837          * platforms.
2838          */
2839         if (INTEL_INFO(i915)->tuning_thread_rr_after_dep)
2840                 wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE,
2841                                         THREAD_EX_ARB_MODE_RR_AFTER_DEP);
2842
2843         if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
2844                 wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC);
2845 }
2846
2847 /*
2848  * The workarounds in this function apply to shared registers in
2849  * the general render reset domain that aren't tied to a
2850  * specific engine.  Since all render+compute engines get reset
2851  * together, and the contents of these registers are lost during
2852  * the shared render domain reset, we'll define such workarounds
2853  * here and then add them to just a single RCS or CCS engine's
2854  * workaround list (whichever engine has the XXXX flag).
2855  */
2856 static void
2857 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2858 {
2859         struct drm_i915_private *i915 = engine->i915;
2860         struct intel_gt *gt = engine->gt;
2861
2862         add_render_compute_tuning_settings(gt, wal);
2863
2864         if (GRAPHICS_VER(i915) >= 11) {
2865                 /* This is not a Wa (although referred to as
2866                  * WaSetInidrectStateOverride in places), this allows
2867                  * applications that reference sampler states through
2868                  * the BindlessSamplerStateBaseAddress to have their
2869                  * border color relative to DynamicStateBaseAddress
2870                  * rather than BindlessSamplerStateBaseAddress.
2871                  *
2872                  * Otherwise SAMPLER_STATE border colors have to be
2873                  * copied in multiple heaps (DynamicStateBaseAddress &
2874                  * BindlessSamplerStateBaseAddress)
2875                  *
2876                  * BSpec: 46052
2877                  */
2878                 wa_mcr_masked_en(wal,
2879                                  GEN10_SAMPLER_MODE,
2880                                  GEN11_INDIRECT_STATE_BASE_ADDR_OVERRIDE);
2881         }
2882
2883         if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_B0, STEP_FOREVER) ||
2884             IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_B0, STEP_FOREVER))
2885                 /* Wa_14017856879 */
2886                 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH);
2887
2888         if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2889             IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2890                 /*
2891                  * Wa_14017066071
2892                  * Wa_14017654203
2893                  */
2894                 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2895                                  MTL_DISABLE_SAMPLER_SC_OOO);
2896
2897         if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2898                 /* Wa_22015279794 */
2899                 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2900                                  DISABLE_PREFETCH_INTO_IC);
2901
2902         if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2903             IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2904             IS_DG2(i915)) {
2905                 /* Wa_22013037850 */
2906                 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW,
2907                                 DISABLE_128B_EVICTION_COMMAND_UDW);
2908
2909                 /* Wa_18017747507 */
2910                 wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE);
2911         }
2912
2913         if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2914             IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2915             IS_PONTEVECCHIO(i915) ||
2916             IS_DG2(i915)) {
2917                 /* Wa_22014226127 */
2918                 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE);
2919         }
2920
2921         if (IS_PONTEVECCHIO(i915) || IS_DG2(i915)) {
2922                 /* Wa_14015227452:dg2,pvc */
2923                 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE);
2924
2925                 /* Wa_16015675438:dg2,pvc */
2926                 wa_masked_en(wal, FF_SLICE_CS_CHICKEN2, GEN12_PERF_FIX_BALANCING_CFE_DISABLE);
2927         }
2928
2929         if (IS_DG2(i915)) {
2930                 /*
2931                  * Wa_16011620976:dg2_g11
2932                  * Wa_22015475538:dg2
2933                  */
2934                 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8);
2935
2936                 /* Wa_18028616096 */
2937                 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, UGM_FRAGMENT_THRESHOLD_TO_3);
2938         }
2939
2940         if (IS_DG2_G11(i915)) {
2941                 /*
2942                  * Wa_22012826095:dg2
2943                  * Wa_22013059131:dg2
2944                  */
2945                 wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW,
2946                                      MAXREQS_PER_BANK,
2947                                      REG_FIELD_PREP(MAXREQS_PER_BANK, 2));
2948
2949                 /* Wa_22013059131:dg2 */
2950                 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0,
2951                                 FORCE_1_SUB_MESSAGE_PER_FRAGMENT);
2952
2953                 /*
2954                  * Wa_22012654132
2955                  *
2956                  * Note that register 0xE420 is write-only and cannot be read
2957                  * back for verification on DG2 (due to Wa_14012342262), so
2958                  * we need to explicitly skip the readback.
2959                  */
2960                 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2961                            _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC),
2962                            0 /* write-only, so skip validation */,
2963                            true);
2964         }
2965
2966         if (IS_XEHPSDV(i915)) {
2967                 /* Wa_1409954639 */
2968                 wa_mcr_masked_en(wal,
2969                                  GEN8_ROW_CHICKEN,
2970                                  SYSTOLIC_DOP_CLOCK_GATING_DIS);
2971
2972                 /* Wa_1607196519 */
2973                 wa_mcr_masked_en(wal,
2974                                  GEN9_ROW_CHICKEN4,
2975                                  GEN12_DISABLE_GRF_CLEAR);
2976
2977                 /* Wa_14010449647:xehpsdv */
2978                 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
2979                                  GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2980         }
2981 }
2982
2983 static void
2984 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2985 {
2986         if (GRAPHICS_VER(engine->i915) < 4)
2987                 return;
2988
2989         engine_fake_wa_init(engine, wal);
2990
2991         /*
2992          * These are common workarounds that just need to applied
2993          * to a single RCS/CCS engine's workaround list since
2994          * they're reset as part of the general render domain reset.
2995          */
2996         if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
2997                 general_render_compute_wa_init(engine, wal);
2998
2999         if (engine->class == COMPUTE_CLASS)
3000                 ccs_engine_wa_init(engine, wal);
3001         else if (engine->class == RENDER_CLASS)
3002                 rcs_engine_wa_init(engine, wal);
3003         else
3004                 xcs_engine_wa_init(engine, wal);
3005 }
3006
3007 void intel_engine_init_workarounds(struct intel_engine_cs *engine)
3008 {
3009         struct i915_wa_list *wal = &engine->wa_list;
3010
3011         wa_init_start(wal, engine->gt, "engine", engine->name);
3012         engine_init_workarounds(engine, wal);
3013         wa_init_finish(wal);
3014 }
3015
3016 void intel_engine_apply_workarounds(struct intel_engine_cs *engine)
3017 {
3018         wa_list_apply(&engine->wa_list);
3019 }
3020
3021 static const struct i915_range mcr_ranges_gen8[] = {
3022         { .start = 0x5500, .end = 0x55ff },
3023         { .start = 0x7000, .end = 0x7fff },
3024         { .start = 0x9400, .end = 0x97ff },
3025         { .start = 0xb000, .end = 0xb3ff },
3026         { .start = 0xe000, .end = 0xe7ff },
3027         {},
3028 };
3029
3030 static const struct i915_range mcr_ranges_gen12[] = {
3031         { .start =  0x8150, .end =  0x815f },
3032         { .start =  0x9520, .end =  0x955f },
3033         { .start =  0xb100, .end =  0xb3ff },
3034         { .start =  0xde80, .end =  0xe8ff },
3035         { .start = 0x24a00, .end = 0x24a7f },
3036         {},
3037 };
3038
3039 static const struct i915_range mcr_ranges_xehp[] = {
3040         { .start =  0x4000, .end =  0x4aff },
3041         { .start =  0x5200, .end =  0x52ff },
3042         { .start =  0x5400, .end =  0x7fff },
3043         { .start =  0x8140, .end =  0x815f },
3044         { .start =  0x8c80, .end =  0x8dff },
3045         { .start =  0x94d0, .end =  0x955f },
3046         { .start =  0x9680, .end =  0x96ff },
3047         { .start =  0xb000, .end =  0xb3ff },
3048         { .start =  0xc800, .end =  0xcfff },
3049         { .start =  0xd800, .end =  0xd8ff },
3050         { .start =  0xdc00, .end =  0xffff },
3051         { .start = 0x17000, .end = 0x17fff },
3052         { .start = 0x24a00, .end = 0x24a7f },
3053         {},
3054 };
3055
3056 static bool mcr_range(struct drm_i915_private *i915, u32 offset)
3057 {
3058         const struct i915_range *mcr_ranges;
3059         int i;
3060
3061         if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
3062                 mcr_ranges = mcr_ranges_xehp;
3063         else if (GRAPHICS_VER(i915) >= 12)
3064                 mcr_ranges = mcr_ranges_gen12;
3065         else if (GRAPHICS_VER(i915) >= 8)
3066                 mcr_ranges = mcr_ranges_gen8;
3067         else
3068                 return false;
3069
3070         /*
3071          * Registers in these ranges are affected by the MCR selector
3072          * which only controls CPU initiated MMIO. Routing does not
3073          * work for CS access so we cannot verify them on this path.
3074          */
3075         for (i = 0; mcr_ranges[i].start; i++)
3076                 if (offset >= mcr_ranges[i].start &&
3077                     offset <= mcr_ranges[i].end)
3078                         return true;
3079
3080         return false;
3081 }
3082
3083 static int
3084 wa_list_srm(struct i915_request *rq,
3085             const struct i915_wa_list *wal,
3086             struct i915_vma *vma)
3087 {
3088         struct drm_i915_private *i915 = rq->i915;
3089         unsigned int i, count = 0;
3090         const struct i915_wa *wa;
3091         u32 srm, *cs;
3092
3093         srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
3094         if (GRAPHICS_VER(i915) >= 8)
3095                 srm++;
3096
3097         for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3098                 if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg)))
3099                         count++;
3100         }
3101
3102         cs = intel_ring_begin(rq, 4 * count);
3103         if (IS_ERR(cs))
3104                 return PTR_ERR(cs);
3105
3106         for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3107                 u32 offset = i915_mmio_reg_offset(wa->reg);
3108
3109                 if (mcr_range(i915, offset))
3110                         continue;
3111
3112                 *cs++ = srm;
3113                 *cs++ = offset;
3114                 *cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i;
3115                 *cs++ = 0;
3116         }
3117         intel_ring_advance(rq, cs);
3118
3119         return 0;
3120 }
3121
3122 static int engine_wa_list_verify(struct intel_context *ce,
3123                                  const struct i915_wa_list * const wal,
3124                                  const char *from)
3125 {
3126         const struct i915_wa *wa;
3127         struct i915_request *rq;
3128         struct i915_vma *vma;
3129         struct i915_gem_ww_ctx ww;
3130         unsigned int i;
3131         u32 *results;
3132         int err;
3133
3134         if (!wal->count)
3135                 return 0;
3136
3137         vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm,
3138                                            wal->count * sizeof(u32));
3139         if (IS_ERR(vma))
3140                 return PTR_ERR(vma);
3141
3142         intel_engine_pm_get(ce->engine);
3143         i915_gem_ww_ctx_init(&ww, false);
3144 retry:
3145         err = i915_gem_object_lock(vma->obj, &ww);
3146         if (err == 0)
3147                 err = intel_context_pin_ww(ce, &ww);
3148         if (err)
3149                 goto err_pm;
3150
3151         err = i915_vma_pin_ww(vma, &ww, 0, 0,
3152                            i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
3153         if (err)
3154                 goto err_unpin;
3155
3156         rq = i915_request_create(ce);
3157         if (IS_ERR(rq)) {
3158                 err = PTR_ERR(rq);
3159                 goto err_vma;
3160         }
3161
3162         err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
3163         if (err == 0)
3164                 err = wa_list_srm(rq, wal, vma);
3165
3166         i915_request_get(rq);
3167         if (err)
3168                 i915_request_set_error_once(rq, err);
3169         i915_request_add(rq);
3170
3171         if (err)
3172                 goto err_rq;
3173
3174         if (i915_request_wait(rq, 0, HZ / 5) < 0) {
3175                 err = -ETIME;
3176                 goto err_rq;
3177         }
3178
3179         results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
3180         if (IS_ERR(results)) {
3181                 err = PTR_ERR(results);
3182                 goto err_rq;
3183         }
3184
3185         err = 0;
3186         for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3187                 if (mcr_range(rq->i915, i915_mmio_reg_offset(wa->reg)))
3188                         continue;
3189
3190                 if (!wa_verify(wal->gt, wa, results[i], wal->name, from))
3191                         err = -ENXIO;
3192         }
3193
3194         i915_gem_object_unpin_map(vma->obj);
3195
3196 err_rq:
3197         i915_request_put(rq);
3198 err_vma:
3199         i915_vma_unpin(vma);
3200 err_unpin:
3201         intel_context_unpin(ce);
3202 err_pm:
3203         if (err == -EDEADLK) {
3204                 err = i915_gem_ww_ctx_backoff(&ww);
3205                 if (!err)
3206                         goto retry;
3207         }
3208         i915_gem_ww_ctx_fini(&ww);
3209         intel_engine_pm_put(ce->engine);
3210         i915_vma_put(vma);
3211         return err;
3212 }
3213
3214 int intel_engine_verify_workarounds(struct intel_engine_cs *engine,
3215                                     const char *from)
3216 {
3217         return engine_wa_list_verify(engine->kernel_context,
3218                                      &engine->wa_list,
3219                                      from);
3220 }
3221
3222 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3223 #include "selftest_workarounds.c"
3224 #endif