Merge drm/drm-next into drm-intel-gt-next
[linux-block.git] / drivers / gpu / drm / i915 / gt / intel_gtt.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5
6 #include <linux/slab.h> /* fault-inject.h is not standalone! */
7
8 #include <linux/fault-inject.h>
9 #include <linux/sched/mm.h>
10
11 #include <drm/drm_cache.h>
12
13 #include "gem/i915_gem_internal.h"
14 #include "gem/i915_gem_lmem.h"
15 #include "i915_reg.h"
16 #include "i915_trace.h"
17 #include "i915_utils.h"
18 #include "intel_gt.h"
19 #include "intel_gt_mcr.h"
20 #include "intel_gt_regs.h"
21 #include "intel_gtt.h"
22
23
24 static bool intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *i915)
25 {
26         return IS_BROXTON(i915) && i915_vtd_active(i915);
27 }
28
29 bool intel_vm_no_concurrent_access_wa(struct drm_i915_private *i915)
30 {
31         return IS_CHERRYVIEW(i915) || intel_ggtt_update_needs_vtd_wa(i915);
32 }
33
34 struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz)
35 {
36         struct drm_i915_gem_object *obj;
37
38         /*
39          * To avoid severe over-allocation when dealing with min_page_size
40          * restrictions, we override that behaviour here by allowing an object
41          * size and page layout which can be smaller. In practice this should be
42          * totally fine, since GTT paging structures are not typically inserted
43          * into the GTT.
44          *
45          * Note that we also hit this path for the scratch page, and for this
46          * case it might need to be 64K, but that should work fine here since we
47          * used the passed in size for the page size, which should ensure it
48          * also has the same alignment.
49          */
50         obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz,
51                                                     vm->lmem_pt_obj_flags);
52         /*
53          * Ensure all paging structures for this vm share the same dma-resv
54          * object underneath, with the idea that one object_lock() will lock
55          * them all at once.
56          */
57         if (!IS_ERR(obj)) {
58                 obj->base.resv = i915_vm_resv_get(vm);
59                 obj->shares_resv_from = vm;
60         }
61
62         return obj;
63 }
64
65 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz)
66 {
67         struct drm_i915_gem_object *obj;
68
69         if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
70                 i915_gem_shrink_all(vm->i915);
71
72         obj = i915_gem_object_create_internal(vm->i915, sz);
73         /*
74          * Ensure all paging structures for this vm share the same dma-resv
75          * object underneath, with the idea that one object_lock() will lock
76          * them all at once.
77          */
78         if (!IS_ERR(obj)) {
79                 obj->base.resv = i915_vm_resv_get(vm);
80                 obj->shares_resv_from = vm;
81         }
82
83         return obj;
84 }
85
86 int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
87 {
88         enum i915_map_type type;
89         void *vaddr;
90
91         type = i915_coherent_map_type(vm->i915, obj, true);
92         vaddr = i915_gem_object_pin_map_unlocked(obj, type);
93         if (IS_ERR(vaddr))
94                 return PTR_ERR(vaddr);
95
96         i915_gem_object_make_unshrinkable(obj);
97         return 0;
98 }
99
100 int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
101 {
102         enum i915_map_type type;
103         void *vaddr;
104
105         type = i915_coherent_map_type(vm->i915, obj, true);
106         vaddr = i915_gem_object_pin_map(obj, type);
107         if (IS_ERR(vaddr))
108                 return PTR_ERR(vaddr);
109
110         i915_gem_object_make_unshrinkable(obj);
111         return 0;
112 }
113
114 static void clear_vm_list(struct list_head *list)
115 {
116         struct i915_vma *vma, *vn;
117
118         list_for_each_entry_safe(vma, vn, list, vm_link) {
119                 struct drm_i915_gem_object *obj = vma->obj;
120
121                 if (!i915_gem_object_get_rcu(obj)) {
122                         /*
123                          * Object is dying, but has not yet cleared its
124                          * vma list.
125                          * Unbind the dying vma to ensure our list
126                          * is completely drained. We leave the destruction to
127                          * the object destructor to avoid the vma
128                          * disappearing under it.
129                          */
130                         atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
131                         WARN_ON(__i915_vma_unbind(vma));
132
133                         /* Remove from the unbound list */
134                         list_del_init(&vma->vm_link);
135
136                         /*
137                          * Delay the vm and vm mutex freeing until the
138                          * object is done with destruction.
139                          */
140                         i915_vm_resv_get(vma->vm);
141                         vma->vm_ddestroy = true;
142                 } else {
143                         i915_vma_destroy_locked(vma);
144                         i915_gem_object_put(obj);
145                 }
146
147         }
148 }
149
150 static void __i915_vm_close(struct i915_address_space *vm)
151 {
152         mutex_lock(&vm->mutex);
153
154         clear_vm_list(&vm->bound_list);
155         clear_vm_list(&vm->unbound_list);
156
157         /* Check for must-fix unanticipated side-effects */
158         GEM_BUG_ON(!list_empty(&vm->bound_list));
159         GEM_BUG_ON(!list_empty(&vm->unbound_list));
160
161         mutex_unlock(&vm->mutex);
162 }
163
164 /* lock the vm into the current ww, if we lock one, we lock all */
165 int i915_vm_lock_objects(struct i915_address_space *vm,
166                          struct i915_gem_ww_ctx *ww)
167 {
168         if (vm->scratch[0]->base.resv == &vm->_resv) {
169                 return i915_gem_object_lock(vm->scratch[0], ww);
170         } else {
171                 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
172
173                 /* We borrowed the scratch page from ggtt, take the top level object */
174                 return i915_gem_object_lock(ppgtt->pd->pt.base, ww);
175         }
176 }
177
178 void i915_address_space_fini(struct i915_address_space *vm)
179 {
180         drm_mm_takedown(&vm->mm);
181 }
182
183 /**
184  * i915_vm_resv_release - Final struct i915_address_space destructor
185  * @kref: Pointer to the &i915_address_space.resv_ref member.
186  *
187  * This function is called when the last lock sharer no longer shares the
188  * &i915_address_space._resv lock, and also if we raced when
189  * destroying a vma by the vma destruction
190  */
191 void i915_vm_resv_release(struct kref *kref)
192 {
193         struct i915_address_space *vm =
194                 container_of(kref, typeof(*vm), resv_ref);
195
196         dma_resv_fini(&vm->_resv);
197         mutex_destroy(&vm->mutex);
198
199         kfree(vm);
200 }
201
202 static void __i915_vm_release(struct work_struct *work)
203 {
204         struct i915_address_space *vm =
205                 container_of(work, struct i915_address_space, release_work);
206
207         __i915_vm_close(vm);
208
209         /* Synchronize async unbinds. */
210         i915_vma_resource_bind_dep_sync_all(vm);
211
212         vm->cleanup(vm);
213         i915_address_space_fini(vm);
214
215         i915_vm_resv_put(vm);
216 }
217
218 void i915_vm_release(struct kref *kref)
219 {
220         struct i915_address_space *vm =
221                 container_of(kref, struct i915_address_space, ref);
222
223         GEM_BUG_ON(i915_is_ggtt(vm));
224         trace_i915_ppgtt_release(vm);
225
226         queue_work(vm->i915->wq, &vm->release_work);
227 }
228
229 void i915_address_space_init(struct i915_address_space *vm, int subclass)
230 {
231         kref_init(&vm->ref);
232
233         /*
234          * Special case for GGTT that has already done an early
235          * kref_init here.
236          */
237         if (!kref_read(&vm->resv_ref))
238                 kref_init(&vm->resv_ref);
239
240         vm->pending_unbind = RB_ROOT_CACHED;
241         INIT_WORK(&vm->release_work, __i915_vm_release);
242
243         /*
244          * The vm->mutex must be reclaim safe (for use in the shrinker).
245          * Do a dummy acquire now under fs_reclaim so that any allocation
246          * attempt holding the lock is immediately reported by lockdep.
247          */
248         mutex_init(&vm->mutex);
249         lockdep_set_subclass(&vm->mutex, subclass);
250
251         if (!intel_vm_no_concurrent_access_wa(vm->i915)) {
252                 i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
253         } else {
254                 /*
255                  * CHV + BXT VTD workaround use stop_machine(),
256                  * which is allowed to allocate memory. This means &vm->mutex
257                  * is the outer lock, and in theory we can allocate memory inside
258                  * it through stop_machine().
259                  *
260                  * Add the annotation for this, we use trylock in shrinker.
261                  */
262                 mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_);
263                 might_alloc(GFP_KERNEL);
264                 mutex_release(&vm->mutex.dep_map, _THIS_IP_);
265         }
266         dma_resv_init(&vm->_resv);
267
268         GEM_BUG_ON(!vm->total);
269         drm_mm_init(&vm->mm, 0, vm->total);
270
271         memset64(vm->min_alignment, I915_GTT_MIN_ALIGNMENT,
272                  ARRAY_SIZE(vm->min_alignment));
273
274         if (HAS_64K_PAGES(vm->i915)) {
275                 vm->min_alignment[INTEL_MEMORY_LOCAL] = I915_GTT_PAGE_SIZE_64K;
276                 vm->min_alignment[INTEL_MEMORY_STOLEN_LOCAL] = I915_GTT_PAGE_SIZE_64K;
277         }
278
279         vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
280
281         INIT_LIST_HEAD(&vm->bound_list);
282         INIT_LIST_HEAD(&vm->unbound_list);
283 }
284
285 void *__px_vaddr(struct drm_i915_gem_object *p)
286 {
287         enum i915_map_type type;
288
289         GEM_BUG_ON(!i915_gem_object_has_pages(p));
290         return page_unpack_bits(p->mm.mapping, &type);
291 }
292
293 dma_addr_t __px_dma(struct drm_i915_gem_object *p)
294 {
295         GEM_BUG_ON(!i915_gem_object_has_pages(p));
296         return sg_dma_address(p->mm.pages->sgl);
297 }
298
299 struct page *__px_page(struct drm_i915_gem_object *p)
300 {
301         GEM_BUG_ON(!i915_gem_object_has_pages(p));
302         return sg_page(p->mm.pages->sgl);
303 }
304
305 void
306 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count)
307 {
308         void *vaddr = __px_vaddr(p);
309
310         memset64(vaddr, val, count);
311         drm_clflush_virt_range(vaddr, PAGE_SIZE);
312 }
313
314 static void poison_scratch_page(struct drm_i915_gem_object *scratch)
315 {
316         void *vaddr = __px_vaddr(scratch);
317         u8 val;
318
319         val = 0;
320         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
321                 val = POISON_FREE;
322
323         memset(vaddr, val, scratch->base.size);
324         drm_clflush_virt_range(vaddr, scratch->base.size);
325 }
326
327 int setup_scratch_page(struct i915_address_space *vm)
328 {
329         unsigned long size;
330
331         /*
332          * In order to utilize 64K pages for an object with a size < 2M, we will
333          * need to support a 64K scratch page, given that every 16th entry for a
334          * page-table operating in 64K mode must point to a properly aligned 64K
335          * region, including any PTEs which happen to point to scratch.
336          *
337          * This is only relevant for the 48b PPGTT where we support
338          * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
339          * scratch (read-only) between all vm, we create one 64k scratch page
340          * for all.
341          */
342         size = I915_GTT_PAGE_SIZE_4K;
343         if (i915_vm_is_4lvl(vm) &&
344             HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K) &&
345             !HAS_64K_PAGES(vm->i915))
346                 size = I915_GTT_PAGE_SIZE_64K;
347
348         do {
349                 struct drm_i915_gem_object *obj;
350
351                 obj = vm->alloc_scratch_dma(vm, size);
352                 if (IS_ERR(obj))
353                         goto skip;
354
355                 if (map_pt_dma(vm, obj))
356                         goto skip_obj;
357
358                 /* We need a single contiguous page for our scratch */
359                 if (obj->mm.page_sizes.sg < size)
360                         goto skip_obj;
361
362                 /* And it needs to be correspondingly aligned */
363                 if (__px_dma(obj) & (size - 1))
364                         goto skip_obj;
365
366                 /*
367                  * Use a non-zero scratch page for debugging.
368                  *
369                  * We want a value that should be reasonably obvious
370                  * to spot in the error state, while also causing a GPU hang
371                  * if executed. We prefer using a clear page in production, so
372                  * should it ever be accidentally used, the effect should be
373                  * fairly benign.
374                  */
375                 poison_scratch_page(obj);
376
377                 vm->scratch[0] = obj;
378                 vm->scratch_order = get_order(size);
379                 return 0;
380
381 skip_obj:
382                 i915_gem_object_put(obj);
383 skip:
384                 if (size == I915_GTT_PAGE_SIZE_4K)
385                         return -ENOMEM;
386
387                 size = I915_GTT_PAGE_SIZE_4K;
388         } while (1);
389 }
390
391 void free_scratch(struct i915_address_space *vm)
392 {
393         int i;
394
395         if (!vm->scratch[0])
396                 return;
397
398         for (i = 0; i <= vm->top; i++)
399                 i915_gem_object_put(vm->scratch[i]);
400 }
401
402 void gtt_write_workarounds(struct intel_gt *gt)
403 {
404         struct drm_i915_private *i915 = gt->i915;
405         struct intel_uncore *uncore = gt->uncore;
406
407         /*
408          * This function is for gtt related workarounds. This function is
409          * called on driver load and after a GPU reset, so you can place
410          * workarounds here even if they get overwritten by GPU reset.
411          */
412         /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
413         if (IS_BROADWELL(i915))
414                 intel_uncore_write(uncore,
415                                    GEN8_L3_LRA_1_GPGPU,
416                                    GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
417         else if (IS_CHERRYVIEW(i915))
418                 intel_uncore_write(uncore,
419                                    GEN8_L3_LRA_1_GPGPU,
420                                    GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
421         else if (IS_GEN9_LP(i915))
422                 intel_uncore_write(uncore,
423                                    GEN8_L3_LRA_1_GPGPU,
424                                    GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
425         else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11)
426                 intel_uncore_write(uncore,
427                                    GEN8_L3_LRA_1_GPGPU,
428                                    GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
429
430         /*
431          * To support 64K PTEs we need to first enable the use of the
432          * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
433          * mmio, otherwise the page-walker will simply ignore the IPS bit. This
434          * shouldn't be needed after GEN10.
435          *
436          * 64K pages were first introduced from BDW+, although technically they
437          * only *work* from gen9+. For pre-BDW we instead have the option for
438          * 32K pages, but we don't currently have any support for it in our
439          * driver.
440          */
441         if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
442             GRAPHICS_VER(i915) <= 10)
443                 intel_uncore_rmw(uncore,
444                                  GEN8_GAMW_ECO_DEV_RW_IA,
445                                  0,
446                                  GAMW_ECO_ENABLE_64K_IPS_FIELD);
447
448         if (IS_GRAPHICS_VER(i915, 8, 11)) {
449                 bool can_use_gtt_cache = true;
450
451                 /*
452                  * According to the BSpec if we use 2M/1G pages then we also
453                  * need to disable the GTT cache. At least on BDW we can see
454                  * visual corruption when using 2M pages, and not disabling the
455                  * GTT cache.
456                  */
457                 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
458                         can_use_gtt_cache = false;
459
460                 /* WaGttCachingOffByDefault */
461                 intel_uncore_write(uncore,
462                                    HSW_GTT_CACHE_EN,
463                                    can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
464                 drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache &&
465                                  intel_uncore_read(uncore,
466                                                    HSW_GTT_CACHE_EN) == 0);
467         }
468 }
469
470 static void tgl_setup_private_ppat(struct intel_uncore *uncore)
471 {
472         /* TGL doesn't support LLC or AGE settings */
473         intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
474         intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
475         intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
476         intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
477         intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
478         intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
479         intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
480         intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
481 }
482
483 static void xehp_setup_private_ppat(struct intel_gt *gt)
484 {
485         enum forcewake_domains fw;
486         unsigned long flags;
487
488         fw = intel_uncore_forcewake_for_reg(gt->uncore, _MMIO(XEHP_PAT_INDEX(0).reg),
489                                             FW_REG_WRITE);
490         intel_uncore_forcewake_get(gt->uncore, fw);
491
492         intel_gt_mcr_lock(gt, &flags);
493         intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(0), GEN8_PPAT_WB);
494         intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(1), GEN8_PPAT_WC);
495         intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(2), GEN8_PPAT_WT);
496         intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(3), GEN8_PPAT_UC);
497         intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(4), GEN8_PPAT_WB);
498         intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(5), GEN8_PPAT_WB);
499         intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(6), GEN8_PPAT_WB);
500         intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(7), GEN8_PPAT_WB);
501         intel_gt_mcr_unlock(gt, flags);
502
503         intel_uncore_forcewake_put(gt->uncore, fw);
504 }
505
506 static void icl_setup_private_ppat(struct intel_uncore *uncore)
507 {
508         intel_uncore_write(uncore,
509                            GEN10_PAT_INDEX(0),
510                            GEN8_PPAT_WB | GEN8_PPAT_LLC);
511         intel_uncore_write(uncore,
512                            GEN10_PAT_INDEX(1),
513                            GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
514         intel_uncore_write(uncore,
515                            GEN10_PAT_INDEX(2),
516                            GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
517         intel_uncore_write(uncore,
518                            GEN10_PAT_INDEX(3),
519                            GEN8_PPAT_UC);
520         intel_uncore_write(uncore,
521                            GEN10_PAT_INDEX(4),
522                            GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
523         intel_uncore_write(uncore,
524                            GEN10_PAT_INDEX(5),
525                            GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
526         intel_uncore_write(uncore,
527                            GEN10_PAT_INDEX(6),
528                            GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
529         intel_uncore_write(uncore,
530                            GEN10_PAT_INDEX(7),
531                            GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
532 }
533
534 /*
535  * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
536  * bits. When using advanced contexts each context stores its own PAT, but
537  * writing this data shouldn't be harmful even in those cases.
538  */
539 static void bdw_setup_private_ppat(struct intel_uncore *uncore)
540 {
541         struct drm_i915_private *i915 = uncore->i915;
542         u64 pat;
543
544         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |      /* for normal objects, no eLLC */
545               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |  /* for something pointing to ptes? */
546               GEN8_PPAT(3, GEN8_PPAT_UC) |                      /* Uncached objects, mostly for scanout */
547               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
548               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
549               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
550               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
551
552         /* for scanout with eLLC */
553         if (GRAPHICS_VER(i915) >= 9)
554                 pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
555         else
556                 pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
557
558         intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
559         intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
560 }
561
562 static void chv_setup_private_ppat(struct intel_uncore *uncore)
563 {
564         u64 pat;
565
566         /*
567          * Map WB on BDW to snooped on CHV.
568          *
569          * Only the snoop bit has meaning for CHV, the rest is
570          * ignored.
571          *
572          * The hardware will never snoop for certain types of accesses:
573          * - CPU GTT (GMADR->GGTT->no snoop->memory)
574          * - PPGTT page tables
575          * - some other special cycles
576          *
577          * As with BDW, we also need to consider the following for GT accesses:
578          * "For GGTT, there is NO pat_sel[2:0] from the entry,
579          * so RTL will always use the value corresponding to
580          * pat_sel = 000".
581          * Which means we must set the snoop bit in PAT entry 0
582          * in order to keep the global status page working.
583          */
584
585         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
586               GEN8_PPAT(1, 0) |
587               GEN8_PPAT(2, 0) |
588               GEN8_PPAT(3, 0) |
589               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
590               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
591               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
592               GEN8_PPAT(7, CHV_PPAT_SNOOP);
593
594         intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
595         intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
596 }
597
598 void setup_private_pat(struct intel_gt *gt)
599 {
600         struct intel_uncore *uncore = gt->uncore;
601         struct drm_i915_private *i915 = gt->i915;
602
603         GEM_BUG_ON(GRAPHICS_VER(i915) < 8);
604
605         if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
606                 xehp_setup_private_ppat(gt);
607         else if (GRAPHICS_VER(i915) >= 12)
608                 tgl_setup_private_ppat(uncore);
609         else if (GRAPHICS_VER(i915) >= 11)
610                 icl_setup_private_ppat(uncore);
611         else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
612                 chv_setup_private_ppat(uncore);
613         else
614                 bdw_setup_private_ppat(uncore);
615 }
616
617 struct i915_vma *
618 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size)
619 {
620         struct drm_i915_gem_object *obj;
621         struct i915_vma *vma;
622
623         obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size));
624         if (IS_ERR(obj))
625                 return ERR_CAST(obj);
626
627         i915_gem_object_set_cache_coherency(obj, I915_CACHING_CACHED);
628
629         vma = i915_vma_instance(obj, vm, NULL);
630         if (IS_ERR(vma)) {
631                 i915_gem_object_put(obj);
632                 return vma;
633         }
634
635         return vma;
636 }
637
638 struct i915_vma *
639 __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size)
640 {
641         struct i915_vma *vma;
642         int err;
643
644         vma = __vm_create_scratch_for_read(vm, size);
645         if (IS_ERR(vma))
646                 return vma;
647
648         err = i915_vma_pin(vma, 0, 0,
649                            i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
650         if (err) {
651                 i915_vma_put(vma);
652                 return ERR_PTR(err);
653         }
654
655         return vma;
656 }
657
658 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
659 #include "selftests/mock_gtt.c"
660 #endif