Merge drm/drm-next into drm-intel-gt-next
[linux-block.git] / drivers / gpu / drm / i915 / gt / intel_execlists_submission.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5
6 /**
7  * DOC: Logical Rings, Logical Ring Contexts and Execlists
8  *
9  * Motivation:
10  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
11  * These expanded contexts enable a number of new abilities, especially
12  * "Execlists" (also implemented in this file).
13  *
14  * One of the main differences with the legacy HW contexts is that logical
15  * ring contexts incorporate many more things to the context's state, like
16  * PDPs or ringbuffer control registers:
17  *
18  * The reason why PDPs are included in the context is straightforward: as
19  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
20  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
21  * instead, the GPU will do it for you on the context switch.
22  *
23  * But, what about the ringbuffer control registers (head, tail, etc..)?
24  * shouldn't we just need a set of those per engine command streamer? This is
25  * where the name "Logical Rings" starts to make sense: by virtualizing the
26  * rings, the engine cs shifts to a new "ring buffer" with every context
27  * switch. When you want to submit a workload to the GPU you: A) choose your
28  * context, B) find its appropriate virtualized ring, C) write commands to it
29  * and then, finally, D) tell the GPU to switch to that context.
30  *
31  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
32  * to a contexts is via a context execution list, ergo "Execlists".
33  *
34  * LRC implementation:
35  * Regarding the creation of contexts, we have:
36  *
37  * - One global default context.
38  * - One local default context for each opened fd.
39  * - One local extra context for each context create ioctl call.
40  *
41  * Now that ringbuffers belong per-context (and not per-engine, like before)
42  * and that contexts are uniquely tied to a given engine (and not reusable,
43  * like before) we need:
44  *
45  * - One ringbuffer per-engine inside each context.
46  * - One backing object per-engine inside each context.
47  *
48  * The global default context starts its life with these new objects fully
49  * allocated and populated. The local default context for each opened fd is
50  * more complex, because we don't know at creation time which engine is going
51  * to use them. To handle this, we have implemented a deferred creation of LR
52  * contexts:
53  *
54  * The local context starts its life as a hollow or blank holder, that only
55  * gets populated for a given engine once we receive an execbuffer. If later
56  * on we receive another execbuffer ioctl for the same context but a different
57  * engine, we allocate/populate a new ringbuffer and context backing object and
58  * so on.
59  *
60  * Finally, regarding local contexts created using the ioctl call: as they are
61  * only allowed with the render ring, we can allocate & populate them right
62  * away (no need to defer anything, at least for now).
63  *
64  * Execlists implementation:
65  * Execlists are the new method by which, on gen8+ hardware, workloads are
66  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
67  * This method works as follows:
68  *
69  * When a request is committed, its commands (the BB start and any leading or
70  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
71  * for the appropriate context. The tail pointer in the hardware context is not
72  * updated at this time, but instead, kept by the driver in the ringbuffer
73  * structure. A structure representing this request is added to a request queue
74  * for the appropriate engine: this structure contains a copy of the context's
75  * tail after the request was written to the ring buffer and a pointer to the
76  * context itself.
77  *
78  * If the engine's request queue was empty before the request was added, the
79  * queue is processed immediately. Otherwise the queue will be processed during
80  * a context switch interrupt. In any case, elements on the queue will get sent
81  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
82  * globally unique 20-bits submission ID.
83  *
84  * When execution of a request completes, the GPU updates the context status
85  * buffer with a context complete event and generates a context switch interrupt.
86  * During the interrupt handling, the driver examines the events in the buffer:
87  * for each context complete event, if the announced ID matches that on the head
88  * of the request queue, then that request is retired and removed from the queue.
89  *
90  * After processing, if any requests were retired and the queue is not empty
91  * then a new execution list can be submitted. The two requests at the front of
92  * the queue are next to be submitted but since a context may not occur twice in
93  * an execution list, if subsequent requests have the same ID as the first then
94  * the two requests must be combined. This is done simply by discarding requests
95  * at the head of the queue until either only one requests is left (in which case
96  * we use a NULL second context) or the first two requests have unique IDs.
97  *
98  * By always executing the first two requests in the queue the driver ensures
99  * that the GPU is kept as busy as possible. In the case where a single context
100  * completes but a second context is still executing, the request for this second
101  * context will be at the head of the queue when we remove the first one. This
102  * request will then be resubmitted along with a new request for a different context,
103  * which will cause the hardware to continue executing the second request and queue
104  * the new request (the GPU detects the condition of a context getting preempted
105  * with the same context and optimizes the context switch flow by not doing
106  * preemption, but just sampling the new tail pointer).
107  *
108  */
109 #include <linux/interrupt.h>
110 #include <linux/string_helpers.h>
111
112 #include "i915_drv.h"
113 #include "i915_trace.h"
114 #include "i915_vgpu.h"
115 #include "gen8_engine_cs.h"
116 #include "intel_breadcrumbs.h"
117 #include "intel_context.h"
118 #include "intel_engine_heartbeat.h"
119 #include "intel_engine_pm.h"
120 #include "intel_engine_regs.h"
121 #include "intel_engine_stats.h"
122 #include "intel_execlists_submission.h"
123 #include "intel_gt.h"
124 #include "intel_gt_irq.h"
125 #include "intel_gt_pm.h"
126 #include "intel_gt_regs.h"
127 #include "intel_gt_requests.h"
128 #include "intel_lrc.h"
129 #include "intel_lrc_reg.h"
130 #include "intel_mocs.h"
131 #include "intel_reset.h"
132 #include "intel_ring.h"
133 #include "intel_workarounds.h"
134 #include "shmem_utils.h"
135
136 #define RING_EXECLIST_QFULL             (1 << 0x2)
137 #define RING_EXECLIST1_VALID            (1 << 0x3)
138 #define RING_EXECLIST0_VALID            (1 << 0x4)
139 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
140 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
141 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
142
143 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
144 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
145 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
146 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
147 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
148 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
149
150 #define GEN8_CTX_STATUS_COMPLETED_MASK \
151          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
152
153 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE  (0x1) /* lower csb dword */
154 #define GEN12_CTX_SWITCH_DETAIL(csb_dw) ((csb_dw) & 0xF) /* upper csb dword */
155 #define GEN12_CSB_SW_CTX_ID_MASK                GENMASK(25, 15)
156 #define GEN12_IDLE_CTX_ID               0x7FF
157 #define GEN12_CSB_CTX_VALID(csb_dw) \
158         (FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
159
160 #define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE   BIT(1) /* upper csb dword */
161 #define XEHP_CSB_SW_CTX_ID_MASK                 GENMASK(31, 10)
162 #define XEHP_IDLE_CTX_ID                        0xFFFF
163 #define XEHP_CSB_CTX_VALID(csb_dw) \
164         (FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw) != XEHP_IDLE_CTX_ID)
165
166 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
167 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
168
169 struct virtual_engine {
170         struct intel_engine_cs base;
171         struct intel_context context;
172         struct rcu_work rcu;
173
174         /*
175          * We allow only a single request through the virtual engine at a time
176          * (each request in the timeline waits for the completion fence of
177          * the previous before being submitted). By restricting ourselves to
178          * only submitting a single request, each request is placed on to a
179          * physical to maximise load spreading (by virtue of the late greedy
180          * scheduling -- each real engine takes the next available request
181          * upon idling).
182          */
183         struct i915_request *request;
184
185         /*
186          * We keep a rbtree of available virtual engines inside each physical
187          * engine, sorted by priority. Here we preallocate the nodes we need
188          * for the virtual engine, indexed by physical_engine->id.
189          */
190         struct ve_node {
191                 struct rb_node rb;
192                 int prio;
193         } nodes[I915_NUM_ENGINES];
194
195         /* And finally, which physical engines this virtual engine maps onto. */
196         unsigned int num_siblings;
197         struct intel_engine_cs *siblings[];
198 };
199
200 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
201 {
202         GEM_BUG_ON(!intel_engine_is_virtual(engine));
203         return container_of(engine, struct virtual_engine, base);
204 }
205
206 static struct intel_context *
207 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
208                          unsigned long flags);
209
210 static struct i915_request *
211 __active_request(const struct intel_timeline * const tl,
212                  struct i915_request *rq,
213                  int error)
214 {
215         struct i915_request *active = rq;
216
217         list_for_each_entry_from_reverse(rq, &tl->requests, link) {
218                 if (__i915_request_is_complete(rq))
219                         break;
220
221                 if (error) {
222                         i915_request_set_error_once(rq, error);
223                         __i915_request_skip(rq);
224                 }
225                 active = rq;
226         }
227
228         return active;
229 }
230
231 static struct i915_request *
232 active_request(const struct intel_timeline * const tl, struct i915_request *rq)
233 {
234         return __active_request(tl, rq, 0);
235 }
236
237 static void ring_set_paused(const struct intel_engine_cs *engine, int state)
238 {
239         /*
240          * We inspect HWS_PREEMPT with a semaphore inside
241          * engine->emit_fini_breadcrumb. If the dword is true,
242          * the ring is paused as the semaphore will busywait
243          * until the dword is false.
244          */
245         engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
246         if (state)
247                 wmb();
248 }
249
250 static struct i915_priolist *to_priolist(struct rb_node *rb)
251 {
252         return rb_entry(rb, struct i915_priolist, node);
253 }
254
255 static int rq_prio(const struct i915_request *rq)
256 {
257         return READ_ONCE(rq->sched.attr.priority);
258 }
259
260 static int effective_prio(const struct i915_request *rq)
261 {
262         int prio = rq_prio(rq);
263
264         /*
265          * If this request is special and must not be interrupted at any
266          * cost, so be it. Note we are only checking the most recent request
267          * in the context and so may be masking an earlier vip request. It
268          * is hoped that under the conditions where nopreempt is used, this
269          * will not matter (i.e. all requests to that context will be
270          * nopreempt for as long as desired).
271          */
272         if (i915_request_has_nopreempt(rq))
273                 prio = I915_PRIORITY_UNPREEMPTABLE;
274
275         return prio;
276 }
277
278 static int queue_prio(const struct i915_sched_engine *sched_engine)
279 {
280         struct rb_node *rb;
281
282         rb = rb_first_cached(&sched_engine->queue);
283         if (!rb)
284                 return INT_MIN;
285
286         return to_priolist(rb)->priority;
287 }
288
289 static int virtual_prio(const struct intel_engine_execlists *el)
290 {
291         struct rb_node *rb = rb_first_cached(&el->virtual);
292
293         return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
294 }
295
296 static bool need_preempt(const struct intel_engine_cs *engine,
297                          const struct i915_request *rq)
298 {
299         int last_prio;
300
301         if (!intel_engine_has_semaphores(engine))
302                 return false;
303
304         /*
305          * Check if the current priority hint merits a preemption attempt.
306          *
307          * We record the highest value priority we saw during rescheduling
308          * prior to this dequeue, therefore we know that if it is strictly
309          * less than the current tail of ESLP[0], we do not need to force
310          * a preempt-to-idle cycle.
311          *
312          * However, the priority hint is a mere hint that we may need to
313          * preempt. If that hint is stale or we may be trying to preempt
314          * ourselves, ignore the request.
315          *
316          * More naturally we would write
317          *      prio >= max(0, last);
318          * except that we wish to prevent triggering preemption at the same
319          * priority level: the task that is running should remain running
320          * to preserve FIFO ordering of dependencies.
321          */
322         last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
323         if (engine->sched_engine->queue_priority_hint <= last_prio)
324                 return false;
325
326         /*
327          * Check against the first request in ELSP[1], it will, thanks to the
328          * power of PI, be the highest priority of that context.
329          */
330         if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) &&
331             rq_prio(list_next_entry(rq, sched.link)) > last_prio)
332                 return true;
333
334         /*
335          * If the inflight context did not trigger the preemption, then maybe
336          * it was the set of queued requests? Pick the highest priority in
337          * the queue (the first active priolist) and see if it deserves to be
338          * running instead of ELSP[0].
339          *
340          * The highest priority request in the queue can not be either
341          * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
342          * context, it's priority would not exceed ELSP[0] aka last_prio.
343          */
344         return max(virtual_prio(&engine->execlists),
345                    queue_prio(engine->sched_engine)) > last_prio;
346 }
347
348 __maybe_unused static bool
349 assert_priority_queue(const struct i915_request *prev,
350                       const struct i915_request *next)
351 {
352         /*
353          * Without preemption, the prev may refer to the still active element
354          * which we refuse to let go.
355          *
356          * Even with preemption, there are times when we think it is better not
357          * to preempt and leave an ostensibly lower priority request in flight.
358          */
359         if (i915_request_is_active(prev))
360                 return true;
361
362         return rq_prio(prev) >= rq_prio(next);
363 }
364
365 static struct i915_request *
366 __unwind_incomplete_requests(struct intel_engine_cs *engine)
367 {
368         struct i915_request *rq, *rn, *active = NULL;
369         struct list_head *pl;
370         int prio = I915_PRIORITY_INVALID;
371
372         lockdep_assert_held(&engine->sched_engine->lock);
373
374         list_for_each_entry_safe_reverse(rq, rn,
375                                          &engine->sched_engine->requests,
376                                          sched.link) {
377                 if (__i915_request_is_complete(rq)) {
378                         list_del_init(&rq->sched.link);
379                         continue;
380                 }
381
382                 __i915_request_unsubmit(rq);
383
384                 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
385                 if (rq_prio(rq) != prio) {
386                         prio = rq_prio(rq);
387                         pl = i915_sched_lookup_priolist(engine->sched_engine,
388                                                         prio);
389                 }
390                 GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
391
392                 list_move(&rq->sched.link, pl);
393                 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
394
395                 /* Check in case we rollback so far we wrap [size/2] */
396                 if (intel_ring_direction(rq->ring,
397                                          rq->tail,
398                                          rq->ring->tail + 8) > 0)
399                         rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
400
401                 active = rq;
402         }
403
404         return active;
405 }
406
407 struct i915_request *
408 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
409 {
410         struct intel_engine_cs *engine =
411                 container_of(execlists, typeof(*engine), execlists);
412
413         return __unwind_incomplete_requests(engine);
414 }
415
416 static void
417 execlists_context_status_change(struct i915_request *rq, unsigned long status)
418 {
419         /*
420          * Only used when GVT-g is enabled now. When GVT-g is disabled,
421          * The compiler should eliminate this function as dead-code.
422          */
423         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
424                 return;
425
426         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
427                                    status, rq);
428 }
429
430 static void reset_active(struct i915_request *rq,
431                          struct intel_engine_cs *engine)
432 {
433         struct intel_context * const ce = rq->context;
434         u32 head;
435
436         /*
437          * The executing context has been cancelled. We want to prevent
438          * further execution along this context and propagate the error on
439          * to anything depending on its results.
440          *
441          * In __i915_request_submit(), we apply the -EIO and remove the
442          * requests' payloads for any banned requests. But first, we must
443          * rewind the context back to the start of the incomplete request so
444          * that we do not jump back into the middle of the batch.
445          *
446          * We preserve the breadcrumbs and semaphores of the incomplete
447          * requests so that inter-timeline dependencies (i.e other timelines)
448          * remain correctly ordered. And we defer to __i915_request_submit()
449          * so that all asynchronous waits are correctly handled.
450          */
451         ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
452                      rq->fence.context, rq->fence.seqno);
453
454         /* On resubmission of the active request, payload will be scrubbed */
455         if (__i915_request_is_complete(rq))
456                 head = rq->tail;
457         else
458                 head = __active_request(ce->timeline, rq, -EIO)->head;
459         head = intel_ring_wrap(ce->ring, head);
460
461         /* Scrub the context image to prevent replaying the previous batch */
462         lrc_init_regs(ce, engine, true);
463
464         /* We've switched away, so this should be a no-op, but intent matters */
465         ce->lrc.lrca = lrc_update_regs(ce, engine, head);
466 }
467
468 static bool bad_request(const struct i915_request *rq)
469 {
470         return rq->fence.error && i915_request_started(rq);
471 }
472
473 static struct intel_engine_cs *
474 __execlists_schedule_in(struct i915_request *rq)
475 {
476         struct intel_engine_cs * const engine = rq->engine;
477         struct intel_context * const ce = rq->context;
478
479         intel_context_get(ce);
480
481         if (unlikely(intel_context_is_closed(ce) &&
482                      !intel_engine_has_heartbeat(engine)))
483                 intel_context_set_exiting(ce);
484
485         if (unlikely(!intel_context_is_schedulable(ce) || bad_request(rq)))
486                 reset_active(rq, engine);
487
488         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
489                 lrc_check_regs(ce, engine, "before");
490
491         if (ce->tag) {
492                 /* Use a fixed tag for OA and friends */
493                 GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
494                 ce->lrc.ccid = ce->tag;
495         } else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
496                 /* We don't need a strict matching tag, just different values */
497                 unsigned int tag = ffs(READ_ONCE(engine->context_tag));
498
499                 GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
500                 clear_bit(tag - 1, &engine->context_tag);
501                 ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT - 32);
502
503                 BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
504
505         } else {
506                 /* We don't need a strict matching tag, just different values */
507                 unsigned int tag = __ffs(engine->context_tag);
508
509                 GEM_BUG_ON(tag >= BITS_PER_LONG);
510                 __clear_bit(tag, &engine->context_tag);
511                 ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
512
513                 BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
514         }
515
516         ce->lrc.ccid |= engine->execlists.ccid;
517
518         __intel_gt_pm_get(engine->gt);
519         if (engine->fw_domain && !engine->fw_active++)
520                 intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
521         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
522         intel_engine_context_in(engine);
523
524         CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
525
526         return engine;
527 }
528
529 static void execlists_schedule_in(struct i915_request *rq, int idx)
530 {
531         struct intel_context * const ce = rq->context;
532         struct intel_engine_cs *old;
533
534         GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
535         trace_i915_request_in(rq, idx);
536
537         old = ce->inflight;
538         if (!old)
539                 old = __execlists_schedule_in(rq);
540         WRITE_ONCE(ce->inflight, ptr_inc(old));
541
542         GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
543 }
544
545 static void
546 resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
547 {
548         struct intel_engine_cs *engine = rq->engine;
549
550         spin_lock_irq(&engine->sched_engine->lock);
551
552         clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
553         WRITE_ONCE(rq->engine, &ve->base);
554         ve->base.submit_request(rq);
555
556         spin_unlock_irq(&engine->sched_engine->lock);
557 }
558
559 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
560 {
561         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
562         struct intel_engine_cs *engine = rq->engine;
563
564         /*
565          * After this point, the rq may be transferred to a new sibling, so
566          * before we clear ce->inflight make sure that the context has been
567          * removed from the b->signalers and furthermore we need to make sure
568          * that the concurrent iterator in signal_irq_work is no longer
569          * following ce->signal_link.
570          */
571         if (!list_empty(&ce->signals))
572                 intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
573
574         /*
575          * This engine is now too busy to run this virtual request, so
576          * see if we can find an alternative engine for it to execute on.
577          * Once a request has become bonded to this engine, we treat it the
578          * same as other native request.
579          */
580         if (i915_request_in_priority_queue(rq) &&
581             rq->execution_mask != engine->mask)
582                 resubmit_virtual_request(rq, ve);
583
584         if (READ_ONCE(ve->request))
585                 tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
586 }
587
588 static void __execlists_schedule_out(struct i915_request * const rq,
589                                      struct intel_context * const ce)
590 {
591         struct intel_engine_cs * const engine = rq->engine;
592         unsigned int ccid;
593
594         /*
595          * NB process_csb() is not under the engine->sched_engine->lock and hence
596          * schedule_out can race with schedule_in meaning that we should
597          * refrain from doing non-trivial work here.
598          */
599
600         CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
601         GEM_BUG_ON(ce->inflight != engine);
602
603         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
604                 lrc_check_regs(ce, engine, "after");
605
606         /*
607          * If we have just completed this context, the engine may now be
608          * idle and we want to re-enter powersaving.
609          */
610         if (intel_timeline_is_last(ce->timeline, rq) &&
611             __i915_request_is_complete(rq))
612                 intel_engine_add_retire(engine, ce->timeline);
613
614         ccid = ce->lrc.ccid;
615         if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
616                 ccid >>= XEHP_SW_CTX_ID_SHIFT - 32;
617                 ccid &= XEHP_MAX_CONTEXT_HW_ID;
618         } else {
619                 ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
620                 ccid &= GEN12_MAX_CONTEXT_HW_ID;
621         }
622
623         if (ccid < BITS_PER_LONG) {
624                 GEM_BUG_ON(ccid == 0);
625                 GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
626                 __set_bit(ccid - 1, &engine->context_tag);
627         }
628         intel_engine_context_out(engine);
629         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
630         if (engine->fw_domain && !--engine->fw_active)
631                 intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
632         intel_gt_pm_put_async(engine->gt);
633
634         /*
635          * If this is part of a virtual engine, its next request may
636          * have been blocked waiting for access to the active context.
637          * We have to kick all the siblings again in case we need to
638          * switch (e.g. the next request is not runnable on this
639          * engine). Hopefully, we will already have submitted the next
640          * request before the tasklet runs and do not need to rebuild
641          * each virtual tree and kick everyone again.
642          */
643         if (ce->engine != engine)
644                 kick_siblings(rq, ce);
645
646         WRITE_ONCE(ce->inflight, NULL);
647         intel_context_put(ce);
648 }
649
650 static inline void execlists_schedule_out(struct i915_request *rq)
651 {
652         struct intel_context * const ce = rq->context;
653
654         trace_i915_request_out(rq);
655
656         GEM_BUG_ON(!ce->inflight);
657         ce->inflight = ptr_dec(ce->inflight);
658         if (!__intel_context_inflight_count(ce->inflight))
659                 __execlists_schedule_out(rq, ce);
660
661         i915_request_put(rq);
662 }
663
664 static u32 map_i915_prio_to_lrc_desc_prio(int prio)
665 {
666         if (prio > I915_PRIORITY_NORMAL)
667                 return GEN12_CTX_PRIORITY_HIGH;
668         else if (prio < I915_PRIORITY_NORMAL)
669                 return GEN12_CTX_PRIORITY_LOW;
670         else
671                 return GEN12_CTX_PRIORITY_NORMAL;
672 }
673
674 static u64 execlists_update_context(struct i915_request *rq)
675 {
676         struct intel_context *ce = rq->context;
677         u64 desc;
678         u32 tail, prev;
679
680         desc = ce->lrc.desc;
681         if (rq->engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
682                 desc |= map_i915_prio_to_lrc_desc_prio(rq_prio(rq));
683
684         /*
685          * WaIdleLiteRestore:bdw,skl
686          *
687          * We should never submit the context with the same RING_TAIL twice
688          * just in case we submit an empty ring, which confuses the HW.
689          *
690          * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
691          * the normal request to be able to always advance the RING_TAIL on
692          * subsequent resubmissions (for lite restore). Should that fail us,
693          * and we try and submit the same tail again, force the context
694          * reload.
695          *
696          * If we need to return to a preempted context, we need to skip the
697          * lite-restore and force it to reload the RING_TAIL. Otherwise, the
698          * HW has a tendency to ignore us rewinding the TAIL to the end of
699          * an earlier request.
700          */
701         GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
702         prev = rq->ring->tail;
703         tail = intel_ring_set_tail(rq->ring, rq->tail);
704         if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
705                 desc |= CTX_DESC_FORCE_RESTORE;
706         ce->lrc_reg_state[CTX_RING_TAIL] = tail;
707         rq->tail = rq->wa_tail;
708
709         /*
710          * Make sure the context image is complete before we submit it to HW.
711          *
712          * Ostensibly, writes (including the WCB) should be flushed prior to
713          * an uncached write such as our mmio register access, the empirical
714          * evidence (esp. on Braswell) suggests that the WC write into memory
715          * may not be visible to the HW prior to the completion of the UC
716          * register write and that we may begin execution from the context
717          * before its image is complete leading to invalid PD chasing.
718          */
719         wmb();
720
721         ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
722         return desc;
723 }
724
725 static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
726 {
727         if (execlists->ctrl_reg) {
728                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
729                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
730         } else {
731                 writel(upper_32_bits(desc), execlists->submit_reg);
732                 writel(lower_32_bits(desc), execlists->submit_reg);
733         }
734 }
735
736 static __maybe_unused char *
737 dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
738 {
739         if (!rq)
740                 return "";
741
742         snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
743                  prefix,
744                  rq->context->lrc.ccid,
745                  rq->fence.context, rq->fence.seqno,
746                  __i915_request_is_complete(rq) ? "!" :
747                  __i915_request_has_started(rq) ? "*" :
748                  "",
749                  rq_prio(rq));
750
751         return buf;
752 }
753
754 static __maybe_unused noinline void
755 trace_ports(const struct intel_engine_execlists *execlists,
756             const char *msg,
757             struct i915_request * const *ports)
758 {
759         const struct intel_engine_cs *engine =
760                 container_of(execlists, typeof(*engine), execlists);
761         char __maybe_unused p0[40], p1[40];
762
763         if (!ports[0])
764                 return;
765
766         ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
767                      dump_port(p0, sizeof(p0), "", ports[0]),
768                      dump_port(p1, sizeof(p1), ", ", ports[1]));
769 }
770
771 static bool
772 reset_in_progress(const struct intel_engine_cs *engine)
773 {
774         return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet));
775 }
776
777 static __maybe_unused noinline bool
778 assert_pending_valid(const struct intel_engine_execlists *execlists,
779                      const char *msg)
780 {
781         struct intel_engine_cs *engine =
782                 container_of(execlists, typeof(*engine), execlists);
783         struct i915_request * const *port, *rq, *prev = NULL;
784         struct intel_context *ce = NULL;
785         u32 ccid = -1;
786
787         trace_ports(execlists, msg, execlists->pending);
788
789         /* We may be messing around with the lists during reset, lalala */
790         if (reset_in_progress(engine))
791                 return true;
792
793         if (!execlists->pending[0]) {
794                 GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
795                               engine->name);
796                 return false;
797         }
798
799         if (execlists->pending[execlists_num_ports(execlists)]) {
800                 GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
801                               engine->name, execlists_num_ports(execlists));
802                 return false;
803         }
804
805         for (port = execlists->pending; (rq = *port); port++) {
806                 unsigned long flags;
807                 bool ok = true;
808
809                 GEM_BUG_ON(!kref_read(&rq->fence.refcount));
810                 GEM_BUG_ON(!i915_request_is_active(rq));
811
812                 if (ce == rq->context) {
813                         GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
814                                       engine->name,
815                                       ce->timeline->fence_context,
816                                       port - execlists->pending);
817                         return false;
818                 }
819                 ce = rq->context;
820
821                 if (ccid == ce->lrc.ccid) {
822                         GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
823                                       engine->name,
824                                       ccid, ce->timeline->fence_context,
825                                       port - execlists->pending);
826                         return false;
827                 }
828                 ccid = ce->lrc.ccid;
829
830                 /*
831                  * Sentinels are supposed to be the last request so they flush
832                  * the current execution off the HW. Check that they are the only
833                  * request in the pending submission.
834                  *
835                  * NB: Due to the async nature of preempt-to-busy and request
836                  * cancellation we need to handle the case where request
837                  * becomes a sentinel in parallel to CSB processing.
838                  */
839                 if (prev && i915_request_has_sentinel(prev) &&
840                     !READ_ONCE(prev->fence.error)) {
841                         GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
842                                       engine->name,
843                                       ce->timeline->fence_context,
844                                       port - execlists->pending);
845                         return false;
846                 }
847                 prev = rq;
848
849                 /*
850                  * We want virtual requests to only be in the first slot so
851                  * that they are never stuck behind a hog and can be immediately
852                  * transferred onto the next idle engine.
853                  */
854                 if (rq->execution_mask != engine->mask &&
855                     port != execlists->pending) {
856                         GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
857                                       engine->name,
858                                       ce->timeline->fence_context,
859                                       port - execlists->pending);
860                         return false;
861                 }
862
863                 /* Hold tightly onto the lock to prevent concurrent retires! */
864                 if (!spin_trylock_irqsave(&rq->lock, flags))
865                         continue;
866
867                 if (__i915_request_is_complete(rq))
868                         goto unlock;
869
870                 if (i915_active_is_idle(&ce->active) &&
871                     !intel_context_is_barrier(ce)) {
872                         GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
873                                       engine->name,
874                                       ce->timeline->fence_context,
875                                       port - execlists->pending);
876                         ok = false;
877                         goto unlock;
878                 }
879
880                 if (!i915_vma_is_pinned(ce->state)) {
881                         GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
882                                       engine->name,
883                                       ce->timeline->fence_context,
884                                       port - execlists->pending);
885                         ok = false;
886                         goto unlock;
887                 }
888
889                 if (!i915_vma_is_pinned(ce->ring->vma)) {
890                         GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
891                                       engine->name,
892                                       ce->timeline->fence_context,
893                                       port - execlists->pending);
894                         ok = false;
895                         goto unlock;
896                 }
897
898 unlock:
899                 spin_unlock_irqrestore(&rq->lock, flags);
900                 if (!ok)
901                         return false;
902         }
903
904         return ce;
905 }
906
907 static void execlists_submit_ports(struct intel_engine_cs *engine)
908 {
909         struct intel_engine_execlists *execlists = &engine->execlists;
910         unsigned int n;
911
912         GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
913
914         /*
915          * We can skip acquiring intel_runtime_pm_get() here as it was taken
916          * on our behalf by the request (see i915_gem_mark_busy()) and it will
917          * not be relinquished until the device is idle (see
918          * i915_gem_idle_work_handler()). As a precaution, we make sure
919          * that all ELSP are drained i.e. we have processed the CSB,
920          * before allowing ourselves to idle and calling intel_runtime_pm_put().
921          */
922         GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
923
924         /*
925          * ELSQ note: the submit queue is not cleared after being submitted
926          * to the HW so we need to make sure we always clean it up. This is
927          * currently ensured by the fact that we always write the same number
928          * of elsq entries, keep this in mind before changing the loop below.
929          */
930         for (n = execlists_num_ports(execlists); n--; ) {
931                 struct i915_request *rq = execlists->pending[n];
932
933                 write_desc(execlists,
934                            rq ? execlists_update_context(rq) : 0,
935                            n);
936         }
937
938         /* we need to manually load the submit queue */
939         if (execlists->ctrl_reg)
940                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
941 }
942
943 static bool ctx_single_port_submission(const struct intel_context *ce)
944 {
945         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
946                 intel_context_force_single_submission(ce));
947 }
948
949 static bool can_merge_ctx(const struct intel_context *prev,
950                           const struct intel_context *next)
951 {
952         if (prev != next)
953                 return false;
954
955         if (ctx_single_port_submission(prev))
956                 return false;
957
958         return true;
959 }
960
961 static unsigned long i915_request_flags(const struct i915_request *rq)
962 {
963         return READ_ONCE(rq->fence.flags);
964 }
965
966 static bool can_merge_rq(const struct i915_request *prev,
967                          const struct i915_request *next)
968 {
969         GEM_BUG_ON(prev == next);
970         GEM_BUG_ON(!assert_priority_queue(prev, next));
971
972         /*
973          * We do not submit known completed requests. Therefore if the next
974          * request is already completed, we can pretend to merge it in
975          * with the previous context (and we will skip updating the ELSP
976          * and tracking). Thus hopefully keeping the ELSP full with active
977          * contexts, despite the best efforts of preempt-to-busy to confuse
978          * us.
979          */
980         if (__i915_request_is_complete(next))
981                 return true;
982
983         if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
984                      (BIT(I915_FENCE_FLAG_NOPREEMPT) |
985                       BIT(I915_FENCE_FLAG_SENTINEL))))
986                 return false;
987
988         if (!can_merge_ctx(prev->context, next->context))
989                 return false;
990
991         GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
992         return true;
993 }
994
995 static bool virtual_matches(const struct virtual_engine *ve,
996                             const struct i915_request *rq,
997                             const struct intel_engine_cs *engine)
998 {
999         const struct intel_engine_cs *inflight;
1000
1001         if (!rq)
1002                 return false;
1003
1004         if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
1005                 return false;
1006
1007         /*
1008          * We track when the HW has completed saving the context image
1009          * (i.e. when we have seen the final CS event switching out of
1010          * the context) and must not overwrite the context image before
1011          * then. This restricts us to only using the active engine
1012          * while the previous virtualized request is inflight (so
1013          * we reuse the register offsets). This is a very small
1014          * hystersis on the greedy seelction algorithm.
1015          */
1016         inflight = intel_context_inflight(&ve->context);
1017         if (inflight && inflight != engine)
1018                 return false;
1019
1020         return true;
1021 }
1022
1023 static struct virtual_engine *
1024 first_virtual_engine(struct intel_engine_cs *engine)
1025 {
1026         struct intel_engine_execlists *el = &engine->execlists;
1027         struct rb_node *rb = rb_first_cached(&el->virtual);
1028
1029         while (rb) {
1030                 struct virtual_engine *ve =
1031                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1032                 struct i915_request *rq = READ_ONCE(ve->request);
1033
1034                 /* lazily cleanup after another engine handled rq */
1035                 if (!rq || !virtual_matches(ve, rq, engine)) {
1036                         rb_erase_cached(rb, &el->virtual);
1037                         RB_CLEAR_NODE(rb);
1038                         rb = rb_first_cached(&el->virtual);
1039                         continue;
1040                 }
1041
1042                 return ve;
1043         }
1044
1045         return NULL;
1046 }
1047
1048 static void virtual_xfer_context(struct virtual_engine *ve,
1049                                  struct intel_engine_cs *engine)
1050 {
1051         unsigned int n;
1052
1053         if (likely(engine == ve->siblings[0]))
1054                 return;
1055
1056         GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1057         if (!intel_engine_has_relative_mmio(engine))
1058                 lrc_update_offsets(&ve->context, engine);
1059
1060         /*
1061          * Move the bound engine to the top of the list for
1062          * future execution. We then kick this tasklet first
1063          * before checking others, so that we preferentially
1064          * reuse this set of bound registers.
1065          */
1066         for (n = 1; n < ve->num_siblings; n++) {
1067                 if (ve->siblings[n] == engine) {
1068                         swap(ve->siblings[n], ve->siblings[0]);
1069                         break;
1070                 }
1071         }
1072 }
1073
1074 static void defer_request(struct i915_request *rq, struct list_head * const pl)
1075 {
1076         LIST_HEAD(list);
1077
1078         /*
1079          * We want to move the interrupted request to the back of
1080          * the round-robin list (i.e. its priority level), but
1081          * in doing so, we must then move all requests that were in
1082          * flight and were waiting for the interrupted request to
1083          * be run after it again.
1084          */
1085         do {
1086                 struct i915_dependency *p;
1087
1088                 GEM_BUG_ON(i915_request_is_active(rq));
1089                 list_move_tail(&rq->sched.link, pl);
1090
1091                 for_each_waiter(p, rq) {
1092                         struct i915_request *w =
1093                                 container_of(p->waiter, typeof(*w), sched);
1094
1095                         if (p->flags & I915_DEPENDENCY_WEAK)
1096                                 continue;
1097
1098                         /* Leave semaphores spinning on the other engines */
1099                         if (w->engine != rq->engine)
1100                                 continue;
1101
1102                         /* No waiter should start before its signaler */
1103                         GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1104                                    __i915_request_has_started(w) &&
1105                                    !__i915_request_is_complete(rq));
1106
1107                         if (!i915_request_is_ready(w))
1108                                 continue;
1109
1110                         if (rq_prio(w) < rq_prio(rq))
1111                                 continue;
1112
1113                         GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1114                         GEM_BUG_ON(i915_request_is_active(w));
1115                         list_move_tail(&w->sched.link, &list);
1116                 }
1117
1118                 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1119         } while (rq);
1120 }
1121
1122 static void defer_active(struct intel_engine_cs *engine)
1123 {
1124         struct i915_request *rq;
1125
1126         rq = __unwind_incomplete_requests(engine);
1127         if (!rq)
1128                 return;
1129
1130         defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine,
1131                                                      rq_prio(rq)));
1132 }
1133
1134 static bool
1135 timeslice_yield(const struct intel_engine_execlists *el,
1136                 const struct i915_request *rq)
1137 {
1138         /*
1139          * Once bitten, forever smitten!
1140          *
1141          * If the active context ever busy-waited on a semaphore,
1142          * it will be treated as a hog until the end of its timeslice (i.e.
1143          * until it is scheduled out and replaced by a new submission,
1144          * possibly even its own lite-restore). The HW only sends an interrupt
1145          * on the first miss, and we do know if that semaphore has been
1146          * signaled, or even if it is now stuck on another semaphore. Play
1147          * safe, yield if it might be stuck -- it will be given a fresh
1148          * timeslice in the near future.
1149          */
1150         return rq->context->lrc.ccid == READ_ONCE(el->yield);
1151 }
1152
1153 static bool needs_timeslice(const struct intel_engine_cs *engine,
1154                             const struct i915_request *rq)
1155 {
1156         if (!intel_engine_has_timeslices(engine))
1157                 return false;
1158
1159         /* If not currently active, or about to switch, wait for next event */
1160         if (!rq || __i915_request_is_complete(rq))
1161                 return false;
1162
1163         /* We do not need to start the timeslice until after the ACK */
1164         if (READ_ONCE(engine->execlists.pending[0]))
1165                 return false;
1166
1167         /* If ELSP[1] is occupied, always check to see if worth slicing */
1168         if (!list_is_last_rcu(&rq->sched.link,
1169                               &engine->sched_engine->requests)) {
1170                 ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1171                 return true;
1172         }
1173
1174         /* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1175         if (!i915_sched_engine_is_empty(engine->sched_engine)) {
1176                 ENGINE_TRACE(engine, "timeslice required for queue\n");
1177                 return true;
1178         }
1179
1180         if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1181                 ENGINE_TRACE(engine, "timeslice required for virtual\n");
1182                 return true;
1183         }
1184
1185         return false;
1186 }
1187
1188 static bool
1189 timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1190 {
1191         const struct intel_engine_execlists *el = &engine->execlists;
1192
1193         if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1194                 return false;
1195
1196         if (!needs_timeslice(engine, rq))
1197                 return false;
1198
1199         return timer_expired(&el->timer) || timeslice_yield(el, rq);
1200 }
1201
1202 static unsigned long timeslice(const struct intel_engine_cs *engine)
1203 {
1204         return READ_ONCE(engine->props.timeslice_duration_ms);
1205 }
1206
1207 static void start_timeslice(struct intel_engine_cs *engine)
1208 {
1209         struct intel_engine_execlists *el = &engine->execlists;
1210         unsigned long duration;
1211
1212         /* Disable the timer if there is nothing to switch to */
1213         duration = 0;
1214         if (needs_timeslice(engine, *el->active)) {
1215                 /* Avoid continually prolonging an active timeslice */
1216                 if (timer_active(&el->timer)) {
1217                         /*
1218                          * If we just submitted a new ELSP after an old
1219                          * context, that context may have already consumed
1220                          * its timeslice, so recheck.
1221                          */
1222                         if (!timer_pending(&el->timer))
1223                                 tasklet_hi_schedule(&engine->sched_engine->tasklet);
1224                         return;
1225                 }
1226
1227                 duration = timeslice(engine);
1228         }
1229
1230         set_timer_ms(&el->timer, duration);
1231 }
1232
1233 static void record_preemption(struct intel_engine_execlists *execlists)
1234 {
1235         (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1236 }
1237
1238 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1239                                             const struct i915_request *rq)
1240 {
1241         if (!rq)
1242                 return 0;
1243
1244         /* Only allow ourselves to force reset the currently active context */
1245         engine->execlists.preempt_target = rq;
1246
1247         /* Force a fast reset for terminated contexts (ignoring sysfs!) */
1248         if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1249                 return INTEL_CONTEXT_BANNED_PREEMPT_TIMEOUT_MS;
1250
1251         return READ_ONCE(engine->props.preempt_timeout_ms);
1252 }
1253
1254 static void set_preempt_timeout(struct intel_engine_cs *engine,
1255                                 const struct i915_request *rq)
1256 {
1257         if (!intel_engine_has_preempt_reset(engine))
1258                 return;
1259
1260         set_timer_ms(&engine->execlists.preempt,
1261                      active_preempt_timeout(engine, rq));
1262 }
1263
1264 static bool completed(const struct i915_request *rq)
1265 {
1266         if (i915_request_has_sentinel(rq))
1267                 return false;
1268
1269         return __i915_request_is_complete(rq);
1270 }
1271
1272 static void execlists_dequeue(struct intel_engine_cs *engine)
1273 {
1274         struct intel_engine_execlists * const execlists = &engine->execlists;
1275         struct i915_sched_engine * const sched_engine = engine->sched_engine;
1276         struct i915_request **port = execlists->pending;
1277         struct i915_request ** const last_port = port + execlists->port_mask;
1278         struct i915_request *last, * const *active;
1279         struct virtual_engine *ve;
1280         struct rb_node *rb;
1281         bool submit = false;
1282
1283         /*
1284          * Hardware submission is through 2 ports. Conceptually each port
1285          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1286          * static for a context, and unique to each, so we only execute
1287          * requests belonging to a single context from each ring. RING_HEAD
1288          * is maintained by the CS in the context image, it marks the place
1289          * where it got up to last time, and through RING_TAIL we tell the CS
1290          * where we want to execute up to this time.
1291          *
1292          * In this list the requests are in order of execution. Consecutive
1293          * requests from the same context are adjacent in the ringbuffer. We
1294          * can combine these requests into a single RING_TAIL update:
1295          *
1296          *              RING_HEAD...req1...req2
1297          *                                    ^- RING_TAIL
1298          * since to execute req2 the CS must first execute req1.
1299          *
1300          * Our goal then is to point each port to the end of a consecutive
1301          * sequence of requests as being the most optimal (fewest wake ups
1302          * and context switches) submission.
1303          */
1304
1305         spin_lock(&sched_engine->lock);
1306
1307         /*
1308          * If the queue is higher priority than the last
1309          * request in the currently active context, submit afresh.
1310          * We will resubmit again afterwards in case we need to split
1311          * the active context to interject the preemption request,
1312          * i.e. we will retrigger preemption following the ack in case
1313          * of trouble.
1314          *
1315          */
1316         active = execlists->active;
1317         while ((last = *active) && completed(last))
1318                 active++;
1319
1320         if (last) {
1321                 if (need_preempt(engine, last)) {
1322                         ENGINE_TRACE(engine,
1323                                      "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1324                                      last->fence.context,
1325                                      last->fence.seqno,
1326                                      last->sched.attr.priority,
1327                                      sched_engine->queue_priority_hint);
1328                         record_preemption(execlists);
1329
1330                         /*
1331                          * Don't let the RING_HEAD advance past the breadcrumb
1332                          * as we unwind (and until we resubmit) so that we do
1333                          * not accidentally tell it to go backwards.
1334                          */
1335                         ring_set_paused(engine, 1);
1336
1337                         /*
1338                          * Note that we have not stopped the GPU at this point,
1339                          * so we are unwinding the incomplete requests as they
1340                          * remain inflight and so by the time we do complete
1341                          * the preemption, some of the unwound requests may
1342                          * complete!
1343                          */
1344                         __unwind_incomplete_requests(engine);
1345
1346                         last = NULL;
1347                 } else if (timeslice_expired(engine, last)) {
1348                         ENGINE_TRACE(engine,
1349                                      "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1350                                      str_yes_no(timer_expired(&execlists->timer)),
1351                                      last->fence.context, last->fence.seqno,
1352                                      rq_prio(last),
1353                                      sched_engine->queue_priority_hint,
1354                                      str_yes_no(timeslice_yield(execlists, last)));
1355
1356                         /*
1357                          * Consume this timeslice; ensure we start a new one.
1358                          *
1359                          * The timeslice expired, and we will unwind the
1360                          * running contexts and recompute the next ELSP.
1361                          * If that submit will be the same pair of contexts
1362                          * (due to dependency ordering), we will skip the
1363                          * submission. If we don't cancel the timer now,
1364                          * we will see that the timer has expired and
1365                          * reschedule the tasklet; continually until the
1366                          * next context switch or other preemption event.
1367                          *
1368                          * Since we have decided to reschedule based on
1369                          * consumption of this timeslice, if we submit the
1370                          * same context again, grant it a full timeslice.
1371                          */
1372                         cancel_timer(&execlists->timer);
1373                         ring_set_paused(engine, 1);
1374                         defer_active(engine);
1375
1376                         /*
1377                          * Unlike for preemption, if we rewind and continue
1378                          * executing the same context as previously active,
1379                          * the order of execution will remain the same and
1380                          * the tail will only advance. We do not need to
1381                          * force a full context restore, as a lite-restore
1382                          * is sufficient to resample the monotonic TAIL.
1383                          *
1384                          * If we switch to any other context, similarly we
1385                          * will not rewind TAIL of current context, and
1386                          * normal save/restore will preserve state and allow
1387                          * us to later continue executing the same request.
1388                          */
1389                         last = NULL;
1390                 } else {
1391                         /*
1392                          * Otherwise if we already have a request pending
1393                          * for execution after the current one, we can
1394                          * just wait until the next CS event before
1395                          * queuing more. In either case we will force a
1396                          * lite-restore preemption event, but if we wait
1397                          * we hopefully coalesce several updates into a single
1398                          * submission.
1399                          */
1400                         if (active[1]) {
1401                                 /*
1402                                  * Even if ELSP[1] is occupied and not worthy
1403                                  * of timeslices, our queue might be.
1404                                  */
1405                                 spin_unlock(&sched_engine->lock);
1406                                 return;
1407                         }
1408                 }
1409         }
1410
1411         /* XXX virtual is always taking precedence */
1412         while ((ve = first_virtual_engine(engine))) {
1413                 struct i915_request *rq;
1414
1415                 spin_lock(&ve->base.sched_engine->lock);
1416
1417                 rq = ve->request;
1418                 if (unlikely(!virtual_matches(ve, rq, engine)))
1419                         goto unlock; /* lost the race to a sibling */
1420
1421                 GEM_BUG_ON(rq->engine != &ve->base);
1422                 GEM_BUG_ON(rq->context != &ve->context);
1423
1424                 if (unlikely(rq_prio(rq) < queue_prio(sched_engine))) {
1425                         spin_unlock(&ve->base.sched_engine->lock);
1426                         break;
1427                 }
1428
1429                 if (last && !can_merge_rq(last, rq)) {
1430                         spin_unlock(&ve->base.sched_engine->lock);
1431                         spin_unlock(&engine->sched_engine->lock);
1432                         return; /* leave this for another sibling */
1433                 }
1434
1435                 ENGINE_TRACE(engine,
1436                              "virtual rq=%llx:%lld%s, new engine? %s\n",
1437                              rq->fence.context,
1438                              rq->fence.seqno,
1439                              __i915_request_is_complete(rq) ? "!" :
1440                              __i915_request_has_started(rq) ? "*" :
1441                              "",
1442                              str_yes_no(engine != ve->siblings[0]));
1443
1444                 WRITE_ONCE(ve->request, NULL);
1445                 WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN);
1446
1447                 rb = &ve->nodes[engine->id].rb;
1448                 rb_erase_cached(rb, &execlists->virtual);
1449                 RB_CLEAR_NODE(rb);
1450
1451                 GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1452                 WRITE_ONCE(rq->engine, engine);
1453
1454                 if (__i915_request_submit(rq)) {
1455                         /*
1456                          * Only after we confirm that we will submit
1457                          * this request (i.e. it has not already
1458                          * completed), do we want to update the context.
1459                          *
1460                          * This serves two purposes. It avoids
1461                          * unnecessary work if we are resubmitting an
1462                          * already completed request after timeslicing.
1463                          * But more importantly, it prevents us altering
1464                          * ve->siblings[] on an idle context, where
1465                          * we may be using ve->siblings[] in
1466                          * virtual_context_enter / virtual_context_exit.
1467                          */
1468                         virtual_xfer_context(ve, engine);
1469                         GEM_BUG_ON(ve->siblings[0] != engine);
1470
1471                         submit = true;
1472                         last = rq;
1473                 }
1474
1475                 i915_request_put(rq);
1476 unlock:
1477                 spin_unlock(&ve->base.sched_engine->lock);
1478
1479                 /*
1480                  * Hmm, we have a bunch of virtual engine requests,
1481                  * but the first one was already completed (thanks
1482                  * preempt-to-busy!). Keep looking at the veng queue
1483                  * until we have no more relevant requests (i.e.
1484                  * the normal submit queue has higher priority).
1485                  */
1486                 if (submit)
1487                         break;
1488         }
1489
1490         while ((rb = rb_first_cached(&sched_engine->queue))) {
1491                 struct i915_priolist *p = to_priolist(rb);
1492                 struct i915_request *rq, *rn;
1493
1494                 priolist_for_each_request_consume(rq, rn, p) {
1495                         bool merge = true;
1496
1497                         /*
1498                          * Can we combine this request with the current port?
1499                          * It has to be the same context/ringbuffer and not
1500                          * have any exceptions (e.g. GVT saying never to
1501                          * combine contexts).
1502                          *
1503                          * If we can combine the requests, we can execute both
1504                          * by updating the RING_TAIL to point to the end of the
1505                          * second request, and so we never need to tell the
1506                          * hardware about the first.
1507                          */
1508                         if (last && !can_merge_rq(last, rq)) {
1509                                 /*
1510                                  * If we are on the second port and cannot
1511                                  * combine this request with the last, then we
1512                                  * are done.
1513                                  */
1514                                 if (port == last_port)
1515                                         goto done;
1516
1517                                 /*
1518                                  * We must not populate both ELSP[] with the
1519                                  * same LRCA, i.e. we must submit 2 different
1520                                  * contexts if we submit 2 ELSP.
1521                                  */
1522                                 if (last->context == rq->context)
1523                                         goto done;
1524
1525                                 if (i915_request_has_sentinel(last))
1526                                         goto done;
1527
1528                                 /*
1529                                  * We avoid submitting virtual requests into
1530                                  * the secondary ports so that we can migrate
1531                                  * the request immediately to another engine
1532                                  * rather than wait for the primary request.
1533                                  */
1534                                 if (rq->execution_mask != engine->mask)
1535                                         goto done;
1536
1537                                 /*
1538                                  * If GVT overrides us we only ever submit
1539                                  * port[0], leaving port[1] empty. Note that we
1540                                  * also have to be careful that we don't queue
1541                                  * the same context (even though a different
1542                                  * request) to the second port.
1543                                  */
1544                                 if (ctx_single_port_submission(last->context) ||
1545                                     ctx_single_port_submission(rq->context))
1546                                         goto done;
1547
1548                                 merge = false;
1549                         }
1550
1551                         if (__i915_request_submit(rq)) {
1552                                 if (!merge) {
1553                                         *port++ = i915_request_get(last);
1554                                         last = NULL;
1555                                 }
1556
1557                                 GEM_BUG_ON(last &&
1558                                            !can_merge_ctx(last->context,
1559                                                           rq->context));
1560                                 GEM_BUG_ON(last &&
1561                                            i915_seqno_passed(last->fence.seqno,
1562                                                              rq->fence.seqno));
1563
1564                                 submit = true;
1565                                 last = rq;
1566                         }
1567                 }
1568
1569                 rb_erase_cached(&p->node, &sched_engine->queue);
1570                 i915_priolist_free(p);
1571         }
1572 done:
1573         *port++ = i915_request_get(last);
1574
1575         /*
1576          * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1577          *
1578          * We choose the priority hint such that if we add a request of greater
1579          * priority than this, we kick the submission tasklet to decide on
1580          * the right order of submitting the requests to hardware. We must
1581          * also be prepared to reorder requests as they are in-flight on the
1582          * HW. We derive the priority hint then as the first "hole" in
1583          * the HW submission ports and if there are no available slots,
1584          * the priority of the lowest executing request, i.e. last.
1585          *
1586          * When we do receive a higher priority request ready to run from the
1587          * user, see queue_request(), the priority hint is bumped to that
1588          * request triggering preemption on the next dequeue (or subsequent
1589          * interrupt for secondary ports).
1590          */
1591         sched_engine->queue_priority_hint = queue_prio(sched_engine);
1592         i915_sched_engine_reset_on_empty(sched_engine);
1593         spin_unlock(&sched_engine->lock);
1594
1595         /*
1596          * We can skip poking the HW if we ended up with exactly the same set
1597          * of requests as currently running, e.g. trying to timeslice a pair
1598          * of ordered contexts.
1599          */
1600         if (submit &&
1601             memcmp(active,
1602                    execlists->pending,
1603                    (port - execlists->pending) * sizeof(*port))) {
1604                 *port = NULL;
1605                 while (port-- != execlists->pending)
1606                         execlists_schedule_in(*port, port - execlists->pending);
1607
1608                 WRITE_ONCE(execlists->yield, -1);
1609                 set_preempt_timeout(engine, *active);
1610                 execlists_submit_ports(engine);
1611         } else {
1612                 ring_set_paused(engine, 0);
1613                 while (port-- != execlists->pending)
1614                         i915_request_put(*port);
1615                 *execlists->pending = NULL;
1616         }
1617 }
1618
1619 static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1620 {
1621         local_irq_disable(); /* Suspend interrupts across request submission */
1622         execlists_dequeue(engine);
1623         local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1624 }
1625
1626 static void clear_ports(struct i915_request **ports, int count)
1627 {
1628         memset_p((void **)ports, NULL, count);
1629 }
1630
1631 static void
1632 copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1633 {
1634         /* A memcpy_p() would be very useful here! */
1635         while (count--)
1636                 WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1637 }
1638
1639 static struct i915_request **
1640 cancel_port_requests(struct intel_engine_execlists * const execlists,
1641                      struct i915_request **inactive)
1642 {
1643         struct i915_request * const *port;
1644
1645         for (port = execlists->pending; *port; port++)
1646                 *inactive++ = *port;
1647         clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1648
1649         /* Mark the end of active before we overwrite *active */
1650         for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1651                 *inactive++ = *port;
1652         clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1653
1654         smp_wmb(); /* complete the seqlock for execlists_active() */
1655         WRITE_ONCE(execlists->active, execlists->inflight);
1656
1657         /* Having cancelled all outstanding process_csb(), stop their timers */
1658         GEM_BUG_ON(execlists->pending[0]);
1659         cancel_timer(&execlists->timer);
1660         cancel_timer(&execlists->preempt);
1661
1662         return inactive;
1663 }
1664
1665 /*
1666  * Starting with Gen12, the status has a new format:
1667  *
1668  *     bit  0:     switched to new queue
1669  *     bit  1:     reserved
1670  *     bit  2:     semaphore wait mode (poll or signal), only valid when
1671  *                 switch detail is set to "wait on semaphore"
1672  *     bits 3-5:   engine class
1673  *     bits 6-11:  engine instance
1674  *     bits 12-14: reserved
1675  *     bits 15-25: sw context id of the lrc the GT switched to
1676  *     bits 26-31: sw counter of the lrc the GT switched to
1677  *     bits 32-35: context switch detail
1678  *                  - 0: ctx complete
1679  *                  - 1: wait on sync flip
1680  *                  - 2: wait on vblank
1681  *                  - 3: wait on scanline
1682  *                  - 4: wait on semaphore
1683  *                  - 5: context preempted (not on SEMAPHORE_WAIT or
1684  *                       WAIT_FOR_EVENT)
1685  *     bit  36:    reserved
1686  *     bits 37-43: wait detail (for switch detail 1 to 4)
1687  *     bits 44-46: reserved
1688  *     bits 47-57: sw context id of the lrc the GT switched away from
1689  *     bits 58-63: sw counter of the lrc the GT switched away from
1690  *
1691  * Xe_HP csb shuffles things around compared to TGL:
1692  *
1693  *     bits 0-3:   context switch detail (same possible values as TGL)
1694  *     bits 4-9:   engine instance
1695  *     bits 10-25: sw context id of the lrc the GT switched to
1696  *     bits 26-31: sw counter of the lrc the GT switched to
1697  *     bit  32:    semaphore wait mode (poll or signal), Only valid when
1698  *                 switch detail is set to "wait on semaphore"
1699  *     bit  33:    switched to new queue
1700  *     bits 34-41: wait detail (for switch detail 1 to 4)
1701  *     bits 42-57: sw context id of the lrc the GT switched away from
1702  *     bits 58-63: sw counter of the lrc the GT switched away from
1703  */
1704 static inline bool
1705 __gen12_csb_parse(bool ctx_to_valid, bool ctx_away_valid, bool new_queue,
1706                   u8 switch_detail)
1707 {
1708         /*
1709          * The context switch detail is not guaranteed to be 5 when a preemption
1710          * occurs, so we can't just check for that. The check below works for
1711          * all the cases we care about, including preemptions of WAIT
1712          * instructions and lite-restore. Preempt-to-idle via the CTRL register
1713          * would require some extra handling, but we don't support that.
1714          */
1715         if (!ctx_away_valid || new_queue) {
1716                 GEM_BUG_ON(!ctx_to_valid);
1717                 return true;
1718         }
1719
1720         /*
1721          * switch detail = 5 is covered by the case above and we do not expect a
1722          * context switch on an unsuccessful wait instruction since we always
1723          * use polling mode.
1724          */
1725         GEM_BUG_ON(switch_detail);
1726         return false;
1727 }
1728
1729 static bool xehp_csb_parse(const u64 csb)
1730 {
1731         return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1732                                  XEHP_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1733                                  upper_32_bits(csb) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1734                                  GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb)));
1735 }
1736
1737 static bool gen12_csb_parse(const u64 csb)
1738 {
1739         return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1740                                  GEN12_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1741                                  lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1742                                  GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1743 }
1744
1745 static bool gen8_csb_parse(const u64 csb)
1746 {
1747         return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1748 }
1749
1750 static noinline u64
1751 wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1752 {
1753         u64 entry;
1754
1755         /*
1756          * Reading from the HWSP has one particular advantage: we can detect
1757          * a stale entry. Since the write into HWSP is broken, we have no reason
1758          * to trust the HW at all, the mmio entry may equally be unordered, so
1759          * we prefer the path that is self-checking and as a last resort,
1760          * return the mmio value.
1761          *
1762          * tgl,dg1:HSDES#22011327657
1763          */
1764         preempt_disable();
1765         if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1766                 int idx = csb - engine->execlists.csb_status;
1767                 int status;
1768
1769                 status = GEN8_EXECLISTS_STATUS_BUF;
1770                 if (idx >= 6) {
1771                         status = GEN11_EXECLISTS_STATUS_BUF2;
1772                         idx -= 6;
1773                 }
1774                 status += sizeof(u64) * idx;
1775
1776                 entry = intel_uncore_read64(engine->uncore,
1777                                             _MMIO(engine->mmio_base + status));
1778         }
1779         preempt_enable();
1780
1781         return entry;
1782 }
1783
1784 static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1785 {
1786         u64 entry = READ_ONCE(*csb);
1787
1788         /*
1789          * Unfortunately, the GPU does not always serialise its write
1790          * of the CSB entries before its write of the CSB pointer, at least
1791          * from the perspective of the CPU, using what is known as a Global
1792          * Observation Point. We may read a new CSB tail pointer, but then
1793          * read the stale CSB entries, causing us to misinterpret the
1794          * context-switch events, and eventually declare the GPU hung.
1795          *
1796          * icl:HSDES#1806554093
1797          * tgl:HSDES#22011248461
1798          */
1799         if (unlikely(entry == -1))
1800                 entry = wa_csb_read(engine, csb);
1801
1802         /* Consume this entry so that we can spot its future reuse. */
1803         WRITE_ONCE(*csb, -1);
1804
1805         /* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1806         return entry;
1807 }
1808
1809 static void new_timeslice(struct intel_engine_execlists *el)
1810 {
1811         /* By cancelling, we will start afresh in start_timeslice() */
1812         cancel_timer(&el->timer);
1813 }
1814
1815 static struct i915_request **
1816 process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1817 {
1818         struct intel_engine_execlists * const execlists = &engine->execlists;
1819         u64 * const buf = execlists->csb_status;
1820         const u8 num_entries = execlists->csb_size;
1821         struct i915_request **prev;
1822         u8 head, tail;
1823
1824         /*
1825          * As we modify our execlists state tracking we require exclusive
1826          * access. Either we are inside the tasklet, or the tasklet is disabled
1827          * and we assume that is only inside the reset paths and so serialised.
1828          */
1829         GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) &&
1830                    !reset_in_progress(engine));
1831
1832         /*
1833          * Note that csb_write, csb_status may be either in HWSP or mmio.
1834          * When reading from the csb_write mmio register, we have to be
1835          * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1836          * the low 4bits. As it happens we know the next 4bits are always
1837          * zero and so we can simply masked off the low u8 of the register
1838          * and treat it identically to reading from the HWSP (without having
1839          * to use explicit shifting and masking, and probably bifurcating
1840          * the code to handle the legacy mmio read).
1841          */
1842         head = execlists->csb_head;
1843         tail = READ_ONCE(*execlists->csb_write);
1844         if (unlikely(head == tail))
1845                 return inactive;
1846
1847         /*
1848          * We will consume all events from HW, or at least pretend to.
1849          *
1850          * The sequence of events from the HW is deterministic, and derived
1851          * from our writes to the ELSP, with a smidgen of variability for
1852          * the arrival of the asynchronous requests wrt to the inflight
1853          * execution. If the HW sends an event that does not correspond with
1854          * the one we are expecting, we have to abandon all hope as we lose
1855          * all tracking of what the engine is actually executing. We will
1856          * only detect we are out of sequence with the HW when we get an
1857          * 'impossible' event because we have already drained our own
1858          * preemption/promotion queue. If this occurs, we know that we likely
1859          * lost track of execution earlier and must unwind and restart, the
1860          * simplest way is by stop processing the event queue and force the
1861          * engine to reset.
1862          */
1863         execlists->csb_head = tail;
1864         ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1865
1866         /*
1867          * Hopefully paired with a wmb() in HW!
1868          *
1869          * We must complete the read of the write pointer before any reads
1870          * from the CSB, so that we do not see stale values. Without an rmb
1871          * (lfence) the HW may speculatively perform the CSB[] reads *before*
1872          * we perform the READ_ONCE(*csb_write).
1873          */
1874         rmb();
1875
1876         /* Remember who was last running under the timer */
1877         prev = inactive;
1878         *prev = NULL;
1879
1880         do {
1881                 bool promote;
1882                 u64 csb;
1883
1884                 if (++head == num_entries)
1885                         head = 0;
1886
1887                 /*
1888                  * We are flying near dragons again.
1889                  *
1890                  * We hold a reference to the request in execlist_port[]
1891                  * but no more than that. We are operating in softirq
1892                  * context and so cannot hold any mutex or sleep. That
1893                  * prevents us stopping the requests we are processing
1894                  * in port[] from being retired simultaneously (the
1895                  * breadcrumb will be complete before we see the
1896                  * context-switch). As we only hold the reference to the
1897                  * request, any pointer chasing underneath the request
1898                  * is subject to a potential use-after-free. Thus we
1899                  * store all of the bookkeeping within port[] as
1900                  * required, and avoid using unguarded pointers beneath
1901                  * request itself. The same applies to the atomic
1902                  * status notifier.
1903                  */
1904
1905                 csb = csb_read(engine, buf + head);
1906                 ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1907                              head, upper_32_bits(csb), lower_32_bits(csb));
1908
1909                 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
1910                         promote = xehp_csb_parse(csb);
1911                 else if (GRAPHICS_VER(engine->i915) >= 12)
1912                         promote = gen12_csb_parse(csb);
1913                 else
1914                         promote = gen8_csb_parse(csb);
1915                 if (promote) {
1916                         struct i915_request * const *old = execlists->active;
1917
1918                         if (GEM_WARN_ON(!*execlists->pending)) {
1919                                 execlists->error_interrupt |= ERROR_CSB;
1920                                 break;
1921                         }
1922
1923                         ring_set_paused(engine, 0);
1924
1925                         /* Point active to the new ELSP; prevent overwriting */
1926                         WRITE_ONCE(execlists->active, execlists->pending);
1927                         smp_wmb(); /* notify execlists_active() */
1928
1929                         /* cancel old inflight, prepare for switch */
1930                         trace_ports(execlists, "preempted", old);
1931                         while (*old)
1932                                 *inactive++ = *old++;
1933
1934                         /* switch pending to inflight */
1935                         GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1936                         copy_ports(execlists->inflight,
1937                                    execlists->pending,
1938                                    execlists_num_ports(execlists));
1939                         smp_wmb(); /* complete the seqlock */
1940                         WRITE_ONCE(execlists->active, execlists->inflight);
1941
1942                         /* XXX Magic delay for tgl */
1943                         ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1944
1945                         WRITE_ONCE(execlists->pending[0], NULL);
1946                 } else {
1947                         if (GEM_WARN_ON(!*execlists->active)) {
1948                                 execlists->error_interrupt |= ERROR_CSB;
1949                                 break;
1950                         }
1951
1952                         /* port0 completed, advanced to port1 */
1953                         trace_ports(execlists, "completed", execlists->active);
1954
1955                         /*
1956                          * We rely on the hardware being strongly
1957                          * ordered, that the breadcrumb write is
1958                          * coherent (visible from the CPU) before the
1959                          * user interrupt is processed. One might assume
1960                          * that the breadcrumb write being before the
1961                          * user interrupt and the CS event for the context
1962                          * switch would therefore be before the CS event
1963                          * itself...
1964                          */
1965                         if (GEM_SHOW_DEBUG() &&
1966                             !__i915_request_is_complete(*execlists->active)) {
1967                                 struct i915_request *rq = *execlists->active;
1968                                 const u32 *regs __maybe_unused =
1969                                         rq->context->lrc_reg_state;
1970
1971                                 ENGINE_TRACE(engine,
1972                                              "context completed before request!\n");
1973                                 ENGINE_TRACE(engine,
1974                                              "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1975                                              ENGINE_READ(engine, RING_START),
1976                                              ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1977                                              ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1978                                              ENGINE_READ(engine, RING_CTL),
1979                                              ENGINE_READ(engine, RING_MI_MODE));
1980                                 ENGINE_TRACE(engine,
1981                                              "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1982                                              i915_ggtt_offset(rq->ring->vma),
1983                                              rq->head, rq->tail,
1984                                              rq->fence.context,
1985                                              lower_32_bits(rq->fence.seqno),
1986                                              hwsp_seqno(rq));
1987                                 ENGINE_TRACE(engine,
1988                                              "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1989                                              regs[CTX_RING_START],
1990                                              regs[CTX_RING_HEAD],
1991                                              regs[CTX_RING_TAIL]);
1992                         }
1993
1994                         *inactive++ = *execlists->active++;
1995
1996                         GEM_BUG_ON(execlists->active - execlists->inflight >
1997                                    execlists_num_ports(execlists));
1998                 }
1999         } while (head != tail);
2000
2001         /*
2002          * Gen11 has proven to fail wrt global observation point between
2003          * entry and tail update, failing on the ordering and thus
2004          * we see an old entry in the context status buffer.
2005          *
2006          * Forcibly evict out entries for the next gpu csb update,
2007          * to increase the odds that we get a fresh entries with non
2008          * working hardware. The cost for doing so comes out mostly with
2009          * the wash as hardware, working or not, will need to do the
2010          * invalidation before.
2011          */
2012         drm_clflush_virt_range(&buf[0], num_entries * sizeof(buf[0]));
2013
2014         /*
2015          * We assume that any event reflects a change in context flow
2016          * and merits a fresh timeslice. We reinstall the timer after
2017          * inspecting the queue to see if we need to resumbit.
2018          */
2019         if (*prev != *execlists->active) { /* elide lite-restores */
2020                 /*
2021                  * Note the inherent discrepancy between the HW runtime,
2022                  * recorded as part of the context switch, and the CPU
2023                  * adjustment for active contexts. We have to hope that
2024                  * the delay in processing the CS event is very small
2025                  * and consistent. It works to our advantage to have
2026                  * the CPU adjustment _undershoot_ (i.e. start later than)
2027                  * the CS timestamp so we never overreport the runtime
2028                  * and correct overselves later when updating from HW.
2029                  */
2030                 if (*prev)
2031                         lrc_runtime_stop((*prev)->context);
2032                 if (*execlists->active)
2033                         lrc_runtime_start((*execlists->active)->context);
2034                 new_timeslice(execlists);
2035         }
2036
2037         return inactive;
2038 }
2039
2040 static void post_process_csb(struct i915_request **port,
2041                              struct i915_request **last)
2042 {
2043         while (port != last)
2044                 execlists_schedule_out(*port++);
2045 }
2046
2047 static void __execlists_hold(struct i915_request *rq)
2048 {
2049         LIST_HEAD(list);
2050
2051         do {
2052                 struct i915_dependency *p;
2053
2054                 if (i915_request_is_active(rq))
2055                         __i915_request_unsubmit(rq);
2056
2057                 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2058                 list_move_tail(&rq->sched.link,
2059                                &rq->engine->sched_engine->hold);
2060                 i915_request_set_hold(rq);
2061                 RQ_TRACE(rq, "on hold\n");
2062
2063                 for_each_waiter(p, rq) {
2064                         struct i915_request *w =
2065                                 container_of(p->waiter, typeof(*w), sched);
2066
2067                         if (p->flags & I915_DEPENDENCY_WEAK)
2068                                 continue;
2069
2070                         /* Leave semaphores spinning on the other engines */
2071                         if (w->engine != rq->engine)
2072                                 continue;
2073
2074                         if (!i915_request_is_ready(w))
2075                                 continue;
2076
2077                         if (__i915_request_is_complete(w))
2078                                 continue;
2079
2080                         if (i915_request_on_hold(w))
2081                                 continue;
2082
2083                         list_move_tail(&w->sched.link, &list);
2084                 }
2085
2086                 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2087         } while (rq);
2088 }
2089
2090 static bool execlists_hold(struct intel_engine_cs *engine,
2091                            struct i915_request *rq)
2092 {
2093         if (i915_request_on_hold(rq))
2094                 return false;
2095
2096         spin_lock_irq(&engine->sched_engine->lock);
2097
2098         if (__i915_request_is_complete(rq)) { /* too late! */
2099                 rq = NULL;
2100                 goto unlock;
2101         }
2102
2103         /*
2104          * Transfer this request onto the hold queue to prevent it
2105          * being resumbitted to HW (and potentially completed) before we have
2106          * released it. Since we may have already submitted following
2107          * requests, we need to remove those as well.
2108          */
2109         GEM_BUG_ON(i915_request_on_hold(rq));
2110         GEM_BUG_ON(rq->engine != engine);
2111         __execlists_hold(rq);
2112         GEM_BUG_ON(list_empty(&engine->sched_engine->hold));
2113
2114 unlock:
2115         spin_unlock_irq(&engine->sched_engine->lock);
2116         return rq;
2117 }
2118
2119 static bool hold_request(const struct i915_request *rq)
2120 {
2121         struct i915_dependency *p;
2122         bool result = false;
2123
2124         /*
2125          * If one of our ancestors is on hold, we must also be on hold,
2126          * otherwise we will bypass it and execute before it.
2127          */
2128         rcu_read_lock();
2129         for_each_signaler(p, rq) {
2130                 const struct i915_request *s =
2131                         container_of(p->signaler, typeof(*s), sched);
2132
2133                 if (s->engine != rq->engine)
2134                         continue;
2135
2136                 result = i915_request_on_hold(s);
2137                 if (result)
2138                         break;
2139         }
2140         rcu_read_unlock();
2141
2142         return result;
2143 }
2144
2145 static void __execlists_unhold(struct i915_request *rq)
2146 {
2147         LIST_HEAD(list);
2148
2149         do {
2150                 struct i915_dependency *p;
2151
2152                 RQ_TRACE(rq, "hold release\n");
2153
2154                 GEM_BUG_ON(!i915_request_on_hold(rq));
2155                 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2156
2157                 i915_request_clear_hold(rq);
2158                 list_move_tail(&rq->sched.link,
2159                                i915_sched_lookup_priolist(rq->engine->sched_engine,
2160                                                           rq_prio(rq)));
2161                 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2162
2163                 /* Also release any children on this engine that are ready */
2164                 for_each_waiter(p, rq) {
2165                         struct i915_request *w =
2166                                 container_of(p->waiter, typeof(*w), sched);
2167
2168                         if (p->flags & I915_DEPENDENCY_WEAK)
2169                                 continue;
2170
2171                         if (w->engine != rq->engine)
2172                                 continue;
2173
2174                         if (!i915_request_on_hold(w))
2175                                 continue;
2176
2177                         /* Check that no other parents are also on hold */
2178                         if (hold_request(w))
2179                                 continue;
2180
2181                         list_move_tail(&w->sched.link, &list);
2182                 }
2183
2184                 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2185         } while (rq);
2186 }
2187
2188 static void execlists_unhold(struct intel_engine_cs *engine,
2189                              struct i915_request *rq)
2190 {
2191         spin_lock_irq(&engine->sched_engine->lock);
2192
2193         /*
2194          * Move this request back to the priority queue, and all of its
2195          * children and grandchildren that were suspended along with it.
2196          */
2197         __execlists_unhold(rq);
2198
2199         if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) {
2200                 engine->sched_engine->queue_priority_hint = rq_prio(rq);
2201                 tasklet_hi_schedule(&engine->sched_engine->tasklet);
2202         }
2203
2204         spin_unlock_irq(&engine->sched_engine->lock);
2205 }
2206
2207 struct execlists_capture {
2208         struct work_struct work;
2209         struct i915_request *rq;
2210         struct i915_gpu_coredump *error;
2211 };
2212
2213 static void execlists_capture_work(struct work_struct *work)
2214 {
2215         struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2216         const gfp_t gfp = __GFP_KSWAPD_RECLAIM | __GFP_RETRY_MAYFAIL |
2217                 __GFP_NOWARN;
2218         struct intel_engine_cs *engine = cap->rq->engine;
2219         struct intel_gt_coredump *gt = cap->error->gt;
2220         struct intel_engine_capture_vma *vma;
2221
2222         /* Compress all the objects attached to the request, slow! */
2223         vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2224         if (vma) {
2225                 struct i915_vma_compress *compress =
2226                         i915_vma_capture_prepare(gt);
2227
2228                 intel_engine_coredump_add_vma(gt->engine, vma, compress);
2229                 i915_vma_capture_finish(gt, compress);
2230         }
2231
2232         gt->simulated = gt->engine->simulated;
2233         cap->error->simulated = gt->simulated;
2234
2235         /* Publish the error state, and announce it to the world */
2236         i915_error_state_store(cap->error);
2237         i915_gpu_coredump_put(cap->error);
2238
2239         /* Return this request and all that depend upon it for signaling */
2240         execlists_unhold(engine, cap->rq);
2241         i915_request_put(cap->rq);
2242
2243         kfree(cap);
2244 }
2245
2246 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2247 {
2248         const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2249         struct execlists_capture *cap;
2250
2251         cap = kmalloc(sizeof(*cap), gfp);
2252         if (!cap)
2253                 return NULL;
2254
2255         cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2256         if (!cap->error)
2257                 goto err_cap;
2258
2259         cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp, CORE_DUMP_FLAG_NONE);
2260         if (!cap->error->gt)
2261                 goto err_gpu;
2262
2263         cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp, CORE_DUMP_FLAG_NONE);
2264         if (!cap->error->gt->engine)
2265                 goto err_gt;
2266
2267         cap->error->gt->engine->hung = true;
2268
2269         return cap;
2270
2271 err_gt:
2272         kfree(cap->error->gt);
2273 err_gpu:
2274         kfree(cap->error);
2275 err_cap:
2276         kfree(cap);
2277         return NULL;
2278 }
2279
2280 static struct i915_request *
2281 active_context(struct intel_engine_cs *engine, u32 ccid)
2282 {
2283         const struct intel_engine_execlists * const el = &engine->execlists;
2284         struct i915_request * const *port, *rq;
2285
2286         /*
2287          * Use the most recent result from process_csb(), but just in case
2288          * we trigger an error (via interrupt) before the first CS event has
2289          * been written, peek at the next submission.
2290          */
2291
2292         for (port = el->active; (rq = *port); port++) {
2293                 if (rq->context->lrc.ccid == ccid) {
2294                         ENGINE_TRACE(engine,
2295                                      "ccid:%x found at active:%zd\n",
2296                                      ccid, port - el->active);
2297                         return rq;
2298                 }
2299         }
2300
2301         for (port = el->pending; (rq = *port); port++) {
2302                 if (rq->context->lrc.ccid == ccid) {
2303                         ENGINE_TRACE(engine,
2304                                      "ccid:%x found at pending:%zd\n",
2305                                      ccid, port - el->pending);
2306                         return rq;
2307                 }
2308         }
2309
2310         ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2311         return NULL;
2312 }
2313
2314 static u32 active_ccid(struct intel_engine_cs *engine)
2315 {
2316         return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2317 }
2318
2319 static void execlists_capture(struct intel_engine_cs *engine)
2320 {
2321         struct execlists_capture *cap;
2322
2323         if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2324                 return;
2325
2326         /*
2327          * We need to _quickly_ capture the engine state before we reset.
2328          * We are inside an atomic section (softirq) here and we are delaying
2329          * the forced preemption event.
2330          */
2331         cap = capture_regs(engine);
2332         if (!cap)
2333                 return;
2334
2335         spin_lock_irq(&engine->sched_engine->lock);
2336         cap->rq = active_context(engine, active_ccid(engine));
2337         if (cap->rq) {
2338                 cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2339                 cap->rq = i915_request_get_rcu(cap->rq);
2340         }
2341         spin_unlock_irq(&engine->sched_engine->lock);
2342         if (!cap->rq)
2343                 goto err_free;
2344
2345         /*
2346          * Remove the request from the execlists queue, and take ownership
2347          * of the request. We pass it to our worker who will _slowly_ compress
2348          * all the pages the _user_ requested for debugging their batch, after
2349          * which we return it to the queue for signaling.
2350          *
2351          * By removing them from the execlists queue, we also remove the
2352          * requests from being processed by __unwind_incomplete_requests()
2353          * during the intel_engine_reset(), and so they will *not* be replayed
2354          * afterwards.
2355          *
2356          * Note that because we have not yet reset the engine at this point,
2357          * it is possible for the request that we have identified as being
2358          * guilty, did in fact complete and we will then hit an arbitration
2359          * point allowing the outstanding preemption to succeed. The likelihood
2360          * of that is very low (as capturing of the engine registers should be
2361          * fast enough to run inside an irq-off atomic section!), so we will
2362          * simply hold that request accountable for being non-preemptible
2363          * long enough to force the reset.
2364          */
2365         if (!execlists_hold(engine, cap->rq))
2366                 goto err_rq;
2367
2368         INIT_WORK(&cap->work, execlists_capture_work);
2369         schedule_work(&cap->work);
2370         return;
2371
2372 err_rq:
2373         i915_request_put(cap->rq);
2374 err_free:
2375         i915_gpu_coredump_put(cap->error);
2376         kfree(cap);
2377 }
2378
2379 static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2380 {
2381         const unsigned int bit = I915_RESET_ENGINE + engine->id;
2382         unsigned long *lock = &engine->gt->reset.flags;
2383
2384         if (!intel_has_reset_engine(engine->gt))
2385                 return;
2386
2387         if (test_and_set_bit(bit, lock))
2388                 return;
2389
2390         ENGINE_TRACE(engine, "reset for %s\n", msg);
2391
2392         /* Mark this tasklet as disabled to avoid waiting for it to complete */
2393         tasklet_disable_nosync(&engine->sched_engine->tasklet);
2394
2395         ring_set_paused(engine, 1); /* Freeze the current request in place */
2396         execlists_capture(engine);
2397         intel_engine_reset(engine, msg);
2398
2399         tasklet_enable(&engine->sched_engine->tasklet);
2400         clear_and_wake_up_bit(bit, lock);
2401 }
2402
2403 static bool preempt_timeout(const struct intel_engine_cs *const engine)
2404 {
2405         const struct timer_list *t = &engine->execlists.preempt;
2406
2407         if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2408                 return false;
2409
2410         if (!timer_expired(t))
2411                 return false;
2412
2413         return engine->execlists.pending[0];
2414 }
2415
2416 /*
2417  * Check the unread Context Status Buffers and manage the submission of new
2418  * contexts to the ELSP accordingly.
2419  */
2420 static void execlists_submission_tasklet(struct tasklet_struct *t)
2421 {
2422         struct i915_sched_engine *sched_engine =
2423                 from_tasklet(sched_engine, t, tasklet);
2424         struct intel_engine_cs * const engine = sched_engine->private_data;
2425         struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2426         struct i915_request **inactive;
2427
2428         rcu_read_lock();
2429         inactive = process_csb(engine, post);
2430         GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2431
2432         if (unlikely(preempt_timeout(engine))) {
2433                 const struct i915_request *rq = *engine->execlists.active;
2434
2435                 /*
2436                  * If after the preempt-timeout expired, we are still on the
2437                  * same active request/context as before we initiated the
2438                  * preemption, reset the engine.
2439                  *
2440                  * However, if we have processed a CS event to switch contexts,
2441                  * but not yet processed the CS event for the pending
2442                  * preemption, reset the timer allowing the new context to
2443                  * gracefully exit.
2444                  */
2445                 cancel_timer(&engine->execlists.preempt);
2446                 if (rq == engine->execlists.preempt_target)
2447                         engine->execlists.error_interrupt |= ERROR_PREEMPT;
2448                 else
2449                         set_timer_ms(&engine->execlists.preempt,
2450                                      active_preempt_timeout(engine, rq));
2451         }
2452
2453         if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2454                 const char *msg;
2455
2456                 /* Generate the error message in priority wrt to the user! */
2457                 if (engine->execlists.error_interrupt & GENMASK(15, 0))
2458                         msg = "CS error"; /* thrown by a user payload */
2459                 else if (engine->execlists.error_interrupt & ERROR_CSB)
2460                         msg = "invalid CSB event";
2461                 else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2462                         msg = "preemption time out";
2463                 else
2464                         msg = "internal error";
2465
2466                 engine->execlists.error_interrupt = 0;
2467                 execlists_reset(engine, msg);
2468         }
2469
2470         if (!engine->execlists.pending[0]) {
2471                 execlists_dequeue_irq(engine);
2472                 start_timeslice(engine);
2473         }
2474
2475         post_process_csb(post, inactive);
2476         rcu_read_unlock();
2477 }
2478
2479 static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
2480 {
2481         bool tasklet = false;
2482
2483         if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
2484                 u32 eir;
2485
2486                 /* Upper 16b are the enabling mask, rsvd for internal errors */
2487                 eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
2488                 ENGINE_TRACE(engine, "CS error: %x\n", eir);
2489
2490                 /* Disable the error interrupt until after the reset */
2491                 if (likely(eir)) {
2492                         ENGINE_WRITE(engine, RING_EMR, ~0u);
2493                         ENGINE_WRITE(engine, RING_EIR, eir);
2494                         WRITE_ONCE(engine->execlists.error_interrupt, eir);
2495                         tasklet = true;
2496                 }
2497         }
2498
2499         if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
2500                 WRITE_ONCE(engine->execlists.yield,
2501                            ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
2502                 ENGINE_TRACE(engine, "semaphore yield: %08x\n",
2503                              engine->execlists.yield);
2504                 if (del_timer(&engine->execlists.timer))
2505                         tasklet = true;
2506         }
2507
2508         if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
2509                 tasklet = true;
2510
2511         if (iir & GT_RENDER_USER_INTERRUPT)
2512                 intel_engine_signal_breadcrumbs(engine);
2513
2514         if (tasklet)
2515                 tasklet_hi_schedule(&engine->sched_engine->tasklet);
2516 }
2517
2518 static void __execlists_kick(struct intel_engine_execlists *execlists)
2519 {
2520         struct intel_engine_cs *engine =
2521                 container_of(execlists, typeof(*engine), execlists);
2522
2523         /* Kick the tasklet for some interrupt coalescing and reset handling */
2524         tasklet_hi_schedule(&engine->sched_engine->tasklet);
2525 }
2526
2527 #define execlists_kick(t, member) \
2528         __execlists_kick(container_of(t, struct intel_engine_execlists, member))
2529
2530 static void execlists_timeslice(struct timer_list *timer)
2531 {
2532         execlists_kick(timer, timer);
2533 }
2534
2535 static void execlists_preempt(struct timer_list *timer)
2536 {
2537         execlists_kick(timer, preempt);
2538 }
2539
2540 static void queue_request(struct intel_engine_cs *engine,
2541                           struct i915_request *rq)
2542 {
2543         GEM_BUG_ON(!list_empty(&rq->sched.link));
2544         list_add_tail(&rq->sched.link,
2545                       i915_sched_lookup_priolist(engine->sched_engine,
2546                                                  rq_prio(rq)));
2547         set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2548 }
2549
2550 static bool submit_queue(struct intel_engine_cs *engine,
2551                          const struct i915_request *rq)
2552 {
2553         struct i915_sched_engine *sched_engine = engine->sched_engine;
2554
2555         if (rq_prio(rq) <= sched_engine->queue_priority_hint)
2556                 return false;
2557
2558         sched_engine->queue_priority_hint = rq_prio(rq);
2559         return true;
2560 }
2561
2562 static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2563                              const struct i915_request *rq)
2564 {
2565         GEM_BUG_ON(i915_request_on_hold(rq));
2566         return !list_empty(&engine->sched_engine->hold) && hold_request(rq);
2567 }
2568
2569 static void execlists_submit_request(struct i915_request *request)
2570 {
2571         struct intel_engine_cs *engine = request->engine;
2572         unsigned long flags;
2573
2574         /* Will be called from irq-context when using foreign fences. */
2575         spin_lock_irqsave(&engine->sched_engine->lock, flags);
2576
2577         if (unlikely(ancestor_on_hold(engine, request))) {
2578                 RQ_TRACE(request, "ancestor on hold\n");
2579                 list_add_tail(&request->sched.link,
2580                               &engine->sched_engine->hold);
2581                 i915_request_set_hold(request);
2582         } else {
2583                 queue_request(engine, request);
2584
2585                 GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
2586                 GEM_BUG_ON(list_empty(&request->sched.link));
2587
2588                 if (submit_queue(engine, request))
2589                         __execlists_kick(&engine->execlists);
2590         }
2591
2592         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2593 }
2594
2595 static int
2596 __execlists_context_pre_pin(struct intel_context *ce,
2597                             struct intel_engine_cs *engine,
2598                             struct i915_gem_ww_ctx *ww, void **vaddr)
2599 {
2600         int err;
2601
2602         err = lrc_pre_pin(ce, engine, ww, vaddr);
2603         if (err)
2604                 return err;
2605
2606         if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2607                 lrc_init_state(ce, engine, *vaddr);
2608
2609                 __i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2610         }
2611
2612         return 0;
2613 }
2614
2615 static int execlists_context_pre_pin(struct intel_context *ce,
2616                                      struct i915_gem_ww_ctx *ww,
2617                                      void **vaddr)
2618 {
2619         return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2620 }
2621
2622 static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2623 {
2624         return lrc_pin(ce, ce->engine, vaddr);
2625 }
2626
2627 static int execlists_context_alloc(struct intel_context *ce)
2628 {
2629         return lrc_alloc(ce, ce->engine);
2630 }
2631
2632 static void execlists_context_cancel_request(struct intel_context *ce,
2633                                              struct i915_request *rq)
2634 {
2635         struct intel_engine_cs *engine = NULL;
2636
2637         i915_request_active_engine(rq, &engine);
2638
2639         if (engine && intel_engine_pulse(engine))
2640                 intel_gt_handle_error(engine->gt, engine->mask, 0,
2641                                       "request cancellation by %s",
2642                                       current->comm);
2643 }
2644
2645 static struct intel_context *
2646 execlists_create_parallel(struct intel_engine_cs **engines,
2647                           unsigned int num_siblings,
2648                           unsigned int width)
2649 {
2650         struct intel_context *parent = NULL, *ce, *err;
2651         int i;
2652
2653         GEM_BUG_ON(num_siblings != 1);
2654
2655         for (i = 0; i < width; ++i) {
2656                 ce = intel_context_create(engines[i]);
2657                 if (IS_ERR(ce)) {
2658                         err = ce;
2659                         goto unwind;
2660                 }
2661
2662                 if (i == 0)
2663                         parent = ce;
2664                 else
2665                         intel_context_bind_parent_child(parent, ce);
2666         }
2667
2668         parent->parallel.fence_context = dma_fence_context_alloc(1);
2669
2670         intel_context_set_nopreempt(parent);
2671         for_each_child(parent, ce)
2672                 intel_context_set_nopreempt(ce);
2673
2674         return parent;
2675
2676 unwind:
2677         if (parent)
2678                 intel_context_put(parent);
2679         return err;
2680 }
2681
2682 static const struct intel_context_ops execlists_context_ops = {
2683         .flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
2684
2685         .alloc = execlists_context_alloc,
2686
2687         .cancel_request = execlists_context_cancel_request,
2688
2689         .pre_pin = execlists_context_pre_pin,
2690         .pin = execlists_context_pin,
2691         .unpin = lrc_unpin,
2692         .post_unpin = lrc_post_unpin,
2693
2694         .enter = intel_context_enter_engine,
2695         .exit = intel_context_exit_engine,
2696
2697         .reset = lrc_reset,
2698         .destroy = lrc_destroy,
2699
2700         .create_parallel = execlists_create_parallel,
2701         .create_virtual = execlists_create_virtual,
2702 };
2703
2704 static int emit_pdps(struct i915_request *rq)
2705 {
2706         const struct intel_engine_cs * const engine = rq->engine;
2707         struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2708         int err, i;
2709         u32 *cs;
2710
2711         GEM_BUG_ON(intel_vgpu_active(rq->engine->i915));
2712
2713         /*
2714          * Beware ye of the dragons, this sequence is magic!
2715          *
2716          * Small changes to this sequence can cause anything from
2717          * GPU hangs to forcewake errors and machine lockups!
2718          */
2719
2720         cs = intel_ring_begin(rq, 2);
2721         if (IS_ERR(cs))
2722                 return PTR_ERR(cs);
2723
2724         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2725         *cs++ = MI_NOOP;
2726         intel_ring_advance(rq, cs);
2727
2728         /* Flush any residual operations from the context load */
2729         err = engine->emit_flush(rq, EMIT_FLUSH);
2730         if (err)
2731                 return err;
2732
2733         /* Magic required to prevent forcewake errors! */
2734         err = engine->emit_flush(rq, EMIT_INVALIDATE);
2735         if (err)
2736                 return err;
2737
2738         cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2739         if (IS_ERR(cs))
2740                 return PTR_ERR(cs);
2741
2742         /* Ensure the LRI have landed before we invalidate & continue */
2743         *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2744         for (i = GEN8_3LVL_PDPES; i--; ) {
2745                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2746                 u32 base = engine->mmio_base;
2747
2748                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2749                 *cs++ = upper_32_bits(pd_daddr);
2750                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2751                 *cs++ = lower_32_bits(pd_daddr);
2752         }
2753         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2754         intel_ring_advance(rq, cs);
2755
2756         intel_ring_advance(rq, cs);
2757
2758         return 0;
2759 }
2760
2761 static int execlists_request_alloc(struct i915_request *request)
2762 {
2763         int ret;
2764
2765         GEM_BUG_ON(!intel_context_is_pinned(request->context));
2766
2767         /*
2768          * Flush enough space to reduce the likelihood of waiting after
2769          * we start building the request - in which case we will just
2770          * have to repeat work.
2771          */
2772         request->reserved_space += EXECLISTS_REQUEST_SIZE;
2773
2774         /*
2775          * Note that after this point, we have committed to using
2776          * this request as it is being used to both track the
2777          * state of engine initialisation and liveness of the
2778          * golden renderstate above. Think twice before you try
2779          * to cancel/unwind this request now.
2780          */
2781
2782         if (!i915_vm_is_4lvl(request->context->vm)) {
2783                 ret = emit_pdps(request);
2784                 if (ret)
2785                         return ret;
2786         }
2787
2788         /* Unconditionally invalidate GPU caches and TLBs. */
2789         ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2790         if (ret)
2791                 return ret;
2792
2793         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2794         return 0;
2795 }
2796
2797 static void reset_csb_pointers(struct intel_engine_cs *engine)
2798 {
2799         struct intel_engine_execlists * const execlists = &engine->execlists;
2800         const unsigned int reset_value = execlists->csb_size - 1;
2801
2802         ring_set_paused(engine, 0);
2803
2804         /*
2805          * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2806          * Bludgeon them with a mmio update to be sure.
2807          */
2808         ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2809                      0xffff << 16 | reset_value << 8 | reset_value);
2810         ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2811
2812         /*
2813          * After a reset, the HW starts writing into CSB entry [0]. We
2814          * therefore have to set our HEAD pointer back one entry so that
2815          * the *first* entry we check is entry 0. To complicate this further,
2816          * as we don't wait for the first interrupt after reset, we have to
2817          * fake the HW write to point back to the last entry so that our
2818          * inline comparison of our cached head position against the last HW
2819          * write works even before the first interrupt.
2820          */
2821         execlists->csb_head = reset_value;
2822         WRITE_ONCE(*execlists->csb_write, reset_value);
2823         wmb(); /* Make sure this is visible to HW (paranoia?) */
2824
2825         /* Check that the GPU does indeed update the CSB entries! */
2826         memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2827         drm_clflush_virt_range(execlists->csb_status,
2828                                execlists->csb_size *
2829                                sizeof(execlists->csb_status));
2830
2831         /* Once more for luck and our trusty paranoia */
2832         ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2833                      0xffff << 16 | reset_value << 8 | reset_value);
2834         ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2835
2836         GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2837 }
2838
2839 static void sanitize_hwsp(struct intel_engine_cs *engine)
2840 {
2841         struct intel_timeline *tl;
2842
2843         list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2844                 intel_timeline_reset_seqno(tl);
2845 }
2846
2847 static void execlists_sanitize(struct intel_engine_cs *engine)
2848 {
2849         GEM_BUG_ON(execlists_active(&engine->execlists));
2850
2851         /*
2852          * Poison residual state on resume, in case the suspend didn't!
2853          *
2854          * We have to assume that across suspend/resume (or other loss
2855          * of control) that the contents of our pinned buffers has been
2856          * lost, replaced by garbage. Since this doesn't always happen,
2857          * let's poison such state so that we more quickly spot when
2858          * we falsely assume it has been preserved.
2859          */
2860         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2861                 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2862
2863         reset_csb_pointers(engine);
2864
2865         /*
2866          * The kernel_context HWSP is stored in the status_page. As above,
2867          * that may be lost on resume/initialisation, and so we need to
2868          * reset the value in the HWSP.
2869          */
2870         sanitize_hwsp(engine);
2871
2872         /* And scrub the dirty cachelines for the HWSP */
2873         drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
2874
2875         intel_engine_reset_pinned_contexts(engine);
2876 }
2877
2878 static void enable_error_interrupt(struct intel_engine_cs *engine)
2879 {
2880         u32 status;
2881
2882         engine->execlists.error_interrupt = 0;
2883         ENGINE_WRITE(engine, RING_EMR, ~0u);
2884         ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2885
2886         status = ENGINE_READ(engine, RING_ESR);
2887         if (unlikely(status)) {
2888                 drm_err(&engine->i915->drm,
2889                         "engine '%s' resumed still in error: %08x\n",
2890                         engine->name, status);
2891                 __intel_gt_reset(engine->gt, engine->mask);
2892         }
2893
2894         /*
2895          * On current gen8+, we have 2 signals to play with
2896          *
2897          * - I915_ERROR_INSTUCTION (bit 0)
2898          *
2899          *    Generate an error if the command parser encounters an invalid
2900          *    instruction
2901          *
2902          *    This is a fatal error.
2903          *
2904          * - CP_PRIV (bit 2)
2905          *
2906          *    Generate an error on privilege violation (where the CP replaces
2907          *    the instruction with a no-op). This also fires for writes into
2908          *    read-only scratch pages.
2909          *
2910          *    This is a non-fatal error, parsing continues.
2911          *
2912          * * there are a few others defined for odd HW that we do not use
2913          *
2914          * Since CP_PRIV fires for cases where we have chosen to ignore the
2915          * error (as the HW is validating and suppressing the mistakes), we
2916          * only unmask the instruction error bit.
2917          */
2918         ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2919 }
2920
2921 static void enable_execlists(struct intel_engine_cs *engine)
2922 {
2923         u32 mode;
2924
2925         assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2926
2927         intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2928
2929         if (GRAPHICS_VER(engine->i915) >= 11)
2930                 mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2931         else
2932                 mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2933         ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2934
2935         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2936
2937         ENGINE_WRITE_FW(engine,
2938                         RING_HWS_PGA,
2939                         i915_ggtt_offset(engine->status_page.vma));
2940         ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2941
2942         enable_error_interrupt(engine);
2943 }
2944
2945 static int execlists_resume(struct intel_engine_cs *engine)
2946 {
2947         intel_mocs_init_engine(engine);
2948         intel_breadcrumbs_reset(engine->breadcrumbs);
2949
2950         enable_execlists(engine);
2951
2952         if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
2953                 xehp_enable_ccs_engines(engine);
2954
2955         return 0;
2956 }
2957
2958 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2959 {
2960         ENGINE_TRACE(engine, "depth<-%d\n",
2961                      atomic_read(&engine->sched_engine->tasklet.count));
2962
2963         /*
2964          * Prevent request submission to the hardware until we have
2965          * completed the reset in i915_gem_reset_finish(). If a request
2966          * is completed by one engine, it may then queue a request
2967          * to a second via its execlists->tasklet *just* as we are
2968          * calling engine->resume() and also writing the ELSP.
2969          * Turning off the execlists->tasklet until the reset is over
2970          * prevents the race.
2971          */
2972         __tasklet_disable_sync_once(&engine->sched_engine->tasklet);
2973         GEM_BUG_ON(!reset_in_progress(engine));
2974
2975         /*
2976          * We stop engines, otherwise we might get failed reset and a
2977          * dead gpu (on elk). Also as modern gpu as kbl can suffer
2978          * from system hang if batchbuffer is progressing when
2979          * the reset is issued, regardless of READY_TO_RESET ack.
2980          * Thus assume it is best to stop engines on all gens
2981          * where we have a gpu reset.
2982          *
2983          * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2984          *
2985          * FIXME: Wa for more modern gens needs to be validated
2986          */
2987         ring_set_paused(engine, 1);
2988         intel_engine_stop_cs(engine);
2989
2990         /*
2991          * Wa_22011802037:gen11/gen12: In addition to stopping the cs, we need
2992          * to wait for any pending mi force wakeups
2993          */
2994         if (IS_GRAPHICS_VER(engine->i915, 11, 12))
2995                 intel_engine_wait_for_pending_mi_fw(engine);
2996
2997         engine->execlists.reset_ccid = active_ccid(engine);
2998 }
2999
3000 static struct i915_request **
3001 reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
3002 {
3003         struct intel_engine_execlists * const execlists = &engine->execlists;
3004
3005         drm_clflush_virt_range(execlists->csb_write,
3006                                sizeof(execlists->csb_write[0]));
3007
3008         inactive = process_csb(engine, inactive); /* drain preemption events */
3009
3010         /* Following the reset, we need to reload the CSB read/write pointers */
3011         reset_csb_pointers(engine);
3012
3013         return inactive;
3014 }
3015
3016 static void
3017 execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
3018 {
3019         struct intel_context *ce;
3020         struct i915_request *rq;
3021         u32 head;
3022
3023         /*
3024          * Save the currently executing context, even if we completed
3025          * its request, it was still running at the time of the
3026          * reset and will have been clobbered.
3027          */
3028         rq = active_context(engine, engine->execlists.reset_ccid);
3029         if (!rq)
3030                 return;
3031
3032         ce = rq->context;
3033         GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
3034
3035         if (__i915_request_is_complete(rq)) {
3036                 /* Idle context; tidy up the ring so we can restart afresh */
3037                 head = intel_ring_wrap(ce->ring, rq->tail);
3038                 goto out_replay;
3039         }
3040
3041         /* We still have requests in-flight; the engine should be active */
3042         GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
3043
3044         /* Context has requests still in-flight; it should not be idle! */
3045         GEM_BUG_ON(i915_active_is_idle(&ce->active));
3046
3047         rq = active_request(ce->timeline, rq);
3048         head = intel_ring_wrap(ce->ring, rq->head);
3049         GEM_BUG_ON(head == ce->ring->tail);
3050
3051         /*
3052          * If this request hasn't started yet, e.g. it is waiting on a
3053          * semaphore, we need to avoid skipping the request or else we
3054          * break the signaling chain. However, if the context is corrupt
3055          * the request will not restart and we will be stuck with a wedged
3056          * device. It is quite often the case that if we issue a reset
3057          * while the GPU is loading the context image, that the context
3058          * image becomes corrupt.
3059          *
3060          * Otherwise, if we have not started yet, the request should replay
3061          * perfectly and we do not need to flag the result as being erroneous.
3062          */
3063         if (!__i915_request_has_started(rq))
3064                 goto out_replay;
3065
3066         /*
3067          * If the request was innocent, we leave the request in the ELSP
3068          * and will try to replay it on restarting. The context image may
3069          * have been corrupted by the reset, in which case we may have
3070          * to service a new GPU hang, but more likely we can continue on
3071          * without impact.
3072          *
3073          * If the request was guilty, we presume the context is corrupt
3074          * and have to at least restore the RING register in the context
3075          * image back to the expected values to skip over the guilty request.
3076          */
3077         __i915_request_reset(rq, stalled);
3078
3079         /*
3080          * We want a simple context + ring to execute the breadcrumb update.
3081          * We cannot rely on the context being intact across the GPU hang,
3082          * so clear it and rebuild just what we need for the breadcrumb.
3083          * All pending requests for this context will be zapped, and any
3084          * future request will be after userspace has had the opportunity
3085          * to recreate its own state.
3086          */
3087 out_replay:
3088         ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
3089                      head, ce->ring->tail);
3090         lrc_reset_regs(ce, engine);
3091         ce->lrc.lrca = lrc_update_regs(ce, engine, head);
3092 }
3093
3094 static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
3095 {
3096         struct intel_engine_execlists * const execlists = &engine->execlists;
3097         struct i915_request *post[2 * EXECLIST_MAX_PORTS];
3098         struct i915_request **inactive;
3099
3100         rcu_read_lock();
3101         inactive = reset_csb(engine, post);
3102
3103         execlists_reset_active(engine, true);
3104
3105         inactive = cancel_port_requests(execlists, inactive);
3106         post_process_csb(post, inactive);
3107         rcu_read_unlock();
3108 }
3109
3110 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
3111 {
3112         unsigned long flags;
3113
3114         ENGINE_TRACE(engine, "\n");
3115
3116         /* Process the csb, find the guilty context and throw away */
3117         execlists_reset_csb(engine, stalled);
3118
3119         /* Push back any incomplete requests for replay after the reset. */
3120         rcu_read_lock();
3121         spin_lock_irqsave(&engine->sched_engine->lock, flags);
3122         __unwind_incomplete_requests(engine);
3123         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3124         rcu_read_unlock();
3125 }
3126
3127 static void nop_submission_tasklet(struct tasklet_struct *t)
3128 {
3129         struct i915_sched_engine *sched_engine =
3130                 from_tasklet(sched_engine, t, tasklet);
3131         struct intel_engine_cs * const engine = sched_engine->private_data;
3132
3133         /* The driver is wedged; don't process any more events. */
3134         WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3135 }
3136
3137 static void execlists_reset_cancel(struct intel_engine_cs *engine)
3138 {
3139         struct intel_engine_execlists * const execlists = &engine->execlists;
3140         struct i915_sched_engine * const sched_engine = engine->sched_engine;
3141         struct i915_request *rq, *rn;
3142         struct rb_node *rb;
3143         unsigned long flags;
3144
3145         ENGINE_TRACE(engine, "\n");
3146
3147         /*
3148          * Before we call engine->cancel_requests(), we should have exclusive
3149          * access to the submission state. This is arranged for us by the
3150          * caller disabling the interrupt generation, the tasklet and other
3151          * threads that may then access the same state, giving us a free hand
3152          * to reset state. However, we still need to let lockdep be aware that
3153          * we know this state may be accessed in hardirq context, so we
3154          * disable the irq around this manipulation and we want to keep
3155          * the spinlock focused on its duties and not accidentally conflate
3156          * coverage to the submission's irq state. (Similarly, although we
3157          * shouldn't need to disable irq around the manipulation of the
3158          * submission's irq state, we also wish to remind ourselves that
3159          * it is irq state.)
3160          */
3161         execlists_reset_csb(engine, true);
3162
3163         rcu_read_lock();
3164         spin_lock_irqsave(&engine->sched_engine->lock, flags);
3165
3166         /* Mark all executing requests as skipped. */
3167         list_for_each_entry(rq, &engine->sched_engine->requests, sched.link)
3168                 i915_request_put(i915_request_mark_eio(rq));
3169         intel_engine_signal_breadcrumbs(engine);
3170
3171         /* Flush the queued requests to the timeline list (for retiring). */
3172         while ((rb = rb_first_cached(&sched_engine->queue))) {
3173                 struct i915_priolist *p = to_priolist(rb);
3174
3175                 priolist_for_each_request_consume(rq, rn, p) {
3176                         if (i915_request_mark_eio(rq)) {
3177                                 __i915_request_submit(rq);
3178                                 i915_request_put(rq);
3179                         }
3180                 }
3181
3182                 rb_erase_cached(&p->node, &sched_engine->queue);
3183                 i915_priolist_free(p);
3184         }
3185
3186         /* On-hold requests will be flushed to timeline upon their release */
3187         list_for_each_entry(rq, &sched_engine->hold, sched.link)
3188                 i915_request_put(i915_request_mark_eio(rq));
3189
3190         /* Cancel all attached virtual engines */
3191         while ((rb = rb_first_cached(&execlists->virtual))) {
3192                 struct virtual_engine *ve =
3193                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3194
3195                 rb_erase_cached(rb, &execlists->virtual);
3196                 RB_CLEAR_NODE(rb);
3197
3198                 spin_lock(&ve->base.sched_engine->lock);
3199                 rq = fetch_and_zero(&ve->request);
3200                 if (rq) {
3201                         if (i915_request_mark_eio(rq)) {
3202                                 rq->engine = engine;
3203                                 __i915_request_submit(rq);
3204                                 i915_request_put(rq);
3205                         }
3206                         i915_request_put(rq);
3207
3208                         ve->base.sched_engine->queue_priority_hint = INT_MIN;
3209                 }
3210                 spin_unlock(&ve->base.sched_engine->lock);
3211         }
3212
3213         /* Remaining _unready_ requests will be nop'ed when submitted */
3214
3215         sched_engine->queue_priority_hint = INT_MIN;
3216         sched_engine->queue = RB_ROOT_CACHED;
3217
3218         GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet));
3219         engine->sched_engine->tasklet.callback = nop_submission_tasklet;
3220
3221         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3222         rcu_read_unlock();
3223 }
3224
3225 static void execlists_reset_finish(struct intel_engine_cs *engine)
3226 {
3227         struct intel_engine_execlists * const execlists = &engine->execlists;
3228
3229         /*
3230          * After a GPU reset, we may have requests to replay. Do so now while
3231          * we still have the forcewake to be sure that the GPU is not allowed
3232          * to sleep before we restart and reload a context.
3233          *
3234          * If the GPU reset fails, the engine may still be alive with requests
3235          * inflight. We expect those to complete, or for the device to be
3236          * reset as the next level of recovery, and as a final resort we
3237          * will declare the device wedged.
3238          */
3239         GEM_BUG_ON(!reset_in_progress(engine));
3240
3241         /* And kick in case we missed a new request submission. */
3242         if (__tasklet_enable(&engine->sched_engine->tasklet))
3243                 __execlists_kick(execlists);
3244
3245         ENGINE_TRACE(engine, "depth->%d\n",
3246                      atomic_read(&engine->sched_engine->tasklet.count));
3247 }
3248
3249 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3250 {
3251         ENGINE_WRITE(engine, RING_IMR,
3252                      ~(engine->irq_enable_mask | engine->irq_keep_mask));
3253         ENGINE_POSTING_READ(engine, RING_IMR);
3254 }
3255
3256 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3257 {
3258         ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3259 }
3260
3261 static void execlists_park(struct intel_engine_cs *engine)
3262 {
3263         cancel_timer(&engine->execlists.timer);
3264         cancel_timer(&engine->execlists.preempt);
3265 }
3266
3267 static void add_to_engine(struct i915_request *rq)
3268 {
3269         lockdep_assert_held(&rq->engine->sched_engine->lock);
3270         list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests);
3271 }
3272
3273 static void remove_from_engine(struct i915_request *rq)
3274 {
3275         struct intel_engine_cs *engine, *locked;
3276
3277         /*
3278          * Virtual engines complicate acquiring the engine timeline lock,
3279          * as their rq->engine pointer is not stable until under that
3280          * engine lock. The simple ploy we use is to take the lock then
3281          * check that the rq still belongs to the newly locked engine.
3282          */
3283         locked = READ_ONCE(rq->engine);
3284         spin_lock_irq(&locked->sched_engine->lock);
3285         while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
3286                 spin_unlock(&locked->sched_engine->lock);
3287                 spin_lock(&engine->sched_engine->lock);
3288                 locked = engine;
3289         }
3290         list_del_init(&rq->sched.link);
3291
3292         clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3293         clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
3294
3295         /* Prevent further __await_execution() registering a cb, then flush */
3296         set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3297
3298         spin_unlock_irq(&locked->sched_engine->lock);
3299
3300         i915_request_notify_execute_cb_imm(rq);
3301 }
3302
3303 static bool can_preempt(struct intel_engine_cs *engine)
3304 {
3305         if (GRAPHICS_VER(engine->i915) > 8)
3306                 return true;
3307
3308         /* GPGPU on bdw requires extra w/a; not implemented */
3309         return engine->class != RENDER_CLASS;
3310 }
3311
3312 static void kick_execlists(const struct i915_request *rq, int prio)
3313 {
3314         struct intel_engine_cs *engine = rq->engine;
3315         struct i915_sched_engine *sched_engine = engine->sched_engine;
3316         const struct i915_request *inflight;
3317
3318         /*
3319          * We only need to kick the tasklet once for the high priority
3320          * new context we add into the queue.
3321          */
3322         if (prio <= sched_engine->queue_priority_hint)
3323                 return;
3324
3325         rcu_read_lock();
3326
3327         /* Nothing currently active? We're overdue for a submission! */
3328         inflight = execlists_active(&engine->execlists);
3329         if (!inflight)
3330                 goto unlock;
3331
3332         /*
3333          * If we are already the currently executing context, don't
3334          * bother evaluating if we should preempt ourselves.
3335          */
3336         if (inflight->context == rq->context)
3337                 goto unlock;
3338
3339         ENGINE_TRACE(engine,
3340                      "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",
3341                      prio,
3342                      rq->fence.context, rq->fence.seqno,
3343                      inflight->fence.context, inflight->fence.seqno,
3344                      inflight->sched.attr.priority);
3345
3346         sched_engine->queue_priority_hint = prio;
3347
3348         /*
3349          * Allow preemption of low -> normal -> high, but we do
3350          * not allow low priority tasks to preempt other low priority
3351          * tasks under the impression that latency for low priority
3352          * tasks does not matter (as much as background throughput),
3353          * so kiss.
3354          */
3355         if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight)))
3356                 tasklet_hi_schedule(&sched_engine->tasklet);
3357
3358 unlock:
3359         rcu_read_unlock();
3360 }
3361
3362 static void execlists_set_default_submission(struct intel_engine_cs *engine)
3363 {
3364         engine->submit_request = execlists_submit_request;
3365         engine->sched_engine->schedule = i915_schedule;
3366         engine->sched_engine->kick_backend = kick_execlists;
3367         engine->sched_engine->tasklet.callback = execlists_submission_tasklet;
3368 }
3369
3370 static void execlists_shutdown(struct intel_engine_cs *engine)
3371 {
3372         /* Synchronise with residual timers and any softirq they raise */
3373         del_timer_sync(&engine->execlists.timer);
3374         del_timer_sync(&engine->execlists.preempt);
3375         tasklet_kill(&engine->sched_engine->tasklet);
3376 }
3377
3378 static void execlists_release(struct intel_engine_cs *engine)
3379 {
3380         engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3381
3382         execlists_shutdown(engine);
3383
3384         intel_engine_cleanup_common(engine);
3385         lrc_fini_wa_ctx(engine);
3386 }
3387
3388 static ktime_t __execlists_engine_busyness(struct intel_engine_cs *engine,
3389                                            ktime_t *now)
3390 {
3391         struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3392         ktime_t total = stats->total;
3393
3394         /*
3395          * If the engine is executing something at the moment
3396          * add it to the total.
3397          */
3398         *now = ktime_get();
3399         if (READ_ONCE(stats->active))
3400                 total = ktime_add(total, ktime_sub(*now, stats->start));
3401
3402         return total;
3403 }
3404
3405 static ktime_t execlists_engine_busyness(struct intel_engine_cs *engine,
3406                                          ktime_t *now)
3407 {
3408         struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3409         unsigned int seq;
3410         ktime_t total;
3411
3412         do {
3413                 seq = read_seqcount_begin(&stats->lock);
3414                 total = __execlists_engine_busyness(engine, now);
3415         } while (read_seqcount_retry(&stats->lock, seq));
3416
3417         return total;
3418 }
3419
3420 static void
3421 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3422 {
3423         /* Default vfuncs which can be overridden by each engine. */
3424
3425         engine->resume = execlists_resume;
3426
3427         engine->cops = &execlists_context_ops;
3428         engine->request_alloc = execlists_request_alloc;
3429         engine->add_active_request = add_to_engine;
3430         engine->remove_active_request = remove_from_engine;
3431
3432         engine->reset.prepare = execlists_reset_prepare;
3433         engine->reset.rewind = execlists_reset_rewind;
3434         engine->reset.cancel = execlists_reset_cancel;
3435         engine->reset.finish = execlists_reset_finish;
3436
3437         engine->park = execlists_park;
3438         engine->unpark = NULL;
3439
3440         engine->emit_flush = gen8_emit_flush_xcs;
3441         engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3442         engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3443         if (GRAPHICS_VER(engine->i915) >= 12) {
3444                 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3445                 engine->emit_flush = gen12_emit_flush_xcs;
3446         }
3447         engine->set_default_submission = execlists_set_default_submission;
3448
3449         if (GRAPHICS_VER(engine->i915) < 11) {
3450                 engine->irq_enable = gen8_logical_ring_enable_irq;
3451                 engine->irq_disable = gen8_logical_ring_disable_irq;
3452         } else {
3453                 /*
3454                  * TODO: On Gen11 interrupt masks need to be clear
3455                  * to allow C6 entry. Keep interrupts enabled at
3456                  * and take the hit of generating extra interrupts
3457                  * until a more refined solution exists.
3458                  */
3459         }
3460         intel_engine_set_irq_handler(engine, execlists_irq_handler);
3461
3462         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3463         if (!intel_vgpu_active(engine->i915)) {
3464                 engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3465                 if (can_preempt(engine)) {
3466                         engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3467                         if (CONFIG_DRM_I915_TIMESLICE_DURATION)
3468                                 engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3469                 }
3470         }
3471
3472         if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
3473                 if (intel_engine_has_preemption(engine))
3474                         engine->emit_bb_start = xehp_emit_bb_start;
3475                 else
3476                         engine->emit_bb_start = xehp_emit_bb_start_noarb;
3477         } else {
3478                 if (intel_engine_has_preemption(engine))
3479                         engine->emit_bb_start = gen8_emit_bb_start;
3480                 else
3481                         engine->emit_bb_start = gen8_emit_bb_start_noarb;
3482         }
3483
3484         engine->busyness = execlists_engine_busyness;
3485 }
3486
3487 static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3488 {
3489         unsigned int shift = 0;
3490
3491         if (GRAPHICS_VER(engine->i915) < 11) {
3492                 const u8 irq_shifts[] = {
3493                         [RCS0]  = GEN8_RCS_IRQ_SHIFT,
3494                         [BCS0]  = GEN8_BCS_IRQ_SHIFT,
3495                         [VCS0]  = GEN8_VCS0_IRQ_SHIFT,
3496                         [VCS1]  = GEN8_VCS1_IRQ_SHIFT,
3497                         [VECS0] = GEN8_VECS_IRQ_SHIFT,
3498                 };
3499
3500                 shift = irq_shifts[engine->id];
3501         }
3502
3503         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3504         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3505         engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3506         engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3507 }
3508
3509 static void rcs_submission_override(struct intel_engine_cs *engine)
3510 {
3511         switch (GRAPHICS_VER(engine->i915)) {
3512         case 12:
3513                 engine->emit_flush = gen12_emit_flush_rcs;
3514                 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3515                 break;
3516         case 11:
3517                 engine->emit_flush = gen11_emit_flush_rcs;
3518                 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3519                 break;
3520         default:
3521                 engine->emit_flush = gen8_emit_flush_rcs;
3522                 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3523                 break;
3524         }
3525 }
3526
3527 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3528 {
3529         struct intel_engine_execlists * const execlists = &engine->execlists;
3530         struct drm_i915_private *i915 = engine->i915;
3531         struct intel_uncore *uncore = engine->uncore;
3532         u32 base = engine->mmio_base;
3533
3534         tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet);
3535         timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3536         timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3537
3538         logical_ring_default_vfuncs(engine);
3539         logical_ring_default_irqs(engine);
3540
3541         if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
3542                 rcs_submission_override(engine);
3543
3544         lrc_init_wa_ctx(engine);
3545
3546         if (HAS_LOGICAL_RING_ELSQ(i915)) {
3547                 execlists->submit_reg = uncore->regs +
3548                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3549                 execlists->ctrl_reg = uncore->regs +
3550                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3551
3552                 engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore,
3553                                     RING_EXECLIST_CONTROL(engine->mmio_base),
3554                                     FW_REG_WRITE);
3555         } else {
3556                 execlists->submit_reg = uncore->regs +
3557                         i915_mmio_reg_offset(RING_ELSP(base));
3558         }
3559
3560         execlists->csb_status =
3561                 (u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3562
3563         execlists->csb_write =
3564                 &engine->status_page.addr[INTEL_HWS_CSB_WRITE_INDEX(i915)];
3565
3566         if (GRAPHICS_VER(i915) < 11)
3567                 execlists->csb_size = GEN8_CSB_ENTRIES;
3568         else
3569                 execlists->csb_size = GEN11_CSB_ENTRIES;
3570
3571         engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3572         if (GRAPHICS_VER(engine->i915) >= 11 &&
3573             GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 50)) {
3574                 execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3575                 execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3576         }
3577
3578         /* Finally, take ownership and responsibility for cleanup! */
3579         engine->sanitize = execlists_sanitize;
3580         engine->release = execlists_release;
3581
3582         return 0;
3583 }
3584
3585 static struct list_head *virtual_queue(struct virtual_engine *ve)
3586 {
3587         return &ve->base.sched_engine->default_priolist.requests;
3588 }
3589
3590 static void rcu_virtual_context_destroy(struct work_struct *wrk)
3591 {
3592         struct virtual_engine *ve =
3593                 container_of(wrk, typeof(*ve), rcu.work);
3594         unsigned int n;
3595
3596         GEM_BUG_ON(ve->context.inflight);
3597
3598         /* Preempt-to-busy may leave a stale request behind. */
3599         if (unlikely(ve->request)) {
3600                 struct i915_request *old;
3601
3602                 spin_lock_irq(&ve->base.sched_engine->lock);
3603
3604                 old = fetch_and_zero(&ve->request);
3605                 if (old) {
3606                         GEM_BUG_ON(!__i915_request_is_complete(old));
3607                         __i915_request_submit(old);
3608                         i915_request_put(old);
3609                 }
3610
3611                 spin_unlock_irq(&ve->base.sched_engine->lock);
3612         }
3613
3614         /*
3615          * Flush the tasklet in case it is still running on another core.
3616          *
3617          * This needs to be done before we remove ourselves from the siblings'
3618          * rbtrees as in the case it is running in parallel, it may reinsert
3619          * the rb_node into a sibling.
3620          */
3621         tasklet_kill(&ve->base.sched_engine->tasklet);
3622
3623         /* Decouple ourselves from the siblings, no more access allowed. */
3624         for (n = 0; n < ve->num_siblings; n++) {
3625                 struct intel_engine_cs *sibling = ve->siblings[n];
3626                 struct rb_node *node = &ve->nodes[sibling->id].rb;
3627
3628                 if (RB_EMPTY_NODE(node))
3629                         continue;
3630
3631                 spin_lock_irq(&sibling->sched_engine->lock);
3632
3633                 /* Detachment is lazily performed in the sched_engine->tasklet */
3634                 if (!RB_EMPTY_NODE(node))
3635                         rb_erase_cached(node, &sibling->execlists.virtual);
3636
3637                 spin_unlock_irq(&sibling->sched_engine->lock);
3638         }
3639         GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet));
3640         GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3641
3642         lrc_fini(&ve->context);
3643         intel_context_fini(&ve->context);
3644
3645         if (ve->base.breadcrumbs)
3646                 intel_breadcrumbs_put(ve->base.breadcrumbs);
3647         if (ve->base.sched_engine)
3648                 i915_sched_engine_put(ve->base.sched_engine);
3649         intel_engine_free_request_pool(&ve->base);
3650
3651         kfree(ve);
3652 }
3653
3654 static void virtual_context_destroy(struct kref *kref)
3655 {
3656         struct virtual_engine *ve =
3657                 container_of(kref, typeof(*ve), context.ref);
3658
3659         GEM_BUG_ON(!list_empty(&ve->context.signals));
3660
3661         /*
3662          * When destroying the virtual engine, we have to be aware that
3663          * it may still be in use from an hardirq/softirq context causing
3664          * the resubmission of a completed request (background completion
3665          * due to preempt-to-busy). Before we can free the engine, we need
3666          * to flush the submission code and tasklets that are still potentially
3667          * accessing the engine. Flushing the tasklets requires process context,
3668          * and since we can guard the resubmit onto the engine with an RCU read
3669          * lock, we can delegate the free of the engine to an RCU worker.
3670          */
3671         INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3672         queue_rcu_work(system_wq, &ve->rcu);
3673 }
3674
3675 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3676 {
3677         int swp;
3678
3679         /*
3680          * Pick a random sibling on starting to help spread the load around.
3681          *
3682          * New contexts are typically created with exactly the same order
3683          * of siblings, and often started in batches. Due to the way we iterate
3684          * the array of sibling when submitting requests, sibling[0] is
3685          * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3686          * randomised across the system, we also help spread the load by the
3687          * first engine we inspect being different each time.
3688          *
3689          * NB This does not force us to execute on this engine, it will just
3690          * typically be the first we inspect for submission.
3691          */
3692         swp = prandom_u32_max(ve->num_siblings);
3693         if (swp)
3694                 swap(ve->siblings[swp], ve->siblings[0]);
3695 }
3696
3697 static int virtual_context_alloc(struct intel_context *ce)
3698 {
3699         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3700
3701         return lrc_alloc(ce, ve->siblings[0]);
3702 }
3703
3704 static int virtual_context_pre_pin(struct intel_context *ce,
3705                                    struct i915_gem_ww_ctx *ww,
3706                                    void **vaddr)
3707 {
3708         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3709
3710          /* Note: we must use a real engine class for setting up reg state */
3711         return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3712 }
3713
3714 static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3715 {
3716         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3717
3718         return lrc_pin(ce, ve->siblings[0], vaddr);
3719 }
3720
3721 static void virtual_context_enter(struct intel_context *ce)
3722 {
3723         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3724         unsigned int n;
3725
3726         for (n = 0; n < ve->num_siblings; n++)
3727                 intel_engine_pm_get(ve->siblings[n]);
3728
3729         intel_timeline_enter(ce->timeline);
3730 }
3731
3732 static void virtual_context_exit(struct intel_context *ce)
3733 {
3734         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3735         unsigned int n;
3736
3737         intel_timeline_exit(ce->timeline);
3738
3739         for (n = 0; n < ve->num_siblings; n++)
3740                 intel_engine_pm_put(ve->siblings[n]);
3741 }
3742
3743 static struct intel_engine_cs *
3744 virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling)
3745 {
3746         struct virtual_engine *ve = to_virtual_engine(engine);
3747
3748         if (sibling >= ve->num_siblings)
3749                 return NULL;
3750
3751         return ve->siblings[sibling];
3752 }
3753
3754 static const struct intel_context_ops virtual_context_ops = {
3755         .flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
3756
3757         .alloc = virtual_context_alloc,
3758
3759         .cancel_request = execlists_context_cancel_request,
3760
3761         .pre_pin = virtual_context_pre_pin,
3762         .pin = virtual_context_pin,
3763         .unpin = lrc_unpin,
3764         .post_unpin = lrc_post_unpin,
3765
3766         .enter = virtual_context_enter,
3767         .exit = virtual_context_exit,
3768
3769         .destroy = virtual_context_destroy,
3770
3771         .get_sibling = virtual_get_sibling,
3772 };
3773
3774 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3775 {
3776         struct i915_request *rq;
3777         intel_engine_mask_t mask;
3778
3779         rq = READ_ONCE(ve->request);
3780         if (!rq)
3781                 return 0;
3782
3783         /* The rq is ready for submission; rq->execution_mask is now stable. */
3784         mask = rq->execution_mask;
3785         if (unlikely(!mask)) {
3786                 /* Invalid selection, submit to a random engine in error */
3787                 i915_request_set_error_once(rq, -ENODEV);
3788                 mask = ve->siblings[0]->mask;
3789         }
3790
3791         ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3792                      rq->fence.context, rq->fence.seqno,
3793                      mask, ve->base.sched_engine->queue_priority_hint);
3794
3795         return mask;
3796 }
3797
3798 static void virtual_submission_tasklet(struct tasklet_struct *t)
3799 {
3800         struct i915_sched_engine *sched_engine =
3801                 from_tasklet(sched_engine, t, tasklet);
3802         struct virtual_engine * const ve =
3803                 (struct virtual_engine *)sched_engine->private_data;
3804         const int prio = READ_ONCE(sched_engine->queue_priority_hint);
3805         intel_engine_mask_t mask;
3806         unsigned int n;
3807
3808         rcu_read_lock();
3809         mask = virtual_submission_mask(ve);
3810         rcu_read_unlock();
3811         if (unlikely(!mask))
3812                 return;
3813
3814         for (n = 0; n < ve->num_siblings; n++) {
3815                 struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3816                 struct ve_node * const node = &ve->nodes[sibling->id];
3817                 struct rb_node **parent, *rb;
3818                 bool first;
3819
3820                 if (!READ_ONCE(ve->request))
3821                         break; /* already handled by a sibling's tasklet */
3822
3823                 spin_lock_irq(&sibling->sched_engine->lock);
3824
3825                 if (unlikely(!(mask & sibling->mask))) {
3826                         if (!RB_EMPTY_NODE(&node->rb)) {
3827                                 rb_erase_cached(&node->rb,
3828                                                 &sibling->execlists.virtual);
3829                                 RB_CLEAR_NODE(&node->rb);
3830                         }
3831
3832                         goto unlock_engine;
3833                 }
3834
3835                 if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3836                         /*
3837                          * Cheat and avoid rebalancing the tree if we can
3838                          * reuse this node in situ.
3839                          */
3840                         first = rb_first_cached(&sibling->execlists.virtual) ==
3841                                 &node->rb;
3842                         if (prio == node->prio || (prio > node->prio && first))
3843                                 goto submit_engine;
3844
3845                         rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3846                 }
3847
3848                 rb = NULL;
3849                 first = true;
3850                 parent = &sibling->execlists.virtual.rb_root.rb_node;
3851                 while (*parent) {
3852                         struct ve_node *other;
3853
3854                         rb = *parent;
3855                         other = rb_entry(rb, typeof(*other), rb);
3856                         if (prio > other->prio) {
3857                                 parent = &rb->rb_left;
3858                         } else {
3859                                 parent = &rb->rb_right;
3860                                 first = false;
3861                         }
3862                 }
3863
3864                 rb_link_node(&node->rb, rb, parent);
3865                 rb_insert_color_cached(&node->rb,
3866                                        &sibling->execlists.virtual,
3867                                        first);
3868
3869 submit_engine:
3870                 GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3871                 node->prio = prio;
3872                 if (first && prio > sibling->sched_engine->queue_priority_hint)
3873                         tasklet_hi_schedule(&sibling->sched_engine->tasklet);
3874
3875 unlock_engine:
3876                 spin_unlock_irq(&sibling->sched_engine->lock);
3877
3878                 if (intel_context_inflight(&ve->context))
3879                         break;
3880         }
3881 }
3882
3883 static void virtual_submit_request(struct i915_request *rq)
3884 {
3885         struct virtual_engine *ve = to_virtual_engine(rq->engine);
3886         unsigned long flags;
3887
3888         ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3889                      rq->fence.context,
3890                      rq->fence.seqno);
3891
3892         GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3893
3894         spin_lock_irqsave(&ve->base.sched_engine->lock, flags);
3895
3896         /* By the time we resubmit a request, it may be completed */
3897         if (__i915_request_is_complete(rq)) {
3898                 __i915_request_submit(rq);
3899                 goto unlock;
3900         }
3901
3902         if (ve->request) { /* background completion from preempt-to-busy */
3903                 GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3904                 __i915_request_submit(ve->request);
3905                 i915_request_put(ve->request);
3906         }
3907
3908         ve->base.sched_engine->queue_priority_hint = rq_prio(rq);
3909         ve->request = i915_request_get(rq);
3910
3911         GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3912         list_move_tail(&rq->sched.link, virtual_queue(ve));
3913
3914         tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
3915
3916 unlock:
3917         spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags);
3918 }
3919
3920 static struct intel_context *
3921 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
3922                          unsigned long flags)
3923 {
3924         struct virtual_engine *ve;
3925         unsigned int n;
3926         int err;
3927
3928         ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3929         if (!ve)
3930                 return ERR_PTR(-ENOMEM);
3931
3932         ve->base.i915 = siblings[0]->i915;
3933         ve->base.gt = siblings[0]->gt;
3934         ve->base.uncore = siblings[0]->uncore;
3935         ve->base.id = -1;
3936
3937         ve->base.class = OTHER_CLASS;
3938         ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3939         ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3940         ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3941
3942         /*
3943          * The decision on whether to submit a request using semaphores
3944          * depends on the saturated state of the engine. We only compute
3945          * this during HW submission of the request, and we need for this
3946          * state to be globally applied to all requests being submitted
3947          * to this engine. Virtual engines encompass more than one physical
3948          * engine and so we cannot accurately tell in advance if one of those
3949          * engines is already saturated and so cannot afford to use a semaphore
3950          * and be pessimized in priority for doing so -- if we are the only
3951          * context using semaphores after all other clients have stopped, we
3952          * will be starved on the saturated system. Such a global switch for
3953          * semaphores is less than ideal, but alas is the current compromise.
3954          */
3955         ve->base.saturated = ALL_ENGINES;
3956
3957         snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3958
3959         intel_engine_init_execlists(&ve->base);
3960
3961         ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
3962         if (!ve->base.sched_engine) {
3963                 err = -ENOMEM;
3964                 goto err_put;
3965         }
3966         ve->base.sched_engine->private_data = &ve->base;
3967
3968         ve->base.cops = &virtual_context_ops;
3969         ve->base.request_alloc = execlists_request_alloc;
3970
3971         ve->base.sched_engine->schedule = i915_schedule;
3972         ve->base.sched_engine->kick_backend = kick_execlists;
3973         ve->base.submit_request = virtual_submit_request;
3974
3975         INIT_LIST_HEAD(virtual_queue(ve));
3976         tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet);
3977
3978         intel_context_init(&ve->context, &ve->base);
3979
3980         ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
3981         if (!ve->base.breadcrumbs) {
3982                 err = -ENOMEM;
3983                 goto err_put;
3984         }
3985
3986         for (n = 0; n < count; n++) {
3987                 struct intel_engine_cs *sibling = siblings[n];
3988
3989                 GEM_BUG_ON(!is_power_of_2(sibling->mask));
3990                 if (sibling->mask & ve->base.mask) {
3991                         DRM_DEBUG("duplicate %s entry in load balancer\n",
3992                                   sibling->name);
3993                         err = -EINVAL;
3994                         goto err_put;
3995                 }
3996
3997                 /*
3998                  * The virtual engine implementation is tightly coupled to
3999                  * the execlists backend -- we push out request directly
4000                  * into a tree inside each physical engine. We could support
4001                  * layering if we handle cloning of the requests and
4002                  * submitting a copy into each backend.
4003                  */
4004                 if (sibling->sched_engine->tasklet.callback !=
4005                     execlists_submission_tasklet) {
4006                         err = -ENODEV;
4007                         goto err_put;
4008                 }
4009
4010                 GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
4011                 RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
4012
4013                 ve->siblings[ve->num_siblings++] = sibling;
4014                 ve->base.mask |= sibling->mask;
4015                 ve->base.logical_mask |= sibling->logical_mask;
4016
4017                 /*
4018                  * All physical engines must be compatible for their emission
4019                  * functions (as we build the instructions during request
4020                  * construction and do not alter them before submission
4021                  * on the physical engine). We use the engine class as a guide
4022                  * here, although that could be refined.
4023                  */
4024                 if (ve->base.class != OTHER_CLASS) {
4025                         if (ve->base.class != sibling->class) {
4026                                 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
4027                                           sibling->class, ve->base.class);
4028                                 err = -EINVAL;
4029                                 goto err_put;
4030                         }
4031                         continue;
4032                 }
4033
4034                 ve->base.class = sibling->class;
4035                 ve->base.uabi_class = sibling->uabi_class;
4036                 snprintf(ve->base.name, sizeof(ve->base.name),
4037                          "v%dx%d", ve->base.class, count);
4038                 ve->base.context_size = sibling->context_size;
4039
4040                 ve->base.add_active_request = sibling->add_active_request;
4041                 ve->base.remove_active_request = sibling->remove_active_request;
4042                 ve->base.emit_bb_start = sibling->emit_bb_start;
4043                 ve->base.emit_flush = sibling->emit_flush;
4044                 ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
4045                 ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
4046                 ve->base.emit_fini_breadcrumb_dw =
4047                         sibling->emit_fini_breadcrumb_dw;
4048
4049                 ve->base.flags = sibling->flags;
4050         }
4051
4052         ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
4053
4054         virtual_engine_initial_hint(ve);
4055         return &ve->context;
4056
4057 err_put:
4058         intel_context_put(&ve->context);
4059         return ERR_PTR(err);
4060 }
4061
4062 void intel_execlists_show_requests(struct intel_engine_cs *engine,
4063                                    struct drm_printer *m,
4064                                    void (*show_request)(struct drm_printer *m,
4065                                                         const struct i915_request *rq,
4066                                                         const char *prefix,
4067                                                         int indent),
4068                                    unsigned int max)
4069 {
4070         const struct intel_engine_execlists *execlists = &engine->execlists;
4071         struct i915_sched_engine *sched_engine = engine->sched_engine;
4072         struct i915_request *rq, *last;
4073         unsigned long flags;
4074         unsigned int count;
4075         struct rb_node *rb;
4076
4077         spin_lock_irqsave(&sched_engine->lock, flags);
4078
4079         last = NULL;
4080         count = 0;
4081         list_for_each_entry(rq, &sched_engine->requests, sched.link) {
4082                 if (count++ < max - 1)
4083                         show_request(m, rq, "\t\t", 0);
4084                 else
4085                         last = rq;
4086         }
4087         if (last) {
4088                 if (count > max) {
4089                         drm_printf(m,
4090                                    "\t\t...skipping %d executing requests...\n",
4091                                    count - max);
4092                 }
4093                 show_request(m, last, "\t\t", 0);
4094         }
4095
4096         if (sched_engine->queue_priority_hint != INT_MIN)
4097                 drm_printf(m, "\t\tQueue priority hint: %d\n",
4098                            READ_ONCE(sched_engine->queue_priority_hint));
4099
4100         last = NULL;
4101         count = 0;
4102         for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
4103                 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
4104
4105                 priolist_for_each_request(rq, p) {
4106                         if (count++ < max - 1)
4107                                 show_request(m, rq, "\t\t", 0);
4108                         else
4109                                 last = rq;
4110                 }
4111         }
4112         if (last) {
4113                 if (count > max) {
4114                         drm_printf(m,
4115                                    "\t\t...skipping %d queued requests...\n",
4116                                    count - max);
4117                 }
4118                 show_request(m, last, "\t\t", 0);
4119         }
4120
4121         last = NULL;
4122         count = 0;
4123         for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
4124                 struct virtual_engine *ve =
4125                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
4126                 struct i915_request *rq = READ_ONCE(ve->request);
4127
4128                 if (rq) {
4129                         if (count++ < max - 1)
4130                                 show_request(m, rq, "\t\t", 0);
4131                         else
4132                                 last = rq;
4133                 }
4134         }
4135         if (last) {
4136                 if (count > max) {
4137                         drm_printf(m,
4138                                    "\t\t...skipping %d virtual requests...\n",
4139                                    count - max);
4140                 }
4141                 show_request(m, last, "\t\t", 0);
4142         }
4143
4144         spin_unlock_irqrestore(&sched_engine->lock, flags);
4145 }
4146
4147 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4148 #include "selftest_execlists.c"
4149 #endif