file, i915: fix file reference for mmap_singleton()
[linux-block.git] / drivers / gpu / drm / i915 / gt / intel_engine_cs.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5
6 #include <linux/string_helpers.h>
7
8 #include <drm/drm_print.h>
9
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_print.h"
13 #include "gt/intel_gt_regs.h"
14
15 #include "i915_cmd_parser.h"
16 #include "i915_drv.h"
17 #include "i915_irq.h"
18 #include "i915_reg.h"
19 #include "intel_breadcrumbs.h"
20 #include "intel_context.h"
21 #include "intel_engine.h"
22 #include "intel_engine_pm.h"
23 #include "intel_engine_regs.h"
24 #include "intel_engine_user.h"
25 #include "intel_execlists_submission.h"
26 #include "intel_gt.h"
27 #include "intel_gt_mcr.h"
28 #include "intel_gt_pm.h"
29 #include "intel_gt_requests.h"
30 #include "intel_lrc.h"
31 #include "intel_lrc_reg.h"
32 #include "intel_reset.h"
33 #include "intel_ring.h"
34 #include "uc/intel_guc_submission.h"
35
36 /* Haswell does have the CXT_SIZE register however it does not appear to be
37  * valid. Now, docs explain in dwords what is in the context object. The full
38  * size is 70720 bytes, however, the power context and execlist context will
39  * never be saved (power context is stored elsewhere, and execlists don't work
40  * on HSW) - so the final size, including the extra state required for the
41  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
42  */
43 #define HSW_CXT_TOTAL_SIZE              (17 * PAGE_SIZE)
44
45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE  (22 * PAGE_SIZE)
46 #define GEN8_LR_CONTEXT_RENDER_SIZE     (20 * PAGE_SIZE)
47 #define GEN9_LR_CONTEXT_RENDER_SIZE     (22 * PAGE_SIZE)
48 #define GEN11_LR_CONTEXT_RENDER_SIZE    (14 * PAGE_SIZE)
49
50 #define GEN8_LR_CONTEXT_OTHER_SIZE      ( 2 * PAGE_SIZE)
51
52 #define MAX_MMIO_BASES 3
53 struct engine_info {
54         u8 class;
55         u8 instance;
56         /* mmio bases table *must* be sorted in reverse graphics_ver order */
57         struct engine_mmio_base {
58                 u32 graphics_ver : 8;
59                 u32 base : 24;
60         } mmio_bases[MAX_MMIO_BASES];
61 };
62
63 static const struct engine_info intel_engines[] = {
64         [RCS0] = {
65                 .class = RENDER_CLASS,
66                 .instance = 0,
67                 .mmio_bases = {
68                         { .graphics_ver = 1, .base = RENDER_RING_BASE }
69                 },
70         },
71         [BCS0] = {
72                 .class = COPY_ENGINE_CLASS,
73                 .instance = 0,
74                 .mmio_bases = {
75                         { .graphics_ver = 6, .base = BLT_RING_BASE }
76                 },
77         },
78         [BCS1] = {
79                 .class = COPY_ENGINE_CLASS,
80                 .instance = 1,
81                 .mmio_bases = {
82                         { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
83                 },
84         },
85         [BCS2] = {
86                 .class = COPY_ENGINE_CLASS,
87                 .instance = 2,
88                 .mmio_bases = {
89                         { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
90                 },
91         },
92         [BCS3] = {
93                 .class = COPY_ENGINE_CLASS,
94                 .instance = 3,
95                 .mmio_bases = {
96                         { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
97                 },
98         },
99         [BCS4] = {
100                 .class = COPY_ENGINE_CLASS,
101                 .instance = 4,
102                 .mmio_bases = {
103                         { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
104                 },
105         },
106         [BCS5] = {
107                 .class = COPY_ENGINE_CLASS,
108                 .instance = 5,
109                 .mmio_bases = {
110                         { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
111                 },
112         },
113         [BCS6] = {
114                 .class = COPY_ENGINE_CLASS,
115                 .instance = 6,
116                 .mmio_bases = {
117                         { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
118                 },
119         },
120         [BCS7] = {
121                 .class = COPY_ENGINE_CLASS,
122                 .instance = 7,
123                 .mmio_bases = {
124                         { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
125                 },
126         },
127         [BCS8] = {
128                 .class = COPY_ENGINE_CLASS,
129                 .instance = 8,
130                 .mmio_bases = {
131                         { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
132                 },
133         },
134         [VCS0] = {
135                 .class = VIDEO_DECODE_CLASS,
136                 .instance = 0,
137                 .mmio_bases = {
138                         { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
139                         { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
140                         { .graphics_ver = 4, .base = BSD_RING_BASE }
141                 },
142         },
143         [VCS1] = {
144                 .class = VIDEO_DECODE_CLASS,
145                 .instance = 1,
146                 .mmio_bases = {
147                         { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
148                         { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
149                 },
150         },
151         [VCS2] = {
152                 .class = VIDEO_DECODE_CLASS,
153                 .instance = 2,
154                 .mmio_bases = {
155                         { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
156                 },
157         },
158         [VCS3] = {
159                 .class = VIDEO_DECODE_CLASS,
160                 .instance = 3,
161                 .mmio_bases = {
162                         { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
163                 },
164         },
165         [VCS4] = {
166                 .class = VIDEO_DECODE_CLASS,
167                 .instance = 4,
168                 .mmio_bases = {
169                         { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
170                 },
171         },
172         [VCS5] = {
173                 .class = VIDEO_DECODE_CLASS,
174                 .instance = 5,
175                 .mmio_bases = {
176                         { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
177                 },
178         },
179         [VCS6] = {
180                 .class = VIDEO_DECODE_CLASS,
181                 .instance = 6,
182                 .mmio_bases = {
183                         { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
184                 },
185         },
186         [VCS7] = {
187                 .class = VIDEO_DECODE_CLASS,
188                 .instance = 7,
189                 .mmio_bases = {
190                         { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
191                 },
192         },
193         [VECS0] = {
194                 .class = VIDEO_ENHANCEMENT_CLASS,
195                 .instance = 0,
196                 .mmio_bases = {
197                         { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
198                         { .graphics_ver = 7, .base = VEBOX_RING_BASE }
199                 },
200         },
201         [VECS1] = {
202                 .class = VIDEO_ENHANCEMENT_CLASS,
203                 .instance = 1,
204                 .mmio_bases = {
205                         { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
206                 },
207         },
208         [VECS2] = {
209                 .class = VIDEO_ENHANCEMENT_CLASS,
210                 .instance = 2,
211                 .mmio_bases = {
212                         { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
213                 },
214         },
215         [VECS3] = {
216                 .class = VIDEO_ENHANCEMENT_CLASS,
217                 .instance = 3,
218                 .mmio_bases = {
219                         { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
220                 },
221         },
222         [CCS0] = {
223                 .class = COMPUTE_CLASS,
224                 .instance = 0,
225                 .mmio_bases = {
226                         { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
227                 }
228         },
229         [CCS1] = {
230                 .class = COMPUTE_CLASS,
231                 .instance = 1,
232                 .mmio_bases = {
233                         { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
234                 }
235         },
236         [CCS2] = {
237                 .class = COMPUTE_CLASS,
238                 .instance = 2,
239                 .mmio_bases = {
240                         { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
241                 }
242         },
243         [CCS3] = {
244                 .class = COMPUTE_CLASS,
245                 .instance = 3,
246                 .mmio_bases = {
247                         { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
248                 }
249         },
250         [GSC0] = {
251                 .class = OTHER_CLASS,
252                 .instance = OTHER_GSC_INSTANCE,
253                 .mmio_bases = {
254                         { .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
255                 }
256         },
257 };
258
259 /**
260  * intel_engine_context_size() - return the size of the context for an engine
261  * @gt: the gt
262  * @class: engine class
263  *
264  * Each engine class may require a different amount of space for a context
265  * image.
266  *
267  * Return: size (in bytes) of an engine class specific context image
268  *
269  * Note: this size includes the HWSP, which is part of the context image
270  * in LRC mode, but does not include the "shared data page" used with
271  * GuC submission. The caller should account for this if using the GuC.
272  */
273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
274 {
275         struct intel_uncore *uncore = gt->uncore;
276         u32 cxt_size;
277
278         BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
279
280         switch (class) {
281         case COMPUTE_CLASS:
282                 fallthrough;
283         case RENDER_CLASS:
284                 switch (GRAPHICS_VER(gt->i915)) {
285                 default:
286                         MISSING_CASE(GRAPHICS_VER(gt->i915));
287                         return DEFAULT_LR_CONTEXT_RENDER_SIZE;
288                 case 12:
289                 case 11:
290                         return GEN11_LR_CONTEXT_RENDER_SIZE;
291                 case 9:
292                         return GEN9_LR_CONTEXT_RENDER_SIZE;
293                 case 8:
294                         return GEN8_LR_CONTEXT_RENDER_SIZE;
295                 case 7:
296                         if (IS_HASWELL(gt->i915))
297                                 return HSW_CXT_TOTAL_SIZE;
298
299                         cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
300                         return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
301                                         PAGE_SIZE);
302                 case 6:
303                         cxt_size = intel_uncore_read(uncore, CXT_SIZE);
304                         return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
305                                         PAGE_SIZE);
306                 case 5:
307                 case 4:
308                         /*
309                          * There is a discrepancy here between the size reported
310                          * by the register and the size of the context layout
311                          * in the docs. Both are described as authorative!
312                          *
313                          * The discrepancy is on the order of a few cachelines,
314                          * but the total is under one page (4k), which is our
315                          * minimum allocation anyway so it should all come
316                          * out in the wash.
317                          */
318                         cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
319                         drm_dbg(&gt->i915->drm,
320                                 "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
321                                 GRAPHICS_VER(gt->i915), cxt_size * 64,
322                                 cxt_size - 1);
323                         return round_up(cxt_size * 64, PAGE_SIZE);
324                 case 3:
325                 case 2:
326                 /* For the special day when i810 gets merged. */
327                 case 1:
328                         return 0;
329                 }
330                 break;
331         default:
332                 MISSING_CASE(class);
333                 fallthrough;
334         case VIDEO_DECODE_CLASS:
335         case VIDEO_ENHANCEMENT_CLASS:
336         case COPY_ENGINE_CLASS:
337         case OTHER_CLASS:
338                 if (GRAPHICS_VER(gt->i915) < 8)
339                         return 0;
340                 return GEN8_LR_CONTEXT_OTHER_SIZE;
341         }
342 }
343
344 static u32 __engine_mmio_base(struct drm_i915_private *i915,
345                               const struct engine_mmio_base *bases)
346 {
347         int i;
348
349         for (i = 0; i < MAX_MMIO_BASES; i++)
350                 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
351                         break;
352
353         GEM_BUG_ON(i == MAX_MMIO_BASES);
354         GEM_BUG_ON(!bases[i].base);
355
356         return bases[i].base;
357 }
358
359 static void __sprint_engine_name(struct intel_engine_cs *engine)
360 {
361         /*
362          * Before we know what the uABI name for this engine will be,
363          * we still would like to keep track of this engine in the debug logs.
364          * We throw in a ' here as a reminder that this isn't its final name.
365          */
366         GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
367                              intel_engine_class_repr(engine->class),
368                              engine->instance) >= sizeof(engine->name));
369 }
370
371 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
372 {
373         /*
374          * Though they added more rings on g4x/ilk, they did not add
375          * per-engine HWSTAM until gen6.
376          */
377         if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
378                 return;
379
380         if (GRAPHICS_VER(engine->i915) >= 3)
381                 ENGINE_WRITE(engine, RING_HWSTAM, mask);
382         else
383                 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
384 }
385
386 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
387 {
388         /* Mask off all writes into the unknown HWSP */
389         intel_engine_set_hwsp_writemask(engine, ~0u);
390 }
391
392 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
393 {
394         GEM_DEBUG_WARN_ON(iir);
395 }
396
397 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
398 {
399         u32 reset_domain;
400
401         if (ver >= 11) {
402                 static const u32 engine_reset_domains[] = {
403                         [RCS0]  = GEN11_GRDOM_RENDER,
404                         [BCS0]  = GEN11_GRDOM_BLT,
405                         [BCS1]  = XEHPC_GRDOM_BLT1,
406                         [BCS2]  = XEHPC_GRDOM_BLT2,
407                         [BCS3]  = XEHPC_GRDOM_BLT3,
408                         [BCS4]  = XEHPC_GRDOM_BLT4,
409                         [BCS5]  = XEHPC_GRDOM_BLT5,
410                         [BCS6]  = XEHPC_GRDOM_BLT6,
411                         [BCS7]  = XEHPC_GRDOM_BLT7,
412                         [BCS8]  = XEHPC_GRDOM_BLT8,
413                         [VCS0]  = GEN11_GRDOM_MEDIA,
414                         [VCS1]  = GEN11_GRDOM_MEDIA2,
415                         [VCS2]  = GEN11_GRDOM_MEDIA3,
416                         [VCS3]  = GEN11_GRDOM_MEDIA4,
417                         [VCS4]  = GEN11_GRDOM_MEDIA5,
418                         [VCS5]  = GEN11_GRDOM_MEDIA6,
419                         [VCS6]  = GEN11_GRDOM_MEDIA7,
420                         [VCS7]  = GEN11_GRDOM_MEDIA8,
421                         [VECS0] = GEN11_GRDOM_VECS,
422                         [VECS1] = GEN11_GRDOM_VECS2,
423                         [VECS2] = GEN11_GRDOM_VECS3,
424                         [VECS3] = GEN11_GRDOM_VECS4,
425                         [CCS0]  = GEN11_GRDOM_RENDER,
426                         [CCS1]  = GEN11_GRDOM_RENDER,
427                         [CCS2]  = GEN11_GRDOM_RENDER,
428                         [CCS3]  = GEN11_GRDOM_RENDER,
429                         [GSC0]  = GEN12_GRDOM_GSC,
430                 };
431                 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
432                            !engine_reset_domains[id]);
433                 reset_domain = engine_reset_domains[id];
434         } else {
435                 static const u32 engine_reset_domains[] = {
436                         [RCS0]  = GEN6_GRDOM_RENDER,
437                         [BCS0]  = GEN6_GRDOM_BLT,
438                         [VCS0]  = GEN6_GRDOM_MEDIA,
439                         [VCS1]  = GEN8_GRDOM_MEDIA2,
440                         [VECS0] = GEN6_GRDOM_VECS,
441                 };
442                 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
443                            !engine_reset_domains[id]);
444                 reset_domain = engine_reset_domains[id];
445         }
446
447         return reset_domain;
448 }
449
450 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
451                               u8 logical_instance)
452 {
453         const struct engine_info *info = &intel_engines[id];
454         struct drm_i915_private *i915 = gt->i915;
455         struct intel_engine_cs *engine;
456         u8 guc_class;
457
458         BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
459         BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
460         BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
461         BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
462
463         if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
464                 return -EINVAL;
465
466         if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
467                 return -EINVAL;
468
469         if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
470                 return -EINVAL;
471
472         if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
473                 return -EINVAL;
474
475         engine = kzalloc(sizeof(*engine), GFP_KERNEL);
476         if (!engine)
477                 return -ENOMEM;
478
479         BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
480
481         INIT_LIST_HEAD(&engine->pinned_contexts_list);
482         engine->id = id;
483         engine->legacy_idx = INVALID_ENGINE;
484         engine->mask = BIT(id);
485         engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
486                                                 id);
487         engine->i915 = i915;
488         engine->gt = gt;
489         engine->uncore = gt->uncore;
490         guc_class = engine_class_to_guc_class(info->class);
491         engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
492         engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
493
494         engine->irq_handler = nop_irq_handler;
495
496         engine->class = info->class;
497         engine->instance = info->instance;
498         engine->logical_mask = BIT(logical_instance);
499         __sprint_engine_name(engine);
500
501         if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
502              __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
503              engine->class == RENDER_CLASS)
504                 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
505
506         /* features common between engines sharing EUs */
507         if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
508                 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
509                 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
510         }
511
512         engine->props.heartbeat_interval_ms =
513                 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
514         engine->props.max_busywait_duration_ns =
515                 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
516         engine->props.preempt_timeout_ms =
517                 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
518         engine->props.stop_timeout_ms =
519                 CONFIG_DRM_I915_STOP_TIMEOUT;
520         engine->props.timeslice_duration_ms =
521                 CONFIG_DRM_I915_TIMESLICE_DURATION;
522
523         /*
524          * Mid-thread pre-emption is not available in Gen12. Unfortunately,
525          * some compute workloads run quite long threads. That means they get
526          * reset due to not pre-empting in a timely manner. So, bump the
527          * pre-emption timeout value to be much higher for compute engines.
528          */
529         if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
530                 engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
531
532         /* Cap properties according to any system limits */
533 #define CLAMP_PROP(field) \
534         do { \
535                 u64 clamp = intel_clamp_##field(engine, engine->props.field); \
536                 if (clamp != engine->props.field) { \
537                         drm_notice(&engine->i915->drm, \
538                                    "Warning, clamping %s to %lld to prevent overflow\n", \
539                                    #field, clamp); \
540                         engine->props.field = clamp; \
541                 } \
542         } while (0)
543
544         CLAMP_PROP(heartbeat_interval_ms);
545         CLAMP_PROP(max_busywait_duration_ns);
546         CLAMP_PROP(preempt_timeout_ms);
547         CLAMP_PROP(stop_timeout_ms);
548         CLAMP_PROP(timeslice_duration_ms);
549
550 #undef CLAMP_PROP
551
552         engine->defaults = engine->props; /* never to change again */
553
554         engine->context_size = intel_engine_context_size(gt, engine->class);
555         if (WARN_ON(engine->context_size > BIT(20)))
556                 engine->context_size = 0;
557         if (engine->context_size)
558                 DRIVER_CAPS(i915)->has_logical_contexts = true;
559
560         ewma__engine_latency_init(&engine->latency);
561         seqcount_init(&engine->stats.execlists.lock);
562
563         ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
564
565         /* Scrub mmio state on takeover */
566         intel_engine_sanitize_mmio(engine);
567
568         gt->engine_class[info->class][info->instance] = engine;
569         gt->engine[id] = engine;
570
571         return 0;
572 }
573
574 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
575 {
576         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
577
578         return value;
579 }
580
581 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
582 {
583         value = min(value, jiffies_to_nsecs(2));
584
585         return value;
586 }
587
588 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
589 {
590         /*
591          * NB: The GuC API only supports 32bit values. However, the limit is further
592          * reduced due to internal calculations which would otherwise overflow.
593          */
594         if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
595                 value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
596
597         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
598
599         return value;
600 }
601
602 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
603 {
604         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
605
606         return value;
607 }
608
609 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
610 {
611         /*
612          * NB: The GuC API only supports 32bit values. However, the limit is further
613          * reduced due to internal calculations which would otherwise overflow.
614          */
615         if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
616                 value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
617
618         value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
619
620         return value;
621 }
622
623 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
624 {
625         struct drm_i915_private *i915 = engine->i915;
626
627         if (engine->class == VIDEO_DECODE_CLASS) {
628                 /*
629                  * HEVC support is present on first engine instance
630                  * before Gen11 and on all instances afterwards.
631                  */
632                 if (GRAPHICS_VER(i915) >= 11 ||
633                     (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
634                         engine->uabi_capabilities |=
635                                 I915_VIDEO_CLASS_CAPABILITY_HEVC;
636
637                 /*
638                  * SFC block is present only on even logical engine
639                  * instances.
640                  */
641                 if ((GRAPHICS_VER(i915) >= 11 &&
642                      (engine->gt->info.vdbox_sfc_access &
643                       BIT(engine->instance))) ||
644                     (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
645                         engine->uabi_capabilities |=
646                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
647         } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
648                 if (GRAPHICS_VER(i915) >= 9 &&
649                     engine->gt->info.sfc_mask & BIT(engine->instance))
650                         engine->uabi_capabilities |=
651                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
652         }
653 }
654
655 static void intel_setup_engine_capabilities(struct intel_gt *gt)
656 {
657         struct intel_engine_cs *engine;
658         enum intel_engine_id id;
659
660         for_each_engine(engine, gt, id)
661                 __setup_engine_capabilities(engine);
662 }
663
664 /**
665  * intel_engines_release() - free the resources allocated for Command Streamers
666  * @gt: pointer to struct intel_gt
667  */
668 void intel_engines_release(struct intel_gt *gt)
669 {
670         struct intel_engine_cs *engine;
671         enum intel_engine_id id;
672
673         /*
674          * Before we release the resources held by engine, we must be certain
675          * that the HW is no longer accessing them -- having the GPU scribble
676          * to or read from a page being used for something else causes no end
677          * of fun.
678          *
679          * The GPU should be reset by this point, but assume the worst just
680          * in case we aborted before completely initialising the engines.
681          */
682         GEM_BUG_ON(intel_gt_pm_is_awake(gt));
683         if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
684                 __intel_gt_reset(gt, ALL_ENGINES);
685
686         /* Decouple the backend; but keep the layout for late GPU resets */
687         for_each_engine(engine, gt, id) {
688                 if (!engine->release)
689                         continue;
690
691                 intel_wakeref_wait_for_idle(&engine->wakeref);
692                 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
693
694                 engine->release(engine);
695                 engine->release = NULL;
696
697                 memset(&engine->reset, 0, sizeof(engine->reset));
698         }
699 }
700
701 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
702 {
703         if (!engine->request_pool)
704                 return;
705
706         kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
707 }
708
709 void intel_engines_free(struct intel_gt *gt)
710 {
711         struct intel_engine_cs *engine;
712         enum intel_engine_id id;
713
714         /* Free the requests! dma-resv keeps fences around for an eternity */
715         rcu_barrier();
716
717         for_each_engine(engine, gt, id) {
718                 intel_engine_free_request_pool(engine);
719                 kfree(engine);
720                 gt->engine[id] = NULL;
721         }
722 }
723
724 static
725 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
726                          unsigned int physical_vdbox,
727                          unsigned int logical_vdbox, u16 vdbox_mask)
728 {
729         struct drm_i915_private *i915 = gt->i915;
730
731         /*
732          * In Gen11, only even numbered logical VDBOXes are hooked
733          * up to an SFC (Scaler & Format Converter) unit.
734          * In Gen12, Even numbered physical instance always are connected
735          * to an SFC. Odd numbered physical instances have SFC only if
736          * previous even instance is fused off.
737          *
738          * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
739          * in the fuse register that tells us whether a specific SFC is present.
740          */
741         if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
742                 return false;
743         else if (MEDIA_VER(i915) >= 12)
744                 return (physical_vdbox % 2 == 0) ||
745                         !(BIT(physical_vdbox - 1) & vdbox_mask);
746         else if (MEDIA_VER(i915) == 11)
747                 return logical_vdbox % 2 == 0;
748
749         return false;
750 }
751
752 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
753 {
754         struct drm_i915_private *i915 = gt->i915;
755         unsigned int logical_vdbox = 0;
756         unsigned int i;
757         u32 media_fuse, fuse1;
758         u16 vdbox_mask;
759         u16 vebox_mask;
760
761         if (MEDIA_VER(gt->i915) < 11)
762                 return;
763
764         /*
765          * On newer platforms the fusing register is called 'enable' and has
766          * enable semantics, while on older platforms it is called 'disable'
767          * and bits have disable semantices.
768          */
769         media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
770         if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
771                 media_fuse = ~media_fuse;
772
773         vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
774         vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
775                       GEN11_GT_VEBOX_DISABLE_SHIFT;
776
777         if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
778                 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
779                 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
780         } else {
781                 gt->info.sfc_mask = ~0;
782         }
783
784         for (i = 0; i < I915_MAX_VCS; i++) {
785                 if (!HAS_ENGINE(gt, _VCS(i))) {
786                         vdbox_mask &= ~BIT(i);
787                         continue;
788                 }
789
790                 if (!(BIT(i) & vdbox_mask)) {
791                         gt->info.engine_mask &= ~BIT(_VCS(i));
792                         drm_dbg(&i915->drm, "vcs%u fused off\n", i);
793                         continue;
794                 }
795
796                 if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
797                         gt->info.vdbox_sfc_access |= BIT(i);
798                 logical_vdbox++;
799         }
800         drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
801                 vdbox_mask, VDBOX_MASK(gt));
802         GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
803
804         for (i = 0; i < I915_MAX_VECS; i++) {
805                 if (!HAS_ENGINE(gt, _VECS(i))) {
806                         vebox_mask &= ~BIT(i);
807                         continue;
808                 }
809
810                 if (!(BIT(i) & vebox_mask)) {
811                         gt->info.engine_mask &= ~BIT(_VECS(i));
812                         drm_dbg(&i915->drm, "vecs%u fused off\n", i);
813                 }
814         }
815         drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
816                 vebox_mask, VEBOX_MASK(gt));
817         GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
818 }
819
820 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
821 {
822         struct drm_i915_private *i915 = gt->i915;
823         struct intel_gt_info *info = &gt->info;
824         int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
825         unsigned long ccs_mask;
826         unsigned int i;
827
828         if (GRAPHICS_VER(i915) < 11)
829                 return;
830
831         if (hweight32(CCS_MASK(gt)) <= 1)
832                 return;
833
834         ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
835                                                      ss_per_ccs);
836         /*
837          * If all DSS in a quadrant are fused off, the corresponding CCS
838          * engine is not available for use.
839          */
840         for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
841                 info->engine_mask &= ~BIT(_CCS(i));
842                 drm_dbg(&i915->drm, "ccs%u fused off\n", i);
843         }
844 }
845
846 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
847 {
848         struct drm_i915_private *i915 = gt->i915;
849         struct intel_gt_info *info = &gt->info;
850         unsigned long meml3_mask;
851         unsigned long quad;
852
853         if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
854               GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
855                 return;
856
857         meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
858         meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
859
860         /*
861          * Link Copy engines may be fused off according to meml3_mask. Each
862          * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
863          */
864         for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
865                 unsigned int instance = quad * 2 + 1;
866                 intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
867                                                    _BCS(instance));
868
869                 if (mask & info->engine_mask) {
870                         drm_dbg(&i915->drm, "bcs%u fused off\n", instance);
871                         drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1);
872
873                         info->engine_mask &= ~mask;
874                 }
875         }
876 }
877
878 /*
879  * Determine which engines are fused off in our particular hardware.
880  * Note that we have a catch-22 situation where we need to be able to access
881  * the blitter forcewake domain to read the engine fuses, but at the same time
882  * we need to know which engines are available on the system to know which
883  * forcewake domains are present. We solve this by intializing the forcewake
884  * domains based on the full engine mask in the platform capabilities before
885  * calling this function and pruning the domains for fused-off engines
886  * afterwards.
887  */
888 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
889 {
890         struct intel_gt_info *info = &gt->info;
891
892         GEM_BUG_ON(!info->engine_mask);
893
894         engine_mask_apply_media_fuses(gt);
895         engine_mask_apply_compute_fuses(gt);
896         engine_mask_apply_copy_fuses(gt);
897
898         /*
899          * The only use of the GSC CS is to load and communicate with the GSC
900          * FW, so we have no use for it if we don't have the FW.
901          *
902          * IMPORTANT: in cases where we don't have the GSC FW, we have a
903          * catch-22 situation that breaks media C6 due to 2 requirements:
904          * 1) once turned on, the GSC power well will not go to sleep unless the
905          *    GSC FW is loaded.
906          * 2) to enable idling (which is required for media C6) we need to
907          *    initialize the IDLE_MSG register for the GSC CS and do at least 1
908          *    submission, which will wake up the GSC power well.
909          */
910         if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(&gt->uc)) {
911                 drm_notice(&gt->i915->drm,
912                            "No GSC FW selected, disabling GSC CS and media C6\n");
913                 info->engine_mask &= ~BIT(GSC0);
914         }
915
916         return info->engine_mask;
917 }
918
919 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
920                                  u8 class, const u8 *map, u8 num_instances)
921 {
922         int i, j;
923         u8 current_logical_id = 0;
924
925         for (j = 0; j < num_instances; ++j) {
926                 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
927                         if (!HAS_ENGINE(gt, i) ||
928                             intel_engines[i].class != class)
929                                 continue;
930
931                         if (intel_engines[i].instance == map[j]) {
932                                 logical_ids[intel_engines[i].instance] =
933                                         current_logical_id++;
934                                 break;
935                         }
936                 }
937         }
938 }
939
940 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
941 {
942         /*
943          * Logical to physical mapping is needed for proper support
944          * to split-frame feature.
945          */
946         if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
947                 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
948
949                 populate_logical_ids(gt, logical_ids, class,
950                                      map, ARRAY_SIZE(map));
951         } else {
952                 int i;
953                 u8 map[MAX_ENGINE_INSTANCE + 1];
954
955                 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
956                         map[i] = i;
957                 populate_logical_ids(gt, logical_ids, class,
958                                      map, ARRAY_SIZE(map));
959         }
960 }
961
962 /**
963  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
964  * @gt: pointer to struct intel_gt
965  *
966  * Return: non-zero if the initialization failed.
967  */
968 int intel_engines_init_mmio(struct intel_gt *gt)
969 {
970         struct drm_i915_private *i915 = gt->i915;
971         const unsigned int engine_mask = init_engine_mask(gt);
972         unsigned int mask = 0;
973         unsigned int i, class;
974         u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
975         int err;
976
977         drm_WARN_ON(&i915->drm, engine_mask == 0);
978         drm_WARN_ON(&i915->drm, engine_mask &
979                     GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
980
981         if (i915_inject_probe_failure(i915))
982                 return -ENODEV;
983
984         for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
985                 setup_logical_ids(gt, logical_ids, class);
986
987                 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
988                         u8 instance = intel_engines[i].instance;
989
990                         if (intel_engines[i].class != class ||
991                             !HAS_ENGINE(gt, i))
992                                 continue;
993
994                         err = intel_engine_setup(gt, i,
995                                                  logical_ids[instance]);
996                         if (err)
997                                 goto cleanup;
998
999                         mask |= BIT(i);
1000                 }
1001         }
1002
1003         /*
1004          * Catch failures to update intel_engines table when the new engines
1005          * are added to the driver by a warning and disabling the forgotten
1006          * engines.
1007          */
1008         if (drm_WARN_ON(&i915->drm, mask != engine_mask))
1009                 gt->info.engine_mask = mask;
1010
1011         gt->info.num_engines = hweight32(mask);
1012
1013         intel_gt_check_and_clear_faults(gt);
1014
1015         intel_setup_engine_capabilities(gt);
1016
1017         intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
1018
1019         return 0;
1020
1021 cleanup:
1022         intel_engines_free(gt);
1023         return err;
1024 }
1025
1026 void intel_engine_init_execlists(struct intel_engine_cs *engine)
1027 {
1028         struct intel_engine_execlists * const execlists = &engine->execlists;
1029
1030         execlists->port_mask = 1;
1031         GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1032         GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1033
1034         memset(execlists->pending, 0, sizeof(execlists->pending));
1035         execlists->active =
1036                 memset(execlists->inflight, 0, sizeof(execlists->inflight));
1037 }
1038
1039 static void cleanup_status_page(struct intel_engine_cs *engine)
1040 {
1041         struct i915_vma *vma;
1042
1043         /* Prevent writes into HWSP after returning the page to the system */
1044         intel_engine_set_hwsp_writemask(engine, ~0u);
1045
1046         vma = fetch_and_zero(&engine->status_page.vma);
1047         if (!vma)
1048                 return;
1049
1050         if (!HWS_NEEDS_PHYSICAL(engine->i915))
1051                 i915_vma_unpin(vma);
1052
1053         i915_gem_object_unpin_map(vma->obj);
1054         i915_gem_object_put(vma->obj);
1055 }
1056
1057 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1058                                 struct i915_gem_ww_ctx *ww,
1059                                 struct i915_vma *vma)
1060 {
1061         unsigned int flags;
1062
1063         if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1064                 /*
1065                  * On g33, we cannot place HWS above 256MiB, so
1066                  * restrict its pinning to the low mappable arena.
1067                  * Though this restriction is not documented for
1068                  * gen4, gen5, or byt, they also behave similarly
1069                  * and hang if the HWS is placed at the top of the
1070                  * GTT. To generalise, it appears that all !llc
1071                  * platforms have issues with us placing the HWS
1072                  * above the mappable region (even though we never
1073                  * actually map it).
1074                  */
1075                 flags = PIN_MAPPABLE;
1076         else
1077                 flags = PIN_HIGH;
1078
1079         return i915_ggtt_pin(vma, ww, 0, flags);
1080 }
1081
1082 static int init_status_page(struct intel_engine_cs *engine)
1083 {
1084         struct drm_i915_gem_object *obj;
1085         struct i915_gem_ww_ctx ww;
1086         struct i915_vma *vma;
1087         void *vaddr;
1088         int ret;
1089
1090         INIT_LIST_HEAD(&engine->status_page.timelines);
1091
1092         /*
1093          * Though the HWS register does support 36bit addresses, historically
1094          * we have had hangs and corruption reported due to wild writes if
1095          * the HWS is placed above 4G. We only allow objects to be allocated
1096          * in GFP_DMA32 for i965, and no earlier physical address users had
1097          * access to more than 4G.
1098          */
1099         obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1100         if (IS_ERR(obj)) {
1101                 drm_err(&engine->i915->drm,
1102                         "Failed to allocate status page\n");
1103                 return PTR_ERR(obj);
1104         }
1105
1106         i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1107
1108         vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1109         if (IS_ERR(vma)) {
1110                 ret = PTR_ERR(vma);
1111                 goto err_put;
1112         }
1113
1114         i915_gem_ww_ctx_init(&ww, true);
1115 retry:
1116         ret = i915_gem_object_lock(obj, &ww);
1117         if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1118                 ret = pin_ggtt_status_page(engine, &ww, vma);
1119         if (ret)
1120                 goto err;
1121
1122         vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1123         if (IS_ERR(vaddr)) {
1124                 ret = PTR_ERR(vaddr);
1125                 goto err_unpin;
1126         }
1127
1128         engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1129         engine->status_page.vma = vma;
1130
1131 err_unpin:
1132         if (ret)
1133                 i915_vma_unpin(vma);
1134 err:
1135         if (ret == -EDEADLK) {
1136                 ret = i915_gem_ww_ctx_backoff(&ww);
1137                 if (!ret)
1138                         goto retry;
1139         }
1140         i915_gem_ww_ctx_fini(&ww);
1141 err_put:
1142         if (ret)
1143                 i915_gem_object_put(obj);
1144         return ret;
1145 }
1146
1147 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
1148 {
1149         static const union intel_engine_tlb_inv_reg gen8_regs[] = {
1150                 [RENDER_CLASS].reg              = GEN8_RTCR,
1151                 [VIDEO_DECODE_CLASS].reg        = GEN8_M1TCR, /* , GEN8_M2TCR */
1152                 [VIDEO_ENHANCEMENT_CLASS].reg   = GEN8_VTCR,
1153                 [COPY_ENGINE_CLASS].reg         = GEN8_BTCR,
1154         };
1155         static const union intel_engine_tlb_inv_reg gen12_regs[] = {
1156                 [RENDER_CLASS].reg              = GEN12_GFX_TLB_INV_CR,
1157                 [VIDEO_DECODE_CLASS].reg        = GEN12_VD_TLB_INV_CR,
1158                 [VIDEO_ENHANCEMENT_CLASS].reg   = GEN12_VE_TLB_INV_CR,
1159                 [COPY_ENGINE_CLASS].reg         = GEN12_BLT_TLB_INV_CR,
1160                 [COMPUTE_CLASS].reg             = GEN12_COMPCTX_TLB_INV_CR,
1161         };
1162         static const union intel_engine_tlb_inv_reg xehp_regs[] = {
1163                 [RENDER_CLASS].mcr_reg            = XEHP_GFX_TLB_INV_CR,
1164                 [VIDEO_DECODE_CLASS].mcr_reg      = XEHP_VD_TLB_INV_CR,
1165                 [VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
1166                 [COPY_ENGINE_CLASS].mcr_reg       = XEHP_BLT_TLB_INV_CR,
1167                 [COMPUTE_CLASS].mcr_reg           = XEHP_COMPCTX_TLB_INV_CR,
1168         };
1169         static const union intel_engine_tlb_inv_reg xelpmp_regs[] = {
1170                 [VIDEO_DECODE_CLASS].reg          = GEN12_VD_TLB_INV_CR,
1171                 [VIDEO_ENHANCEMENT_CLASS].reg     = GEN12_VE_TLB_INV_CR,
1172                 [OTHER_CLASS].reg                 = XELPMP_GSC_TLB_INV_CR,
1173         };
1174         struct drm_i915_private *i915 = engine->i915;
1175         const unsigned int instance = engine->instance;
1176         const unsigned int class = engine->class;
1177         const union intel_engine_tlb_inv_reg *regs;
1178         union intel_engine_tlb_inv_reg reg;
1179         unsigned int num = 0;
1180         u32 val;
1181
1182         /*
1183          * New platforms should not be added with catch-all-newer (>=)
1184          * condition so that any later platform added triggers the below warning
1185          * and in turn mandates a human cross-check of whether the invalidation
1186          * flows have compatible semantics.
1187          *
1188          * For instance with the 11.00 -> 12.00 transition three out of five
1189          * respective engine registers were moved to masked type. Then after the
1190          * 12.00 -> 12.50 transition multi cast handling is required too.
1191          */
1192
1193         if (engine->gt->type == GT_MEDIA) {
1194                 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) {
1195                         regs = xelpmp_regs;
1196                         num = ARRAY_SIZE(xelpmp_regs);
1197                 }
1198         } else {
1199                 if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) ||
1200                     GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) ||
1201                     GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) ||
1202                     GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1203                         regs = xehp_regs;
1204                         num = ARRAY_SIZE(xehp_regs);
1205                 } else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1206                            GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1207                         regs = gen12_regs;
1208                         num = ARRAY_SIZE(gen12_regs);
1209                 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1210                         regs = gen8_regs;
1211                         num = ARRAY_SIZE(gen8_regs);
1212                 } else if (GRAPHICS_VER(i915) < 8) {
1213                         return 0;
1214                 }
1215         }
1216
1217         if (gt_WARN_ONCE(engine->gt, !num,
1218                          "Platform does not implement TLB invalidation!"))
1219                 return -ENODEV;
1220
1221         if (gt_WARN_ON_ONCE(engine->gt,
1222                             class >= num ||
1223                             (!regs[class].reg.reg &&
1224                              !regs[class].mcr_reg.reg)))
1225                 return -ERANGE;
1226
1227         reg = regs[class];
1228
1229         if (regs == xelpmp_regs && class == OTHER_CLASS) {
1230                 /*
1231                  * There's only a single GSC instance, but it uses register bit
1232                  * 1 instead of either 0 or OTHER_GSC_INSTANCE.
1233                  */
1234                 GEM_WARN_ON(instance != OTHER_GSC_INSTANCE);
1235                 val = 1;
1236         } else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
1237                 reg.reg = GEN8_M2TCR;
1238                 val = 0;
1239         } else {
1240                 val = instance;
1241         }
1242
1243         val = BIT(val);
1244
1245         engine->tlb_inv.mcr = regs == xehp_regs;
1246         engine->tlb_inv.reg = reg;
1247         engine->tlb_inv.done = val;
1248
1249         if (GRAPHICS_VER(i915) >= 12 &&
1250             (engine->class == VIDEO_DECODE_CLASS ||
1251              engine->class == VIDEO_ENHANCEMENT_CLASS ||
1252              engine->class == COMPUTE_CLASS ||
1253              engine->class == OTHER_CLASS))
1254                 engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
1255         else
1256                 engine->tlb_inv.request = val;
1257
1258         return 0;
1259 }
1260
1261 static int engine_setup_common(struct intel_engine_cs *engine)
1262 {
1263         int err;
1264
1265         init_llist_head(&engine->barrier_tasks);
1266
1267         err = intel_engine_init_tlb_invalidation(engine);
1268         if (err)
1269                 return err;
1270
1271         err = init_status_page(engine);
1272         if (err)
1273                 return err;
1274
1275         engine->breadcrumbs = intel_breadcrumbs_create(engine);
1276         if (!engine->breadcrumbs) {
1277                 err = -ENOMEM;
1278                 goto err_status;
1279         }
1280
1281         engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1282         if (!engine->sched_engine) {
1283                 err = -ENOMEM;
1284                 goto err_sched_engine;
1285         }
1286         engine->sched_engine->private_data = engine;
1287
1288         err = intel_engine_init_cmd_parser(engine);
1289         if (err)
1290                 goto err_cmd_parser;
1291
1292         intel_engine_init_execlists(engine);
1293         intel_engine_init__pm(engine);
1294         intel_engine_init_retire(engine);
1295
1296         /* Use the whole device by default */
1297         engine->sseu =
1298                 intel_sseu_from_device_info(&engine->gt->info.sseu);
1299
1300         intel_engine_init_workarounds(engine);
1301         intel_engine_init_whitelist(engine);
1302         intel_engine_init_ctx_wa(engine);
1303
1304         if (GRAPHICS_VER(engine->i915) >= 12)
1305                 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1306
1307         return 0;
1308
1309 err_cmd_parser:
1310         i915_sched_engine_put(engine->sched_engine);
1311 err_sched_engine:
1312         intel_breadcrumbs_put(engine->breadcrumbs);
1313 err_status:
1314         cleanup_status_page(engine);
1315         return err;
1316 }
1317
1318 struct measure_breadcrumb {
1319         struct i915_request rq;
1320         struct intel_ring ring;
1321         u32 cs[2048];
1322 };
1323
1324 static int measure_breadcrumb_dw(struct intel_context *ce)
1325 {
1326         struct intel_engine_cs *engine = ce->engine;
1327         struct measure_breadcrumb *frame;
1328         int dw;
1329
1330         GEM_BUG_ON(!engine->gt->scratch);
1331
1332         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1333         if (!frame)
1334                 return -ENOMEM;
1335
1336         frame->rq.i915 = engine->i915;
1337         frame->rq.engine = engine;
1338         frame->rq.context = ce;
1339         rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1340         frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1341
1342         frame->ring.vaddr = frame->cs;
1343         frame->ring.size = sizeof(frame->cs);
1344         frame->ring.wrap =
1345                 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1346         frame->ring.effective_size = frame->ring.size;
1347         intel_ring_update_space(&frame->ring);
1348         frame->rq.ring = &frame->ring;
1349
1350         mutex_lock(&ce->timeline->mutex);
1351         spin_lock_irq(&engine->sched_engine->lock);
1352
1353         dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1354
1355         spin_unlock_irq(&engine->sched_engine->lock);
1356         mutex_unlock(&ce->timeline->mutex);
1357
1358         GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1359
1360         kfree(frame);
1361         return dw;
1362 }
1363
1364 struct intel_context *
1365 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1366                                    struct i915_address_space *vm,
1367                                    unsigned int ring_size,
1368                                    unsigned int hwsp,
1369                                    struct lock_class_key *key,
1370                                    const char *name)
1371 {
1372         struct intel_context *ce;
1373         int err;
1374
1375         ce = intel_context_create(engine);
1376         if (IS_ERR(ce))
1377                 return ce;
1378
1379         __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1380         ce->timeline = page_pack_bits(NULL, hwsp);
1381         ce->ring = NULL;
1382         ce->ring_size = ring_size;
1383
1384         i915_vm_put(ce->vm);
1385         ce->vm = i915_vm_get(vm);
1386
1387         err = intel_context_pin(ce); /* perma-pin so it is always available */
1388         if (err) {
1389                 intel_context_put(ce);
1390                 return ERR_PTR(err);
1391         }
1392
1393         list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1394
1395         /*
1396          * Give our perma-pinned kernel timelines a separate lockdep class,
1397          * so that we can use them from within the normal user timelines
1398          * should we need to inject GPU operations during their request
1399          * construction.
1400          */
1401         lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1402
1403         return ce;
1404 }
1405
1406 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1407 {
1408         struct intel_engine_cs *engine = ce->engine;
1409         struct i915_vma *hwsp = engine->status_page.vma;
1410
1411         GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1412
1413         mutex_lock(&hwsp->vm->mutex);
1414         list_del(&ce->timeline->engine_link);
1415         mutex_unlock(&hwsp->vm->mutex);
1416
1417         list_del(&ce->pinned_contexts_link);
1418         intel_context_unpin(ce);
1419         intel_context_put(ce);
1420 }
1421
1422 static struct intel_context *
1423 create_kernel_context(struct intel_engine_cs *engine)
1424 {
1425         static struct lock_class_key kernel;
1426
1427         return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1428                                                   I915_GEM_HWS_SEQNO_ADDR,
1429                                                   &kernel, "kernel_context");
1430 }
1431
1432 /*
1433  * engine_init_common - initialize engine state which might require hw access
1434  * @engine: Engine to initialize.
1435  *
1436  * Initializes @engine@ structure members shared between legacy and execlists
1437  * submission modes which do require hardware access.
1438  *
1439  * Typcally done at later stages of submission mode specific engine setup.
1440  *
1441  * Returns zero on success or an error code on failure.
1442  */
1443 static int engine_init_common(struct intel_engine_cs *engine)
1444 {
1445         struct intel_context *ce;
1446         int ret;
1447
1448         engine->set_default_submission(engine);
1449
1450         /*
1451          * We may need to do things with the shrinker which
1452          * require us to immediately switch back to the default
1453          * context. This can cause a problem as pinning the
1454          * default context also requires GTT space which may not
1455          * be available. To avoid this we always pin the default
1456          * context.
1457          */
1458         ce = create_kernel_context(engine);
1459         if (IS_ERR(ce))
1460                 return PTR_ERR(ce);
1461
1462         ret = measure_breadcrumb_dw(ce);
1463         if (ret < 0)
1464                 goto err_context;
1465
1466         engine->emit_fini_breadcrumb_dw = ret;
1467         engine->kernel_context = ce;
1468
1469         return 0;
1470
1471 err_context:
1472         intel_engine_destroy_pinned_context(ce);
1473         return ret;
1474 }
1475
1476 int intel_engines_init(struct intel_gt *gt)
1477 {
1478         int (*setup)(struct intel_engine_cs *engine);
1479         struct intel_engine_cs *engine;
1480         enum intel_engine_id id;
1481         int err;
1482
1483         if (intel_uc_uses_guc_submission(&gt->uc)) {
1484                 gt->submission_method = INTEL_SUBMISSION_GUC;
1485                 setup = intel_guc_submission_setup;
1486         } else if (HAS_EXECLISTS(gt->i915)) {
1487                 gt->submission_method = INTEL_SUBMISSION_ELSP;
1488                 setup = intel_execlists_submission_setup;
1489         } else {
1490                 gt->submission_method = INTEL_SUBMISSION_RING;
1491                 setup = intel_ring_submission_setup;
1492         }
1493
1494         for_each_engine(engine, gt, id) {
1495                 err = engine_setup_common(engine);
1496                 if (err)
1497                         return err;
1498
1499                 err = setup(engine);
1500                 if (err) {
1501                         intel_engine_cleanup_common(engine);
1502                         return err;
1503                 }
1504
1505                 /* The backend should now be responsible for cleanup */
1506                 GEM_BUG_ON(engine->release == NULL);
1507
1508                 err = engine_init_common(engine);
1509                 if (err)
1510                         return err;
1511
1512                 intel_engine_add_user(engine);
1513         }
1514
1515         return 0;
1516 }
1517
1518 /**
1519  * intel_engine_cleanup_common - cleans up the engine state created by
1520  *                                the common initiailizers.
1521  * @engine: Engine to cleanup.
1522  *
1523  * This cleans up everything created by the common helpers.
1524  */
1525 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1526 {
1527         GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1528
1529         i915_sched_engine_put(engine->sched_engine);
1530         intel_breadcrumbs_put(engine->breadcrumbs);
1531
1532         intel_engine_fini_retire(engine);
1533         intel_engine_cleanup_cmd_parser(engine);
1534
1535         if (engine->default_state)
1536                 fput(engine->default_state);
1537
1538         if (engine->kernel_context)
1539                 intel_engine_destroy_pinned_context(engine->kernel_context);
1540
1541         GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1542         cleanup_status_page(engine);
1543
1544         intel_wa_list_free(&engine->ctx_wa_list);
1545         intel_wa_list_free(&engine->wa_list);
1546         intel_wa_list_free(&engine->whitelist);
1547 }
1548
1549 /**
1550  * intel_engine_resume - re-initializes the HW state of the engine
1551  * @engine: Engine to resume.
1552  *
1553  * Returns zero on success or an error code on failure.
1554  */
1555 int intel_engine_resume(struct intel_engine_cs *engine)
1556 {
1557         intel_engine_apply_workarounds(engine);
1558         intel_engine_apply_whitelist(engine);
1559
1560         return engine->resume(engine);
1561 }
1562
1563 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1564 {
1565         struct drm_i915_private *i915 = engine->i915;
1566
1567         u64 acthd;
1568
1569         if (GRAPHICS_VER(i915) >= 8)
1570                 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1571         else if (GRAPHICS_VER(i915) >= 4)
1572                 acthd = ENGINE_READ(engine, RING_ACTHD);
1573         else
1574                 acthd = ENGINE_READ(engine, ACTHD);
1575
1576         return acthd;
1577 }
1578
1579 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1580 {
1581         u64 bbaddr;
1582
1583         if (GRAPHICS_VER(engine->i915) >= 8)
1584                 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1585         else
1586                 bbaddr = ENGINE_READ(engine, RING_BBADDR);
1587
1588         return bbaddr;
1589 }
1590
1591 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1592 {
1593         if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1594                 return 0;
1595
1596         /*
1597          * If we are doing a normal GPU reset, we can take our time and allow
1598          * the engine to quiesce. We've stopped submission to the engine, and
1599          * if we wait long enough an innocent context should complete and
1600          * leave the engine idle. So they should not be caught unaware by
1601          * the forthcoming GPU reset (which usually follows the stop_cs)!
1602          */
1603         return READ_ONCE(engine->props.stop_timeout_ms);
1604 }
1605
1606 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1607                                   int fast_timeout_us,
1608                                   int slow_timeout_ms)
1609 {
1610         struct intel_uncore *uncore = engine->uncore;
1611         const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1612         int err;
1613
1614         intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1615
1616         /*
1617          * Wa_22011802037: Prior to doing a reset, ensure CS is
1618          * stopped, set ring stop bit and prefetch disable bit to halt CS
1619          */
1620         if (IS_MTL_GRAPHICS_STEP(engine->i915, M, STEP_A0, STEP_B0) ||
1621             (GRAPHICS_VER(engine->i915) >= 11 &&
1622             GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 70)))
1623                 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1624                                       _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1625
1626         err = __intel_wait_for_register_fw(engine->uncore, mode,
1627                                            MODE_IDLE, MODE_IDLE,
1628                                            fast_timeout_us,
1629                                            slow_timeout_ms,
1630                                            NULL);
1631
1632         /* A final mmio read to let GPU writes be hopefully flushed to memory */
1633         intel_uncore_posting_read_fw(uncore, mode);
1634         return err;
1635 }
1636
1637 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1638 {
1639         int err = 0;
1640
1641         if (GRAPHICS_VER(engine->i915) < 3)
1642                 return -ENODEV;
1643
1644         ENGINE_TRACE(engine, "\n");
1645         /*
1646          * TODO: Find out why occasionally stopping the CS times out. Seen
1647          * especially with gem_eio tests.
1648          *
1649          * Occasionally trying to stop the cs times out, but does not adversely
1650          * affect functionality. The timeout is set as a config parameter that
1651          * defaults to 100ms. In most cases the follow up operation is to wait
1652          * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1653          * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1654          * caused, the caller must check and handle the return from this
1655          * function.
1656          */
1657         if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1658                 ENGINE_TRACE(engine,
1659                              "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1660                              ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1661                              ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1662
1663                 /*
1664                  * Sometimes we observe that the idle flag is not
1665                  * set even though the ring is empty. So double
1666                  * check before giving up.
1667                  */
1668                 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1669                     (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1670                         err = -ETIMEDOUT;
1671         }
1672
1673         return err;
1674 }
1675
1676 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1677 {
1678         ENGINE_TRACE(engine, "\n");
1679
1680         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1681 }
1682
1683 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1684 {
1685         static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1686                 [RCS0] = MSG_IDLE_CS,
1687                 [BCS0] = MSG_IDLE_BCS,
1688                 [VCS0] = MSG_IDLE_VCS0,
1689                 [VCS1] = MSG_IDLE_VCS1,
1690                 [VCS2] = MSG_IDLE_VCS2,
1691                 [VCS3] = MSG_IDLE_VCS3,
1692                 [VCS4] = MSG_IDLE_VCS4,
1693                 [VCS5] = MSG_IDLE_VCS5,
1694                 [VCS6] = MSG_IDLE_VCS6,
1695                 [VCS7] = MSG_IDLE_VCS7,
1696                 [VECS0] = MSG_IDLE_VECS0,
1697                 [VECS1] = MSG_IDLE_VECS1,
1698                 [VECS2] = MSG_IDLE_VECS2,
1699                 [VECS3] = MSG_IDLE_VECS3,
1700                 [CCS0] = MSG_IDLE_CS,
1701                 [CCS1] = MSG_IDLE_CS,
1702                 [CCS2] = MSG_IDLE_CS,
1703                 [CCS3] = MSG_IDLE_CS,
1704         };
1705         u32 val;
1706
1707         if (!_reg[engine->id].reg)
1708                 return 0;
1709
1710         val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1711
1712         /* bits[29:25] & bits[13:9] >> shift */
1713         return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1714 }
1715
1716 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1717 {
1718         int ret;
1719
1720         /* Ensure GPM receives fw up/down after CS is stopped */
1721         udelay(1);
1722
1723         /* Wait for forcewake request to complete in GPM */
1724         ret =  __intel_wait_for_register_fw(gt->uncore,
1725                                             GEN9_PWRGT_DOMAIN_STATUS,
1726                                             fw_mask, fw_mask, 5000, 0, NULL);
1727
1728         /* Ensure CS receives fw ack from GPM */
1729         udelay(1);
1730
1731         if (ret)
1732                 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1733 }
1734
1735 /*
1736  * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1737  * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1738  * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1739  * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1740  * are concerned only with the gt reset here, we use a logical OR of pending
1741  * forcewakeups from all reset domains and then wait for them to complete by
1742  * querying PWRGT_DOMAIN_STATUS.
1743  */
1744 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1745 {
1746         u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1747
1748         if (fw_pending)
1749                 __gpm_wait_for_fw_complete(engine->gt, fw_pending);
1750 }
1751
1752 /* NB: please notice the memset */
1753 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1754                                struct intel_instdone *instdone)
1755 {
1756         struct drm_i915_private *i915 = engine->i915;
1757         struct intel_uncore *uncore = engine->uncore;
1758         u32 mmio_base = engine->mmio_base;
1759         int slice;
1760         int subslice;
1761         int iter;
1762
1763         memset(instdone, 0, sizeof(*instdone));
1764
1765         if (GRAPHICS_VER(i915) >= 8) {
1766                 instdone->instdone =
1767                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1768
1769                 if (engine->id != RCS0)
1770                         return;
1771
1772                 instdone->slice_common =
1773                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1774                 if (GRAPHICS_VER(i915) >= 12) {
1775                         instdone->slice_common_extra[0] =
1776                                 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1777                         instdone->slice_common_extra[1] =
1778                                 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1779                 }
1780
1781                 for_each_ss_steering(iter, engine->gt, slice, subslice) {
1782                         instdone->sampler[slice][subslice] =
1783                                 intel_gt_mcr_read(engine->gt,
1784                                                   GEN8_SAMPLER_INSTDONE,
1785                                                   slice, subslice);
1786                         instdone->row[slice][subslice] =
1787                                 intel_gt_mcr_read(engine->gt,
1788                                                   GEN8_ROW_INSTDONE,
1789                                                   slice, subslice);
1790                 }
1791
1792                 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1793                         for_each_ss_steering(iter, engine->gt, slice, subslice)
1794                                 instdone->geom_svg[slice][subslice] =
1795                                         intel_gt_mcr_read(engine->gt,
1796                                                           XEHPG_INSTDONE_GEOM_SVG,
1797                                                           slice, subslice);
1798                 }
1799         } else if (GRAPHICS_VER(i915) >= 7) {
1800                 instdone->instdone =
1801                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1802
1803                 if (engine->id != RCS0)
1804                         return;
1805
1806                 instdone->slice_common =
1807                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1808                 instdone->sampler[0][0] =
1809                         intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1810                 instdone->row[0][0] =
1811                         intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1812         } else if (GRAPHICS_VER(i915) >= 4) {
1813                 instdone->instdone =
1814                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1815                 if (engine->id == RCS0)
1816                         /* HACK: Using the wrong struct member */
1817                         instdone->slice_common =
1818                                 intel_uncore_read(uncore, GEN4_INSTDONE1);
1819         } else {
1820                 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1821         }
1822 }
1823
1824 static bool ring_is_idle(struct intel_engine_cs *engine)
1825 {
1826         bool idle = true;
1827
1828         if (I915_SELFTEST_ONLY(!engine->mmio_base))
1829                 return true;
1830
1831         if (!intel_engine_pm_get_if_awake(engine))
1832                 return true;
1833
1834         /* First check that no commands are left in the ring */
1835         if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1836             (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1837                 idle = false;
1838
1839         /* No bit for gen2, so assume the CS parser is idle */
1840         if (GRAPHICS_VER(engine->i915) > 2 &&
1841             !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1842                 idle = false;
1843
1844         intel_engine_pm_put(engine);
1845
1846         return idle;
1847 }
1848
1849 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1850 {
1851         struct tasklet_struct *t = &engine->sched_engine->tasklet;
1852
1853         if (!t->callback)
1854                 return;
1855
1856         local_bh_disable();
1857         if (tasklet_trylock(t)) {
1858                 /* Must wait for any GPU reset in progress. */
1859                 if (__tasklet_is_enabled(t))
1860                         t->callback(t);
1861                 tasklet_unlock(t);
1862         }
1863         local_bh_enable();
1864
1865         /* Synchronise and wait for the tasklet on another CPU */
1866         if (sync)
1867                 tasklet_unlock_wait(t);
1868 }
1869
1870 /**
1871  * intel_engine_is_idle() - Report if the engine has finished process all work
1872  * @engine: the intel_engine_cs
1873  *
1874  * Return true if there are no requests pending, nothing left to be submitted
1875  * to hardware, and that the engine is idle.
1876  */
1877 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1878 {
1879         /* More white lies, if wedged, hw state is inconsistent */
1880         if (intel_gt_is_wedged(engine->gt))
1881                 return true;
1882
1883         if (!intel_engine_pm_is_awake(engine))
1884                 return true;
1885
1886         /* Waiting to drain ELSP? */
1887         intel_synchronize_hardirq(engine->i915);
1888         intel_engine_flush_submission(engine);
1889
1890         /* ELSP is empty, but there are ready requests? E.g. after reset */
1891         if (!i915_sched_engine_is_empty(engine->sched_engine))
1892                 return false;
1893
1894         /* Ring stopped? */
1895         return ring_is_idle(engine);
1896 }
1897
1898 bool intel_engines_are_idle(struct intel_gt *gt)
1899 {
1900         struct intel_engine_cs *engine;
1901         enum intel_engine_id id;
1902
1903         /*
1904          * If the driver is wedged, HW state may be very inconsistent and
1905          * report that it is still busy, even though we have stopped using it.
1906          */
1907         if (intel_gt_is_wedged(gt))
1908                 return true;
1909
1910         /* Already parked (and passed an idleness test); must still be idle */
1911         if (!READ_ONCE(gt->awake))
1912                 return true;
1913
1914         for_each_engine(engine, gt, id) {
1915                 if (!intel_engine_is_idle(engine))
1916                         return false;
1917         }
1918
1919         return true;
1920 }
1921
1922 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1923 {
1924         if (!engine->irq_enable)
1925                 return false;
1926
1927         /* Caller disables interrupts */
1928         spin_lock(engine->gt->irq_lock);
1929         engine->irq_enable(engine);
1930         spin_unlock(engine->gt->irq_lock);
1931
1932         return true;
1933 }
1934
1935 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1936 {
1937         if (!engine->irq_disable)
1938                 return;
1939
1940         /* Caller disables interrupts */
1941         spin_lock(engine->gt->irq_lock);
1942         engine->irq_disable(engine);
1943         spin_unlock(engine->gt->irq_lock);
1944 }
1945
1946 void intel_engines_reset_default_submission(struct intel_gt *gt)
1947 {
1948         struct intel_engine_cs *engine;
1949         enum intel_engine_id id;
1950
1951         for_each_engine(engine, gt, id) {
1952                 if (engine->sanitize)
1953                         engine->sanitize(engine);
1954
1955                 engine->set_default_submission(engine);
1956         }
1957 }
1958
1959 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1960 {
1961         switch (GRAPHICS_VER(engine->i915)) {
1962         case 2:
1963                 return false; /* uses physical not virtual addresses */
1964         case 3:
1965                 /* maybe only uses physical not virtual addresses */
1966                 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1967         case 4:
1968                 return !IS_I965G(engine->i915); /* who knows! */
1969         case 6:
1970                 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1971         default:
1972                 return true;
1973         }
1974 }
1975
1976 static struct intel_timeline *get_timeline(struct i915_request *rq)
1977 {
1978         struct intel_timeline *tl;
1979
1980         /*
1981          * Even though we are holding the engine->sched_engine->lock here, there
1982          * is no control over the submission queue per-se and we are
1983          * inspecting the active state at a random point in time, with an
1984          * unknown queue. Play safe and make sure the timeline remains valid.
1985          * (Only being used for pretty printing, one extra kref shouldn't
1986          * cause a camel stampede!)
1987          */
1988         rcu_read_lock();
1989         tl = rcu_dereference(rq->timeline);
1990         if (!kref_get_unless_zero(&tl->kref))
1991                 tl = NULL;
1992         rcu_read_unlock();
1993
1994         return tl;
1995 }
1996
1997 static int print_ring(char *buf, int sz, struct i915_request *rq)
1998 {
1999         int len = 0;
2000
2001         if (!i915_request_signaled(rq)) {
2002                 struct intel_timeline *tl = get_timeline(rq);
2003
2004                 len = scnprintf(buf, sz,
2005                                 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
2006                                 i915_ggtt_offset(rq->ring->vma),
2007                                 tl ? tl->hwsp_offset : 0,
2008                                 hwsp_seqno(rq),
2009                                 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
2010                                                       1000 * 1000));
2011
2012                 if (tl)
2013                         intel_timeline_put(tl);
2014         }
2015
2016         return len;
2017 }
2018
2019 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
2020 {
2021         const size_t rowsize = 8 * sizeof(u32);
2022         const void *prev = NULL;
2023         bool skip = false;
2024         size_t pos;
2025
2026         for (pos = 0; pos < len; pos += rowsize) {
2027                 char line[128];
2028
2029                 if (prev && !memcmp(prev, buf + pos, rowsize)) {
2030                         if (!skip) {
2031                                 drm_printf(m, "*\n");
2032                                 skip = true;
2033                         }
2034                         continue;
2035                 }
2036
2037                 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
2038                                                 rowsize, sizeof(u32),
2039                                                 line, sizeof(line),
2040                                                 false) >= sizeof(line));
2041                 drm_printf(m, "[%04zx] %s\n", pos, line);
2042
2043                 prev = buf + pos;
2044                 skip = false;
2045         }
2046 }
2047
2048 static const char *repr_timer(const struct timer_list *t)
2049 {
2050         if (!READ_ONCE(t->expires))
2051                 return "inactive";
2052
2053         if (timer_pending(t))
2054                 return "active";
2055
2056         return "expired";
2057 }
2058
2059 static void intel_engine_print_registers(struct intel_engine_cs *engine,
2060                                          struct drm_printer *m)
2061 {
2062         struct drm_i915_private *i915 = engine->i915;
2063         struct intel_engine_execlists * const execlists = &engine->execlists;
2064         u64 addr;
2065
2066         if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7))
2067                 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2068         if (HAS_EXECLISTS(i915)) {
2069                 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
2070                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
2071                 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
2072                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
2073         }
2074         drm_printf(m, "\tRING_START: 0x%08x\n",
2075                    ENGINE_READ(engine, RING_START));
2076         drm_printf(m, "\tRING_HEAD:  0x%08x\n",
2077                    ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
2078         drm_printf(m, "\tRING_TAIL:  0x%08x\n",
2079                    ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
2080         drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
2081                    ENGINE_READ(engine, RING_CTL),
2082                    ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
2083         if (GRAPHICS_VER(engine->i915) > 2) {
2084                 drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
2085                            ENGINE_READ(engine, RING_MI_MODE),
2086                            ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
2087         }
2088
2089         if (GRAPHICS_VER(i915) >= 6) {
2090                 drm_printf(m, "\tRING_IMR:   0x%08x\n",
2091                            ENGINE_READ(engine, RING_IMR));
2092                 drm_printf(m, "\tRING_ESR:   0x%08x\n",
2093                            ENGINE_READ(engine, RING_ESR));
2094                 drm_printf(m, "\tRING_EMR:   0x%08x\n",
2095                            ENGINE_READ(engine, RING_EMR));
2096                 drm_printf(m, "\tRING_EIR:   0x%08x\n",
2097                            ENGINE_READ(engine, RING_EIR));
2098         }
2099
2100         addr = intel_engine_get_active_head(engine);
2101         drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
2102                    upper_32_bits(addr), lower_32_bits(addr));
2103         addr = intel_engine_get_last_batch_head(engine);
2104         drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
2105                    upper_32_bits(addr), lower_32_bits(addr));
2106         if (GRAPHICS_VER(i915) >= 8)
2107                 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2108         else if (GRAPHICS_VER(i915) >= 4)
2109                 addr = ENGINE_READ(engine, RING_DMA_FADD);
2110         else
2111                 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
2112         drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
2113                    upper_32_bits(addr), lower_32_bits(addr));
2114         if (GRAPHICS_VER(i915) >= 4) {
2115                 drm_printf(m, "\tIPEIR: 0x%08x\n",
2116                            ENGINE_READ(engine, RING_IPEIR));
2117                 drm_printf(m, "\tIPEHR: 0x%08x\n",
2118                            ENGINE_READ(engine, RING_IPEHR));
2119         } else {
2120                 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2121                 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2122         }
2123
2124         if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) {
2125                 struct i915_request * const *port, *rq;
2126                 const u32 *hws =
2127                         &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2128                 const u8 num_entries = execlists->csb_size;
2129                 unsigned int idx;
2130                 u8 read, write;
2131
2132                 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2133                            str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2134                            str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
2135                            repr_timer(&engine->execlists.preempt),
2136                            repr_timer(&engine->execlists.timer));
2137
2138                 read = execlists->csb_head;
2139                 write = READ_ONCE(*execlists->csb_write);
2140
2141                 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2142                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2143                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2144                            read, write, num_entries);
2145
2146                 if (read >= num_entries)
2147                         read = 0;
2148                 if (write >= num_entries)
2149                         write = 0;
2150                 if (read > write)
2151                         write += num_entries;
2152                 while (read < write) {
2153                         idx = ++read % num_entries;
2154                         drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2155                                    idx, hws[idx * 2], hws[idx * 2 + 1]);
2156                 }
2157
2158                 i915_sched_engine_active_lock_bh(engine->sched_engine);
2159                 rcu_read_lock();
2160                 for (port = execlists->active; (rq = *port); port++) {
2161                         char hdr[160];
2162                         int len;
2163
2164                         len = scnprintf(hdr, sizeof(hdr),
2165                                         "\t\tActive[%d]:  ccid:%08x%s%s, ",
2166                                         (int)(port - execlists->active),
2167                                         rq->context->lrc.ccid,
2168                                         intel_context_is_closed(rq->context) ? "!" : "",
2169                                         intel_context_is_banned(rq->context) ? "*" : "");
2170                         len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2171                         scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2172                         i915_request_show(m, rq, hdr, 0);
2173                 }
2174                 for (port = execlists->pending; (rq = *port); port++) {
2175                         char hdr[160];
2176                         int len;
2177
2178                         len = scnprintf(hdr, sizeof(hdr),
2179                                         "\t\tPending[%d]: ccid:%08x%s%s, ",
2180                                         (int)(port - execlists->pending),
2181                                         rq->context->lrc.ccid,
2182                                         intel_context_is_closed(rq->context) ? "!" : "",
2183                                         intel_context_is_banned(rq->context) ? "*" : "");
2184                         len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2185                         scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2186                         i915_request_show(m, rq, hdr, 0);
2187                 }
2188                 rcu_read_unlock();
2189                 i915_sched_engine_active_unlock_bh(engine->sched_engine);
2190         } else if (GRAPHICS_VER(i915) > 6) {
2191                 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2192                            ENGINE_READ(engine, RING_PP_DIR_BASE));
2193                 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2194                            ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2195                 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2196                            ENGINE_READ(engine, RING_PP_DIR_DCLV));
2197         }
2198 }
2199
2200 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2201 {
2202         struct i915_vma_resource *vma_res = rq->batch_res;
2203         void *ring;
2204         int size;
2205
2206         drm_printf(m,
2207                    "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2208                    rq->head, rq->postfix, rq->tail,
2209                    vma_res ? upper_32_bits(vma_res->start) : ~0u,
2210                    vma_res ? lower_32_bits(vma_res->start) : ~0u);
2211
2212         size = rq->tail - rq->head;
2213         if (rq->tail < rq->head)
2214                 size += rq->ring->size;
2215
2216         ring = kmalloc(size, GFP_ATOMIC);
2217         if (ring) {
2218                 const void *vaddr = rq->ring->vaddr;
2219                 unsigned int head = rq->head;
2220                 unsigned int len = 0;
2221
2222                 if (rq->tail < head) {
2223                         len = rq->ring->size - head;
2224                         memcpy(ring, vaddr + head, len);
2225                         head = 0;
2226                 }
2227                 memcpy(ring + len, vaddr + head, size - len);
2228
2229                 hexdump(m, ring, size);
2230                 kfree(ring);
2231         }
2232 }
2233
2234 static unsigned long read_ul(void *p, size_t x)
2235 {
2236         return *(unsigned long *)(p + x);
2237 }
2238
2239 static void print_properties(struct intel_engine_cs *engine,
2240                              struct drm_printer *m)
2241 {
2242         static const struct pmap {
2243                 size_t offset;
2244                 const char *name;
2245         } props[] = {
2246 #define P(x) { \
2247         .offset = offsetof(typeof(engine->props), x), \
2248         .name = #x \
2249 }
2250                 P(heartbeat_interval_ms),
2251                 P(max_busywait_duration_ns),
2252                 P(preempt_timeout_ms),
2253                 P(stop_timeout_ms),
2254                 P(timeslice_duration_ms),
2255
2256                 {},
2257 #undef P
2258         };
2259         const struct pmap *p;
2260
2261         drm_printf(m, "\tProperties:\n");
2262         for (p = props; p->name; p++)
2263                 drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2264                            p->name,
2265                            read_ul(&engine->props, p->offset),
2266                            read_ul(&engine->defaults, p->offset));
2267 }
2268
2269 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2270 {
2271         struct intel_timeline *tl = get_timeline(rq);
2272
2273         i915_request_show(m, rq, msg, 0);
2274
2275         drm_printf(m, "\t\tring->start:  0x%08x\n",
2276                    i915_ggtt_offset(rq->ring->vma));
2277         drm_printf(m, "\t\tring->head:   0x%08x\n",
2278                    rq->ring->head);
2279         drm_printf(m, "\t\tring->tail:   0x%08x\n",
2280                    rq->ring->tail);
2281         drm_printf(m, "\t\tring->emit:   0x%08x\n",
2282                    rq->ring->emit);
2283         drm_printf(m, "\t\tring->space:  0x%08x\n",
2284                    rq->ring->space);
2285
2286         if (tl) {
2287                 drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2288                            tl->hwsp_offset);
2289                 intel_timeline_put(tl);
2290         }
2291
2292         print_request_ring(m, rq);
2293
2294         if (rq->context->lrc_reg_state) {
2295                 drm_printf(m, "Logical Ring Context:\n");
2296                 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2297         }
2298 }
2299
2300 void intel_engine_dump_active_requests(struct list_head *requests,
2301                                        struct i915_request *hung_rq,
2302                                        struct drm_printer *m)
2303 {
2304         struct i915_request *rq;
2305         const char *msg;
2306         enum i915_request_state state;
2307
2308         list_for_each_entry(rq, requests, sched.link) {
2309                 if (rq == hung_rq)
2310                         continue;
2311
2312                 state = i915_test_request_state(rq);
2313                 if (state < I915_REQUEST_QUEUED)
2314                         continue;
2315
2316                 if (state == I915_REQUEST_ACTIVE)
2317                         msg = "\t\tactive on engine";
2318                 else
2319                         msg = "\t\tactive in queue";
2320
2321                 engine_dump_request(rq, m, msg);
2322         }
2323 }
2324
2325 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2326                                         struct drm_printer *m)
2327 {
2328         struct intel_context *hung_ce = NULL;
2329         struct i915_request *hung_rq = NULL;
2330
2331         /*
2332          * No need for an engine->irq_seqno_barrier() before the seqno reads.
2333          * The GPU is still running so requests are still executing and any
2334          * hardware reads will be out of date by the time they are reported.
2335          * But the intention here is just to report an instantaneous snapshot
2336          * so that's fine.
2337          */
2338         intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2339
2340         drm_printf(m, "\tRequests:\n");
2341
2342         if (hung_rq)
2343                 engine_dump_request(hung_rq, m, "\t\thung");
2344         else if (hung_ce)
2345                 drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2346
2347         if (intel_uc_uses_guc_submission(&engine->gt->uc))
2348                 intel_guc_dump_active_requests(engine, hung_rq, m);
2349         else
2350                 intel_execlists_dump_active_requests(engine, hung_rq, m);
2351
2352         if (hung_rq)
2353                 i915_request_put(hung_rq);
2354 }
2355
2356 void intel_engine_dump(struct intel_engine_cs *engine,
2357                        struct drm_printer *m,
2358                        const char *header, ...)
2359 {
2360         struct i915_gpu_error * const error = &engine->i915->gpu_error;
2361         struct i915_request *rq;
2362         intel_wakeref_t wakeref;
2363         ktime_t dummy;
2364
2365         if (header) {
2366                 va_list ap;
2367
2368                 va_start(ap, header);
2369                 drm_vprintf(m, header, &ap);
2370                 va_end(ap);
2371         }
2372
2373         if (intel_gt_is_wedged(engine->gt))
2374                 drm_printf(m, "*** WEDGED ***\n");
2375
2376         drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2377         drm_printf(m, "\tBarriers?: %s\n",
2378                    str_yes_no(!llist_empty(&engine->barrier_tasks)));
2379         drm_printf(m, "\tLatency: %luus\n",
2380                    ewma__engine_latency_read(&engine->latency));
2381         if (intel_engine_supports_stats(engine))
2382                 drm_printf(m, "\tRuntime: %llums\n",
2383                            ktime_to_ms(intel_engine_get_busy_time(engine,
2384                                                                   &dummy)));
2385         drm_printf(m, "\tForcewake: %x domains, %d active\n",
2386                    engine->fw_domain, READ_ONCE(engine->fw_active));
2387
2388         rcu_read_lock();
2389         rq = READ_ONCE(engine->heartbeat.systole);
2390         if (rq)
2391                 drm_printf(m, "\tHeartbeat: %d ms ago\n",
2392                            jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2393         rcu_read_unlock();
2394         drm_printf(m, "\tReset count: %d (global %d)\n",
2395                    i915_reset_engine_count(error, engine),
2396                    i915_reset_count(error));
2397         print_properties(engine, m);
2398
2399         engine_dump_active_requests(engine, m);
2400
2401         drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2402         wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2403         if (wakeref) {
2404                 intel_engine_print_registers(engine, m);
2405                 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2406         } else {
2407                 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2408         }
2409
2410         intel_execlists_show_requests(engine, m, i915_request_show, 8);
2411
2412         drm_printf(m, "HWSP:\n");
2413         hexdump(m, engine->status_page.addr, PAGE_SIZE);
2414
2415         drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2416
2417         intel_engine_print_breadcrumbs(engine, m);
2418 }
2419
2420 /**
2421  * intel_engine_get_busy_time() - Return current accumulated engine busyness
2422  * @engine: engine to report on
2423  * @now: monotonic timestamp of sampling
2424  *
2425  * Returns accumulated time @engine was busy since engine stats were enabled.
2426  */
2427 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2428 {
2429         return engine->busyness(engine, now);
2430 }
2431
2432 struct intel_context *
2433 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2434                             unsigned int count, unsigned long flags)
2435 {
2436         if (count == 0)
2437                 return ERR_PTR(-EINVAL);
2438
2439         if (count == 1 && !(flags & FORCE_VIRTUAL))
2440                 return intel_context_create(siblings[0]);
2441
2442         GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2443         return siblings[0]->cops->create_virtual(siblings, count, flags);
2444 }
2445
2446 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2447 {
2448         struct i915_request *request, *active = NULL;
2449
2450         /*
2451          * This search does not work in GuC submission mode. However, the GuC
2452          * will report the hanging context directly to the driver itself. So
2453          * the driver should never get here when in GuC mode.
2454          */
2455         GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2456
2457         /*
2458          * We are called by the error capture, reset and to dump engine
2459          * state at random points in time. In particular, note that neither is
2460          * crucially ordered with an interrupt. After a hang, the GPU is dead
2461          * and we assume that no more writes can happen (we waited long enough
2462          * for all writes that were in transaction to be flushed) - adding an
2463          * extra delay for a recent interrupt is pointless. Hence, we do
2464          * not need an engine->irq_seqno_barrier() before the seqno reads.
2465          * At all other times, we must assume the GPU is still running, but
2466          * we only care about the snapshot of this moment.
2467          */
2468         lockdep_assert_held(&engine->sched_engine->lock);
2469
2470         rcu_read_lock();
2471         request = execlists_active(&engine->execlists);
2472         if (request) {
2473                 struct intel_timeline *tl = request->context->timeline;
2474
2475                 list_for_each_entry_from_reverse(request, &tl->requests, link) {
2476                         if (__i915_request_is_complete(request))
2477                                 break;
2478
2479                         active = request;
2480                 }
2481         }
2482         rcu_read_unlock();
2483         if (active)
2484                 return active;
2485
2486         list_for_each_entry(request, &engine->sched_engine->requests,
2487                             sched.link) {
2488                 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2489                         continue;
2490
2491                 active = request;
2492                 break;
2493         }
2494
2495         return active;
2496 }
2497
2498 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2499                                   struct intel_context **ce, struct i915_request **rq)
2500 {
2501         unsigned long flags;
2502
2503         *ce = intel_engine_get_hung_context(engine);
2504         if (*ce) {
2505                 intel_engine_clear_hung_context(engine);
2506
2507                 *rq = intel_context_get_active_request(*ce);
2508                 return;
2509         }
2510
2511         /*
2512          * Getting here with GuC enabled means it is a forced error capture
2513          * with no actual hang. So, no need to attempt the execlist search.
2514          */
2515         if (intel_uc_uses_guc_submission(&engine->gt->uc))
2516                 return;
2517
2518         spin_lock_irqsave(&engine->sched_engine->lock, flags);
2519         *rq = engine_execlist_find_hung_request(engine);
2520         if (*rq)
2521                 *rq = i915_request_get_rcu(*rq);
2522         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2523 }
2524
2525 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2526 {
2527         /*
2528          * If there are any non-fused-off CCS engines, we need to enable CCS
2529          * support in the RCU_MODE register.  This only needs to be done once,
2530          * so for simplicity we'll take care of this in the RCS engine's
2531          * resume handler; since the RCS and all CCS engines belong to the
2532          * same reset domain and are reset together, this will also take care
2533          * of re-applying the setting after i915-triggered resets.
2534          */
2535         if (!CCS_MASK(engine->gt))
2536                 return;
2537
2538         intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2539                            _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2540 }
2541
2542 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2543 #include "mock_engine.c"
2544 #include "selftest_engine.c"
2545 #include "selftest_engine_cs.c"
2546 #endif