objtool: Re-arrange validate_functions()
[linux-block.git] / drivers / gpu / drm / i915 / gem / i915_gem_shrinker.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008-2015 Intel Corporation
5  */
6
7 #include <linux/oom.h>
8 #include <linux/sched/mm.h>
9 #include <linux/shmem_fs.h>
10 #include <linux/slab.h>
11 #include <linux/swap.h>
12 #include <linux/pci.h>
13 #include <linux/dma-buf.h>
14 #include <linux/vmalloc.h>
15 #include <drm/i915_drm.h>
16
17 #include "i915_trace.h"
18
19 static bool swap_available(void)
20 {
21         return get_nr_swap_pages() > 0;
22 }
23
24 static bool can_release_pages(struct drm_i915_gem_object *obj)
25 {
26         /* Consider only shrinkable ojects. */
27         if (!i915_gem_object_is_shrinkable(obj))
28                 return false;
29
30         /*
31          * Only report true if by unbinding the object and putting its pages
32          * we can actually make forward progress towards freeing physical
33          * pages.
34          *
35          * If the pages are pinned for any other reason than being bound
36          * to the GPU, simply unbinding from the GPU is not going to succeed
37          * in releasing our pin count on the pages themselves.
38          */
39         if (atomic_read(&obj->mm.pages_pin_count) > atomic_read(&obj->bind_count))
40                 return false;
41
42         /*
43          * We can only return physical pages to the system if we can either
44          * discard the contents (because the user has marked them as being
45          * purgeable) or if we can move their contents out to swap.
46          */
47         return swap_available() || obj->mm.madv == I915_MADV_DONTNEED;
48 }
49
50 static bool unsafe_drop_pages(struct drm_i915_gem_object *obj,
51                               unsigned long shrink)
52 {
53         unsigned long flags;
54
55         flags = 0;
56         if (shrink & I915_SHRINK_ACTIVE)
57                 flags = I915_GEM_OBJECT_UNBIND_ACTIVE;
58
59         if (i915_gem_object_unbind(obj, flags) == 0)
60                 __i915_gem_object_put_pages(obj);
61
62         return !i915_gem_object_has_pages(obj);
63 }
64
65 static void try_to_writeback(struct drm_i915_gem_object *obj,
66                              unsigned int flags)
67 {
68         switch (obj->mm.madv) {
69         case I915_MADV_DONTNEED:
70                 i915_gem_object_truncate(obj);
71         case __I915_MADV_PURGED:
72                 return;
73         }
74
75         if (flags & I915_SHRINK_WRITEBACK)
76                 i915_gem_object_writeback(obj);
77 }
78
79 /**
80  * i915_gem_shrink - Shrink buffer object caches
81  * @i915: i915 device
82  * @target: amount of memory to make available, in pages
83  * @nr_scanned: optional output for number of pages scanned (incremental)
84  * @shrink: control flags for selecting cache types
85  *
86  * This function is the main interface to the shrinker. It will try to release
87  * up to @target pages of main memory backing storage from buffer objects.
88  * Selection of the specific caches can be done with @flags. This is e.g. useful
89  * when purgeable objects should be removed from caches preferentially.
90  *
91  * Note that it's not guaranteed that released amount is actually available as
92  * free system memory - the pages might still be in-used to due to other reasons
93  * (like cpu mmaps) or the mm core has reused them before we could grab them.
94  * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to
95  * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all().
96  *
97  * Also note that any kind of pinning (both per-vma address space pins and
98  * backing storage pins at the buffer object level) result in the shrinker code
99  * having to skip the object.
100  *
101  * Returns:
102  * The number of pages of backing storage actually released.
103  */
104 unsigned long
105 i915_gem_shrink(struct drm_i915_private *i915,
106                 unsigned long target,
107                 unsigned long *nr_scanned,
108                 unsigned int shrink)
109 {
110         const struct {
111                 struct list_head *list;
112                 unsigned int bit;
113         } phases[] = {
114                 { &i915->mm.purge_list, ~0u },
115                 {
116                         &i915->mm.shrink_list,
117                         I915_SHRINK_BOUND | I915_SHRINK_UNBOUND
118                 },
119                 { NULL, 0 },
120         }, *phase;
121         intel_wakeref_t wakeref = 0;
122         unsigned long count = 0;
123         unsigned long scanned = 0;
124
125         /*
126          * When shrinking the active list, we should also consider active
127          * contexts. Active contexts are pinned until they are retired, and
128          * so can not be simply unbound to retire and unpin their pages. To
129          * shrink the contexts, we must wait until the gpu is idle and
130          * completed its switch to the kernel context. In short, we do
131          * not have a good mechanism for idling a specific context.
132          */
133
134         trace_i915_gem_shrink(i915, target, shrink);
135
136         /*
137          * Unbinding of objects will require HW access; Let us not wake the
138          * device just to recover a little memory. If absolutely necessary,
139          * we will force the wake during oom-notifier.
140          */
141         if (shrink & I915_SHRINK_BOUND) {
142                 wakeref = intel_runtime_pm_get_if_in_use(&i915->runtime_pm);
143                 if (!wakeref)
144                         shrink &= ~I915_SHRINK_BOUND;
145         }
146
147         /*
148          * As we may completely rewrite the (un)bound list whilst unbinding
149          * (due to retiring requests) we have to strictly process only
150          * one element of the list at the time, and recheck the list
151          * on every iteration.
152          *
153          * In particular, we must hold a reference whilst removing the
154          * object as we may end up waiting for and/or retiring the objects.
155          * This might release the final reference (held by the active list)
156          * and result in the object being freed from under us. This is
157          * similar to the precautions the eviction code must take whilst
158          * removing objects.
159          *
160          * Also note that although these lists do not hold a reference to
161          * the object we can safely grab one here: The final object
162          * unreferencing and the bound_list are both protected by the
163          * dev->struct_mutex and so we won't ever be able to observe an
164          * object on the bound_list with a reference count equals 0.
165          */
166         for (phase = phases; phase->list; phase++) {
167                 struct list_head still_in_list;
168                 struct drm_i915_gem_object *obj;
169                 unsigned long flags;
170
171                 if ((shrink & phase->bit) == 0)
172                         continue;
173
174                 INIT_LIST_HEAD(&still_in_list);
175
176                 /*
177                  * We serialize our access to unreferenced objects through
178                  * the use of the struct_mutex. While the objects are not
179                  * yet freed (due to RCU then a workqueue) we still want
180                  * to be able to shrink their pages, so they remain on
181                  * the unbound/bound list until actually freed.
182                  */
183                 spin_lock_irqsave(&i915->mm.obj_lock, flags);
184                 while (count < target &&
185                        (obj = list_first_entry_or_null(phase->list,
186                                                        typeof(*obj),
187                                                        mm.link))) {
188                         list_move_tail(&obj->mm.link, &still_in_list);
189
190                         if (shrink & I915_SHRINK_VMAPS &&
191                             !is_vmalloc_addr(obj->mm.mapping))
192                                 continue;
193
194                         if (!(shrink & I915_SHRINK_ACTIVE) &&
195                             i915_gem_object_is_framebuffer(obj))
196                                 continue;
197
198                         if (!(shrink & I915_SHRINK_BOUND) &&
199                             atomic_read(&obj->bind_count))
200                                 continue;
201
202                         if (!can_release_pages(obj))
203                                 continue;
204
205                         if (!kref_get_unless_zero(&obj->base.refcount))
206                                 continue;
207
208                         spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
209
210                         if (unsafe_drop_pages(obj, shrink)) {
211                                 /* May arrive from get_pages on another bo */
212                                 mutex_lock(&obj->mm.lock);
213                                 if (!i915_gem_object_has_pages(obj)) {
214                                         try_to_writeback(obj, shrink);
215                                         count += obj->base.size >> PAGE_SHIFT;
216                                 }
217                                 mutex_unlock(&obj->mm.lock);
218                         }
219
220                         scanned += obj->base.size >> PAGE_SHIFT;
221                         i915_gem_object_put(obj);
222
223                         spin_lock_irqsave(&i915->mm.obj_lock, flags);
224                 }
225                 list_splice_tail(&still_in_list, phase->list);
226                 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
227         }
228
229         if (shrink & I915_SHRINK_BOUND)
230                 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
231
232         if (nr_scanned)
233                 *nr_scanned += scanned;
234         return count;
235 }
236
237 /**
238  * i915_gem_shrink_all - Shrink buffer object caches completely
239  * @i915: i915 device
240  *
241  * This is a simple wraper around i915_gem_shrink() to aggressively shrink all
242  * caches completely. It also first waits for and retires all outstanding
243  * requests to also be able to release backing storage for active objects.
244  *
245  * This should only be used in code to intentionally quiescent the gpu or as a
246  * last-ditch effort when memory seems to have run out.
247  *
248  * Returns:
249  * The number of pages of backing storage actually released.
250  */
251 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915)
252 {
253         intel_wakeref_t wakeref;
254         unsigned long freed = 0;
255
256         with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
257                 freed = i915_gem_shrink(i915, -1UL, NULL,
258                                         I915_SHRINK_BOUND |
259                                         I915_SHRINK_UNBOUND |
260                                         I915_SHRINK_ACTIVE);
261         }
262
263         return freed;
264 }
265
266 static unsigned long
267 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
268 {
269         struct drm_i915_private *i915 =
270                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
271         unsigned long num_objects;
272         unsigned long count;
273
274         count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT;
275         num_objects = READ_ONCE(i915->mm.shrink_count);
276
277         /*
278          * Update our preferred vmscan batch size for the next pass.
279          * Our rough guess for an effective batch size is roughly 2
280          * available GEM objects worth of pages. That is we don't want
281          * the shrinker to fire, until it is worth the cost of freeing an
282          * entire GEM object.
283          */
284         if (num_objects) {
285                 unsigned long avg = 2 * count / num_objects;
286
287                 i915->mm.shrinker.batch =
288                         max((i915->mm.shrinker.batch + avg) >> 1,
289                             128ul /* default SHRINK_BATCH */);
290         }
291
292         return count;
293 }
294
295 static unsigned long
296 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
297 {
298         struct drm_i915_private *i915 =
299                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
300         unsigned long freed;
301
302         sc->nr_scanned = 0;
303
304         freed = i915_gem_shrink(i915,
305                                 sc->nr_to_scan,
306                                 &sc->nr_scanned,
307                                 I915_SHRINK_BOUND |
308                                 I915_SHRINK_UNBOUND);
309         if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) {
310                 intel_wakeref_t wakeref;
311
312                 with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
313                         freed += i915_gem_shrink(i915,
314                                                  sc->nr_to_scan - sc->nr_scanned,
315                                                  &sc->nr_scanned,
316                                                  I915_SHRINK_ACTIVE |
317                                                  I915_SHRINK_BOUND |
318                                                  I915_SHRINK_UNBOUND |
319                                                  I915_SHRINK_WRITEBACK);
320                 }
321         }
322
323         return sc->nr_scanned ? freed : SHRINK_STOP;
324 }
325
326 static int
327 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
328 {
329         struct drm_i915_private *i915 =
330                 container_of(nb, struct drm_i915_private, mm.oom_notifier);
331         struct drm_i915_gem_object *obj;
332         unsigned long unevictable, available, freed_pages;
333         intel_wakeref_t wakeref;
334         unsigned long flags;
335
336         freed_pages = 0;
337         with_intel_runtime_pm(&i915->runtime_pm, wakeref)
338                 freed_pages += i915_gem_shrink(i915, -1UL, NULL,
339                                                I915_SHRINK_ACTIVE |
340                                                I915_SHRINK_BOUND |
341                                                I915_SHRINK_UNBOUND |
342                                                I915_SHRINK_WRITEBACK);
343
344         /* Because we may be allocating inside our own driver, we cannot
345          * assert that there are no objects with pinned pages that are not
346          * being pointed to by hardware.
347          */
348         available = unevictable = 0;
349         spin_lock_irqsave(&i915->mm.obj_lock, flags);
350         list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
351                 if (!can_release_pages(obj))
352                         unevictable += obj->base.size >> PAGE_SHIFT;
353                 else
354                         available += obj->base.size >> PAGE_SHIFT;
355         }
356         spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
357
358         if (freed_pages || available)
359                 pr_info("Purging GPU memory, %lu pages freed, "
360                         "%lu pages still pinned, %lu pages left available.\n",
361                         freed_pages, unevictable, available);
362
363         *(unsigned long *)ptr += freed_pages;
364         return NOTIFY_DONE;
365 }
366
367 static int
368 i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr)
369 {
370         struct drm_i915_private *i915 =
371                 container_of(nb, struct drm_i915_private, mm.vmap_notifier);
372         struct i915_vma *vma, *next;
373         unsigned long freed_pages = 0;
374         intel_wakeref_t wakeref;
375
376         with_intel_runtime_pm(&i915->runtime_pm, wakeref)
377                 freed_pages += i915_gem_shrink(i915, -1UL, NULL,
378                                                I915_SHRINK_BOUND |
379                                                I915_SHRINK_UNBOUND |
380                                                I915_SHRINK_VMAPS);
381
382         /* We also want to clear any cached iomaps as they wrap vmap */
383         mutex_lock(&i915->ggtt.vm.mutex);
384         list_for_each_entry_safe(vma, next,
385                                  &i915->ggtt.vm.bound_list, vm_link) {
386                 unsigned long count = vma->node.size >> PAGE_SHIFT;
387
388                 if (!vma->iomap || i915_vma_is_active(vma))
389                         continue;
390
391                 if (__i915_vma_unbind(vma) == 0)
392                         freed_pages += count;
393         }
394         mutex_unlock(&i915->ggtt.vm.mutex);
395
396         *(unsigned long *)ptr += freed_pages;
397         return NOTIFY_DONE;
398 }
399
400 void i915_gem_driver_register__shrinker(struct drm_i915_private *i915)
401 {
402         i915->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
403         i915->mm.shrinker.count_objects = i915_gem_shrinker_count;
404         i915->mm.shrinker.seeks = DEFAULT_SEEKS;
405         i915->mm.shrinker.batch = 4096;
406         WARN_ON(register_shrinker(&i915->mm.shrinker));
407
408         i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
409         WARN_ON(register_oom_notifier(&i915->mm.oom_notifier));
410
411         i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap;
412         WARN_ON(register_vmap_purge_notifier(&i915->mm.vmap_notifier));
413 }
414
415 void i915_gem_driver_unregister__shrinker(struct drm_i915_private *i915)
416 {
417         WARN_ON(unregister_vmap_purge_notifier(&i915->mm.vmap_notifier));
418         WARN_ON(unregister_oom_notifier(&i915->mm.oom_notifier));
419         unregister_shrinker(&i915->mm.shrinker);
420 }
421
422 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915,
423                                     struct mutex *mutex)
424 {
425         bool unlock = false;
426
427         if (!IS_ENABLED(CONFIG_LOCKDEP))
428                 return;
429
430         if (!lockdep_is_held_type(&i915->drm.struct_mutex, -1)) {
431                 mutex_acquire(&i915->drm.struct_mutex.dep_map,
432                               I915_MM_NORMAL, 0, _RET_IP_);
433                 unlock = true;
434         }
435
436         fs_reclaim_acquire(GFP_KERNEL);
437
438         mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_);
439         mutex_release(&mutex->dep_map, _RET_IP_);
440
441         fs_reclaim_release(GFP_KERNEL);
442
443         if (unlock)
444                 mutex_release(&i915->drm.struct_mutex.dep_map, _RET_IP_);
445 }
446
447 #define obj_to_i915(obj__) to_i915((obj__)->base.dev)
448
449 void i915_gem_object_make_unshrinkable(struct drm_i915_gem_object *obj)
450 {
451         struct drm_i915_private *i915 = obj_to_i915(obj);
452         unsigned long flags;
453
454         /*
455          * We can only be called while the pages are pinned or when
456          * the pages are released. If pinned, we should only be called
457          * from a single caller under controlled conditions; and on release
458          * only one caller may release us. Neither the two may cross.
459          */
460         if (atomic_add_unless(&obj->mm.shrink_pin, 1, 0))
461                 return;
462
463         spin_lock_irqsave(&i915->mm.obj_lock, flags);
464         if (!atomic_fetch_inc(&obj->mm.shrink_pin) &&
465             !list_empty(&obj->mm.link)) {
466                 list_del_init(&obj->mm.link);
467                 i915->mm.shrink_count--;
468                 i915->mm.shrink_memory -= obj->base.size;
469         }
470         spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
471 }
472
473 static void __i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj,
474                                               struct list_head *head)
475 {
476         struct drm_i915_private *i915 = obj_to_i915(obj);
477         unsigned long flags;
478
479         GEM_BUG_ON(!i915_gem_object_has_pages(obj));
480         if (!i915_gem_object_is_shrinkable(obj))
481                 return;
482
483         if (atomic_add_unless(&obj->mm.shrink_pin, -1, 1))
484                 return;
485
486         spin_lock_irqsave(&i915->mm.obj_lock, flags);
487         GEM_BUG_ON(!kref_read(&obj->base.refcount));
488         if (atomic_dec_and_test(&obj->mm.shrink_pin)) {
489                 GEM_BUG_ON(!list_empty(&obj->mm.link));
490
491                 list_add_tail(&obj->mm.link, head);
492                 i915->mm.shrink_count++;
493                 i915->mm.shrink_memory += obj->base.size;
494
495         }
496         spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
497 }
498
499 void i915_gem_object_make_shrinkable(struct drm_i915_gem_object *obj)
500 {
501         __i915_gem_object_make_shrinkable(obj,
502                                           &obj_to_i915(obj)->mm.shrink_list);
503 }
504
505 void i915_gem_object_make_purgeable(struct drm_i915_gem_object *obj)
506 {
507         __i915_gem_object_make_shrinkable(obj,
508                                           &obj_to_i915(obj)->mm.purge_list);
509 }