objtool: Re-arrange validate_functions()
[linux-block.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11
12 #include <drm/drm_syncobj.h>
13 #include <drm/i915_drm.h>
14
15 #include "display/intel_frontbuffer.h"
16
17 #include "gem/i915_gem_ioctls.h"
18 #include "gt/intel_context.h"
19 #include "gt/intel_engine_pool.h"
20 #include "gt/intel_gt.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23
24 #include "i915_drv.h"
25 #include "i915_gem_clflush.h"
26 #include "i915_gem_context.h"
27 #include "i915_gem_ioctls.h"
28 #include "i915_sw_fence_work.h"
29 #include "i915_trace.h"
30
31 enum {
32         FORCE_CPU_RELOC = 1,
33         FORCE_GTT_RELOC,
34         FORCE_GPU_RELOC,
35 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
36 };
37
38 #define __EXEC_OBJECT_HAS_REF           BIT(31)
39 #define __EXEC_OBJECT_HAS_PIN           BIT(30)
40 #define __EXEC_OBJECT_HAS_FENCE         BIT(29)
41 #define __EXEC_OBJECT_NEEDS_MAP         BIT(28)
42 #define __EXEC_OBJECT_NEEDS_BIAS        BIT(27)
43 #define __EXEC_OBJECT_INTERNAL_FLAGS    (~0u << 27) /* all of the above */
44 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
45
46 #define __EXEC_HAS_RELOC        BIT(31)
47 #define __EXEC_VALIDATED        BIT(30)
48 #define __EXEC_INTERNAL_FLAGS   (~0u << 30)
49 #define UPDATE                  PIN_OFFSET_FIXED
50
51 #define BATCH_OFFSET_BIAS (256*1024)
52
53 #define __I915_EXEC_ILLEGAL_FLAGS \
54         (__I915_EXEC_UNKNOWN_FLAGS | \
55          I915_EXEC_CONSTANTS_MASK  | \
56          I915_EXEC_RESOURCE_STREAMER)
57
58 /* Catch emission of unexpected errors for CI! */
59 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
60 #undef EINVAL
61 #define EINVAL ({ \
62         DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
63         22; \
64 })
65 #endif
66
67 /**
68  * DOC: User command execution
69  *
70  * Userspace submits commands to be executed on the GPU as an instruction
71  * stream within a GEM object we call a batchbuffer. This instructions may
72  * refer to other GEM objects containing auxiliary state such as kernels,
73  * samplers, render targets and even secondary batchbuffers. Userspace does
74  * not know where in the GPU memory these objects reside and so before the
75  * batchbuffer is passed to the GPU for execution, those addresses in the
76  * batchbuffer and auxiliary objects are updated. This is known as relocation,
77  * or patching. To try and avoid having to relocate each object on the next
78  * execution, userspace is told the location of those objects in this pass,
79  * but this remains just a hint as the kernel may choose a new location for
80  * any object in the future.
81  *
82  * At the level of talking to the hardware, submitting a batchbuffer for the
83  * GPU to execute is to add content to a buffer from which the HW
84  * command streamer is reading.
85  *
86  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
87  *    Execlists, this command is not placed on the same buffer as the
88  *    remaining items.
89  *
90  * 2. Add a command to invalidate caches to the buffer.
91  *
92  * 3. Add a batchbuffer start command to the buffer; the start command is
93  *    essentially a token together with the GPU address of the batchbuffer
94  *    to be executed.
95  *
96  * 4. Add a pipeline flush to the buffer.
97  *
98  * 5. Add a memory write command to the buffer to record when the GPU
99  *    is done executing the batchbuffer. The memory write writes the
100  *    global sequence number of the request, ``i915_request::global_seqno``;
101  *    the i915 driver uses the current value in the register to determine
102  *    if the GPU has completed the batchbuffer.
103  *
104  * 6. Add a user interrupt command to the buffer. This command instructs
105  *    the GPU to issue an interrupt when the command, pipeline flush and
106  *    memory write are completed.
107  *
108  * 7. Inform the hardware of the additional commands added to the buffer
109  *    (by updating the tail pointer).
110  *
111  * Processing an execbuf ioctl is conceptually split up into a few phases.
112  *
113  * 1. Validation - Ensure all the pointers, handles and flags are valid.
114  * 2. Reservation - Assign GPU address space for every object
115  * 3. Relocation - Update any addresses to point to the final locations
116  * 4. Serialisation - Order the request with respect to its dependencies
117  * 5. Construction - Construct a request to execute the batchbuffer
118  * 6. Submission (at some point in the future execution)
119  *
120  * Reserving resources for the execbuf is the most complicated phase. We
121  * neither want to have to migrate the object in the address space, nor do
122  * we want to have to update any relocations pointing to this object. Ideally,
123  * we want to leave the object where it is and for all the existing relocations
124  * to match. If the object is given a new address, or if userspace thinks the
125  * object is elsewhere, we have to parse all the relocation entries and update
126  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
127  * all the target addresses in all of its objects match the value in the
128  * relocation entries and that they all match the presumed offsets given by the
129  * list of execbuffer objects. Using this knowledge, we know that if we haven't
130  * moved any buffers, all the relocation entries are valid and we can skip
131  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
132  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
133  *
134  *      The addresses written in the objects must match the corresponding
135  *      reloc.presumed_offset which in turn must match the corresponding
136  *      execobject.offset.
137  *
138  *      Any render targets written to in the batch must be flagged with
139  *      EXEC_OBJECT_WRITE.
140  *
141  *      To avoid stalling, execobject.offset should match the current
142  *      address of that object within the active context.
143  *
144  * The reservation is done is multiple phases. First we try and keep any
145  * object already bound in its current location - so as long as meets the
146  * constraints imposed by the new execbuffer. Any object left unbound after the
147  * first pass is then fitted into any available idle space. If an object does
148  * not fit, all objects are removed from the reservation and the process rerun
149  * after sorting the objects into a priority order (more difficult to fit
150  * objects are tried first). Failing that, the entire VM is cleared and we try
151  * to fit the execbuf once last time before concluding that it simply will not
152  * fit.
153  *
154  * A small complication to all of this is that we allow userspace not only to
155  * specify an alignment and a size for the object in the address space, but
156  * we also allow userspace to specify the exact offset. This objects are
157  * simpler to place (the location is known a priori) all we have to do is make
158  * sure the space is available.
159  *
160  * Once all the objects are in place, patching up the buried pointers to point
161  * to the final locations is a fairly simple job of walking over the relocation
162  * entry arrays, looking up the right address and rewriting the value into
163  * the object. Simple! ... The relocation entries are stored in user memory
164  * and so to access them we have to copy them into a local buffer. That copy
165  * has to avoid taking any pagefaults as they may lead back to a GEM object
166  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
167  * the relocation into multiple passes. First we try to do everything within an
168  * atomic context (avoid the pagefaults) which requires that we never wait. If
169  * we detect that we may wait, or if we need to fault, then we have to fallback
170  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
171  * bells yet?) Dropping the mutex means that we lose all the state we have
172  * built up so far for the execbuf and we must reset any global data. However,
173  * we do leave the objects pinned in their final locations - which is a
174  * potential issue for concurrent execbufs. Once we have left the mutex, we can
175  * allocate and copy all the relocation entries into a large array at our
176  * leisure, reacquire the mutex, reclaim all the objects and other state and
177  * then proceed to update any incorrect addresses with the objects.
178  *
179  * As we process the relocation entries, we maintain a record of whether the
180  * object is being written to. Using NORELOC, we expect userspace to provide
181  * this information instead. We also check whether we can skip the relocation
182  * by comparing the expected value inside the relocation entry with the target's
183  * final address. If they differ, we have to map the current object and rewrite
184  * the 4 or 8 byte pointer within.
185  *
186  * Serialising an execbuf is quite simple according to the rules of the GEM
187  * ABI. Execution within each context is ordered by the order of submission.
188  * Writes to any GEM object are in order of submission and are exclusive. Reads
189  * from a GEM object are unordered with respect to other reads, but ordered by
190  * writes. A write submitted after a read cannot occur before the read, and
191  * similarly any read submitted after a write cannot occur before the write.
192  * Writes are ordered between engines such that only one write occurs at any
193  * time (completing any reads beforehand) - using semaphores where available
194  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
195  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
196  * reads before starting, and any read (either using set-domain or pread) must
197  * flush all GPU writes before starting. (Note we only employ a barrier before,
198  * we currently rely on userspace not concurrently starting a new execution
199  * whilst reading or writing to an object. This may be an advantage or not
200  * depending on how much you trust userspace not to shoot themselves in the
201  * foot.) Serialisation may just result in the request being inserted into
202  * a DAG awaiting its turn, but most simple is to wait on the CPU until
203  * all dependencies are resolved.
204  *
205  * After all of that, is just a matter of closing the request and handing it to
206  * the hardware (well, leaving it in a queue to be executed). However, we also
207  * offer the ability for batchbuffers to be run with elevated privileges so
208  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
209  * Before any batch is given extra privileges we first must check that it
210  * contains no nefarious instructions, we check that each instruction is from
211  * our whitelist and all registers are also from an allowed list. We first
212  * copy the user's batchbuffer to a shadow (so that the user doesn't have
213  * access to it, either by the CPU or GPU as we scan it) and then parse each
214  * instruction. If everything is ok, we set a flag telling the hardware to run
215  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
216  */
217
218 struct i915_execbuffer {
219         struct drm_i915_private *i915; /** i915 backpointer */
220         struct drm_file *file; /** per-file lookup tables and limits */
221         struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
222         struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
223         struct i915_vma **vma;
224         unsigned int *flags;
225
226         struct intel_engine_cs *engine; /** engine to queue the request to */
227         struct intel_context *context; /* logical state for the request */
228         struct i915_gem_context *gem_context; /** caller's context */
229
230         struct i915_request *request; /** our request to build */
231         struct i915_vma *batch; /** identity of the batch obj/vma */
232         struct i915_vma *trampoline; /** trampoline used for chaining */
233
234         /** actual size of execobj[] as we may extend it for the cmdparser */
235         unsigned int buffer_count;
236
237         /** list of vma not yet bound during reservation phase */
238         struct list_head unbound;
239
240         /** list of vma that have execobj.relocation_count */
241         struct list_head relocs;
242
243         /**
244          * Track the most recently used object for relocations, as we
245          * frequently have to perform multiple relocations within the same
246          * obj/page
247          */
248         struct reloc_cache {
249                 struct drm_mm_node node; /** temporary GTT binding */
250                 unsigned long vaddr; /** Current kmap address */
251                 unsigned long page; /** Currently mapped page index */
252                 unsigned int gen; /** Cached value of INTEL_GEN */
253                 bool use_64bit_reloc : 1;
254                 bool has_llc : 1;
255                 bool has_fence : 1;
256                 bool needs_unfenced : 1;
257
258                 struct i915_request *rq;
259                 u32 *rq_cmd;
260                 unsigned int rq_size;
261         } reloc_cache;
262
263         u64 invalid_flags; /** Set of execobj.flags that are invalid */
264         u32 context_flags; /** Set of execobj.flags to insert from the ctx */
265
266         u32 batch_start_offset; /** Location within object of batch */
267         u32 batch_len; /** Length of batch within object */
268         u32 batch_flags; /** Flags composed for emit_bb_start() */
269
270         /**
271          * Indicate either the size of the hastable used to resolve
272          * relocation handles, or if negative that we are using a direct
273          * index into the execobj[].
274          */
275         int lut_size;
276         struct hlist_head *buckets; /** ht for relocation handles */
277 };
278
279 #define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
280
281 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
282 {
283         return intel_engine_requires_cmd_parser(eb->engine) ||
284                 (intel_engine_using_cmd_parser(eb->engine) &&
285                  eb->args->batch_len);
286 }
287
288 static int eb_create(struct i915_execbuffer *eb)
289 {
290         if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
291                 unsigned int size = 1 + ilog2(eb->buffer_count);
292
293                 /*
294                  * Without a 1:1 association between relocation handles and
295                  * the execobject[] index, we instead create a hashtable.
296                  * We size it dynamically based on available memory, starting
297                  * first with 1:1 assocative hash and scaling back until
298                  * the allocation succeeds.
299                  *
300                  * Later on we use a positive lut_size to indicate we are
301                  * using this hashtable, and a negative value to indicate a
302                  * direct lookup.
303                  */
304                 do {
305                         gfp_t flags;
306
307                         /* While we can still reduce the allocation size, don't
308                          * raise a warning and allow the allocation to fail.
309                          * On the last pass though, we want to try as hard
310                          * as possible to perform the allocation and warn
311                          * if it fails.
312                          */
313                         flags = GFP_KERNEL;
314                         if (size > 1)
315                                 flags |= __GFP_NORETRY | __GFP_NOWARN;
316
317                         eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
318                                               flags);
319                         if (eb->buckets)
320                                 break;
321                 } while (--size);
322
323                 if (unlikely(!size))
324                         return -ENOMEM;
325
326                 eb->lut_size = size;
327         } else {
328                 eb->lut_size = -eb->buffer_count;
329         }
330
331         return 0;
332 }
333
334 static bool
335 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
336                  const struct i915_vma *vma,
337                  unsigned int flags)
338 {
339         if (vma->node.size < entry->pad_to_size)
340                 return true;
341
342         if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
343                 return true;
344
345         if (flags & EXEC_OBJECT_PINNED &&
346             vma->node.start != entry->offset)
347                 return true;
348
349         if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
350             vma->node.start < BATCH_OFFSET_BIAS)
351                 return true;
352
353         if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
354             (vma->node.start + vma->node.size - 1) >> 32)
355                 return true;
356
357         if (flags & __EXEC_OBJECT_NEEDS_MAP &&
358             !i915_vma_is_map_and_fenceable(vma))
359                 return true;
360
361         return false;
362 }
363
364 static inline bool
365 eb_pin_vma(struct i915_execbuffer *eb,
366            const struct drm_i915_gem_exec_object2 *entry,
367            struct i915_vma *vma)
368 {
369         unsigned int exec_flags = *vma->exec_flags;
370         u64 pin_flags;
371
372         if (vma->node.size)
373                 pin_flags = vma->node.start;
374         else
375                 pin_flags = entry->offset & PIN_OFFSET_MASK;
376
377         pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
378         if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
379                 pin_flags |= PIN_GLOBAL;
380
381         if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
382                 return false;
383
384         if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
385                 if (unlikely(i915_vma_pin_fence(vma))) {
386                         i915_vma_unpin(vma);
387                         return false;
388                 }
389
390                 if (vma->fence)
391                         exec_flags |= __EXEC_OBJECT_HAS_FENCE;
392         }
393
394         *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
395         return !eb_vma_misplaced(entry, vma, exec_flags);
396 }
397
398 static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
399 {
400         GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
401
402         if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
403                 __i915_vma_unpin_fence(vma);
404
405         __i915_vma_unpin(vma);
406 }
407
408 static inline void
409 eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
410 {
411         if (!(*flags & __EXEC_OBJECT_HAS_PIN))
412                 return;
413
414         __eb_unreserve_vma(vma, *flags);
415         *flags &= ~__EXEC_OBJECT_RESERVED;
416 }
417
418 static int
419 eb_validate_vma(struct i915_execbuffer *eb,
420                 struct drm_i915_gem_exec_object2 *entry,
421                 struct i915_vma *vma)
422 {
423         if (unlikely(entry->flags & eb->invalid_flags))
424                 return -EINVAL;
425
426         if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
427                 return -EINVAL;
428
429         /*
430          * Offset can be used as input (EXEC_OBJECT_PINNED), reject
431          * any non-page-aligned or non-canonical addresses.
432          */
433         if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
434                      entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
435                 return -EINVAL;
436
437         /* pad_to_size was once a reserved field, so sanitize it */
438         if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
439                 if (unlikely(offset_in_page(entry->pad_to_size)))
440                         return -EINVAL;
441         } else {
442                 entry->pad_to_size = 0;
443         }
444
445         if (unlikely(vma->exec_flags)) {
446                 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
447                           entry->handle, (int)(entry - eb->exec));
448                 return -EINVAL;
449         }
450
451         /*
452          * From drm_mm perspective address space is continuous,
453          * so from this point we're always using non-canonical
454          * form internally.
455          */
456         entry->offset = gen8_noncanonical_addr(entry->offset);
457
458         if (!eb->reloc_cache.has_fence) {
459                 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
460         } else {
461                 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
462                      eb->reloc_cache.needs_unfenced) &&
463                     i915_gem_object_is_tiled(vma->obj))
464                         entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
465         }
466
467         if (!(entry->flags & EXEC_OBJECT_PINNED))
468                 entry->flags |= eb->context_flags;
469
470         return 0;
471 }
472
473 static int
474 eb_add_vma(struct i915_execbuffer *eb,
475            unsigned int i, unsigned batch_idx,
476            struct i915_vma *vma)
477 {
478         struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
479         int err;
480
481         GEM_BUG_ON(i915_vma_is_closed(vma));
482
483         if (!(eb->args->flags & __EXEC_VALIDATED)) {
484                 err = eb_validate_vma(eb, entry, vma);
485                 if (unlikely(err))
486                         return err;
487         }
488
489         if (eb->lut_size > 0) {
490                 vma->exec_handle = entry->handle;
491                 hlist_add_head(&vma->exec_node,
492                                &eb->buckets[hash_32(entry->handle,
493                                                     eb->lut_size)]);
494         }
495
496         if (entry->relocation_count)
497                 list_add_tail(&vma->reloc_link, &eb->relocs);
498
499         /*
500          * Stash a pointer from the vma to execobj, so we can query its flags,
501          * size, alignment etc as provided by the user. Also we stash a pointer
502          * to the vma inside the execobj so that we can use a direct lookup
503          * to find the right target VMA when doing relocations.
504          */
505         eb->vma[i] = vma;
506         eb->flags[i] = entry->flags;
507         vma->exec_flags = &eb->flags[i];
508
509         /*
510          * SNA is doing fancy tricks with compressing batch buffers, which leads
511          * to negative relocation deltas. Usually that works out ok since the
512          * relocate address is still positive, except when the batch is placed
513          * very low in the GTT. Ensure this doesn't happen.
514          *
515          * Note that actual hangs have only been observed on gen7, but for
516          * paranoia do it everywhere.
517          */
518         if (i == batch_idx) {
519                 if (entry->relocation_count &&
520                     !(eb->flags[i] & EXEC_OBJECT_PINNED))
521                         eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
522                 if (eb->reloc_cache.has_fence)
523                         eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
524
525                 eb->batch = vma;
526         }
527
528         err = 0;
529         if (eb_pin_vma(eb, entry, vma)) {
530                 if (entry->offset != vma->node.start) {
531                         entry->offset = vma->node.start | UPDATE;
532                         eb->args->flags |= __EXEC_HAS_RELOC;
533                 }
534         } else {
535                 eb_unreserve_vma(vma, vma->exec_flags);
536
537                 list_add_tail(&vma->exec_link, &eb->unbound);
538                 if (drm_mm_node_allocated(&vma->node))
539                         err = i915_vma_unbind(vma);
540                 if (unlikely(err))
541                         vma->exec_flags = NULL;
542         }
543         return err;
544 }
545
546 static inline int use_cpu_reloc(const struct reloc_cache *cache,
547                                 const struct drm_i915_gem_object *obj)
548 {
549         if (!i915_gem_object_has_struct_page(obj))
550                 return false;
551
552         if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
553                 return true;
554
555         if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
556                 return false;
557
558         return (cache->has_llc ||
559                 obj->cache_dirty ||
560                 obj->cache_level != I915_CACHE_NONE);
561 }
562
563 static int eb_reserve_vma(const struct i915_execbuffer *eb,
564                           struct i915_vma *vma)
565 {
566         struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
567         unsigned int exec_flags = *vma->exec_flags;
568         u64 pin_flags;
569         int err;
570
571         pin_flags = PIN_USER | PIN_NONBLOCK;
572         if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
573                 pin_flags |= PIN_GLOBAL;
574
575         /*
576          * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
577          * limit address to the first 4GBs for unflagged objects.
578          */
579         if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
580                 pin_flags |= PIN_ZONE_4G;
581
582         if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
583                 pin_flags |= PIN_MAPPABLE;
584
585         if (exec_flags & EXEC_OBJECT_PINNED) {
586                 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
587                 pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
588         } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
589                 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
590         }
591
592         err = i915_vma_pin(vma,
593                            entry->pad_to_size, entry->alignment,
594                            pin_flags);
595         if (err)
596                 return err;
597
598         if (entry->offset != vma->node.start) {
599                 entry->offset = vma->node.start | UPDATE;
600                 eb->args->flags |= __EXEC_HAS_RELOC;
601         }
602
603         if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
604                 err = i915_vma_pin_fence(vma);
605                 if (unlikely(err)) {
606                         i915_vma_unpin(vma);
607                         return err;
608                 }
609
610                 if (vma->fence)
611                         exec_flags |= __EXEC_OBJECT_HAS_FENCE;
612         }
613
614         *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
615         GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
616
617         return 0;
618 }
619
620 static int eb_reserve(struct i915_execbuffer *eb)
621 {
622         const unsigned int count = eb->buffer_count;
623         struct list_head last;
624         struct i915_vma *vma;
625         unsigned int i, pass;
626         int err;
627
628         /*
629          * Attempt to pin all of the buffers into the GTT.
630          * This is done in 3 phases:
631          *
632          * 1a. Unbind all objects that do not match the GTT constraints for
633          *     the execbuffer (fenceable, mappable, alignment etc).
634          * 1b. Increment pin count for already bound objects.
635          * 2.  Bind new objects.
636          * 3.  Decrement pin count.
637          *
638          * This avoid unnecessary unbinding of later objects in order to make
639          * room for the earlier objects *unless* we need to defragment.
640          */
641
642         pass = 0;
643         err = 0;
644         do {
645                 list_for_each_entry(vma, &eb->unbound, exec_link) {
646                         err = eb_reserve_vma(eb, vma);
647                         if (err)
648                                 break;
649                 }
650                 if (err != -ENOSPC)
651                         return err;
652
653                 /* Resort *all* the objects into priority order */
654                 INIT_LIST_HEAD(&eb->unbound);
655                 INIT_LIST_HEAD(&last);
656                 for (i = 0; i < count; i++) {
657                         unsigned int flags = eb->flags[i];
658                         struct i915_vma *vma = eb->vma[i];
659
660                         if (flags & EXEC_OBJECT_PINNED &&
661                             flags & __EXEC_OBJECT_HAS_PIN)
662                                 continue;
663
664                         eb_unreserve_vma(vma, &eb->flags[i]);
665
666                         if (flags & EXEC_OBJECT_PINNED)
667                                 /* Pinned must have their slot */
668                                 list_add(&vma->exec_link, &eb->unbound);
669                         else if (flags & __EXEC_OBJECT_NEEDS_MAP)
670                                 /* Map require the lowest 256MiB (aperture) */
671                                 list_add_tail(&vma->exec_link, &eb->unbound);
672                         else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
673                                 /* Prioritise 4GiB region for restricted bo */
674                                 list_add(&vma->exec_link, &last);
675                         else
676                                 list_add_tail(&vma->exec_link, &last);
677                 }
678                 list_splice_tail(&last, &eb->unbound);
679
680                 switch (pass++) {
681                 case 0:
682                         break;
683
684                 case 1:
685                         /* Too fragmented, unbind everything and retry */
686                         mutex_lock(&eb->context->vm->mutex);
687                         err = i915_gem_evict_vm(eb->context->vm);
688                         mutex_unlock(&eb->context->vm->mutex);
689                         if (err)
690                                 return err;
691                         break;
692
693                 default:
694                         return -ENOSPC;
695                 }
696         } while (1);
697 }
698
699 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
700 {
701         if (eb->args->flags & I915_EXEC_BATCH_FIRST)
702                 return 0;
703         else
704                 return eb->buffer_count - 1;
705 }
706
707 static int eb_select_context(struct i915_execbuffer *eb)
708 {
709         struct i915_gem_context *ctx;
710
711         ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
712         if (unlikely(!ctx))
713                 return -ENOENT;
714
715         eb->gem_context = ctx;
716         if (rcu_access_pointer(ctx->vm))
717                 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
718
719         eb->context_flags = 0;
720         if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
721                 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
722
723         return 0;
724 }
725
726 static int eb_lookup_vmas(struct i915_execbuffer *eb)
727 {
728         struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
729         struct drm_i915_gem_object *obj;
730         unsigned int i, batch;
731         int err;
732
733         INIT_LIST_HEAD(&eb->relocs);
734         INIT_LIST_HEAD(&eb->unbound);
735
736         batch = eb_batch_index(eb);
737
738         mutex_lock(&eb->gem_context->mutex);
739         if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
740                 err = -ENOENT;
741                 goto err_ctx;
742         }
743
744         for (i = 0; i < eb->buffer_count; i++) {
745                 u32 handle = eb->exec[i].handle;
746                 struct i915_lut_handle *lut;
747                 struct i915_vma *vma;
748
749                 vma = radix_tree_lookup(handles_vma, handle);
750                 if (likely(vma))
751                         goto add_vma;
752
753                 obj = i915_gem_object_lookup(eb->file, handle);
754                 if (unlikely(!obj)) {
755                         err = -ENOENT;
756                         goto err_vma;
757                 }
758
759                 vma = i915_vma_instance(obj, eb->context->vm, NULL);
760                 if (IS_ERR(vma)) {
761                         err = PTR_ERR(vma);
762                         goto err_obj;
763                 }
764
765                 lut = i915_lut_handle_alloc();
766                 if (unlikely(!lut)) {
767                         err = -ENOMEM;
768                         goto err_obj;
769                 }
770
771                 err = radix_tree_insert(handles_vma, handle, vma);
772                 if (unlikely(err)) {
773                         i915_lut_handle_free(lut);
774                         goto err_obj;
775                 }
776
777                 /* transfer ref to lut */
778                 if (!atomic_fetch_inc(&vma->open_count))
779                         i915_vma_reopen(vma);
780                 lut->handle = handle;
781                 lut->ctx = eb->gem_context;
782
783                 i915_gem_object_lock(obj);
784                 list_add(&lut->obj_link, &obj->lut_list);
785                 i915_gem_object_unlock(obj);
786
787 add_vma:
788                 err = eb_add_vma(eb, i, batch, vma);
789                 if (unlikely(err))
790                         goto err_vma;
791
792                 GEM_BUG_ON(vma != eb->vma[i]);
793                 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
794                 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
795                            eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
796         }
797
798         mutex_unlock(&eb->gem_context->mutex);
799
800         eb->args->flags |= __EXEC_VALIDATED;
801         return eb_reserve(eb);
802
803 err_obj:
804         i915_gem_object_put(obj);
805 err_vma:
806         eb->vma[i] = NULL;
807 err_ctx:
808         mutex_unlock(&eb->gem_context->mutex);
809         return err;
810 }
811
812 static struct i915_vma *
813 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
814 {
815         if (eb->lut_size < 0) {
816                 if (handle >= -eb->lut_size)
817                         return NULL;
818                 return eb->vma[handle];
819         } else {
820                 struct hlist_head *head;
821                 struct i915_vma *vma;
822
823                 head = &eb->buckets[hash_32(handle, eb->lut_size)];
824                 hlist_for_each_entry(vma, head, exec_node) {
825                         if (vma->exec_handle == handle)
826                                 return vma;
827                 }
828                 return NULL;
829         }
830 }
831
832 static void eb_release_vmas(const struct i915_execbuffer *eb)
833 {
834         const unsigned int count = eb->buffer_count;
835         unsigned int i;
836
837         for (i = 0; i < count; i++) {
838                 struct i915_vma *vma = eb->vma[i];
839                 unsigned int flags = eb->flags[i];
840
841                 if (!vma)
842                         break;
843
844                 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
845                 vma->exec_flags = NULL;
846                 eb->vma[i] = NULL;
847
848                 if (flags & __EXEC_OBJECT_HAS_PIN)
849                         __eb_unreserve_vma(vma, flags);
850
851                 if (flags & __EXEC_OBJECT_HAS_REF)
852                         i915_vma_put(vma);
853         }
854 }
855
856 static void eb_reset_vmas(const struct i915_execbuffer *eb)
857 {
858         eb_release_vmas(eb);
859         if (eb->lut_size > 0)
860                 memset(eb->buckets, 0,
861                        sizeof(struct hlist_head) << eb->lut_size);
862 }
863
864 static void eb_destroy(const struct i915_execbuffer *eb)
865 {
866         GEM_BUG_ON(eb->reloc_cache.rq);
867
868         if (eb->lut_size > 0)
869                 kfree(eb->buckets);
870 }
871
872 static inline u64
873 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
874                   const struct i915_vma *target)
875 {
876         return gen8_canonical_addr((int)reloc->delta + target->node.start);
877 }
878
879 static void reloc_cache_init(struct reloc_cache *cache,
880                              struct drm_i915_private *i915)
881 {
882         cache->page = -1;
883         cache->vaddr = 0;
884         /* Must be a variable in the struct to allow GCC to unroll. */
885         cache->gen = INTEL_GEN(i915);
886         cache->has_llc = HAS_LLC(i915);
887         cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
888         cache->has_fence = cache->gen < 4;
889         cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
890         cache->node.flags = 0;
891         cache->rq = NULL;
892         cache->rq_size = 0;
893 }
894
895 static inline void *unmask_page(unsigned long p)
896 {
897         return (void *)(uintptr_t)(p & PAGE_MASK);
898 }
899
900 static inline unsigned int unmask_flags(unsigned long p)
901 {
902         return p & ~PAGE_MASK;
903 }
904
905 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
906
907 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
908 {
909         struct drm_i915_private *i915 =
910                 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
911         return &i915->ggtt;
912 }
913
914 static void reloc_gpu_flush(struct reloc_cache *cache)
915 {
916         GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
917         cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
918
919         __i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
920         i915_gem_object_unpin_map(cache->rq->batch->obj);
921
922         intel_gt_chipset_flush(cache->rq->engine->gt);
923
924         i915_request_add(cache->rq);
925         cache->rq = NULL;
926 }
927
928 static void reloc_cache_reset(struct reloc_cache *cache)
929 {
930         void *vaddr;
931
932         if (cache->rq)
933                 reloc_gpu_flush(cache);
934
935         if (!cache->vaddr)
936                 return;
937
938         vaddr = unmask_page(cache->vaddr);
939         if (cache->vaddr & KMAP) {
940                 if (cache->vaddr & CLFLUSH_AFTER)
941                         mb();
942
943                 kunmap_atomic(vaddr);
944                 i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
945         } else {
946                 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
947
948                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
949                 io_mapping_unmap_atomic((void __iomem *)vaddr);
950
951                 if (drm_mm_node_allocated(&cache->node)) {
952                         ggtt->vm.clear_range(&ggtt->vm,
953                                              cache->node.start,
954                                              cache->node.size);
955                         mutex_lock(&ggtt->vm.mutex);
956                         drm_mm_remove_node(&cache->node);
957                         mutex_unlock(&ggtt->vm.mutex);
958                 } else {
959                         i915_vma_unpin((struct i915_vma *)cache->node.mm);
960                 }
961         }
962
963         cache->vaddr = 0;
964         cache->page = -1;
965 }
966
967 static void *reloc_kmap(struct drm_i915_gem_object *obj,
968                         struct reloc_cache *cache,
969                         unsigned long page)
970 {
971         void *vaddr;
972
973         if (cache->vaddr) {
974                 kunmap_atomic(unmask_page(cache->vaddr));
975         } else {
976                 unsigned int flushes;
977                 int err;
978
979                 err = i915_gem_object_prepare_write(obj, &flushes);
980                 if (err)
981                         return ERR_PTR(err);
982
983                 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
984                 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
985
986                 cache->vaddr = flushes | KMAP;
987                 cache->node.mm = (void *)obj;
988                 if (flushes)
989                         mb();
990         }
991
992         vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
993         cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
994         cache->page = page;
995
996         return vaddr;
997 }
998
999 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1000                          struct reloc_cache *cache,
1001                          unsigned long page)
1002 {
1003         struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1004         unsigned long offset;
1005         void *vaddr;
1006
1007         if (cache->vaddr) {
1008                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1009                 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1010         } else {
1011                 struct i915_vma *vma;
1012                 int err;
1013
1014                 if (i915_gem_object_is_tiled(obj))
1015                         return ERR_PTR(-EINVAL);
1016
1017                 if (use_cpu_reloc(cache, obj))
1018                         return NULL;
1019
1020                 i915_gem_object_lock(obj);
1021                 err = i915_gem_object_set_to_gtt_domain(obj, true);
1022                 i915_gem_object_unlock(obj);
1023                 if (err)
1024                         return ERR_PTR(err);
1025
1026                 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1027                                                PIN_MAPPABLE |
1028                                                PIN_NONBLOCK /* NOWARN */ |
1029                                                PIN_NOEVICT);
1030                 if (IS_ERR(vma)) {
1031                         memset(&cache->node, 0, sizeof(cache->node));
1032                         mutex_lock(&ggtt->vm.mutex);
1033                         err = drm_mm_insert_node_in_range
1034                                 (&ggtt->vm.mm, &cache->node,
1035                                  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1036                                  0, ggtt->mappable_end,
1037                                  DRM_MM_INSERT_LOW);
1038                         mutex_unlock(&ggtt->vm.mutex);
1039                         if (err) /* no inactive aperture space, use cpu reloc */
1040                                 return NULL;
1041                 } else {
1042                         cache->node.start = vma->node.start;
1043                         cache->node.mm = (void *)vma;
1044                 }
1045         }
1046
1047         offset = cache->node.start;
1048         if (drm_mm_node_allocated(&cache->node)) {
1049                 ggtt->vm.insert_page(&ggtt->vm,
1050                                      i915_gem_object_get_dma_address(obj, page),
1051                                      offset, I915_CACHE_NONE, 0);
1052         } else {
1053                 offset += page << PAGE_SHIFT;
1054         }
1055
1056         vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1057                                                          offset);
1058         cache->page = page;
1059         cache->vaddr = (unsigned long)vaddr;
1060
1061         return vaddr;
1062 }
1063
1064 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1065                          struct reloc_cache *cache,
1066                          unsigned long page)
1067 {
1068         void *vaddr;
1069
1070         if (cache->page == page) {
1071                 vaddr = unmask_page(cache->vaddr);
1072         } else {
1073                 vaddr = NULL;
1074                 if ((cache->vaddr & KMAP) == 0)
1075                         vaddr = reloc_iomap(obj, cache, page);
1076                 if (!vaddr)
1077                         vaddr = reloc_kmap(obj, cache, page);
1078         }
1079
1080         return vaddr;
1081 }
1082
1083 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1084 {
1085         if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1086                 if (flushes & CLFLUSH_BEFORE) {
1087                         clflushopt(addr);
1088                         mb();
1089                 }
1090
1091                 *addr = value;
1092
1093                 /*
1094                  * Writes to the same cacheline are serialised by the CPU
1095                  * (including clflush). On the write path, we only require
1096                  * that it hits memory in an orderly fashion and place
1097                  * mb barriers at the start and end of the relocation phase
1098                  * to ensure ordering of clflush wrt to the system.
1099                  */
1100                 if (flushes & CLFLUSH_AFTER)
1101                         clflushopt(addr);
1102         } else
1103                 *addr = value;
1104 }
1105
1106 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1107 {
1108         struct drm_i915_gem_object *obj = vma->obj;
1109         int err;
1110
1111         i915_vma_lock(vma);
1112
1113         if (obj->cache_dirty & ~obj->cache_coherent)
1114                 i915_gem_clflush_object(obj, 0);
1115         obj->write_domain = 0;
1116
1117         err = i915_request_await_object(rq, vma->obj, true);
1118         if (err == 0)
1119                 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1120
1121         i915_vma_unlock(vma);
1122
1123         return err;
1124 }
1125
1126 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1127                              struct i915_vma *vma,
1128                              unsigned int len)
1129 {
1130         struct reloc_cache *cache = &eb->reloc_cache;
1131         struct intel_engine_pool_node *pool;
1132         struct i915_request *rq;
1133         struct i915_vma *batch;
1134         u32 *cmd;
1135         int err;
1136
1137         pool = intel_engine_get_pool(eb->engine, PAGE_SIZE);
1138         if (IS_ERR(pool))
1139                 return PTR_ERR(pool);
1140
1141         cmd = i915_gem_object_pin_map(pool->obj,
1142                                       cache->has_llc ?
1143                                       I915_MAP_FORCE_WB :
1144                                       I915_MAP_FORCE_WC);
1145         if (IS_ERR(cmd)) {
1146                 err = PTR_ERR(cmd);
1147                 goto out_pool;
1148         }
1149
1150         batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1151         if (IS_ERR(batch)) {
1152                 err = PTR_ERR(batch);
1153                 goto err_unmap;
1154         }
1155
1156         err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1157         if (err)
1158                 goto err_unmap;
1159
1160         rq = i915_request_create(eb->context);
1161         if (IS_ERR(rq)) {
1162                 err = PTR_ERR(rq);
1163                 goto err_unpin;
1164         }
1165
1166         err = intel_engine_pool_mark_active(pool, rq);
1167         if (err)
1168                 goto err_request;
1169
1170         err = reloc_move_to_gpu(rq, vma);
1171         if (err)
1172                 goto err_request;
1173
1174         err = eb->engine->emit_bb_start(rq,
1175                                         batch->node.start, PAGE_SIZE,
1176                                         cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1177         if (err)
1178                 goto skip_request;
1179
1180         i915_vma_lock(batch);
1181         err = i915_request_await_object(rq, batch->obj, false);
1182         if (err == 0)
1183                 err = i915_vma_move_to_active(batch, rq, 0);
1184         i915_vma_unlock(batch);
1185         if (err)
1186                 goto skip_request;
1187
1188         rq->batch = batch;
1189         i915_vma_unpin(batch);
1190
1191         cache->rq = rq;
1192         cache->rq_cmd = cmd;
1193         cache->rq_size = 0;
1194
1195         /* Return with batch mapping (cmd) still pinned */
1196         goto out_pool;
1197
1198 skip_request:
1199         i915_request_skip(rq, err);
1200 err_request:
1201         i915_request_add(rq);
1202 err_unpin:
1203         i915_vma_unpin(batch);
1204 err_unmap:
1205         i915_gem_object_unpin_map(pool->obj);
1206 out_pool:
1207         intel_engine_pool_put(pool);
1208         return err;
1209 }
1210
1211 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1212                       struct i915_vma *vma,
1213                       unsigned int len)
1214 {
1215         struct reloc_cache *cache = &eb->reloc_cache;
1216         u32 *cmd;
1217
1218         if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1219                 reloc_gpu_flush(cache);
1220
1221         if (unlikely(!cache->rq)) {
1222                 int err;
1223
1224                 if (!intel_engine_can_store_dword(eb->engine))
1225                         return ERR_PTR(-ENODEV);
1226
1227                 err = __reloc_gpu_alloc(eb, vma, len);
1228                 if (unlikely(err))
1229                         return ERR_PTR(err);
1230         }
1231
1232         cmd = cache->rq_cmd + cache->rq_size;
1233         cache->rq_size += len;
1234
1235         return cmd;
1236 }
1237
1238 static u64
1239 relocate_entry(struct i915_vma *vma,
1240                const struct drm_i915_gem_relocation_entry *reloc,
1241                struct i915_execbuffer *eb,
1242                const struct i915_vma *target)
1243 {
1244         u64 offset = reloc->offset;
1245         u64 target_offset = relocation_target(reloc, target);
1246         bool wide = eb->reloc_cache.use_64bit_reloc;
1247         void *vaddr;
1248
1249         if (!eb->reloc_cache.vaddr &&
1250             (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1251              !dma_resv_test_signaled_rcu(vma->resv, true))) {
1252                 const unsigned int gen = eb->reloc_cache.gen;
1253                 unsigned int len;
1254                 u32 *batch;
1255                 u64 addr;
1256
1257                 if (wide)
1258                         len = offset & 7 ? 8 : 5;
1259                 else if (gen >= 4)
1260                         len = 4;
1261                 else
1262                         len = 3;
1263
1264                 batch = reloc_gpu(eb, vma, len);
1265                 if (IS_ERR(batch))
1266                         goto repeat;
1267
1268                 addr = gen8_canonical_addr(vma->node.start + offset);
1269                 if (wide) {
1270                         if (offset & 7) {
1271                                 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1272                                 *batch++ = lower_32_bits(addr);
1273                                 *batch++ = upper_32_bits(addr);
1274                                 *batch++ = lower_32_bits(target_offset);
1275
1276                                 addr = gen8_canonical_addr(addr + 4);
1277
1278                                 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1279                                 *batch++ = lower_32_bits(addr);
1280                                 *batch++ = upper_32_bits(addr);
1281                                 *batch++ = upper_32_bits(target_offset);
1282                         } else {
1283                                 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1284                                 *batch++ = lower_32_bits(addr);
1285                                 *batch++ = upper_32_bits(addr);
1286                                 *batch++ = lower_32_bits(target_offset);
1287                                 *batch++ = upper_32_bits(target_offset);
1288                         }
1289                 } else if (gen >= 6) {
1290                         *batch++ = MI_STORE_DWORD_IMM_GEN4;
1291                         *batch++ = 0;
1292                         *batch++ = addr;
1293                         *batch++ = target_offset;
1294                 } else if (gen >= 4) {
1295                         *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1296                         *batch++ = 0;
1297                         *batch++ = addr;
1298                         *batch++ = target_offset;
1299                 } else {
1300                         *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1301                         *batch++ = addr;
1302                         *batch++ = target_offset;
1303                 }
1304
1305                 goto out;
1306         }
1307
1308 repeat:
1309         vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1310         if (IS_ERR(vaddr))
1311                 return PTR_ERR(vaddr);
1312
1313         clflush_write32(vaddr + offset_in_page(offset),
1314                         lower_32_bits(target_offset),
1315                         eb->reloc_cache.vaddr);
1316
1317         if (wide) {
1318                 offset += sizeof(u32);
1319                 target_offset >>= 32;
1320                 wide = false;
1321                 goto repeat;
1322         }
1323
1324 out:
1325         return target->node.start | UPDATE;
1326 }
1327
1328 static u64
1329 eb_relocate_entry(struct i915_execbuffer *eb,
1330                   struct i915_vma *vma,
1331                   const struct drm_i915_gem_relocation_entry *reloc)
1332 {
1333         struct i915_vma *target;
1334         int err;
1335
1336         /* we've already hold a reference to all valid objects */
1337         target = eb_get_vma(eb, reloc->target_handle);
1338         if (unlikely(!target))
1339                 return -ENOENT;
1340
1341         /* Validate that the target is in a valid r/w GPU domain */
1342         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1343                 DRM_DEBUG("reloc with multiple write domains: "
1344                           "target %d offset %d "
1345                           "read %08x write %08x",
1346                           reloc->target_handle,
1347                           (int) reloc->offset,
1348                           reloc->read_domains,
1349                           reloc->write_domain);
1350                 return -EINVAL;
1351         }
1352         if (unlikely((reloc->write_domain | reloc->read_domains)
1353                      & ~I915_GEM_GPU_DOMAINS)) {
1354                 DRM_DEBUG("reloc with read/write non-GPU domains: "
1355                           "target %d offset %d "
1356                           "read %08x write %08x",
1357                           reloc->target_handle,
1358                           (int) reloc->offset,
1359                           reloc->read_domains,
1360                           reloc->write_domain);
1361                 return -EINVAL;
1362         }
1363
1364         if (reloc->write_domain) {
1365                 *target->exec_flags |= EXEC_OBJECT_WRITE;
1366
1367                 /*
1368                  * Sandybridge PPGTT errata: We need a global gtt mapping
1369                  * for MI and pipe_control writes because the gpu doesn't
1370                  * properly redirect them through the ppgtt for non_secure
1371                  * batchbuffers.
1372                  */
1373                 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1374                     IS_GEN(eb->i915, 6)) {
1375                         err = i915_vma_bind(target, target->obj->cache_level,
1376                                             PIN_GLOBAL, NULL);
1377                         if (WARN_ONCE(err,
1378                                       "Unexpected failure to bind target VMA!"))
1379                                 return err;
1380                 }
1381         }
1382
1383         /*
1384          * If the relocation already has the right value in it, no
1385          * more work needs to be done.
1386          */
1387         if (!DBG_FORCE_RELOC &&
1388             gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1389                 return 0;
1390
1391         /* Check that the relocation address is valid... */
1392         if (unlikely(reloc->offset >
1393                      vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1394                 DRM_DEBUG("Relocation beyond object bounds: "
1395                           "target %d offset %d size %d.\n",
1396                           reloc->target_handle,
1397                           (int)reloc->offset,
1398                           (int)vma->size);
1399                 return -EINVAL;
1400         }
1401         if (unlikely(reloc->offset & 3)) {
1402                 DRM_DEBUG("Relocation not 4-byte aligned: "
1403                           "target %d offset %d.\n",
1404                           reloc->target_handle,
1405                           (int)reloc->offset);
1406                 return -EINVAL;
1407         }
1408
1409         /*
1410          * If we write into the object, we need to force the synchronisation
1411          * barrier, either with an asynchronous clflush or if we executed the
1412          * patching using the GPU (though that should be serialised by the
1413          * timeline). To be completely sure, and since we are required to
1414          * do relocations we are already stalling, disable the user's opt
1415          * out of our synchronisation.
1416          */
1417         *vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1418
1419         /* and update the user's relocation entry */
1420         return relocate_entry(vma, reloc, eb, target);
1421 }
1422
1423 static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1424 {
1425 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1426         struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1427         struct drm_i915_gem_relocation_entry __user *urelocs;
1428         const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1429         unsigned int remain;
1430
1431         urelocs = u64_to_user_ptr(entry->relocs_ptr);
1432         remain = entry->relocation_count;
1433         if (unlikely(remain > N_RELOC(ULONG_MAX)))
1434                 return -EINVAL;
1435
1436         /*
1437          * We must check that the entire relocation array is safe
1438          * to read. However, if the array is not writable the user loses
1439          * the updated relocation values.
1440          */
1441         if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1442                 return -EFAULT;
1443
1444         do {
1445                 struct drm_i915_gem_relocation_entry *r = stack;
1446                 unsigned int count =
1447                         min_t(unsigned int, remain, ARRAY_SIZE(stack));
1448                 unsigned int copied;
1449
1450                 /*
1451                  * This is the fast path and we cannot handle a pagefault
1452                  * whilst holding the struct mutex lest the user pass in the
1453                  * relocations contained within a mmaped bo. For in such a case
1454                  * we, the page fault handler would call i915_gem_fault() and
1455                  * we would try to acquire the struct mutex again. Obviously
1456                  * this is bad and so lockdep complains vehemently.
1457                  */
1458                 pagefault_disable();
1459                 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1460                 pagefault_enable();
1461                 if (unlikely(copied)) {
1462                         remain = -EFAULT;
1463                         goto out;
1464                 }
1465
1466                 remain -= count;
1467                 do {
1468                         u64 offset = eb_relocate_entry(eb, vma, r);
1469
1470                         if (likely(offset == 0)) {
1471                         } else if ((s64)offset < 0) {
1472                                 remain = (int)offset;
1473                                 goto out;
1474                         } else {
1475                                 /*
1476                                  * Note that reporting an error now
1477                                  * leaves everything in an inconsistent
1478                                  * state as we have *already* changed
1479                                  * the relocation value inside the
1480                                  * object. As we have not changed the
1481                                  * reloc.presumed_offset or will not
1482                                  * change the execobject.offset, on the
1483                                  * call we may not rewrite the value
1484                                  * inside the object, leaving it
1485                                  * dangling and causing a GPU hang. Unless
1486                                  * userspace dynamically rebuilds the
1487                                  * relocations on each execbuf rather than
1488                                  * presume a static tree.
1489                                  *
1490                                  * We did previously check if the relocations
1491                                  * were writable (access_ok), an error now
1492                                  * would be a strange race with mprotect,
1493                                  * having already demonstrated that we
1494                                  * can read from this userspace address.
1495                                  */
1496                                 offset = gen8_canonical_addr(offset & ~UPDATE);
1497                                 if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
1498                                         remain = -EFAULT;
1499                                         goto out;
1500                                 }
1501                         }
1502                 } while (r++, --count);
1503                 urelocs += ARRAY_SIZE(stack);
1504         } while (remain);
1505 out:
1506         reloc_cache_reset(&eb->reloc_cache);
1507         return remain;
1508 }
1509
1510 static int
1511 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1512 {
1513         const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1514         struct drm_i915_gem_relocation_entry *relocs =
1515                 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1516         unsigned int i;
1517         int err;
1518
1519         for (i = 0; i < entry->relocation_count; i++) {
1520                 u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1521
1522                 if ((s64)offset < 0) {
1523                         err = (int)offset;
1524                         goto err;
1525                 }
1526         }
1527         err = 0;
1528 err:
1529         reloc_cache_reset(&eb->reloc_cache);
1530         return err;
1531 }
1532
1533 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1534 {
1535         const char __user *addr, *end;
1536         unsigned long size;
1537         char __maybe_unused c;
1538
1539         size = entry->relocation_count;
1540         if (size == 0)
1541                 return 0;
1542
1543         if (size > N_RELOC(ULONG_MAX))
1544                 return -EINVAL;
1545
1546         addr = u64_to_user_ptr(entry->relocs_ptr);
1547         size *= sizeof(struct drm_i915_gem_relocation_entry);
1548         if (!access_ok(addr, size))
1549                 return -EFAULT;
1550
1551         end = addr + size;
1552         for (; addr < end; addr += PAGE_SIZE) {
1553                 int err = __get_user(c, addr);
1554                 if (err)
1555                         return err;
1556         }
1557         return __get_user(c, end - 1);
1558 }
1559
1560 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1561 {
1562         struct drm_i915_gem_relocation_entry *relocs;
1563         const unsigned int count = eb->buffer_count;
1564         unsigned int i;
1565         int err;
1566
1567         for (i = 0; i < count; i++) {
1568                 const unsigned int nreloc = eb->exec[i].relocation_count;
1569                 struct drm_i915_gem_relocation_entry __user *urelocs;
1570                 unsigned long size;
1571                 unsigned long copied;
1572
1573                 if (nreloc == 0)
1574                         continue;
1575
1576                 err = check_relocations(&eb->exec[i]);
1577                 if (err)
1578                         goto err;
1579
1580                 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1581                 size = nreloc * sizeof(*relocs);
1582
1583                 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1584                 if (!relocs) {
1585                         err = -ENOMEM;
1586                         goto err;
1587                 }
1588
1589                 /* copy_from_user is limited to < 4GiB */
1590                 copied = 0;
1591                 do {
1592                         unsigned int len =
1593                                 min_t(u64, BIT_ULL(31), size - copied);
1594
1595                         if (__copy_from_user((char *)relocs + copied,
1596                                              (char __user *)urelocs + copied,
1597                                              len))
1598                                 goto end;
1599
1600                         copied += len;
1601                 } while (copied < size);
1602
1603                 /*
1604                  * As we do not update the known relocation offsets after
1605                  * relocating (due to the complexities in lock handling),
1606                  * we need to mark them as invalid now so that we force the
1607                  * relocation processing next time. Just in case the target
1608                  * object is evicted and then rebound into its old
1609                  * presumed_offset before the next execbuffer - if that
1610                  * happened we would make the mistake of assuming that the
1611                  * relocations were valid.
1612                  */
1613                 if (!user_access_begin(urelocs, size))
1614                         goto end;
1615
1616                 for (copied = 0; copied < nreloc; copied++)
1617                         unsafe_put_user(-1,
1618                                         &urelocs[copied].presumed_offset,
1619                                         end_user);
1620                 user_access_end();
1621
1622                 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1623         }
1624
1625         return 0;
1626
1627 end_user:
1628         user_access_end();
1629 end:
1630         kvfree(relocs);
1631         err = -EFAULT;
1632 err:
1633         while (i--) {
1634                 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1635                 if (eb->exec[i].relocation_count)
1636                         kvfree(relocs);
1637         }
1638         return err;
1639 }
1640
1641 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1642 {
1643         const unsigned int count = eb->buffer_count;
1644         unsigned int i;
1645
1646         if (unlikely(i915_modparams.prefault_disable))
1647                 return 0;
1648
1649         for (i = 0; i < count; i++) {
1650                 int err;
1651
1652                 err = check_relocations(&eb->exec[i]);
1653                 if (err)
1654                         return err;
1655         }
1656
1657         return 0;
1658 }
1659
1660 static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1661 {
1662         struct drm_device *dev = &eb->i915->drm;
1663         bool have_copy = false;
1664         struct i915_vma *vma;
1665         int err = 0;
1666
1667 repeat:
1668         if (signal_pending(current)) {
1669                 err = -ERESTARTSYS;
1670                 goto out;
1671         }
1672
1673         /* We may process another execbuffer during the unlock... */
1674         eb_reset_vmas(eb);
1675         mutex_unlock(&dev->struct_mutex);
1676
1677         /*
1678          * We take 3 passes through the slowpatch.
1679          *
1680          * 1 - we try to just prefault all the user relocation entries and
1681          * then attempt to reuse the atomic pagefault disabled fast path again.
1682          *
1683          * 2 - we copy the user entries to a local buffer here outside of the
1684          * local and allow ourselves to wait upon any rendering before
1685          * relocations
1686          *
1687          * 3 - we already have a local copy of the relocation entries, but
1688          * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1689          */
1690         if (!err) {
1691                 err = eb_prefault_relocations(eb);
1692         } else if (!have_copy) {
1693                 err = eb_copy_relocations(eb);
1694                 have_copy = err == 0;
1695         } else {
1696                 cond_resched();
1697                 err = 0;
1698         }
1699         if (err) {
1700                 mutex_lock(&dev->struct_mutex);
1701                 goto out;
1702         }
1703
1704         /* A frequent cause for EAGAIN are currently unavailable client pages */
1705         flush_workqueue(eb->i915->mm.userptr_wq);
1706
1707         err = i915_mutex_lock_interruptible(dev);
1708         if (err) {
1709                 mutex_lock(&dev->struct_mutex);
1710                 goto out;
1711         }
1712
1713         /* reacquire the objects */
1714         err = eb_lookup_vmas(eb);
1715         if (err)
1716                 goto err;
1717
1718         GEM_BUG_ON(!eb->batch);
1719
1720         list_for_each_entry(vma, &eb->relocs, reloc_link) {
1721                 if (!have_copy) {
1722                         pagefault_disable();
1723                         err = eb_relocate_vma(eb, vma);
1724                         pagefault_enable();
1725                         if (err)
1726                                 goto repeat;
1727                 } else {
1728                         err = eb_relocate_vma_slow(eb, vma);
1729                         if (err)
1730                                 goto err;
1731                 }
1732         }
1733
1734         /*
1735          * Leave the user relocations as are, this is the painfully slow path,
1736          * and we want to avoid the complication of dropping the lock whilst
1737          * having buffers reserved in the aperture and so causing spurious
1738          * ENOSPC for random operations.
1739          */
1740
1741 err:
1742         if (err == -EAGAIN)
1743                 goto repeat;
1744
1745 out:
1746         if (have_copy) {
1747                 const unsigned int count = eb->buffer_count;
1748                 unsigned int i;
1749
1750                 for (i = 0; i < count; i++) {
1751                         const struct drm_i915_gem_exec_object2 *entry =
1752                                 &eb->exec[i];
1753                         struct drm_i915_gem_relocation_entry *relocs;
1754
1755                         if (!entry->relocation_count)
1756                                 continue;
1757
1758                         relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1759                         kvfree(relocs);
1760                 }
1761         }
1762
1763         return err;
1764 }
1765
1766 static int eb_relocate(struct i915_execbuffer *eb)
1767 {
1768         if (eb_lookup_vmas(eb))
1769                 goto slow;
1770
1771         /* The objects are in their final locations, apply the relocations. */
1772         if (eb->args->flags & __EXEC_HAS_RELOC) {
1773                 struct i915_vma *vma;
1774
1775                 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1776                         if (eb_relocate_vma(eb, vma))
1777                                 goto slow;
1778                 }
1779         }
1780
1781         return 0;
1782
1783 slow:
1784         return eb_relocate_slow(eb);
1785 }
1786
1787 static int eb_move_to_gpu(struct i915_execbuffer *eb)
1788 {
1789         const unsigned int count = eb->buffer_count;
1790         struct ww_acquire_ctx acquire;
1791         unsigned int i;
1792         int err = 0;
1793
1794         ww_acquire_init(&acquire, &reservation_ww_class);
1795
1796         for (i = 0; i < count; i++) {
1797                 struct i915_vma *vma = eb->vma[i];
1798
1799                 err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
1800                 if (!err)
1801                         continue;
1802
1803                 GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */
1804
1805                 if (err == -EDEADLK) {
1806                         GEM_BUG_ON(i == 0);
1807                         do {
1808                                 int j = i - 1;
1809
1810                                 ww_mutex_unlock(&eb->vma[j]->resv->lock);
1811
1812                                 swap(eb->flags[i], eb->flags[j]);
1813                                 swap(eb->vma[i],  eb->vma[j]);
1814                                 eb->vma[i]->exec_flags = &eb->flags[i];
1815                         } while (--i);
1816                         GEM_BUG_ON(vma != eb->vma[0]);
1817                         vma->exec_flags = &eb->flags[0];
1818
1819                         err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
1820                                                                &acquire);
1821                 }
1822                 if (err)
1823                         break;
1824         }
1825         ww_acquire_done(&acquire);
1826
1827         while (i--) {
1828                 unsigned int flags = eb->flags[i];
1829                 struct i915_vma *vma = eb->vma[i];
1830                 struct drm_i915_gem_object *obj = vma->obj;
1831
1832                 assert_vma_held(vma);
1833
1834                 if (flags & EXEC_OBJECT_CAPTURE) {
1835                         struct i915_capture_list *capture;
1836
1837                         capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1838                         if (capture) {
1839                                 capture->next = eb->request->capture_list;
1840                                 capture->vma = vma;
1841                                 eb->request->capture_list = capture;
1842                         }
1843                 }
1844
1845                 /*
1846                  * If the GPU is not _reading_ through the CPU cache, we need
1847                  * to make sure that any writes (both previous GPU writes from
1848                  * before a change in snooping levels and normal CPU writes)
1849                  * caught in that cache are flushed to main memory.
1850                  *
1851                  * We want to say
1852                  *   obj->cache_dirty &&
1853                  *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1854                  * but gcc's optimiser doesn't handle that as well and emits
1855                  * two jumps instead of one. Maybe one day...
1856                  */
1857                 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1858                         if (i915_gem_clflush_object(obj, 0))
1859                                 flags &= ~EXEC_OBJECT_ASYNC;
1860                 }
1861
1862                 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1863                         err = i915_request_await_object
1864                                 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
1865                 }
1866
1867                 if (err == 0)
1868                         err = i915_vma_move_to_active(vma, eb->request, flags);
1869
1870                 i915_vma_unlock(vma);
1871
1872                 __eb_unreserve_vma(vma, flags);
1873                 vma->exec_flags = NULL;
1874
1875                 if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1876                         i915_vma_put(vma);
1877         }
1878         ww_acquire_fini(&acquire);
1879
1880         if (unlikely(err))
1881                 goto err_skip;
1882
1883         eb->exec = NULL;
1884
1885         /* Unconditionally flush any chipset caches (for streaming writes). */
1886         intel_gt_chipset_flush(eb->engine->gt);
1887         return 0;
1888
1889 err_skip:
1890         i915_request_skip(eb->request, err);
1891         return err;
1892 }
1893
1894 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1895 {
1896         if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1897                 return -EINVAL;
1898
1899         /* Kernel clipping was a DRI1 misfeature */
1900         if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1901                 if (exec->num_cliprects || exec->cliprects_ptr)
1902                         return -EINVAL;
1903         }
1904
1905         if (exec->DR4 == 0xffffffff) {
1906                 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1907                 exec->DR4 = 0;
1908         }
1909         if (exec->DR1 || exec->DR4)
1910                 return -EINVAL;
1911
1912         if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1913                 return -EINVAL;
1914
1915         return 0;
1916 }
1917
1918 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1919 {
1920         u32 *cs;
1921         int i;
1922
1923         if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1924                 DRM_DEBUG("sol reset is gen7/rcs only\n");
1925                 return -EINVAL;
1926         }
1927
1928         cs = intel_ring_begin(rq, 4 * 2 + 2);
1929         if (IS_ERR(cs))
1930                 return PTR_ERR(cs);
1931
1932         *cs++ = MI_LOAD_REGISTER_IMM(4);
1933         for (i = 0; i < 4; i++) {
1934                 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1935                 *cs++ = 0;
1936         }
1937         *cs++ = MI_NOOP;
1938         intel_ring_advance(rq, cs);
1939
1940         return 0;
1941 }
1942
1943 static struct i915_vma *
1944 shadow_batch_pin(struct drm_i915_gem_object *obj,
1945                  struct i915_address_space *vm,
1946                  unsigned int flags)
1947 {
1948         struct i915_vma *vma;
1949         int err;
1950
1951         vma = i915_vma_instance(obj, vm, NULL);
1952         if (IS_ERR(vma))
1953                 return vma;
1954
1955         err = i915_vma_pin(vma, 0, 0, flags);
1956         if (err)
1957                 return ERR_PTR(err);
1958
1959         return vma;
1960 }
1961
1962 struct eb_parse_work {
1963         struct dma_fence_work base;
1964         struct intel_engine_cs *engine;
1965         struct i915_vma *batch;
1966         struct i915_vma *shadow;
1967         struct i915_vma *trampoline;
1968         unsigned int batch_offset;
1969         unsigned int batch_length;
1970 };
1971
1972 static int __eb_parse(struct dma_fence_work *work)
1973 {
1974         struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1975
1976         return intel_engine_cmd_parser(pw->engine,
1977                                        pw->batch,
1978                                        pw->batch_offset,
1979                                        pw->batch_length,
1980                                        pw->shadow,
1981                                        pw->trampoline);
1982 }
1983
1984 static const struct dma_fence_work_ops eb_parse_ops = {
1985         .name = "eb_parse",
1986         .work = __eb_parse,
1987 };
1988
1989 static int eb_parse_pipeline(struct i915_execbuffer *eb,
1990                              struct i915_vma *shadow,
1991                              struct i915_vma *trampoline)
1992 {
1993         struct eb_parse_work *pw;
1994         int err;
1995
1996         pw = kzalloc(sizeof(*pw), GFP_KERNEL);
1997         if (!pw)
1998                 return -ENOMEM;
1999
2000         dma_fence_work_init(&pw->base, &eb_parse_ops);
2001
2002         pw->engine = eb->engine;
2003         pw->batch = eb->batch;
2004         pw->batch_offset = eb->batch_start_offset;
2005         pw->batch_length = eb->batch_len;
2006         pw->shadow = shadow;
2007         pw->trampoline = trampoline;
2008
2009         dma_resv_lock(pw->batch->resv, NULL);
2010
2011         err = dma_resv_reserve_shared(pw->batch->resv, 1);
2012         if (err)
2013                 goto err_batch_unlock;
2014
2015         /* Wait for all writes (and relocs) into the batch to complete */
2016         err = i915_sw_fence_await_reservation(&pw->base.chain,
2017                                               pw->batch->resv, NULL, false,
2018                                               0, I915_FENCE_GFP);
2019         if (err < 0)
2020                 goto err_batch_unlock;
2021
2022         /* Keep the batch alive and unwritten as we parse */
2023         dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
2024
2025         dma_resv_unlock(pw->batch->resv);
2026
2027         /* Force execution to wait for completion of the parser */
2028         dma_resv_lock(shadow->resv, NULL);
2029         dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
2030         dma_resv_unlock(shadow->resv);
2031
2032         dma_fence_work_commit(&pw->base);
2033         return 0;
2034
2035 err_batch_unlock:
2036         dma_resv_unlock(pw->batch->resv);
2037         kfree(pw);
2038         return err;
2039 }
2040
2041 static int eb_parse(struct i915_execbuffer *eb)
2042 {
2043         struct intel_engine_pool_node *pool;
2044         struct i915_vma *shadow, *trampoline;
2045         unsigned int len;
2046         int err;
2047
2048         if (!eb_use_cmdparser(eb))
2049                 return 0;
2050
2051         len = eb->batch_len;
2052         if (!CMDPARSER_USES_GGTT(eb->i915)) {
2053                 /*
2054                  * ppGTT backed shadow buffers must be mapped RO, to prevent
2055                  * post-scan tampering
2056                  */
2057                 if (!eb->context->vm->has_read_only) {
2058                         DRM_DEBUG("Cannot prevent post-scan tampering without RO capable vm\n");
2059                         return -EINVAL;
2060                 }
2061         } else {
2062                 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2063         }
2064
2065         pool = intel_engine_get_pool(eb->engine, len);
2066         if (IS_ERR(pool))
2067                 return PTR_ERR(pool);
2068
2069         shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
2070         if (IS_ERR(shadow)) {
2071                 err = PTR_ERR(shadow);
2072                 goto err;
2073         }
2074         i915_gem_object_set_readonly(shadow->obj);
2075
2076         trampoline = NULL;
2077         if (CMDPARSER_USES_GGTT(eb->i915)) {
2078                 trampoline = shadow;
2079
2080                 shadow = shadow_batch_pin(pool->obj,
2081                                           &eb->engine->gt->ggtt->vm,
2082                                           PIN_GLOBAL);
2083                 if (IS_ERR(shadow)) {
2084                         err = PTR_ERR(shadow);
2085                         shadow = trampoline;
2086                         goto err_shadow;
2087                 }
2088
2089                 eb->batch_flags |= I915_DISPATCH_SECURE;
2090         }
2091
2092         err = eb_parse_pipeline(eb, shadow, trampoline);
2093         if (err)
2094                 goto err_trampoline;
2095
2096         eb->vma[eb->buffer_count] = i915_vma_get(shadow);
2097         eb->flags[eb->buffer_count] =
2098                 __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
2099         shadow->exec_flags = &eb->flags[eb->buffer_count];
2100         eb->buffer_count++;
2101
2102         eb->trampoline = trampoline;
2103         eb->batch_start_offset = 0;
2104         eb->batch = shadow;
2105
2106         shadow->private = pool;
2107         return 0;
2108
2109 err_trampoline:
2110         if (trampoline)
2111                 i915_vma_unpin(trampoline);
2112 err_shadow:
2113         i915_vma_unpin(shadow);
2114 err:
2115         intel_engine_pool_put(pool);
2116         return err;
2117 }
2118
2119 static void
2120 add_to_client(struct i915_request *rq, struct drm_file *file)
2121 {
2122         struct drm_i915_file_private *file_priv = file->driver_priv;
2123
2124         rq->file_priv = file_priv;
2125
2126         spin_lock(&file_priv->mm.lock);
2127         list_add_tail(&rq->client_link, &file_priv->mm.request_list);
2128         spin_unlock(&file_priv->mm.lock);
2129 }
2130
2131 static int eb_submit(struct i915_execbuffer *eb)
2132 {
2133         int err;
2134
2135         err = eb_move_to_gpu(eb);
2136         if (err)
2137                 return err;
2138
2139         if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2140                 err = i915_reset_gen7_sol_offsets(eb->request);
2141                 if (err)
2142                         return err;
2143         }
2144
2145         /*
2146          * After we completed waiting for other engines (using HW semaphores)
2147          * then we can signal that this request/batch is ready to run. This
2148          * allows us to determine if the batch is still waiting on the GPU
2149          * or actually running by checking the breadcrumb.
2150          */
2151         if (eb->engine->emit_init_breadcrumb) {
2152                 err = eb->engine->emit_init_breadcrumb(eb->request);
2153                 if (err)
2154                         return err;
2155         }
2156
2157         err = eb->engine->emit_bb_start(eb->request,
2158                                         eb->batch->node.start +
2159                                         eb->batch_start_offset,
2160                                         eb->batch_len,
2161                                         eb->batch_flags);
2162         if (err)
2163                 return err;
2164
2165         if (eb->trampoline) {
2166                 GEM_BUG_ON(eb->batch_start_offset);
2167                 err = eb->engine->emit_bb_start(eb->request,
2168                                                 eb->trampoline->node.start +
2169                                                 eb->batch_len,
2170                                                 0, 0);
2171                 if (err)
2172                         return err;
2173         }
2174
2175         if (intel_context_nopreempt(eb->context))
2176                 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2177
2178         return 0;
2179 }
2180
2181 static int num_vcs_engines(const struct drm_i915_private *i915)
2182 {
2183         return hweight64(INTEL_INFO(i915)->engine_mask &
2184                          GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
2185 }
2186
2187 /*
2188  * Find one BSD ring to dispatch the corresponding BSD command.
2189  * The engine index is returned.
2190  */
2191 static unsigned int
2192 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2193                          struct drm_file *file)
2194 {
2195         struct drm_i915_file_private *file_priv = file->driver_priv;
2196
2197         /* Check whether the file_priv has already selected one ring. */
2198         if ((int)file_priv->bsd_engine < 0)
2199                 file_priv->bsd_engine =
2200                         get_random_int() % num_vcs_engines(dev_priv);
2201
2202         return file_priv->bsd_engine;
2203 }
2204
2205 static const enum intel_engine_id user_ring_map[] = {
2206         [I915_EXEC_DEFAULT]     = RCS0,
2207         [I915_EXEC_RENDER]      = RCS0,
2208         [I915_EXEC_BLT]         = BCS0,
2209         [I915_EXEC_BSD]         = VCS0,
2210         [I915_EXEC_VEBOX]       = VECS0
2211 };
2212
2213 static struct i915_request *eb_throttle(struct intel_context *ce)
2214 {
2215         struct intel_ring *ring = ce->ring;
2216         struct intel_timeline *tl = ce->timeline;
2217         struct i915_request *rq;
2218
2219         /*
2220          * Completely unscientific finger-in-the-air estimates for suitable
2221          * maximum user request size (to avoid blocking) and then backoff.
2222          */
2223         if (intel_ring_update_space(ring) >= PAGE_SIZE)
2224                 return NULL;
2225
2226         /*
2227          * Find a request that after waiting upon, there will be at least half
2228          * the ring available. The hysteresis allows us to compete for the
2229          * shared ring and should mean that we sleep less often prior to
2230          * claiming our resources, but not so long that the ring completely
2231          * drains before we can submit our next request.
2232          */
2233         list_for_each_entry(rq, &tl->requests, link) {
2234                 if (rq->ring != ring)
2235                         continue;
2236
2237                 if (__intel_ring_space(rq->postfix,
2238                                        ring->emit, ring->size) > ring->size / 2)
2239                         break;
2240         }
2241         if (&rq->link == &tl->requests)
2242                 return NULL; /* weird, we will check again later for real */
2243
2244         return i915_request_get(rq);
2245 }
2246
2247 static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
2248 {
2249         struct intel_timeline *tl;
2250         struct i915_request *rq;
2251         int err;
2252
2253         /*
2254          * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2255          * EIO if the GPU is already wedged.
2256          */
2257         err = intel_gt_terminally_wedged(ce->engine->gt);
2258         if (err)
2259                 return err;
2260
2261         if (unlikely(intel_context_is_banned(ce)))
2262                 return -EIO;
2263
2264         /*
2265          * Pinning the contexts may generate requests in order to acquire
2266          * GGTT space, so do this first before we reserve a seqno for
2267          * ourselves.
2268          */
2269         err = intel_context_pin(ce);
2270         if (err)
2271                 return err;
2272
2273         /*
2274          * Take a local wakeref for preparing to dispatch the execbuf as
2275          * we expect to access the hardware fairly frequently in the
2276          * process, and require the engine to be kept awake between accesses.
2277          * Upon dispatch, we acquire another prolonged wakeref that we hold
2278          * until the timeline is idle, which in turn releases the wakeref
2279          * taken on the engine, and the parent device.
2280          */
2281         tl = intel_context_timeline_lock(ce);
2282         if (IS_ERR(tl)) {
2283                 err = PTR_ERR(tl);
2284                 goto err_unpin;
2285         }
2286
2287         intel_context_enter(ce);
2288         rq = eb_throttle(ce);
2289
2290         intel_context_timeline_unlock(tl);
2291
2292         if (rq) {
2293                 if (i915_request_wait(rq,
2294                                       I915_WAIT_INTERRUPTIBLE,
2295                                       MAX_SCHEDULE_TIMEOUT) < 0) {
2296                         i915_request_put(rq);
2297                         err = -EINTR;
2298                         goto err_exit;
2299                 }
2300
2301                 i915_request_put(rq);
2302         }
2303
2304         eb->engine = ce->engine;
2305         eb->context = ce;
2306         return 0;
2307
2308 err_exit:
2309         mutex_lock(&tl->mutex);
2310         intel_context_exit(ce);
2311         intel_context_timeline_unlock(tl);
2312 err_unpin:
2313         intel_context_unpin(ce);
2314         return err;
2315 }
2316
2317 static void eb_unpin_engine(struct i915_execbuffer *eb)
2318 {
2319         struct intel_context *ce = eb->context;
2320         struct intel_timeline *tl = ce->timeline;
2321
2322         mutex_lock(&tl->mutex);
2323         intel_context_exit(ce);
2324         mutex_unlock(&tl->mutex);
2325
2326         intel_context_unpin(ce);
2327 }
2328
2329 static unsigned int
2330 eb_select_legacy_ring(struct i915_execbuffer *eb,
2331                       struct drm_file *file,
2332                       struct drm_i915_gem_execbuffer2 *args)
2333 {
2334         struct drm_i915_private *i915 = eb->i915;
2335         unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2336
2337         if (user_ring_id != I915_EXEC_BSD &&
2338             (args->flags & I915_EXEC_BSD_MASK)) {
2339                 DRM_DEBUG("execbuf with non bsd ring but with invalid "
2340                           "bsd dispatch flags: %d\n", (int)(args->flags));
2341                 return -1;
2342         }
2343
2344         if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2345                 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2346
2347                 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2348                         bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2349                 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2350                            bsd_idx <= I915_EXEC_BSD_RING2) {
2351                         bsd_idx >>= I915_EXEC_BSD_SHIFT;
2352                         bsd_idx--;
2353                 } else {
2354                         DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2355                                   bsd_idx);
2356                         return -1;
2357                 }
2358
2359                 return _VCS(bsd_idx);
2360         }
2361
2362         if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2363                 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2364                 return -1;
2365         }
2366
2367         return user_ring_map[user_ring_id];
2368 }
2369
2370 static int
2371 eb_pin_engine(struct i915_execbuffer *eb,
2372               struct drm_file *file,
2373               struct drm_i915_gem_execbuffer2 *args)
2374 {
2375         struct intel_context *ce;
2376         unsigned int idx;
2377         int err;
2378
2379         if (i915_gem_context_user_engines(eb->gem_context))
2380                 idx = args->flags & I915_EXEC_RING_MASK;
2381         else
2382                 idx = eb_select_legacy_ring(eb, file, args);
2383
2384         ce = i915_gem_context_get_engine(eb->gem_context, idx);
2385         if (IS_ERR(ce))
2386                 return PTR_ERR(ce);
2387
2388         err = __eb_pin_engine(eb, ce);
2389         intel_context_put(ce);
2390
2391         return err;
2392 }
2393
2394 static void
2395 __free_fence_array(struct drm_syncobj **fences, unsigned int n)
2396 {
2397         while (n--)
2398                 drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2399         kvfree(fences);
2400 }
2401
2402 static struct drm_syncobj **
2403 get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2404                 struct drm_file *file)
2405 {
2406         const unsigned long nfences = args->num_cliprects;
2407         struct drm_i915_gem_exec_fence __user *user;
2408         struct drm_syncobj **fences;
2409         unsigned long n;
2410         int err;
2411
2412         if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2413                 return NULL;
2414
2415         /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2416         BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2417         if (nfences > min_t(unsigned long,
2418                             ULONG_MAX / sizeof(*user),
2419                             SIZE_MAX / sizeof(*fences)))
2420                 return ERR_PTR(-EINVAL);
2421
2422         user = u64_to_user_ptr(args->cliprects_ptr);
2423         if (!access_ok(user, nfences * sizeof(*user)))
2424                 return ERR_PTR(-EFAULT);
2425
2426         fences = kvmalloc_array(nfences, sizeof(*fences),
2427                                 __GFP_NOWARN | GFP_KERNEL);
2428         if (!fences)
2429                 return ERR_PTR(-ENOMEM);
2430
2431         for (n = 0; n < nfences; n++) {
2432                 struct drm_i915_gem_exec_fence fence;
2433                 struct drm_syncobj *syncobj;
2434
2435                 if (__copy_from_user(&fence, user++, sizeof(fence))) {
2436                         err = -EFAULT;
2437                         goto err;
2438                 }
2439
2440                 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2441                         err = -EINVAL;
2442                         goto err;
2443                 }
2444
2445                 syncobj = drm_syncobj_find(file, fence.handle);
2446                 if (!syncobj) {
2447                         DRM_DEBUG("Invalid syncobj handle provided\n");
2448                         err = -ENOENT;
2449                         goto err;
2450                 }
2451
2452                 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2453                              ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2454
2455                 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2456         }
2457
2458         return fences;
2459
2460 err:
2461         __free_fence_array(fences, n);
2462         return ERR_PTR(err);
2463 }
2464
2465 static void
2466 put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2467                 struct drm_syncobj **fences)
2468 {
2469         if (fences)
2470                 __free_fence_array(fences, args->num_cliprects);
2471 }
2472
2473 static int
2474 await_fence_array(struct i915_execbuffer *eb,
2475                   struct drm_syncobj **fences)
2476 {
2477         const unsigned int nfences = eb->args->num_cliprects;
2478         unsigned int n;
2479         int err;
2480
2481         for (n = 0; n < nfences; n++) {
2482                 struct drm_syncobj *syncobj;
2483                 struct dma_fence *fence;
2484                 unsigned int flags;
2485
2486                 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2487                 if (!(flags & I915_EXEC_FENCE_WAIT))
2488                         continue;
2489
2490                 fence = drm_syncobj_fence_get(syncobj);
2491                 if (!fence)
2492                         return -EINVAL;
2493
2494                 err = i915_request_await_dma_fence(eb->request, fence);
2495                 dma_fence_put(fence);
2496                 if (err < 0)
2497                         return err;
2498         }
2499
2500         return 0;
2501 }
2502
2503 static void
2504 signal_fence_array(struct i915_execbuffer *eb,
2505                    struct drm_syncobj **fences)
2506 {
2507         const unsigned int nfences = eb->args->num_cliprects;
2508         struct dma_fence * const fence = &eb->request->fence;
2509         unsigned int n;
2510
2511         for (n = 0; n < nfences; n++) {
2512                 struct drm_syncobj *syncobj;
2513                 unsigned int flags;
2514
2515                 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2516                 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2517                         continue;
2518
2519                 drm_syncobj_replace_fence(syncobj, fence);
2520         }
2521 }
2522
2523 static int
2524 i915_gem_do_execbuffer(struct drm_device *dev,
2525                        struct drm_file *file,
2526                        struct drm_i915_gem_execbuffer2 *args,
2527                        struct drm_i915_gem_exec_object2 *exec,
2528                        struct drm_syncobj **fences)
2529 {
2530         struct drm_i915_private *i915 = to_i915(dev);
2531         struct i915_execbuffer eb;
2532         struct dma_fence *in_fence = NULL;
2533         struct dma_fence *exec_fence = NULL;
2534         struct sync_file *out_fence = NULL;
2535         int out_fence_fd = -1;
2536         int err;
2537
2538         BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2539         BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2540                      ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2541
2542         eb.i915 = i915;
2543         eb.file = file;
2544         eb.args = args;
2545         if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2546                 args->flags |= __EXEC_HAS_RELOC;
2547
2548         eb.exec = exec;
2549         eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
2550         eb.vma[0] = NULL;
2551         eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
2552
2553         eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2554         reloc_cache_init(&eb.reloc_cache, eb.i915);
2555
2556         eb.buffer_count = args->buffer_count;
2557         eb.batch_start_offset = args->batch_start_offset;
2558         eb.batch_len = args->batch_len;
2559         eb.trampoline = NULL;
2560
2561         eb.batch_flags = 0;
2562         if (args->flags & I915_EXEC_SECURE) {
2563                 if (INTEL_GEN(i915) >= 11)
2564                         return -ENODEV;
2565
2566                 /* Return -EPERM to trigger fallback code on old binaries. */
2567                 if (!HAS_SECURE_BATCHES(i915))
2568                         return -EPERM;
2569
2570                 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2571                         return -EPERM;
2572
2573                 eb.batch_flags |= I915_DISPATCH_SECURE;
2574         }
2575         if (args->flags & I915_EXEC_IS_PINNED)
2576                 eb.batch_flags |= I915_DISPATCH_PINNED;
2577
2578         if (args->flags & I915_EXEC_FENCE_IN) {
2579                 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2580                 if (!in_fence)
2581                         return -EINVAL;
2582         }
2583
2584         if (args->flags & I915_EXEC_FENCE_SUBMIT) {
2585                 if (in_fence) {
2586                         err = -EINVAL;
2587                         goto err_in_fence;
2588                 }
2589
2590                 exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2591                 if (!exec_fence) {
2592                         err = -EINVAL;
2593                         goto err_in_fence;
2594                 }
2595         }
2596
2597         if (args->flags & I915_EXEC_FENCE_OUT) {
2598                 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2599                 if (out_fence_fd < 0) {
2600                         err = out_fence_fd;
2601                         goto err_exec_fence;
2602                 }
2603         }
2604
2605         err = eb_create(&eb);
2606         if (err)
2607                 goto err_out_fence;
2608
2609         GEM_BUG_ON(!eb.lut_size);
2610
2611         err = eb_select_context(&eb);
2612         if (unlikely(err))
2613                 goto err_destroy;
2614
2615         err = eb_pin_engine(&eb, file, args);
2616         if (unlikely(err))
2617                 goto err_context;
2618
2619         err = i915_mutex_lock_interruptible(dev);
2620         if (err)
2621                 goto err_engine;
2622
2623         err = eb_relocate(&eb);
2624         if (err) {
2625                 /*
2626                  * If the user expects the execobject.offset and
2627                  * reloc.presumed_offset to be an exact match,
2628                  * as for using NO_RELOC, then we cannot update
2629                  * the execobject.offset until we have completed
2630                  * relocation.
2631                  */
2632                 args->flags &= ~__EXEC_HAS_RELOC;
2633                 goto err_vma;
2634         }
2635
2636         if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2637                 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2638                 err = -EINVAL;
2639                 goto err_vma;
2640         }
2641         if (eb.batch_start_offset > eb.batch->size ||
2642             eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2643                 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2644                 err = -EINVAL;
2645                 goto err_vma;
2646         }
2647
2648         if (eb.batch_len == 0)
2649                 eb.batch_len = eb.batch->size - eb.batch_start_offset;
2650
2651         err = eb_parse(&eb);
2652         if (err)
2653                 goto err_vma;
2654
2655         /*
2656          * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2657          * batch" bit. Hence we need to pin secure batches into the global gtt.
2658          * hsw should have this fixed, but bdw mucks it up again. */
2659         if (eb.batch_flags & I915_DISPATCH_SECURE) {
2660                 struct i915_vma *vma;
2661
2662                 /*
2663                  * So on first glance it looks freaky that we pin the batch here
2664                  * outside of the reservation loop. But:
2665                  * - The batch is already pinned into the relevant ppgtt, so we
2666                  *   already have the backing storage fully allocated.
2667                  * - No other BO uses the global gtt (well contexts, but meh),
2668                  *   so we don't really have issues with multiple objects not
2669                  *   fitting due to fragmentation.
2670                  * So this is actually safe.
2671                  */
2672                 vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
2673                 if (IS_ERR(vma)) {
2674                         err = PTR_ERR(vma);
2675                         goto err_vma;
2676                 }
2677
2678                 eb.batch = vma;
2679         }
2680
2681         /* All GPU relocation batches must be submitted prior to the user rq */
2682         GEM_BUG_ON(eb.reloc_cache.rq);
2683
2684         /* Allocate a request for this batch buffer nice and early. */
2685         eb.request = i915_request_create(eb.context);
2686         if (IS_ERR(eb.request)) {
2687                 err = PTR_ERR(eb.request);
2688                 goto err_batch_unpin;
2689         }
2690
2691         if (in_fence) {
2692                 err = i915_request_await_dma_fence(eb.request, in_fence);
2693                 if (err < 0)
2694                         goto err_request;
2695         }
2696
2697         if (exec_fence) {
2698                 err = i915_request_await_execution(eb.request, exec_fence,
2699                                                    eb.engine->bond_execute);
2700                 if (err < 0)
2701                         goto err_request;
2702         }
2703
2704         if (fences) {
2705                 err = await_fence_array(&eb, fences);
2706                 if (err)
2707                         goto err_request;
2708         }
2709
2710         if (out_fence_fd != -1) {
2711                 out_fence = sync_file_create(&eb.request->fence);
2712                 if (!out_fence) {
2713                         err = -ENOMEM;
2714                         goto err_request;
2715                 }
2716         }
2717
2718         /*
2719          * Whilst this request exists, batch_obj will be on the
2720          * active_list, and so will hold the active reference. Only when this
2721          * request is retired will the the batch_obj be moved onto the
2722          * inactive_list and lose its active reference. Hence we do not need
2723          * to explicitly hold another reference here.
2724          */
2725         eb.request->batch = eb.batch;
2726         if (eb.batch->private)
2727                 intel_engine_pool_mark_active(eb.batch->private, eb.request);
2728
2729         trace_i915_request_queue(eb.request, eb.batch_flags);
2730         err = eb_submit(&eb);
2731 err_request:
2732         add_to_client(eb.request, file);
2733         i915_request_get(eb.request);
2734         i915_request_add(eb.request);
2735
2736         if (fences)
2737                 signal_fence_array(&eb, fences);
2738
2739         if (out_fence) {
2740                 if (err == 0) {
2741                         fd_install(out_fence_fd, out_fence->file);
2742                         args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2743                         args->rsvd2 |= (u64)out_fence_fd << 32;
2744                         out_fence_fd = -1;
2745                 } else {
2746                         fput(out_fence->file);
2747                 }
2748         }
2749         i915_request_put(eb.request);
2750
2751 err_batch_unpin:
2752         if (eb.batch_flags & I915_DISPATCH_SECURE)
2753                 i915_vma_unpin(eb.batch);
2754         if (eb.batch->private)
2755                 intel_engine_pool_put(eb.batch->private);
2756 err_vma:
2757         if (eb.exec)
2758                 eb_release_vmas(&eb);
2759         if (eb.trampoline)
2760                 i915_vma_unpin(eb.trampoline);
2761         mutex_unlock(&dev->struct_mutex);
2762 err_engine:
2763         eb_unpin_engine(&eb);
2764 err_context:
2765         i915_gem_context_put(eb.gem_context);
2766 err_destroy:
2767         eb_destroy(&eb);
2768 err_out_fence:
2769         if (out_fence_fd != -1)
2770                 put_unused_fd(out_fence_fd);
2771 err_exec_fence:
2772         dma_fence_put(exec_fence);
2773 err_in_fence:
2774         dma_fence_put(in_fence);
2775         return err;
2776 }
2777
2778 static size_t eb_element_size(void)
2779 {
2780         return (sizeof(struct drm_i915_gem_exec_object2) +
2781                 sizeof(struct i915_vma *) +
2782                 sizeof(unsigned int));
2783 }
2784
2785 static bool check_buffer_count(size_t count)
2786 {
2787         const size_t sz = eb_element_size();
2788
2789         /*
2790          * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2791          * array size (see eb_create()). Otherwise, we can accept an array as
2792          * large as can be addressed (though use large arrays at your peril)!
2793          */
2794
2795         return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2796 }
2797
2798 /*
2799  * Legacy execbuffer just creates an exec2 list from the original exec object
2800  * list array and passes it to the real function.
2801  */
2802 int
2803 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2804                           struct drm_file *file)
2805 {
2806         struct drm_i915_gem_execbuffer *args = data;
2807         struct drm_i915_gem_execbuffer2 exec2;
2808         struct drm_i915_gem_exec_object *exec_list = NULL;
2809         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2810         const size_t count = args->buffer_count;
2811         unsigned int i;
2812         int err;
2813
2814         if (!check_buffer_count(count)) {
2815                 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2816                 return -EINVAL;
2817         }
2818
2819         exec2.buffers_ptr = args->buffers_ptr;
2820         exec2.buffer_count = args->buffer_count;
2821         exec2.batch_start_offset = args->batch_start_offset;
2822         exec2.batch_len = args->batch_len;
2823         exec2.DR1 = args->DR1;
2824         exec2.DR4 = args->DR4;
2825         exec2.num_cliprects = args->num_cliprects;
2826         exec2.cliprects_ptr = args->cliprects_ptr;
2827         exec2.flags = I915_EXEC_RENDER;
2828         i915_execbuffer2_set_context_id(exec2, 0);
2829
2830         err = i915_gem_check_execbuffer(&exec2);
2831         if (err)
2832                 return err;
2833
2834         /* Copy in the exec list from userland */
2835         exec_list = kvmalloc_array(count, sizeof(*exec_list),
2836                                    __GFP_NOWARN | GFP_KERNEL);
2837         exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2838                                     __GFP_NOWARN | GFP_KERNEL);
2839         if (exec_list == NULL || exec2_list == NULL) {
2840                 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2841                           args->buffer_count);
2842                 kvfree(exec_list);
2843                 kvfree(exec2_list);
2844                 return -ENOMEM;
2845         }
2846         err = copy_from_user(exec_list,
2847                              u64_to_user_ptr(args->buffers_ptr),
2848                              sizeof(*exec_list) * count);
2849         if (err) {
2850                 DRM_DEBUG("copy %d exec entries failed %d\n",
2851                           args->buffer_count, err);
2852                 kvfree(exec_list);
2853                 kvfree(exec2_list);
2854                 return -EFAULT;
2855         }
2856
2857         for (i = 0; i < args->buffer_count; i++) {
2858                 exec2_list[i].handle = exec_list[i].handle;
2859                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
2860                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2861                 exec2_list[i].alignment = exec_list[i].alignment;
2862                 exec2_list[i].offset = exec_list[i].offset;
2863                 if (INTEL_GEN(to_i915(dev)) < 4)
2864                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2865                 else
2866                         exec2_list[i].flags = 0;
2867         }
2868
2869         err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2870         if (exec2.flags & __EXEC_HAS_RELOC) {
2871                 struct drm_i915_gem_exec_object __user *user_exec_list =
2872                         u64_to_user_ptr(args->buffers_ptr);
2873
2874                 /* Copy the new buffer offsets back to the user's exec list. */
2875                 for (i = 0; i < args->buffer_count; i++) {
2876                         if (!(exec2_list[i].offset & UPDATE))
2877                                 continue;
2878
2879                         exec2_list[i].offset =
2880                                 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2881                         exec2_list[i].offset &= PIN_OFFSET_MASK;
2882                         if (__copy_to_user(&user_exec_list[i].offset,
2883                                            &exec2_list[i].offset,
2884                                            sizeof(user_exec_list[i].offset)))
2885                                 break;
2886                 }
2887         }
2888
2889         kvfree(exec_list);
2890         kvfree(exec2_list);
2891         return err;
2892 }
2893
2894 int
2895 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2896                            struct drm_file *file)
2897 {
2898         struct drm_i915_gem_execbuffer2 *args = data;
2899         struct drm_i915_gem_exec_object2 *exec2_list;
2900         struct drm_syncobj **fences = NULL;
2901         const size_t count = args->buffer_count;
2902         int err;
2903
2904         if (!check_buffer_count(count)) {
2905                 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2906                 return -EINVAL;
2907         }
2908
2909         err = i915_gem_check_execbuffer(args);
2910         if (err)
2911                 return err;
2912
2913         /* Allocate an extra slot for use by the command parser */
2914         exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2915                                     __GFP_NOWARN | GFP_KERNEL);
2916         if (exec2_list == NULL) {
2917                 DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
2918                           count);
2919                 return -ENOMEM;
2920         }
2921         if (copy_from_user(exec2_list,
2922                            u64_to_user_ptr(args->buffers_ptr),
2923                            sizeof(*exec2_list) * count)) {
2924                 DRM_DEBUG("copy %zd exec entries failed\n", count);
2925                 kvfree(exec2_list);
2926                 return -EFAULT;
2927         }
2928
2929         if (args->flags & I915_EXEC_FENCE_ARRAY) {
2930                 fences = get_fence_array(args, file);
2931                 if (IS_ERR(fences)) {
2932                         kvfree(exec2_list);
2933                         return PTR_ERR(fences);
2934                 }
2935         }
2936
2937         err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2938
2939         /*
2940          * Now that we have begun execution of the batchbuffer, we ignore
2941          * any new error after this point. Also given that we have already
2942          * updated the associated relocations, we try to write out the current
2943          * object locations irrespective of any error.
2944          */
2945         if (args->flags & __EXEC_HAS_RELOC) {
2946                 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2947                         u64_to_user_ptr(args->buffers_ptr);
2948                 unsigned int i;
2949
2950                 /* Copy the new buffer offsets back to the user's exec list. */
2951                 /*
2952                  * Note: count * sizeof(*user_exec_list) does not overflow,
2953                  * because we checked 'count' in check_buffer_count().
2954                  *
2955                  * And this range already got effectively checked earlier
2956                  * when we did the "copy_from_user()" above.
2957                  */
2958                 if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2959                         goto end;
2960
2961                 for (i = 0; i < args->buffer_count; i++) {
2962                         if (!(exec2_list[i].offset & UPDATE))
2963                                 continue;
2964
2965                         exec2_list[i].offset =
2966                                 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2967                         unsafe_put_user(exec2_list[i].offset,
2968                                         &user_exec_list[i].offset,
2969                                         end_user);
2970                 }
2971 end_user:
2972                 user_access_end();
2973 end:;
2974         }
2975
2976         args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2977         put_fence_array(args, fences);
2978         kvfree(exec2_list);
2979         return err;
2980 }