Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-block.git] / drivers / gpu / drm / i915 / display / intel_hdmi.c
1 /*
2  * Copyright 2006 Dave Airlie <airlied@linux.ie>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *      Eric Anholt <eric@anholt.net>
26  *      Jesse Barnes <jesse.barnes@intel.com>
27  */
28
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33 #include <linux/string_helpers.h>
34
35 #include <drm/display/drm_hdcp_helper.h>
36 #include <drm/display/drm_hdmi_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_crtc.h>
40 #include <drm/drm_edid.h>
41 #include <drm/intel_lpe_audio.h>
42
43 #include "g4x_hdmi.h"
44 #include "i915_drv.h"
45 #include "i915_reg.h"
46 #include "intel_atomic.h"
47 #include "intel_audio.h"
48 #include "intel_connector.h"
49 #include "intel_cx0_phy.h"
50 #include "intel_ddi.h"
51 #include "intel_de.h"
52 #include "intel_display_driver.h"
53 #include "intel_display_types.h"
54 #include "intel_dp.h"
55 #include "intel_gmbus.h"
56 #include "intel_hdcp.h"
57 #include "intel_hdcp_regs.h"
58 #include "intel_hdmi.h"
59 #include "intel_lspcon.h"
60 #include "intel_panel.h"
61 #include "intel_snps_phy.h"
62
63 inline struct drm_i915_private *intel_hdmi_to_i915(struct intel_hdmi *intel_hdmi)
64 {
65         return to_i915(hdmi_to_dig_port(intel_hdmi)->base.base.dev);
66 }
67
68 static void
69 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
70 {
71         struct drm_i915_private *dev_priv = intel_hdmi_to_i915(intel_hdmi);
72         u32 enabled_bits;
73
74         enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
75
76         drm_WARN(&dev_priv->drm,
77                  intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
78                  "HDMI port enabled, expecting disabled\n");
79 }
80
81 static void
82 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
83                                      enum transcoder cpu_transcoder)
84 {
85         drm_WARN(&dev_priv->drm,
86                  intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
87                  TRANS_DDI_FUNC_ENABLE,
88                  "HDMI transcoder function enabled, expecting disabled\n");
89 }
90
91 static u32 g4x_infoframe_index(unsigned int type)
92 {
93         switch (type) {
94         case HDMI_PACKET_TYPE_GAMUT_METADATA:
95                 return VIDEO_DIP_SELECT_GAMUT;
96         case HDMI_INFOFRAME_TYPE_AVI:
97                 return VIDEO_DIP_SELECT_AVI;
98         case HDMI_INFOFRAME_TYPE_SPD:
99                 return VIDEO_DIP_SELECT_SPD;
100         case HDMI_INFOFRAME_TYPE_VENDOR:
101                 return VIDEO_DIP_SELECT_VENDOR;
102         default:
103                 MISSING_CASE(type);
104                 return 0;
105         }
106 }
107
108 static u32 g4x_infoframe_enable(unsigned int type)
109 {
110         switch (type) {
111         case HDMI_PACKET_TYPE_GENERAL_CONTROL:
112                 return VIDEO_DIP_ENABLE_GCP;
113         case HDMI_PACKET_TYPE_GAMUT_METADATA:
114                 return VIDEO_DIP_ENABLE_GAMUT;
115         case DP_SDP_VSC:
116                 return 0;
117         case DP_SDP_ADAPTIVE_SYNC:
118                 return 0;
119         case HDMI_INFOFRAME_TYPE_AVI:
120                 return VIDEO_DIP_ENABLE_AVI;
121         case HDMI_INFOFRAME_TYPE_SPD:
122                 return VIDEO_DIP_ENABLE_SPD;
123         case HDMI_INFOFRAME_TYPE_VENDOR:
124                 return VIDEO_DIP_ENABLE_VENDOR;
125         case HDMI_INFOFRAME_TYPE_DRM:
126                 return 0;
127         default:
128                 MISSING_CASE(type);
129                 return 0;
130         }
131 }
132
133 static u32 hsw_infoframe_enable(unsigned int type)
134 {
135         switch (type) {
136         case HDMI_PACKET_TYPE_GENERAL_CONTROL:
137                 return VIDEO_DIP_ENABLE_GCP_HSW;
138         case HDMI_PACKET_TYPE_GAMUT_METADATA:
139                 return VIDEO_DIP_ENABLE_GMP_HSW;
140         case DP_SDP_VSC:
141                 return VIDEO_DIP_ENABLE_VSC_HSW;
142         case DP_SDP_ADAPTIVE_SYNC:
143                 return VIDEO_DIP_ENABLE_AS_ADL;
144         case DP_SDP_PPS:
145                 return VDIP_ENABLE_PPS;
146         case HDMI_INFOFRAME_TYPE_AVI:
147                 return VIDEO_DIP_ENABLE_AVI_HSW;
148         case HDMI_INFOFRAME_TYPE_SPD:
149                 return VIDEO_DIP_ENABLE_SPD_HSW;
150         case HDMI_INFOFRAME_TYPE_VENDOR:
151                 return VIDEO_DIP_ENABLE_VS_HSW;
152         case HDMI_INFOFRAME_TYPE_DRM:
153                 return VIDEO_DIP_ENABLE_DRM_GLK;
154         default:
155                 MISSING_CASE(type);
156                 return 0;
157         }
158 }
159
160 static i915_reg_t
161 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
162                  enum transcoder cpu_transcoder,
163                  unsigned int type,
164                  int i)
165 {
166         switch (type) {
167         case HDMI_PACKET_TYPE_GAMUT_METADATA:
168                 return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
169         case DP_SDP_VSC:
170                 return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
171         case DP_SDP_ADAPTIVE_SYNC:
172                 return ADL_TVIDEO_DIP_AS_SDP_DATA(cpu_transcoder, i);
173         case DP_SDP_PPS:
174                 return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
175         case HDMI_INFOFRAME_TYPE_AVI:
176                 return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
177         case HDMI_INFOFRAME_TYPE_SPD:
178                 return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
179         case HDMI_INFOFRAME_TYPE_VENDOR:
180                 return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
181         case HDMI_INFOFRAME_TYPE_DRM:
182                 return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
183         default:
184                 MISSING_CASE(type);
185                 return INVALID_MMIO_REG;
186         }
187 }
188
189 static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
190                              unsigned int type)
191 {
192         switch (type) {
193         case DP_SDP_VSC:
194                 return VIDEO_DIP_VSC_DATA_SIZE;
195         case DP_SDP_ADAPTIVE_SYNC:
196                 return VIDEO_DIP_ASYNC_DATA_SIZE;
197         case DP_SDP_PPS:
198                 return VIDEO_DIP_PPS_DATA_SIZE;
199         case HDMI_PACKET_TYPE_GAMUT_METADATA:
200                 if (DISPLAY_VER(dev_priv) >= 11)
201                         return VIDEO_DIP_GMP_DATA_SIZE;
202                 else
203                         return VIDEO_DIP_DATA_SIZE;
204         default:
205                 return VIDEO_DIP_DATA_SIZE;
206         }
207 }
208
209 static void g4x_write_infoframe(struct intel_encoder *encoder,
210                                 const struct intel_crtc_state *crtc_state,
211                                 unsigned int type,
212                                 const void *frame, ssize_t len)
213 {
214         const u32 *data = frame;
215         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
216         u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
217         int i;
218
219         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
220                  "Writing DIP with CTL reg disabled\n");
221
222         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
223         val |= g4x_infoframe_index(type);
224
225         val &= ~g4x_infoframe_enable(type);
226
227         intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
228
229         for (i = 0; i < len; i += 4) {
230                 intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
231                 data++;
232         }
233         /* Write every possible data byte to force correct ECC calculation. */
234         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
235                 intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
236
237         val |= g4x_infoframe_enable(type);
238         val &= ~VIDEO_DIP_FREQ_MASK;
239         val |= VIDEO_DIP_FREQ_VSYNC;
240
241         intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
242         intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
243 }
244
245 static void g4x_read_infoframe(struct intel_encoder *encoder,
246                                const struct intel_crtc_state *crtc_state,
247                                unsigned int type,
248                                void *frame, ssize_t len)
249 {
250         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
251         u32 *data = frame;
252         int i;
253
254         intel_de_rmw(dev_priv, VIDEO_DIP_CTL,
255                      VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
256
257         for (i = 0; i < len; i += 4)
258                 *data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
259 }
260
261 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
262                                   const struct intel_crtc_state *pipe_config)
263 {
264         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
265         u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
266
267         if ((val & VIDEO_DIP_ENABLE) == 0)
268                 return 0;
269
270         if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
271                 return 0;
272
273         return val & (VIDEO_DIP_ENABLE_AVI |
274                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
275 }
276
277 static void ibx_write_infoframe(struct intel_encoder *encoder,
278                                 const struct intel_crtc_state *crtc_state,
279                                 unsigned int type,
280                                 const void *frame, ssize_t len)
281 {
282         const u32 *data = frame;
283         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
284         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
285         i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
286         u32 val = intel_de_read(dev_priv, reg);
287         int i;
288
289         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
290                  "Writing DIP with CTL reg disabled\n");
291
292         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
293         val |= g4x_infoframe_index(type);
294
295         val &= ~g4x_infoframe_enable(type);
296
297         intel_de_write(dev_priv, reg, val);
298
299         for (i = 0; i < len; i += 4) {
300                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
301                                *data);
302                 data++;
303         }
304         /* Write every possible data byte to force correct ECC calculation. */
305         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
306                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
307
308         val |= g4x_infoframe_enable(type);
309         val &= ~VIDEO_DIP_FREQ_MASK;
310         val |= VIDEO_DIP_FREQ_VSYNC;
311
312         intel_de_write(dev_priv, reg, val);
313         intel_de_posting_read(dev_priv, reg);
314 }
315
316 static void ibx_read_infoframe(struct intel_encoder *encoder,
317                                const struct intel_crtc_state *crtc_state,
318                                unsigned int type,
319                                void *frame, ssize_t len)
320 {
321         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
322         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
323         u32 *data = frame;
324         int i;
325
326         intel_de_rmw(dev_priv, TVIDEO_DIP_CTL(crtc->pipe),
327                      VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
328
329         for (i = 0; i < len; i += 4)
330                 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
331 }
332
333 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
334                                   const struct intel_crtc_state *pipe_config)
335 {
336         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
337         enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
338         i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
339         u32 val = intel_de_read(dev_priv, reg);
340
341         if ((val & VIDEO_DIP_ENABLE) == 0)
342                 return 0;
343
344         if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
345                 return 0;
346
347         return val & (VIDEO_DIP_ENABLE_AVI |
348                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
349                       VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
350 }
351
352 static void cpt_write_infoframe(struct intel_encoder *encoder,
353                                 const struct intel_crtc_state *crtc_state,
354                                 unsigned int type,
355                                 const void *frame, ssize_t len)
356 {
357         const u32 *data = frame;
358         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
359         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
360         i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
361         u32 val = intel_de_read(dev_priv, reg);
362         int i;
363
364         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
365                  "Writing DIP with CTL reg disabled\n");
366
367         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
368         val |= g4x_infoframe_index(type);
369
370         /* The DIP control register spec says that we need to update the AVI
371          * infoframe without clearing its enable bit */
372         if (type != HDMI_INFOFRAME_TYPE_AVI)
373                 val &= ~g4x_infoframe_enable(type);
374
375         intel_de_write(dev_priv, reg, val);
376
377         for (i = 0; i < len; i += 4) {
378                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
379                                *data);
380                 data++;
381         }
382         /* Write every possible data byte to force correct ECC calculation. */
383         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
384                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
385
386         val |= g4x_infoframe_enable(type);
387         val &= ~VIDEO_DIP_FREQ_MASK;
388         val |= VIDEO_DIP_FREQ_VSYNC;
389
390         intel_de_write(dev_priv, reg, val);
391         intel_de_posting_read(dev_priv, reg);
392 }
393
394 static void cpt_read_infoframe(struct intel_encoder *encoder,
395                                const struct intel_crtc_state *crtc_state,
396                                unsigned int type,
397                                void *frame, ssize_t len)
398 {
399         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
400         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
401         u32 *data = frame;
402         int i;
403
404         intel_de_rmw(dev_priv, TVIDEO_DIP_CTL(crtc->pipe),
405                      VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
406
407         for (i = 0; i < len; i += 4)
408                 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
409 }
410
411 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
412                                   const struct intel_crtc_state *pipe_config)
413 {
414         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
415         enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
416         u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
417
418         if ((val & VIDEO_DIP_ENABLE) == 0)
419                 return 0;
420
421         return val & (VIDEO_DIP_ENABLE_AVI |
422                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
423                       VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
424 }
425
426 static void vlv_write_infoframe(struct intel_encoder *encoder,
427                                 const struct intel_crtc_state *crtc_state,
428                                 unsigned int type,
429                                 const void *frame, ssize_t len)
430 {
431         const u32 *data = frame;
432         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
433         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
434         i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
435         u32 val = intel_de_read(dev_priv, reg);
436         int i;
437
438         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
439                  "Writing DIP with CTL reg disabled\n");
440
441         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
442         val |= g4x_infoframe_index(type);
443
444         val &= ~g4x_infoframe_enable(type);
445
446         intel_de_write(dev_priv, reg, val);
447
448         for (i = 0; i < len; i += 4) {
449                 intel_de_write(dev_priv,
450                                VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
451                 data++;
452         }
453         /* Write every possible data byte to force correct ECC calculation. */
454         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
455                 intel_de_write(dev_priv,
456                                VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
457
458         val |= g4x_infoframe_enable(type);
459         val &= ~VIDEO_DIP_FREQ_MASK;
460         val |= VIDEO_DIP_FREQ_VSYNC;
461
462         intel_de_write(dev_priv, reg, val);
463         intel_de_posting_read(dev_priv, reg);
464 }
465
466 static void vlv_read_infoframe(struct intel_encoder *encoder,
467                                const struct intel_crtc_state *crtc_state,
468                                unsigned int type,
469                                void *frame, ssize_t len)
470 {
471         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
472         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
473         u32 *data = frame;
474         int i;
475
476         intel_de_rmw(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe),
477                      VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
478
479         for (i = 0; i < len; i += 4)
480                 *data++ = intel_de_read(dev_priv,
481                                         VLV_TVIDEO_DIP_DATA(crtc->pipe));
482 }
483
484 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
485                                   const struct intel_crtc_state *pipe_config)
486 {
487         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
488         enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
489         u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
490
491         if ((val & VIDEO_DIP_ENABLE) == 0)
492                 return 0;
493
494         if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
495                 return 0;
496
497         return val & (VIDEO_DIP_ENABLE_AVI |
498                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
499                       VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
500 }
501
502 void hsw_write_infoframe(struct intel_encoder *encoder,
503                          const struct intel_crtc_state *crtc_state,
504                          unsigned int type,
505                          const void *frame, ssize_t len)
506 {
507         const u32 *data = frame;
508         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
509         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
510         i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
511         int data_size;
512         int i;
513         u32 val = intel_de_read(dev_priv, ctl_reg);
514
515         data_size = hsw_dip_data_size(dev_priv, type);
516
517         drm_WARN_ON(&dev_priv->drm, len > data_size);
518
519         val &= ~hsw_infoframe_enable(type);
520         intel_de_write(dev_priv, ctl_reg, val);
521
522         for (i = 0; i < len; i += 4) {
523                 intel_de_write(dev_priv,
524                                hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
525                                *data);
526                 data++;
527         }
528         /* Write every possible data byte to force correct ECC calculation. */
529         for (; i < data_size; i += 4)
530                 intel_de_write(dev_priv,
531                                hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
532                                0);
533
534         /* Wa_14013475917 */
535         if (!(IS_DISPLAY_VER(dev_priv, 13, 14) && crtc_state->has_psr && type == DP_SDP_VSC))
536                 val |= hsw_infoframe_enable(type);
537
538         if (type == DP_SDP_VSC)
539                 val |= VSC_DIP_HW_DATA_SW_HEA;
540
541         intel_de_write(dev_priv, ctl_reg, val);
542         intel_de_posting_read(dev_priv, ctl_reg);
543 }
544
545 void hsw_read_infoframe(struct intel_encoder *encoder,
546                         const struct intel_crtc_state *crtc_state,
547                         unsigned int type, void *frame, ssize_t len)
548 {
549         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
550         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
551         u32 *data = frame;
552         int i;
553
554         for (i = 0; i < len; i += 4)
555                 *data++ = intel_de_read(dev_priv,
556                                         hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
557 }
558
559 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
560                                   const struct intel_crtc_state *pipe_config)
561 {
562         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
563         u32 val = intel_de_read(dev_priv,
564                                 HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
565         u32 mask;
566
567         mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
568                 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
569                 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
570
571         if (DISPLAY_VER(dev_priv) >= 10)
572                 mask |= VIDEO_DIP_ENABLE_DRM_GLK;
573
574         if (HAS_AS_SDP(dev_priv))
575                 mask |= VIDEO_DIP_ENABLE_AS_ADL;
576
577         return val & mask;
578 }
579
580 static const u8 infoframe_type_to_idx[] = {
581         HDMI_PACKET_TYPE_GENERAL_CONTROL,
582         HDMI_PACKET_TYPE_GAMUT_METADATA,
583         DP_SDP_VSC,
584         DP_SDP_ADAPTIVE_SYNC,
585         HDMI_INFOFRAME_TYPE_AVI,
586         HDMI_INFOFRAME_TYPE_SPD,
587         HDMI_INFOFRAME_TYPE_VENDOR,
588         HDMI_INFOFRAME_TYPE_DRM,
589 };
590
591 u32 intel_hdmi_infoframe_enable(unsigned int type)
592 {
593         int i;
594
595         for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
596                 if (infoframe_type_to_idx[i] == type)
597                         return BIT(i);
598         }
599
600         return 0;
601 }
602
603 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
604                                   const struct intel_crtc_state *crtc_state)
605 {
606         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
607         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
608         u32 val, ret = 0;
609         int i;
610
611         val = dig_port->infoframes_enabled(encoder, crtc_state);
612
613         /* map from hardware bits to dip idx */
614         for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
615                 unsigned int type = infoframe_type_to_idx[i];
616
617                 if (HAS_DDI(dev_priv)) {
618                         if (val & hsw_infoframe_enable(type))
619                                 ret |= BIT(i);
620                 } else {
621                         if (val & g4x_infoframe_enable(type))
622                                 ret |= BIT(i);
623                 }
624         }
625
626         return ret;
627 }
628
629 /*
630  * The data we write to the DIP data buffer registers is 1 byte bigger than the
631  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
632  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
633  * used for both technologies.
634  *
635  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
636  * DW1:       DB3       | DB2 | DB1 | DB0
637  * DW2:       DB7       | DB6 | DB5 | DB4
638  * DW3: ...
639  *
640  * (HB is Header Byte, DB is Data Byte)
641  *
642  * The hdmi pack() functions don't know about that hardware specific hole so we
643  * trick them by giving an offset into the buffer and moving back the header
644  * bytes by one.
645  */
646 static void intel_write_infoframe(struct intel_encoder *encoder,
647                                   const struct intel_crtc_state *crtc_state,
648                                   enum hdmi_infoframe_type type,
649                                   const union hdmi_infoframe *frame)
650 {
651         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
652         u8 buffer[VIDEO_DIP_DATA_SIZE];
653         ssize_t len;
654
655         if ((crtc_state->infoframes.enable &
656              intel_hdmi_infoframe_enable(type)) == 0)
657                 return;
658
659         if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
660                 return;
661
662         /* see comment above for the reason for this offset */
663         len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
664         if (drm_WARN_ON(encoder->base.dev, len < 0))
665                 return;
666
667         /* Insert the 'hole' (see big comment above) at position 3 */
668         memmove(&buffer[0], &buffer[1], 3);
669         buffer[3] = 0;
670         len++;
671
672         dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
673 }
674
675 void intel_read_infoframe(struct intel_encoder *encoder,
676                           const struct intel_crtc_state *crtc_state,
677                           enum hdmi_infoframe_type type,
678                           union hdmi_infoframe *frame)
679 {
680         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
681         u8 buffer[VIDEO_DIP_DATA_SIZE];
682         int ret;
683
684         if ((crtc_state->infoframes.enable &
685              intel_hdmi_infoframe_enable(type)) == 0)
686                 return;
687
688         dig_port->read_infoframe(encoder, crtc_state,
689                                        type, buffer, sizeof(buffer));
690
691         /* Fill the 'hole' (see big comment above) at position 3 */
692         memmove(&buffer[1], &buffer[0], 3);
693
694         /* see comment above for the reason for this offset */
695         ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
696         if (ret) {
697                 drm_dbg_kms(encoder->base.dev,
698                             "Failed to unpack infoframe type 0x%02x\n", type);
699                 return;
700         }
701
702         if (frame->any.type != type)
703                 drm_dbg_kms(encoder->base.dev,
704                             "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
705                             frame->any.type, type);
706 }
707
708 static bool
709 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
710                                  struct intel_crtc_state *crtc_state,
711                                  struct drm_connector_state *conn_state)
712 {
713         struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
714         const struct drm_display_mode *adjusted_mode =
715                 &crtc_state->hw.adjusted_mode;
716         struct drm_connector *connector = conn_state->connector;
717         int ret;
718
719         if (!crtc_state->has_infoframe)
720                 return true;
721
722         crtc_state->infoframes.enable |=
723                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
724
725         ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
726                                                        adjusted_mode);
727         if (ret)
728                 return false;
729
730         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
731                 frame->colorspace = HDMI_COLORSPACE_YUV420;
732         else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
733                 frame->colorspace = HDMI_COLORSPACE_YUV444;
734         else
735                 frame->colorspace = HDMI_COLORSPACE_RGB;
736
737         drm_hdmi_avi_infoframe_colorimetry(frame, conn_state);
738
739         /* nonsense combination */
740         drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
741                     crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
742
743         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
744                 drm_hdmi_avi_infoframe_quant_range(frame, connector,
745                                                    adjusted_mode,
746                                                    crtc_state->limited_color_range ?
747                                                    HDMI_QUANTIZATION_RANGE_LIMITED :
748                                                    HDMI_QUANTIZATION_RANGE_FULL);
749         } else {
750                 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
751                 frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
752         }
753
754         drm_hdmi_avi_infoframe_content_type(frame, conn_state);
755
756         /* TODO: handle pixel repetition for YCBCR420 outputs */
757
758         ret = hdmi_avi_infoframe_check(frame);
759         if (drm_WARN_ON(encoder->base.dev, ret))
760                 return false;
761
762         return true;
763 }
764
765 static bool
766 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
767                                  struct intel_crtc_state *crtc_state,
768                                  struct drm_connector_state *conn_state)
769 {
770         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
771         struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
772         int ret;
773
774         if (!crtc_state->has_infoframe)
775                 return true;
776
777         crtc_state->infoframes.enable |=
778                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
779
780         if (IS_DGFX(i915))
781                 ret = hdmi_spd_infoframe_init(frame, "Intel", "Discrete gfx");
782         else
783                 ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
784
785         if (drm_WARN_ON(encoder->base.dev, ret))
786                 return false;
787
788         frame->sdi = HDMI_SPD_SDI_PC;
789
790         ret = hdmi_spd_infoframe_check(frame);
791         if (drm_WARN_ON(encoder->base.dev, ret))
792                 return false;
793
794         return true;
795 }
796
797 static bool
798 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
799                                   struct intel_crtc_state *crtc_state,
800                                   struct drm_connector_state *conn_state)
801 {
802         struct hdmi_vendor_infoframe *frame =
803                 &crtc_state->infoframes.hdmi.vendor.hdmi;
804         const struct drm_display_info *info =
805                 &conn_state->connector->display_info;
806         int ret;
807
808         if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
809                 return true;
810
811         crtc_state->infoframes.enable |=
812                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
813
814         ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
815                                                           conn_state->connector,
816                                                           &crtc_state->hw.adjusted_mode);
817         if (drm_WARN_ON(encoder->base.dev, ret))
818                 return false;
819
820         ret = hdmi_vendor_infoframe_check(frame);
821         if (drm_WARN_ON(encoder->base.dev, ret))
822                 return false;
823
824         return true;
825 }
826
827 static bool
828 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
829                                  struct intel_crtc_state *crtc_state,
830                                  struct drm_connector_state *conn_state)
831 {
832         struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
833         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
834         int ret;
835
836         if (DISPLAY_VER(dev_priv) < 10)
837                 return true;
838
839         if (!crtc_state->has_infoframe)
840                 return true;
841
842         if (!conn_state->hdr_output_metadata)
843                 return true;
844
845         crtc_state->infoframes.enable |=
846                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
847
848         ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
849         if (ret < 0) {
850                 drm_dbg_kms(&dev_priv->drm,
851                             "couldn't set HDR metadata in infoframe\n");
852                 return false;
853         }
854
855         ret = hdmi_drm_infoframe_check(frame);
856         if (drm_WARN_ON(&dev_priv->drm, ret))
857                 return false;
858
859         return true;
860 }
861
862 static void g4x_set_infoframes(struct intel_encoder *encoder,
863                                bool enable,
864                                const struct intel_crtc_state *crtc_state,
865                                const struct drm_connector_state *conn_state)
866 {
867         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
868         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
869         struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
870         i915_reg_t reg = VIDEO_DIP_CTL;
871         u32 val = intel_de_read(dev_priv, reg);
872         u32 port = VIDEO_DIP_PORT(encoder->port);
873
874         assert_hdmi_port_disabled(intel_hdmi);
875
876         /* If the registers were not initialized yet, they might be zeroes,
877          * which means we're selecting the AVI DIP and we're setting its
878          * frequency to once. This seems to really confuse the HW and make
879          * things stop working (the register spec says the AVI always needs to
880          * be sent every VSync). So here we avoid writing to the register more
881          * than we need and also explicitly select the AVI DIP and explicitly
882          * set its frequency to every VSync. Avoiding to write it twice seems to
883          * be enough to solve the problem, but being defensive shouldn't hurt us
884          * either. */
885         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
886
887         if (!enable) {
888                 if (!(val & VIDEO_DIP_ENABLE))
889                         return;
890                 if (port != (val & VIDEO_DIP_PORT_MASK)) {
891                         drm_dbg_kms(&dev_priv->drm,
892                                     "video DIP still enabled on port %c\n",
893                                     (val & VIDEO_DIP_PORT_MASK) >> 29);
894                         return;
895                 }
896                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
897                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
898                 intel_de_write(dev_priv, reg, val);
899                 intel_de_posting_read(dev_priv, reg);
900                 return;
901         }
902
903         if (port != (val & VIDEO_DIP_PORT_MASK)) {
904                 if (val & VIDEO_DIP_ENABLE) {
905                         drm_dbg_kms(&dev_priv->drm,
906                                     "video DIP already enabled on port %c\n",
907                                     (val & VIDEO_DIP_PORT_MASK) >> 29);
908                         return;
909                 }
910                 val &= ~VIDEO_DIP_PORT_MASK;
911                 val |= port;
912         }
913
914         val |= VIDEO_DIP_ENABLE;
915         val &= ~(VIDEO_DIP_ENABLE_AVI |
916                  VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
917
918         intel_de_write(dev_priv, reg, val);
919         intel_de_posting_read(dev_priv, reg);
920
921         intel_write_infoframe(encoder, crtc_state,
922                               HDMI_INFOFRAME_TYPE_AVI,
923                               &crtc_state->infoframes.avi);
924         intel_write_infoframe(encoder, crtc_state,
925                               HDMI_INFOFRAME_TYPE_SPD,
926                               &crtc_state->infoframes.spd);
927         intel_write_infoframe(encoder, crtc_state,
928                               HDMI_INFOFRAME_TYPE_VENDOR,
929                               &crtc_state->infoframes.hdmi);
930 }
931
932 /*
933  * Determine if default_phase=1 can be indicated in the GCP infoframe.
934  *
935  * From HDMI specification 1.4a:
936  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
937  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
938  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
939  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
940  *   phase of 0
941  */
942 static bool gcp_default_phase_possible(int pipe_bpp,
943                                        const struct drm_display_mode *mode)
944 {
945         unsigned int pixels_per_group;
946
947         switch (pipe_bpp) {
948         case 30:
949                 /* 4 pixels in 5 clocks */
950                 pixels_per_group = 4;
951                 break;
952         case 36:
953                 /* 2 pixels in 3 clocks */
954                 pixels_per_group = 2;
955                 break;
956         case 48:
957                 /* 1 pixel in 2 clocks */
958                 pixels_per_group = 1;
959                 break;
960         default:
961                 /* phase information not relevant for 8bpc */
962                 return false;
963         }
964
965         return mode->crtc_hdisplay % pixels_per_group == 0 &&
966                 mode->crtc_htotal % pixels_per_group == 0 &&
967                 mode->crtc_hblank_start % pixels_per_group == 0 &&
968                 mode->crtc_hblank_end % pixels_per_group == 0 &&
969                 mode->crtc_hsync_start % pixels_per_group == 0 &&
970                 mode->crtc_hsync_end % pixels_per_group == 0 &&
971                 ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
972                  mode->crtc_htotal/2 % pixels_per_group == 0);
973 }
974
975 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
976                                          const struct intel_crtc_state *crtc_state,
977                                          const struct drm_connector_state *conn_state)
978 {
979         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
980         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
981         i915_reg_t reg;
982
983         if ((crtc_state->infoframes.enable &
984              intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
985                 return false;
986
987         if (HAS_DDI(dev_priv))
988                 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
989         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
990                 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
991         else if (HAS_PCH_SPLIT(dev_priv))
992                 reg = TVIDEO_DIP_GCP(crtc->pipe);
993         else
994                 return false;
995
996         intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
997
998         return true;
999 }
1000
1001 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
1002                                    struct intel_crtc_state *crtc_state)
1003 {
1004         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1005         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1006         i915_reg_t reg;
1007
1008         if ((crtc_state->infoframes.enable &
1009              intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1010                 return;
1011
1012         if (HAS_DDI(dev_priv))
1013                 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
1014         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1015                 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1016         else if (HAS_PCH_SPLIT(dev_priv))
1017                 reg = TVIDEO_DIP_GCP(crtc->pipe);
1018         else
1019                 return;
1020
1021         crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
1022 }
1023
1024 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1025                                              struct intel_crtc_state *crtc_state,
1026                                              struct drm_connector_state *conn_state)
1027 {
1028         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1029
1030         if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1031                 return;
1032
1033         crtc_state->infoframes.enable |=
1034                 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1035
1036         /* Indicate color indication for deep color mode */
1037         if (crtc_state->pipe_bpp > 24)
1038                 crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1039
1040         /* Enable default_phase whenever the display mode is suitably aligned */
1041         if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1042                                        &crtc_state->hw.adjusted_mode))
1043                 crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1044 }
1045
1046 static void ibx_set_infoframes(struct intel_encoder *encoder,
1047                                bool enable,
1048                                const struct intel_crtc_state *crtc_state,
1049                                const struct drm_connector_state *conn_state)
1050 {
1051         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1052         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1053         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1054         struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1055         i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1056         u32 val = intel_de_read(dev_priv, reg);
1057         u32 port = VIDEO_DIP_PORT(encoder->port);
1058
1059         assert_hdmi_port_disabled(intel_hdmi);
1060
1061         /* See the big comment in g4x_set_infoframes() */
1062         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1063
1064         if (!enable) {
1065                 if (!(val & VIDEO_DIP_ENABLE))
1066                         return;
1067                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1068                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1069                          VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1070                 intel_de_write(dev_priv, reg, val);
1071                 intel_de_posting_read(dev_priv, reg);
1072                 return;
1073         }
1074
1075         if (port != (val & VIDEO_DIP_PORT_MASK)) {
1076                 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1077                          "DIP already enabled on port %c\n",
1078                          (val & VIDEO_DIP_PORT_MASK) >> 29);
1079                 val &= ~VIDEO_DIP_PORT_MASK;
1080                 val |= port;
1081         }
1082
1083         val |= VIDEO_DIP_ENABLE;
1084         val &= ~(VIDEO_DIP_ENABLE_AVI |
1085                  VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1086                  VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1087
1088         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1089                 val |= VIDEO_DIP_ENABLE_GCP;
1090
1091         intel_de_write(dev_priv, reg, val);
1092         intel_de_posting_read(dev_priv, reg);
1093
1094         intel_write_infoframe(encoder, crtc_state,
1095                               HDMI_INFOFRAME_TYPE_AVI,
1096                               &crtc_state->infoframes.avi);
1097         intel_write_infoframe(encoder, crtc_state,
1098                               HDMI_INFOFRAME_TYPE_SPD,
1099                               &crtc_state->infoframes.spd);
1100         intel_write_infoframe(encoder, crtc_state,
1101                               HDMI_INFOFRAME_TYPE_VENDOR,
1102                               &crtc_state->infoframes.hdmi);
1103 }
1104
1105 static void cpt_set_infoframes(struct intel_encoder *encoder,
1106                                bool enable,
1107                                const struct intel_crtc_state *crtc_state,
1108                                const struct drm_connector_state *conn_state)
1109 {
1110         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1111         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1112         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1113         i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1114         u32 val = intel_de_read(dev_priv, reg);
1115
1116         assert_hdmi_port_disabled(intel_hdmi);
1117
1118         /* See the big comment in g4x_set_infoframes() */
1119         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1120
1121         if (!enable) {
1122                 if (!(val & VIDEO_DIP_ENABLE))
1123                         return;
1124                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1125                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1126                          VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1127                 intel_de_write(dev_priv, reg, val);
1128                 intel_de_posting_read(dev_priv, reg);
1129                 return;
1130         }
1131
1132         /* Set both together, unset both together: see the spec. */
1133         val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1134         val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1135                  VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1136
1137         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1138                 val |= VIDEO_DIP_ENABLE_GCP;
1139
1140         intel_de_write(dev_priv, reg, val);
1141         intel_de_posting_read(dev_priv, reg);
1142
1143         intel_write_infoframe(encoder, crtc_state,
1144                               HDMI_INFOFRAME_TYPE_AVI,
1145                               &crtc_state->infoframes.avi);
1146         intel_write_infoframe(encoder, crtc_state,
1147                               HDMI_INFOFRAME_TYPE_SPD,
1148                               &crtc_state->infoframes.spd);
1149         intel_write_infoframe(encoder, crtc_state,
1150                               HDMI_INFOFRAME_TYPE_VENDOR,
1151                               &crtc_state->infoframes.hdmi);
1152 }
1153
1154 static void vlv_set_infoframes(struct intel_encoder *encoder,
1155                                bool enable,
1156                                const struct intel_crtc_state *crtc_state,
1157                                const struct drm_connector_state *conn_state)
1158 {
1159         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1160         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1161         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1162         i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1163         u32 val = intel_de_read(dev_priv, reg);
1164         u32 port = VIDEO_DIP_PORT(encoder->port);
1165
1166         assert_hdmi_port_disabled(intel_hdmi);
1167
1168         /* See the big comment in g4x_set_infoframes() */
1169         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1170
1171         if (!enable) {
1172                 if (!(val & VIDEO_DIP_ENABLE))
1173                         return;
1174                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1175                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1176                          VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1177                 intel_de_write(dev_priv, reg, val);
1178                 intel_de_posting_read(dev_priv, reg);
1179                 return;
1180         }
1181
1182         if (port != (val & VIDEO_DIP_PORT_MASK)) {
1183                 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1184                          "DIP already enabled on port %c\n",
1185                          (val & VIDEO_DIP_PORT_MASK) >> 29);
1186                 val &= ~VIDEO_DIP_PORT_MASK;
1187                 val |= port;
1188         }
1189
1190         val |= VIDEO_DIP_ENABLE;
1191         val &= ~(VIDEO_DIP_ENABLE_AVI |
1192                  VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1193                  VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1194
1195         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1196                 val |= VIDEO_DIP_ENABLE_GCP;
1197
1198         intel_de_write(dev_priv, reg, val);
1199         intel_de_posting_read(dev_priv, reg);
1200
1201         intel_write_infoframe(encoder, crtc_state,
1202                               HDMI_INFOFRAME_TYPE_AVI,
1203                               &crtc_state->infoframes.avi);
1204         intel_write_infoframe(encoder, crtc_state,
1205                               HDMI_INFOFRAME_TYPE_SPD,
1206                               &crtc_state->infoframes.spd);
1207         intel_write_infoframe(encoder, crtc_state,
1208                               HDMI_INFOFRAME_TYPE_VENDOR,
1209                               &crtc_state->infoframes.hdmi);
1210 }
1211
1212 static void hsw_set_infoframes(struct intel_encoder *encoder,
1213                                bool enable,
1214                                const struct intel_crtc_state *crtc_state,
1215                                const struct drm_connector_state *conn_state)
1216 {
1217         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1218         i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1219         u32 val = intel_de_read(dev_priv, reg);
1220
1221         assert_hdmi_transcoder_func_disabled(dev_priv,
1222                                              crtc_state->cpu_transcoder);
1223
1224         val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1225                  VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1226                  VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1227                  VIDEO_DIP_ENABLE_DRM_GLK | VIDEO_DIP_ENABLE_AS_ADL);
1228
1229         if (!enable) {
1230                 intel_de_write(dev_priv, reg, val);
1231                 intel_de_posting_read(dev_priv, reg);
1232                 return;
1233         }
1234
1235         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1236                 val |= VIDEO_DIP_ENABLE_GCP_HSW;
1237
1238         intel_de_write(dev_priv, reg, val);
1239         intel_de_posting_read(dev_priv, reg);
1240
1241         intel_write_infoframe(encoder, crtc_state,
1242                               HDMI_INFOFRAME_TYPE_AVI,
1243                               &crtc_state->infoframes.avi);
1244         intel_write_infoframe(encoder, crtc_state,
1245                               HDMI_INFOFRAME_TYPE_SPD,
1246                               &crtc_state->infoframes.spd);
1247         intel_write_infoframe(encoder, crtc_state,
1248                               HDMI_INFOFRAME_TYPE_VENDOR,
1249                               &crtc_state->infoframes.hdmi);
1250         intel_write_infoframe(encoder, crtc_state,
1251                               HDMI_INFOFRAME_TYPE_DRM,
1252                               &crtc_state->infoframes.drm);
1253 }
1254
1255 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1256 {
1257         struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1258         struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1259
1260         if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1261                 return;
1262
1263         drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n",
1264                     enable ? "Enabling" : "Disabling");
1265
1266         drm_dp_dual_mode_set_tmds_output(&dev_priv->drm,
1267                                          hdmi->dp_dual_mode.type, ddc, enable);
1268 }
1269
1270 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1271                                 unsigned int offset, void *buffer, size_t size)
1272 {
1273         struct intel_hdmi *hdmi = &dig_port->hdmi;
1274         struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1275         int ret;
1276         u8 start = offset & 0xff;
1277         struct i2c_msg msgs[] = {
1278                 {
1279                         .addr = DRM_HDCP_DDC_ADDR,
1280                         .flags = 0,
1281                         .len = 1,
1282                         .buf = &start,
1283                 },
1284                 {
1285                         .addr = DRM_HDCP_DDC_ADDR,
1286                         .flags = I2C_M_RD,
1287                         .len = size,
1288                         .buf = buffer
1289                 }
1290         };
1291         ret = i2c_transfer(ddc, msgs, ARRAY_SIZE(msgs));
1292         if (ret == ARRAY_SIZE(msgs))
1293                 return 0;
1294         return ret >= 0 ? -EIO : ret;
1295 }
1296
1297 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1298                                  unsigned int offset, void *buffer, size_t size)
1299 {
1300         struct intel_hdmi *hdmi = &dig_port->hdmi;
1301         struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1302         int ret;
1303         u8 *write_buf;
1304         struct i2c_msg msg;
1305
1306         write_buf = kzalloc(size + 1, GFP_KERNEL);
1307         if (!write_buf)
1308                 return -ENOMEM;
1309
1310         write_buf[0] = offset & 0xff;
1311         memcpy(&write_buf[1], buffer, size);
1312
1313         msg.addr = DRM_HDCP_DDC_ADDR;
1314         msg.flags = 0,
1315         msg.len = size + 1,
1316         msg.buf = write_buf;
1317
1318         ret = i2c_transfer(ddc, &msg, 1);
1319         if (ret == 1)
1320                 ret = 0;
1321         else if (ret >= 0)
1322                 ret = -EIO;
1323
1324         kfree(write_buf);
1325         return ret;
1326 }
1327
1328 static
1329 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1330                                   u8 *an)
1331 {
1332         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1333         struct intel_hdmi *hdmi = &dig_port->hdmi;
1334         struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1335         int ret;
1336
1337         ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1338                                     DRM_HDCP_AN_LEN);
1339         if (ret) {
1340                 drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n",
1341                             ret);
1342                 return ret;
1343         }
1344
1345         ret = intel_gmbus_output_aksv(ddc);
1346         if (ret < 0) {
1347                 drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret);
1348                 return ret;
1349         }
1350         return 0;
1351 }
1352
1353 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1354                                      u8 *bksv)
1355 {
1356         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1357
1358         int ret;
1359         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1360                                    DRM_HDCP_KSV_LEN);
1361         if (ret)
1362                 drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n",
1363                             ret);
1364         return ret;
1365 }
1366
1367 static
1368 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1369                                  u8 *bstatus)
1370 {
1371         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1372
1373         int ret;
1374         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1375                                    bstatus, DRM_HDCP_BSTATUS_LEN);
1376         if (ret)
1377                 drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n",
1378                             ret);
1379         return ret;
1380 }
1381
1382 static
1383 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1384                                      bool *repeater_present)
1385 {
1386         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1387         int ret;
1388         u8 val;
1389
1390         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1391         if (ret) {
1392                 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1393                             ret);
1394                 return ret;
1395         }
1396         *repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1397         return 0;
1398 }
1399
1400 static
1401 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1402                                   u8 *ri_prime)
1403 {
1404         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1405
1406         int ret;
1407         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1408                                    ri_prime, DRM_HDCP_RI_LEN);
1409         if (ret)
1410                 drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n",
1411                             ret);
1412         return ret;
1413 }
1414
1415 static
1416 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1417                                    bool *ksv_ready)
1418 {
1419         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1420         int ret;
1421         u8 val;
1422
1423         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1424         if (ret) {
1425                 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1426                             ret);
1427                 return ret;
1428         }
1429         *ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1430         return 0;
1431 }
1432
1433 static
1434 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1435                                   int num_downstream, u8 *ksv_fifo)
1436 {
1437         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1438         int ret;
1439         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1440                                    ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1441         if (ret) {
1442                 drm_dbg_kms(&i915->drm,
1443                             "Read ksv fifo over DDC failed (%d)\n", ret);
1444                 return ret;
1445         }
1446         return 0;
1447 }
1448
1449 static
1450 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1451                                       int i, u32 *part)
1452 {
1453         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1454         int ret;
1455
1456         if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1457                 return -EINVAL;
1458
1459         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1460                                    part, DRM_HDCP_V_PRIME_PART_LEN);
1461         if (ret)
1462                 drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n",
1463                             i, ret);
1464         return ret;
1465 }
1466
1467 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1468                                            enum transcoder cpu_transcoder)
1469 {
1470         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1471         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1472         struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
1473         u32 scanline;
1474         int ret;
1475
1476         for (;;) {
1477                 scanline = intel_de_read(dev_priv, PIPEDSL(crtc->pipe));
1478                 if (scanline > 100 && scanline < 200)
1479                         break;
1480                 usleep_range(25, 50);
1481         }
1482
1483         ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1484                                          false, TRANS_DDI_HDCP_SIGNALLING);
1485         if (ret) {
1486                 drm_err(&dev_priv->drm,
1487                         "Disable HDCP signalling failed (%d)\n", ret);
1488                 return ret;
1489         }
1490
1491         ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1492                                          true, TRANS_DDI_HDCP_SIGNALLING);
1493         if (ret) {
1494                 drm_err(&dev_priv->drm,
1495                         "Enable HDCP signalling failed (%d)\n", ret);
1496                 return ret;
1497         }
1498
1499         return 0;
1500 }
1501
1502 static
1503 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1504                                       enum transcoder cpu_transcoder,
1505                                       bool enable)
1506 {
1507         struct intel_hdmi *hdmi = &dig_port->hdmi;
1508         struct intel_connector *connector = hdmi->attached_connector;
1509         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1510         int ret;
1511
1512         if (!enable)
1513                 usleep_range(6, 60); /* Bspec says >= 6us */
1514
1515         ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1516                                          cpu_transcoder, enable,
1517                                          TRANS_DDI_HDCP_SIGNALLING);
1518         if (ret) {
1519                 drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n",
1520                         enable ? "Enable" : "Disable", ret);
1521                 return ret;
1522         }
1523
1524         /*
1525          * WA: To fix incorrect positioning of the window of
1526          * opportunity and enc_en signalling in KABYLAKE.
1527          */
1528         if (IS_KABYLAKE(dev_priv) && enable)
1529                 return kbl_repositioning_enc_en_signal(connector,
1530                                                        cpu_transcoder);
1531
1532         return 0;
1533 }
1534
1535 static
1536 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1537                                      struct intel_connector *connector)
1538 {
1539         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1540         enum port port = dig_port->base.port;
1541         enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1542         int ret;
1543         union {
1544                 u32 reg;
1545                 u8 shim[DRM_HDCP_RI_LEN];
1546         } ri;
1547
1548         ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1549         if (ret)
1550                 return false;
1551
1552         intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1553
1554         /* Wait for Ri prime match */
1555         if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1556                       (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1557                      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1558                 drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n",
1559                         intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1560                                                         port)));
1561                 return false;
1562         }
1563         return true;
1564 }
1565
1566 static
1567 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1568                                 struct intel_connector *connector)
1569 {
1570         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1571         int retry;
1572
1573         for (retry = 0; retry < 3; retry++)
1574                 if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1575                         return true;
1576
1577         drm_err(&i915->drm, "Link check failed\n");
1578         return false;
1579 }
1580
1581 struct hdcp2_hdmi_msg_timeout {
1582         u8 msg_id;
1583         u16 timeout;
1584 };
1585
1586 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1587         { HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1588         { HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1589         { HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1590         { HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1591         { HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1592 };
1593
1594 static
1595 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1596                                     u8 *rx_status)
1597 {
1598         return intel_hdmi_hdcp_read(dig_port,
1599                                     HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1600                                     rx_status,
1601                                     HDCP_2_2_HDMI_RXSTATUS_LEN);
1602 }
1603
1604 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1605 {
1606         int i;
1607
1608         if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1609                 if (is_paired)
1610                         return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1611                 else
1612                         return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1613         }
1614
1615         for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1616                 if (hdcp2_msg_timeout[i].msg_id == msg_id)
1617                         return hdcp2_msg_timeout[i].timeout;
1618         }
1619
1620         return -EINVAL;
1621 }
1622
1623 static int
1624 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1625                               u8 msg_id, bool *msg_ready,
1626                               ssize_t *msg_sz)
1627 {
1628         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1629         u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1630         int ret;
1631
1632         ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1633         if (ret < 0) {
1634                 drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n",
1635                             ret);
1636                 return ret;
1637         }
1638
1639         *msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1640                   rx_status[0]);
1641
1642         if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1643                 *msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1644                              *msg_sz);
1645         else
1646                 *msg_ready = *msg_sz;
1647
1648         return 0;
1649 }
1650
1651 static ssize_t
1652 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1653                               u8 msg_id, bool paired)
1654 {
1655         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1656         bool msg_ready = false;
1657         int timeout, ret;
1658         ssize_t msg_sz = 0;
1659
1660         timeout = get_hdcp2_msg_timeout(msg_id, paired);
1661         if (timeout < 0)
1662                 return timeout;
1663
1664         ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1665                                                              msg_id, &msg_ready,
1666                                                              &msg_sz),
1667                          !ret && msg_ready && msg_sz, timeout * 1000,
1668                          1000, 5 * 1000);
1669         if (ret)
1670                 drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n",
1671                             msg_id, ret, timeout);
1672
1673         return ret ? ret : msg_sz;
1674 }
1675
1676 static
1677 int intel_hdmi_hdcp2_write_msg(struct intel_connector *connector,
1678                                void *buf, size_t size)
1679 {
1680         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1681         unsigned int offset;
1682
1683         offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1684         return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1685 }
1686
1687 static
1688 int intel_hdmi_hdcp2_read_msg(struct intel_connector *connector,
1689                               u8 msg_id, void *buf, size_t size)
1690 {
1691         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1692         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1693         struct intel_hdmi *hdmi = &dig_port->hdmi;
1694         struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1695         unsigned int offset;
1696         ssize_t ret;
1697
1698         ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1699                                             hdcp->is_paired);
1700         if (ret < 0)
1701                 return ret;
1702
1703         /*
1704          * Available msg size should be equal to or lesser than the
1705          * available buffer.
1706          */
1707         if (ret > size) {
1708                 drm_dbg_kms(&i915->drm,
1709                             "msg_sz(%zd) is more than exp size(%zu)\n",
1710                             ret, size);
1711                 return -EINVAL;
1712         }
1713
1714         offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1715         ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1716         if (ret)
1717                 drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n",
1718                             msg_id, ret);
1719
1720         return ret;
1721 }
1722
1723 static
1724 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1725                                 struct intel_connector *connector)
1726 {
1727         u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1728         int ret;
1729
1730         ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1731         if (ret)
1732                 return ret;
1733
1734         /*
1735          * Re-auth request and Link Integrity Failures are represented by
1736          * same bit. i.e reauth_req.
1737          */
1738         if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1739                 ret = HDCP_REAUTH_REQUEST;
1740         else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1741                 ret = HDCP_TOPOLOGY_CHANGE;
1742
1743         return ret;
1744 }
1745
1746 static
1747 int intel_hdmi_hdcp2_get_capability(struct intel_connector *connector,
1748                                     bool *capable)
1749 {
1750         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1751         u8 hdcp2_version;
1752         int ret;
1753
1754         *capable = false;
1755         ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1756                                    &hdcp2_version, sizeof(hdcp2_version));
1757         if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1758                 *capable = true;
1759
1760         return ret;
1761 }
1762
1763 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1764         .write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1765         .read_bksv = intel_hdmi_hdcp_read_bksv,
1766         .read_bstatus = intel_hdmi_hdcp_read_bstatus,
1767         .repeater_present = intel_hdmi_hdcp_repeater_present,
1768         .read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1769         .read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1770         .read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1771         .read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1772         .toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1773         .check_link = intel_hdmi_hdcp_check_link,
1774         .write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1775         .read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1776         .check_2_2_link = intel_hdmi_hdcp2_check_link,
1777         .hdcp_2_2_get_capability = intel_hdmi_hdcp2_get_capability,
1778         .protocol = HDCP_PROTOCOL_HDMI,
1779 };
1780
1781 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1782 {
1783         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1784         int max_tmds_clock, vbt_max_tmds_clock;
1785
1786         if (DISPLAY_VER(dev_priv) >= 10)
1787                 max_tmds_clock = 594000;
1788         else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv))
1789                 max_tmds_clock = 300000;
1790         else if (DISPLAY_VER(dev_priv) >= 5)
1791                 max_tmds_clock = 225000;
1792         else
1793                 max_tmds_clock = 165000;
1794
1795         vbt_max_tmds_clock = intel_bios_hdmi_max_tmds_clock(encoder->devdata);
1796         if (vbt_max_tmds_clock)
1797                 max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1798
1799         return max_tmds_clock;
1800 }
1801
1802 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1803                                 const struct drm_connector_state *conn_state)
1804 {
1805         struct intel_connector *connector = hdmi->attached_connector;
1806
1807         return connector->base.display_info.is_hdmi &&
1808                 READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1809 }
1810
1811 static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state)
1812 {
1813         return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420;
1814 }
1815
1816 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1817                                  bool respect_downstream_limits,
1818                                  bool has_hdmi_sink)
1819 {
1820         struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1821         int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1822
1823         if (respect_downstream_limits) {
1824                 struct intel_connector *connector = hdmi->attached_connector;
1825                 const struct drm_display_info *info = &connector->base.display_info;
1826
1827                 if (hdmi->dp_dual_mode.max_tmds_clock)
1828                         max_tmds_clock = min(max_tmds_clock,
1829                                              hdmi->dp_dual_mode.max_tmds_clock);
1830
1831                 if (info->max_tmds_clock)
1832                         max_tmds_clock = min(max_tmds_clock,
1833                                              info->max_tmds_clock);
1834                 else if (!has_hdmi_sink)
1835                         max_tmds_clock = min(max_tmds_clock, 165000);
1836         }
1837
1838         return max_tmds_clock;
1839 }
1840
1841 static enum drm_mode_status
1842 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1843                       int clock, bool respect_downstream_limits,
1844                       bool has_hdmi_sink)
1845 {
1846         struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1847         struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1848
1849         if (clock < 25000)
1850                 return MODE_CLOCK_LOW;
1851         if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1852                                           has_hdmi_sink))
1853                 return MODE_CLOCK_HIGH;
1854
1855         /* GLK DPLL can't generate 446-480 MHz */
1856         if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1857                 return MODE_CLOCK_RANGE;
1858
1859         /* BXT/GLK DPLL can't generate 223-240 MHz */
1860         if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1861             clock > 223333 && clock < 240000)
1862                 return MODE_CLOCK_RANGE;
1863
1864         /* CHV DPLL can't generate 216-240 MHz */
1865         if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1866                 return MODE_CLOCK_RANGE;
1867
1868         /* ICL+ combo PHY PLL can't generate 500-533.2 MHz */
1869         if (intel_encoder_is_combo(encoder) && clock > 500000 && clock < 533200)
1870                 return MODE_CLOCK_RANGE;
1871
1872         /* ICL+ TC PHY PLL can't generate 500-532.8 MHz */
1873         if (intel_encoder_is_tc(encoder) && clock > 500000 && clock < 532800)
1874                 return MODE_CLOCK_RANGE;
1875
1876         /*
1877          * SNPS PHYs' MPLLB table-based programming can only handle a fixed
1878          * set of link rates.
1879          *
1880          * FIXME: We will hopefully get an algorithmic way of programming
1881          * the MPLLB for HDMI in the future.
1882          */
1883         if (DISPLAY_VER(dev_priv) >= 14)
1884                 return intel_cx0_phy_check_hdmi_link_rate(hdmi, clock);
1885         else if (IS_DG2(dev_priv))
1886                 return intel_snps_phy_check_hdmi_link_rate(clock);
1887
1888         return MODE_OK;
1889 }
1890
1891 int intel_hdmi_tmds_clock(int clock, int bpc,
1892                           enum intel_output_format sink_format)
1893 {
1894         /* YCBCR420 TMDS rate requirement is half the pixel clock */
1895         if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1896                 clock /= 2;
1897
1898         /*
1899          * Need to adjust the port link by:
1900          *  1.5x for 12bpc
1901          *  1.25x for 10bpc
1902          */
1903         return DIV_ROUND_CLOSEST(clock * bpc, 8);
1904 }
1905
1906 static bool intel_hdmi_source_bpc_possible(struct drm_i915_private *i915, int bpc)
1907 {
1908         switch (bpc) {
1909         case 12:
1910                 return !HAS_GMCH(i915);
1911         case 10:
1912                 return DISPLAY_VER(i915) >= 11;
1913         case 8:
1914                 return true;
1915         default:
1916                 MISSING_CASE(bpc);
1917                 return false;
1918         }
1919 }
1920
1921 static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector,
1922                                          int bpc, bool has_hdmi_sink,
1923                                          enum intel_output_format sink_format)
1924 {
1925         const struct drm_display_info *info = &connector->display_info;
1926         const struct drm_hdmi_info *hdmi = &info->hdmi;
1927
1928         switch (bpc) {
1929         case 12:
1930                 if (!has_hdmi_sink)
1931                         return false;
1932
1933                 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1934                         return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1935                 else
1936                         return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36;
1937         case 10:
1938                 if (!has_hdmi_sink)
1939                         return false;
1940
1941                 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1942                         return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1943                 else
1944                         return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30;
1945         case 8:
1946                 return true;
1947         default:
1948                 MISSING_CASE(bpc);
1949                 return false;
1950         }
1951 }
1952
1953 static enum drm_mode_status
1954 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1955                             bool has_hdmi_sink,
1956                             enum intel_output_format sink_format)
1957 {
1958         struct drm_i915_private *i915 = to_i915(connector->dev);
1959         struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1960         enum drm_mode_status status = MODE_OK;
1961         int bpc;
1962
1963         /*
1964          * Try all color depths since valid port clock range
1965          * can have holes. Any mode that can be used with at
1966          * least one color depth is accepted.
1967          */
1968         for (bpc = 12; bpc >= 8; bpc -= 2) {
1969                 int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, sink_format);
1970
1971                 if (!intel_hdmi_source_bpc_possible(i915, bpc))
1972                         continue;
1973
1974                 if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, sink_format))
1975                         continue;
1976
1977                 status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink);
1978                 if (status == MODE_OK)
1979                         return MODE_OK;
1980         }
1981
1982         /* can never happen */
1983         drm_WARN_ON(&i915->drm, status == MODE_OK);
1984
1985         return status;
1986 }
1987
1988 static enum drm_mode_status
1989 intel_hdmi_mode_valid(struct drm_connector *connector,
1990                       struct drm_display_mode *mode)
1991 {
1992         struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1993         struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1994         enum drm_mode_status status;
1995         int clock = mode->clock;
1996         int max_dotclk = to_i915(connector->dev)->display.cdclk.max_dotclk_freq;
1997         bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
1998         bool ycbcr_420_only;
1999         enum intel_output_format sink_format;
2000
2001         status = intel_cpu_transcoder_mode_valid(dev_priv, mode);
2002         if (status != MODE_OK)
2003                 return status;
2004
2005         if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
2006                 clock *= 2;
2007
2008         if (clock > max_dotclk)
2009                 return MODE_CLOCK_HIGH;
2010
2011         if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
2012                 if (!has_hdmi_sink)
2013                         return MODE_CLOCK_LOW;
2014                 clock *= 2;
2015         }
2016
2017         /*
2018          * HDMI2.1 requires higher resolution modes like 8k60, 4K120 to be
2019          * enumerated only if FRL is supported. Current platforms do not support
2020          * FRL so prune the higher resolution modes that require doctclock more
2021          * than 600MHz.
2022          */
2023         if (clock > 600000)
2024                 return MODE_CLOCK_HIGH;
2025
2026         ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
2027
2028         if (ycbcr_420_only)
2029                 sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2030         else
2031                 sink_format = INTEL_OUTPUT_FORMAT_RGB;
2032
2033         status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2034         if (status != MODE_OK) {
2035                 if (ycbcr_420_only ||
2036                     !connector->ycbcr_420_allowed ||
2037                     !drm_mode_is_420_also(&connector->display_info, mode))
2038                         return status;
2039
2040                 sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2041                 status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2042                 if (status != MODE_OK)
2043                         return status;
2044         }
2045
2046         return intel_mode_valid_max_plane_size(dev_priv, mode, false);
2047 }
2048
2049 bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state,
2050                              int bpc, bool has_hdmi_sink)
2051 {
2052         struct drm_atomic_state *state = crtc_state->uapi.state;
2053         struct drm_connector_state *connector_state;
2054         struct drm_connector *connector;
2055         int i;
2056
2057         for_each_new_connector_in_state(state, connector, connector_state, i) {
2058                 if (connector_state->crtc != crtc_state->uapi.crtc)
2059                         continue;
2060
2061                 if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink,
2062                                                   crtc_state->sink_format))
2063                         return false;
2064         }
2065
2066         return true;
2067 }
2068
2069 static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc)
2070 {
2071         struct drm_i915_private *dev_priv =
2072                 to_i915(crtc_state->uapi.crtc->dev);
2073         const struct drm_display_mode *adjusted_mode =
2074                 &crtc_state->hw.adjusted_mode;
2075
2076         if (!intel_hdmi_source_bpc_possible(dev_priv, bpc))
2077                 return false;
2078
2079         /* Display Wa_1405510057:icl,ehl */
2080         if (intel_hdmi_is_ycbcr420(crtc_state) &&
2081             bpc == 10 && DISPLAY_VER(dev_priv) == 11 &&
2082             (adjusted_mode->crtc_hblank_end -
2083              adjusted_mode->crtc_hblank_start) % 8 == 2)
2084                 return false;
2085
2086         return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink);
2087 }
2088
2089 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2090                                   struct intel_crtc_state *crtc_state,
2091                                   int clock, bool respect_downstream_limits)
2092 {
2093         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2094         int bpc;
2095
2096         /*
2097          * pipe_bpp could already be below 8bpc due to FDI
2098          * bandwidth constraints. HDMI minimum is 8bpc however.
2099          */
2100         bpc = max(crtc_state->pipe_bpp / 3, 8);
2101
2102         /*
2103          * We will never exceed downstream TMDS clock limits while
2104          * attempting deep color. If the user insists on forcing an
2105          * out of spec mode they will have to be satisfied with 8bpc.
2106          */
2107         if (!respect_downstream_limits)
2108                 bpc = 8;
2109
2110         for (; bpc >= 8; bpc -= 2) {
2111                 int tmds_clock = intel_hdmi_tmds_clock(clock, bpc,
2112                                                        crtc_state->sink_format);
2113
2114                 if (hdmi_bpc_possible(crtc_state, bpc) &&
2115                     hdmi_port_clock_valid(intel_hdmi, tmds_clock,
2116                                           respect_downstream_limits,
2117                                           crtc_state->has_hdmi_sink) == MODE_OK)
2118                         return bpc;
2119         }
2120
2121         return -EINVAL;
2122 }
2123
2124 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2125                                     struct intel_crtc_state *crtc_state,
2126                                     bool respect_downstream_limits)
2127 {
2128         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2129         const struct drm_display_mode *adjusted_mode =
2130                 &crtc_state->hw.adjusted_mode;
2131         int bpc, clock = adjusted_mode->crtc_clock;
2132
2133         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2134                 clock *= 2;
2135
2136         bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock,
2137                                      respect_downstream_limits);
2138         if (bpc < 0)
2139                 return bpc;
2140
2141         crtc_state->port_clock =
2142                 intel_hdmi_tmds_clock(clock, bpc, crtc_state->sink_format);
2143
2144         /*
2145          * pipe_bpp could already be below 8bpc due to
2146          * FDI bandwidth constraints. We shouldn't bump it
2147          * back up to the HDMI minimum 8bpc in that case.
2148          */
2149         crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3);
2150
2151         drm_dbg_kms(&i915->drm,
2152                     "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2153                     bpc, crtc_state->pipe_bpp);
2154
2155         return 0;
2156 }
2157
2158 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2159                                     const struct drm_connector_state *conn_state)
2160 {
2161         const struct intel_digital_connector_state *intel_conn_state =
2162                 to_intel_digital_connector_state(conn_state);
2163         const struct drm_display_mode *adjusted_mode =
2164                 &crtc_state->hw.adjusted_mode;
2165
2166         /*
2167          * Our YCbCr output is always limited range.
2168          * crtc_state->limited_color_range only applies to RGB,
2169          * and it must never be set for YCbCr or we risk setting
2170          * some conflicting bits in TRANSCONF which will mess up
2171          * the colors on the monitor.
2172          */
2173         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2174                 return false;
2175
2176         if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2177                 /* See CEA-861-E - 5.1 Default Encoding Parameters */
2178                 return crtc_state->has_hdmi_sink &&
2179                         drm_default_rgb_quant_range(adjusted_mode) ==
2180                         HDMI_QUANTIZATION_RANGE_LIMITED;
2181         } else {
2182                 return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2183         }
2184 }
2185
2186 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2187                                  const struct intel_crtc_state *crtc_state,
2188                                  const struct drm_connector_state *conn_state)
2189 {
2190         struct drm_connector *connector = conn_state->connector;
2191         const struct intel_digital_connector_state *intel_conn_state =
2192                 to_intel_digital_connector_state(conn_state);
2193
2194         if (!crtc_state->has_hdmi_sink)
2195                 return false;
2196
2197         if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2198                 return connector->display_info.has_audio;
2199         else
2200                 return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2201 }
2202
2203 static enum intel_output_format
2204 intel_hdmi_sink_format(const struct intel_crtc_state *crtc_state,
2205                        struct intel_connector *connector,
2206                        bool ycbcr_420_output)
2207 {
2208         if (!crtc_state->has_hdmi_sink)
2209                 return INTEL_OUTPUT_FORMAT_RGB;
2210
2211         if (connector->base.ycbcr_420_allowed && ycbcr_420_output)
2212                 return INTEL_OUTPUT_FORMAT_YCBCR420;
2213         else
2214                 return INTEL_OUTPUT_FORMAT_RGB;
2215 }
2216
2217 static enum intel_output_format
2218 intel_hdmi_output_format(const struct intel_crtc_state *crtc_state)
2219 {
2220         return crtc_state->sink_format;
2221 }
2222
2223 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2224                                             struct intel_crtc_state *crtc_state,
2225                                             const struct drm_connector_state *conn_state,
2226                                             bool respect_downstream_limits)
2227 {
2228         struct intel_connector *connector = to_intel_connector(conn_state->connector);
2229         const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2230         const struct drm_display_info *info = &connector->base.display_info;
2231         struct drm_i915_private *i915 = to_i915(connector->base.dev);
2232         bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode);
2233         int ret;
2234
2235         crtc_state->sink_format =
2236                 intel_hdmi_sink_format(crtc_state, connector, ycbcr_420_only);
2237
2238         if (ycbcr_420_only && crtc_state->sink_format != INTEL_OUTPUT_FORMAT_YCBCR420) {
2239                 drm_dbg_kms(&i915->drm,
2240                             "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2241                 crtc_state->sink_format = INTEL_OUTPUT_FORMAT_RGB;
2242         }
2243
2244         crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2245         ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2246         if (ret) {
2247                 if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
2248                     !crtc_state->has_hdmi_sink ||
2249                     !connector->base.ycbcr_420_allowed ||
2250                     !drm_mode_is_420_also(info, adjusted_mode))
2251                         return ret;
2252
2253                 crtc_state->sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2254                 crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2255                 ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2256         }
2257
2258         return ret;
2259 }
2260
2261 static bool intel_hdmi_is_cloned(const struct intel_crtc_state *crtc_state)
2262 {
2263         return crtc_state->uapi.encoder_mask &&
2264                 !is_power_of_2(crtc_state->uapi.encoder_mask);
2265 }
2266
2267 static bool source_supports_scrambling(struct intel_encoder *encoder)
2268 {
2269         /*
2270          * Gen 10+ support HDMI 2.0 : the max tmds clock is 594MHz, and
2271          * scrambling is supported.
2272          * But there seem to be cases where certain platforms that support
2273          * HDMI 2.0, have an HDMI1.4 retimer chip, and the max tmds clock is
2274          * capped by VBT to less than 340MHz.
2275          *
2276          * In such cases when an HDMI2.0 sink is connected, it creates a
2277          * problem : the platform and the sink both support scrambling but the
2278          * HDMI 1.4 retimer chip doesn't.
2279          *
2280          * So go for scrambling, based on the max tmds clock taking into account,
2281          * restrictions coming from VBT.
2282          */
2283         return intel_hdmi_source_max_tmds_clock(encoder) > 340000;
2284 }
2285
2286 bool intel_hdmi_compute_has_hdmi_sink(struct intel_encoder *encoder,
2287                                       const struct intel_crtc_state *crtc_state,
2288                                       const struct drm_connector_state *conn_state)
2289 {
2290         struct intel_hdmi *hdmi = enc_to_intel_hdmi(encoder);
2291
2292         return intel_has_hdmi_sink(hdmi, conn_state) &&
2293                 !intel_hdmi_is_cloned(crtc_state);
2294 }
2295
2296 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2297                               struct intel_crtc_state *pipe_config,
2298                               struct drm_connector_state *conn_state)
2299 {
2300         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2301         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2302         struct drm_connector *connector = conn_state->connector;
2303         struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2304         int ret;
2305
2306         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2307                 return -EINVAL;
2308
2309         if (!connector->interlace_allowed &&
2310             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2311                 return -EINVAL;
2312
2313         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2314
2315         if (pipe_config->has_hdmi_sink)
2316                 pipe_config->has_infoframe = true;
2317
2318         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2319                 pipe_config->pixel_multiplier = 2;
2320
2321         pipe_config->has_audio =
2322                 intel_hdmi_has_audio(encoder, pipe_config, conn_state) &&
2323                 intel_audio_compute_config(encoder, pipe_config, conn_state);
2324
2325         /*
2326          * Try to respect downstream TMDS clock limits first, if
2327          * that fails assume the user might know something we don't.
2328          */
2329         ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true);
2330         if (ret)
2331                 ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false);
2332         if (ret) {
2333                 drm_dbg_kms(&dev_priv->drm,
2334                             "unsupported HDMI clock (%d kHz), rejecting mode\n",
2335                             pipe_config->hw.adjusted_mode.crtc_clock);
2336                 return ret;
2337         }
2338
2339         if (intel_hdmi_is_ycbcr420(pipe_config)) {
2340                 ret = intel_panel_fitting(pipe_config, conn_state);
2341                 if (ret)
2342                         return ret;
2343         }
2344
2345         pipe_config->limited_color_range =
2346                 intel_hdmi_limited_color_range(pipe_config, conn_state);
2347
2348         if (conn_state->picture_aspect_ratio)
2349                 adjusted_mode->picture_aspect_ratio =
2350                         conn_state->picture_aspect_ratio;
2351
2352         pipe_config->lane_count = 4;
2353
2354         if (scdc->scrambling.supported && source_supports_scrambling(encoder)) {
2355                 if (scdc->scrambling.low_rates)
2356                         pipe_config->hdmi_scrambling = true;
2357
2358                 if (pipe_config->port_clock > 340000) {
2359                         pipe_config->hdmi_scrambling = true;
2360                         pipe_config->hdmi_high_tmds_clock_ratio = true;
2361                 }
2362         }
2363
2364         intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2365                                          conn_state);
2366
2367         if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2368                 drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n");
2369                 return -EINVAL;
2370         }
2371
2372         if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2373                 drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n");
2374                 return -EINVAL;
2375         }
2376
2377         if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2378                 drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n");
2379                 return -EINVAL;
2380         }
2381
2382         if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2383                 drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n");
2384                 return -EINVAL;
2385         }
2386
2387         return 0;
2388 }
2389
2390 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
2391 {
2392         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2393
2394         /*
2395          * Give a hand to buggy BIOSen which forget to turn
2396          * the TMDS output buffers back on after a reboot.
2397          */
2398         intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
2399 }
2400
2401 static void
2402 intel_hdmi_unset_edid(struct drm_connector *connector)
2403 {
2404         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2405
2406         intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2407         intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2408
2409         drm_edid_free(to_intel_connector(connector)->detect_edid);
2410         to_intel_connector(connector)->detect_edid = NULL;
2411 }
2412
2413 static void
2414 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector)
2415 {
2416         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2417         struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2418         struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
2419         struct i2c_adapter *ddc = connector->ddc;
2420         enum drm_dp_dual_mode_type type;
2421
2422         type = drm_dp_dual_mode_detect(&dev_priv->drm, ddc);
2423
2424         /*
2425          * Type 1 DVI adaptors are not required to implement any
2426          * registers, so we can't always detect their presence.
2427          * Ideally we should be able to check the state of the
2428          * CONFIG1 pin, but no such luck on our hardware.
2429          *
2430          * The only method left to us is to check the VBT to see
2431          * if the port is a dual mode capable DP port.
2432          */
2433         if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2434                 if (!connector->force &&
2435                     intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2436                         drm_dbg_kms(&dev_priv->drm,
2437                                     "Assuming DP dual mode adaptor presence based on VBT\n");
2438                         type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2439                 } else {
2440                         type = DRM_DP_DUAL_MODE_NONE;
2441                 }
2442         }
2443
2444         if (type == DRM_DP_DUAL_MODE_NONE)
2445                 return;
2446
2447         hdmi->dp_dual_mode.type = type;
2448         hdmi->dp_dual_mode.max_tmds_clock =
2449                 drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, ddc);
2450
2451         drm_dbg_kms(&dev_priv->drm,
2452                     "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2453                     drm_dp_get_dual_mode_type_name(type),
2454                     hdmi->dp_dual_mode.max_tmds_clock);
2455
2456         /* Older VBTs are often buggy and can't be trusted :( Play it safe. */
2457         if ((DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv)) &&
2458             !intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2459                 drm_dbg_kms(&dev_priv->drm,
2460                             "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n");
2461                 hdmi->dp_dual_mode.max_tmds_clock = 0;
2462         }
2463 }
2464
2465 static bool
2466 intel_hdmi_set_edid(struct drm_connector *connector)
2467 {
2468         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2469         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2470         struct i2c_adapter *ddc = connector->ddc;
2471         intel_wakeref_t wakeref;
2472         const struct drm_edid *drm_edid;
2473         bool connected = false;
2474
2475         wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2476
2477         drm_edid = drm_edid_read_ddc(connector, ddc);
2478
2479         if (!drm_edid && !intel_gmbus_is_forced_bit(ddc)) {
2480                 drm_dbg_kms(&dev_priv->drm,
2481                             "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2482                 intel_gmbus_force_bit(ddc, true);
2483                 drm_edid = drm_edid_read_ddc(connector, ddc);
2484                 intel_gmbus_force_bit(ddc, false);
2485         }
2486
2487         /* Below we depend on display info having been updated */
2488         drm_edid_connector_update(connector, drm_edid);
2489
2490         to_intel_connector(connector)->detect_edid = drm_edid;
2491
2492         if (drm_edid_is_digital(drm_edid)) {
2493                 intel_hdmi_dp_dual_mode_detect(connector);
2494
2495                 connected = true;
2496         }
2497
2498         intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2499
2500         cec_notifier_set_phys_addr(intel_hdmi->cec_notifier,
2501                                    connector->display_info.source_physical_address);
2502
2503         return connected;
2504 }
2505
2506 static enum drm_connector_status
2507 intel_hdmi_detect(struct drm_connector *connector, bool force)
2508 {
2509         enum drm_connector_status status = connector_status_disconnected;
2510         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2511         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2512         struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2513         intel_wakeref_t wakeref;
2514
2515         drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
2516                     connector->base.id, connector->name);
2517
2518         if (!intel_display_device_enabled(dev_priv))
2519                 return connector_status_disconnected;
2520
2521         if (!intel_display_driver_check_access(dev_priv))
2522                 return connector->status;
2523
2524         wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2525
2526         if (DISPLAY_VER(dev_priv) >= 11 &&
2527             !intel_digital_port_connected(encoder))
2528                 goto out;
2529
2530         intel_hdmi_unset_edid(connector);
2531
2532         if (intel_hdmi_set_edid(connector))
2533                 status = connector_status_connected;
2534
2535 out:
2536         intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2537
2538         if (status != connector_status_connected)
2539                 cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2540
2541         return status;
2542 }
2543
2544 static void
2545 intel_hdmi_force(struct drm_connector *connector)
2546 {
2547         struct drm_i915_private *i915 = to_i915(connector->dev);
2548
2549         drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
2550                     connector->base.id, connector->name);
2551
2552         if (!intel_display_driver_check_access(i915))
2553                 return;
2554
2555         intel_hdmi_unset_edid(connector);
2556
2557         if (connector->status != connector_status_connected)
2558                 return;
2559
2560         intel_hdmi_set_edid(connector);
2561 }
2562
2563 static int intel_hdmi_get_modes(struct drm_connector *connector)
2564 {
2565         /* drm_edid_connector_update() done in ->detect() or ->force() */
2566         return drm_edid_connector_add_modes(connector);
2567 }
2568
2569 static int
2570 intel_hdmi_connector_register(struct drm_connector *connector)
2571 {
2572         int ret;
2573
2574         ret = intel_connector_register(connector);
2575         if (ret)
2576                 return ret;
2577
2578         return ret;
2579 }
2580
2581 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2582 {
2583         struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2584
2585         cec_notifier_conn_unregister(n);
2586
2587         intel_connector_unregister(connector);
2588 }
2589
2590 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2591         .detect = intel_hdmi_detect,
2592         .force = intel_hdmi_force,
2593         .fill_modes = drm_helper_probe_single_connector_modes,
2594         .atomic_get_property = intel_digital_connector_atomic_get_property,
2595         .atomic_set_property = intel_digital_connector_atomic_set_property,
2596         .late_register = intel_hdmi_connector_register,
2597         .early_unregister = intel_hdmi_connector_unregister,
2598         .destroy = intel_connector_destroy,
2599         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2600         .atomic_duplicate_state = intel_digital_connector_duplicate_state,
2601 };
2602
2603 static int intel_hdmi_connector_atomic_check(struct drm_connector *connector,
2604                                              struct drm_atomic_state *state)
2605 {
2606         struct drm_i915_private *i915 = to_i915(state->dev);
2607
2608         if (HAS_DDI(i915))
2609                 return intel_digital_connector_atomic_check(connector, state);
2610         else
2611                 return g4x_hdmi_connector_atomic_check(connector, state);
2612 }
2613
2614 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2615         .get_modes = intel_hdmi_get_modes,
2616         .mode_valid = intel_hdmi_mode_valid,
2617         .atomic_check = intel_hdmi_connector_atomic_check,
2618 };
2619
2620 static void
2621 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2622 {
2623         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2624
2625         intel_attach_force_audio_property(connector);
2626         intel_attach_broadcast_rgb_property(connector);
2627         intel_attach_aspect_ratio_property(connector);
2628
2629         intel_attach_hdmi_colorspace_property(connector);
2630         drm_connector_attach_content_type_property(connector);
2631
2632         if (DISPLAY_VER(dev_priv) >= 10)
2633                 drm_connector_attach_hdr_output_metadata_property(connector);
2634
2635         if (!HAS_GMCH(dev_priv))
2636                 drm_connector_attach_max_bpc_property(connector, 8, 12);
2637 }
2638
2639 /*
2640  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2641  * @encoder: intel_encoder
2642  * @connector: drm_connector
2643  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2644  *  or reset the high tmds clock ratio for scrambling
2645  * @scrambling: bool to Indicate if the function needs to set or reset
2646  *  sink scrambling
2647  *
2648  * This function handles scrambling on HDMI 2.0 capable sinks.
2649  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2650  * it enables scrambling. This should be called before enabling the HDMI
2651  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2652  * detect a scrambled clock within 100 ms.
2653  *
2654  * Returns:
2655  * True on success, false on failure.
2656  */
2657 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2658                                        struct drm_connector *connector,
2659                                        bool high_tmds_clock_ratio,
2660                                        bool scrambling)
2661 {
2662         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2663         struct drm_scrambling *sink_scrambling =
2664                 &connector->display_info.hdmi.scdc.scrambling;
2665
2666         if (!sink_scrambling->supported)
2667                 return true;
2668
2669         drm_dbg_kms(&dev_priv->drm,
2670                     "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2671                     connector->base.id, connector->name,
2672                     str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10);
2673
2674         /* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2675         return drm_scdc_set_high_tmds_clock_ratio(connector, high_tmds_clock_ratio) &&
2676                 drm_scdc_set_scrambling(connector, scrambling);
2677 }
2678
2679 static u8 chv_encoder_to_ddc_pin(struct intel_encoder *encoder)
2680 {
2681         enum port port = encoder->port;
2682         u8 ddc_pin;
2683
2684         switch (port) {
2685         case PORT_B:
2686                 ddc_pin = GMBUS_PIN_DPB;
2687                 break;
2688         case PORT_C:
2689                 ddc_pin = GMBUS_PIN_DPC;
2690                 break;
2691         case PORT_D:
2692                 ddc_pin = GMBUS_PIN_DPD_CHV;
2693                 break;
2694         default:
2695                 MISSING_CASE(port);
2696                 ddc_pin = GMBUS_PIN_DPB;
2697                 break;
2698         }
2699         return ddc_pin;
2700 }
2701
2702 static u8 bxt_encoder_to_ddc_pin(struct intel_encoder *encoder)
2703 {
2704         enum port port = encoder->port;
2705         u8 ddc_pin;
2706
2707         switch (port) {
2708         case PORT_B:
2709                 ddc_pin = GMBUS_PIN_1_BXT;
2710                 break;
2711         case PORT_C:
2712                 ddc_pin = GMBUS_PIN_2_BXT;
2713                 break;
2714         default:
2715                 MISSING_CASE(port);
2716                 ddc_pin = GMBUS_PIN_1_BXT;
2717                 break;
2718         }
2719         return ddc_pin;
2720 }
2721
2722 static u8 cnp_encoder_to_ddc_pin(struct intel_encoder *encoder)
2723 {
2724         enum port port = encoder->port;
2725         u8 ddc_pin;
2726
2727         switch (port) {
2728         case PORT_B:
2729                 ddc_pin = GMBUS_PIN_1_BXT;
2730                 break;
2731         case PORT_C:
2732                 ddc_pin = GMBUS_PIN_2_BXT;
2733                 break;
2734         case PORT_D:
2735                 ddc_pin = GMBUS_PIN_4_CNP;
2736                 break;
2737         case PORT_F:
2738                 ddc_pin = GMBUS_PIN_3_BXT;
2739                 break;
2740         default:
2741                 MISSING_CASE(port);
2742                 ddc_pin = GMBUS_PIN_1_BXT;
2743                 break;
2744         }
2745         return ddc_pin;
2746 }
2747
2748 static u8 icl_encoder_to_ddc_pin(struct intel_encoder *encoder)
2749 {
2750         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2751         enum port port = encoder->port;
2752
2753         if (intel_encoder_is_combo(encoder))
2754                 return GMBUS_PIN_1_BXT + port;
2755         else if (intel_encoder_is_tc(encoder))
2756                 return GMBUS_PIN_9_TC1_ICP + intel_encoder_to_tc(encoder);
2757
2758         drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
2759         return GMBUS_PIN_2_BXT;
2760 }
2761
2762 static u8 mcc_encoder_to_ddc_pin(struct intel_encoder *encoder)
2763 {
2764         enum phy phy = intel_encoder_to_phy(encoder);
2765         u8 ddc_pin;
2766
2767         switch (phy) {
2768         case PHY_A:
2769                 ddc_pin = GMBUS_PIN_1_BXT;
2770                 break;
2771         case PHY_B:
2772                 ddc_pin = GMBUS_PIN_2_BXT;
2773                 break;
2774         case PHY_C:
2775                 ddc_pin = GMBUS_PIN_9_TC1_ICP;
2776                 break;
2777         default:
2778                 MISSING_CASE(phy);
2779                 ddc_pin = GMBUS_PIN_1_BXT;
2780                 break;
2781         }
2782         return ddc_pin;
2783 }
2784
2785 static u8 rkl_encoder_to_ddc_pin(struct intel_encoder *encoder)
2786 {
2787         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2788         enum phy phy = intel_encoder_to_phy(encoder);
2789
2790         WARN_ON(encoder->port == PORT_C);
2791
2792         /*
2793          * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2794          * final two outputs use type-c pins, even though they're actually
2795          * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2796          * all outputs.
2797          */
2798         if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2799                 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2800
2801         return GMBUS_PIN_1_BXT + phy;
2802 }
2803
2804 static u8 gen9bc_tgp_encoder_to_ddc_pin(struct intel_encoder *encoder)
2805 {
2806         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2807         enum phy phy = intel_encoder_to_phy(encoder);
2808
2809         drm_WARN_ON(&i915->drm, encoder->port == PORT_A);
2810
2811         /*
2812          * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2813          * final two outputs use type-c pins, even though they're actually
2814          * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2815          * all outputs.
2816          */
2817         if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2818                 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2819
2820         return GMBUS_PIN_1_BXT + phy;
2821 }
2822
2823 static u8 dg1_encoder_to_ddc_pin(struct intel_encoder *encoder)
2824 {
2825         return intel_encoder_to_phy(encoder) + 1;
2826 }
2827
2828 static u8 adls_encoder_to_ddc_pin(struct intel_encoder *encoder)
2829 {
2830         enum phy phy = intel_encoder_to_phy(encoder);
2831
2832         WARN_ON(encoder->port == PORT_B || encoder->port == PORT_C);
2833
2834         /*
2835          * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2836          * except first combo output.
2837          */
2838         if (phy == PHY_A)
2839                 return GMBUS_PIN_1_BXT;
2840
2841         return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2842 }
2843
2844 static u8 g4x_encoder_to_ddc_pin(struct intel_encoder *encoder)
2845 {
2846         enum port port = encoder->port;
2847         u8 ddc_pin;
2848
2849         switch (port) {
2850         case PORT_B:
2851                 ddc_pin = GMBUS_PIN_DPB;
2852                 break;
2853         case PORT_C:
2854                 ddc_pin = GMBUS_PIN_DPC;
2855                 break;
2856         case PORT_D:
2857                 ddc_pin = GMBUS_PIN_DPD;
2858                 break;
2859         default:
2860                 MISSING_CASE(port);
2861                 ddc_pin = GMBUS_PIN_DPB;
2862                 break;
2863         }
2864         return ddc_pin;
2865 }
2866
2867 static u8 intel_hdmi_default_ddc_pin(struct intel_encoder *encoder)
2868 {
2869         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2870         u8 ddc_pin;
2871
2872         if (IS_ALDERLAKE_S(dev_priv))
2873                 ddc_pin = adls_encoder_to_ddc_pin(encoder);
2874         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2875                 ddc_pin = dg1_encoder_to_ddc_pin(encoder);
2876         else if (IS_ROCKETLAKE(dev_priv))
2877                 ddc_pin = rkl_encoder_to_ddc_pin(encoder);
2878         else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv))
2879                 ddc_pin = gen9bc_tgp_encoder_to_ddc_pin(encoder);
2880         else if ((IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) &&
2881                  HAS_PCH_TGP(dev_priv))
2882                 ddc_pin = mcc_encoder_to_ddc_pin(encoder);
2883         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2884                 ddc_pin = icl_encoder_to_ddc_pin(encoder);
2885         else if (HAS_PCH_CNP(dev_priv))
2886                 ddc_pin = cnp_encoder_to_ddc_pin(encoder);
2887         else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2888                 ddc_pin = bxt_encoder_to_ddc_pin(encoder);
2889         else if (IS_CHERRYVIEW(dev_priv))
2890                 ddc_pin = chv_encoder_to_ddc_pin(encoder);
2891         else
2892                 ddc_pin = g4x_encoder_to_ddc_pin(encoder);
2893
2894         return ddc_pin;
2895 }
2896
2897 static struct intel_encoder *
2898 get_encoder_by_ddc_pin(struct intel_encoder *encoder, u8 ddc_pin)
2899 {
2900         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2901         struct intel_encoder *other;
2902
2903         for_each_intel_encoder(&i915->drm, other) {
2904                 struct intel_connector *connector;
2905
2906                 if (other == encoder)
2907                         continue;
2908
2909                 if (!intel_encoder_is_dig_port(other))
2910                         continue;
2911
2912                 connector = enc_to_dig_port(other)->hdmi.attached_connector;
2913
2914                 if (connector && connector->base.ddc == intel_gmbus_get_adapter(i915, ddc_pin))
2915                         return other;
2916         }
2917
2918         return NULL;
2919 }
2920
2921 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2922 {
2923         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2924         struct intel_encoder *other;
2925         const char *source;
2926         u8 ddc_pin;
2927
2928         ddc_pin = intel_bios_hdmi_ddc_pin(encoder->devdata);
2929         source = "VBT";
2930
2931         if (!ddc_pin) {
2932                 ddc_pin = intel_hdmi_default_ddc_pin(encoder);
2933                 source = "platform default";
2934         }
2935
2936         if (!intel_gmbus_is_valid_pin(i915, ddc_pin)) {
2937                 drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] Invalid DDC pin %d\n",
2938                             encoder->base.base.id, encoder->base.name, ddc_pin);
2939                 return 0;
2940         }
2941
2942         other = get_encoder_by_ddc_pin(encoder, ddc_pin);
2943         if (other) {
2944                 drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] DDC pin %d already claimed by [ENCODER:%d:%s]\n",
2945                             encoder->base.base.id, encoder->base.name, ddc_pin,
2946                             other->base.base.id, other->base.name);
2947                 return 0;
2948         }
2949
2950         drm_dbg_kms(&i915->drm,
2951                     "[ENCODER:%d:%s] Using DDC pin 0x%x (%s)\n",
2952                     encoder->base.base.id, encoder->base.name,
2953                     ddc_pin, source);
2954
2955         return ddc_pin;
2956 }
2957
2958 void intel_infoframe_init(struct intel_digital_port *dig_port)
2959 {
2960         struct drm_i915_private *dev_priv =
2961                 to_i915(dig_port->base.base.dev);
2962
2963         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2964                 dig_port->write_infoframe = vlv_write_infoframe;
2965                 dig_port->read_infoframe = vlv_read_infoframe;
2966                 dig_port->set_infoframes = vlv_set_infoframes;
2967                 dig_port->infoframes_enabled = vlv_infoframes_enabled;
2968         } else if (IS_G4X(dev_priv)) {
2969                 dig_port->write_infoframe = g4x_write_infoframe;
2970                 dig_port->read_infoframe = g4x_read_infoframe;
2971                 dig_port->set_infoframes = g4x_set_infoframes;
2972                 dig_port->infoframes_enabled = g4x_infoframes_enabled;
2973         } else if (HAS_DDI(dev_priv)) {
2974                 if (intel_bios_encoder_is_lspcon(dig_port->base.devdata)) {
2975                         dig_port->write_infoframe = lspcon_write_infoframe;
2976                         dig_port->read_infoframe = lspcon_read_infoframe;
2977                         dig_port->set_infoframes = lspcon_set_infoframes;
2978                         dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2979                 } else {
2980                         dig_port->write_infoframe = hsw_write_infoframe;
2981                         dig_port->read_infoframe = hsw_read_infoframe;
2982                         dig_port->set_infoframes = hsw_set_infoframes;
2983                         dig_port->infoframes_enabled = hsw_infoframes_enabled;
2984                 }
2985         } else if (HAS_PCH_IBX(dev_priv)) {
2986                 dig_port->write_infoframe = ibx_write_infoframe;
2987                 dig_port->read_infoframe = ibx_read_infoframe;
2988                 dig_port->set_infoframes = ibx_set_infoframes;
2989                 dig_port->infoframes_enabled = ibx_infoframes_enabled;
2990         } else {
2991                 dig_port->write_infoframe = cpt_write_infoframe;
2992                 dig_port->read_infoframe = cpt_read_infoframe;
2993                 dig_port->set_infoframes = cpt_set_infoframes;
2994                 dig_port->infoframes_enabled = cpt_infoframes_enabled;
2995         }
2996 }
2997
2998 void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
2999                                struct intel_connector *intel_connector)
3000 {
3001         struct drm_connector *connector = &intel_connector->base;
3002         struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
3003         struct intel_encoder *intel_encoder = &dig_port->base;
3004         struct drm_device *dev = intel_encoder->base.dev;
3005         struct drm_i915_private *dev_priv = to_i915(dev);
3006         enum port port = intel_encoder->port;
3007         struct cec_connector_info conn_info;
3008         u8 ddc_pin;
3009
3010         drm_dbg_kms(&dev_priv->drm,
3011                     "Adding HDMI connector on [ENCODER:%d:%s]\n",
3012                     intel_encoder->base.base.id, intel_encoder->base.name);
3013
3014         if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
3015                 return;
3016
3017         if (drm_WARN(dev, dig_port->max_lanes < 4,
3018                      "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
3019                      dig_port->max_lanes, intel_encoder->base.base.id,
3020                      intel_encoder->base.name))
3021                 return;
3022
3023         ddc_pin = intel_hdmi_ddc_pin(intel_encoder);
3024         if (!ddc_pin)
3025                 return;
3026
3027         drm_connector_init_with_ddc(dev, connector,
3028                                     &intel_hdmi_connector_funcs,
3029                                     DRM_MODE_CONNECTOR_HDMIA,
3030                                     intel_gmbus_get_adapter(dev_priv, ddc_pin));
3031
3032         drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
3033
3034         if (DISPLAY_VER(dev_priv) < 12)
3035                 connector->interlace_allowed = true;
3036
3037         connector->stereo_allowed = true;
3038
3039         if (DISPLAY_VER(dev_priv) >= 10)
3040                 connector->ycbcr_420_allowed = true;
3041
3042         intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
3043         intel_connector->base.polled = intel_connector->polled;
3044
3045         if (HAS_DDI(dev_priv))
3046                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3047         else
3048                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3049
3050         intel_hdmi_add_properties(intel_hdmi, connector);
3051
3052         intel_connector_attach_encoder(intel_connector, intel_encoder);
3053         intel_hdmi->attached_connector = intel_connector;
3054
3055         if (is_hdcp_supported(dev_priv, port)) {
3056                 int ret = intel_hdcp_init(intel_connector, dig_port,
3057                                           &intel_hdmi_hdcp_shim);
3058                 if (ret)
3059                         drm_dbg_kms(&dev_priv->drm,
3060                                     "HDCP init failed, skipping.\n");
3061         }
3062
3063         cec_fill_conn_info_from_drm(&conn_info, connector);
3064
3065         intel_hdmi->cec_notifier =
3066                 cec_notifier_conn_register(dev->dev, port_identifier(port),
3067                                            &conn_info);
3068         if (!intel_hdmi->cec_notifier)
3069                 drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n");
3070 }
3071
3072 /*
3073  * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
3074  * @vactive: Vactive of a display mode
3075  *
3076  * @return: appropriate dsc slice height for a given mode.
3077  */
3078 int intel_hdmi_dsc_get_slice_height(int vactive)
3079 {
3080         int slice_height;
3081
3082         /*
3083          * Slice Height determination : HDMI2.1 Section 7.7.5.2
3084          * Select smallest slice height >=96, that results in a valid PPS and
3085          * requires minimum padding lines required for final slice.
3086          *
3087          * Assumption : Vactive is even.
3088          */
3089         for (slice_height = 96; slice_height <= vactive; slice_height += 2)
3090                 if (vactive % slice_height == 0)
3091                         return slice_height;
3092
3093         return 0;
3094 }
3095
3096 /*
3097  * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
3098  * and dsc decoder capabilities
3099  *
3100  * @crtc_state: intel crtc_state
3101  * @src_max_slices: maximum slices supported by the DSC encoder
3102  * @src_max_slice_width: maximum slice width supported by DSC encoder
3103  * @hdmi_max_slices: maximum slices supported by sink DSC decoder
3104  * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
3105  *
3106  * @return: num of dsc slices that can be supported by the dsc encoder
3107  * and decoder.
3108  */
3109 int
3110 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
3111                               int src_max_slices, int src_max_slice_width,
3112                               int hdmi_max_slices, int hdmi_throughput)
3113 {
3114 /* Pixel rates in KPixels/sec */
3115 #define HDMI_DSC_PEAK_PIXEL_RATE                2720000
3116 /*
3117  * Rates at which the source and sink are required to process pixels in each
3118  * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
3119  */
3120 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0           340000
3121 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1           400000
3122
3123 /* Spec limits the slice width to 2720 pixels */
3124 #define MAX_HDMI_SLICE_WIDTH                    2720
3125         int kslice_adjust;
3126         int adjusted_clk_khz;
3127         int min_slices;
3128         int target_slices;
3129         int max_throughput; /* max clock freq. in khz per slice */
3130         int max_slice_width;
3131         int slice_width;
3132         int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
3133
3134         if (!hdmi_throughput)
3135                 return 0;
3136
3137         /*
3138          * Slice Width determination : HDMI2.1 Section 7.7.5.1
3139          * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
3140          * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
3141          * dividing adjusted clock value by 10.
3142          */
3143         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3144             crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
3145                 kslice_adjust = 10;
3146         else
3147                 kslice_adjust = 5;
3148
3149         /*
3150          * As per spec, the rate at which the source and the sink process
3151          * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
3152          * This depends upon the pixel clock rate and output formats
3153          * (kslice adjust).
3154          * If pixel clock * kslice adjust >= 2720MHz slices can be processed
3155          * at max 340MHz, otherwise they can be processed at max 400MHz.
3156          */
3157
3158         adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3159
3160         if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3161                 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3162         else
3163                 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3164
3165         /*
3166          * Taking into account the sink's capability for maximum
3167          * clock per slice (in MHz) as read from HF-VSDB.
3168          */
3169         max_throughput = min(max_throughput, hdmi_throughput * 1000);
3170
3171         min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3172         max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3173
3174         /*
3175          * Keep on increasing the num of slices/line, starting from min_slices
3176          * per line till we get such a number, for which the slice_width is
3177          * just less than max_slice_width. The slices/line selected should be
3178          * less than or equal to the max horizontal slices that the combination
3179          * of PCON encoder and HDMI decoder can support.
3180          */
3181         slice_width = max_slice_width;
3182
3183         do {
3184                 if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3185                         target_slices = 1;
3186                 else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3187                         target_slices = 2;
3188                 else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3189                         target_slices = 4;
3190                 else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3191                         target_slices = 8;
3192                 else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3193                         target_slices = 12;
3194                 else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3195                         target_slices = 16;
3196                 else
3197                         return 0;
3198
3199                 slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3200                 if (slice_width >= max_slice_width)
3201                         min_slices = target_slices + 1;
3202         } while (slice_width >= max_slice_width);
3203
3204         return target_slices;
3205 }
3206
3207 /*
3208  * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3209  * source and sink capabilities.
3210  *
3211  * @src_fraction_bpp: fractional bpp supported by the source
3212  * @slice_width: dsc slice width supported by the source and sink
3213  * @num_slices: num of slices supported by the source and sink
3214  * @output_format: video output format
3215  * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3216  * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3217  *
3218  * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3219  */
3220 int
3221 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3222                        int output_format, bool hdmi_all_bpp,
3223                        int hdmi_max_chunk_bytes)
3224 {
3225         int max_dsc_bpp, min_dsc_bpp;
3226         int target_bytes;
3227         bool bpp_found = false;
3228         int bpp_decrement_x16;
3229         int bpp_target;
3230         int bpp_target_x16;
3231
3232         /*
3233          * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3234          * Start with the max bpp and keep on decrementing with
3235          * fractional bpp, if supported by PCON DSC encoder
3236          *
3237          * for each bpp we check if no of bytes can be supported by HDMI sink
3238          */
3239
3240         /* Assuming: bpc as 8*/
3241         if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3242                 min_dsc_bpp = 6;
3243                 max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3244         } else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3245                    output_format == INTEL_OUTPUT_FORMAT_RGB) {
3246                 min_dsc_bpp = 8;
3247                 max_dsc_bpp = 3 * 8; /* 3*bpc */
3248         } else {
3249                 /* Assuming 4:2:2 encoding */
3250                 min_dsc_bpp = 7;
3251                 max_dsc_bpp = 2 * 8; /* 2*bpc */
3252         }
3253
3254         /*
3255          * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3256          * Section 7.7.34 : Source shall not enable compressed Video
3257          * Transport with bpp_target settings above 12 bpp unless
3258          * DSC_all_bpp is set to 1.
3259          */
3260         if (!hdmi_all_bpp)
3261                 max_dsc_bpp = min(max_dsc_bpp, 12);
3262
3263         /*
3264          * The Sink has a limit of compressed data in bytes for a scanline,
3265          * as described in max_chunk_bytes field in HFVSDB block of edid.
3266          * The no. of bytes depend on the target bits per pixel that the
3267          * source configures. So we start with the max_bpp and calculate
3268          * the target_chunk_bytes. We keep on decrementing the target_bpp,
3269          * till we get the target_chunk_bytes just less than what the sink's
3270          * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3271          *
3272          * The decrement is according to the fractional support from PCON DSC
3273          * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3274          *
3275          * bpp_target_x16 = bpp_target * 16
3276          * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3277          * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3278          */
3279
3280         bpp_target = max_dsc_bpp;
3281
3282         /* src does not support fractional bpp implies decrement by 16 for bppx16 */
3283         if (!src_fractional_bpp)
3284                 src_fractional_bpp = 1;
3285         bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3286         bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3287
3288         while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3289                 int bpp;
3290
3291                 bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3292                 target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3293                 if (target_bytes <= hdmi_max_chunk_bytes) {
3294                         bpp_found = true;
3295                         break;
3296                 }
3297                 bpp_target_x16 -= bpp_decrement_x16;
3298         }
3299         if (bpp_found)
3300                 return bpp_target_x16;
3301
3302         return 0;
3303 }