Merge tag 'drm-intel-next-2022-06-22' of git://anongit.freedesktop.org/drm/drm-intel...
[linux-block.git] / drivers / gpu / drm / i915 / display / intel_hdcp.c
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  * Copyright _ 2017-2019, Intel Corporation.
5  *
6  * Authors:
7  * Sean Paul <seanpaul@chromium.org>
8  * Ramalingam C <ramalingam.c@intel.com>
9  */
10
11 #include <linux/component.h>
12 #include <linux/i2c.h>
13 #include <linux/random.h>
14
15 #include <drm/display/drm_hdcp_helper.h>
16 #include <drm/i915_component.h>
17
18 #include "i915_drv.h"
19 #include "i915_reg.h"
20 #include "intel_connector.h"
21 #include "intel_de.h"
22 #include "intel_display_power.h"
23 #include "intel_display_power_well.h"
24 #include "intel_display_types.h"
25 #include "intel_hdcp.h"
26 #include "intel_pcode.h"
27
28 #define KEY_LOAD_TRIES  5
29 #define HDCP2_LC_RETRY_CNT                      3
30
31 static int intel_conn_to_vcpi(struct intel_connector *connector)
32 {
33         /* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
34         return connector->port  ? connector->port->vcpi.vcpi : 0;
35 }
36
37 /*
38  * intel_hdcp_required_content_stream selects the most highest common possible HDCP
39  * content_type for all streams in DP MST topology because security f/w doesn't
40  * have any provision to mark content_type for each stream separately, it marks
41  * all available streams with the content_type proivided at the time of port
42  * authentication. This may prohibit the userspace to use type1 content on
43  * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
44  * DP MST topology. Though it is not compulsory, security fw should change its
45  * policy to mark different content_types for different streams.
46  */
47 static int
48 intel_hdcp_required_content_stream(struct intel_digital_port *dig_port)
49 {
50         struct drm_connector_list_iter conn_iter;
51         struct intel_digital_port *conn_dig_port;
52         struct intel_connector *connector;
53         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
54         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
55         bool enforce_type0 = false;
56         int k;
57
58         data->k = 0;
59
60         if (dig_port->hdcp_auth_status)
61                 return 0;
62
63         drm_connector_list_iter_begin(&i915->drm, &conn_iter);
64         for_each_intel_connector_iter(connector, &conn_iter) {
65                 if (connector->base.status == connector_status_disconnected)
66                         continue;
67
68                 if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
69                         continue;
70
71                 conn_dig_port = intel_attached_dig_port(connector);
72                 if (conn_dig_port != dig_port)
73                         continue;
74
75                 if (!enforce_type0 && !dig_port->hdcp_mst_type1_capable)
76                         enforce_type0 = true;
77
78                 data->streams[data->k].stream_id = intel_conn_to_vcpi(connector);
79                 data->k++;
80
81                 /* if there is only one active stream */
82                 if (dig_port->dp.active_mst_links <= 1)
83                         break;
84         }
85         drm_connector_list_iter_end(&conn_iter);
86
87         if (drm_WARN_ON(&i915->drm, data->k > INTEL_NUM_PIPES(i915) || data->k == 0))
88                 return -EINVAL;
89
90         /*
91          * Apply common protection level across all streams in DP MST Topology.
92          * Use highest supported content type for all streams in DP MST Topology.
93          */
94         for (k = 0; k < data->k; k++)
95                 data->streams[k].stream_type =
96                         enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
97
98         return 0;
99 }
100
101 static int intel_hdcp_prepare_streams(struct intel_connector *connector)
102 {
103         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
104         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
105         struct intel_hdcp *hdcp = &connector->hdcp;
106         int ret;
107
108         if (!intel_encoder_is_mst(intel_attached_encoder(connector))) {
109                 data->k = 1;
110                 data->streams[0].stream_type = hdcp->content_type;
111         } else {
112                 ret = intel_hdcp_required_content_stream(dig_port);
113                 if (ret)
114                         return ret;
115         }
116
117         return 0;
118 }
119
120 static
121 bool intel_hdcp_is_ksv_valid(u8 *ksv)
122 {
123         int i, ones = 0;
124         /* KSV has 20 1's and 20 0's */
125         for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
126                 ones += hweight8(ksv[i]);
127         if (ones != 20)
128                 return false;
129
130         return true;
131 }
132
133 static
134 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
135                                const struct intel_hdcp_shim *shim, u8 *bksv)
136 {
137         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
138         int ret, i, tries = 2;
139
140         /* HDCP spec states that we must retry the bksv if it is invalid */
141         for (i = 0; i < tries; i++) {
142                 ret = shim->read_bksv(dig_port, bksv);
143                 if (ret)
144                         return ret;
145                 if (intel_hdcp_is_ksv_valid(bksv))
146                         break;
147         }
148         if (i == tries) {
149                 drm_dbg_kms(&i915->drm, "Bksv is invalid\n");
150                 return -ENODEV;
151         }
152
153         return 0;
154 }
155
156 /* Is HDCP1.4 capable on Platform and Sink */
157 bool intel_hdcp_capable(struct intel_connector *connector)
158 {
159         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
160         const struct intel_hdcp_shim *shim = connector->hdcp.shim;
161         bool capable = false;
162         u8 bksv[5];
163
164         if (!shim)
165                 return capable;
166
167         if (shim->hdcp_capable) {
168                 shim->hdcp_capable(dig_port, &capable);
169         } else {
170                 if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
171                         capable = true;
172         }
173
174         return capable;
175 }
176
177 /* Is HDCP2.2 capable on Platform and Sink */
178 bool intel_hdcp2_capable(struct intel_connector *connector)
179 {
180         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
181         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
182         struct intel_hdcp *hdcp = &connector->hdcp;
183         bool capable = false;
184
185         /* I915 support for HDCP2.2 */
186         if (!hdcp->hdcp2_supported)
187                 return false;
188
189         /* MEI interface is solid */
190         mutex_lock(&dev_priv->hdcp_comp_mutex);
191         if (!dev_priv->hdcp_comp_added ||  !dev_priv->hdcp_master) {
192                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
193                 return false;
194         }
195         mutex_unlock(&dev_priv->hdcp_comp_mutex);
196
197         /* Sink's capability for HDCP2.2 */
198         hdcp->shim->hdcp_2_2_capable(dig_port, &capable);
199
200         return capable;
201 }
202
203 static bool intel_hdcp_in_use(struct drm_i915_private *dev_priv,
204                               enum transcoder cpu_transcoder, enum port port)
205 {
206         return intel_de_read(dev_priv,
207                              HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
208                HDCP_STATUS_ENC;
209 }
210
211 static bool intel_hdcp2_in_use(struct drm_i915_private *dev_priv,
212                                enum transcoder cpu_transcoder, enum port port)
213 {
214         return intel_de_read(dev_priv,
215                              HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
216                LINK_ENCRYPTION_STATUS;
217 }
218
219 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
220                                     const struct intel_hdcp_shim *shim)
221 {
222         int ret, read_ret;
223         bool ksv_ready;
224
225         /* Poll for ksv list ready (spec says max time allowed is 5s) */
226         ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
227                                                          &ksv_ready),
228                          read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
229                          100 * 1000);
230         if (ret)
231                 return ret;
232         if (read_ret)
233                 return read_ret;
234         if (!ksv_ready)
235                 return -ETIMEDOUT;
236
237         return 0;
238 }
239
240 static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
241 {
242         enum i915_power_well_id id;
243         intel_wakeref_t wakeref;
244         bool enabled = false;
245
246         /*
247          * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
248          * On all BXT+, SW can load the keys only when the PW#1 is turned on.
249          */
250         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
251                 id = HSW_DISP_PW_GLOBAL;
252         else
253                 id = SKL_DISP_PW_1;
254
255         /* PG1 (power well #1) needs to be enabled */
256         with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
257                 enabled = intel_display_power_well_is_enabled(dev_priv, id);
258
259         /*
260          * Another req for hdcp key loadability is enabled state of pll for
261          * cdclk. Without active crtc we wont land here. So we are assuming that
262          * cdclk is already on.
263          */
264
265         return enabled;
266 }
267
268 static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
269 {
270         intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
271         intel_de_write(dev_priv, HDCP_KEY_STATUS,
272                        HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
273 }
274
275 static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
276 {
277         int ret;
278         u32 val;
279
280         val = intel_de_read(dev_priv, HDCP_KEY_STATUS);
281         if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
282                 return 0;
283
284         /*
285          * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
286          * out of reset. So if Key is not already loaded, its an error state.
287          */
288         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
289                 if (!(intel_de_read(dev_priv, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
290                         return -ENXIO;
291
292         /*
293          * Initiate loading the HDCP key from fuses.
294          *
295          * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
296          * version 9 platforms (minus BXT) differ in the key load trigger
297          * process from other platforms. These platforms use the GT Driver
298          * Mailbox interface.
299          */
300         if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv)) {
301                 ret = snb_pcode_write(&dev_priv->uncore, SKL_PCODE_LOAD_HDCP_KEYS, 1);
302                 if (ret) {
303                         drm_err(&dev_priv->drm,
304                                 "Failed to initiate HDCP key load (%d)\n",
305                                 ret);
306                         return ret;
307                 }
308         } else {
309                 intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
310         }
311
312         /* Wait for the keys to load (500us) */
313         ret = __intel_wait_for_register(&dev_priv->uncore, HDCP_KEY_STATUS,
314                                         HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
315                                         10, 1, &val);
316         if (ret)
317                 return ret;
318         else if (!(val & HDCP_KEY_LOAD_STATUS))
319                 return -ENXIO;
320
321         /* Send Aksv over to PCH display for use in authentication */
322         intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
323
324         return 0;
325 }
326
327 /* Returns updated SHA-1 index */
328 static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
329 {
330         intel_de_write(dev_priv, HDCP_SHA_TEXT, sha_text);
331         if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
332                 drm_err(&dev_priv->drm, "Timed out waiting for SHA1 ready\n");
333                 return -ETIMEDOUT;
334         }
335         return 0;
336 }
337
338 static
339 u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *dev_priv,
340                                 enum transcoder cpu_transcoder, enum port port)
341 {
342         if (DISPLAY_VER(dev_priv) >= 12) {
343                 switch (cpu_transcoder) {
344                 case TRANSCODER_A:
345                         return HDCP_TRANSA_REP_PRESENT |
346                                HDCP_TRANSA_SHA1_M0;
347                 case TRANSCODER_B:
348                         return HDCP_TRANSB_REP_PRESENT |
349                                HDCP_TRANSB_SHA1_M0;
350                 case TRANSCODER_C:
351                         return HDCP_TRANSC_REP_PRESENT |
352                                HDCP_TRANSC_SHA1_M0;
353                 case TRANSCODER_D:
354                         return HDCP_TRANSD_REP_PRESENT |
355                                HDCP_TRANSD_SHA1_M0;
356                 default:
357                         drm_err(&dev_priv->drm, "Unknown transcoder %d\n",
358                                 cpu_transcoder);
359                         return -EINVAL;
360                 }
361         }
362
363         switch (port) {
364         case PORT_A:
365                 return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
366         case PORT_B:
367                 return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
368         case PORT_C:
369                 return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
370         case PORT_D:
371                 return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
372         case PORT_E:
373                 return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
374         default:
375                 drm_err(&dev_priv->drm, "Unknown port %d\n", port);
376                 return -EINVAL;
377         }
378 }
379
380 static
381 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
382                                 const struct intel_hdcp_shim *shim,
383                                 u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
384 {
385         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
386         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
387         enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
388         enum port port = dig_port->base.port;
389         u32 vprime, sha_text, sha_leftovers, rep_ctl;
390         int ret, i, j, sha_idx;
391
392         /* Process V' values from the receiver */
393         for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
394                 ret = shim->read_v_prime_part(dig_port, i, &vprime);
395                 if (ret)
396                         return ret;
397                 intel_de_write(dev_priv, HDCP_SHA_V_PRIME(i), vprime);
398         }
399
400         /*
401          * We need to write the concatenation of all device KSVs, BINFO (DP) ||
402          * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
403          * stream is written via the HDCP_SHA_TEXT register in 32-bit
404          * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
405          * index will keep track of our progress through the 64 bytes as well as
406          * helping us work the 40-bit KSVs through our 32-bit register.
407          *
408          * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
409          */
410         sha_idx = 0;
411         sha_text = 0;
412         sha_leftovers = 0;
413         rep_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port);
414         intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
415         for (i = 0; i < num_downstream; i++) {
416                 unsigned int sha_empty;
417                 u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
418
419                 /* Fill up the empty slots in sha_text and write it out */
420                 sha_empty = sizeof(sha_text) - sha_leftovers;
421                 for (j = 0; j < sha_empty; j++) {
422                         u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
423                         sha_text |= ksv[j] << off;
424                 }
425
426                 ret = intel_write_sha_text(dev_priv, sha_text);
427                 if (ret < 0)
428                         return ret;
429
430                 /* Programming guide writes this every 64 bytes */
431                 sha_idx += sizeof(sha_text);
432                 if (!(sha_idx % 64))
433                         intel_de_write(dev_priv, HDCP_REP_CTL,
434                                        rep_ctl | HDCP_SHA1_TEXT_32);
435
436                 /* Store the leftover bytes from the ksv in sha_text */
437                 sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
438                 sha_text = 0;
439                 for (j = 0; j < sha_leftovers; j++)
440                         sha_text |= ksv[sha_empty + j] <<
441                                         ((sizeof(sha_text) - j - 1) * 8);
442
443                 /*
444                  * If we still have room in sha_text for more data, continue.
445                  * Otherwise, write it out immediately.
446                  */
447                 if (sizeof(sha_text) > sha_leftovers)
448                         continue;
449
450                 ret = intel_write_sha_text(dev_priv, sha_text);
451                 if (ret < 0)
452                         return ret;
453                 sha_leftovers = 0;
454                 sha_text = 0;
455                 sha_idx += sizeof(sha_text);
456         }
457
458         /*
459          * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
460          * bytes are leftover from the last ksv, we might be able to fit them
461          * all in sha_text (first 2 cases), or we might need to split them up
462          * into 2 writes (last 2 cases).
463          */
464         if (sha_leftovers == 0) {
465                 /* Write 16 bits of text, 16 bits of M0 */
466                 intel_de_write(dev_priv, HDCP_REP_CTL,
467                                rep_ctl | HDCP_SHA1_TEXT_16);
468                 ret = intel_write_sha_text(dev_priv,
469                                            bstatus[0] << 8 | bstatus[1]);
470                 if (ret < 0)
471                         return ret;
472                 sha_idx += sizeof(sha_text);
473
474                 /* Write 32 bits of M0 */
475                 intel_de_write(dev_priv, HDCP_REP_CTL,
476                                rep_ctl | HDCP_SHA1_TEXT_0);
477                 ret = intel_write_sha_text(dev_priv, 0);
478                 if (ret < 0)
479                         return ret;
480                 sha_idx += sizeof(sha_text);
481
482                 /* Write 16 bits of M0 */
483                 intel_de_write(dev_priv, HDCP_REP_CTL,
484                                rep_ctl | HDCP_SHA1_TEXT_16);
485                 ret = intel_write_sha_text(dev_priv, 0);
486                 if (ret < 0)
487                         return ret;
488                 sha_idx += sizeof(sha_text);
489
490         } else if (sha_leftovers == 1) {
491                 /* Write 24 bits of text, 8 bits of M0 */
492                 intel_de_write(dev_priv, HDCP_REP_CTL,
493                                rep_ctl | HDCP_SHA1_TEXT_24);
494                 sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
495                 /* Only 24-bits of data, must be in the LSB */
496                 sha_text = (sha_text & 0xffffff00) >> 8;
497                 ret = intel_write_sha_text(dev_priv, sha_text);
498                 if (ret < 0)
499                         return ret;
500                 sha_idx += sizeof(sha_text);
501
502                 /* Write 32 bits of M0 */
503                 intel_de_write(dev_priv, HDCP_REP_CTL,
504                                rep_ctl | HDCP_SHA1_TEXT_0);
505                 ret = intel_write_sha_text(dev_priv, 0);
506                 if (ret < 0)
507                         return ret;
508                 sha_idx += sizeof(sha_text);
509
510                 /* Write 24 bits of M0 */
511                 intel_de_write(dev_priv, HDCP_REP_CTL,
512                                rep_ctl | HDCP_SHA1_TEXT_8);
513                 ret = intel_write_sha_text(dev_priv, 0);
514                 if (ret < 0)
515                         return ret;
516                 sha_idx += sizeof(sha_text);
517
518         } else if (sha_leftovers == 2) {
519                 /* Write 32 bits of text */
520                 intel_de_write(dev_priv, HDCP_REP_CTL,
521                                rep_ctl | HDCP_SHA1_TEXT_32);
522                 sha_text |= bstatus[0] << 8 | bstatus[1];
523                 ret = intel_write_sha_text(dev_priv, sha_text);
524                 if (ret < 0)
525                         return ret;
526                 sha_idx += sizeof(sha_text);
527
528                 /* Write 64 bits of M0 */
529                 intel_de_write(dev_priv, HDCP_REP_CTL,
530                                rep_ctl | HDCP_SHA1_TEXT_0);
531                 for (i = 0; i < 2; i++) {
532                         ret = intel_write_sha_text(dev_priv, 0);
533                         if (ret < 0)
534                                 return ret;
535                         sha_idx += sizeof(sha_text);
536                 }
537
538                 /*
539                  * Terminate the SHA-1 stream by hand. For the other leftover
540                  * cases this is appended by the hardware.
541                  */
542                 intel_de_write(dev_priv, HDCP_REP_CTL,
543                                rep_ctl | HDCP_SHA1_TEXT_32);
544                 sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
545                 ret = intel_write_sha_text(dev_priv, sha_text);
546                 if (ret < 0)
547                         return ret;
548                 sha_idx += sizeof(sha_text);
549         } else if (sha_leftovers == 3) {
550                 /* Write 32 bits of text (filled from LSB) */
551                 intel_de_write(dev_priv, HDCP_REP_CTL,
552                                rep_ctl | HDCP_SHA1_TEXT_32);
553                 sha_text |= bstatus[0];
554                 ret = intel_write_sha_text(dev_priv, sha_text);
555                 if (ret < 0)
556                         return ret;
557                 sha_idx += sizeof(sha_text);
558
559                 /* Write 8 bits of text (filled from LSB), 24 bits of M0 */
560                 intel_de_write(dev_priv, HDCP_REP_CTL,
561                                rep_ctl | HDCP_SHA1_TEXT_8);
562                 ret = intel_write_sha_text(dev_priv, bstatus[1]);
563                 if (ret < 0)
564                         return ret;
565                 sha_idx += sizeof(sha_text);
566
567                 /* Write 32 bits of M0 */
568                 intel_de_write(dev_priv, HDCP_REP_CTL,
569                                rep_ctl | HDCP_SHA1_TEXT_0);
570                 ret = intel_write_sha_text(dev_priv, 0);
571                 if (ret < 0)
572                         return ret;
573                 sha_idx += sizeof(sha_text);
574
575                 /* Write 8 bits of M0 */
576                 intel_de_write(dev_priv, HDCP_REP_CTL,
577                                rep_ctl | HDCP_SHA1_TEXT_24);
578                 ret = intel_write_sha_text(dev_priv, 0);
579                 if (ret < 0)
580                         return ret;
581                 sha_idx += sizeof(sha_text);
582         } else {
583                 drm_dbg_kms(&dev_priv->drm, "Invalid number of leftovers %d\n",
584                             sha_leftovers);
585                 return -EINVAL;
586         }
587
588         intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
589         /* Fill up to 64-4 bytes with zeros (leave the last write for length) */
590         while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
591                 ret = intel_write_sha_text(dev_priv, 0);
592                 if (ret < 0)
593                         return ret;
594                 sha_idx += sizeof(sha_text);
595         }
596
597         /*
598          * Last write gets the length of the concatenation in bits. That is:
599          *  - 5 bytes per device
600          *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
601          */
602         sha_text = (num_downstream * 5 + 10) * 8;
603         ret = intel_write_sha_text(dev_priv, sha_text);
604         if (ret < 0)
605                 return ret;
606
607         /* Tell the HW we're done with the hash and wait for it to ACK */
608         intel_de_write(dev_priv, HDCP_REP_CTL,
609                        rep_ctl | HDCP_SHA1_COMPLETE_HASH);
610         if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL,
611                                   HDCP_SHA1_COMPLETE, 1)) {
612                 drm_err(&dev_priv->drm, "Timed out waiting for SHA1 complete\n");
613                 return -ETIMEDOUT;
614         }
615         if (!(intel_de_read(dev_priv, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
616                 drm_dbg_kms(&dev_priv->drm, "SHA-1 mismatch, HDCP failed\n");
617                 return -ENXIO;
618         }
619
620         return 0;
621 }
622
623 /* Implements Part 2 of the HDCP authorization procedure */
624 static
625 int intel_hdcp_auth_downstream(struct intel_connector *connector)
626 {
627         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
628         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
629         const struct intel_hdcp_shim *shim = connector->hdcp.shim;
630         u8 bstatus[2], num_downstream, *ksv_fifo;
631         int ret, i, tries = 3;
632
633         ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
634         if (ret) {
635                 drm_dbg_kms(&dev_priv->drm,
636                             "KSV list failed to become ready (%d)\n", ret);
637                 return ret;
638         }
639
640         ret = shim->read_bstatus(dig_port, bstatus);
641         if (ret)
642                 return ret;
643
644         if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
645             DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
646                 drm_dbg_kms(&dev_priv->drm, "Max Topology Limit Exceeded\n");
647                 return -EPERM;
648         }
649
650         /*
651          * When repeater reports 0 device count, HDCP1.4 spec allows disabling
652          * the HDCP encryption. That implies that repeater can't have its own
653          * display. As there is no consumption of encrypted content in the
654          * repeater with 0 downstream devices, we are failing the
655          * authentication.
656          */
657         num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
658         if (num_downstream == 0) {
659                 drm_dbg_kms(&dev_priv->drm,
660                             "Repeater with zero downstream devices\n");
661                 return -EINVAL;
662         }
663
664         ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
665         if (!ksv_fifo) {
666                 drm_dbg_kms(&dev_priv->drm, "Out of mem: ksv_fifo\n");
667                 return -ENOMEM;
668         }
669
670         ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
671         if (ret)
672                 goto err;
673
674         if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, ksv_fifo,
675                                         num_downstream) > 0) {
676                 drm_err(&dev_priv->drm, "Revoked Ksv(s) in ksv_fifo\n");
677                 ret = -EPERM;
678                 goto err;
679         }
680
681         /*
682          * When V prime mismatches, DP Spec mandates re-read of
683          * V prime atleast twice.
684          */
685         for (i = 0; i < tries; i++) {
686                 ret = intel_hdcp_validate_v_prime(connector, shim,
687                                                   ksv_fifo, num_downstream,
688                                                   bstatus);
689                 if (!ret)
690                         break;
691         }
692
693         if (i == tries) {
694                 drm_dbg_kms(&dev_priv->drm,
695                             "V Prime validation failed.(%d)\n", ret);
696                 goto err;
697         }
698
699         drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (%d downstream devices)\n",
700                     num_downstream);
701         ret = 0;
702 err:
703         kfree(ksv_fifo);
704         return ret;
705 }
706
707 /* Implements Part 1 of the HDCP authorization procedure */
708 static int intel_hdcp_auth(struct intel_connector *connector)
709 {
710         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
711         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
712         struct intel_hdcp *hdcp = &connector->hdcp;
713         const struct intel_hdcp_shim *shim = hdcp->shim;
714         enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
715         enum port port = dig_port->base.port;
716         unsigned long r0_prime_gen_start;
717         int ret, i, tries = 2;
718         union {
719                 u32 reg[2];
720                 u8 shim[DRM_HDCP_AN_LEN];
721         } an;
722         union {
723                 u32 reg[2];
724                 u8 shim[DRM_HDCP_KSV_LEN];
725         } bksv;
726         union {
727                 u32 reg;
728                 u8 shim[DRM_HDCP_RI_LEN];
729         } ri;
730         bool repeater_present, hdcp_capable;
731
732         /*
733          * Detects whether the display is HDCP capable. Although we check for
734          * valid Bksv below, the HDCP over DP spec requires that we check
735          * whether the display supports HDCP before we write An. For HDMI
736          * displays, this is not necessary.
737          */
738         if (shim->hdcp_capable) {
739                 ret = shim->hdcp_capable(dig_port, &hdcp_capable);
740                 if (ret)
741                         return ret;
742                 if (!hdcp_capable) {
743                         drm_dbg_kms(&dev_priv->drm,
744                                     "Panel is not HDCP capable\n");
745                         return -EINVAL;
746                 }
747         }
748
749         /* Initialize An with 2 random values and acquire it */
750         for (i = 0; i < 2; i++)
751                 intel_de_write(dev_priv,
752                                HDCP_ANINIT(dev_priv, cpu_transcoder, port),
753                                get_random_u32());
754         intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
755                        HDCP_CONF_CAPTURE_AN);
756
757         /* Wait for An to be acquired */
758         if (intel_de_wait_for_set(dev_priv,
759                                   HDCP_STATUS(dev_priv, cpu_transcoder, port),
760                                   HDCP_STATUS_AN_READY, 1)) {
761                 drm_err(&dev_priv->drm, "Timed out waiting for An\n");
762                 return -ETIMEDOUT;
763         }
764
765         an.reg[0] = intel_de_read(dev_priv,
766                                   HDCP_ANLO(dev_priv, cpu_transcoder, port));
767         an.reg[1] = intel_de_read(dev_priv,
768                                   HDCP_ANHI(dev_priv, cpu_transcoder, port));
769         ret = shim->write_an_aksv(dig_port, an.shim);
770         if (ret)
771                 return ret;
772
773         r0_prime_gen_start = jiffies;
774
775         memset(&bksv, 0, sizeof(bksv));
776
777         ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
778         if (ret < 0)
779                 return ret;
780
781         if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, bksv.shim, 1) > 0) {
782                 drm_err(&dev_priv->drm, "BKSV is revoked\n");
783                 return -EPERM;
784         }
785
786         intel_de_write(dev_priv, HDCP_BKSVLO(dev_priv, cpu_transcoder, port),
787                        bksv.reg[0]);
788         intel_de_write(dev_priv, HDCP_BKSVHI(dev_priv, cpu_transcoder, port),
789                        bksv.reg[1]);
790
791         ret = shim->repeater_present(dig_port, &repeater_present);
792         if (ret)
793                 return ret;
794         if (repeater_present)
795                 intel_de_write(dev_priv, HDCP_REP_CTL,
796                                intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port));
797
798         ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
799         if (ret)
800                 return ret;
801
802         intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
803                        HDCP_CONF_AUTH_AND_ENC);
804
805         /* Wait for R0 ready */
806         if (wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
807                      (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
808                 drm_err(&dev_priv->drm, "Timed out waiting for R0 ready\n");
809                 return -ETIMEDOUT;
810         }
811
812         /*
813          * Wait for R0' to become available. The spec says 100ms from Aksv, but
814          * some monitors can take longer than this. We'll set the timeout at
815          * 300ms just to be sure.
816          *
817          * On DP, there's an R0_READY bit available but no such bit
818          * exists on HDMI. Since the upper-bound is the same, we'll just do
819          * the stupid thing instead of polling on one and not the other.
820          */
821         wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
822
823         tries = 3;
824
825         /*
826          * DP HDCP Spec mandates the two more reattempt to read R0, incase
827          * of R0 mismatch.
828          */
829         for (i = 0; i < tries; i++) {
830                 ri.reg = 0;
831                 ret = shim->read_ri_prime(dig_port, ri.shim);
832                 if (ret)
833                         return ret;
834                 intel_de_write(dev_priv,
835                                HDCP_RPRIME(dev_priv, cpu_transcoder, port),
836                                ri.reg);
837
838                 /* Wait for Ri prime match */
839                 if (!wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
840                               (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
841                         break;
842         }
843
844         if (i == tries) {
845                 drm_dbg_kms(&dev_priv->drm,
846                             "Timed out waiting for Ri prime match (%x)\n",
847                             intel_de_read(dev_priv, HDCP_STATUS(dev_priv,
848                                           cpu_transcoder, port)));
849                 return -ETIMEDOUT;
850         }
851
852         /* Wait for encryption confirmation */
853         if (intel_de_wait_for_set(dev_priv,
854                                   HDCP_STATUS(dev_priv, cpu_transcoder, port),
855                                   HDCP_STATUS_ENC,
856                                   HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
857                 drm_err(&dev_priv->drm, "Timed out waiting for encryption\n");
858                 return -ETIMEDOUT;
859         }
860
861         /* DP MST Auth Part 1 Step 2.a and Step 2.b */
862         if (shim->stream_encryption) {
863                 ret = shim->stream_encryption(connector, true);
864                 if (ret) {
865                         drm_err(&dev_priv->drm, "[%s:%d] Failed to enable HDCP 1.4 stream enc\n",
866                                 connector->base.name, connector->base.base.id);
867                         return ret;
868                 }
869                 drm_dbg_kms(&dev_priv->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
870                             transcoder_name(hdcp->stream_transcoder));
871         }
872
873         if (repeater_present)
874                 return intel_hdcp_auth_downstream(connector);
875
876         drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (no repeater present)\n");
877         return 0;
878 }
879
880 static int _intel_hdcp_disable(struct intel_connector *connector)
881 {
882         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
883         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
884         struct intel_hdcp *hdcp = &connector->hdcp;
885         enum port port = dig_port->base.port;
886         enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
887         u32 repeater_ctl;
888         int ret;
889
890         drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being disabled...\n",
891                     connector->base.name, connector->base.base.id);
892
893         if (hdcp->shim->stream_encryption) {
894                 ret = hdcp->shim->stream_encryption(connector, false);
895                 if (ret) {
896                         drm_err(&dev_priv->drm, "[%s:%d] Failed to disable HDCP 1.4 stream enc\n",
897                                 connector->base.name, connector->base.base.id);
898                         return ret;
899                 }
900                 drm_dbg_kms(&dev_priv->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
901                             transcoder_name(hdcp->stream_transcoder));
902                 /*
903                  * If there are other connectors on this port using HDCP,
904                  * don't disable it until it disabled HDCP encryption for
905                  * all connectors in MST topology.
906                  */
907                 if (dig_port->num_hdcp_streams > 0)
908                         return 0;
909         }
910
911         hdcp->hdcp_encrypted = false;
912         intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port), 0);
913         if (intel_de_wait_for_clear(dev_priv,
914                                     HDCP_STATUS(dev_priv, cpu_transcoder, port),
915                                     ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
916                 drm_err(&dev_priv->drm,
917                         "Failed to disable HDCP, timeout clearing status\n");
918                 return -ETIMEDOUT;
919         }
920
921         repeater_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder,
922                                                    port);
923         intel_de_write(dev_priv, HDCP_REP_CTL,
924                        intel_de_read(dev_priv, HDCP_REP_CTL) & ~repeater_ctl);
925
926         ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
927         if (ret) {
928                 drm_err(&dev_priv->drm, "Failed to disable HDCP signalling\n");
929                 return ret;
930         }
931
932         drm_dbg_kms(&dev_priv->drm, "HDCP is disabled\n");
933         return 0;
934 }
935
936 static int _intel_hdcp_enable(struct intel_connector *connector)
937 {
938         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
939         struct intel_hdcp *hdcp = &connector->hdcp;
940         int i, ret, tries = 3;
941
942         drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being enabled...\n",
943                     connector->base.name, connector->base.base.id);
944
945         if (!hdcp_key_loadable(dev_priv)) {
946                 drm_err(&dev_priv->drm, "HDCP key Load is not possible\n");
947                 return -ENXIO;
948         }
949
950         for (i = 0; i < KEY_LOAD_TRIES; i++) {
951                 ret = intel_hdcp_load_keys(dev_priv);
952                 if (!ret)
953                         break;
954                 intel_hdcp_clear_keys(dev_priv);
955         }
956         if (ret) {
957                 drm_err(&dev_priv->drm, "Could not load HDCP keys, (%d)\n",
958                         ret);
959                 return ret;
960         }
961
962         /* Incase of authentication failures, HDCP spec expects reauth. */
963         for (i = 0; i < tries; i++) {
964                 ret = intel_hdcp_auth(connector);
965                 if (!ret) {
966                         hdcp->hdcp_encrypted = true;
967                         return 0;
968                 }
969
970                 drm_dbg_kms(&dev_priv->drm, "HDCP Auth failure (%d)\n", ret);
971
972                 /* Ensuring HDCP encryption and signalling are stopped. */
973                 _intel_hdcp_disable(connector);
974         }
975
976         drm_dbg_kms(&dev_priv->drm,
977                     "HDCP authentication failed (%d tries/%d)\n", tries, ret);
978         return ret;
979 }
980
981 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
982 {
983         return container_of(hdcp, struct intel_connector, hdcp);
984 }
985
986 static void intel_hdcp_update_value(struct intel_connector *connector,
987                                     u64 value, bool update_property)
988 {
989         struct drm_device *dev = connector->base.dev;
990         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
991         struct intel_hdcp *hdcp = &connector->hdcp;
992
993         drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex));
994
995         if (hdcp->value == value)
996                 return;
997
998         drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex));
999
1000         if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1001                 if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0))
1002                         dig_port->num_hdcp_streams--;
1003         } else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1004                 dig_port->num_hdcp_streams++;
1005         }
1006
1007         hdcp->value = value;
1008         if (update_property) {
1009                 drm_connector_get(&connector->base);
1010                 schedule_work(&hdcp->prop_work);
1011         }
1012 }
1013
1014 /* Implements Part 3 of the HDCP authorization procedure */
1015 static int intel_hdcp_check_link(struct intel_connector *connector)
1016 {
1017         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1018         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1019         struct intel_hdcp *hdcp = &connector->hdcp;
1020         enum port port = dig_port->base.port;
1021         enum transcoder cpu_transcoder;
1022         int ret = 0;
1023
1024         mutex_lock(&hdcp->mutex);
1025         mutex_lock(&dig_port->hdcp_mutex);
1026
1027         cpu_transcoder = hdcp->cpu_transcoder;
1028
1029         /* Check_link valid only when HDCP1.4 is enabled */
1030         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1031             !hdcp->hdcp_encrypted) {
1032                 ret = -EINVAL;
1033                 goto out;
1034         }
1035
1036         if (drm_WARN_ON(&dev_priv->drm,
1037                         !intel_hdcp_in_use(dev_priv, cpu_transcoder, port))) {
1038                 drm_err(&dev_priv->drm,
1039                         "%s:%d HDCP link stopped encryption,%x\n",
1040                         connector->base.name, connector->base.base.id,
1041                         intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)));
1042                 ret = -ENXIO;
1043                 intel_hdcp_update_value(connector,
1044                                         DRM_MODE_CONTENT_PROTECTION_DESIRED,
1045                                         true);
1046                 goto out;
1047         }
1048
1049         if (hdcp->shim->check_link(dig_port, connector)) {
1050                 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1051                         intel_hdcp_update_value(connector,
1052                                 DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1053                 }
1054                 goto out;
1055         }
1056
1057         drm_dbg_kms(&dev_priv->drm,
1058                     "[%s:%d] HDCP link failed, retrying authentication\n",
1059                     connector->base.name, connector->base.base.id);
1060
1061         ret = _intel_hdcp_disable(connector);
1062         if (ret) {
1063                 drm_err(&dev_priv->drm, "Failed to disable hdcp (%d)\n", ret);
1064                 intel_hdcp_update_value(connector,
1065                                         DRM_MODE_CONTENT_PROTECTION_DESIRED,
1066                                         true);
1067                 goto out;
1068         }
1069
1070         ret = _intel_hdcp_enable(connector);
1071         if (ret) {
1072                 drm_err(&dev_priv->drm, "Failed to enable hdcp (%d)\n", ret);
1073                 intel_hdcp_update_value(connector,
1074                                         DRM_MODE_CONTENT_PROTECTION_DESIRED,
1075                                         true);
1076                 goto out;
1077         }
1078
1079 out:
1080         mutex_unlock(&dig_port->hdcp_mutex);
1081         mutex_unlock(&hdcp->mutex);
1082         return ret;
1083 }
1084
1085 static void intel_hdcp_prop_work(struct work_struct *work)
1086 {
1087         struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1088                                                prop_work);
1089         struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1090         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1091
1092         drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, NULL);
1093         mutex_lock(&hdcp->mutex);
1094
1095         /*
1096          * This worker is only used to flip between ENABLED/DESIRED. Either of
1097          * those to UNDESIRED is handled by core. If value == UNDESIRED,
1098          * we're running just after hdcp has been disabled, so just exit
1099          */
1100         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1101                 drm_hdcp_update_content_protection(&connector->base,
1102                                                    hdcp->value);
1103
1104         mutex_unlock(&hdcp->mutex);
1105         drm_modeset_unlock(&dev_priv->drm.mode_config.connection_mutex);
1106
1107         drm_connector_put(&connector->base);
1108 }
1109
1110 bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
1111 {
1112         return INTEL_INFO(dev_priv)->display.has_hdcp &&
1113                         (DISPLAY_VER(dev_priv) >= 12 || port < PORT_E);
1114 }
1115
1116 static int
1117 hdcp2_prepare_ake_init(struct intel_connector *connector,
1118                        struct hdcp2_ake_init *ake_data)
1119 {
1120         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1121         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1122         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1123         struct i915_hdcp_comp_master *comp;
1124         int ret;
1125
1126         mutex_lock(&dev_priv->hdcp_comp_mutex);
1127         comp = dev_priv->hdcp_master;
1128
1129         if (!comp || !comp->ops) {
1130                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1131                 return -EINVAL;
1132         }
1133
1134         ret = comp->ops->initiate_hdcp2_session(comp->mei_dev, data, ake_data);
1135         if (ret)
1136                 drm_dbg_kms(&dev_priv->drm, "Prepare_ake_init failed. %d\n",
1137                             ret);
1138         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1139
1140         return ret;
1141 }
1142
1143 static int
1144 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1145                                 struct hdcp2_ake_send_cert *rx_cert,
1146                                 bool *paired,
1147                                 struct hdcp2_ake_no_stored_km *ek_pub_km,
1148                                 size_t *msg_sz)
1149 {
1150         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1151         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1152         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1153         struct i915_hdcp_comp_master *comp;
1154         int ret;
1155
1156         mutex_lock(&dev_priv->hdcp_comp_mutex);
1157         comp = dev_priv->hdcp_master;
1158
1159         if (!comp || !comp->ops) {
1160                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1161                 return -EINVAL;
1162         }
1163
1164         ret = comp->ops->verify_receiver_cert_prepare_km(comp->mei_dev, data,
1165                                                          rx_cert, paired,
1166                                                          ek_pub_km, msg_sz);
1167         if (ret < 0)
1168                 drm_dbg_kms(&dev_priv->drm, "Verify rx_cert failed. %d\n",
1169                             ret);
1170         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1171
1172         return ret;
1173 }
1174
1175 static int hdcp2_verify_hprime(struct intel_connector *connector,
1176                                struct hdcp2_ake_send_hprime *rx_hprime)
1177 {
1178         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1179         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1180         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1181         struct i915_hdcp_comp_master *comp;
1182         int ret;
1183
1184         mutex_lock(&dev_priv->hdcp_comp_mutex);
1185         comp = dev_priv->hdcp_master;
1186
1187         if (!comp || !comp->ops) {
1188                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1189                 return -EINVAL;
1190         }
1191
1192         ret = comp->ops->verify_hprime(comp->mei_dev, data, rx_hprime);
1193         if (ret < 0)
1194                 drm_dbg_kms(&dev_priv->drm, "Verify hprime failed. %d\n", ret);
1195         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1196
1197         return ret;
1198 }
1199
1200 static int
1201 hdcp2_store_pairing_info(struct intel_connector *connector,
1202                          struct hdcp2_ake_send_pairing_info *pairing_info)
1203 {
1204         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1205         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1206         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1207         struct i915_hdcp_comp_master *comp;
1208         int ret;
1209
1210         mutex_lock(&dev_priv->hdcp_comp_mutex);
1211         comp = dev_priv->hdcp_master;
1212
1213         if (!comp || !comp->ops) {
1214                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1215                 return -EINVAL;
1216         }
1217
1218         ret = comp->ops->store_pairing_info(comp->mei_dev, data, pairing_info);
1219         if (ret < 0)
1220                 drm_dbg_kms(&dev_priv->drm, "Store pairing info failed. %d\n",
1221                             ret);
1222         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1223
1224         return ret;
1225 }
1226
1227 static int
1228 hdcp2_prepare_lc_init(struct intel_connector *connector,
1229                       struct hdcp2_lc_init *lc_init)
1230 {
1231         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1232         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1233         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1234         struct i915_hdcp_comp_master *comp;
1235         int ret;
1236
1237         mutex_lock(&dev_priv->hdcp_comp_mutex);
1238         comp = dev_priv->hdcp_master;
1239
1240         if (!comp || !comp->ops) {
1241                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1242                 return -EINVAL;
1243         }
1244
1245         ret = comp->ops->initiate_locality_check(comp->mei_dev, data, lc_init);
1246         if (ret < 0)
1247                 drm_dbg_kms(&dev_priv->drm, "Prepare lc_init failed. %d\n",
1248                             ret);
1249         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1250
1251         return ret;
1252 }
1253
1254 static int
1255 hdcp2_verify_lprime(struct intel_connector *connector,
1256                     struct hdcp2_lc_send_lprime *rx_lprime)
1257 {
1258         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1259         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1260         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1261         struct i915_hdcp_comp_master *comp;
1262         int ret;
1263
1264         mutex_lock(&dev_priv->hdcp_comp_mutex);
1265         comp = dev_priv->hdcp_master;
1266
1267         if (!comp || !comp->ops) {
1268                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1269                 return -EINVAL;
1270         }
1271
1272         ret = comp->ops->verify_lprime(comp->mei_dev, data, rx_lprime);
1273         if (ret < 0)
1274                 drm_dbg_kms(&dev_priv->drm, "Verify L_Prime failed. %d\n",
1275                             ret);
1276         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1277
1278         return ret;
1279 }
1280
1281 static int hdcp2_prepare_skey(struct intel_connector *connector,
1282                               struct hdcp2_ske_send_eks *ske_data)
1283 {
1284         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1285         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1286         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1287         struct i915_hdcp_comp_master *comp;
1288         int ret;
1289
1290         mutex_lock(&dev_priv->hdcp_comp_mutex);
1291         comp = dev_priv->hdcp_master;
1292
1293         if (!comp || !comp->ops) {
1294                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1295                 return -EINVAL;
1296         }
1297
1298         ret = comp->ops->get_session_key(comp->mei_dev, data, ske_data);
1299         if (ret < 0)
1300                 drm_dbg_kms(&dev_priv->drm, "Get session key failed. %d\n",
1301                             ret);
1302         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1303
1304         return ret;
1305 }
1306
1307 static int
1308 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1309                                       struct hdcp2_rep_send_receiverid_list
1310                                                                 *rep_topology,
1311                                       struct hdcp2_rep_send_ack *rep_send_ack)
1312 {
1313         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1314         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1315         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1316         struct i915_hdcp_comp_master *comp;
1317         int ret;
1318
1319         mutex_lock(&dev_priv->hdcp_comp_mutex);
1320         comp = dev_priv->hdcp_master;
1321
1322         if (!comp || !comp->ops) {
1323                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1324                 return -EINVAL;
1325         }
1326
1327         ret = comp->ops->repeater_check_flow_prepare_ack(comp->mei_dev, data,
1328                                                          rep_topology,
1329                                                          rep_send_ack);
1330         if (ret < 0)
1331                 drm_dbg_kms(&dev_priv->drm,
1332                             "Verify rep topology failed. %d\n", ret);
1333         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1334
1335         return ret;
1336 }
1337
1338 static int
1339 hdcp2_verify_mprime(struct intel_connector *connector,
1340                     struct hdcp2_rep_stream_ready *stream_ready)
1341 {
1342         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1343         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1344         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1345         struct i915_hdcp_comp_master *comp;
1346         int ret;
1347
1348         mutex_lock(&dev_priv->hdcp_comp_mutex);
1349         comp = dev_priv->hdcp_master;
1350
1351         if (!comp || !comp->ops) {
1352                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1353                 return -EINVAL;
1354         }
1355
1356         ret = comp->ops->verify_mprime(comp->mei_dev, data, stream_ready);
1357         if (ret < 0)
1358                 drm_dbg_kms(&dev_priv->drm, "Verify mprime failed. %d\n", ret);
1359         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1360
1361         return ret;
1362 }
1363
1364 static int hdcp2_authenticate_port(struct intel_connector *connector)
1365 {
1366         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1367         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1368         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1369         struct i915_hdcp_comp_master *comp;
1370         int ret;
1371
1372         mutex_lock(&dev_priv->hdcp_comp_mutex);
1373         comp = dev_priv->hdcp_master;
1374
1375         if (!comp || !comp->ops) {
1376                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1377                 return -EINVAL;
1378         }
1379
1380         ret = comp->ops->enable_hdcp_authentication(comp->mei_dev, data);
1381         if (ret < 0)
1382                 drm_dbg_kms(&dev_priv->drm, "Enable hdcp auth failed. %d\n",
1383                             ret);
1384         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1385
1386         return ret;
1387 }
1388
1389 static int hdcp2_close_mei_session(struct intel_connector *connector)
1390 {
1391         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1392         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1393         struct i915_hdcp_comp_master *comp;
1394         int ret;
1395
1396         mutex_lock(&dev_priv->hdcp_comp_mutex);
1397         comp = dev_priv->hdcp_master;
1398
1399         if (!comp || !comp->ops) {
1400                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1401                 return -EINVAL;
1402         }
1403
1404         ret = comp->ops->close_hdcp_session(comp->mei_dev,
1405                                              &dig_port->hdcp_port_data);
1406         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1407
1408         return ret;
1409 }
1410
1411 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1412 {
1413         return hdcp2_close_mei_session(connector);
1414 }
1415
1416 /* Authentication flow starts from here */
1417 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1418 {
1419         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1420         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1421         struct intel_hdcp *hdcp = &connector->hdcp;
1422         union {
1423                 struct hdcp2_ake_init ake_init;
1424                 struct hdcp2_ake_send_cert send_cert;
1425                 struct hdcp2_ake_no_stored_km no_stored_km;
1426                 struct hdcp2_ake_send_hprime send_hprime;
1427                 struct hdcp2_ake_send_pairing_info pairing_info;
1428         } msgs;
1429         const struct intel_hdcp_shim *shim = hdcp->shim;
1430         size_t size;
1431         int ret;
1432
1433         /* Init for seq_num */
1434         hdcp->seq_num_v = 0;
1435         hdcp->seq_num_m = 0;
1436
1437         ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1438         if (ret < 0)
1439                 return ret;
1440
1441         ret = shim->write_2_2_msg(dig_port, &msgs.ake_init,
1442                                   sizeof(msgs.ake_init));
1443         if (ret < 0)
1444                 return ret;
1445
1446         ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_CERT,
1447                                  &msgs.send_cert, sizeof(msgs.send_cert));
1448         if (ret < 0)
1449                 return ret;
1450
1451         if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1452                 drm_dbg_kms(&dev_priv->drm, "cert.rx_caps dont claim HDCP2.2\n");
1453                 return -EINVAL;
1454         }
1455
1456         hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1457
1458         if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
1459                                         msgs.send_cert.cert_rx.receiver_id,
1460                                         1) > 0) {
1461                 drm_err(&dev_priv->drm, "Receiver ID is revoked\n");
1462                 return -EPERM;
1463         }
1464
1465         /*
1466          * Here msgs.no_stored_km will hold msgs corresponding to the km
1467          * stored also.
1468          */
1469         ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1470                                               &hdcp->is_paired,
1471                                               &msgs.no_stored_km, &size);
1472         if (ret < 0)
1473                 return ret;
1474
1475         ret = shim->write_2_2_msg(dig_port, &msgs.no_stored_km, size);
1476         if (ret < 0)
1477                 return ret;
1478
1479         ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_HPRIME,
1480                                  &msgs.send_hprime, sizeof(msgs.send_hprime));
1481         if (ret < 0)
1482                 return ret;
1483
1484         ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1485         if (ret < 0)
1486                 return ret;
1487
1488         if (!hdcp->is_paired) {
1489                 /* Pairing is required */
1490                 ret = shim->read_2_2_msg(dig_port,
1491                                          HDCP_2_2_AKE_SEND_PAIRING_INFO,
1492                                          &msgs.pairing_info,
1493                                          sizeof(msgs.pairing_info));
1494                 if (ret < 0)
1495                         return ret;
1496
1497                 ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1498                 if (ret < 0)
1499                         return ret;
1500                 hdcp->is_paired = true;
1501         }
1502
1503         return 0;
1504 }
1505
1506 static int hdcp2_locality_check(struct intel_connector *connector)
1507 {
1508         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1509         struct intel_hdcp *hdcp = &connector->hdcp;
1510         union {
1511                 struct hdcp2_lc_init lc_init;
1512                 struct hdcp2_lc_send_lprime send_lprime;
1513         } msgs;
1514         const struct intel_hdcp_shim *shim = hdcp->shim;
1515         int tries = HDCP2_LC_RETRY_CNT, ret, i;
1516
1517         for (i = 0; i < tries; i++) {
1518                 ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1519                 if (ret < 0)
1520                         continue;
1521
1522                 ret = shim->write_2_2_msg(dig_port, &msgs.lc_init,
1523                                       sizeof(msgs.lc_init));
1524                 if (ret < 0)
1525                         continue;
1526
1527                 ret = shim->read_2_2_msg(dig_port,
1528                                          HDCP_2_2_LC_SEND_LPRIME,
1529                                          &msgs.send_lprime,
1530                                          sizeof(msgs.send_lprime));
1531                 if (ret < 0)
1532                         continue;
1533
1534                 ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1535                 if (!ret)
1536                         break;
1537         }
1538
1539         return ret;
1540 }
1541
1542 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1543 {
1544         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1545         struct intel_hdcp *hdcp = &connector->hdcp;
1546         struct hdcp2_ske_send_eks send_eks;
1547         int ret;
1548
1549         ret = hdcp2_prepare_skey(connector, &send_eks);
1550         if (ret < 0)
1551                 return ret;
1552
1553         ret = hdcp->shim->write_2_2_msg(dig_port, &send_eks,
1554                                         sizeof(send_eks));
1555         if (ret < 0)
1556                 return ret;
1557
1558         return 0;
1559 }
1560
1561 static
1562 int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1563 {
1564         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1565         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1566         struct intel_hdcp *hdcp = &connector->hdcp;
1567         union {
1568                 struct hdcp2_rep_stream_manage stream_manage;
1569                 struct hdcp2_rep_stream_ready stream_ready;
1570         } msgs;
1571         const struct intel_hdcp_shim *shim = hdcp->shim;
1572         int ret, streams_size_delta, i;
1573
1574         if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1575                 return -ERANGE;
1576
1577         /* Prepare RepeaterAuth_Stream_Manage msg */
1578         msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1579         drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1580
1581         msgs.stream_manage.k = cpu_to_be16(data->k);
1582
1583         for (i = 0; i < data->k; i++) {
1584                 msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1585                 msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1586         }
1587
1588         streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1589                                 sizeof(struct hdcp2_streamid_type);
1590         /* Send it to Repeater */
1591         ret = shim->write_2_2_msg(dig_port, &msgs.stream_manage,
1592                                   sizeof(msgs.stream_manage) - streams_size_delta);
1593         if (ret < 0)
1594                 goto out;
1595
1596         ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_STREAM_READY,
1597                                  &msgs.stream_ready, sizeof(msgs.stream_ready));
1598         if (ret < 0)
1599                 goto out;
1600
1601         data->seq_num_m = hdcp->seq_num_m;
1602
1603         ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1604
1605 out:
1606         hdcp->seq_num_m++;
1607
1608         return ret;
1609 }
1610
1611 static
1612 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1613 {
1614         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1615         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1616         struct intel_hdcp *hdcp = &connector->hdcp;
1617         union {
1618                 struct hdcp2_rep_send_receiverid_list recvid_list;
1619                 struct hdcp2_rep_send_ack rep_ack;
1620         } msgs;
1621         const struct intel_hdcp_shim *shim = hdcp->shim;
1622         u32 seq_num_v, device_cnt;
1623         u8 *rx_info;
1624         int ret;
1625
1626         ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
1627                                  &msgs.recvid_list, sizeof(msgs.recvid_list));
1628         if (ret < 0)
1629                 return ret;
1630
1631         rx_info = msgs.recvid_list.rx_info;
1632
1633         if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1634             HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1635                 drm_dbg_kms(&dev_priv->drm, "Topology Max Size Exceeded\n");
1636                 return -EINVAL;
1637         }
1638
1639         /*
1640          * MST topology is not Type 1 capable if it contains a downstream
1641          * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant.
1642          */
1643         dig_port->hdcp_mst_type1_capable =
1644                 !HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) &&
1645                 !HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]);
1646
1647         /* Converting and Storing the seq_num_v to local variable as DWORD */
1648         seq_num_v =
1649                 drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1650
1651         if (!hdcp->hdcp2_encrypted && seq_num_v) {
1652                 drm_dbg_kms(&dev_priv->drm,
1653                             "Non zero Seq_num_v at first RecvId_List msg\n");
1654                 return -EINVAL;
1655         }
1656
1657         if (seq_num_v < hdcp->seq_num_v) {
1658                 /* Roll over of the seq_num_v from repeater. Reauthenticate. */
1659                 drm_dbg_kms(&dev_priv->drm, "Seq_num_v roll over.\n");
1660                 return -EINVAL;
1661         }
1662
1663         device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1664                       HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1665         if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
1666                                         msgs.recvid_list.receiver_ids,
1667                                         device_cnt) > 0) {
1668                 drm_err(&dev_priv->drm, "Revoked receiver ID(s) is in list\n");
1669                 return -EPERM;
1670         }
1671
1672         ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1673                                                     &msgs.recvid_list,
1674                                                     &msgs.rep_ack);
1675         if (ret < 0)
1676                 return ret;
1677
1678         hdcp->seq_num_v = seq_num_v;
1679         ret = shim->write_2_2_msg(dig_port, &msgs.rep_ack,
1680                                   sizeof(msgs.rep_ack));
1681         if (ret < 0)
1682                 return ret;
1683
1684         return 0;
1685 }
1686
1687 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1688 {
1689         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1690         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1691         struct intel_hdcp *hdcp = &connector->hdcp;
1692         const struct intel_hdcp_shim *shim = hdcp->shim;
1693         int ret;
1694
1695         ret = hdcp2_authentication_key_exchange(connector);
1696         if (ret < 0) {
1697                 drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret);
1698                 return ret;
1699         }
1700
1701         ret = hdcp2_locality_check(connector);
1702         if (ret < 0) {
1703                 drm_dbg_kms(&i915->drm,
1704                             "Locality Check failed. Err : %d\n", ret);
1705                 return ret;
1706         }
1707
1708         ret = hdcp2_session_key_exchange(connector);
1709         if (ret < 0) {
1710                 drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret);
1711                 return ret;
1712         }
1713
1714         if (shim->config_stream_type) {
1715                 ret = shim->config_stream_type(dig_port,
1716                                                hdcp->is_repeater,
1717                                                hdcp->content_type);
1718                 if (ret < 0)
1719                         return ret;
1720         }
1721
1722         if (hdcp->is_repeater) {
1723                 ret = hdcp2_authenticate_repeater_topology(connector);
1724                 if (ret < 0) {
1725                         drm_dbg_kms(&i915->drm,
1726                                     "Repeater Auth Failed. Err: %d\n", ret);
1727                         return ret;
1728                 }
1729         }
1730
1731         return ret;
1732 }
1733
1734 static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1735 {
1736         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1737         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1738         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1739         struct intel_hdcp *hdcp = &connector->hdcp;
1740         enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1741         enum port port = dig_port->base.port;
1742         int ret = 0;
1743
1744         if (!(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1745                             LINK_ENCRYPTION_STATUS)) {
1746                 drm_err(&dev_priv->drm, "[%s:%d] HDCP 2.2 Link is not encrypted\n",
1747                         connector->base.name, connector->base.base.id);
1748                 ret = -EPERM;
1749                 goto link_recover;
1750         }
1751
1752         if (hdcp->shim->stream_2_2_encryption) {
1753                 ret = hdcp->shim->stream_2_2_encryption(connector, true);
1754                 if (ret) {
1755                         drm_err(&dev_priv->drm, "[%s:%d] Failed to enable HDCP 2.2 stream enc\n",
1756                                 connector->base.name, connector->base.base.id);
1757                         return ret;
1758                 }
1759                 drm_dbg_kms(&dev_priv->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1760                             transcoder_name(hdcp->stream_transcoder));
1761         }
1762
1763         return 0;
1764
1765 link_recover:
1766         if (hdcp2_deauthenticate_port(connector) < 0)
1767                 drm_dbg_kms(&dev_priv->drm, "Port deauth failed.\n");
1768
1769         dig_port->hdcp_auth_status = false;
1770         data->k = 0;
1771
1772         return ret;
1773 }
1774
1775 static int hdcp2_enable_encryption(struct intel_connector *connector)
1776 {
1777         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1778         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1779         struct intel_hdcp *hdcp = &connector->hdcp;
1780         enum port port = dig_port->base.port;
1781         enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1782         int ret;
1783
1784         drm_WARN_ON(&dev_priv->drm,
1785                     intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1786                     LINK_ENCRYPTION_STATUS);
1787         if (hdcp->shim->toggle_signalling) {
1788                 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1789                                                     true);
1790                 if (ret) {
1791                         drm_err(&dev_priv->drm,
1792                                 "Failed to enable HDCP signalling. %d\n",
1793                                 ret);
1794                         return ret;
1795                 }
1796         }
1797
1798         if (intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1799             LINK_AUTH_STATUS) {
1800                 /* Link is Authenticated. Now set for Encryption */
1801                 intel_de_write(dev_priv,
1802                                HDCP2_CTL(dev_priv, cpu_transcoder, port),
1803                                intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) | CTL_LINK_ENCRYPTION_REQ);
1804         }
1805
1806         ret = intel_de_wait_for_set(dev_priv,
1807                                     HDCP2_STATUS(dev_priv, cpu_transcoder,
1808                                                  port),
1809                                     LINK_ENCRYPTION_STATUS,
1810                                     HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1811         dig_port->hdcp_auth_status = true;
1812
1813         return ret;
1814 }
1815
1816 static int hdcp2_disable_encryption(struct intel_connector *connector)
1817 {
1818         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1819         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1820         struct intel_hdcp *hdcp = &connector->hdcp;
1821         enum port port = dig_port->base.port;
1822         enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1823         int ret;
1824
1825         drm_WARN_ON(&dev_priv->drm, !(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1826                                       LINK_ENCRYPTION_STATUS));
1827
1828         intel_de_write(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port),
1829                        intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) & ~CTL_LINK_ENCRYPTION_REQ);
1830
1831         ret = intel_de_wait_for_clear(dev_priv,
1832                                       HDCP2_STATUS(dev_priv, cpu_transcoder,
1833                                                    port),
1834                                       LINK_ENCRYPTION_STATUS,
1835                                       HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1836         if (ret == -ETIMEDOUT)
1837                 drm_dbg_kms(&dev_priv->drm, "Disable Encryption Timedout");
1838
1839         if (hdcp->shim->toggle_signalling) {
1840                 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1841                                                     false);
1842                 if (ret) {
1843                         drm_err(&dev_priv->drm,
1844                                 "Failed to disable HDCP signalling. %d\n",
1845                                 ret);
1846                         return ret;
1847                 }
1848         }
1849
1850         return ret;
1851 }
1852
1853 static int
1854 hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1855 {
1856         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1857         int i, tries = 3, ret;
1858
1859         if (!connector->hdcp.is_repeater)
1860                 return 0;
1861
1862         for (i = 0; i < tries; i++) {
1863                 ret = _hdcp2_propagate_stream_management_info(connector);
1864                 if (!ret)
1865                         break;
1866
1867                 /* Lets restart the auth incase of seq_num_m roll over */
1868                 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1869                         drm_dbg_kms(&i915->drm,
1870                                     "seq_num_m roll over.(%d)\n", ret);
1871                         break;
1872                 }
1873
1874                 drm_dbg_kms(&i915->drm,
1875                             "HDCP2 stream management %d of %d Failed.(%d)\n",
1876                             i + 1, tries, ret);
1877         }
1878
1879         return ret;
1880 }
1881
1882 static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
1883 {
1884         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1885         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1886         int ret = 0, i, tries = 3;
1887
1888         for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) {
1889                 ret = hdcp2_authenticate_sink(connector);
1890                 if (!ret) {
1891                         ret = intel_hdcp_prepare_streams(connector);
1892                         if (ret) {
1893                                 drm_dbg_kms(&i915->drm,
1894                                             "Prepare streams failed.(%d)\n",
1895                                             ret);
1896                                 break;
1897                         }
1898
1899                         ret = hdcp2_propagate_stream_management_info(connector);
1900                         if (ret) {
1901                                 drm_dbg_kms(&i915->drm,
1902                                             "Stream management failed.(%d)\n",
1903                                             ret);
1904                                 break;
1905                         }
1906
1907                         ret = hdcp2_authenticate_port(connector);
1908                         if (!ret)
1909                                 break;
1910                         drm_dbg_kms(&i915->drm, "HDCP2 port auth failed.(%d)\n",
1911                                     ret);
1912                 }
1913
1914                 /* Clearing the mei hdcp session */
1915                 drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
1916                             i + 1, tries, ret);
1917                 if (hdcp2_deauthenticate_port(connector) < 0)
1918                         drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1919         }
1920
1921         if (!ret && !dig_port->hdcp_auth_status) {
1922                 /*
1923                  * Ensuring the required 200mSec min time interval between
1924                  * Session Key Exchange and encryption.
1925                  */
1926                 msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1927                 ret = hdcp2_enable_encryption(connector);
1928                 if (ret < 0) {
1929                         drm_dbg_kms(&i915->drm,
1930                                     "Encryption Enable Failed.(%d)\n", ret);
1931                         if (hdcp2_deauthenticate_port(connector) < 0)
1932                                 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1933                 }
1934         }
1935
1936         if (!ret)
1937                 ret = hdcp2_enable_stream_encryption(connector);
1938
1939         return ret;
1940 }
1941
1942 static int _intel_hdcp2_enable(struct intel_connector *connector)
1943 {
1944         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1945         struct intel_hdcp *hdcp = &connector->hdcp;
1946         int ret;
1947
1948         drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
1949                     connector->base.name, connector->base.base.id,
1950                     hdcp->content_type);
1951
1952         ret = hdcp2_authenticate_and_encrypt(connector);
1953         if (ret) {
1954                 drm_dbg_kms(&i915->drm, "HDCP2 Type%d  Enabling Failed. (%d)\n",
1955                             hdcp->content_type, ret);
1956                 return ret;
1957         }
1958
1959         drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is enabled. Type %d\n",
1960                     connector->base.name, connector->base.base.id,
1961                     hdcp->content_type);
1962
1963         hdcp->hdcp2_encrypted = true;
1964         return 0;
1965 }
1966
1967 static int
1968 _intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
1969 {
1970         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1971         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1972         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1973         struct intel_hdcp *hdcp = &connector->hdcp;
1974         int ret;
1975
1976         drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being Disabled\n",
1977                     connector->base.name, connector->base.base.id);
1978
1979         if (hdcp->shim->stream_2_2_encryption) {
1980                 ret = hdcp->shim->stream_2_2_encryption(connector, false);
1981                 if (ret) {
1982                         drm_err(&i915->drm, "[%s:%d] Failed to disable HDCP 2.2 stream enc\n",
1983                                 connector->base.name, connector->base.base.id);
1984                         return ret;
1985                 }
1986                 drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
1987                             transcoder_name(hdcp->stream_transcoder));
1988
1989                 if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery)
1990                         return 0;
1991         }
1992
1993         ret = hdcp2_disable_encryption(connector);
1994
1995         if (hdcp2_deauthenticate_port(connector) < 0)
1996                 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1997
1998         connector->hdcp.hdcp2_encrypted = false;
1999         dig_port->hdcp_auth_status = false;
2000         data->k = 0;
2001
2002         return ret;
2003 }
2004
2005 /* Implements the Link Integrity Check for HDCP2.2 */
2006 static int intel_hdcp2_check_link(struct intel_connector *connector)
2007 {
2008         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2009         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2010         struct intel_hdcp *hdcp = &connector->hdcp;
2011         enum port port = dig_port->base.port;
2012         enum transcoder cpu_transcoder;
2013         int ret = 0;
2014
2015         mutex_lock(&hdcp->mutex);
2016         mutex_lock(&dig_port->hdcp_mutex);
2017         cpu_transcoder = hdcp->cpu_transcoder;
2018
2019         /* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2020         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2021             !hdcp->hdcp2_encrypted) {
2022                 ret = -EINVAL;
2023                 goto out;
2024         }
2025
2026         if (drm_WARN_ON(&dev_priv->drm,
2027                         !intel_hdcp2_in_use(dev_priv, cpu_transcoder, port))) {
2028                 drm_err(&dev_priv->drm,
2029                         "HDCP2.2 link stopped the encryption, %x\n",
2030                         intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)));
2031                 ret = -ENXIO;
2032                 _intel_hdcp2_disable(connector, true);
2033                 intel_hdcp_update_value(connector,
2034                                         DRM_MODE_CONTENT_PROTECTION_DESIRED,
2035                                         true);
2036                 goto out;
2037         }
2038
2039         ret = hdcp->shim->check_2_2_link(dig_port, connector);
2040         if (ret == HDCP_LINK_PROTECTED) {
2041                 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2042                         intel_hdcp_update_value(connector,
2043                                         DRM_MODE_CONTENT_PROTECTION_ENABLED,
2044                                         true);
2045                 }
2046                 goto out;
2047         }
2048
2049         if (ret == HDCP_TOPOLOGY_CHANGE) {
2050                 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2051                         goto out;
2052
2053                 drm_dbg_kms(&dev_priv->drm,
2054                             "HDCP2.2 Downstream topology change\n");
2055                 ret = hdcp2_authenticate_repeater_topology(connector);
2056                 if (!ret) {
2057                         intel_hdcp_update_value(connector,
2058                                         DRM_MODE_CONTENT_PROTECTION_ENABLED,
2059                                         true);
2060                         goto out;
2061                 }
2062                 drm_dbg_kms(&dev_priv->drm,
2063                             "[%s:%d] Repeater topology auth failed.(%d)\n",
2064                             connector->base.name, connector->base.base.id,
2065                             ret);
2066         } else {
2067                 drm_dbg_kms(&dev_priv->drm,
2068                             "[%s:%d] HDCP2.2 link failed, retrying auth\n",
2069                             connector->base.name, connector->base.base.id);
2070         }
2071
2072         ret = _intel_hdcp2_disable(connector, true);
2073         if (ret) {
2074                 drm_err(&dev_priv->drm,
2075                         "[%s:%d] Failed to disable hdcp2.2 (%d)\n",
2076                         connector->base.name, connector->base.base.id, ret);
2077                 intel_hdcp_update_value(connector,
2078                                 DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2079                 goto out;
2080         }
2081
2082         ret = _intel_hdcp2_enable(connector);
2083         if (ret) {
2084                 drm_dbg_kms(&dev_priv->drm,
2085                             "[%s:%d] Failed to enable hdcp2.2 (%d)\n",
2086                             connector->base.name, connector->base.base.id,
2087                             ret);
2088                 intel_hdcp_update_value(connector,
2089                                         DRM_MODE_CONTENT_PROTECTION_DESIRED,
2090                                         true);
2091                 goto out;
2092         }
2093
2094 out:
2095         mutex_unlock(&dig_port->hdcp_mutex);
2096         mutex_unlock(&hdcp->mutex);
2097         return ret;
2098 }
2099
2100 static void intel_hdcp_check_work(struct work_struct *work)
2101 {
2102         struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2103                                                struct intel_hdcp,
2104                                                check_work);
2105         struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2106
2107         if (drm_connector_is_unregistered(&connector->base))
2108                 return;
2109
2110         if (!intel_hdcp2_check_link(connector))
2111                 schedule_delayed_work(&hdcp->check_work,
2112                                       DRM_HDCP2_CHECK_PERIOD_MS);
2113         else if (!intel_hdcp_check_link(connector))
2114                 schedule_delayed_work(&hdcp->check_work,
2115                                       DRM_HDCP_CHECK_PERIOD_MS);
2116 }
2117
2118 static int i915_hdcp_component_bind(struct device *i915_kdev,
2119                                     struct device *mei_kdev, void *data)
2120 {
2121         struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
2122
2123         drm_dbg(&dev_priv->drm, "I915 HDCP comp bind\n");
2124         mutex_lock(&dev_priv->hdcp_comp_mutex);
2125         dev_priv->hdcp_master = (struct i915_hdcp_comp_master *)data;
2126         dev_priv->hdcp_master->mei_dev = mei_kdev;
2127         mutex_unlock(&dev_priv->hdcp_comp_mutex);
2128
2129         return 0;
2130 }
2131
2132 static void i915_hdcp_component_unbind(struct device *i915_kdev,
2133                                        struct device *mei_kdev, void *data)
2134 {
2135         struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
2136
2137         drm_dbg(&dev_priv->drm, "I915 HDCP comp unbind\n");
2138         mutex_lock(&dev_priv->hdcp_comp_mutex);
2139         dev_priv->hdcp_master = NULL;
2140         mutex_unlock(&dev_priv->hdcp_comp_mutex);
2141 }
2142
2143 static const struct component_ops i915_hdcp_component_ops = {
2144         .bind   = i915_hdcp_component_bind,
2145         .unbind = i915_hdcp_component_unbind,
2146 };
2147
2148 static enum mei_fw_ddi intel_get_mei_fw_ddi_index(enum port port)
2149 {
2150         switch (port) {
2151         case PORT_A:
2152                 return MEI_DDI_A;
2153         case PORT_B ... PORT_F:
2154                 return (enum mei_fw_ddi)port;
2155         default:
2156                 return MEI_DDI_INVALID_PORT;
2157         }
2158 }
2159
2160 static enum mei_fw_tc intel_get_mei_fw_tc(enum transcoder cpu_transcoder)
2161 {
2162         switch (cpu_transcoder) {
2163         case TRANSCODER_A ... TRANSCODER_D:
2164                 return (enum mei_fw_tc)(cpu_transcoder | 0x10);
2165         default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2166                 return MEI_INVALID_TRANSCODER;
2167         }
2168 }
2169
2170 static int initialize_hdcp_port_data(struct intel_connector *connector,
2171                                      struct intel_digital_port *dig_port,
2172                                      const struct intel_hdcp_shim *shim)
2173 {
2174         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2175         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2176         struct intel_hdcp *hdcp = &connector->hdcp;
2177         enum port port = dig_port->base.port;
2178
2179         if (DISPLAY_VER(dev_priv) < 12)
2180                 data->fw_ddi = intel_get_mei_fw_ddi_index(port);
2181         else
2182                 /*
2183                  * As per ME FW API expectation, for GEN 12+, fw_ddi is filled
2184                  * with zero(INVALID PORT index).
2185                  */
2186                 data->fw_ddi = MEI_DDI_INVALID_PORT;
2187
2188         /*
2189          * As associated transcoder is set and modified at modeset, here fw_tc
2190          * is initialized to zero (invalid transcoder index). This will be
2191          * retained for <Gen12 forever.
2192          */
2193         data->fw_tc = MEI_INVALID_TRANSCODER;
2194
2195         data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2196         data->protocol = (u8)shim->protocol;
2197
2198         if (!data->streams)
2199                 data->streams = kcalloc(INTEL_NUM_PIPES(dev_priv),
2200                                         sizeof(struct hdcp2_streamid_type),
2201                                         GFP_KERNEL);
2202         if (!data->streams) {
2203                 drm_err(&dev_priv->drm, "Out of Memory\n");
2204                 return -ENOMEM;
2205         }
2206         /* For SST */
2207         data->streams[0].stream_id = 0;
2208         data->streams[0].stream_type = hdcp->content_type;
2209
2210         return 0;
2211 }
2212
2213 static bool is_hdcp2_supported(struct drm_i915_private *dev_priv)
2214 {
2215         if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2216                 return false;
2217
2218         return (DISPLAY_VER(dev_priv) >= 10 ||
2219                 IS_KABYLAKE(dev_priv) ||
2220                 IS_COFFEELAKE(dev_priv) ||
2221                 IS_COMETLAKE(dev_priv));
2222 }
2223
2224 void intel_hdcp_component_init(struct drm_i915_private *dev_priv)
2225 {
2226         int ret;
2227
2228         if (!is_hdcp2_supported(dev_priv))
2229                 return;
2230
2231         mutex_lock(&dev_priv->hdcp_comp_mutex);
2232         drm_WARN_ON(&dev_priv->drm, dev_priv->hdcp_comp_added);
2233
2234         dev_priv->hdcp_comp_added = true;
2235         mutex_unlock(&dev_priv->hdcp_comp_mutex);
2236         ret = component_add_typed(dev_priv->drm.dev, &i915_hdcp_component_ops,
2237                                   I915_COMPONENT_HDCP);
2238         if (ret < 0) {
2239                 drm_dbg_kms(&dev_priv->drm, "Failed at component add(%d)\n",
2240                             ret);
2241                 mutex_lock(&dev_priv->hdcp_comp_mutex);
2242                 dev_priv->hdcp_comp_added = false;
2243                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
2244                 return;
2245         }
2246 }
2247
2248 static void intel_hdcp2_init(struct intel_connector *connector,
2249                              struct intel_digital_port *dig_port,
2250                              const struct intel_hdcp_shim *shim)
2251 {
2252         struct drm_i915_private *i915 = to_i915(connector->base.dev);
2253         struct intel_hdcp *hdcp = &connector->hdcp;
2254         int ret;
2255
2256         ret = initialize_hdcp_port_data(connector, dig_port, shim);
2257         if (ret) {
2258                 drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n");
2259                 return;
2260         }
2261
2262         hdcp->hdcp2_supported = true;
2263 }
2264
2265 int intel_hdcp_init(struct intel_connector *connector,
2266                     struct intel_digital_port *dig_port,
2267                     const struct intel_hdcp_shim *shim)
2268 {
2269         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2270         struct intel_hdcp *hdcp = &connector->hdcp;
2271         int ret;
2272
2273         if (!shim)
2274                 return -EINVAL;
2275
2276         if (is_hdcp2_supported(dev_priv))
2277                 intel_hdcp2_init(connector, dig_port, shim);
2278
2279         ret =
2280         drm_connector_attach_content_protection_property(&connector->base,
2281                                                          hdcp->hdcp2_supported);
2282         if (ret) {
2283                 hdcp->hdcp2_supported = false;
2284                 kfree(dig_port->hdcp_port_data.streams);
2285                 return ret;
2286         }
2287
2288         hdcp->shim = shim;
2289         mutex_init(&hdcp->mutex);
2290         INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2291         INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2292         init_waitqueue_head(&hdcp->cp_irq_queue);
2293
2294         return 0;
2295 }
2296
2297 int intel_hdcp_enable(struct intel_connector *connector,
2298                       const struct intel_crtc_state *pipe_config, u8 content_type)
2299 {
2300         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2301         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2302         struct intel_hdcp *hdcp = &connector->hdcp;
2303         unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2304         int ret = -EINVAL;
2305
2306         if (!hdcp->shim)
2307                 return -ENOENT;
2308
2309         if (!connector->encoder) {
2310                 drm_err(&dev_priv->drm, "[%s:%d] encoder is not initialized\n",
2311                         connector->base.name, connector->base.base.id);
2312                 return -ENODEV;
2313         }
2314
2315         mutex_lock(&hdcp->mutex);
2316         mutex_lock(&dig_port->hdcp_mutex);
2317         drm_WARN_ON(&dev_priv->drm,
2318                     hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2319         hdcp->content_type = content_type;
2320
2321         if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2322                 hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2323                 hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2324         } else {
2325                 hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2326                 hdcp->stream_transcoder = INVALID_TRANSCODER;
2327         }
2328
2329         if (DISPLAY_VER(dev_priv) >= 12)
2330                 dig_port->hdcp_port_data.fw_tc = intel_get_mei_fw_tc(hdcp->cpu_transcoder);
2331
2332         /*
2333          * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2334          * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2335          */
2336         if (intel_hdcp2_capable(connector)) {
2337                 ret = _intel_hdcp2_enable(connector);
2338                 if (!ret)
2339                         check_link_interval = DRM_HDCP2_CHECK_PERIOD_MS;
2340         }
2341
2342         /*
2343          * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2344          * be attempted.
2345          */
2346         if (ret && intel_hdcp_capable(connector) &&
2347             hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2348                 ret = _intel_hdcp_enable(connector);
2349         }
2350
2351         if (!ret) {
2352                 schedule_delayed_work(&hdcp->check_work, check_link_interval);
2353                 intel_hdcp_update_value(connector,
2354                                         DRM_MODE_CONTENT_PROTECTION_ENABLED,
2355                                         true);
2356         }
2357
2358         mutex_unlock(&dig_port->hdcp_mutex);
2359         mutex_unlock(&hdcp->mutex);
2360         return ret;
2361 }
2362
2363 int intel_hdcp_disable(struct intel_connector *connector)
2364 {
2365         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2366         struct intel_hdcp *hdcp = &connector->hdcp;
2367         int ret = 0;
2368
2369         if (!hdcp->shim)
2370                 return -ENOENT;
2371
2372         mutex_lock(&hdcp->mutex);
2373         mutex_lock(&dig_port->hdcp_mutex);
2374
2375         if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2376                 goto out;
2377
2378         intel_hdcp_update_value(connector,
2379                                 DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2380         if (hdcp->hdcp2_encrypted)
2381                 ret = _intel_hdcp2_disable(connector, false);
2382         else if (hdcp->hdcp_encrypted)
2383                 ret = _intel_hdcp_disable(connector);
2384
2385 out:
2386         mutex_unlock(&dig_port->hdcp_mutex);
2387         mutex_unlock(&hdcp->mutex);
2388         cancel_delayed_work_sync(&hdcp->check_work);
2389         return ret;
2390 }
2391
2392 void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2393                             struct intel_encoder *encoder,
2394                             const struct intel_crtc_state *crtc_state,
2395                             const struct drm_connector_state *conn_state)
2396 {
2397         struct intel_connector *connector =
2398                                 to_intel_connector(conn_state->connector);
2399         struct intel_hdcp *hdcp = &connector->hdcp;
2400         bool content_protection_type_changed, desired_and_not_enabled = false;
2401
2402         if (!connector->hdcp.shim)
2403                 return;
2404
2405         content_protection_type_changed =
2406                 (conn_state->hdcp_content_type != hdcp->content_type &&
2407                  conn_state->content_protection !=
2408                  DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2409
2410         /*
2411          * During the HDCP encryption session if Type change is requested,
2412          * disable the HDCP and reenable it with new TYPE value.
2413          */
2414         if (conn_state->content_protection ==
2415             DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2416             content_protection_type_changed)
2417                 intel_hdcp_disable(connector);
2418
2419         /*
2420          * Mark the hdcp state as DESIRED after the hdcp disable of type
2421          * change procedure.
2422          */
2423         if (content_protection_type_changed) {
2424                 mutex_lock(&hdcp->mutex);
2425                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2426                 drm_connector_get(&connector->base);
2427                 schedule_work(&hdcp->prop_work);
2428                 mutex_unlock(&hdcp->mutex);
2429         }
2430
2431         if (conn_state->content_protection ==
2432             DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2433                 mutex_lock(&hdcp->mutex);
2434                 /* Avoid enabling hdcp, if it already ENABLED */
2435                 desired_and_not_enabled =
2436                         hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2437                 mutex_unlock(&hdcp->mutex);
2438                 /*
2439                  * If HDCP already ENABLED and CP property is DESIRED, schedule
2440                  * prop_work to update correct CP property to user space.
2441                  */
2442                 if (!desired_and_not_enabled && !content_protection_type_changed) {
2443                         drm_connector_get(&connector->base);
2444                         schedule_work(&hdcp->prop_work);
2445                 }
2446         }
2447
2448         if (desired_and_not_enabled || content_protection_type_changed)
2449                 intel_hdcp_enable(connector,
2450                                   crtc_state,
2451                                   (u8)conn_state->hdcp_content_type);
2452 }
2453
2454 void intel_hdcp_component_fini(struct drm_i915_private *dev_priv)
2455 {
2456         mutex_lock(&dev_priv->hdcp_comp_mutex);
2457         if (!dev_priv->hdcp_comp_added) {
2458                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
2459                 return;
2460         }
2461
2462         dev_priv->hdcp_comp_added = false;
2463         mutex_unlock(&dev_priv->hdcp_comp_mutex);
2464
2465         component_del(dev_priv->drm.dev, &i915_hdcp_component_ops);
2466 }
2467
2468 void intel_hdcp_cleanup(struct intel_connector *connector)
2469 {
2470         struct intel_hdcp *hdcp = &connector->hdcp;
2471
2472         if (!hdcp->shim)
2473                 return;
2474
2475         /*
2476          * If the connector is registered, it's possible userspace could kick
2477          * off another HDCP enable, which would re-spawn the workers.
2478          */
2479         drm_WARN_ON(connector->base.dev,
2480                 connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2481
2482         /*
2483          * Now that the connector is not registered, check_work won't be run,
2484          * but cancel any outstanding instances of it
2485          */
2486         cancel_delayed_work_sync(&hdcp->check_work);
2487
2488         /*
2489          * We don't cancel prop_work in the same way as check_work since it
2490          * requires connection_mutex which could be held while calling this
2491          * function. Instead, we rely on the connector references grabbed before
2492          * scheduling prop_work to ensure the connector is alive when prop_work
2493          * is run. So if we're in the destroy path (which is where this
2494          * function should be called), we're "guaranteed" that prop_work is not
2495          * active (tl;dr This Should Never Happen).
2496          */
2497         drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2498
2499         mutex_lock(&hdcp->mutex);
2500         hdcp->shim = NULL;
2501         mutex_unlock(&hdcp->mutex);
2502 }
2503
2504 void intel_hdcp_atomic_check(struct drm_connector *connector,
2505                              struct drm_connector_state *old_state,
2506                              struct drm_connector_state *new_state)
2507 {
2508         u64 old_cp = old_state->content_protection;
2509         u64 new_cp = new_state->content_protection;
2510         struct drm_crtc_state *crtc_state;
2511
2512         if (!new_state->crtc) {
2513                 /*
2514                  * If the connector is being disabled with CP enabled, mark it
2515                  * desired so it's re-enabled when the connector is brought back
2516                  */
2517                 if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2518                         new_state->content_protection =
2519                                 DRM_MODE_CONTENT_PROTECTION_DESIRED;
2520                 return;
2521         }
2522
2523         crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2524                                                    new_state->crtc);
2525         /*
2526          * Fix the HDCP uapi content protection state in case of modeset.
2527          * FIXME: As per HDCP content protection property uapi doc, an uevent()
2528          * need to be sent if there is transition from ENABLED->DESIRED.
2529          */
2530         if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2531             (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2532             new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2533                 new_state->content_protection =
2534                         DRM_MODE_CONTENT_PROTECTION_DESIRED;
2535
2536         /*
2537          * Nothing to do if the state didn't change, or HDCP was activated since
2538          * the last commit. And also no change in hdcp content type.
2539          */
2540         if (old_cp == new_cp ||
2541             (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2542              new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2543                 if (old_state->hdcp_content_type ==
2544                                 new_state->hdcp_content_type)
2545                         return;
2546         }
2547
2548         crtc_state->mode_changed = true;
2549 }
2550
2551 /* Handles the CP_IRQ raised from the DP HDCP sink */
2552 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2553 {
2554         struct intel_hdcp *hdcp = &connector->hdcp;
2555
2556         if (!hdcp->shim)
2557                 return;
2558
2559         atomic_inc(&connector->hdcp.cp_irq_count);
2560         wake_up_all(&connector->hdcp.cp_irq_queue);
2561
2562         schedule_delayed_work(&hdcp->check_work, 0);
2563 }