Merge drm/drm-next into drm-intel-next-queued
[linux-block.git] / drivers / gpu / drm / i915 / display / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34
35 #include <asm/byteorder.h>
36
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43
44 #include "i915_debugfs.h"
45 #include "i915_drv.h"
46 #include "i915_trace.h"
47 #include "intel_atomic.h"
48 #include "intel_audio.h"
49 #include "intel_connector.h"
50 #include "intel_ddi.h"
51 #include "intel_display_debugfs.h"
52 #include "intel_display_types.h"
53 #include "intel_dp.h"
54 #include "intel_dp_link_training.h"
55 #include "intel_dp_mst.h"
56 #include "intel_dpio_phy.h"
57 #include "intel_fifo_underrun.h"
58 #include "intel_hdcp.h"
59 #include "intel_hdmi.h"
60 #include "intel_hotplug.h"
61 #include "intel_lspcon.h"
62 #include "intel_lvds.h"
63 #include "intel_panel.h"
64 #include "intel_psr.h"
65 #include "intel_sideband.h"
66 #include "intel_tc.h"
67 #include "intel_vdsc.h"
68
69 #define DP_DPRX_ESI_LEN 14
70
71 /* DP DSC throughput values used for slice count calculations KPixels/s */
72 #define DP_DSC_PEAK_PIXEL_RATE                  2720000
73 #define DP_DSC_MAX_ENC_THROUGHPUT_0             340000
74 #define DP_DSC_MAX_ENC_THROUGHPUT_1             400000
75
76 /* DP DSC FEC Overhead factor = 1/(0.972261) */
77 #define DP_DSC_FEC_OVERHEAD_FACTOR              972261
78
79 /* Compliance test status bits  */
80 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
81 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
84
85 struct dp_link_dpll {
86         int clock;
87         struct dpll dpll;
88 };
89
90 static const struct dp_link_dpll g4x_dpll[] = {
91         { 162000,
92                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
93         { 270000,
94                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
95 };
96
97 static const struct dp_link_dpll pch_dpll[] = {
98         { 162000,
99                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
100         { 270000,
101                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
102 };
103
104 static const struct dp_link_dpll vlv_dpll[] = {
105         { 162000,
106                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
107         { 270000,
108                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
109 };
110
111 /*
112  * CHV supports eDP 1.4 that have  more link rates.
113  * Below only provides the fixed rate but exclude variable rate.
114  */
115 static const struct dp_link_dpll chv_dpll[] = {
116         /*
117          * CHV requires to program fractional division for m2.
118          * m2 is stored in fixed point format using formula below
119          * (m2_int << 22) | m2_fraction
120          */
121         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
122                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
123         { 270000,       /* m2_int = 27, m2_fraction = 0 */
124                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
125 };
126
127 /* Constants for DP DSC configurations */
128 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
129
130 /* With Single pipe configuration, HW is capable of supporting maximum
131  * of 4 slices per line.
132  */
133 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
134
135 /**
136  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
137  * @intel_dp: DP struct
138  *
139  * If a CPU or PCH DP output is attached to an eDP panel, this function
140  * will return true, and false otherwise.
141  */
142 bool intel_dp_is_edp(struct intel_dp *intel_dp)
143 {
144         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
145
146         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
147 }
148
149 static void intel_dp_link_down(struct intel_encoder *encoder,
150                                const struct intel_crtc_state *old_crtc_state);
151 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
152 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
153 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
154                                            const struct intel_crtc_state *crtc_state);
155 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
156                                       enum pipe pipe);
157 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
158
159 /* update sink rates from dpcd */
160 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
161 {
162         static const int dp_rates[] = {
163                 162000, 270000, 540000, 810000
164         };
165         int i, max_rate;
166
167         if (drm_dp_has_quirk(&intel_dp->desc, 0,
168                              DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) {
169                 /* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */
170                 static const int quirk_rates[] = { 162000, 270000, 324000 };
171
172                 memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates));
173                 intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates);
174
175                 return;
176         }
177
178         max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
179
180         for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
181                 if (dp_rates[i] > max_rate)
182                         break;
183                 intel_dp->sink_rates[i] = dp_rates[i];
184         }
185
186         intel_dp->num_sink_rates = i;
187 }
188
189 /* Get length of rates array potentially limited by max_rate. */
190 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
191 {
192         int i;
193
194         /* Limit results by potentially reduced max rate */
195         for (i = 0; i < len; i++) {
196                 if (rates[len - i - 1] <= max_rate)
197                         return len - i;
198         }
199
200         return 0;
201 }
202
203 /* Get length of common rates array potentially limited by max_rate. */
204 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
205                                           int max_rate)
206 {
207         return intel_dp_rate_limit_len(intel_dp->common_rates,
208                                        intel_dp->num_common_rates, max_rate);
209 }
210
211 /* Theoretical max between source and sink */
212 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
213 {
214         return intel_dp->common_rates[intel_dp->num_common_rates - 1];
215 }
216
217 /* Theoretical max between source and sink */
218 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
219 {
220         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
221         int source_max = intel_dig_port->max_lanes;
222         int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
223         int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
224
225         return min3(source_max, sink_max, fia_max);
226 }
227
228 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
229 {
230         return intel_dp->max_link_lane_count;
231 }
232
233 int
234 intel_dp_link_required(int pixel_clock, int bpp)
235 {
236         /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
237         return DIV_ROUND_UP(pixel_clock * bpp, 8);
238 }
239
240 int
241 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
242 {
243         /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
244          * link rate that is generally expressed in Gbps. Since, 8 bits of data
245          * is transmitted every LS_Clk per lane, there is no need to account for
246          * the channel encoding that is done in the PHY layer here.
247          */
248
249         return max_link_clock * max_lanes;
250 }
251
252 static int
253 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
254 {
255         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
256         struct intel_encoder *encoder = &intel_dig_port->base;
257         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
258         int max_dotclk = dev_priv->max_dotclk_freq;
259         int ds_max_dotclk;
260
261         int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
262
263         if (type != DP_DS_PORT_TYPE_VGA)
264                 return max_dotclk;
265
266         ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
267                                                     intel_dp->downstream_ports);
268
269         if (ds_max_dotclk != 0)
270                 max_dotclk = min(max_dotclk, ds_max_dotclk);
271
272         return max_dotclk;
273 }
274
275 static int cnl_max_source_rate(struct intel_dp *intel_dp)
276 {
277         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
278         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
279         enum port port = dig_port->base.port;
280
281         u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
282
283         /* Low voltage SKUs are limited to max of 5.4G */
284         if (voltage == VOLTAGE_INFO_0_85V)
285                 return 540000;
286
287         /* For this SKU 8.1G is supported in all ports */
288         if (IS_CNL_WITH_PORT_F(dev_priv))
289                 return 810000;
290
291         /* For other SKUs, max rate on ports A and D is 5.4G */
292         if (port == PORT_A || port == PORT_D)
293                 return 540000;
294
295         return 810000;
296 }
297
298 static int icl_max_source_rate(struct intel_dp *intel_dp)
299 {
300         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
301         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
302         enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
303
304         if (intel_phy_is_combo(dev_priv, phy) &&
305             !IS_ELKHARTLAKE(dev_priv) &&
306             !intel_dp_is_edp(intel_dp))
307                 return 540000;
308
309         return 810000;
310 }
311
312 static void
313 intel_dp_set_source_rates(struct intel_dp *intel_dp)
314 {
315         /* The values must be in increasing order */
316         static const int cnl_rates[] = {
317                 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
318         };
319         static const int bxt_rates[] = {
320                 162000, 216000, 243000, 270000, 324000, 432000, 540000
321         };
322         static const int skl_rates[] = {
323                 162000, 216000, 270000, 324000, 432000, 540000
324         };
325         static const int hsw_rates[] = {
326                 162000, 270000, 540000
327         };
328         static const int g4x_rates[] = {
329                 162000, 270000
330         };
331         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
332         struct intel_encoder *encoder = &dig_port->base;
333         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
334         const int *source_rates;
335         int size, max_rate = 0, vbt_max_rate;
336
337         /* This should only be done once */
338         drm_WARN_ON(&dev_priv->drm,
339                     intel_dp->source_rates || intel_dp->num_source_rates);
340
341         if (INTEL_GEN(dev_priv) >= 10) {
342                 source_rates = cnl_rates;
343                 size = ARRAY_SIZE(cnl_rates);
344                 if (IS_GEN(dev_priv, 10))
345                         max_rate = cnl_max_source_rate(intel_dp);
346                 else
347                         max_rate = icl_max_source_rate(intel_dp);
348         } else if (IS_GEN9_LP(dev_priv)) {
349                 source_rates = bxt_rates;
350                 size = ARRAY_SIZE(bxt_rates);
351         } else if (IS_GEN9_BC(dev_priv)) {
352                 source_rates = skl_rates;
353                 size = ARRAY_SIZE(skl_rates);
354         } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
355                    IS_BROADWELL(dev_priv)) {
356                 source_rates = hsw_rates;
357                 size = ARRAY_SIZE(hsw_rates);
358         } else {
359                 source_rates = g4x_rates;
360                 size = ARRAY_SIZE(g4x_rates);
361         }
362
363         vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
364         if (max_rate && vbt_max_rate)
365                 max_rate = min(max_rate, vbt_max_rate);
366         else if (vbt_max_rate)
367                 max_rate = vbt_max_rate;
368
369         if (max_rate)
370                 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
371
372         intel_dp->source_rates = source_rates;
373         intel_dp->num_source_rates = size;
374 }
375
376 static int intersect_rates(const int *source_rates, int source_len,
377                            const int *sink_rates, int sink_len,
378                            int *common_rates)
379 {
380         int i = 0, j = 0, k = 0;
381
382         while (i < source_len && j < sink_len) {
383                 if (source_rates[i] == sink_rates[j]) {
384                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
385                                 return k;
386                         common_rates[k] = source_rates[i];
387                         ++k;
388                         ++i;
389                         ++j;
390                 } else if (source_rates[i] < sink_rates[j]) {
391                         ++i;
392                 } else {
393                         ++j;
394                 }
395         }
396         return k;
397 }
398
399 /* return index of rate in rates array, or -1 if not found */
400 static int intel_dp_rate_index(const int *rates, int len, int rate)
401 {
402         int i;
403
404         for (i = 0; i < len; i++)
405                 if (rate == rates[i])
406                         return i;
407
408         return -1;
409 }
410
411 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
412 {
413         WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
414
415         intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
416                                                      intel_dp->num_source_rates,
417                                                      intel_dp->sink_rates,
418                                                      intel_dp->num_sink_rates,
419                                                      intel_dp->common_rates);
420
421         /* Paranoia, there should always be something in common. */
422         if (WARN_ON(intel_dp->num_common_rates == 0)) {
423                 intel_dp->common_rates[0] = 162000;
424                 intel_dp->num_common_rates = 1;
425         }
426 }
427
428 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
429                                        u8 lane_count)
430 {
431         /*
432          * FIXME: we need to synchronize the current link parameters with
433          * hardware readout. Currently fast link training doesn't work on
434          * boot-up.
435          */
436         if (link_rate == 0 ||
437             link_rate > intel_dp->max_link_rate)
438                 return false;
439
440         if (lane_count == 0 ||
441             lane_count > intel_dp_max_lane_count(intel_dp))
442                 return false;
443
444         return true;
445 }
446
447 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
448                                                      int link_rate,
449                                                      u8 lane_count)
450 {
451         const struct drm_display_mode *fixed_mode =
452                 intel_dp->attached_connector->panel.fixed_mode;
453         int mode_rate, max_rate;
454
455         mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
456         max_rate = intel_dp_max_data_rate(link_rate, lane_count);
457         if (mode_rate > max_rate)
458                 return false;
459
460         return true;
461 }
462
463 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
464                                             int link_rate, u8 lane_count)
465 {
466         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
467         int index;
468
469         index = intel_dp_rate_index(intel_dp->common_rates,
470                                     intel_dp->num_common_rates,
471                                     link_rate);
472         if (index > 0) {
473                 if (intel_dp_is_edp(intel_dp) &&
474                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
475                                                               intel_dp->common_rates[index - 1],
476                                                               lane_count)) {
477                         drm_dbg_kms(&i915->drm,
478                                     "Retrying Link training for eDP with same parameters\n");
479                         return 0;
480                 }
481                 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
482                 intel_dp->max_link_lane_count = lane_count;
483         } else if (lane_count > 1) {
484                 if (intel_dp_is_edp(intel_dp) &&
485                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
486                                                               intel_dp_max_common_rate(intel_dp),
487                                                               lane_count >> 1)) {
488                         drm_dbg_kms(&i915->drm,
489                                     "Retrying Link training for eDP with same parameters\n");
490                         return 0;
491                 }
492                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
493                 intel_dp->max_link_lane_count = lane_count >> 1;
494         } else {
495                 drm_err(&i915->drm, "Link Training Unsuccessful\n");
496                 return -1;
497         }
498
499         return 0;
500 }
501
502 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
503 {
504         return div_u64(mul_u32_u32(mode_clock, 1000000U),
505                        DP_DSC_FEC_OVERHEAD_FACTOR);
506 }
507
508 static int
509 small_joiner_ram_size_bits(struct drm_i915_private *i915)
510 {
511         if (INTEL_GEN(i915) >= 11)
512                 return 7680 * 8;
513         else
514                 return 6144 * 8;
515 }
516
517 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
518                                        u32 link_clock, u32 lane_count,
519                                        u32 mode_clock, u32 mode_hdisplay)
520 {
521         u32 bits_per_pixel, max_bpp_small_joiner_ram;
522         int i;
523
524         /*
525          * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
526          * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
527          * for SST -> TimeSlotsPerMTP is 1,
528          * for MST -> TimeSlotsPerMTP has to be calculated
529          */
530         bits_per_pixel = (link_clock * lane_count * 8) /
531                          intel_dp_mode_to_fec_clock(mode_clock);
532         drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
533
534         /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
535         max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
536                 mode_hdisplay;
537         drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
538                     max_bpp_small_joiner_ram);
539
540         /*
541          * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
542          * check, output bpp from small joiner RAM check)
543          */
544         bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
545
546         /* Error out if the max bpp is less than smallest allowed valid bpp */
547         if (bits_per_pixel < valid_dsc_bpp[0]) {
548                 drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
549                             bits_per_pixel, valid_dsc_bpp[0]);
550                 return 0;
551         }
552
553         /* Find the nearest match in the array of known BPPs from VESA */
554         for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
555                 if (bits_per_pixel < valid_dsc_bpp[i + 1])
556                         break;
557         }
558         bits_per_pixel = valid_dsc_bpp[i];
559
560         /*
561          * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
562          * fractional part is 0
563          */
564         return bits_per_pixel << 4;
565 }
566
567 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
568                                        int mode_clock, int mode_hdisplay)
569 {
570         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
571         u8 min_slice_count, i;
572         int max_slice_width;
573
574         if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
575                 min_slice_count = DIV_ROUND_UP(mode_clock,
576                                                DP_DSC_MAX_ENC_THROUGHPUT_0);
577         else
578                 min_slice_count = DIV_ROUND_UP(mode_clock,
579                                                DP_DSC_MAX_ENC_THROUGHPUT_1);
580
581         max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
582         if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
583                 drm_dbg_kms(&i915->drm,
584                             "Unsupported slice width %d by DP DSC Sink device\n",
585                             max_slice_width);
586                 return 0;
587         }
588         /* Also take into account max slice width */
589         min_slice_count = min_t(u8, min_slice_count,
590                                 DIV_ROUND_UP(mode_hdisplay,
591                                              max_slice_width));
592
593         /* Find the closest match to the valid slice count values */
594         for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
595                 if (valid_dsc_slicecount[i] >
596                     drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
597                                                     false))
598                         break;
599                 if (min_slice_count  <= valid_dsc_slicecount[i])
600                         return valid_dsc_slicecount[i];
601         }
602
603         drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n",
604                     min_slice_count);
605         return 0;
606 }
607
608 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
609                                   int hdisplay)
610 {
611         /*
612          * Older platforms don't like hdisplay==4096 with DP.
613          *
614          * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
615          * and frame counter increment), but we don't get vblank interrupts,
616          * and the pipe underruns immediately. The link also doesn't seem
617          * to get trained properly.
618          *
619          * On CHV the vblank interrupts don't seem to disappear but
620          * otherwise the symptoms are similar.
621          *
622          * TODO: confirm the behaviour on HSW+
623          */
624         return hdisplay == 4096 && !HAS_DDI(dev_priv);
625 }
626
627 static enum drm_mode_status
628 intel_dp_mode_valid(struct drm_connector *connector,
629                     struct drm_display_mode *mode)
630 {
631         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
632         struct intel_connector *intel_connector = to_intel_connector(connector);
633         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
634         struct drm_i915_private *dev_priv = to_i915(connector->dev);
635         int target_clock = mode->clock;
636         int max_rate, mode_rate, max_lanes, max_link_clock;
637         int max_dotclk;
638         u16 dsc_max_output_bpp = 0;
639         u8 dsc_slice_count = 0;
640
641         if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
642                 return MODE_NO_DBLESCAN;
643
644         max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
645
646         if (intel_dp_is_edp(intel_dp) && fixed_mode) {
647                 if (mode->hdisplay > fixed_mode->hdisplay)
648                         return MODE_PANEL;
649
650                 if (mode->vdisplay > fixed_mode->vdisplay)
651                         return MODE_PANEL;
652
653                 target_clock = fixed_mode->clock;
654         }
655
656         max_link_clock = intel_dp_max_link_rate(intel_dp);
657         max_lanes = intel_dp_max_lane_count(intel_dp);
658
659         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
660         mode_rate = intel_dp_link_required(target_clock, 18);
661
662         if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
663                 return MODE_H_ILLEGAL;
664
665         /*
666          * Output bpp is stored in 6.4 format so right shift by 4 to get the
667          * integer value since we support only integer values of bpp.
668          */
669         if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
670             drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
671                 if (intel_dp_is_edp(intel_dp)) {
672                         dsc_max_output_bpp =
673                                 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
674                         dsc_slice_count =
675                                 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
676                                                                 true);
677                 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
678                         dsc_max_output_bpp =
679                                 intel_dp_dsc_get_output_bpp(dev_priv,
680                                                             max_link_clock,
681                                                             max_lanes,
682                                                             target_clock,
683                                                             mode->hdisplay) >> 4;
684                         dsc_slice_count =
685                                 intel_dp_dsc_get_slice_count(intel_dp,
686                                                              target_clock,
687                                                              mode->hdisplay);
688                 }
689         }
690
691         if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
692             target_clock > max_dotclk)
693                 return MODE_CLOCK_HIGH;
694
695         if (mode->clock < 10000)
696                 return MODE_CLOCK_LOW;
697
698         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
699                 return MODE_H_ILLEGAL;
700
701         return intel_mode_valid_max_plane_size(dev_priv, mode);
702 }
703
704 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
705 {
706         int i;
707         u32 v = 0;
708
709         if (src_bytes > 4)
710                 src_bytes = 4;
711         for (i = 0; i < src_bytes; i++)
712                 v |= ((u32)src[i]) << ((3 - i) * 8);
713         return v;
714 }
715
716 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
717 {
718         int i;
719         if (dst_bytes > 4)
720                 dst_bytes = 4;
721         for (i = 0; i < dst_bytes; i++)
722                 dst[i] = src >> ((3-i) * 8);
723 }
724
725 static void
726 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
727 static void
728 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
729                                               bool force_disable_vdd);
730 static void
731 intel_dp_pps_init(struct intel_dp *intel_dp);
732
733 static intel_wakeref_t
734 pps_lock(struct intel_dp *intel_dp)
735 {
736         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
737         intel_wakeref_t wakeref;
738
739         /*
740          * See intel_power_sequencer_reset() why we need
741          * a power domain reference here.
742          */
743         wakeref = intel_display_power_get(dev_priv,
744                                           intel_aux_power_domain(dp_to_dig_port(intel_dp)));
745
746         mutex_lock(&dev_priv->pps_mutex);
747
748         return wakeref;
749 }
750
751 static intel_wakeref_t
752 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
753 {
754         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
755
756         mutex_unlock(&dev_priv->pps_mutex);
757         intel_display_power_put(dev_priv,
758                                 intel_aux_power_domain(dp_to_dig_port(intel_dp)),
759                                 wakeref);
760         return 0;
761 }
762
763 #define with_pps_lock(dp, wf) \
764         for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
765
766 static void
767 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
768 {
769         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
770         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
771         enum pipe pipe = intel_dp->pps_pipe;
772         bool pll_enabled, release_cl_override = false;
773         enum dpio_phy phy = DPIO_PHY(pipe);
774         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
775         u32 DP;
776
777         if (drm_WARN(&dev_priv->drm,
778                      intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
779                      "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
780                      pipe_name(pipe), intel_dig_port->base.base.base.id,
781                      intel_dig_port->base.base.name))
782                 return;
783
784         drm_dbg_kms(&dev_priv->drm,
785                     "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
786                     pipe_name(pipe), intel_dig_port->base.base.base.id,
787                     intel_dig_port->base.base.name);
788
789         /* Preserve the BIOS-computed detected bit. This is
790          * supposed to be read-only.
791          */
792         DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
793         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
794         DP |= DP_PORT_WIDTH(1);
795         DP |= DP_LINK_TRAIN_PAT_1;
796
797         if (IS_CHERRYVIEW(dev_priv))
798                 DP |= DP_PIPE_SEL_CHV(pipe);
799         else
800                 DP |= DP_PIPE_SEL(pipe);
801
802         pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
803
804         /*
805          * The DPLL for the pipe must be enabled for this to work.
806          * So enable temporarily it if it's not already enabled.
807          */
808         if (!pll_enabled) {
809                 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
810                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
811
812                 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
813                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
814                         drm_err(&dev_priv->drm,
815                                 "Failed to force on pll for pipe %c!\n",
816                                 pipe_name(pipe));
817                         return;
818                 }
819         }
820
821         /*
822          * Similar magic as in intel_dp_enable_port().
823          * We _must_ do this port enable + disable trick
824          * to make this power sequencer lock onto the port.
825          * Otherwise even VDD force bit won't work.
826          */
827         intel_de_write(dev_priv, intel_dp->output_reg, DP);
828         intel_de_posting_read(dev_priv, intel_dp->output_reg);
829
830         intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
831         intel_de_posting_read(dev_priv, intel_dp->output_reg);
832
833         intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
834         intel_de_posting_read(dev_priv, intel_dp->output_reg);
835
836         if (!pll_enabled) {
837                 vlv_force_pll_off(dev_priv, pipe);
838
839                 if (release_cl_override)
840                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
841         }
842 }
843
844 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
845 {
846         struct intel_encoder *encoder;
847         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
848
849         /*
850          * We don't have power sequencer currently.
851          * Pick one that's not used by other ports.
852          */
853         for_each_intel_dp(&dev_priv->drm, encoder) {
854                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
855
856                 if (encoder->type == INTEL_OUTPUT_EDP) {
857                         drm_WARN_ON(&dev_priv->drm,
858                                     intel_dp->active_pipe != INVALID_PIPE &&
859                                     intel_dp->active_pipe !=
860                                     intel_dp->pps_pipe);
861
862                         if (intel_dp->pps_pipe != INVALID_PIPE)
863                                 pipes &= ~(1 << intel_dp->pps_pipe);
864                 } else {
865                         drm_WARN_ON(&dev_priv->drm,
866                                     intel_dp->pps_pipe != INVALID_PIPE);
867
868                         if (intel_dp->active_pipe != INVALID_PIPE)
869                                 pipes &= ~(1 << intel_dp->active_pipe);
870                 }
871         }
872
873         if (pipes == 0)
874                 return INVALID_PIPE;
875
876         return ffs(pipes) - 1;
877 }
878
879 static enum pipe
880 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
881 {
882         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
883         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
884         enum pipe pipe;
885
886         lockdep_assert_held(&dev_priv->pps_mutex);
887
888         /* We should never land here with regular DP ports */
889         drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
890
891         drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
892                     intel_dp->active_pipe != intel_dp->pps_pipe);
893
894         if (intel_dp->pps_pipe != INVALID_PIPE)
895                 return intel_dp->pps_pipe;
896
897         pipe = vlv_find_free_pps(dev_priv);
898
899         /*
900          * Didn't find one. This should not happen since there
901          * are two power sequencers and up to two eDP ports.
902          */
903         if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
904                 pipe = PIPE_A;
905
906         vlv_steal_power_sequencer(dev_priv, pipe);
907         intel_dp->pps_pipe = pipe;
908
909         drm_dbg_kms(&dev_priv->drm,
910                     "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
911                     pipe_name(intel_dp->pps_pipe),
912                     intel_dig_port->base.base.base.id,
913                     intel_dig_port->base.base.name);
914
915         /* init power sequencer on this pipe and port */
916         intel_dp_init_panel_power_sequencer(intel_dp);
917         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
918
919         /*
920          * Even vdd force doesn't work until we've made
921          * the power sequencer lock in on the port.
922          */
923         vlv_power_sequencer_kick(intel_dp);
924
925         return intel_dp->pps_pipe;
926 }
927
928 static int
929 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
930 {
931         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
932         int backlight_controller = dev_priv->vbt.backlight.controller;
933
934         lockdep_assert_held(&dev_priv->pps_mutex);
935
936         /* We should never land here with regular DP ports */
937         drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
938
939         if (!intel_dp->pps_reset)
940                 return backlight_controller;
941
942         intel_dp->pps_reset = false;
943
944         /*
945          * Only the HW needs to be reprogrammed, the SW state is fixed and
946          * has been setup during connector init.
947          */
948         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
949
950         return backlight_controller;
951 }
952
953 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
954                                enum pipe pipe);
955
956 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
957                                enum pipe pipe)
958 {
959         return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
960 }
961
962 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
963                                 enum pipe pipe)
964 {
965         return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
966 }
967
968 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
969                          enum pipe pipe)
970 {
971         return true;
972 }
973
974 static enum pipe
975 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
976                      enum port port,
977                      vlv_pipe_check pipe_check)
978 {
979         enum pipe pipe;
980
981         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
982                 u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
983                         PANEL_PORT_SELECT_MASK;
984
985                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
986                         continue;
987
988                 if (!pipe_check(dev_priv, pipe))
989                         continue;
990
991                 return pipe;
992         }
993
994         return INVALID_PIPE;
995 }
996
997 static void
998 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
999 {
1000         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1001         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1002         enum port port = intel_dig_port->base.port;
1003
1004         lockdep_assert_held(&dev_priv->pps_mutex);
1005
1006         /* try to find a pipe with this port selected */
1007         /* first pick one where the panel is on */
1008         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1009                                                   vlv_pipe_has_pp_on);
1010         /* didn't find one? pick one where vdd is on */
1011         if (intel_dp->pps_pipe == INVALID_PIPE)
1012                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1013                                                           vlv_pipe_has_vdd_on);
1014         /* didn't find one? pick one with just the correct port */
1015         if (intel_dp->pps_pipe == INVALID_PIPE)
1016                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1017                                                           vlv_pipe_any);
1018
1019         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
1020         if (intel_dp->pps_pipe == INVALID_PIPE) {
1021                 drm_dbg_kms(&dev_priv->drm,
1022                             "no initial power sequencer for [ENCODER:%d:%s]\n",
1023                             intel_dig_port->base.base.base.id,
1024                             intel_dig_port->base.base.name);
1025                 return;
1026         }
1027
1028         drm_dbg_kms(&dev_priv->drm,
1029                     "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1030                     intel_dig_port->base.base.base.id,
1031                     intel_dig_port->base.base.name,
1032                     pipe_name(intel_dp->pps_pipe));
1033
1034         intel_dp_init_panel_power_sequencer(intel_dp);
1035         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1036 }
1037
1038 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1039 {
1040         struct intel_encoder *encoder;
1041
1042         if (drm_WARN_ON(&dev_priv->drm,
1043                         !(IS_VALLEYVIEW(dev_priv) ||
1044                           IS_CHERRYVIEW(dev_priv) ||
1045                           IS_GEN9_LP(dev_priv))))
1046                 return;
1047
1048         /*
1049          * We can't grab pps_mutex here due to deadlock with power_domain
1050          * mutex when power_domain functions are called while holding pps_mutex.
1051          * That also means that in order to use pps_pipe the code needs to
1052          * hold both a power domain reference and pps_mutex, and the power domain
1053          * reference get/put must be done while _not_ holding pps_mutex.
1054          * pps_{lock,unlock}() do these steps in the correct order, so one
1055          * should use them always.
1056          */
1057
1058         for_each_intel_dp(&dev_priv->drm, encoder) {
1059                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1060
1061                 drm_WARN_ON(&dev_priv->drm,
1062                             intel_dp->active_pipe != INVALID_PIPE);
1063
1064                 if (encoder->type != INTEL_OUTPUT_EDP)
1065                         continue;
1066
1067                 if (IS_GEN9_LP(dev_priv))
1068                         intel_dp->pps_reset = true;
1069                 else
1070                         intel_dp->pps_pipe = INVALID_PIPE;
1071         }
1072 }
1073
1074 struct pps_registers {
1075         i915_reg_t pp_ctrl;
1076         i915_reg_t pp_stat;
1077         i915_reg_t pp_on;
1078         i915_reg_t pp_off;
1079         i915_reg_t pp_div;
1080 };
1081
1082 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1083                                     struct pps_registers *regs)
1084 {
1085         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1086         int pps_idx = 0;
1087
1088         memset(regs, 0, sizeof(*regs));
1089
1090         if (IS_GEN9_LP(dev_priv))
1091                 pps_idx = bxt_power_sequencer_idx(intel_dp);
1092         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1093                 pps_idx = vlv_power_sequencer_pipe(intel_dp);
1094
1095         regs->pp_ctrl = PP_CONTROL(pps_idx);
1096         regs->pp_stat = PP_STATUS(pps_idx);
1097         regs->pp_on = PP_ON_DELAYS(pps_idx);
1098         regs->pp_off = PP_OFF_DELAYS(pps_idx);
1099
1100         /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1101         if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1102                 regs->pp_div = INVALID_MMIO_REG;
1103         else
1104                 regs->pp_div = PP_DIVISOR(pps_idx);
1105 }
1106
1107 static i915_reg_t
1108 _pp_ctrl_reg(struct intel_dp *intel_dp)
1109 {
1110         struct pps_registers regs;
1111
1112         intel_pps_get_registers(intel_dp, &regs);
1113
1114         return regs.pp_ctrl;
1115 }
1116
1117 static i915_reg_t
1118 _pp_stat_reg(struct intel_dp *intel_dp)
1119 {
1120         struct pps_registers regs;
1121
1122         intel_pps_get_registers(intel_dp, &regs);
1123
1124         return regs.pp_stat;
1125 }
1126
1127 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1128    This function only applicable when panel PM state is not to be tracked */
1129 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1130                               void *unused)
1131 {
1132         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1133                                                  edp_notifier);
1134         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1135         intel_wakeref_t wakeref;
1136
1137         if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1138                 return 0;
1139
1140         with_pps_lock(intel_dp, wakeref) {
1141                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1142                         enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1143                         i915_reg_t pp_ctrl_reg, pp_div_reg;
1144                         u32 pp_div;
1145
1146                         pp_ctrl_reg = PP_CONTROL(pipe);
1147                         pp_div_reg  = PP_DIVISOR(pipe);
1148                         pp_div = intel_de_read(dev_priv, pp_div_reg);
1149                         pp_div &= PP_REFERENCE_DIVIDER_MASK;
1150
1151                         /* 0x1F write to PP_DIV_REG sets max cycle delay */
1152                         intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
1153                         intel_de_write(dev_priv, pp_ctrl_reg,
1154                                        PANEL_UNLOCK_REGS);
1155                         msleep(intel_dp->panel_power_cycle_delay);
1156                 }
1157         }
1158
1159         return 0;
1160 }
1161
1162 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1163 {
1164         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1165
1166         lockdep_assert_held(&dev_priv->pps_mutex);
1167
1168         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1169             intel_dp->pps_pipe == INVALID_PIPE)
1170                 return false;
1171
1172         return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1173 }
1174
1175 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1176 {
1177         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1178
1179         lockdep_assert_held(&dev_priv->pps_mutex);
1180
1181         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1182             intel_dp->pps_pipe == INVALID_PIPE)
1183                 return false;
1184
1185         return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1186 }
1187
1188 static void
1189 intel_dp_check_edp(struct intel_dp *intel_dp)
1190 {
1191         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1192
1193         if (!intel_dp_is_edp(intel_dp))
1194                 return;
1195
1196         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1197                 drm_WARN(&dev_priv->drm, 1,
1198                          "eDP powered off while attempting aux channel communication.\n");
1199                 drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1200                             intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
1201                             intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1202         }
1203 }
1204
1205 static u32
1206 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1207 {
1208         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1209         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1210         const unsigned int timeout_ms = 10;
1211         u32 status;
1212         bool done;
1213
1214 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1215         done = wait_event_timeout(i915->gmbus_wait_queue, C,
1216                                   msecs_to_jiffies_timeout(timeout_ms));
1217
1218         /* just trace the final value */
1219         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1220
1221         if (!done)
1222                 drm_err(&i915->drm,
1223                         "%s: did not complete or timeout within %ums (status 0x%08x)\n",
1224                         intel_dp->aux.name, timeout_ms, status);
1225 #undef C
1226
1227         return status;
1228 }
1229
1230 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1231 {
1232         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1233
1234         if (index)
1235                 return 0;
1236
1237         /*
1238          * The clock divider is based off the hrawclk, and would like to run at
1239          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1240          */
1241         return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1242 }
1243
1244 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1245 {
1246         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1247         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1248         u32 freq;
1249
1250         if (index)
1251                 return 0;
1252
1253         /*
1254          * The clock divider is based off the cdclk or PCH rawclk, and would
1255          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1256          * divide by 2000 and use that
1257          */
1258         if (dig_port->aux_ch == AUX_CH_A)
1259                 freq = dev_priv->cdclk.hw.cdclk;
1260         else
1261                 freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
1262         return DIV_ROUND_CLOSEST(freq, 2000);
1263 }
1264
1265 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1266 {
1267         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1268         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1269
1270         if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1271                 /* Workaround for non-ULT HSW */
1272                 switch (index) {
1273                 case 0: return 63;
1274                 case 1: return 72;
1275                 default: return 0;
1276                 }
1277         }
1278
1279         return ilk_get_aux_clock_divider(intel_dp, index);
1280 }
1281
1282 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1283 {
1284         /*
1285          * SKL doesn't need us to program the AUX clock divider (Hardware will
1286          * derive the clock from CDCLK automatically). We still implement the
1287          * get_aux_clock_divider vfunc to plug-in into the existing code.
1288          */
1289         return index ? 0 : 1;
1290 }
1291
1292 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1293                                 int send_bytes,
1294                                 u32 aux_clock_divider)
1295 {
1296         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1297         struct drm_i915_private *dev_priv =
1298                         to_i915(intel_dig_port->base.base.dev);
1299         u32 precharge, timeout;
1300
1301         if (IS_GEN(dev_priv, 6))
1302                 precharge = 3;
1303         else
1304                 precharge = 5;
1305
1306         if (IS_BROADWELL(dev_priv))
1307                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1308         else
1309                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1310
1311         return DP_AUX_CH_CTL_SEND_BUSY |
1312                DP_AUX_CH_CTL_DONE |
1313                DP_AUX_CH_CTL_INTERRUPT |
1314                DP_AUX_CH_CTL_TIME_OUT_ERROR |
1315                timeout |
1316                DP_AUX_CH_CTL_RECEIVE_ERROR |
1317                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1318                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1319                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1320 }
1321
1322 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1323                                 int send_bytes,
1324                                 u32 unused)
1325 {
1326         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1327         struct drm_i915_private *i915 =
1328                         to_i915(intel_dig_port->base.base.dev);
1329         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1330         u32 ret;
1331
1332         ret = DP_AUX_CH_CTL_SEND_BUSY |
1333               DP_AUX_CH_CTL_DONE |
1334               DP_AUX_CH_CTL_INTERRUPT |
1335               DP_AUX_CH_CTL_TIME_OUT_ERROR |
1336               DP_AUX_CH_CTL_TIME_OUT_MAX |
1337               DP_AUX_CH_CTL_RECEIVE_ERROR |
1338               (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1339               DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1340               DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1341
1342         if (intel_phy_is_tc(i915, phy) &&
1343             intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1344                 ret |= DP_AUX_CH_CTL_TBT_IO;
1345
1346         return ret;
1347 }
1348
1349 static int
1350 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1351                   const u8 *send, int send_bytes,
1352                   u8 *recv, int recv_size,
1353                   u32 aux_send_ctl_flags)
1354 {
1355         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1356         struct drm_i915_private *i915 =
1357                         to_i915(intel_dig_port->base.base.dev);
1358         struct intel_uncore *uncore = &i915->uncore;
1359         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1360         bool is_tc_port = intel_phy_is_tc(i915, phy);
1361         i915_reg_t ch_ctl, ch_data[5];
1362         u32 aux_clock_divider;
1363         enum intel_display_power_domain aux_domain =
1364                 intel_aux_power_domain(intel_dig_port);
1365         intel_wakeref_t aux_wakeref;
1366         intel_wakeref_t pps_wakeref;
1367         int i, ret, recv_bytes;
1368         int try, clock = 0;
1369         u32 status;
1370         bool vdd;
1371
1372         ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1373         for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1374                 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1375
1376         if (is_tc_port)
1377                 intel_tc_port_lock(intel_dig_port);
1378
1379         aux_wakeref = intel_display_power_get(i915, aux_domain);
1380         pps_wakeref = pps_lock(intel_dp);
1381
1382         /*
1383          * We will be called with VDD already enabled for dpcd/edid/oui reads.
1384          * In such cases we want to leave VDD enabled and it's up to upper layers
1385          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1386          * ourselves.
1387          */
1388         vdd = edp_panel_vdd_on(intel_dp);
1389
1390         /* dp aux is extremely sensitive to irq latency, hence request the
1391          * lowest possible wakeup latency and so prevent the cpu from going into
1392          * deep sleep states.
1393          */
1394         cpu_latency_qos_update_request(&i915->pm_qos, 0);
1395
1396         intel_dp_check_edp(intel_dp);
1397
1398         /* Try to wait for any previous AUX channel activity */
1399         for (try = 0; try < 3; try++) {
1400                 status = intel_uncore_read_notrace(uncore, ch_ctl);
1401                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1402                         break;
1403                 msleep(1);
1404         }
1405         /* just trace the final value */
1406         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1407
1408         if (try == 3) {
1409                 const u32 status = intel_uncore_read(uncore, ch_ctl);
1410
1411                 if (status != intel_dp->aux_busy_last_status) {
1412                         drm_WARN(&i915->drm, 1,
1413                                  "%s: not started (status 0x%08x)\n",
1414                                  intel_dp->aux.name, status);
1415                         intel_dp->aux_busy_last_status = status;
1416                 }
1417
1418                 ret = -EBUSY;
1419                 goto out;
1420         }
1421
1422         /* Only 5 data registers! */
1423         if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1424                 ret = -E2BIG;
1425                 goto out;
1426         }
1427
1428         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1429                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1430                                                           send_bytes,
1431                                                           aux_clock_divider);
1432
1433                 send_ctl |= aux_send_ctl_flags;
1434
1435                 /* Must try at least 3 times according to DP spec */
1436                 for (try = 0; try < 5; try++) {
1437                         /* Load the send data into the aux channel data registers */
1438                         for (i = 0; i < send_bytes; i += 4)
1439                                 intel_uncore_write(uncore,
1440                                                    ch_data[i >> 2],
1441                                                    intel_dp_pack_aux(send + i,
1442                                                                      send_bytes - i));
1443
1444                         /* Send the command and wait for it to complete */
1445                         intel_uncore_write(uncore, ch_ctl, send_ctl);
1446
1447                         status = intel_dp_aux_wait_done(intel_dp);
1448
1449                         /* Clear done status and any errors */
1450                         intel_uncore_write(uncore,
1451                                            ch_ctl,
1452                                            status |
1453                                            DP_AUX_CH_CTL_DONE |
1454                                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
1455                                            DP_AUX_CH_CTL_RECEIVE_ERROR);
1456
1457                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1458                          *   400us delay required for errors and timeouts
1459                          *   Timeout errors from the HW already meet this
1460                          *   requirement so skip to next iteration
1461                          */
1462                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1463                                 continue;
1464
1465                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1466                                 usleep_range(400, 500);
1467                                 continue;
1468                         }
1469                         if (status & DP_AUX_CH_CTL_DONE)
1470                                 goto done;
1471                 }
1472         }
1473
1474         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1475                 drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
1476                         intel_dp->aux.name, status);
1477                 ret = -EBUSY;
1478                 goto out;
1479         }
1480
1481 done:
1482         /* Check for timeout or receive error.
1483          * Timeouts occur when the sink is not connected
1484          */
1485         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1486                 drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
1487                         intel_dp->aux.name, status);
1488                 ret = -EIO;
1489                 goto out;
1490         }
1491
1492         /* Timeouts occur when the device isn't connected, so they're
1493          * "normal" -- don't fill the kernel log with these */
1494         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1495                 drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
1496                             intel_dp->aux.name, status);
1497                 ret = -ETIMEDOUT;
1498                 goto out;
1499         }
1500
1501         /* Unload any bytes sent back from the other side */
1502         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1503                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1504
1505         /*
1506          * By BSpec: "Message sizes of 0 or >20 are not allowed."
1507          * We have no idea of what happened so we return -EBUSY so
1508          * drm layer takes care for the necessary retries.
1509          */
1510         if (recv_bytes == 0 || recv_bytes > 20) {
1511                 drm_dbg_kms(&i915->drm,
1512                             "%s: Forbidden recv_bytes = %d on aux transaction\n",
1513                             intel_dp->aux.name, recv_bytes);
1514                 ret = -EBUSY;
1515                 goto out;
1516         }
1517
1518         if (recv_bytes > recv_size)
1519                 recv_bytes = recv_size;
1520
1521         for (i = 0; i < recv_bytes; i += 4)
1522                 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1523                                     recv + i, recv_bytes - i);
1524
1525         ret = recv_bytes;
1526 out:
1527         cpu_latency_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1528
1529         if (vdd)
1530                 edp_panel_vdd_off(intel_dp, false);
1531
1532         pps_unlock(intel_dp, pps_wakeref);
1533         intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1534
1535         if (is_tc_port)
1536                 intel_tc_port_unlock(intel_dig_port);
1537
1538         return ret;
1539 }
1540
1541 #define BARE_ADDRESS_SIZE       3
1542 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1543
1544 static void
1545 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1546                     const struct drm_dp_aux_msg *msg)
1547 {
1548         txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1549         txbuf[1] = (msg->address >> 8) & 0xff;
1550         txbuf[2] = msg->address & 0xff;
1551         txbuf[3] = msg->size - 1;
1552 }
1553
1554 static ssize_t
1555 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1556 {
1557         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1558         u8 txbuf[20], rxbuf[20];
1559         size_t txsize, rxsize;
1560         int ret;
1561
1562         intel_dp_aux_header(txbuf, msg);
1563
1564         switch (msg->request & ~DP_AUX_I2C_MOT) {
1565         case DP_AUX_NATIVE_WRITE:
1566         case DP_AUX_I2C_WRITE:
1567         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1568                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1569                 rxsize = 2; /* 0 or 1 data bytes */
1570
1571                 if (WARN_ON(txsize > 20))
1572                         return -E2BIG;
1573
1574                 WARN_ON(!msg->buffer != !msg->size);
1575
1576                 if (msg->buffer)
1577                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1578
1579                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1580                                         rxbuf, rxsize, 0);
1581                 if (ret > 0) {
1582                         msg->reply = rxbuf[0] >> 4;
1583
1584                         if (ret > 1) {
1585                                 /* Number of bytes written in a short write. */
1586                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1587                         } else {
1588                                 /* Return payload size. */
1589                                 ret = msg->size;
1590                         }
1591                 }
1592                 break;
1593
1594         case DP_AUX_NATIVE_READ:
1595         case DP_AUX_I2C_READ:
1596                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1597                 rxsize = msg->size + 1;
1598
1599                 if (WARN_ON(rxsize > 20))
1600                         return -E2BIG;
1601
1602                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1603                                         rxbuf, rxsize, 0);
1604                 if (ret > 0) {
1605                         msg->reply = rxbuf[0] >> 4;
1606                         /*
1607                          * Assume happy day, and copy the data. The caller is
1608                          * expected to check msg->reply before touching it.
1609                          *
1610                          * Return payload size.
1611                          */
1612                         ret--;
1613                         memcpy(msg->buffer, rxbuf + 1, ret);
1614                 }
1615                 break;
1616
1617         default:
1618                 ret = -EINVAL;
1619                 break;
1620         }
1621
1622         return ret;
1623 }
1624
1625
1626 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1627 {
1628         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1629         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1630         enum aux_ch aux_ch = dig_port->aux_ch;
1631
1632         switch (aux_ch) {
1633         case AUX_CH_B:
1634         case AUX_CH_C:
1635         case AUX_CH_D:
1636                 return DP_AUX_CH_CTL(aux_ch);
1637         default:
1638                 MISSING_CASE(aux_ch);
1639                 return DP_AUX_CH_CTL(AUX_CH_B);
1640         }
1641 }
1642
1643 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1644 {
1645         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1646         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1647         enum aux_ch aux_ch = dig_port->aux_ch;
1648
1649         switch (aux_ch) {
1650         case AUX_CH_B:
1651         case AUX_CH_C:
1652         case AUX_CH_D:
1653                 return DP_AUX_CH_DATA(aux_ch, index);
1654         default:
1655                 MISSING_CASE(aux_ch);
1656                 return DP_AUX_CH_DATA(AUX_CH_B, index);
1657         }
1658 }
1659
1660 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1661 {
1662         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1663         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1664         enum aux_ch aux_ch = dig_port->aux_ch;
1665
1666         switch (aux_ch) {
1667         case AUX_CH_A:
1668                 return DP_AUX_CH_CTL(aux_ch);
1669         case AUX_CH_B:
1670         case AUX_CH_C:
1671         case AUX_CH_D:
1672                 return PCH_DP_AUX_CH_CTL(aux_ch);
1673         default:
1674                 MISSING_CASE(aux_ch);
1675                 return DP_AUX_CH_CTL(AUX_CH_A);
1676         }
1677 }
1678
1679 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1680 {
1681         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1682         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1683         enum aux_ch aux_ch = dig_port->aux_ch;
1684
1685         switch (aux_ch) {
1686         case AUX_CH_A:
1687                 return DP_AUX_CH_DATA(aux_ch, index);
1688         case AUX_CH_B:
1689         case AUX_CH_C:
1690         case AUX_CH_D:
1691                 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1692         default:
1693                 MISSING_CASE(aux_ch);
1694                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1695         }
1696 }
1697
1698 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1699 {
1700         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1701         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1702         enum aux_ch aux_ch = dig_port->aux_ch;
1703
1704         switch (aux_ch) {
1705         case AUX_CH_A:
1706         case AUX_CH_B:
1707         case AUX_CH_C:
1708         case AUX_CH_D:
1709         case AUX_CH_E:
1710         case AUX_CH_F:
1711         case AUX_CH_G:
1712                 return DP_AUX_CH_CTL(aux_ch);
1713         default:
1714                 MISSING_CASE(aux_ch);
1715                 return DP_AUX_CH_CTL(AUX_CH_A);
1716         }
1717 }
1718
1719 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1720 {
1721         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1722         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1723         enum aux_ch aux_ch = dig_port->aux_ch;
1724
1725         switch (aux_ch) {
1726         case AUX_CH_A:
1727         case AUX_CH_B:
1728         case AUX_CH_C:
1729         case AUX_CH_D:
1730         case AUX_CH_E:
1731         case AUX_CH_F:
1732         case AUX_CH_G:
1733                 return DP_AUX_CH_DATA(aux_ch, index);
1734         default:
1735                 MISSING_CASE(aux_ch);
1736                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1737         }
1738 }
1739
1740 static void
1741 intel_dp_aux_fini(struct intel_dp *intel_dp)
1742 {
1743         kfree(intel_dp->aux.name);
1744 }
1745
1746 static void
1747 intel_dp_aux_init(struct intel_dp *intel_dp)
1748 {
1749         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1750         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1751         struct intel_encoder *encoder = &dig_port->base;
1752
1753         if (INTEL_GEN(dev_priv) >= 9) {
1754                 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1755                 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1756         } else if (HAS_PCH_SPLIT(dev_priv)) {
1757                 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1758                 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1759         } else {
1760                 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1761                 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1762         }
1763
1764         if (INTEL_GEN(dev_priv) >= 9)
1765                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1766         else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1767                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1768         else if (HAS_PCH_SPLIT(dev_priv))
1769                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1770         else
1771                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1772
1773         if (INTEL_GEN(dev_priv) >= 9)
1774                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1775         else
1776                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1777
1778         drm_dp_aux_init(&intel_dp->aux);
1779
1780         /* Failure to allocate our preferred name is not critical */
1781         intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
1782                                        aux_ch_name(dig_port->aux_ch),
1783                                        port_name(encoder->port));
1784         intel_dp->aux.transfer = intel_dp_aux_transfer;
1785 }
1786
1787 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1788 {
1789         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1790
1791         return max_rate >= 540000;
1792 }
1793
1794 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1795 {
1796         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1797
1798         return max_rate >= 810000;
1799 }
1800
1801 static void
1802 intel_dp_set_clock(struct intel_encoder *encoder,
1803                    struct intel_crtc_state *pipe_config)
1804 {
1805         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1806         const struct dp_link_dpll *divisor = NULL;
1807         int i, count = 0;
1808
1809         if (IS_G4X(dev_priv)) {
1810                 divisor = g4x_dpll;
1811                 count = ARRAY_SIZE(g4x_dpll);
1812         } else if (HAS_PCH_SPLIT(dev_priv)) {
1813                 divisor = pch_dpll;
1814                 count = ARRAY_SIZE(pch_dpll);
1815         } else if (IS_CHERRYVIEW(dev_priv)) {
1816                 divisor = chv_dpll;
1817                 count = ARRAY_SIZE(chv_dpll);
1818         } else if (IS_VALLEYVIEW(dev_priv)) {
1819                 divisor = vlv_dpll;
1820                 count = ARRAY_SIZE(vlv_dpll);
1821         }
1822
1823         if (divisor && count) {
1824                 for (i = 0; i < count; i++) {
1825                         if (pipe_config->port_clock == divisor[i].clock) {
1826                                 pipe_config->dpll = divisor[i].dpll;
1827                                 pipe_config->clock_set = true;
1828                                 break;
1829                         }
1830                 }
1831         }
1832 }
1833
1834 static void snprintf_int_array(char *str, size_t len,
1835                                const int *array, int nelem)
1836 {
1837         int i;
1838
1839         str[0] = '\0';
1840
1841         for (i = 0; i < nelem; i++) {
1842                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1843                 if (r >= len)
1844                         return;
1845                 str += r;
1846                 len -= r;
1847         }
1848 }
1849
1850 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1851 {
1852         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1853         char str[128]; /* FIXME: too big for stack? */
1854
1855         if (!drm_debug_enabled(DRM_UT_KMS))
1856                 return;
1857
1858         snprintf_int_array(str, sizeof(str),
1859                            intel_dp->source_rates, intel_dp->num_source_rates);
1860         drm_dbg_kms(&i915->drm, "source rates: %s\n", str);
1861
1862         snprintf_int_array(str, sizeof(str),
1863                            intel_dp->sink_rates, intel_dp->num_sink_rates);
1864         drm_dbg_kms(&i915->drm, "sink rates: %s\n", str);
1865
1866         snprintf_int_array(str, sizeof(str),
1867                            intel_dp->common_rates, intel_dp->num_common_rates);
1868         drm_dbg_kms(&i915->drm, "common rates: %s\n", str);
1869 }
1870
1871 int
1872 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1873 {
1874         int len;
1875
1876         len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1877         if (WARN_ON(len <= 0))
1878                 return 162000;
1879
1880         return intel_dp->common_rates[len - 1];
1881 }
1882
1883 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1884 {
1885         int i = intel_dp_rate_index(intel_dp->sink_rates,
1886                                     intel_dp->num_sink_rates, rate);
1887
1888         if (WARN_ON(i < 0))
1889                 i = 0;
1890
1891         return i;
1892 }
1893
1894 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1895                            u8 *link_bw, u8 *rate_select)
1896 {
1897         /* eDP 1.4 rate select method. */
1898         if (intel_dp->use_rate_select) {
1899                 *link_bw = 0;
1900                 *rate_select =
1901                         intel_dp_rate_select(intel_dp, port_clock);
1902         } else {
1903                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1904                 *rate_select = 0;
1905         }
1906 }
1907
1908 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1909                                          const struct intel_crtc_state *pipe_config)
1910 {
1911         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1912
1913         /* On TGL, FEC is supported on all Pipes */
1914         if (INTEL_GEN(dev_priv) >= 12)
1915                 return true;
1916
1917         if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1918                 return true;
1919
1920         return false;
1921 }
1922
1923 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1924                                   const struct intel_crtc_state *pipe_config)
1925 {
1926         return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1927                 drm_dp_sink_supports_fec(intel_dp->fec_capable);
1928 }
1929
1930 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1931                                   const struct intel_crtc_state *crtc_state)
1932 {
1933         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1934
1935         if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1936                 return false;
1937
1938         return intel_dsc_source_support(encoder, crtc_state) &&
1939                 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1940 }
1941
1942 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1943                                 struct intel_crtc_state *pipe_config)
1944 {
1945         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1946         struct intel_connector *intel_connector = intel_dp->attached_connector;
1947         int bpp, bpc;
1948
1949         bpp = pipe_config->pipe_bpp;
1950         bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1951
1952         if (bpc > 0)
1953                 bpp = min(bpp, 3*bpc);
1954
1955         if (intel_dp_is_edp(intel_dp)) {
1956                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1957                 if (intel_connector->base.display_info.bpc == 0 &&
1958                     dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1959                         drm_dbg_kms(&dev_priv->drm,
1960                                     "clamping bpp for eDP panel to BIOS-provided %i\n",
1961                                     dev_priv->vbt.edp.bpp);
1962                         bpp = dev_priv->vbt.edp.bpp;
1963                 }
1964         }
1965
1966         return bpp;
1967 }
1968
1969 /* Adjust link config limits based on compliance test requests. */
1970 void
1971 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1972                                   struct intel_crtc_state *pipe_config,
1973                                   struct link_config_limits *limits)
1974 {
1975         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1976
1977         /* For DP Compliance we override the computed bpp for the pipe */
1978         if (intel_dp->compliance.test_data.bpc != 0) {
1979                 int bpp = 3 * intel_dp->compliance.test_data.bpc;
1980
1981                 limits->min_bpp = limits->max_bpp = bpp;
1982                 pipe_config->dither_force_disable = bpp == 6 * 3;
1983
1984                 drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp);
1985         }
1986
1987         /* Use values requested by Compliance Test Request */
1988         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1989                 int index;
1990
1991                 /* Validate the compliance test data since max values
1992                  * might have changed due to link train fallback.
1993                  */
1994                 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1995                                                intel_dp->compliance.test_lane_count)) {
1996                         index = intel_dp_rate_index(intel_dp->common_rates,
1997                                                     intel_dp->num_common_rates,
1998                                                     intel_dp->compliance.test_link_rate);
1999                         if (index >= 0)
2000                                 limits->min_clock = limits->max_clock = index;
2001                         limits->min_lane_count = limits->max_lane_count =
2002                                 intel_dp->compliance.test_lane_count;
2003                 }
2004         }
2005 }
2006
2007 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
2008 {
2009         /*
2010          * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
2011          * format of the number of bytes per pixel will be half the number
2012          * of bytes of RGB pixel.
2013          */
2014         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2015                 bpp /= 2;
2016
2017         return bpp;
2018 }
2019
2020 /* Optimize link config in order: max bpp, min clock, min lanes */
2021 static int
2022 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
2023                                   struct intel_crtc_state *pipe_config,
2024                                   const struct link_config_limits *limits)
2025 {
2026         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2027         int bpp, clock, lane_count;
2028         int mode_rate, link_clock, link_avail;
2029
2030         for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2031                 int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2032
2033                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2034                                                    output_bpp);
2035
2036                 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2037                         for (lane_count = limits->min_lane_count;
2038                              lane_count <= limits->max_lane_count;
2039                              lane_count <<= 1) {
2040                                 link_clock = intel_dp->common_rates[clock];
2041                                 link_avail = intel_dp_max_data_rate(link_clock,
2042                                                                     lane_count);
2043
2044                                 if (mode_rate <= link_avail) {
2045                                         pipe_config->lane_count = lane_count;
2046                                         pipe_config->pipe_bpp = bpp;
2047                                         pipe_config->port_clock = link_clock;
2048
2049                                         return 0;
2050                                 }
2051                         }
2052                 }
2053         }
2054
2055         return -EINVAL;
2056 }
2057
2058 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2059 {
2060         int i, num_bpc;
2061         u8 dsc_bpc[3] = {0};
2062
2063         num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2064                                                        dsc_bpc);
2065         for (i = 0; i < num_bpc; i++) {
2066                 if (dsc_max_bpc >= dsc_bpc[i])
2067                         return dsc_bpc[i] * 3;
2068         }
2069
2070         return 0;
2071 }
2072
2073 #define DSC_SUPPORTED_VERSION_MIN               1
2074
2075 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2076                                        struct intel_crtc_state *crtc_state)
2077 {
2078         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2079         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2080         struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2081         u8 line_buf_depth;
2082         int ret;
2083
2084         ret = intel_dsc_compute_params(encoder, crtc_state);
2085         if (ret)
2086                 return ret;
2087
2088         /*
2089          * Slice Height of 8 works for all currently available panels. So start
2090          * with that if pic_height is an integral multiple of 8. Eventually add
2091          * logic to try multiple slice heights.
2092          */
2093         if (vdsc_cfg->pic_height % 8 == 0)
2094                 vdsc_cfg->slice_height = 8;
2095         else if (vdsc_cfg->pic_height % 4 == 0)
2096                 vdsc_cfg->slice_height = 4;
2097         else
2098                 vdsc_cfg->slice_height = 2;
2099
2100         vdsc_cfg->dsc_version_major =
2101                 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2102                  DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2103         vdsc_cfg->dsc_version_minor =
2104                 min(DSC_SUPPORTED_VERSION_MIN,
2105                     (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2106                      DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2107
2108         vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2109                 DP_DSC_RGB;
2110
2111         line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2112         if (!line_buf_depth) {
2113                 drm_dbg_kms(&i915->drm,
2114                             "DSC Sink Line Buffer Depth invalid\n");
2115                 return -EINVAL;
2116         }
2117
2118         if (vdsc_cfg->dsc_version_minor == 2)
2119                 vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2120                         DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2121         else
2122                 vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2123                         DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2124
2125         vdsc_cfg->block_pred_enable =
2126                 intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2127                 DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2128
2129         return drm_dsc_compute_rc_parameters(vdsc_cfg);
2130 }
2131
2132 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2133                                        struct intel_crtc_state *pipe_config,
2134                                        struct drm_connector_state *conn_state,
2135                                        struct link_config_limits *limits)
2136 {
2137         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2138         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2139         const struct drm_display_mode *adjusted_mode =
2140                 &pipe_config->hw.adjusted_mode;
2141         u8 dsc_max_bpc;
2142         int pipe_bpp;
2143         int ret;
2144
2145         pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2146                 intel_dp_supports_fec(intel_dp, pipe_config);
2147
2148         if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2149                 return -EINVAL;
2150
2151         /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2152         if (INTEL_GEN(dev_priv) >= 12)
2153                 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2154         else
2155                 dsc_max_bpc = min_t(u8, 10,
2156                                     conn_state->max_requested_bpc);
2157
2158         pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2159
2160         /* Min Input BPC for ICL+ is 8 */
2161         if (pipe_bpp < 8 * 3) {
2162                 drm_dbg_kms(&dev_priv->drm,
2163                             "No DSC support for less than 8bpc\n");
2164                 return -EINVAL;
2165         }
2166
2167         /*
2168          * For now enable DSC for max bpp, max link rate, max lane count.
2169          * Optimize this later for the minimum possible link rate/lane count
2170          * with DSC enabled for the requested mode.
2171          */
2172         pipe_config->pipe_bpp = pipe_bpp;
2173         pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2174         pipe_config->lane_count = limits->max_lane_count;
2175
2176         if (intel_dp_is_edp(intel_dp)) {
2177                 pipe_config->dsc.compressed_bpp =
2178                         min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2179                               pipe_config->pipe_bpp);
2180                 pipe_config->dsc.slice_count =
2181                         drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2182                                                         true);
2183         } else {
2184                 u16 dsc_max_output_bpp;
2185                 u8 dsc_dp_slice_count;
2186
2187                 dsc_max_output_bpp =
2188                         intel_dp_dsc_get_output_bpp(dev_priv,
2189                                                     pipe_config->port_clock,
2190                                                     pipe_config->lane_count,
2191                                                     adjusted_mode->crtc_clock,
2192                                                     adjusted_mode->crtc_hdisplay);
2193                 dsc_dp_slice_count =
2194                         intel_dp_dsc_get_slice_count(intel_dp,
2195                                                      adjusted_mode->crtc_clock,
2196                                                      adjusted_mode->crtc_hdisplay);
2197                 if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2198                         drm_dbg_kms(&dev_priv->drm,
2199                                     "Compressed BPP/Slice Count not supported\n");
2200                         return -EINVAL;
2201                 }
2202                 pipe_config->dsc.compressed_bpp = min_t(u16,
2203                                                                dsc_max_output_bpp >> 4,
2204                                                                pipe_config->pipe_bpp);
2205                 pipe_config->dsc.slice_count = dsc_dp_slice_count;
2206         }
2207         /*
2208          * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2209          * is greater than the maximum Cdclock and if slice count is even
2210          * then we need to use 2 VDSC instances.
2211          */
2212         if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2213                 if (pipe_config->dsc.slice_count > 1) {
2214                         pipe_config->dsc.dsc_split = true;
2215                 } else {
2216                         drm_dbg_kms(&dev_priv->drm,
2217                                     "Cannot split stream to use 2 VDSC instances\n");
2218                         return -EINVAL;
2219                 }
2220         }
2221
2222         ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2223         if (ret < 0) {
2224                 drm_dbg_kms(&dev_priv->drm,
2225                             "Cannot compute valid DSC parameters for Input Bpp = %d "
2226                             "Compressed BPP = %d\n",
2227                             pipe_config->pipe_bpp,
2228                             pipe_config->dsc.compressed_bpp);
2229                 return ret;
2230         }
2231
2232         pipe_config->dsc.compression_enable = true;
2233         drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
2234                     "Compressed Bpp = %d Slice Count = %d\n",
2235                     pipe_config->pipe_bpp,
2236                     pipe_config->dsc.compressed_bpp,
2237                     pipe_config->dsc.slice_count);
2238
2239         return 0;
2240 }
2241
2242 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2243 {
2244         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2245                 return 6 * 3;
2246         else
2247                 return 8 * 3;
2248 }
2249
2250 static int
2251 intel_dp_compute_link_config(struct intel_encoder *encoder,
2252                              struct intel_crtc_state *pipe_config,
2253                              struct drm_connector_state *conn_state)
2254 {
2255         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2256         const struct drm_display_mode *adjusted_mode =
2257                 &pipe_config->hw.adjusted_mode;
2258         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2259         struct link_config_limits limits;
2260         int common_len;
2261         int ret;
2262
2263         common_len = intel_dp_common_len_rate_limit(intel_dp,
2264                                                     intel_dp->max_link_rate);
2265
2266         /* No common link rates between source and sink */
2267         drm_WARN_ON(encoder->base.dev, common_len <= 0);
2268
2269         limits.min_clock = 0;
2270         limits.max_clock = common_len - 1;
2271
2272         limits.min_lane_count = 1;
2273         limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2274
2275         limits.min_bpp = intel_dp_min_bpp(pipe_config);
2276         limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2277
2278         if (intel_dp_is_edp(intel_dp)) {
2279                 /*
2280                  * Use the maximum clock and number of lanes the eDP panel
2281                  * advertizes being capable of. The panels are generally
2282                  * designed to support only a single clock and lane
2283                  * configuration, and typically these values correspond to the
2284                  * native resolution of the panel.
2285                  */
2286                 limits.min_lane_count = limits.max_lane_count;
2287                 limits.min_clock = limits.max_clock;
2288         }
2289
2290         intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2291
2292         drm_dbg_kms(&i915->drm, "DP link computation with max lane count %i "
2293                     "max rate %d max bpp %d pixel clock %iKHz\n",
2294                     limits.max_lane_count,
2295                     intel_dp->common_rates[limits.max_clock],
2296                     limits.max_bpp, adjusted_mode->crtc_clock);
2297
2298         /*
2299          * Optimize for slow and wide. This is the place to add alternative
2300          * optimization policy.
2301          */
2302         ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2303
2304         /* enable compression if the mode doesn't fit available BW */
2305         drm_dbg_kms(&i915->drm, "Force DSC en = %d\n", intel_dp->force_dsc_en);
2306         if (ret || intel_dp->force_dsc_en) {
2307                 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2308                                                   conn_state, &limits);
2309                 if (ret < 0)
2310                         return ret;
2311         }
2312
2313         if (pipe_config->dsc.compression_enable) {
2314                 drm_dbg_kms(&i915->drm,
2315                             "DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2316                             pipe_config->lane_count, pipe_config->port_clock,
2317                             pipe_config->pipe_bpp,
2318                             pipe_config->dsc.compressed_bpp);
2319
2320                 drm_dbg_kms(&i915->drm,
2321                             "DP link rate required %i available %i\n",
2322                             intel_dp_link_required(adjusted_mode->crtc_clock,
2323                                                    pipe_config->dsc.compressed_bpp),
2324                             intel_dp_max_data_rate(pipe_config->port_clock,
2325                                                    pipe_config->lane_count));
2326         } else {
2327                 drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp %d\n",
2328                             pipe_config->lane_count, pipe_config->port_clock,
2329                             pipe_config->pipe_bpp);
2330
2331                 drm_dbg_kms(&i915->drm,
2332                             "DP link rate required %i available %i\n",
2333                             intel_dp_link_required(adjusted_mode->crtc_clock,
2334                                                    pipe_config->pipe_bpp),
2335                             intel_dp_max_data_rate(pipe_config->port_clock,
2336                                                    pipe_config->lane_count));
2337         }
2338         return 0;
2339 }
2340
2341 static int
2342 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2343                          struct drm_connector *connector,
2344                          struct intel_crtc_state *crtc_state)
2345 {
2346         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2347         const struct drm_display_info *info = &connector->display_info;
2348         const struct drm_display_mode *adjusted_mode =
2349                 &crtc_state->hw.adjusted_mode;
2350         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2351         int ret;
2352
2353         if (!drm_mode_is_420_only(info, adjusted_mode) ||
2354             !intel_dp_get_colorimetry_status(intel_dp) ||
2355             !connector->ycbcr_420_allowed)
2356                 return 0;
2357
2358         crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2359
2360         /* YCBCR 420 output conversion needs a scaler */
2361         ret = skl_update_scaler_crtc(crtc_state);
2362         if (ret) {
2363                 drm_dbg_kms(&i915->drm,
2364                             "Scaler allocation for output failed\n");
2365                 return ret;
2366         }
2367
2368         intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);
2369
2370         return 0;
2371 }
2372
2373 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2374                                   const struct drm_connector_state *conn_state)
2375 {
2376         const struct intel_digital_connector_state *intel_conn_state =
2377                 to_intel_digital_connector_state(conn_state);
2378         const struct drm_display_mode *adjusted_mode =
2379                 &crtc_state->hw.adjusted_mode;
2380
2381         /*
2382          * Our YCbCr output is always limited range.
2383          * crtc_state->limited_color_range only applies to RGB,
2384          * and it must never be set for YCbCr or we risk setting
2385          * some conflicting bits in PIPECONF which will mess up
2386          * the colors on the monitor.
2387          */
2388         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2389                 return false;
2390
2391         if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2392                 /*
2393                  * See:
2394                  * CEA-861-E - 5.1 Default Encoding Parameters
2395                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2396                  */
2397                 return crtc_state->pipe_bpp != 18 &&
2398                         drm_default_rgb_quant_range(adjusted_mode) ==
2399                         HDMI_QUANTIZATION_RANGE_LIMITED;
2400         } else {
2401                 return intel_conn_state->broadcast_rgb ==
2402                         INTEL_BROADCAST_RGB_LIMITED;
2403         }
2404 }
2405
2406 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2407                                     enum port port)
2408 {
2409         if (IS_G4X(dev_priv))
2410                 return false;
2411         if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2412                 return false;
2413
2414         return true;
2415 }
2416
2417 static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state,
2418                                              const struct drm_connector_state *conn_state,
2419                                              struct drm_dp_vsc_sdp *vsc)
2420 {
2421         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2422         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2423
2424         /*
2425          * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2426          * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
2427          * Colorimetry Format indication.
2428          */
2429         vsc->revision = 0x5;
2430         vsc->length = 0x13;
2431
2432         /* DP 1.4a spec, Table 2-120 */
2433         switch (crtc_state->output_format) {
2434         case INTEL_OUTPUT_FORMAT_YCBCR444:
2435                 vsc->pixelformat = DP_PIXELFORMAT_YUV444;
2436                 break;
2437         case INTEL_OUTPUT_FORMAT_YCBCR420:
2438                 vsc->pixelformat = DP_PIXELFORMAT_YUV420;
2439                 break;
2440         case INTEL_OUTPUT_FORMAT_RGB:
2441         default:
2442                 vsc->pixelformat = DP_PIXELFORMAT_RGB;
2443         }
2444
2445         switch (conn_state->colorspace) {
2446         case DRM_MODE_COLORIMETRY_BT709_YCC:
2447                 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2448                 break;
2449         case DRM_MODE_COLORIMETRY_XVYCC_601:
2450                 vsc->colorimetry = DP_COLORIMETRY_XVYCC_601;
2451                 break;
2452         case DRM_MODE_COLORIMETRY_XVYCC_709:
2453                 vsc->colorimetry = DP_COLORIMETRY_XVYCC_709;
2454                 break;
2455         case DRM_MODE_COLORIMETRY_SYCC_601:
2456                 vsc->colorimetry = DP_COLORIMETRY_SYCC_601;
2457                 break;
2458         case DRM_MODE_COLORIMETRY_OPYCC_601:
2459                 vsc->colorimetry = DP_COLORIMETRY_OPYCC_601;
2460                 break;
2461         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
2462                 vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC;
2463                 break;
2464         case DRM_MODE_COLORIMETRY_BT2020_RGB:
2465                 vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB;
2466                 break;
2467         case DRM_MODE_COLORIMETRY_BT2020_YCC:
2468                 vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC;
2469                 break;
2470         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
2471         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
2472                 vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB;
2473                 break;
2474         default:
2475                 /*
2476                  * RGB->YCBCR color conversion uses the BT.709
2477                  * color space.
2478                  */
2479                 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2480                         vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2481                 else
2482                         vsc->colorimetry = DP_COLORIMETRY_DEFAULT;
2483                 break;
2484         }
2485
2486         vsc->bpc = crtc_state->pipe_bpp / 3;
2487
2488         /* only RGB pixelformat supports 6 bpc */
2489         drm_WARN_ON(&dev_priv->drm,
2490                     vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB);
2491
2492         /* all YCbCr are always limited range */
2493         vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA;
2494         vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED;
2495 }
2496
2497 static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp,
2498                                      struct intel_crtc_state *crtc_state,
2499                                      const struct drm_connector_state *conn_state)
2500 {
2501         struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc;
2502
2503         /* When PSR is enabled, VSC SDP is handled by PSR routine */
2504         if (intel_psr_enabled(intel_dp))
2505                 return;
2506
2507         if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
2508                 return;
2509
2510         crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
2511         vsc->sdp_type = DP_SDP_VSC;
2512         intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2513                                          &crtc_state->infoframes.vsc);
2514 }
2515
2516 static void
2517 intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
2518                                             struct intel_crtc_state *crtc_state,
2519                                             const struct drm_connector_state *conn_state)
2520 {
2521         int ret;
2522         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2523         struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm;
2524
2525         if (!conn_state->hdr_output_metadata)
2526                 return;
2527
2528         ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state);
2529
2530         if (ret) {
2531                 drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n");
2532                 return;
2533         }
2534
2535         crtc_state->infoframes.enable |=
2536                 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA);
2537 }
2538
2539 int
2540 intel_dp_compute_config(struct intel_encoder *encoder,
2541                         struct intel_crtc_state *pipe_config,
2542                         struct drm_connector_state *conn_state)
2543 {
2544         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2545         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2546         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2547         struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2548         enum port port = encoder->port;
2549         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc);
2550         struct intel_connector *intel_connector = intel_dp->attached_connector;
2551         struct intel_digital_connector_state *intel_conn_state =
2552                 to_intel_digital_connector_state(conn_state);
2553         bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0,
2554                                            DP_DPCD_QUIRK_CONSTANT_N);
2555         int ret = 0, output_bpp;
2556
2557         if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2558                 pipe_config->has_pch_encoder = true;
2559
2560         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2561
2562         if (lspcon->active)
2563                 lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2564         else
2565                 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
2566                                                pipe_config);
2567
2568         if (ret)
2569                 return ret;
2570
2571         pipe_config->has_drrs = false;
2572         if (!intel_dp_port_has_audio(dev_priv, port))
2573                 pipe_config->has_audio = false;
2574         else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2575                 pipe_config->has_audio = intel_dp->has_audio;
2576         else
2577                 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2578
2579         if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2580                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2581                                        adjusted_mode);
2582
2583                 if (INTEL_GEN(dev_priv) >= 9) {
2584                         ret = skl_update_scaler_crtc(pipe_config);
2585                         if (ret)
2586                                 return ret;
2587                 }
2588
2589                 if (HAS_GMCH(dev_priv))
2590                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
2591                                                  conn_state->scaling_mode);
2592                 else
2593                         intel_pch_panel_fitting(intel_crtc, pipe_config,
2594                                                 conn_state->scaling_mode);
2595         }
2596
2597         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2598                 return -EINVAL;
2599
2600         if (HAS_GMCH(dev_priv) &&
2601             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2602                 return -EINVAL;
2603
2604         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2605                 return -EINVAL;
2606
2607         if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2608                 return -EINVAL;
2609
2610         ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2611         if (ret < 0)
2612                 return ret;
2613
2614         pipe_config->limited_color_range =
2615                 intel_dp_limited_color_range(pipe_config, conn_state);
2616
2617         if (pipe_config->dsc.compression_enable)
2618                 output_bpp = pipe_config->dsc.compressed_bpp;
2619         else
2620                 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2621
2622         intel_link_compute_m_n(output_bpp,
2623                                pipe_config->lane_count,
2624                                adjusted_mode->crtc_clock,
2625                                pipe_config->port_clock,
2626                                &pipe_config->dp_m_n,
2627                                constant_n, pipe_config->fec_enable);
2628
2629         if (intel_connector->panel.downclock_mode != NULL &&
2630                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2631                         pipe_config->has_drrs = true;
2632                         intel_link_compute_m_n(output_bpp,
2633                                                pipe_config->lane_count,
2634                                                intel_connector->panel.downclock_mode->clock,
2635                                                pipe_config->port_clock,
2636                                                &pipe_config->dp_m2_n2,
2637                                                constant_n, pipe_config->fec_enable);
2638         }
2639
2640         if (!HAS_DDI(dev_priv))
2641                 intel_dp_set_clock(encoder, pipe_config);
2642
2643         intel_psr_compute_config(intel_dp, pipe_config);
2644         intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state);
2645         intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state);
2646
2647         return 0;
2648 }
2649
2650 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2651                               int link_rate, u8 lane_count,
2652                               bool link_mst)
2653 {
2654         intel_dp->link_trained = false;
2655         intel_dp->link_rate = link_rate;
2656         intel_dp->lane_count = lane_count;
2657         intel_dp->link_mst = link_mst;
2658 }
2659
2660 static void intel_dp_prepare(struct intel_encoder *encoder,
2661                              const struct intel_crtc_state *pipe_config)
2662 {
2663         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2664         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2665         enum port port = encoder->port;
2666         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2667         const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2668
2669         intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2670                                  pipe_config->lane_count,
2671                                  intel_crtc_has_type(pipe_config,
2672                                                      INTEL_OUTPUT_DP_MST));
2673
2674         intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port);
2675         intel_dp->regs.dp_tp_status = DP_TP_STATUS(port);
2676
2677         /*
2678          * There are four kinds of DP registers:
2679          *
2680          *      IBX PCH
2681          *      SNB CPU
2682          *      IVB CPU
2683          *      CPT PCH
2684          *
2685          * IBX PCH and CPU are the same for almost everything,
2686          * except that the CPU DP PLL is configured in this
2687          * register
2688          *
2689          * CPT PCH is quite different, having many bits moved
2690          * to the TRANS_DP_CTL register instead. That
2691          * configuration happens (oddly) in ilk_pch_enable
2692          */
2693
2694         /* Preserve the BIOS-computed detected bit. This is
2695          * supposed to be read-only.
2696          */
2697         intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2698
2699         /* Handle DP bits in common between all three register formats */
2700         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2701         intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2702
2703         /* Split out the IBX/CPU vs CPT settings */
2704
2705         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2706                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2707                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2708                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2709                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2710                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2711
2712                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2713                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2714
2715                 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2716         } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2717                 u32 trans_dp;
2718
2719                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2720
2721                 trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2722                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2723                         trans_dp |= TRANS_DP_ENH_FRAMING;
2724                 else
2725                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
2726                 intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2727         } else {
2728                 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2729                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
2730
2731                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2732                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2733                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2734                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2735                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2736
2737                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2738                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2739
2740                 if (IS_CHERRYVIEW(dev_priv))
2741                         intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2742                 else
2743                         intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2744         }
2745 }
2746
2747 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2748 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2749
2750 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2751 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
2752
2753 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2754 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2755
2756 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2757
2758 static void wait_panel_status(struct intel_dp *intel_dp,
2759                                        u32 mask,
2760                                        u32 value)
2761 {
2762         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2763         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2764
2765         lockdep_assert_held(&dev_priv->pps_mutex);
2766
2767         intel_pps_verify_state(intel_dp);
2768
2769         pp_stat_reg = _pp_stat_reg(intel_dp);
2770         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2771
2772         drm_dbg_kms(&dev_priv->drm,
2773                     "mask %08x value %08x status %08x control %08x\n",
2774                     mask, value,
2775                     intel_de_read(dev_priv, pp_stat_reg),
2776                     intel_de_read(dev_priv, pp_ctrl_reg));
2777
2778         if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2779                                        mask, value, 5000))
2780                 drm_err(&dev_priv->drm,
2781                         "Panel status timeout: status %08x control %08x\n",
2782                         intel_de_read(dev_priv, pp_stat_reg),
2783                         intel_de_read(dev_priv, pp_ctrl_reg));
2784
2785         drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2786 }
2787
2788 static void wait_panel_on(struct intel_dp *intel_dp)
2789 {
2790         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2791
2792         drm_dbg_kms(&i915->drm, "Wait for panel power on\n");
2793         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2794 }
2795
2796 static void wait_panel_off(struct intel_dp *intel_dp)
2797 {
2798         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2799
2800         drm_dbg_kms(&i915->drm, "Wait for panel power off time\n");
2801         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2802 }
2803
2804 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2805 {
2806         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2807         ktime_t panel_power_on_time;
2808         s64 panel_power_off_duration;
2809
2810         drm_dbg_kms(&i915->drm, "Wait for panel power cycle\n");
2811
2812         /* take the difference of currrent time and panel power off time
2813          * and then make panel wait for t11_t12 if needed. */
2814         panel_power_on_time = ktime_get_boottime();
2815         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2816
2817         /* When we disable the VDD override bit last we have to do the manual
2818          * wait. */
2819         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2820                 wait_remaining_ms_from_jiffies(jiffies,
2821                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2822
2823         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2824 }
2825
2826 static void wait_backlight_on(struct intel_dp *intel_dp)
2827 {
2828         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2829                                        intel_dp->backlight_on_delay);
2830 }
2831
2832 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2833 {
2834         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2835                                        intel_dp->backlight_off_delay);
2836 }
2837
2838 /* Read the current pp_control value, unlocking the register if it
2839  * is locked
2840  */
2841
2842 static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2843 {
2844         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2845         u32 control;
2846
2847         lockdep_assert_held(&dev_priv->pps_mutex);
2848
2849         control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2850         if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
2851                         (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2852                 control &= ~PANEL_UNLOCK_MASK;
2853                 control |= PANEL_UNLOCK_REGS;
2854         }
2855         return control;
2856 }
2857
2858 /*
2859  * Must be paired with edp_panel_vdd_off().
2860  * Must hold pps_mutex around the whole on/off sequence.
2861  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2862  */
2863 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2864 {
2865         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2866         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2867         u32 pp;
2868         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2869         bool need_to_disable = !intel_dp->want_panel_vdd;
2870
2871         lockdep_assert_held(&dev_priv->pps_mutex);
2872
2873         if (!intel_dp_is_edp(intel_dp))
2874                 return false;
2875
2876         cancel_delayed_work(&intel_dp->panel_vdd_work);
2877         intel_dp->want_panel_vdd = true;
2878
2879         if (edp_have_panel_vdd(intel_dp))
2880                 return need_to_disable;
2881
2882         intel_display_power_get(dev_priv,
2883                                 intel_aux_power_domain(intel_dig_port));
2884
2885         drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
2886                     intel_dig_port->base.base.base.id,
2887                     intel_dig_port->base.base.name);
2888
2889         if (!edp_have_panel_power(intel_dp))
2890                 wait_panel_power_cycle(intel_dp);
2891
2892         pp = ilk_get_pp_control(intel_dp);
2893         pp |= EDP_FORCE_VDD;
2894
2895         pp_stat_reg = _pp_stat_reg(intel_dp);
2896         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2897
2898         intel_de_write(dev_priv, pp_ctrl_reg, pp);
2899         intel_de_posting_read(dev_priv, pp_ctrl_reg);
2900         drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2901                     intel_de_read(dev_priv, pp_stat_reg),
2902                     intel_de_read(dev_priv, pp_ctrl_reg));
2903         /*
2904          * If the panel wasn't on, delay before accessing aux channel
2905          */
2906         if (!edp_have_panel_power(intel_dp)) {
2907                 drm_dbg_kms(&dev_priv->drm,
2908                             "[ENCODER:%d:%s] panel power wasn't enabled\n",
2909                             intel_dig_port->base.base.base.id,
2910                             intel_dig_port->base.base.name);
2911                 msleep(intel_dp->panel_power_up_delay);
2912         }
2913
2914         return need_to_disable;
2915 }
2916
2917 /*
2918  * Must be paired with intel_edp_panel_vdd_off() or
2919  * intel_edp_panel_off().
2920  * Nested calls to these functions are not allowed since
2921  * we drop the lock. Caller must use some higher level
2922  * locking to prevent nested calls from other threads.
2923  */
2924 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2925 {
2926         intel_wakeref_t wakeref;
2927         bool vdd;
2928
2929         if (!intel_dp_is_edp(intel_dp))
2930                 return;
2931
2932         vdd = false;
2933         with_pps_lock(intel_dp, wakeref)
2934                 vdd = edp_panel_vdd_on(intel_dp);
2935         I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2936                         dp_to_dig_port(intel_dp)->base.base.base.id,
2937                         dp_to_dig_port(intel_dp)->base.base.name);
2938 }
2939
2940 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2941 {
2942         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2943         struct intel_digital_port *intel_dig_port =
2944                 dp_to_dig_port(intel_dp);
2945         u32 pp;
2946         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2947
2948         lockdep_assert_held(&dev_priv->pps_mutex);
2949
2950         drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
2951
2952         if (!edp_have_panel_vdd(intel_dp))
2953                 return;
2954
2955         drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
2956                     intel_dig_port->base.base.base.id,
2957                     intel_dig_port->base.base.name);
2958
2959         pp = ilk_get_pp_control(intel_dp);
2960         pp &= ~EDP_FORCE_VDD;
2961
2962         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2963         pp_stat_reg = _pp_stat_reg(intel_dp);
2964
2965         intel_de_write(dev_priv, pp_ctrl_reg, pp);
2966         intel_de_posting_read(dev_priv, pp_ctrl_reg);
2967
2968         /* Make sure sequencer is idle before allowing subsequent activity */
2969         drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2970                     intel_de_read(dev_priv, pp_stat_reg),
2971                     intel_de_read(dev_priv, pp_ctrl_reg));
2972
2973         if ((pp & PANEL_POWER_ON) == 0)
2974                 intel_dp->panel_power_off_time = ktime_get_boottime();
2975
2976         intel_display_power_put_unchecked(dev_priv,
2977                                           intel_aux_power_domain(intel_dig_port));
2978 }
2979
2980 static void edp_panel_vdd_work(struct work_struct *__work)
2981 {
2982         struct intel_dp *intel_dp =
2983                 container_of(to_delayed_work(__work),
2984                              struct intel_dp, panel_vdd_work);
2985         intel_wakeref_t wakeref;
2986
2987         with_pps_lock(intel_dp, wakeref) {
2988                 if (!intel_dp->want_panel_vdd)
2989                         edp_panel_vdd_off_sync(intel_dp);
2990         }
2991 }
2992
2993 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2994 {
2995         unsigned long delay;
2996
2997         /*
2998          * Queue the timer to fire a long time from now (relative to the power
2999          * down delay) to keep the panel power up across a sequence of
3000          * operations.
3001          */
3002         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
3003         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
3004 }
3005
3006 /*
3007  * Must be paired with edp_panel_vdd_on().
3008  * Must hold pps_mutex around the whole on/off sequence.
3009  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
3010  */
3011 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
3012 {
3013         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3014
3015         lockdep_assert_held(&dev_priv->pps_mutex);
3016
3017         if (!intel_dp_is_edp(intel_dp))
3018                 return;
3019
3020         I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
3021                         dp_to_dig_port(intel_dp)->base.base.base.id,
3022                         dp_to_dig_port(intel_dp)->base.base.name);
3023
3024         intel_dp->want_panel_vdd = false;
3025
3026         if (sync)
3027                 edp_panel_vdd_off_sync(intel_dp);
3028         else
3029                 edp_panel_vdd_schedule_off(intel_dp);
3030 }
3031
3032 static void edp_panel_on(struct intel_dp *intel_dp)
3033 {
3034         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3035         u32 pp;
3036         i915_reg_t pp_ctrl_reg;
3037
3038         lockdep_assert_held(&dev_priv->pps_mutex);
3039
3040         if (!intel_dp_is_edp(intel_dp))
3041                 return;
3042
3043         drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
3044                     dp_to_dig_port(intel_dp)->base.base.base.id,
3045                     dp_to_dig_port(intel_dp)->base.base.name);
3046
3047         if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
3048                      "[ENCODER:%d:%s] panel power already on\n",
3049                      dp_to_dig_port(intel_dp)->base.base.base.id,
3050                      dp_to_dig_port(intel_dp)->base.base.name))
3051                 return;
3052
3053         wait_panel_power_cycle(intel_dp);
3054
3055         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3056         pp = ilk_get_pp_control(intel_dp);
3057         if (IS_GEN(dev_priv, 5)) {
3058                 /* ILK workaround: disable reset around power sequence */
3059                 pp &= ~PANEL_POWER_RESET;
3060                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3061                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3062         }
3063
3064         pp |= PANEL_POWER_ON;
3065         if (!IS_GEN(dev_priv, 5))
3066                 pp |= PANEL_POWER_RESET;
3067
3068         intel_de_write(dev_priv, pp_ctrl_reg, pp);
3069         intel_de_posting_read(dev_priv, pp_ctrl_reg);
3070
3071         wait_panel_on(intel_dp);
3072         intel_dp->last_power_on = jiffies;
3073
3074         if (IS_GEN(dev_priv, 5)) {
3075                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
3076                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3077                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3078         }
3079 }
3080
3081 void intel_edp_panel_on(struct intel_dp *intel_dp)
3082 {
3083         intel_wakeref_t wakeref;
3084
3085         if (!intel_dp_is_edp(intel_dp))
3086                 return;
3087
3088         with_pps_lock(intel_dp, wakeref)
3089                 edp_panel_on(intel_dp);
3090 }
3091
3092
3093 static void edp_panel_off(struct intel_dp *intel_dp)
3094 {
3095         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3096         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3097         u32 pp;
3098         i915_reg_t pp_ctrl_reg;
3099
3100         lockdep_assert_held(&dev_priv->pps_mutex);
3101
3102         if (!intel_dp_is_edp(intel_dp))
3103                 return;
3104
3105         drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
3106                     dig_port->base.base.base.id, dig_port->base.base.name);
3107
3108         drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
3109                  "Need [ENCODER:%d:%s] VDD to turn off panel\n",
3110                  dig_port->base.base.base.id, dig_port->base.base.name);
3111
3112         pp = ilk_get_pp_control(intel_dp);
3113         /* We need to switch off panel power _and_ force vdd, for otherwise some
3114          * panels get very unhappy and cease to work. */
3115         pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
3116                 EDP_BLC_ENABLE);
3117
3118         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3119
3120         intel_dp->want_panel_vdd = false;
3121
3122         intel_de_write(dev_priv, pp_ctrl_reg, pp);
3123         intel_de_posting_read(dev_priv, pp_ctrl_reg);
3124
3125         wait_panel_off(intel_dp);
3126         intel_dp->panel_power_off_time = ktime_get_boottime();
3127
3128         /* We got a reference when we enabled the VDD. */
3129         intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
3130 }
3131
3132 void intel_edp_panel_off(struct intel_dp *intel_dp)
3133 {
3134         intel_wakeref_t wakeref;
3135
3136         if (!intel_dp_is_edp(intel_dp))
3137                 return;
3138
3139         with_pps_lock(intel_dp, wakeref)
3140                 edp_panel_off(intel_dp);
3141 }
3142
3143 /* Enable backlight in the panel power control. */
3144 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
3145 {
3146         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3147         intel_wakeref_t wakeref;
3148
3149         /*
3150          * If we enable the backlight right away following a panel power
3151          * on, we may see slight flicker as the panel syncs with the eDP
3152          * link.  So delay a bit to make sure the image is solid before
3153          * allowing it to appear.
3154          */
3155         wait_backlight_on(intel_dp);
3156
3157         with_pps_lock(intel_dp, wakeref) {
3158                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3159                 u32 pp;
3160
3161                 pp = ilk_get_pp_control(intel_dp);
3162                 pp |= EDP_BLC_ENABLE;
3163
3164                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3165                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3166         }
3167 }
3168
3169 /* Enable backlight PWM and backlight PP control. */
3170 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
3171                             const struct drm_connector_state *conn_state)
3172 {
3173         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3174         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3175
3176         if (!intel_dp_is_edp(intel_dp))
3177                 return;
3178
3179         drm_dbg_kms(&i915->drm, "\n");
3180
3181         intel_panel_enable_backlight(crtc_state, conn_state);
3182         _intel_edp_backlight_on(intel_dp);
3183 }
3184
3185 /* Disable backlight in the panel power control. */
3186 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3187 {
3188         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3189         intel_wakeref_t wakeref;
3190
3191         if (!intel_dp_is_edp(intel_dp))
3192                 return;
3193
3194         with_pps_lock(intel_dp, wakeref) {
3195                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3196                 u32 pp;
3197
3198                 pp = ilk_get_pp_control(intel_dp);
3199                 pp &= ~EDP_BLC_ENABLE;
3200
3201                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3202                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3203         }
3204
3205         intel_dp->last_backlight_off = jiffies;
3206         edp_wait_backlight_off(intel_dp);
3207 }
3208
3209 /* Disable backlight PP control and backlight PWM. */
3210 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3211 {
3212         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3213         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3214
3215         if (!intel_dp_is_edp(intel_dp))
3216                 return;
3217
3218         drm_dbg_kms(&i915->drm, "\n");
3219
3220         _intel_edp_backlight_off(intel_dp);
3221         intel_panel_disable_backlight(old_conn_state);
3222 }
3223
3224 /*
3225  * Hook for controlling the panel power control backlight through the bl_power
3226  * sysfs attribute. Take care to handle multiple calls.
3227  */
3228 static void intel_edp_backlight_power(struct intel_connector *connector,
3229                                       bool enable)
3230 {
3231         struct drm_i915_private *i915 = to_i915(connector->base.dev);
3232         struct intel_dp *intel_dp = intel_attached_dp(connector);
3233         intel_wakeref_t wakeref;
3234         bool is_enabled;
3235
3236         is_enabled = false;
3237         with_pps_lock(intel_dp, wakeref)
3238                 is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3239         if (is_enabled == enable)
3240                 return;
3241
3242         drm_dbg_kms(&i915->drm, "panel power control backlight %s\n",
3243                     enable ? "enable" : "disable");
3244
3245         if (enable)
3246                 _intel_edp_backlight_on(intel_dp);
3247         else
3248                 _intel_edp_backlight_off(intel_dp);
3249 }
3250
3251 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3252 {
3253         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3254         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3255         bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3256
3257         I915_STATE_WARN(cur_state != state,
3258                         "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3259                         dig_port->base.base.base.id, dig_port->base.base.name,
3260                         onoff(state), onoff(cur_state));
3261 }
3262 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3263
3264 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3265 {
3266         bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3267
3268         I915_STATE_WARN(cur_state != state,
3269                         "eDP PLL state assertion failure (expected %s, current %s)\n",
3270                         onoff(state), onoff(cur_state));
3271 }
3272 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3273 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3274
3275 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3276                            const struct intel_crtc_state *pipe_config)
3277 {
3278         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3279         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3280
3281         assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3282         assert_dp_port_disabled(intel_dp);
3283         assert_edp_pll_disabled(dev_priv);
3284
3285         drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
3286                     pipe_config->port_clock);
3287
3288         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3289
3290         if (pipe_config->port_clock == 162000)
3291                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3292         else
3293                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3294
3295         intel_de_write(dev_priv, DP_A, intel_dp->DP);
3296         intel_de_posting_read(dev_priv, DP_A);
3297         udelay(500);
3298
3299         /*
3300          * [DevILK] Work around required when enabling DP PLL
3301          * while a pipe is enabled going to FDI:
3302          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3303          * 2. Program DP PLL enable
3304          */
3305         if (IS_GEN(dev_priv, 5))
3306                 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3307
3308         intel_dp->DP |= DP_PLL_ENABLE;
3309
3310         intel_de_write(dev_priv, DP_A, intel_dp->DP);
3311         intel_de_posting_read(dev_priv, DP_A);
3312         udelay(200);
3313 }
3314
3315 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3316                             const struct intel_crtc_state *old_crtc_state)
3317 {
3318         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3319         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3320
3321         assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3322         assert_dp_port_disabled(intel_dp);
3323         assert_edp_pll_enabled(dev_priv);
3324
3325         drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3326
3327         intel_dp->DP &= ~DP_PLL_ENABLE;
3328
3329         intel_de_write(dev_priv, DP_A, intel_dp->DP);
3330         intel_de_posting_read(dev_priv, DP_A);
3331         udelay(200);
3332 }
3333
3334 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3335 {
3336         /*
3337          * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3338          * be capable of signalling downstream hpd with a long pulse.
3339          * Whether or not that means D3 is safe to use is not clear,
3340          * but let's assume so until proven otherwise.
3341          *
3342          * FIXME should really check all downstream ports...
3343          */
3344         return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3345                 drm_dp_is_branch(intel_dp->dpcd) &&
3346                 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3347 }
3348
3349 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3350                                            const struct intel_crtc_state *crtc_state,
3351                                            bool enable)
3352 {
3353         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3354         int ret;
3355
3356         if (!crtc_state->dsc.compression_enable)
3357                 return;
3358
3359         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3360                                  enable ? DP_DECOMPRESSION_EN : 0);
3361         if (ret < 0)
3362                 drm_dbg_kms(&i915->drm,
3363                             "Failed to %s sink decompression state\n",
3364                             enable ? "enable" : "disable");
3365 }
3366
3367 /* If the sink supports it, try to set the power state appropriately */
3368 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3369 {
3370         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3371         int ret, i;
3372
3373         /* Should have a valid DPCD by this point */
3374         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3375                 return;
3376
3377         if (mode != DRM_MODE_DPMS_ON) {
3378                 if (downstream_hpd_needs_d0(intel_dp))
3379                         return;
3380
3381                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3382                                          DP_SET_POWER_D3);
3383         } else {
3384                 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3385
3386                 /*
3387                  * When turning on, we need to retry for 1ms to give the sink
3388                  * time to wake up.
3389                  */
3390                 for (i = 0; i < 3; i++) {
3391                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3392                                                  DP_SET_POWER_D0);
3393                         if (ret == 1)
3394                                 break;
3395                         msleep(1);
3396                 }
3397
3398                 if (ret == 1 && lspcon->active)
3399                         lspcon_wait_pcon_mode(lspcon);
3400         }
3401
3402         if (ret != 1)
3403                 drm_dbg_kms(&i915->drm, "failed to %s sink power state\n",
3404                             mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3405 }
3406
3407 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3408                                  enum port port, enum pipe *pipe)
3409 {
3410         enum pipe p;
3411
3412         for_each_pipe(dev_priv, p) {
3413                 u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3414
3415                 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3416                         *pipe = p;
3417                         return true;
3418                 }
3419         }
3420
3421         drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
3422                     port_name(port));
3423
3424         /* must initialize pipe to something for the asserts */
3425         *pipe = PIPE_A;
3426
3427         return false;
3428 }
3429
3430 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3431                            i915_reg_t dp_reg, enum port port,
3432                            enum pipe *pipe)
3433 {
3434         bool ret;
3435         u32 val;
3436
3437         val = intel_de_read(dev_priv, dp_reg);
3438
3439         ret = val & DP_PORT_EN;
3440
3441         /* asserts want to know the pipe even if the port is disabled */
3442         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3443                 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3444         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3445                 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3446         else if (IS_CHERRYVIEW(dev_priv))
3447                 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3448         else
3449                 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3450
3451         return ret;
3452 }
3453
3454 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3455                                   enum pipe *pipe)
3456 {
3457         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3458         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3459         intel_wakeref_t wakeref;
3460         bool ret;
3461
3462         wakeref = intel_display_power_get_if_enabled(dev_priv,
3463                                                      encoder->power_domain);
3464         if (!wakeref)
3465                 return false;
3466
3467         ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3468                                     encoder->port, pipe);
3469
3470         intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3471
3472         return ret;
3473 }
3474
3475 static void intel_dp_get_config(struct intel_encoder *encoder,
3476                                 struct intel_crtc_state *pipe_config)
3477 {
3478         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3479         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3480         u32 tmp, flags = 0;
3481         enum port port = encoder->port;
3482         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3483
3484         if (encoder->type == INTEL_OUTPUT_EDP)
3485                 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3486         else
3487                 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3488
3489         tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3490
3491         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3492
3493         if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3494                 u32 trans_dp = intel_de_read(dev_priv,
3495                                              TRANS_DP_CTL(crtc->pipe));
3496
3497                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3498                         flags |= DRM_MODE_FLAG_PHSYNC;
3499                 else
3500                         flags |= DRM_MODE_FLAG_NHSYNC;
3501
3502                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3503                         flags |= DRM_MODE_FLAG_PVSYNC;
3504                 else
3505                         flags |= DRM_MODE_FLAG_NVSYNC;
3506         } else {
3507                 if (tmp & DP_SYNC_HS_HIGH)
3508                         flags |= DRM_MODE_FLAG_PHSYNC;
3509                 else
3510                         flags |= DRM_MODE_FLAG_NHSYNC;
3511
3512                 if (tmp & DP_SYNC_VS_HIGH)
3513                         flags |= DRM_MODE_FLAG_PVSYNC;
3514                 else
3515                         flags |= DRM_MODE_FLAG_NVSYNC;
3516         }
3517
3518         pipe_config->hw.adjusted_mode.flags |= flags;
3519
3520         if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3521                 pipe_config->limited_color_range = true;
3522
3523         pipe_config->lane_count =
3524                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3525
3526         intel_dp_get_m_n(crtc, pipe_config);
3527
3528         if (port == PORT_A) {
3529                 if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3530                         pipe_config->port_clock = 162000;
3531                 else
3532                         pipe_config->port_clock = 270000;
3533         }
3534
3535         pipe_config->hw.adjusted_mode.crtc_clock =
3536                 intel_dotclock_calculate(pipe_config->port_clock,
3537                                          &pipe_config->dp_m_n);
3538
3539         if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3540             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3541                 /*
3542                  * This is a big fat ugly hack.
3543                  *
3544                  * Some machines in UEFI boot mode provide us a VBT that has 18
3545                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3546                  * unknown we fail to light up. Yet the same BIOS boots up with
3547                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3548                  * max, not what it tells us to use.
3549                  *
3550                  * Note: This will still be broken if the eDP panel is not lit
3551                  * up by the BIOS, and thus we can't get the mode at module
3552                  * load.
3553                  */
3554                 drm_dbg_kms(&dev_priv->drm,
3555                             "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3556                             pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3557                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3558         }
3559 }
3560
3561 static void intel_disable_dp(struct intel_atomic_state *state,
3562                              struct intel_encoder *encoder,
3563                              const struct intel_crtc_state *old_crtc_state,
3564                              const struct drm_connector_state *old_conn_state)
3565 {
3566         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3567
3568         intel_dp->link_trained = false;
3569
3570         if (old_crtc_state->has_audio)
3571                 intel_audio_codec_disable(encoder,
3572                                           old_crtc_state, old_conn_state);
3573
3574         /* Make sure the panel is off before trying to change the mode. But also
3575          * ensure that we have vdd while we switch off the panel. */
3576         intel_edp_panel_vdd_on(intel_dp);
3577         intel_edp_backlight_off(old_conn_state);
3578         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3579         intel_edp_panel_off(intel_dp);
3580 }
3581
3582 static void g4x_disable_dp(struct intel_atomic_state *state,
3583                            struct intel_encoder *encoder,
3584                            const struct intel_crtc_state *old_crtc_state,
3585                            const struct drm_connector_state *old_conn_state)
3586 {
3587         intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3588 }
3589
3590 static void vlv_disable_dp(struct intel_atomic_state *state,
3591                            struct intel_encoder *encoder,
3592                            const struct intel_crtc_state *old_crtc_state,
3593                            const struct drm_connector_state *old_conn_state)
3594 {
3595         intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3596 }
3597
3598 static void g4x_post_disable_dp(struct intel_atomic_state *state,
3599                                 struct intel_encoder *encoder,
3600                                 const struct intel_crtc_state *old_crtc_state,
3601                                 const struct drm_connector_state *old_conn_state)
3602 {
3603         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3604         enum port port = encoder->port;
3605
3606         /*
3607          * Bspec does not list a specific disable sequence for g4x DP.
3608          * Follow the ilk+ sequence (disable pipe before the port) for
3609          * g4x DP as it does not suffer from underruns like the normal
3610          * g4x modeset sequence (disable pipe after the port).
3611          */
3612         intel_dp_link_down(encoder, old_crtc_state);
3613
3614         /* Only ilk+ has port A */
3615         if (port == PORT_A)
3616                 ilk_edp_pll_off(intel_dp, old_crtc_state);
3617 }
3618
3619 static void vlv_post_disable_dp(struct intel_atomic_state *state,
3620                                 struct intel_encoder *encoder,
3621                                 const struct intel_crtc_state *old_crtc_state,
3622                                 const struct drm_connector_state *old_conn_state)
3623 {
3624         intel_dp_link_down(encoder, old_crtc_state);
3625 }
3626
3627 static void chv_post_disable_dp(struct intel_atomic_state *state,
3628                                 struct intel_encoder *encoder,
3629                                 const struct intel_crtc_state *old_crtc_state,
3630                                 const struct drm_connector_state *old_conn_state)
3631 {
3632         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3633
3634         intel_dp_link_down(encoder, old_crtc_state);
3635
3636         vlv_dpio_get(dev_priv);
3637
3638         /* Assert data lane reset */
3639         chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3640
3641         vlv_dpio_put(dev_priv);
3642 }
3643
3644 static void
3645 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3646                          u32 *DP,
3647                          u8 dp_train_pat)
3648 {
3649         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3650         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3651         enum port port = intel_dig_port->base.port;
3652         u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3653
3654         if (dp_train_pat & train_pat_mask)
3655                 drm_dbg_kms(&dev_priv->drm,
3656                             "Using DP training pattern TPS%d\n",
3657                             dp_train_pat & train_pat_mask);
3658
3659         if (HAS_DDI(dev_priv)) {
3660                 u32 temp = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl);
3661
3662                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3663                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3664                 else
3665                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3666
3667                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3668                 switch (dp_train_pat & train_pat_mask) {
3669                 case DP_TRAINING_PATTERN_DISABLE:
3670                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3671
3672                         break;
3673                 case DP_TRAINING_PATTERN_1:
3674                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3675                         break;
3676                 case DP_TRAINING_PATTERN_2:
3677                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3678                         break;
3679                 case DP_TRAINING_PATTERN_3:
3680                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3681                         break;
3682                 case DP_TRAINING_PATTERN_4:
3683                         temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3684                         break;
3685                 }
3686                 intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, temp);
3687
3688         } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3689                    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3690                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3691
3692                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3693                 case DP_TRAINING_PATTERN_DISABLE:
3694                         *DP |= DP_LINK_TRAIN_OFF_CPT;
3695                         break;
3696                 case DP_TRAINING_PATTERN_1:
3697                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3698                         break;
3699                 case DP_TRAINING_PATTERN_2:
3700                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3701                         break;
3702                 case DP_TRAINING_PATTERN_3:
3703                         drm_dbg_kms(&dev_priv->drm,
3704                                     "TPS3 not supported, using TPS2 instead\n");
3705                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3706                         break;
3707                 }
3708
3709         } else {
3710                 *DP &= ~DP_LINK_TRAIN_MASK;
3711
3712                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3713                 case DP_TRAINING_PATTERN_DISABLE:
3714                         *DP |= DP_LINK_TRAIN_OFF;
3715                         break;
3716                 case DP_TRAINING_PATTERN_1:
3717                         *DP |= DP_LINK_TRAIN_PAT_1;
3718                         break;
3719                 case DP_TRAINING_PATTERN_2:
3720                         *DP |= DP_LINK_TRAIN_PAT_2;
3721                         break;
3722                 case DP_TRAINING_PATTERN_3:
3723                         drm_dbg_kms(&dev_priv->drm,
3724                                     "TPS3 not supported, using TPS2 instead\n");
3725                         *DP |= DP_LINK_TRAIN_PAT_2;
3726                         break;
3727                 }
3728         }
3729 }
3730
3731 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3732                                  const struct intel_crtc_state *old_crtc_state)
3733 {
3734         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3735
3736         /* enable with pattern 1 (as per spec) */
3737
3738         intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3739
3740         /*
3741          * Magic for VLV/CHV. We _must_ first set up the register
3742          * without actually enabling the port, and then do another
3743          * write to enable the port. Otherwise link training will
3744          * fail when the power sequencer is freshly used for this port.
3745          */
3746         intel_dp->DP |= DP_PORT_EN;
3747         if (old_crtc_state->has_audio)
3748                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3749
3750         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3751         intel_de_posting_read(dev_priv, intel_dp->output_reg);
3752 }
3753
3754 static void intel_enable_dp(struct intel_atomic_state *state,
3755                             struct intel_encoder *encoder,
3756                             const struct intel_crtc_state *pipe_config,
3757                             const struct drm_connector_state *conn_state)
3758 {
3759         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3760         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3761         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3762         u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3763         enum pipe pipe = crtc->pipe;
3764         intel_wakeref_t wakeref;
3765
3766         if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
3767                 return;
3768
3769         with_pps_lock(intel_dp, wakeref) {
3770                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3771                         vlv_init_panel_power_sequencer(encoder, pipe_config);
3772
3773                 intel_dp_enable_port(intel_dp, pipe_config);
3774
3775                 edp_panel_vdd_on(intel_dp);
3776                 edp_panel_on(intel_dp);
3777                 edp_panel_vdd_off(intel_dp, true);
3778         }
3779
3780         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3781                 unsigned int lane_mask = 0x0;
3782
3783                 if (IS_CHERRYVIEW(dev_priv))
3784                         lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3785
3786                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3787                                     lane_mask);
3788         }
3789
3790         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3791         intel_dp_start_link_train(intel_dp);
3792         intel_dp_stop_link_train(intel_dp);
3793
3794         if (pipe_config->has_audio) {
3795                 drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
3796                         pipe_name(pipe));
3797                 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3798         }
3799 }
3800
3801 static void g4x_enable_dp(struct intel_atomic_state *state,
3802                           struct intel_encoder *encoder,
3803                           const struct intel_crtc_state *pipe_config,
3804                           const struct drm_connector_state *conn_state)
3805 {
3806         intel_enable_dp(state, encoder, pipe_config, conn_state);
3807         intel_edp_backlight_on(pipe_config, conn_state);
3808 }
3809
3810 static void vlv_enable_dp(struct intel_atomic_state *state,
3811                           struct intel_encoder *encoder,
3812                           const struct intel_crtc_state *pipe_config,
3813                           const struct drm_connector_state *conn_state)
3814 {
3815         intel_edp_backlight_on(pipe_config, conn_state);
3816 }
3817
3818 static void g4x_pre_enable_dp(struct intel_atomic_state *state,
3819                               struct intel_encoder *encoder,
3820                               const struct intel_crtc_state *pipe_config,
3821                               const struct drm_connector_state *conn_state)
3822 {
3823         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3824         enum port port = encoder->port;
3825
3826         intel_dp_prepare(encoder, pipe_config);
3827
3828         /* Only ilk+ has port A */
3829         if (port == PORT_A)
3830                 ilk_edp_pll_on(intel_dp, pipe_config);
3831 }
3832
3833 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3834 {
3835         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3836         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3837         enum pipe pipe = intel_dp->pps_pipe;
3838         i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3839
3840         drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3841
3842         if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
3843                 return;
3844
3845         edp_panel_vdd_off_sync(intel_dp);
3846
3847         /*
3848          * VLV seems to get confused when multiple power sequencers
3849          * have the same port selected (even if only one has power/vdd
3850          * enabled). The failure manifests as vlv_wait_port_ready() failing
3851          * CHV on the other hand doesn't seem to mind having the same port
3852          * selected in multiple power sequencers, but let's clear the
3853          * port select always when logically disconnecting a power sequencer
3854          * from a port.
3855          */
3856         drm_dbg_kms(&dev_priv->drm,
3857                     "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3858                     pipe_name(pipe), intel_dig_port->base.base.base.id,
3859                     intel_dig_port->base.base.name);
3860         intel_de_write(dev_priv, pp_on_reg, 0);
3861         intel_de_posting_read(dev_priv, pp_on_reg);
3862
3863         intel_dp->pps_pipe = INVALID_PIPE;
3864 }
3865
3866 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3867                                       enum pipe pipe)
3868 {
3869         struct intel_encoder *encoder;
3870
3871         lockdep_assert_held(&dev_priv->pps_mutex);
3872
3873         for_each_intel_dp(&dev_priv->drm, encoder) {
3874                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3875
3876                 drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
3877                          "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3878                          pipe_name(pipe), encoder->base.base.id,
3879                          encoder->base.name);
3880
3881                 if (intel_dp->pps_pipe != pipe)
3882                         continue;
3883
3884                 drm_dbg_kms(&dev_priv->drm,
3885                             "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3886                             pipe_name(pipe), encoder->base.base.id,
3887                             encoder->base.name);
3888
3889                 /* make sure vdd is off before we steal it */
3890                 vlv_detach_power_sequencer(intel_dp);
3891         }
3892 }
3893
3894 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3895                                            const struct intel_crtc_state *crtc_state)
3896 {
3897         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3898         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3899         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3900
3901         lockdep_assert_held(&dev_priv->pps_mutex);
3902
3903         drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3904
3905         if (intel_dp->pps_pipe != INVALID_PIPE &&
3906             intel_dp->pps_pipe != crtc->pipe) {
3907                 /*
3908                  * If another power sequencer was being used on this
3909                  * port previously make sure to turn off vdd there while
3910                  * we still have control of it.
3911                  */
3912                 vlv_detach_power_sequencer(intel_dp);
3913         }
3914
3915         /*
3916          * We may be stealing the power
3917          * sequencer from another port.
3918          */
3919         vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3920
3921         intel_dp->active_pipe = crtc->pipe;
3922
3923         if (!intel_dp_is_edp(intel_dp))
3924                 return;
3925
3926         /* now it's all ours */
3927         intel_dp->pps_pipe = crtc->pipe;
3928
3929         drm_dbg_kms(&dev_priv->drm,
3930                     "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3931                     pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3932                     encoder->base.name);
3933
3934         /* init power sequencer on this pipe and port */
3935         intel_dp_init_panel_power_sequencer(intel_dp);
3936         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3937 }
3938
3939 static void vlv_pre_enable_dp(struct intel_atomic_state *state,
3940                               struct intel_encoder *encoder,
3941                               const struct intel_crtc_state *pipe_config,
3942                               const struct drm_connector_state *conn_state)
3943 {
3944         vlv_phy_pre_encoder_enable(encoder, pipe_config);
3945
3946         intel_enable_dp(state, encoder, pipe_config, conn_state);
3947 }
3948
3949 static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state,
3950                                   struct intel_encoder *encoder,
3951                                   const struct intel_crtc_state *pipe_config,
3952                                   const struct drm_connector_state *conn_state)
3953 {
3954         intel_dp_prepare(encoder, pipe_config);
3955
3956         vlv_phy_pre_pll_enable(encoder, pipe_config);
3957 }
3958
3959 static void chv_pre_enable_dp(struct intel_atomic_state *state,
3960                               struct intel_encoder *encoder,
3961                               const struct intel_crtc_state *pipe_config,
3962                               const struct drm_connector_state *conn_state)
3963 {
3964         chv_phy_pre_encoder_enable(encoder, pipe_config);
3965
3966         intel_enable_dp(state, encoder, pipe_config, conn_state);
3967
3968         /* Second common lane will stay alive on its own now */
3969         chv_phy_release_cl2_override(encoder);
3970 }
3971
3972 static void chv_dp_pre_pll_enable(struct intel_atomic_state *state,
3973                                   struct intel_encoder *encoder,
3974                                   const struct intel_crtc_state *pipe_config,
3975                                   const struct drm_connector_state *conn_state)
3976 {
3977         intel_dp_prepare(encoder, pipe_config);
3978
3979         chv_phy_pre_pll_enable(encoder, pipe_config);
3980 }
3981
3982 static void chv_dp_post_pll_disable(struct intel_atomic_state *state,
3983                                     struct intel_encoder *encoder,
3984                                     const struct intel_crtc_state *old_crtc_state,
3985                                     const struct drm_connector_state *old_conn_state)
3986 {
3987         chv_phy_post_pll_disable(encoder, old_crtc_state);
3988 }
3989
3990 /*
3991  * Fetch AUX CH registers 0x202 - 0x207 which contain
3992  * link status information
3993  */
3994 bool
3995 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3996 {
3997         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3998                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3999 }
4000
4001 /* These are source-specific values. */
4002 u8
4003 intel_dp_voltage_max(struct intel_dp *intel_dp)
4004 {
4005         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4006         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4007         enum port port = encoder->port;
4008
4009         if (HAS_DDI(dev_priv))
4010                 return intel_ddi_dp_voltage_max(encoder);
4011         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4012                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
4013         else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
4014                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
4015         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
4016                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
4017         else
4018                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
4019 }
4020
4021 u8
4022 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
4023 {
4024         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4025         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4026         enum port port = encoder->port;
4027
4028         if (HAS_DDI(dev_priv)) {
4029                 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
4030         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4031                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4032                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4033                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
4034                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4035                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
4036                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4037                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
4038                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4039                 default:
4040                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
4041                 }
4042         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4043                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4044                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4045                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
4046                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4047                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4048                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
4049                 default:
4050                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
4051                 }
4052         } else {
4053                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4054                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4055                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
4056                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4057                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
4058                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4059                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
4060                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4061                 default:
4062                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
4063                 }
4064         }
4065 }
4066
4067 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
4068 {
4069         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4070         unsigned long demph_reg_value, preemph_reg_value,
4071                 uniqtranscale_reg_value;
4072         u8 train_set = intel_dp->train_set[0];
4073
4074         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4075         case DP_TRAIN_PRE_EMPH_LEVEL_0:
4076                 preemph_reg_value = 0x0004000;
4077                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4078                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4079                         demph_reg_value = 0x2B405555;
4080                         uniqtranscale_reg_value = 0x552AB83A;
4081                         break;
4082                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4083                         demph_reg_value = 0x2B404040;
4084                         uniqtranscale_reg_value = 0x5548B83A;
4085                         break;
4086                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4087                         demph_reg_value = 0x2B245555;
4088                         uniqtranscale_reg_value = 0x5560B83A;
4089                         break;
4090                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4091                         demph_reg_value = 0x2B405555;
4092                         uniqtranscale_reg_value = 0x5598DA3A;
4093                         break;
4094                 default:
4095                         return 0;
4096                 }
4097                 break;
4098         case DP_TRAIN_PRE_EMPH_LEVEL_1:
4099                 preemph_reg_value = 0x0002000;
4100                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4101                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4102                         demph_reg_value = 0x2B404040;
4103                         uniqtranscale_reg_value = 0x5552B83A;
4104                         break;
4105                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4106                         demph_reg_value = 0x2B404848;
4107                         uniqtranscale_reg_value = 0x5580B83A;
4108                         break;
4109                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4110                         demph_reg_value = 0x2B404040;
4111                         uniqtranscale_reg_value = 0x55ADDA3A;
4112                         break;
4113                 default:
4114                         return 0;
4115                 }
4116                 break;
4117         case DP_TRAIN_PRE_EMPH_LEVEL_2:
4118                 preemph_reg_value = 0x0000000;
4119                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4120                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4121                         demph_reg_value = 0x2B305555;
4122                         uniqtranscale_reg_value = 0x5570B83A;
4123                         break;
4124                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4125                         demph_reg_value = 0x2B2B4040;
4126                         uniqtranscale_reg_value = 0x55ADDA3A;
4127                         break;
4128                 default:
4129                         return 0;
4130                 }
4131                 break;
4132         case DP_TRAIN_PRE_EMPH_LEVEL_3:
4133                 preemph_reg_value = 0x0006000;
4134                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4135                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4136                         demph_reg_value = 0x1B405555;
4137                         uniqtranscale_reg_value = 0x55ADDA3A;
4138                         break;
4139                 default:
4140                         return 0;
4141                 }
4142                 break;
4143         default:
4144                 return 0;
4145         }
4146
4147         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
4148                                  uniqtranscale_reg_value, 0);
4149
4150         return 0;
4151 }
4152
4153 static u32 chv_signal_levels(struct intel_dp *intel_dp)
4154 {
4155         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4156         u32 deemph_reg_value, margin_reg_value;
4157         bool uniq_trans_scale = false;
4158         u8 train_set = intel_dp->train_set[0];
4159
4160         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4161         case DP_TRAIN_PRE_EMPH_LEVEL_0:
4162                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4163                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4164                         deemph_reg_value = 128;
4165                         margin_reg_value = 52;
4166                         break;
4167                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4168                         deemph_reg_value = 128;
4169                         margin_reg_value = 77;
4170                         break;
4171                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4172                         deemph_reg_value = 128;
4173                         margin_reg_value = 102;
4174                         break;
4175                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4176                         deemph_reg_value = 128;
4177                         margin_reg_value = 154;
4178                         uniq_trans_scale = true;
4179                         break;
4180                 default:
4181                         return 0;
4182                 }
4183                 break;
4184         case DP_TRAIN_PRE_EMPH_LEVEL_1:
4185                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4186                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4187                         deemph_reg_value = 85;
4188                         margin_reg_value = 78;
4189                         break;
4190                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4191                         deemph_reg_value = 85;
4192                         margin_reg_value = 116;
4193                         break;
4194                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4195                         deemph_reg_value = 85;
4196                         margin_reg_value = 154;
4197                         break;
4198                 default:
4199                         return 0;
4200                 }
4201                 break;
4202         case DP_TRAIN_PRE_EMPH_LEVEL_2:
4203                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4204                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4205                         deemph_reg_value = 64;
4206                         margin_reg_value = 104;
4207                         break;
4208                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4209                         deemph_reg_value = 64;
4210                         margin_reg_value = 154;
4211                         break;
4212                 default:
4213                         return 0;
4214                 }
4215                 break;
4216         case DP_TRAIN_PRE_EMPH_LEVEL_3:
4217                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4218                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4219                         deemph_reg_value = 43;
4220                         margin_reg_value = 154;
4221                         break;
4222                 default:
4223                         return 0;
4224                 }
4225                 break;
4226         default:
4227                 return 0;
4228         }
4229
4230         chv_set_phy_signal_level(encoder, deemph_reg_value,
4231                                  margin_reg_value, uniq_trans_scale);
4232
4233         return 0;
4234 }
4235
4236 static u32
4237 g4x_signal_levels(u8 train_set)
4238 {
4239         u32 signal_levels = 0;
4240
4241         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4242         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4243         default:
4244                 signal_levels |= DP_VOLTAGE_0_4;
4245                 break;
4246         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4247                 signal_levels |= DP_VOLTAGE_0_6;
4248                 break;
4249         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4250                 signal_levels |= DP_VOLTAGE_0_8;
4251                 break;
4252         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4253                 signal_levels |= DP_VOLTAGE_1_2;
4254                 break;
4255         }
4256         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4257         case DP_TRAIN_PRE_EMPH_LEVEL_0:
4258         default:
4259                 signal_levels |= DP_PRE_EMPHASIS_0;
4260                 break;
4261         case DP_TRAIN_PRE_EMPH_LEVEL_1:
4262                 signal_levels |= DP_PRE_EMPHASIS_3_5;
4263                 break;
4264         case DP_TRAIN_PRE_EMPH_LEVEL_2:
4265                 signal_levels |= DP_PRE_EMPHASIS_6;
4266                 break;
4267         case DP_TRAIN_PRE_EMPH_LEVEL_3:
4268                 signal_levels |= DP_PRE_EMPHASIS_9_5;
4269                 break;
4270         }
4271         return signal_levels;
4272 }
4273
4274 /* SNB CPU eDP voltage swing and pre-emphasis control */
4275 static u32
4276 snb_cpu_edp_signal_levels(u8 train_set)
4277 {
4278         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4279                                          DP_TRAIN_PRE_EMPHASIS_MASK);
4280         switch (signal_levels) {
4281         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4282         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4283                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4284         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4285                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4286         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4287         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4288                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4289         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4290         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4291                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4292         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4293         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4294                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4295         default:
4296                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4297                               "0x%x\n", signal_levels);
4298                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4299         }
4300 }
4301
4302 /* IVB CPU eDP voltage swing and pre-emphasis control */
4303 static u32
4304 ivb_cpu_edp_signal_levels(u8 train_set)
4305 {
4306         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4307                                          DP_TRAIN_PRE_EMPHASIS_MASK);
4308         switch (signal_levels) {
4309         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4310                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
4311         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4312                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4313         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4314                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
4315
4316         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4317                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
4318         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4319                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4320
4321         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4322                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
4323         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4324                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4325
4326         default:
4327                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4328                               "0x%x\n", signal_levels);
4329                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
4330         }
4331 }
4332
4333 void
4334 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4335 {
4336         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4337         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4338         enum port port = intel_dig_port->base.port;
4339         u32 signal_levels, mask = 0;
4340         u8 train_set = intel_dp->train_set[0];
4341
4342         if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
4343                 signal_levels = bxt_signal_levels(intel_dp);
4344         } else if (HAS_DDI(dev_priv)) {
4345                 signal_levels = ddi_signal_levels(intel_dp);
4346                 mask = DDI_BUF_EMP_MASK;
4347         } else if (IS_CHERRYVIEW(dev_priv)) {
4348                 signal_levels = chv_signal_levels(intel_dp);
4349         } else if (IS_VALLEYVIEW(dev_priv)) {
4350                 signal_levels = vlv_signal_levels(intel_dp);
4351         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4352                 signal_levels = ivb_cpu_edp_signal_levels(train_set);
4353                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4354         } else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
4355                 signal_levels = snb_cpu_edp_signal_levels(train_set);
4356                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4357         } else {
4358                 signal_levels = g4x_signal_levels(train_set);
4359                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
4360         }
4361
4362         if (mask)
4363                 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4364                             signal_levels);
4365
4366         drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
4367                     train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
4368                     train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
4369         drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
4370                     (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4371                     DP_TRAIN_PRE_EMPHASIS_SHIFT,
4372                     train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
4373                     " (max)" : "");
4374
4375         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4376
4377         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4378         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4379 }
4380
4381 void
4382 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4383                                        u8 dp_train_pat)
4384 {
4385         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4386         struct drm_i915_private *dev_priv =
4387                 to_i915(intel_dig_port->base.base.dev);
4388
4389         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4390
4391         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4392         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4393 }
4394
4395 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4396 {
4397         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4398         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4399         enum port port = intel_dig_port->base.port;
4400         u32 val;
4401
4402         if (!HAS_DDI(dev_priv))
4403                 return;
4404
4405         val = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl);
4406         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
4407         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4408         intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, val);
4409
4410         /*
4411          * Until TGL on PORT_A we can have only eDP in SST mode. There the only
4412          * reason we need to set idle transmission mode is to work around a HW
4413          * issue where we enable the pipe while not in idle link-training mode.
4414          * In this case there is requirement to wait for a minimum number of
4415          * idle patterns to be sent.
4416          */
4417         if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
4418                 return;
4419
4420         if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
4421                                   DP_TP_STATUS_IDLE_DONE, 1))
4422                 drm_err(&dev_priv->drm,
4423                         "Timed out waiting for DP idle patterns\n");
4424 }
4425
4426 static void
4427 intel_dp_link_down(struct intel_encoder *encoder,
4428                    const struct intel_crtc_state *old_crtc_state)
4429 {
4430         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4431         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4432         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4433         enum port port = encoder->port;
4434         u32 DP = intel_dp->DP;
4435
4436         if (drm_WARN_ON(&dev_priv->drm,
4437                         (intel_de_read(dev_priv, intel_dp->output_reg) &
4438                          DP_PORT_EN) == 0))
4439                 return;
4440
4441         drm_dbg_kms(&dev_priv->drm, "\n");
4442
4443         if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4444             (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4445                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
4446                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4447         } else {
4448                 DP &= ~DP_LINK_TRAIN_MASK;
4449                 DP |= DP_LINK_TRAIN_PAT_IDLE;
4450         }
4451         intel_de_write(dev_priv, intel_dp->output_reg, DP);
4452         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4453
4454         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4455         intel_de_write(dev_priv, intel_dp->output_reg, DP);
4456         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4457
4458         /*
4459          * HW workaround for IBX, we need to move the port
4460          * to transcoder A after disabling it to allow the
4461          * matching HDMI port to be enabled on transcoder A.
4462          */
4463         if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4464                 /*
4465                  * We get CPU/PCH FIFO underruns on the other pipe when
4466                  * doing the workaround. Sweep them under the rug.
4467                  */
4468                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4469                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4470
4471                 /* always enable with pattern 1 (as per spec) */
4472                 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4473                 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4474                         DP_LINK_TRAIN_PAT_1;
4475                 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4476                 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4477
4478                 DP &= ~DP_PORT_EN;
4479                 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4480                 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4481
4482                 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4483                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4484                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4485         }
4486
4487         msleep(intel_dp->panel_power_down_delay);
4488
4489         intel_dp->DP = DP;
4490
4491         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4492                 intel_wakeref_t wakeref;
4493
4494                 with_pps_lock(intel_dp, wakeref)
4495                         intel_dp->active_pipe = INVALID_PIPE;
4496         }
4497 }
4498
4499 static void
4500 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4501 {
4502         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4503         u8 dpcd_ext[6];
4504
4505         /*
4506          * Prior to DP1.3 the bit represented by
4507          * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4508          * if it is set DP_DPCD_REV at 0000h could be at a value less than
4509          * the true capability of the panel. The only way to check is to
4510          * then compare 0000h and 2200h.
4511          */
4512         if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4513               DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4514                 return;
4515
4516         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4517                              &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4518                 drm_err(&i915->drm,
4519                         "DPCD failed read at extended capabilities\n");
4520                 return;
4521         }
4522
4523         if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4524                 drm_dbg_kms(&i915->drm,
4525                             "DPCD extended DPCD rev less than base DPCD rev\n");
4526                 return;
4527         }
4528
4529         if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4530                 return;
4531
4532         drm_dbg_kms(&i915->drm, "Base DPCD: %*ph\n",
4533                     (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4534
4535         memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4536 }
4537
4538 bool
4539 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4540 {
4541         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4542
4543         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4544                              sizeof(intel_dp->dpcd)) < 0)
4545                 return false; /* aux transfer failed */
4546
4547         intel_dp_extended_receiver_capabilities(intel_dp);
4548
4549         drm_dbg_kms(&i915->drm, "DPCD: %*ph\n", (int)sizeof(intel_dp->dpcd),
4550                     intel_dp->dpcd);
4551
4552         return intel_dp->dpcd[DP_DPCD_REV] != 0;
4553 }
4554
4555 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4556 {
4557         u8 dprx = 0;
4558
4559         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4560                               &dprx) != 1)
4561                 return false;
4562         return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4563 }
4564
4565 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4566 {
4567         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4568
4569         /*
4570          * Clear the cached register set to avoid using stale values
4571          * for the sinks that do not support DSC.
4572          */
4573         memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4574
4575         /* Clear fec_capable to avoid using stale values */
4576         intel_dp->fec_capable = 0;
4577
4578         /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4579         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4580             intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4581                 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4582                                      intel_dp->dsc_dpcd,
4583                                      sizeof(intel_dp->dsc_dpcd)) < 0)
4584                         drm_err(&i915->drm,
4585                                 "Failed to read DPCD register 0x%x\n",
4586                                 DP_DSC_SUPPORT);
4587
4588                 drm_dbg_kms(&i915->drm, "DSC DPCD: %*ph\n",
4589                             (int)sizeof(intel_dp->dsc_dpcd),
4590                             intel_dp->dsc_dpcd);
4591
4592                 /* FEC is supported only on DP 1.4 */
4593                 if (!intel_dp_is_edp(intel_dp) &&
4594                     drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4595                                       &intel_dp->fec_capable) < 0)
4596                         drm_err(&i915->drm,
4597                                 "Failed to read FEC DPCD register\n");
4598
4599                 drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n",
4600                             intel_dp->fec_capable);
4601         }
4602 }
4603
4604 static bool
4605 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4606 {
4607         struct drm_i915_private *dev_priv =
4608                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4609
4610         /* this function is meant to be called only once */
4611         drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4612
4613         if (!intel_dp_read_dpcd(intel_dp))
4614                 return false;
4615
4616         drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4617                          drm_dp_is_branch(intel_dp->dpcd));
4618
4619         /*
4620          * Read the eDP display control registers.
4621          *
4622          * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4623          * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4624          * set, but require eDP 1.4+ detection (e.g. for supported link rates
4625          * method). The display control registers should read zero if they're
4626          * not supported anyway.
4627          */
4628         if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4629                              intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4630                              sizeof(intel_dp->edp_dpcd))
4631                 drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
4632                             (int)sizeof(intel_dp->edp_dpcd),
4633                             intel_dp->edp_dpcd);
4634
4635         /*
4636          * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4637          * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4638          */
4639         intel_psr_init_dpcd(intel_dp);
4640
4641         /* Read the eDP 1.4+ supported link rates. */
4642         if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4643                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4644                 int i;
4645
4646                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4647                                 sink_rates, sizeof(sink_rates));
4648
4649                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4650                         int val = le16_to_cpu(sink_rates[i]);
4651
4652                         if (val == 0)
4653                                 break;
4654
4655                         /* Value read multiplied by 200kHz gives the per-lane
4656                          * link rate in kHz. The source rates are, however,
4657                          * stored in terms of LS_Clk kHz. The full conversion
4658                          * back to symbols is
4659                          * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4660                          */
4661                         intel_dp->sink_rates[i] = (val * 200) / 10;
4662                 }
4663                 intel_dp->num_sink_rates = i;
4664         }
4665
4666         /*
4667          * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4668          * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4669          */
4670         if (intel_dp->num_sink_rates)
4671                 intel_dp->use_rate_select = true;
4672         else
4673                 intel_dp_set_sink_rates(intel_dp);
4674
4675         intel_dp_set_common_rates(intel_dp);
4676
4677         /* Read the eDP DSC DPCD registers */
4678         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4679                 intel_dp_get_dsc_sink_cap(intel_dp);
4680
4681         return true;
4682 }
4683
4684
4685 static bool
4686 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4687 {
4688         if (!intel_dp_read_dpcd(intel_dp))
4689                 return false;
4690
4691         /*
4692          * Don't clobber cached eDP rates. Also skip re-reading
4693          * the OUI/ID since we know it won't change.
4694          */
4695         if (!intel_dp_is_edp(intel_dp)) {
4696                 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4697                                  drm_dp_is_branch(intel_dp->dpcd));
4698
4699                 intel_dp_set_sink_rates(intel_dp);
4700                 intel_dp_set_common_rates(intel_dp);
4701         }
4702
4703         /*
4704          * Some eDP panels do not set a valid value for sink count, that is why
4705          * it don't care about read it here and in intel_edp_init_dpcd().
4706          */
4707         if (!intel_dp_is_edp(intel_dp) &&
4708             !drm_dp_has_quirk(&intel_dp->desc, 0,
4709                               DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4710                 u8 count;
4711                 ssize_t r;
4712
4713                 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4714                 if (r < 1)
4715                         return false;
4716
4717                 /*
4718                  * Sink count can change between short pulse hpd hence
4719                  * a member variable in intel_dp will track any changes
4720                  * between short pulse interrupts.
4721                  */
4722                 intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4723
4724                 /*
4725                  * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4726                  * a dongle is present but no display. Unless we require to know
4727                  * if a dongle is present or not, we don't need to update
4728                  * downstream port information. So, an early return here saves
4729                  * time from performing other operations which are not required.
4730                  */
4731                 if (!intel_dp->sink_count)
4732                         return false;
4733         }
4734
4735         if (!drm_dp_is_branch(intel_dp->dpcd))
4736                 return true; /* native DP sink */
4737
4738         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4739                 return true; /* no per-port downstream info */
4740
4741         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4742                              intel_dp->downstream_ports,
4743                              DP_MAX_DOWNSTREAM_PORTS) < 0)
4744                 return false; /* downstream port status fetch failed */
4745
4746         return true;
4747 }
4748
4749 static bool
4750 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4751 {
4752         u8 mstm_cap;
4753
4754         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4755                 return false;
4756
4757         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4758                 return false;
4759
4760         return mstm_cap & DP_MST_CAP;
4761 }
4762
4763 static bool
4764 intel_dp_can_mst(struct intel_dp *intel_dp)
4765 {
4766         return i915_modparams.enable_dp_mst &&
4767                 intel_dp->can_mst &&
4768                 intel_dp_sink_can_mst(intel_dp);
4769 }
4770
4771 static void
4772 intel_dp_configure_mst(struct intel_dp *intel_dp)
4773 {
4774         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4775         struct intel_encoder *encoder =
4776                 &dp_to_dig_port(intel_dp)->base;
4777         bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4778
4779         drm_dbg_kms(&i915->drm,
4780                     "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4781                     encoder->base.base.id, encoder->base.name,
4782                     yesno(intel_dp->can_mst), yesno(sink_can_mst),
4783                     yesno(i915_modparams.enable_dp_mst));
4784
4785         if (!intel_dp->can_mst)
4786                 return;
4787
4788         intel_dp->is_mst = sink_can_mst &&
4789                 i915_modparams.enable_dp_mst;
4790
4791         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4792                                         intel_dp->is_mst);
4793 }
4794
4795 static bool
4796 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4797 {
4798         return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4799                                 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4800                 DP_DPRX_ESI_LEN;
4801 }
4802
4803 bool
4804 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4805                        const struct drm_connector_state *conn_state)
4806 {
4807         /*
4808          * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4809          * of Color Encoding Format and Content Color Gamut], in order to
4810          * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4811          */
4812         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4813                 return true;
4814
4815         switch (conn_state->colorspace) {
4816         case DRM_MODE_COLORIMETRY_SYCC_601:
4817         case DRM_MODE_COLORIMETRY_OPYCC_601:
4818         case DRM_MODE_COLORIMETRY_BT2020_YCC:
4819         case DRM_MODE_COLORIMETRY_BT2020_RGB:
4820         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4821                 return true;
4822         default:
4823                 break;
4824         }
4825
4826         return false;
4827 }
4828
4829 static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
4830                                      struct dp_sdp *sdp, size_t size)
4831 {
4832         size_t length = sizeof(struct dp_sdp);
4833
4834         if (size < length)
4835                 return -ENOSPC;
4836
4837         memset(sdp, 0, size);
4838
4839         /*
4840          * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
4841          * VSC SDP Header Bytes
4842          */
4843         sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
4844         sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
4845         sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
4846         sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
4847
4848         /* VSC SDP Payload for DB16 through DB18 */
4849         /* Pixel Encoding and Colorimetry Formats  */
4850         sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
4851         sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
4852
4853         switch (vsc->bpc) {
4854         case 6:
4855                 /* 6bpc: 0x0 */
4856                 break;
4857         case 8:
4858                 sdp->db[17] = 0x1; /* DB17[3:0] */
4859                 break;
4860         case 10:
4861                 sdp->db[17] = 0x2;
4862                 break;
4863         case 12:
4864                 sdp->db[17] = 0x3;
4865                 break;
4866         case 16:
4867                 sdp->db[17] = 0x4;
4868                 break;
4869         default:
4870                 MISSING_CASE(vsc->bpc);
4871                 break;
4872         }
4873         /* Dynamic Range and Component Bit Depth */
4874         if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
4875                 sdp->db[17] |= 0x80;  /* DB17[7] */
4876
4877         /* Content Type */
4878         sdp->db[18] = vsc->content_type & 0x7;
4879
4880         return length;
4881 }
4882
4883 static ssize_t
4884 intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe *drm_infoframe,
4885                                          struct dp_sdp *sdp,
4886                                          size_t size)
4887 {
4888         size_t length = sizeof(struct dp_sdp);
4889         const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4890         unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4891         ssize_t len;
4892
4893         if (size < length)
4894                 return -ENOSPC;
4895
4896         memset(sdp, 0, size);
4897
4898         len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf));
4899         if (len < 0) {
4900                 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4901                 return -ENOSPC;
4902         }
4903
4904         if (len != infoframe_size) {
4905                 DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4906                 return -ENOSPC;
4907         }
4908
4909         /*
4910          * Set up the infoframe sdp packet for HDR static metadata.
4911          * Prepare VSC Header for SU as per DP 1.4a spec,
4912          * Table 2-100 and Table 2-101
4913          */
4914
4915         /* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */
4916         sdp->sdp_header.HB0 = 0;
4917         /*
4918          * Packet Type 80h + Non-audio INFOFRAME Type value
4919          * HDMI_INFOFRAME_TYPE_DRM: 0x87
4920          * - 80h + Non-audio INFOFRAME Type value
4921          * - InfoFrame Type: 0x07
4922          *    [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame]
4923          */
4924         sdp->sdp_header.HB1 = drm_infoframe->type;
4925         /*
4926          * Least Significant Eight Bits of (Data Byte Count – 1)
4927          * infoframe_size - 1
4928          */
4929         sdp->sdp_header.HB2 = 0x1D;
4930         /* INFOFRAME SDP Version Number */
4931         sdp->sdp_header.HB3 = (0x13 << 2);
4932         /* CTA Header Byte 2 (INFOFRAME Version Number) */
4933         sdp->db[0] = drm_infoframe->version;
4934         /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4935         sdp->db[1] = drm_infoframe->length;
4936         /*
4937          * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4938          * HDMI_INFOFRAME_HEADER_SIZE
4939          */
4940         BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4941         memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4942                HDMI_DRM_INFOFRAME_SIZE);
4943
4944         /*
4945          * Size of DP infoframe sdp packet for HDR static metadata consists of
4946          * - DP SDP Header(struct dp_sdp_header): 4 bytes
4947          * - Two Data Blocks: 2 bytes
4948          *    CTA Header Byte2 (INFOFRAME Version Number)
4949          *    CTA Header Byte3 (Length of INFOFRAME)
4950          * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4951          *
4952          * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4953          * infoframe size. But GEN11+ has larger than that size, write_infoframe
4954          * will pad rest of the size.
4955          */
4956         return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE;
4957 }
4958
4959 static void intel_write_dp_sdp(struct intel_encoder *encoder,
4960                                const struct intel_crtc_state *crtc_state,
4961                                unsigned int type)
4962 {
4963         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4964         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4965         struct dp_sdp sdp = {};
4966         ssize_t len;
4967
4968         if ((crtc_state->infoframes.enable &
4969              intel_hdmi_infoframe_enable(type)) == 0)
4970                 return;
4971
4972         switch (type) {
4973         case DP_SDP_VSC:
4974                 len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp,
4975                                             sizeof(sdp));
4976                 break;
4977         case HDMI_PACKET_TYPE_GAMUT_METADATA:
4978                 len = intel_dp_hdr_metadata_infoframe_sdp_pack(&crtc_state->infoframes.drm.drm,
4979                                                                &sdp, sizeof(sdp));
4980                 break;
4981         default:
4982                 MISSING_CASE(type);
4983                 return;
4984         }
4985
4986         if (drm_WARN_ON(&dev_priv->drm, len < 0))
4987                 return;
4988
4989         intel_dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len);
4990 }
4991
4992 void intel_dp_set_infoframes(struct intel_encoder *encoder,
4993                              bool enable,
4994                              const struct intel_crtc_state *crtc_state,
4995                              const struct drm_connector_state *conn_state)
4996 {
4997         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4998         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4999         i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
5000         u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
5001                          VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW |
5002                          VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK;
5003         u32 val = intel_de_read(dev_priv, reg);
5004
5005         /* TODO: Add DSC case (DIP_ENABLE_PPS) */
5006         /* When PSR is enabled, this routine doesn't disable VSC DIP */
5007         if (intel_psr_enabled(intel_dp))
5008                 val &= ~dip_enable;
5009         else
5010                 val &= ~(dip_enable | VIDEO_DIP_ENABLE_VSC_HSW);
5011
5012         if (!enable) {
5013                 intel_de_write(dev_priv, reg, val);
5014                 intel_de_posting_read(dev_priv, reg);
5015                 return;
5016         }
5017
5018         intel_de_write(dev_priv, reg, val);
5019         intel_de_posting_read(dev_priv, reg);
5020
5021         /* When PSR is enabled, VSC SDP is handled by PSR routine */
5022         if (!intel_psr_enabled(intel_dp))
5023                 intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC);
5024
5025         intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA);
5026 }
5027
5028 static void
5029 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp,
5030                        const struct intel_crtc_state *crtc_state,
5031                        const struct drm_connector_state *conn_state)
5032 {
5033         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5034         struct dp_sdp vsc_sdp = {};
5035
5036         /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
5037         vsc_sdp.sdp_header.HB0 = 0;
5038         vsc_sdp.sdp_header.HB1 = 0x7;
5039
5040         /*
5041          * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
5042          * Colorimetry Format indication.
5043          */
5044         vsc_sdp.sdp_header.HB2 = 0x5;
5045
5046         /*
5047          * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
5048          * Colorimetry Format indication (HB2 = 05h).
5049          */
5050         vsc_sdp.sdp_header.HB3 = 0x13;
5051
5052         /* DP 1.4a spec, Table 2-120 */
5053         switch (crtc_state->output_format) {
5054         case INTEL_OUTPUT_FORMAT_YCBCR444:
5055                 vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
5056                 break;
5057         case INTEL_OUTPUT_FORMAT_YCBCR420:
5058                 vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
5059                 break;
5060         case INTEL_OUTPUT_FORMAT_RGB:
5061         default:
5062                 /* RGB: DB16[7:4] = 0h */
5063                 break;
5064         }
5065
5066         switch (conn_state->colorspace) {
5067         case DRM_MODE_COLORIMETRY_BT709_YCC:
5068                 vsc_sdp.db[16] |= 0x1;
5069                 break;
5070         case DRM_MODE_COLORIMETRY_XVYCC_601:
5071                 vsc_sdp.db[16] |= 0x2;
5072                 break;
5073         case DRM_MODE_COLORIMETRY_XVYCC_709:
5074                 vsc_sdp.db[16] |= 0x3;
5075                 break;
5076         case DRM_MODE_COLORIMETRY_SYCC_601:
5077                 vsc_sdp.db[16] |= 0x4;
5078                 break;
5079         case DRM_MODE_COLORIMETRY_OPYCC_601:
5080                 vsc_sdp.db[16] |= 0x5;
5081                 break;
5082         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
5083         case DRM_MODE_COLORIMETRY_BT2020_RGB:
5084                 vsc_sdp.db[16] |= 0x6;
5085                 break;
5086         case DRM_MODE_COLORIMETRY_BT2020_YCC:
5087                 vsc_sdp.db[16] |= 0x7;
5088                 break;
5089         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
5090         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
5091                 vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
5092                 break;
5093         default:
5094                 /* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */
5095
5096                 /* RGB->YCBCR color conversion uses the BT.709 color space. */
5097                 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
5098                         vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
5099                 break;
5100         }
5101
5102         /*
5103          * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
5104          * the following Component Bit Depth values are defined:
5105          * 001b = 8bpc.
5106          * 010b = 10bpc.
5107          * 011b = 12bpc.
5108          * 100b = 16bpc.
5109          */
5110         switch (crtc_state->pipe_bpp) {
5111         case 24: /* 8bpc */
5112                 vsc_sdp.db[17] = 0x1;
5113                 break;
5114         case 30: /* 10bpc */
5115                 vsc_sdp.db[17] = 0x2;
5116                 break;
5117         case 36: /* 12bpc */
5118                 vsc_sdp.db[17] = 0x3;
5119                 break;
5120         case 48: /* 16bpc */
5121                 vsc_sdp.db[17] = 0x4;
5122                 break;
5123         default:
5124                 MISSING_CASE(crtc_state->pipe_bpp);
5125                 break;
5126         }
5127
5128         /*
5129          * Dynamic Range (Bit 7)
5130          * 0 = VESA range, 1 = CTA range.
5131          * all YCbCr are always limited range
5132          */
5133         vsc_sdp.db[17] |= 0x80;
5134
5135         /*
5136          * Content Type (Bits 2:0)
5137          * 000b = Not defined.
5138          * 001b = Graphics.
5139          * 010b = Photo.
5140          * 011b = Video.
5141          * 100b = Game
5142          * All other values are RESERVED.
5143          * Note: See CTA-861-G for the definition and expected
5144          * processing by a stream sink for the above contect types.
5145          */
5146         vsc_sdp.db[18] = 0;
5147
5148         intel_dig_port->write_infoframe(&intel_dig_port->base,
5149                         crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
5150 }
5151
5152 static void
5153 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
5154                                           const struct intel_crtc_state *crtc_state,
5155                                           const struct drm_connector_state *conn_state)
5156 {
5157         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5158         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5159         struct dp_sdp infoframe_sdp = {};
5160         struct hdmi_drm_infoframe drm_infoframe = {};
5161         const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
5162         unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
5163         ssize_t len;
5164         int ret;
5165
5166         ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state);
5167         if (ret) {
5168                 drm_dbg_kms(&i915->drm,
5169                             "couldn't set HDR metadata in infoframe\n");
5170                 return;
5171         }
5172
5173         len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf));
5174         if (len < 0) {
5175                 drm_dbg_kms(&i915->drm,
5176                             "buffer size is smaller than hdr metadata infoframe\n");
5177                 return;
5178         }
5179
5180         if (len != infoframe_size) {
5181                 drm_dbg_kms(&i915->drm, "wrong static hdr metadata size\n");
5182                 return;
5183         }
5184
5185         /*
5186          * Set up the infoframe sdp packet for HDR static metadata.
5187          * Prepare VSC Header for SU as per DP 1.4a spec,
5188          * Table 2-100 and Table 2-101
5189          */
5190
5191         /* Packet ID, 00h for non-Audio INFOFRAME */
5192         infoframe_sdp.sdp_header.HB0 = 0;
5193         /*
5194          * Packet Type 80h + Non-audio INFOFRAME Type value
5195          * HDMI_INFOFRAME_TYPE_DRM: 0x87,
5196          */
5197         infoframe_sdp.sdp_header.HB1 = drm_infoframe.type;
5198         /*
5199          * Least Significant Eight Bits of (Data Byte Count – 1)
5200          * infoframe_size - 1,
5201          */
5202         infoframe_sdp.sdp_header.HB2 = 0x1D;
5203         /* INFOFRAME SDP Version Number */
5204         infoframe_sdp.sdp_header.HB3 = (0x13 << 2);
5205         /* CTA Header Byte 2 (INFOFRAME Version Number) */
5206         infoframe_sdp.db[0] = drm_infoframe.version;
5207         /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
5208         infoframe_sdp.db[1] = drm_infoframe.length;
5209         /*
5210          * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
5211          * HDMI_INFOFRAME_HEADER_SIZE
5212          */
5213         BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2);
5214         memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
5215                HDMI_DRM_INFOFRAME_SIZE);
5216
5217         /*
5218          * Size of DP infoframe sdp packet for HDR static metadata is consist of
5219          * - DP SDP Header(struct dp_sdp_header): 4 bytes
5220          * - Two Data Blocks: 2 bytes
5221          *    CTA Header Byte2 (INFOFRAME Version Number)
5222          *    CTA Header Byte3 (Length of INFOFRAME)
5223          * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
5224          *
5225          * Prior to GEN11's GMP register size is identical to DP HDR static metadata
5226          * infoframe size. But GEN11+ has larger than that size, write_infoframe
5227          * will pad rest of the size.
5228          */
5229         intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state,
5230                                         HDMI_PACKET_TYPE_GAMUT_METADATA,
5231                                         &infoframe_sdp,
5232                                         sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE);
5233 }
5234
5235 void intel_dp_vsc_enable(struct intel_dp *intel_dp,
5236                          const struct intel_crtc_state *crtc_state,
5237                          const struct drm_connector_state *conn_state)
5238 {
5239         if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
5240                 return;
5241
5242         intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state);
5243 }
5244
5245 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp,
5246                                   const struct intel_crtc_state *crtc_state,
5247                                   const struct drm_connector_state *conn_state)
5248 {
5249         if (!conn_state->hdr_output_metadata)
5250                 return;
5251
5252         intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp,
5253                                                   crtc_state,
5254                                                   conn_state);
5255 }
5256
5257 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
5258 {
5259         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5260         int status = 0;
5261         int test_link_rate;
5262         u8 test_lane_count, test_link_bw;
5263         /* (DP CTS 1.2)
5264          * 4.3.1.11
5265          */
5266         /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
5267         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
5268                                    &test_lane_count);
5269
5270         if (status <= 0) {
5271                 drm_dbg_kms(&i915->drm, "Lane count read failed\n");
5272                 return DP_TEST_NAK;
5273         }
5274         test_lane_count &= DP_MAX_LANE_COUNT_MASK;
5275
5276         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
5277                                    &test_link_bw);
5278         if (status <= 0) {
5279                 drm_dbg_kms(&i915->drm, "Link Rate read failed\n");
5280                 return DP_TEST_NAK;
5281         }
5282         test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
5283
5284         /* Validate the requested link rate and lane count */
5285         if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
5286                                         test_lane_count))
5287                 return DP_TEST_NAK;
5288
5289         intel_dp->compliance.test_lane_count = test_lane_count;
5290         intel_dp->compliance.test_link_rate = test_link_rate;
5291
5292         return DP_TEST_ACK;
5293 }
5294
5295 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
5296 {
5297         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5298         u8 test_pattern;
5299         u8 test_misc;
5300         __be16 h_width, v_height;
5301         int status = 0;
5302
5303         /* Read the TEST_PATTERN (DP CTS 3.1.5) */
5304         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
5305                                    &test_pattern);
5306         if (status <= 0) {
5307                 drm_dbg_kms(&i915->drm, "Test pattern read failed\n");
5308                 return DP_TEST_NAK;
5309         }
5310         if (test_pattern != DP_COLOR_RAMP)
5311                 return DP_TEST_NAK;
5312
5313         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
5314                                   &h_width, 2);
5315         if (status <= 0) {
5316                 drm_dbg_kms(&i915->drm, "H Width read failed\n");
5317                 return DP_TEST_NAK;
5318         }
5319
5320         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
5321                                   &v_height, 2);
5322         if (status <= 0) {
5323                 drm_dbg_kms(&i915->drm, "V Height read failed\n");
5324                 return DP_TEST_NAK;
5325         }
5326
5327         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
5328                                    &test_misc);
5329         if (status <= 0) {
5330                 drm_dbg_kms(&i915->drm, "TEST MISC read failed\n");
5331                 return DP_TEST_NAK;
5332         }
5333         if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
5334                 return DP_TEST_NAK;
5335         if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
5336                 return DP_TEST_NAK;
5337         switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
5338         case DP_TEST_BIT_DEPTH_6:
5339                 intel_dp->compliance.test_data.bpc = 6;
5340                 break;
5341         case DP_TEST_BIT_DEPTH_8:
5342                 intel_dp->compliance.test_data.bpc = 8;
5343                 break;
5344         default:
5345                 return DP_TEST_NAK;
5346         }
5347
5348         intel_dp->compliance.test_data.video_pattern = test_pattern;
5349         intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
5350         intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
5351         /* Set test active flag here so userspace doesn't interrupt things */
5352         intel_dp->compliance.test_active = true;
5353
5354         return DP_TEST_ACK;
5355 }
5356
5357 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
5358 {
5359         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5360         u8 test_result = DP_TEST_ACK;
5361         struct intel_connector *intel_connector = intel_dp->attached_connector;
5362         struct drm_connector *connector = &intel_connector->base;
5363
5364         if (intel_connector->detect_edid == NULL ||
5365             connector->edid_corrupt ||
5366             intel_dp->aux.i2c_defer_count > 6) {
5367                 /* Check EDID read for NACKs, DEFERs and corruption
5368                  * (DP CTS 1.2 Core r1.1)
5369                  *    4.2.2.4 : Failed EDID read, I2C_NAK
5370                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
5371                  *    4.2.2.6 : EDID corruption detected
5372                  * Use failsafe mode for all cases
5373                  */
5374                 if (intel_dp->aux.i2c_nack_count > 0 ||
5375                         intel_dp->aux.i2c_defer_count > 0)
5376                         drm_dbg_kms(&i915->drm,
5377                                     "EDID read had %d NACKs, %d DEFERs\n",
5378                                     intel_dp->aux.i2c_nack_count,
5379                                     intel_dp->aux.i2c_defer_count);
5380                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
5381         } else {
5382                 struct edid *block = intel_connector->detect_edid;
5383
5384                 /* We have to write the checksum
5385                  * of the last block read
5386                  */
5387                 block += intel_connector->detect_edid->extensions;
5388
5389                 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
5390                                        block->checksum) <= 0)
5391                         drm_dbg_kms(&i915->drm,
5392                                     "Failed to write EDID checksum\n");
5393
5394                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
5395                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
5396         }
5397
5398         /* Set test active flag here so userspace doesn't interrupt things */
5399         intel_dp->compliance.test_active = true;
5400
5401         return test_result;
5402 }
5403
5404 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5405 {
5406         u8 test_result = DP_TEST_NAK;
5407         return test_result;
5408 }
5409
5410 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
5411 {
5412         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5413         u8 response = DP_TEST_NAK;
5414         u8 request = 0;
5415         int status;
5416
5417         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5418         if (status <= 0) {
5419                 drm_dbg_kms(&i915->drm,
5420                             "Could not read test request from sink\n");
5421                 goto update_status;
5422         }
5423
5424         switch (request) {
5425         case DP_TEST_LINK_TRAINING:
5426                 drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n");
5427                 response = intel_dp_autotest_link_training(intel_dp);
5428                 break;
5429         case DP_TEST_LINK_VIDEO_PATTERN:
5430                 drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n");
5431                 response = intel_dp_autotest_video_pattern(intel_dp);
5432                 break;
5433         case DP_TEST_LINK_EDID_READ:
5434                 drm_dbg_kms(&i915->drm, "EDID test requested\n");
5435                 response = intel_dp_autotest_edid(intel_dp);
5436                 break;
5437         case DP_TEST_LINK_PHY_TEST_PATTERN:
5438                 drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n");
5439                 response = intel_dp_autotest_phy_pattern(intel_dp);
5440                 break;
5441         default:
5442                 drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n",
5443                             request);
5444                 break;
5445         }
5446
5447         if (response & DP_TEST_ACK)
5448                 intel_dp->compliance.test_type = request;
5449
5450 update_status:
5451         status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5452         if (status <= 0)
5453                 drm_dbg_kms(&i915->drm,
5454                             "Could not write test response to sink\n");
5455 }
5456
5457 static int
5458 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5459 {
5460         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5461         bool bret;
5462
5463         if (intel_dp->is_mst) {
5464                 u8 esi[DP_DPRX_ESI_LEN] = { 0 };
5465                 int ret = 0;
5466                 int retry;
5467                 bool handled;
5468
5469                 WARN_ON_ONCE(intel_dp->active_mst_links < 0);
5470                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5471 go_again:
5472                 if (bret == true) {
5473
5474                         /* check link status - esi[10] = 0x200c */
5475                         if (intel_dp->active_mst_links > 0 &&
5476                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5477                                 drm_dbg_kms(&i915->drm,
5478                                             "channel EQ not ok, retraining\n");
5479                                 intel_dp_start_link_train(intel_dp);
5480                                 intel_dp_stop_link_train(intel_dp);
5481                         }
5482
5483                         drm_dbg_kms(&i915->drm, "got esi %3ph\n", esi);
5484                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5485
5486                         if (handled) {
5487                                 for (retry = 0; retry < 3; retry++) {
5488                                         int wret;
5489                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
5490                                                                  DP_SINK_COUNT_ESI+1,
5491                                                                  &esi[1], 3);
5492                                         if (wret == 3) {
5493                                                 break;
5494                                         }
5495                                 }
5496
5497                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5498                                 if (bret == true) {
5499                                         drm_dbg_kms(&i915->drm,
5500                                                     "got esi2 %3ph\n", esi);
5501                                         goto go_again;
5502                                 }
5503                         } else
5504                                 ret = 0;
5505
5506                         return ret;
5507                 } else {
5508                         drm_dbg_kms(&i915->drm,
5509                                     "failed to get ESI - device may have failed\n");
5510                         intel_dp->is_mst = false;
5511                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5512                                                         intel_dp->is_mst);
5513                 }
5514         }
5515         return -EINVAL;
5516 }
5517
5518 static bool
5519 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5520 {
5521         u8 link_status[DP_LINK_STATUS_SIZE];
5522
5523         if (!intel_dp->link_trained)
5524                 return false;
5525
5526         /*
5527          * While PSR source HW is enabled, it will control main-link sending
5528          * frames, enabling and disabling it so trying to do a retrain will fail
5529          * as the link would or not be on or it could mix training patterns
5530          * and frame data at the same time causing retrain to fail.
5531          * Also when exiting PSR, HW will retrain the link anyways fixing
5532          * any link status error.
5533          */
5534         if (intel_psr_enabled(intel_dp))
5535                 return false;
5536
5537         if (!intel_dp_get_link_status(intel_dp, link_status))
5538                 return false;
5539
5540         /*
5541          * Validate the cached values of intel_dp->link_rate and
5542          * intel_dp->lane_count before attempting to retrain.
5543          */
5544         if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5545                                         intel_dp->lane_count))
5546                 return false;
5547
5548         /* Retrain if Channel EQ or CR not ok */
5549         return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5550 }
5551
5552 int intel_dp_retrain_link(struct intel_encoder *encoder,
5553                           struct drm_modeset_acquire_ctx *ctx)
5554 {
5555         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5556         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5557         struct intel_connector *connector = intel_dp->attached_connector;
5558         struct drm_connector_state *conn_state;
5559         struct intel_crtc_state *crtc_state;
5560         struct intel_crtc *crtc;
5561         int ret;
5562
5563         /* FIXME handle the MST connectors as well */
5564
5565         if (!connector || connector->base.status != connector_status_connected)
5566                 return 0;
5567
5568         ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5569                                ctx);
5570         if (ret)
5571                 return ret;
5572
5573         conn_state = connector->base.state;
5574
5575         crtc = to_intel_crtc(conn_state->crtc);
5576         if (!crtc)
5577                 return 0;
5578
5579         ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5580         if (ret)
5581                 return ret;
5582
5583         crtc_state = to_intel_crtc_state(crtc->base.state);
5584
5585         drm_WARN_ON(&dev_priv->drm, !intel_crtc_has_dp_encoder(crtc_state));
5586
5587         if (!crtc_state->hw.active)
5588                 return 0;
5589
5590         if (conn_state->commit &&
5591             !try_wait_for_completion(&conn_state->commit->hw_done))
5592                 return 0;
5593
5594         if (!intel_dp_needs_link_retrain(intel_dp))
5595                 return 0;
5596
5597         /* Suppress underruns caused by re-training */
5598         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5599         if (crtc_state->has_pch_encoder)
5600                 intel_set_pch_fifo_underrun_reporting(dev_priv,
5601                                                       intel_crtc_pch_transcoder(crtc), false);
5602
5603         intel_dp_start_link_train(intel_dp);
5604         intel_dp_stop_link_train(intel_dp);
5605
5606         /* Keep underrun reporting disabled until things are stable */
5607         intel_wait_for_vblank(dev_priv, crtc->pipe);
5608
5609         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5610         if (crtc_state->has_pch_encoder)
5611                 intel_set_pch_fifo_underrun_reporting(dev_priv,
5612                                                       intel_crtc_pch_transcoder(crtc), true);
5613
5614         return 0;
5615 }
5616
5617 /*
5618  * If display is now connected check links status,
5619  * there has been known issues of link loss triggering
5620  * long pulse.
5621  *
5622  * Some sinks (eg. ASUS PB287Q) seem to perform some
5623  * weird HPD ping pong during modesets. So we can apparently
5624  * end up with HPD going low during a modeset, and then
5625  * going back up soon after. And once that happens we must
5626  * retrain the link to get a picture. That's in case no
5627  * userspace component reacted to intermittent HPD dip.
5628  */
5629 static enum intel_hotplug_state
5630 intel_dp_hotplug(struct intel_encoder *encoder,
5631                  struct intel_connector *connector)
5632 {
5633         struct drm_modeset_acquire_ctx ctx;
5634         enum intel_hotplug_state state;
5635         int ret;
5636
5637         state = intel_encoder_hotplug(encoder, connector);
5638
5639         drm_modeset_acquire_init(&ctx, 0);
5640
5641         for (;;) {
5642                 ret = intel_dp_retrain_link(encoder, &ctx);
5643
5644                 if (ret == -EDEADLK) {
5645                         drm_modeset_backoff(&ctx);
5646                         continue;
5647                 }
5648
5649                 break;
5650         }
5651
5652         drm_modeset_drop_locks(&ctx);
5653         drm_modeset_acquire_fini(&ctx);
5654         drm_WARN(encoder->base.dev, ret,
5655                  "Acquiring modeset locks failed with %i\n", ret);
5656
5657         /*
5658          * Keeping it consistent with intel_ddi_hotplug() and
5659          * intel_hdmi_hotplug().
5660          */
5661         if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries)
5662                 state = INTEL_HOTPLUG_RETRY;
5663
5664         return state;
5665 }
5666
5667 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5668 {
5669         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5670         u8 val;
5671
5672         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5673                 return;
5674
5675         if (drm_dp_dpcd_readb(&intel_dp->aux,
5676                               DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5677                 return;
5678
5679         drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5680
5681         if (val & DP_AUTOMATED_TEST_REQUEST)
5682                 intel_dp_handle_test_request(intel_dp);
5683
5684         if (val & DP_CP_IRQ)
5685                 intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5686
5687         if (val & DP_SINK_SPECIFIC_IRQ)
5688                 drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n");
5689 }
5690
5691 /*
5692  * According to DP spec
5693  * 5.1.2:
5694  *  1. Read DPCD
5695  *  2. Configure link according to Receiver Capabilities
5696  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
5697  *  4. Check link status on receipt of hot-plug interrupt
5698  *
5699  * intel_dp_short_pulse -  handles short pulse interrupts
5700  * when full detection is not required.
5701  * Returns %true if short pulse is handled and full detection
5702  * is NOT required and %false otherwise.
5703  */
5704 static bool
5705 intel_dp_short_pulse(struct intel_dp *intel_dp)
5706 {
5707         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5708         u8 old_sink_count = intel_dp->sink_count;
5709         bool ret;
5710
5711         /*
5712          * Clearing compliance test variables to allow capturing
5713          * of values for next automated test request.
5714          */
5715         memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5716
5717         /*
5718          * Now read the DPCD to see if it's actually running
5719          * If the current value of sink count doesn't match with
5720          * the value that was stored earlier or dpcd read failed
5721          * we need to do full detection
5722          */
5723         ret = intel_dp_get_dpcd(intel_dp);
5724
5725         if ((old_sink_count != intel_dp->sink_count) || !ret) {
5726                 /* No need to proceed if we are going to do full detect */
5727                 return false;
5728         }
5729
5730         intel_dp_check_service_irq(intel_dp);
5731
5732         /* Handle CEC interrupts, if any */
5733         drm_dp_cec_irq(&intel_dp->aux);
5734
5735         /* defer to the hotplug work for link retraining if needed */
5736         if (intel_dp_needs_link_retrain(intel_dp))
5737                 return false;
5738
5739         intel_psr_short_pulse(intel_dp);
5740
5741         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5742                 drm_dbg_kms(&dev_priv->drm,
5743                             "Link Training Compliance Test requested\n");
5744                 /* Send a Hotplug Uevent to userspace to start modeset */
5745                 drm_kms_helper_hotplug_event(&dev_priv->drm);
5746         }
5747
5748         return true;
5749 }
5750
5751 /* XXX this is probably wrong for multiple downstream ports */
5752 static enum drm_connector_status
5753 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5754 {
5755         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5756         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5757         u8 *dpcd = intel_dp->dpcd;
5758         u8 type;
5759
5760         if (WARN_ON(intel_dp_is_edp(intel_dp)))
5761                 return connector_status_connected;
5762
5763         if (lspcon->active)
5764                 lspcon_resume(lspcon);
5765
5766         if (!intel_dp_get_dpcd(intel_dp))
5767                 return connector_status_disconnected;
5768
5769         /* if there's no downstream port, we're done */
5770         if (!drm_dp_is_branch(dpcd))
5771                 return connector_status_connected;
5772
5773         /* If we're HPD-aware, SINK_COUNT changes dynamically */
5774         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5775             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5776
5777                 return intel_dp->sink_count ?
5778                 connector_status_connected : connector_status_disconnected;
5779         }
5780
5781         if (intel_dp_can_mst(intel_dp))
5782                 return connector_status_connected;
5783
5784         /* If no HPD, poke DDC gently */
5785         if (drm_probe_ddc(&intel_dp->aux.ddc))
5786                 return connector_status_connected;
5787
5788         /* Well we tried, say unknown for unreliable port types */
5789         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5790                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5791                 if (type == DP_DS_PORT_TYPE_VGA ||
5792                     type == DP_DS_PORT_TYPE_NON_EDID)
5793                         return connector_status_unknown;
5794         } else {
5795                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
5796                         DP_DWN_STRM_PORT_TYPE_MASK;
5797                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
5798                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
5799                         return connector_status_unknown;
5800         }
5801
5802         /* Anything else is out of spec, warn and ignore */
5803         drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n");
5804         return connector_status_disconnected;
5805 }
5806
5807 static enum drm_connector_status
5808 edp_detect(struct intel_dp *intel_dp)
5809 {
5810         return connector_status_connected;
5811 }
5812
5813 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5814 {
5815         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5816         u32 bit;
5817
5818         switch (encoder->hpd_pin) {
5819         case HPD_PORT_B:
5820                 bit = SDE_PORTB_HOTPLUG;
5821                 break;
5822         case HPD_PORT_C:
5823                 bit = SDE_PORTC_HOTPLUG;
5824                 break;
5825         case HPD_PORT_D:
5826                 bit = SDE_PORTD_HOTPLUG;
5827                 break;
5828         default:
5829                 MISSING_CASE(encoder->hpd_pin);
5830                 return false;
5831         }
5832
5833         return intel_de_read(dev_priv, SDEISR) & bit;
5834 }
5835
5836 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5837 {
5838         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5839         u32 bit;
5840
5841         switch (encoder->hpd_pin) {
5842         case HPD_PORT_B:
5843                 bit = SDE_PORTB_HOTPLUG_CPT;
5844                 break;
5845         case HPD_PORT_C:
5846                 bit = SDE_PORTC_HOTPLUG_CPT;
5847                 break;
5848         case HPD_PORT_D:
5849                 bit = SDE_PORTD_HOTPLUG_CPT;
5850                 break;
5851         default:
5852                 MISSING_CASE(encoder->hpd_pin);
5853                 return false;
5854         }
5855
5856         return intel_de_read(dev_priv, SDEISR) & bit;
5857 }
5858
5859 static bool spt_digital_port_connected(struct intel_encoder *encoder)
5860 {
5861         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5862         u32 bit;
5863
5864         switch (encoder->hpd_pin) {
5865         case HPD_PORT_A:
5866                 bit = SDE_PORTA_HOTPLUG_SPT;
5867                 break;
5868         case HPD_PORT_E:
5869                 bit = SDE_PORTE_HOTPLUG_SPT;
5870                 break;
5871         default:
5872                 return cpt_digital_port_connected(encoder);
5873         }
5874
5875         return intel_de_read(dev_priv, SDEISR) & bit;
5876 }
5877
5878 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5879 {
5880         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5881         u32 bit;
5882
5883         switch (encoder->hpd_pin) {
5884         case HPD_PORT_B:
5885                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
5886                 break;
5887         case HPD_PORT_C:
5888                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
5889                 break;
5890         case HPD_PORT_D:
5891                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
5892                 break;
5893         default:
5894                 MISSING_CASE(encoder->hpd_pin);
5895                 return false;
5896         }
5897
5898         return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
5899 }
5900
5901 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5902 {
5903         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5904         u32 bit;
5905
5906         switch (encoder->hpd_pin) {
5907         case HPD_PORT_B:
5908                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5909                 break;
5910         case HPD_PORT_C:
5911                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5912                 break;
5913         case HPD_PORT_D:
5914                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5915                 break;
5916         default:
5917                 MISSING_CASE(encoder->hpd_pin);
5918                 return false;
5919         }
5920
5921         return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
5922 }
5923
5924 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5925 {
5926         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5927
5928         if (encoder->hpd_pin == HPD_PORT_A)
5929                 return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG;
5930         else
5931                 return ibx_digital_port_connected(encoder);
5932 }
5933
5934 static bool snb_digital_port_connected(struct intel_encoder *encoder)
5935 {
5936         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5937
5938         if (encoder->hpd_pin == HPD_PORT_A)
5939                 return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG;
5940         else
5941                 return cpt_digital_port_connected(encoder);
5942 }
5943
5944 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5945 {
5946         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5947
5948         if (encoder->hpd_pin == HPD_PORT_A)
5949                 return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG_IVB;
5950         else
5951                 return cpt_digital_port_connected(encoder);
5952 }
5953
5954 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5955 {
5956         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5957
5958         if (encoder->hpd_pin == HPD_PORT_A)
5959                 return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5960         else
5961                 return cpt_digital_port_connected(encoder);
5962 }
5963
5964 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5965 {
5966         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5967         u32 bit;
5968
5969         switch (encoder->hpd_pin) {
5970         case HPD_PORT_A:
5971                 bit = BXT_DE_PORT_HP_DDIA;
5972                 break;
5973         case HPD_PORT_B:
5974                 bit = BXT_DE_PORT_HP_DDIB;
5975                 break;
5976         case HPD_PORT_C:
5977                 bit = BXT_DE_PORT_HP_DDIC;
5978                 break;
5979         default:
5980                 MISSING_CASE(encoder->hpd_pin);
5981                 return false;
5982         }
5983
5984         return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & bit;
5985 }
5986
5987 static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv,
5988                                       enum phy phy)
5989 {
5990         if (HAS_PCH_MCC(dev_priv) && phy == PHY_C)
5991                 return intel_de_read(dev_priv, SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1);
5992
5993         return intel_de_read(dev_priv, SDEISR) & SDE_DDI_HOTPLUG_ICP(phy);
5994 }
5995
5996 static bool icp_digital_port_connected(struct intel_encoder *encoder)
5997 {
5998         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5999         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
6000         enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
6001
6002         if (intel_phy_is_combo(dev_priv, phy))
6003                 return intel_combo_phy_connected(dev_priv, phy);
6004         else if (intel_phy_is_tc(dev_priv, phy))
6005                 return intel_tc_port_connected(dig_port);
6006         else
6007                 MISSING_CASE(encoder->hpd_pin);
6008
6009         return false;
6010 }
6011
6012 /*
6013  * intel_digital_port_connected - is the specified port connected?
6014  * @encoder: intel_encoder
6015  *
6016  * In cases where there's a connector physically connected but it can't be used
6017  * by our hardware we also return false, since the rest of the driver should
6018  * pretty much treat the port as disconnected. This is relevant for type-C
6019  * (starting on ICL) where there's ownership involved.
6020  *
6021  * Return %true if port is connected, %false otherwise.
6022  */
6023 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
6024 {
6025         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6026
6027         if (HAS_GMCH(dev_priv)) {
6028                 if (IS_GM45(dev_priv))
6029                         return gm45_digital_port_connected(encoder);
6030                 else
6031                         return g4x_digital_port_connected(encoder);
6032         }
6033
6034         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
6035                 return icp_digital_port_connected(encoder);
6036         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
6037                 return spt_digital_port_connected(encoder);
6038         else if (IS_GEN9_LP(dev_priv))
6039                 return bxt_digital_port_connected(encoder);
6040         else if (IS_GEN(dev_priv, 8))
6041                 return bdw_digital_port_connected(encoder);
6042         else if (IS_GEN(dev_priv, 7))
6043                 return ivb_digital_port_connected(encoder);
6044         else if (IS_GEN(dev_priv, 6))
6045                 return snb_digital_port_connected(encoder);
6046         else if (IS_GEN(dev_priv, 5))
6047                 return ilk_digital_port_connected(encoder);
6048
6049         MISSING_CASE(INTEL_GEN(dev_priv));
6050         return false;
6051 }
6052
6053 bool intel_digital_port_connected(struct intel_encoder *encoder)
6054 {
6055         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6056         bool is_connected = false;
6057         intel_wakeref_t wakeref;
6058
6059         with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
6060                 is_connected = __intel_digital_port_connected(encoder);
6061
6062         return is_connected;
6063 }
6064
6065 static struct edid *
6066 intel_dp_get_edid(struct intel_dp *intel_dp)
6067 {
6068         struct intel_connector *intel_connector = intel_dp->attached_connector;
6069
6070         /* use cached edid if we have one */
6071         if (intel_connector->edid) {
6072                 /* invalid edid */
6073                 if (IS_ERR(intel_connector->edid))
6074                         return NULL;
6075
6076                 return drm_edid_duplicate(intel_connector->edid);
6077         } else
6078                 return drm_get_edid(&intel_connector->base,
6079                                     &intel_dp->aux.ddc);
6080 }
6081
6082 static void
6083 intel_dp_set_edid(struct intel_dp *intel_dp)
6084 {
6085         struct intel_connector *intel_connector = intel_dp->attached_connector;
6086         struct edid *edid;
6087
6088         intel_dp_unset_edid(intel_dp);
6089         edid = intel_dp_get_edid(intel_dp);
6090         intel_connector->detect_edid = edid;
6091
6092         intel_dp->has_audio = drm_detect_monitor_audio(edid);
6093         drm_dp_cec_set_edid(&intel_dp->aux, edid);
6094         intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
6095 }
6096
6097 static void
6098 intel_dp_unset_edid(struct intel_dp *intel_dp)
6099 {
6100         struct intel_connector *intel_connector = intel_dp->attached_connector;
6101
6102         drm_dp_cec_unset_edid(&intel_dp->aux);
6103         kfree(intel_connector->detect_edid);
6104         intel_connector->detect_edid = NULL;
6105
6106         intel_dp->has_audio = false;
6107         intel_dp->edid_quirks = 0;
6108 }
6109
6110 static int
6111 intel_dp_detect(struct drm_connector *connector,
6112                 struct drm_modeset_acquire_ctx *ctx,
6113                 bool force)
6114 {
6115         struct drm_i915_private *dev_priv = to_i915(connector->dev);
6116         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6117         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6118         struct intel_encoder *encoder = &dig_port->base;
6119         enum drm_connector_status status;
6120
6121         drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6122                     connector->base.id, connector->name);
6123         drm_WARN_ON(&dev_priv->drm,
6124                     !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
6125
6126         /* Can't disconnect eDP */
6127         if (intel_dp_is_edp(intel_dp))
6128                 status = edp_detect(intel_dp);
6129         else if (intel_digital_port_connected(encoder))
6130                 status = intel_dp_detect_dpcd(intel_dp);
6131         else
6132                 status = connector_status_disconnected;
6133
6134         if (status == connector_status_disconnected) {
6135                 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
6136                 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
6137
6138                 if (intel_dp->is_mst) {
6139                         drm_dbg_kms(&dev_priv->drm,
6140                                     "MST device may have disappeared %d vs %d\n",
6141                                     intel_dp->is_mst,
6142                                     intel_dp->mst_mgr.mst_state);
6143                         intel_dp->is_mst = false;
6144                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6145                                                         intel_dp->is_mst);
6146                 }
6147
6148                 goto out;
6149         }
6150
6151         if (intel_dp->reset_link_params) {
6152                 /* Initial max link lane count */
6153                 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
6154
6155                 /* Initial max link rate */
6156                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
6157
6158                 intel_dp->reset_link_params = false;
6159         }
6160
6161         intel_dp_print_rates(intel_dp);
6162
6163         /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
6164         if (INTEL_GEN(dev_priv) >= 11)
6165                 intel_dp_get_dsc_sink_cap(intel_dp);
6166
6167         intel_dp_configure_mst(intel_dp);
6168
6169         if (intel_dp->is_mst) {
6170                 /*
6171                  * If we are in MST mode then this connector
6172                  * won't appear connected or have anything
6173                  * with EDID on it
6174                  */
6175                 status = connector_status_disconnected;
6176                 goto out;
6177         }
6178
6179         /*
6180          * Some external monitors do not signal loss of link synchronization
6181          * with an IRQ_HPD, so force a link status check.
6182          */
6183         if (!intel_dp_is_edp(intel_dp)) {
6184                 int ret;
6185
6186                 ret = intel_dp_retrain_link(encoder, ctx);
6187                 if (ret)
6188                         return ret;
6189         }
6190
6191         /*
6192          * Clearing NACK and defer counts to get their exact values
6193          * while reading EDID which are required by Compliance tests
6194          * 4.2.2.4 and 4.2.2.5
6195          */
6196         intel_dp->aux.i2c_nack_count = 0;
6197         intel_dp->aux.i2c_defer_count = 0;
6198
6199         intel_dp_set_edid(intel_dp);
6200         if (intel_dp_is_edp(intel_dp) ||
6201             to_intel_connector(connector)->detect_edid)
6202                 status = connector_status_connected;
6203
6204         intel_dp_check_service_irq(intel_dp);
6205
6206 out:
6207         if (status != connector_status_connected && !intel_dp->is_mst)
6208                 intel_dp_unset_edid(intel_dp);
6209
6210         /*
6211          * Make sure the refs for power wells enabled during detect are
6212          * dropped to avoid a new detect cycle triggered by HPD polling.
6213          */
6214         intel_display_power_flush_work(dev_priv);
6215
6216         return status;
6217 }
6218
6219 static void
6220 intel_dp_force(struct drm_connector *connector)
6221 {
6222         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6223         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6224         struct intel_encoder *intel_encoder = &dig_port->base;
6225         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
6226         enum intel_display_power_domain aux_domain =
6227                 intel_aux_power_domain(dig_port);
6228         intel_wakeref_t wakeref;
6229
6230         drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6231                     connector->base.id, connector->name);
6232         intel_dp_unset_edid(intel_dp);
6233
6234         if (connector->status != connector_status_connected)
6235                 return;
6236
6237         wakeref = intel_display_power_get(dev_priv, aux_domain);
6238
6239         intel_dp_set_edid(intel_dp);
6240
6241         intel_display_power_put(dev_priv, aux_domain, wakeref);
6242 }
6243
6244 static int intel_dp_get_modes(struct drm_connector *connector)
6245 {
6246         struct intel_connector *intel_connector = to_intel_connector(connector);
6247         struct edid *edid;
6248
6249         edid = intel_connector->detect_edid;
6250         if (edid) {
6251                 int ret = intel_connector_update_modes(connector, edid);
6252                 if (ret)
6253                         return ret;
6254         }
6255
6256         /* if eDP has no EDID, fall back to fixed mode */
6257         if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
6258             intel_connector->panel.fixed_mode) {
6259                 struct drm_display_mode *mode;
6260
6261                 mode = drm_mode_duplicate(connector->dev,
6262                                           intel_connector->panel.fixed_mode);
6263                 if (mode) {
6264                         drm_mode_probed_add(connector, mode);
6265                         return 1;
6266                 }
6267         }
6268
6269         return 0;
6270 }
6271
6272 static int
6273 intel_dp_connector_register(struct drm_connector *connector)
6274 {
6275         struct drm_i915_private *i915 = to_i915(connector->dev);
6276         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6277         int ret;
6278
6279         ret = intel_connector_register(connector);
6280         if (ret)
6281                 return ret;
6282
6283         intel_connector_debugfs_add(connector);
6284
6285         drm_dbg_kms(&i915->drm, "registering %s bus for %s\n",
6286                     intel_dp->aux.name, connector->kdev->kobj.name);
6287
6288         intel_dp->aux.dev = connector->kdev;
6289         ret = drm_dp_aux_register(&intel_dp->aux);
6290         if (!ret)
6291                 drm_dp_cec_register_connector(&intel_dp->aux, connector);
6292         return ret;
6293 }
6294
6295 static void
6296 intel_dp_connector_unregister(struct drm_connector *connector)
6297 {
6298         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6299
6300         drm_dp_cec_unregister_connector(&intel_dp->aux);
6301         drm_dp_aux_unregister(&intel_dp->aux);
6302         intel_connector_unregister(connector);
6303 }
6304
6305 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
6306 {
6307         struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder));
6308         struct intel_dp *intel_dp = &intel_dig_port->dp;
6309
6310         intel_dp_mst_encoder_cleanup(intel_dig_port);
6311         if (intel_dp_is_edp(intel_dp)) {
6312                 intel_wakeref_t wakeref;
6313
6314                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6315                 /*
6316                  * vdd might still be enabled do to the delayed vdd off.
6317                  * Make sure vdd is actually turned off here.
6318                  */
6319                 with_pps_lock(intel_dp, wakeref)
6320                         edp_panel_vdd_off_sync(intel_dp);
6321
6322                 if (intel_dp->edp_notifier.notifier_call) {
6323                         unregister_reboot_notifier(&intel_dp->edp_notifier);
6324                         intel_dp->edp_notifier.notifier_call = NULL;
6325                 }
6326         }
6327
6328         intel_dp_aux_fini(intel_dp);
6329 }
6330
6331 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
6332 {
6333         intel_dp_encoder_flush_work(encoder);
6334
6335         drm_encoder_cleanup(encoder);
6336         kfree(enc_to_dig_port(to_intel_encoder(encoder)));
6337 }
6338
6339 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
6340 {
6341         struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
6342         intel_wakeref_t wakeref;
6343
6344         if (!intel_dp_is_edp(intel_dp))
6345                 return;
6346
6347         /*
6348          * vdd might still be enabled do to the delayed vdd off.
6349          * Make sure vdd is actually turned off here.
6350          */
6351         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6352         with_pps_lock(intel_dp, wakeref)
6353                 edp_panel_vdd_off_sync(intel_dp);
6354 }
6355
6356 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
6357 {
6358         long ret;
6359
6360 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
6361         ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
6362                                                msecs_to_jiffies(timeout));
6363
6364         if (!ret)
6365                 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
6366 }
6367
6368 static
6369 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
6370                                 u8 *an)
6371 {
6372         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6373         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base));
6374         static const struct drm_dp_aux_msg msg = {
6375                 .request = DP_AUX_NATIVE_WRITE,
6376                 .address = DP_AUX_HDCP_AKSV,
6377                 .size = DRM_HDCP_KSV_LEN,
6378         };
6379         u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
6380         ssize_t dpcd_ret;
6381         int ret;
6382
6383         /* Output An first, that's easy */
6384         dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
6385                                      an, DRM_HDCP_AN_LEN);
6386         if (dpcd_ret != DRM_HDCP_AN_LEN) {
6387                 drm_dbg_kms(&i915->drm,
6388                             "Failed to write An over DP/AUX (%zd)\n",
6389                             dpcd_ret);
6390                 return dpcd_ret >= 0 ? -EIO : dpcd_ret;
6391         }
6392
6393         /*
6394          * Since Aksv is Oh-So-Secret, we can't access it in software. So in
6395          * order to get it on the wire, we need to create the AUX header as if
6396          * we were writing the data, and then tickle the hardware to output the
6397          * data once the header is sent out.
6398          */
6399         intel_dp_aux_header(txbuf, &msg);
6400
6401         ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
6402                                 rxbuf, sizeof(rxbuf),
6403                                 DP_AUX_CH_CTL_AUX_AKSV_SELECT);
6404         if (ret < 0) {
6405                 drm_dbg_kms(&i915->drm,
6406                             "Write Aksv over DP/AUX failed (%d)\n", ret);
6407                 return ret;
6408         } else if (ret == 0) {
6409                 drm_dbg_kms(&i915->drm, "Aksv write over DP/AUX was empty\n");
6410                 return -EIO;
6411         }
6412
6413         reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
6414         if (reply != DP_AUX_NATIVE_REPLY_ACK) {
6415                 drm_dbg_kms(&i915->drm,
6416                             "Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
6417                             reply);
6418                 return -EIO;
6419         }
6420         return 0;
6421 }
6422
6423 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
6424                                    u8 *bksv)
6425 {
6426         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6427         ssize_t ret;
6428
6429         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
6430                                DRM_HDCP_KSV_LEN);
6431         if (ret != DRM_HDCP_KSV_LEN) {
6432                 drm_dbg_kms(&i915->drm,
6433                             "Read Bksv from DP/AUX failed (%zd)\n", ret);
6434                 return ret >= 0 ? -EIO : ret;
6435         }
6436         return 0;
6437 }
6438
6439 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
6440                                       u8 *bstatus)
6441 {
6442         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6443         ssize_t ret;
6444
6445         /*
6446          * For some reason the HDMI and DP HDCP specs call this register
6447          * definition by different names. In the HDMI spec, it's called BSTATUS,
6448          * but in DP it's called BINFO.
6449          */
6450         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
6451                                bstatus, DRM_HDCP_BSTATUS_LEN);
6452         if (ret != DRM_HDCP_BSTATUS_LEN) {
6453                 drm_dbg_kms(&i915->drm,
6454                             "Read bstatus from DP/AUX failed (%zd)\n", ret);
6455                 return ret >= 0 ? -EIO : ret;
6456         }
6457         return 0;
6458 }
6459
6460 static
6461 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
6462                              u8 *bcaps)
6463 {
6464         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6465         ssize_t ret;
6466
6467         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
6468                                bcaps, 1);
6469         if (ret != 1) {
6470                 drm_dbg_kms(&i915->drm,
6471                             "Read bcaps from DP/AUX failed (%zd)\n", ret);
6472                 return ret >= 0 ? -EIO : ret;
6473         }
6474
6475         return 0;
6476 }
6477
6478 static
6479 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
6480                                    bool *repeater_present)
6481 {
6482         ssize_t ret;
6483         u8 bcaps;
6484
6485         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6486         if (ret)
6487                 return ret;
6488
6489         *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
6490         return 0;
6491 }
6492
6493 static
6494 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
6495                                 u8 *ri_prime)
6496 {
6497         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6498         ssize_t ret;
6499
6500         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
6501                                ri_prime, DRM_HDCP_RI_LEN);
6502         if (ret != DRM_HDCP_RI_LEN) {
6503                 drm_dbg_kms(&i915->drm, "Read Ri' from DP/AUX failed (%zd)\n",
6504                             ret);
6505                 return ret >= 0 ? -EIO : ret;
6506         }
6507         return 0;
6508 }
6509
6510 static
6511 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
6512                                  bool *ksv_ready)
6513 {
6514         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6515         ssize_t ret;
6516         u8 bstatus;
6517
6518         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6519                                &bstatus, 1);
6520         if (ret != 1) {
6521                 drm_dbg_kms(&i915->drm,
6522                             "Read bstatus from DP/AUX failed (%zd)\n", ret);
6523                 return ret >= 0 ? -EIO : ret;
6524         }
6525         *ksv_ready = bstatus & DP_BSTATUS_READY;
6526         return 0;
6527 }
6528
6529 static
6530 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
6531                                 int num_downstream, u8 *ksv_fifo)
6532 {
6533         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6534         ssize_t ret;
6535         int i;
6536
6537         /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6538         for (i = 0; i < num_downstream; i += 3) {
6539                 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
6540                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6541                                        DP_AUX_HDCP_KSV_FIFO,
6542                                        ksv_fifo + i * DRM_HDCP_KSV_LEN,
6543                                        len);
6544                 if (ret != len) {
6545                         drm_dbg_kms(&i915->drm,
6546                                     "Read ksv[%d] from DP/AUX failed (%zd)\n",
6547                                     i, ret);
6548                         return ret >= 0 ? -EIO : ret;
6549                 }
6550         }
6551         return 0;
6552 }
6553
6554 static
6555 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
6556                                     int i, u32 *part)
6557 {
6558         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6559         ssize_t ret;
6560
6561         if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
6562                 return -EINVAL;
6563
6564         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6565                                DP_AUX_HDCP_V_PRIME(i), part,
6566                                DRM_HDCP_V_PRIME_PART_LEN);
6567         if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6568                 drm_dbg_kms(&i915->drm,
6569                             "Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6570                 return ret >= 0 ? -EIO : ret;
6571         }
6572         return 0;
6573 }
6574
6575 static
6576 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
6577                                     bool enable)
6578 {
6579         /* Not used for single stream DisplayPort setups */
6580         return 0;
6581 }
6582
6583 static
6584 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
6585 {
6586         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6587         ssize_t ret;
6588         u8 bstatus;
6589
6590         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6591                                &bstatus, 1);
6592         if (ret != 1) {
6593                 drm_dbg_kms(&i915->drm,
6594                             "Read bstatus from DP/AUX failed (%zd)\n", ret);
6595                 return false;
6596         }
6597
6598         return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
6599 }
6600
6601 static
6602 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6603                           bool *hdcp_capable)
6604 {
6605         ssize_t ret;
6606         u8 bcaps;
6607
6608         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6609         if (ret)
6610                 return ret;
6611
6612         *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6613         return 0;
6614 }
6615
6616 struct hdcp2_dp_errata_stream_type {
6617         u8      msg_id;
6618         u8      stream_type;
6619 } __packed;
6620
6621 struct hdcp2_dp_msg_data {
6622         u8 msg_id;
6623         u32 offset;
6624         bool msg_detectable;
6625         u32 timeout;
6626         u32 timeout2; /* Added for non_paired situation */
6627 };
6628
6629 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6630         { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
6631         { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6632           false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
6633         { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6634           false, 0, 0 },
6635         { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6636           false, 0, 0 },
6637         { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6638           true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6639           HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
6640         { HDCP_2_2_AKE_SEND_PAIRING_INFO,
6641           DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6642           HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
6643         { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
6644         { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6645           false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
6646         { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6647           0, 0 },
6648         { HDCP_2_2_REP_SEND_RECVID_LIST,
6649           DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6650           HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
6651         { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6652           0, 0 },
6653         { HDCP_2_2_REP_STREAM_MANAGE,
6654           DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6655           0, 0 },
6656         { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6657           false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6658 /* local define to shovel this through the write_2_2 interface */
6659 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE  50
6660         { HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6661           DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6662           0, 0 },
6663 };
6664
6665 static inline
6666 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6667                                   u8 *rx_status)
6668 {
6669         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6670         ssize_t ret;
6671
6672         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6673                                DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6674                                HDCP_2_2_DP_RXSTATUS_LEN);
6675         if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6676                 drm_dbg_kms(&i915->drm,
6677                             "Read bstatus from DP/AUX failed (%zd)\n", ret);
6678                 return ret >= 0 ? -EIO : ret;
6679         }
6680
6681         return 0;
6682 }
6683
6684 static
6685 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6686                                   u8 msg_id, bool *msg_ready)
6687 {
6688         u8 rx_status;
6689         int ret;
6690
6691         *msg_ready = false;
6692         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6693         if (ret < 0)
6694                 return ret;
6695
6696         switch (msg_id) {
6697         case HDCP_2_2_AKE_SEND_HPRIME:
6698                 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6699                         *msg_ready = true;
6700                 break;
6701         case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6702                 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6703                         *msg_ready = true;
6704                 break;
6705         case HDCP_2_2_REP_SEND_RECVID_LIST:
6706                 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6707                         *msg_ready = true;
6708                 break;
6709         default:
6710                 DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6711                 return -EINVAL;
6712         }
6713
6714         return 0;
6715 }
6716
6717 static ssize_t
6718 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6719                             const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6720 {
6721         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6722         struct intel_dp *dp = &intel_dig_port->dp;
6723         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6724         u8 msg_id = hdcp2_msg_data->msg_id;
6725         int ret, timeout;
6726         bool msg_ready = false;
6727
6728         if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6729                 timeout = hdcp2_msg_data->timeout2;
6730         else
6731                 timeout = hdcp2_msg_data->timeout;
6732
6733         /*
6734          * There is no way to detect the CERT, LPRIME and STREAM_READY
6735          * availability. So Wait for timeout and read the msg.
6736          */
6737         if (!hdcp2_msg_data->msg_detectable) {
6738                 mdelay(timeout);
6739                 ret = 0;
6740         } else {
6741                 /*
6742                  * As we want to check the msg availability at timeout, Ignoring
6743                  * the timeout at wait for CP_IRQ.
6744                  */
6745                 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6746                 ret = hdcp2_detect_msg_availability(intel_dig_port,
6747                                                     msg_id, &msg_ready);
6748                 if (!msg_ready)
6749                         ret = -ETIMEDOUT;
6750         }
6751
6752         if (ret)
6753                 drm_dbg_kms(&i915->drm,
6754                             "msg_id %d, ret %d, timeout(mSec): %d\n",
6755                             hdcp2_msg_data->msg_id, ret, timeout);
6756
6757         return ret;
6758 }
6759
6760 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6761 {
6762         int i;
6763
6764         for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6765                 if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6766                         return &hdcp2_dp_msg_data[i];
6767
6768         return NULL;
6769 }
6770
6771 static
6772 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6773                              void *buf, size_t size)
6774 {
6775         struct intel_dp *dp = &intel_dig_port->dp;
6776         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6777         unsigned int offset;
6778         u8 *byte = buf;
6779         ssize_t ret, bytes_to_write, len;
6780         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6781
6782         hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6783         if (!hdcp2_msg_data)
6784                 return -EINVAL;
6785
6786         offset = hdcp2_msg_data->offset;
6787
6788         /* No msg_id in DP HDCP2.2 msgs */
6789         bytes_to_write = size - 1;
6790         byte++;
6791
6792         hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6793
6794         while (bytes_to_write) {
6795                 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6796                                 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6797
6798                 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6799                                         offset, (void *)byte, len);
6800                 if (ret < 0)
6801                         return ret;
6802
6803                 bytes_to_write -= ret;
6804                 byte += ret;
6805                 offset += ret;
6806         }
6807
6808         return size;
6809 }
6810
6811 static
6812 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6813 {
6814         u8 rx_info[HDCP_2_2_RXINFO_LEN];
6815         u32 dev_cnt;
6816         ssize_t ret;
6817
6818         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6819                                DP_HDCP_2_2_REG_RXINFO_OFFSET,
6820                                (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6821         if (ret != HDCP_2_2_RXINFO_LEN)
6822                 return ret >= 0 ? -EIO : ret;
6823
6824         dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6825                    HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6826
6827         if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6828                 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6829
6830         ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6831                 HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6832                 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6833
6834         return ret;
6835 }
6836
6837 static
6838 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6839                             u8 msg_id, void *buf, size_t size)
6840 {
6841         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6842         unsigned int offset;
6843         u8 *byte = buf;
6844         ssize_t ret, bytes_to_recv, len;
6845         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6846
6847         hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6848         if (!hdcp2_msg_data)
6849                 return -EINVAL;
6850         offset = hdcp2_msg_data->offset;
6851
6852         ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6853         if (ret < 0)
6854                 return ret;
6855
6856         if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6857                 ret = get_receiver_id_list_size(intel_dig_port);
6858                 if (ret < 0)
6859                         return ret;
6860
6861                 size = ret;
6862         }
6863         bytes_to_recv = size - 1;
6864
6865         /* DP adaptation msgs has no msg_id */
6866         byte++;
6867
6868         while (bytes_to_recv) {
6869                 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6870                       DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6871
6872                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6873                                        (void *)byte, len);
6874                 if (ret < 0) {
6875                         drm_dbg_kms(&i915->drm, "msg_id %d, ret %zd\n",
6876                                     msg_id, ret);
6877                         return ret;
6878                 }
6879
6880                 bytes_to_recv -= ret;
6881                 byte += ret;
6882                 offset += ret;
6883         }
6884         byte = buf;
6885         *byte = msg_id;
6886
6887         return size;
6888 }
6889
6890 static
6891 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6892                                       bool is_repeater, u8 content_type)
6893 {
6894         int ret;
6895         struct hdcp2_dp_errata_stream_type stream_type_msg;
6896
6897         if (is_repeater)
6898                 return 0;
6899
6900         /*
6901          * Errata for DP: As Stream type is used for encryption, Receiver
6902          * should be communicated with stream type for the decryption of the
6903          * content.
6904          * Repeater will be communicated with stream type as a part of it's
6905          * auth later in time.
6906          */
6907         stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6908         stream_type_msg.stream_type = content_type;
6909
6910         ret =  intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6911                                         sizeof(stream_type_msg));
6912
6913         return ret < 0 ? ret : 0;
6914
6915 }
6916
6917 static
6918 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6919 {
6920         u8 rx_status;
6921         int ret;
6922
6923         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6924         if (ret)
6925                 return ret;
6926
6927         if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6928                 ret = HDCP_REAUTH_REQUEST;
6929         else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6930                 ret = HDCP_LINK_INTEGRITY_FAILURE;
6931         else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6932                 ret = HDCP_TOPOLOGY_CHANGE;
6933
6934         return ret;
6935 }
6936
6937 static
6938 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6939                            bool *capable)
6940 {
6941         u8 rx_caps[3];
6942         int ret;
6943
6944         *capable = false;
6945         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6946                                DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6947                                rx_caps, HDCP_2_2_RXCAPS_LEN);
6948         if (ret != HDCP_2_2_RXCAPS_LEN)
6949                 return ret >= 0 ? -EIO : ret;
6950
6951         if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6952             HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6953                 *capable = true;
6954
6955         return 0;
6956 }
6957
6958 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6959         .write_an_aksv = intel_dp_hdcp_write_an_aksv,
6960         .read_bksv = intel_dp_hdcp_read_bksv,
6961         .read_bstatus = intel_dp_hdcp_read_bstatus,
6962         .repeater_present = intel_dp_hdcp_repeater_present,
6963         .read_ri_prime = intel_dp_hdcp_read_ri_prime,
6964         .read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6965         .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6966         .read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6967         .toggle_signalling = intel_dp_hdcp_toggle_signalling,
6968         .check_link = intel_dp_hdcp_check_link,
6969         .hdcp_capable = intel_dp_hdcp_capable,
6970         .write_2_2_msg = intel_dp_hdcp2_write_msg,
6971         .read_2_2_msg = intel_dp_hdcp2_read_msg,
6972         .config_stream_type = intel_dp_hdcp2_config_stream_type,
6973         .check_2_2_link = intel_dp_hdcp2_check_link,
6974         .hdcp_2_2_capable = intel_dp_hdcp2_capable,
6975         .protocol = HDCP_PROTOCOL_DP,
6976 };
6977
6978 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6979 {
6980         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6981         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6982
6983         lockdep_assert_held(&dev_priv->pps_mutex);
6984
6985         if (!edp_have_panel_vdd(intel_dp))
6986                 return;
6987
6988         /*
6989          * The VDD bit needs a power domain reference, so if the bit is
6990          * already enabled when we boot or resume, grab this reference and
6991          * schedule a vdd off, so we don't hold on to the reference
6992          * indefinitely.
6993          */
6994         drm_dbg_kms(&dev_priv->drm,
6995                     "VDD left on by BIOS, adjusting state tracking\n");
6996         intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6997
6998         edp_panel_vdd_schedule_off(intel_dp);
6999 }
7000
7001 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
7002 {
7003         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7004         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
7005         enum pipe pipe;
7006
7007         if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
7008                                   encoder->port, &pipe))
7009                 return pipe;
7010
7011         return INVALID_PIPE;
7012 }
7013
7014 void intel_dp_encoder_reset(struct drm_encoder *encoder)
7015 {
7016         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
7017         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
7018         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
7019         intel_wakeref_t wakeref;
7020
7021         if (!HAS_DDI(dev_priv))
7022                 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
7023
7024         if (lspcon->active)
7025                 lspcon_resume(lspcon);
7026
7027         intel_dp->reset_link_params = true;
7028
7029         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
7030             !intel_dp_is_edp(intel_dp))
7031                 return;
7032
7033         with_pps_lock(intel_dp, wakeref) {
7034                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7035                         intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7036
7037                 if (intel_dp_is_edp(intel_dp)) {
7038                         /*
7039                          * Reinit the power sequencer, in case BIOS did
7040                          * something nasty with it.
7041                          */
7042                         intel_dp_pps_init(intel_dp);
7043                         intel_edp_panel_vdd_sanitize(intel_dp);
7044                 }
7045         }
7046 }
7047
7048 static int intel_modeset_tile_group(struct intel_atomic_state *state,
7049                                     int tile_group_id)
7050 {
7051         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7052         struct drm_connector_list_iter conn_iter;
7053         struct drm_connector *connector;
7054         int ret = 0;
7055
7056         drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
7057         drm_for_each_connector_iter(connector, &conn_iter) {
7058                 struct drm_connector_state *conn_state;
7059                 struct intel_crtc_state *crtc_state;
7060                 struct intel_crtc *crtc;
7061
7062                 if (!connector->has_tile ||
7063                     connector->tile_group->id != tile_group_id)
7064                         continue;
7065
7066                 conn_state = drm_atomic_get_connector_state(&state->base,
7067                                                             connector);
7068                 if (IS_ERR(conn_state)) {
7069                         ret = PTR_ERR(conn_state);
7070                         break;
7071                 }
7072
7073                 crtc = to_intel_crtc(conn_state->crtc);
7074
7075                 if (!crtc)
7076                         continue;
7077
7078                 crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
7079                 crtc_state->uapi.mode_changed = true;
7080
7081                 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
7082                 if (ret)
7083                         break;
7084         }
7085         drm_connector_list_iter_end(&conn_iter);
7086
7087         return ret;
7088 }
7089
7090 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
7091 {
7092         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7093         struct intel_crtc *crtc;
7094
7095         if (transcoders == 0)
7096                 return 0;
7097
7098         for_each_intel_crtc(&dev_priv->drm, crtc) {
7099                 struct intel_crtc_state *crtc_state;
7100                 int ret;
7101
7102                 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
7103                 if (IS_ERR(crtc_state))
7104                         return PTR_ERR(crtc_state);
7105
7106                 if (!crtc_state->hw.enable)
7107                         continue;
7108
7109                 if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
7110                         continue;
7111
7112                 crtc_state->uapi.mode_changed = true;
7113
7114                 ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
7115                 if (ret)
7116                         return ret;
7117
7118                 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
7119                 if (ret)
7120                         return ret;
7121
7122                 transcoders &= ~BIT(crtc_state->cpu_transcoder);
7123         }
7124
7125         drm_WARN_ON(&dev_priv->drm, transcoders != 0);
7126
7127         return 0;
7128 }
7129
7130 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
7131                                       struct drm_connector *connector)
7132 {
7133         const struct drm_connector_state *old_conn_state =
7134                 drm_atomic_get_old_connector_state(&state->base, connector);
7135         const struct intel_crtc_state *old_crtc_state;
7136         struct intel_crtc *crtc;
7137         u8 transcoders;
7138
7139         crtc = to_intel_crtc(old_conn_state->crtc);
7140         if (!crtc)
7141                 return 0;
7142
7143         old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
7144
7145         if (!old_crtc_state->hw.active)
7146                 return 0;
7147
7148         transcoders = old_crtc_state->sync_mode_slaves_mask;
7149         if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
7150                 transcoders |= BIT(old_crtc_state->master_transcoder);
7151
7152         return intel_modeset_affected_transcoders(state,
7153                                                   transcoders);
7154 }
7155
7156 static int intel_dp_connector_atomic_check(struct drm_connector *conn,
7157                                            struct drm_atomic_state *_state)
7158 {
7159         struct drm_i915_private *dev_priv = to_i915(conn->dev);
7160         struct intel_atomic_state *state = to_intel_atomic_state(_state);
7161         int ret;
7162
7163         ret = intel_digital_connector_atomic_check(conn, &state->base);
7164         if (ret)
7165                 return ret;
7166
7167         /*
7168          * We don't enable port sync on BDW due to missing w/as and
7169          * due to not having adjusted the modeset sequence appropriately.
7170          */
7171         if (INTEL_GEN(dev_priv) < 9)
7172                 return 0;
7173
7174         if (!intel_connector_needs_modeset(state, conn))
7175                 return 0;
7176
7177         if (conn->has_tile) {
7178                 ret = intel_modeset_tile_group(state, conn->tile_group->id);
7179                 if (ret)
7180                         return ret;
7181         }
7182
7183         return intel_modeset_synced_crtcs(state, conn);
7184 }
7185
7186 static const struct drm_connector_funcs intel_dp_connector_funcs = {
7187         .force = intel_dp_force,
7188         .fill_modes = drm_helper_probe_single_connector_modes,
7189         .atomic_get_property = intel_digital_connector_atomic_get_property,
7190         .atomic_set_property = intel_digital_connector_atomic_set_property,
7191         .late_register = intel_dp_connector_register,
7192         .early_unregister = intel_dp_connector_unregister,
7193         .destroy = intel_connector_destroy,
7194         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
7195         .atomic_duplicate_state = intel_digital_connector_duplicate_state,
7196 };
7197
7198 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
7199         .detect_ctx = intel_dp_detect,
7200         .get_modes = intel_dp_get_modes,
7201         .mode_valid = intel_dp_mode_valid,
7202         .atomic_check = intel_dp_connector_atomic_check,
7203 };
7204
7205 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
7206         .reset = intel_dp_encoder_reset,
7207         .destroy = intel_dp_encoder_destroy,
7208 };
7209
7210 static bool intel_edp_have_power(struct intel_dp *intel_dp)
7211 {
7212         intel_wakeref_t wakeref;
7213         bool have_power = false;
7214
7215         with_pps_lock(intel_dp, wakeref) {
7216                 have_power = edp_have_panel_power(intel_dp) &&
7217                                                   edp_have_panel_vdd(intel_dp);
7218         }
7219
7220         return have_power;
7221 }
7222
7223 enum irqreturn
7224 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
7225 {
7226         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
7227         struct intel_dp *intel_dp = &intel_dig_port->dp;
7228
7229         if (intel_dig_port->base.type == INTEL_OUTPUT_EDP &&
7230             (long_hpd || !intel_edp_have_power(intel_dp))) {
7231                 /*
7232                  * vdd off can generate a long/short pulse on eDP which
7233                  * would require vdd on to handle it, and thus we
7234                  * would end up in an endless cycle of
7235                  * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..."
7236                  */
7237                 drm_dbg_kms(&i915->drm,
7238                             "ignoring %s hpd on eDP [ENCODER:%d:%s]\n",
7239                             long_hpd ? "long" : "short",
7240                             intel_dig_port->base.base.base.id,
7241                             intel_dig_port->base.base.name);
7242                 return IRQ_HANDLED;
7243         }
7244
7245         drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n",
7246                     intel_dig_port->base.base.base.id,
7247                     intel_dig_port->base.base.name,
7248                     long_hpd ? "long" : "short");
7249
7250         if (long_hpd) {
7251                 intel_dp->reset_link_params = true;
7252                 return IRQ_NONE;
7253         }
7254
7255         if (intel_dp->is_mst) {
7256                 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
7257                         /*
7258                          * If we were in MST mode, and device is not
7259                          * there, get out of MST mode
7260                          */
7261                         drm_dbg_kms(&i915->drm,
7262                                     "MST device may have disappeared %d vs %d\n",
7263                                     intel_dp->is_mst,
7264                                     intel_dp->mst_mgr.mst_state);
7265                         intel_dp->is_mst = false;
7266                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7267                                                         intel_dp->is_mst);
7268
7269                         return IRQ_NONE;
7270                 }
7271         }
7272
7273         if (!intel_dp->is_mst) {
7274                 bool handled;
7275
7276                 handled = intel_dp_short_pulse(intel_dp);
7277
7278                 if (!handled)
7279                         return IRQ_NONE;
7280         }
7281
7282         return IRQ_HANDLED;
7283 }
7284
7285 /* check the VBT to see whether the eDP is on another port */
7286 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
7287 {
7288         /*
7289          * eDP not supported on g4x. so bail out early just
7290          * for a bit extra safety in case the VBT is bonkers.
7291          */
7292         if (INTEL_GEN(dev_priv) < 5)
7293                 return false;
7294
7295         if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
7296                 return true;
7297
7298         return intel_bios_is_port_edp(dev_priv, port);
7299 }
7300
7301 static void
7302 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
7303 {
7304         struct drm_i915_private *dev_priv = to_i915(connector->dev);
7305         enum port port = dp_to_dig_port(intel_dp)->base.port;
7306
7307         if (!IS_G4X(dev_priv) && port != PORT_A)
7308                 intel_attach_force_audio_property(connector);
7309
7310         intel_attach_broadcast_rgb_property(connector);
7311         if (HAS_GMCH(dev_priv))
7312                 drm_connector_attach_max_bpc_property(connector, 6, 10);
7313         else if (INTEL_GEN(dev_priv) >= 5)
7314                 drm_connector_attach_max_bpc_property(connector, 6, 12);
7315
7316         intel_attach_colorspace_property(connector);
7317
7318         if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
7319                 drm_object_attach_property(&connector->base,
7320                                            connector->dev->mode_config.hdr_output_metadata_property,
7321                                            0);
7322
7323         if (intel_dp_is_edp(intel_dp)) {
7324                 u32 allowed_scalers;
7325
7326                 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
7327                 if (!HAS_GMCH(dev_priv))
7328                         allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
7329
7330                 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
7331
7332                 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
7333
7334         }
7335 }
7336
7337 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
7338 {
7339         intel_dp->panel_power_off_time = ktime_get_boottime();
7340         intel_dp->last_power_on = jiffies;
7341         intel_dp->last_backlight_off = jiffies;
7342 }
7343
7344 static void
7345 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
7346 {
7347         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7348         u32 pp_on, pp_off, pp_ctl;
7349         struct pps_registers regs;
7350
7351         intel_pps_get_registers(intel_dp, &regs);
7352
7353         pp_ctl = ilk_get_pp_control(intel_dp);
7354
7355         /* Ensure PPS is unlocked */
7356         if (!HAS_DDI(dev_priv))
7357                 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7358
7359         pp_on = intel_de_read(dev_priv, regs.pp_on);
7360         pp_off = intel_de_read(dev_priv, regs.pp_off);
7361
7362         /* Pull timing values out of registers */
7363         seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
7364         seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
7365         seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
7366         seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
7367
7368         if (i915_mmio_reg_valid(regs.pp_div)) {
7369                 u32 pp_div;
7370
7371                 pp_div = intel_de_read(dev_priv, regs.pp_div);
7372
7373                 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
7374         } else {
7375                 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
7376         }
7377 }
7378
7379 static void
7380 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
7381 {
7382         DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
7383                       state_name,
7384                       seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
7385 }
7386
7387 static void
7388 intel_pps_verify_state(struct intel_dp *intel_dp)
7389 {
7390         struct edp_power_seq hw;
7391         struct edp_power_seq *sw = &intel_dp->pps_delays;
7392
7393         intel_pps_readout_hw_state(intel_dp, &hw);
7394
7395         if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
7396             hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
7397                 DRM_ERROR("PPS state mismatch\n");
7398                 intel_pps_dump_state("sw", sw);
7399                 intel_pps_dump_state("hw", &hw);
7400         }
7401 }
7402
7403 static void
7404 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
7405 {
7406         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7407         struct edp_power_seq cur, vbt, spec,
7408                 *final = &intel_dp->pps_delays;
7409
7410         lockdep_assert_held(&dev_priv->pps_mutex);
7411
7412         /* already initialized? */
7413         if (final->t11_t12 != 0)
7414                 return;
7415
7416         intel_pps_readout_hw_state(intel_dp, &cur);
7417
7418         intel_pps_dump_state("cur", &cur);
7419
7420         vbt = dev_priv->vbt.edp.pps;
7421         /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
7422          * of 500ms appears to be too short. Ocassionally the panel
7423          * just fails to power back on. Increasing the delay to 800ms
7424          * seems sufficient to avoid this problem.
7425          */
7426         if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
7427                 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
7428                 drm_dbg_kms(&dev_priv->drm,
7429                             "Increasing T12 panel delay as per the quirk to %d\n",
7430                             vbt.t11_t12);
7431         }
7432         /* T11_T12 delay is special and actually in units of 100ms, but zero
7433          * based in the hw (so we need to add 100 ms). But the sw vbt
7434          * table multiplies it with 1000 to make it in units of 100usec,
7435          * too. */
7436         vbt.t11_t12 += 100 * 10;
7437
7438         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
7439          * our hw here, which are all in 100usec. */
7440         spec.t1_t3 = 210 * 10;
7441         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
7442         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
7443         spec.t10 = 500 * 10;
7444         /* This one is special and actually in units of 100ms, but zero
7445          * based in the hw (so we need to add 100 ms). But the sw vbt
7446          * table multiplies it with 1000 to make it in units of 100usec,
7447          * too. */
7448         spec.t11_t12 = (510 + 100) * 10;
7449
7450         intel_pps_dump_state("vbt", &vbt);
7451
7452         /* Use the max of the register settings and vbt. If both are
7453          * unset, fall back to the spec limits. */
7454 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
7455                                        spec.field : \
7456                                        max(cur.field, vbt.field))
7457         assign_final(t1_t3);
7458         assign_final(t8);
7459         assign_final(t9);
7460         assign_final(t10);
7461         assign_final(t11_t12);
7462 #undef assign_final
7463
7464 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
7465         intel_dp->panel_power_up_delay = get_delay(t1_t3);
7466         intel_dp->backlight_on_delay = get_delay(t8);
7467         intel_dp->backlight_off_delay = get_delay(t9);
7468         intel_dp->panel_power_down_delay = get_delay(t10);
7469         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
7470 #undef get_delay
7471
7472         drm_dbg_kms(&dev_priv->drm,
7473                     "panel power up delay %d, power down delay %d, power cycle delay %d\n",
7474                     intel_dp->panel_power_up_delay,
7475                     intel_dp->panel_power_down_delay,
7476                     intel_dp->panel_power_cycle_delay);
7477
7478         drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
7479                     intel_dp->backlight_on_delay,
7480                     intel_dp->backlight_off_delay);
7481
7482         /*
7483          * We override the HW backlight delays to 1 because we do manual waits
7484          * on them. For T8, even BSpec recommends doing it. For T9, if we
7485          * don't do this, we'll end up waiting for the backlight off delay
7486          * twice: once when we do the manual sleep, and once when we disable
7487          * the panel and wait for the PP_STATUS bit to become zero.
7488          */
7489         final->t8 = 1;
7490         final->t9 = 1;
7491
7492         /*
7493          * HW has only a 100msec granularity for t11_t12 so round it up
7494          * accordingly.
7495          */
7496         final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7497 }
7498
7499 static void
7500 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7501                                               bool force_disable_vdd)
7502 {
7503         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7504         u32 pp_on, pp_off, port_sel = 0;
7505         int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7506         struct pps_registers regs;
7507         enum port port = dp_to_dig_port(intel_dp)->base.port;
7508         const struct edp_power_seq *seq = &intel_dp->pps_delays;
7509
7510         lockdep_assert_held(&dev_priv->pps_mutex);
7511
7512         intel_pps_get_registers(intel_dp, &regs);
7513
7514         /*
7515          * On some VLV machines the BIOS can leave the VDD
7516          * enabled even on power sequencers which aren't
7517          * hooked up to any port. This would mess up the
7518          * power domain tracking the first time we pick
7519          * one of these power sequencers for use since
7520          * edp_panel_vdd_on() would notice that the VDD was
7521          * already on and therefore wouldn't grab the power
7522          * domain reference. Disable VDD first to avoid this.
7523          * This also avoids spuriously turning the VDD on as
7524          * soon as the new power sequencer gets initialized.
7525          */
7526         if (force_disable_vdd) {
7527                 u32 pp = ilk_get_pp_control(intel_dp);
7528
7529                 drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
7530                          "Panel power already on\n");
7531
7532                 if (pp & EDP_FORCE_VDD)
7533                         drm_dbg_kms(&dev_priv->drm,
7534                                     "VDD already on, disabling first\n");
7535
7536                 pp &= ~EDP_FORCE_VDD;
7537
7538                 intel_de_write(dev_priv, regs.pp_ctrl, pp);
7539         }
7540
7541         pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
7542                 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
7543         pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
7544                 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7545
7546         /* Haswell doesn't have any port selection bits for the panel
7547          * power sequencer any more. */
7548         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7549                 port_sel = PANEL_PORT_SELECT_VLV(port);
7550         } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7551                 switch (port) {
7552                 case PORT_A:
7553                         port_sel = PANEL_PORT_SELECT_DPA;
7554                         break;
7555                 case PORT_C:
7556                         port_sel = PANEL_PORT_SELECT_DPC;
7557                         break;
7558                 case PORT_D:
7559                         port_sel = PANEL_PORT_SELECT_DPD;
7560                         break;
7561                 default:
7562                         MISSING_CASE(port);
7563                         break;
7564                 }
7565         }
7566
7567         pp_on |= port_sel;
7568
7569         intel_de_write(dev_priv, regs.pp_on, pp_on);
7570         intel_de_write(dev_priv, regs.pp_off, pp_off);
7571
7572         /*
7573          * Compute the divisor for the pp clock, simply match the Bspec formula.
7574          */
7575         if (i915_mmio_reg_valid(regs.pp_div)) {
7576                 intel_de_write(dev_priv, regs.pp_div,
7577                                REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7578         } else {
7579                 u32 pp_ctl;
7580
7581                 pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7582                 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7583                 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7584                 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7585         }
7586
7587         drm_dbg_kms(&dev_priv->drm,
7588                     "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7589                     intel_de_read(dev_priv, regs.pp_on),
7590                     intel_de_read(dev_priv, regs.pp_off),
7591                     i915_mmio_reg_valid(regs.pp_div) ?
7592                     intel_de_read(dev_priv, regs.pp_div) :
7593                     (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7594 }
7595
7596 static void intel_dp_pps_init(struct intel_dp *intel_dp)
7597 {
7598         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7599
7600         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7601                 vlv_initial_power_sequencer_setup(intel_dp);
7602         } else {
7603                 intel_dp_init_panel_power_sequencer(intel_dp);
7604                 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7605         }
7606 }
7607
7608 /**
7609  * intel_dp_set_drrs_state - program registers for RR switch to take effect
7610  * @dev_priv: i915 device
7611  * @crtc_state: a pointer to the active intel_crtc_state
7612  * @refresh_rate: RR to be programmed
7613  *
7614  * This function gets called when refresh rate (RR) has to be changed from
7615  * one frequency to another. Switches can be between high and low RR
7616  * supported by the panel or to any other RR based on media playback (in
7617  * this case, RR value needs to be passed from user space).
7618  *
7619  * The caller of this function needs to take a lock on dev_priv->drrs.
7620  */
7621 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7622                                     const struct intel_crtc_state *crtc_state,
7623                                     int refresh_rate)
7624 {
7625         struct intel_dp *intel_dp = dev_priv->drrs.dp;
7626         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7627         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7628
7629         if (refresh_rate <= 0) {
7630                 drm_dbg_kms(&dev_priv->drm,
7631                             "Refresh rate should be positive non-zero.\n");
7632                 return;
7633         }
7634
7635         if (intel_dp == NULL) {
7636                 drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7637                 return;
7638         }
7639
7640         if (!intel_crtc) {
7641                 drm_dbg_kms(&dev_priv->drm,
7642                             "DRRS: intel_crtc not initialized\n");
7643                 return;
7644         }
7645
7646         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7647                 drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7648                 return;
7649         }
7650
7651         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
7652                         refresh_rate)
7653                 index = DRRS_LOW_RR;
7654
7655         if (index == dev_priv->drrs.refresh_rate_type) {
7656                 drm_dbg_kms(&dev_priv->drm,
7657                             "DRRS requested for previously set RR...ignoring\n");
7658                 return;
7659         }
7660
7661         if (!crtc_state->hw.active) {
7662                 drm_dbg_kms(&dev_priv->drm,
7663                             "eDP encoder disabled. CRTC not Active\n");
7664                 return;
7665         }
7666
7667         if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7668                 switch (index) {
7669                 case DRRS_HIGH_RR:
7670                         intel_dp_set_m_n(crtc_state, M1_N1);
7671                         break;
7672                 case DRRS_LOW_RR:
7673                         intel_dp_set_m_n(crtc_state, M2_N2);
7674                         break;
7675                 case DRRS_MAX_RR:
7676                 default:
7677                         drm_err(&dev_priv->drm,
7678                                 "Unsupported refreshrate type\n");
7679                 }
7680         } else if (INTEL_GEN(dev_priv) > 6) {
7681                 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7682                 u32 val;
7683
7684                 val = intel_de_read(dev_priv, reg);
7685                 if (index > DRRS_HIGH_RR) {
7686                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7687                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7688                         else
7689                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
7690                 } else {
7691                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7692                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7693                         else
7694                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7695                 }
7696                 intel_de_write(dev_priv, reg, val);
7697         }
7698
7699         dev_priv->drrs.refresh_rate_type = index;
7700
7701         drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
7702                     refresh_rate);
7703 }
7704
7705 /**
7706  * intel_edp_drrs_enable - init drrs struct if supported
7707  * @intel_dp: DP struct
7708  * @crtc_state: A pointer to the active crtc state.
7709  *
7710  * Initializes frontbuffer_bits and drrs.dp
7711  */
7712 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7713                            const struct intel_crtc_state *crtc_state)
7714 {
7715         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7716
7717         if (!crtc_state->has_drrs) {
7718                 drm_dbg_kms(&dev_priv->drm, "Panel doesn't support DRRS\n");
7719                 return;
7720         }
7721
7722         if (dev_priv->psr.enabled) {
7723                 drm_dbg_kms(&dev_priv->drm,
7724                             "PSR enabled. Not enabling DRRS.\n");
7725                 return;
7726         }
7727
7728         mutex_lock(&dev_priv->drrs.mutex);
7729         if (dev_priv->drrs.dp) {
7730                 drm_dbg_kms(&dev_priv->drm, "DRRS already enabled\n");
7731                 goto unlock;
7732         }
7733
7734         dev_priv->drrs.busy_frontbuffer_bits = 0;
7735
7736         dev_priv->drrs.dp = intel_dp;
7737
7738 unlock:
7739         mutex_unlock(&dev_priv->drrs.mutex);
7740 }
7741
7742 /**
7743  * intel_edp_drrs_disable - Disable DRRS
7744  * @intel_dp: DP struct
7745  * @old_crtc_state: Pointer to old crtc_state.
7746  *
7747  */
7748 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7749                             const struct intel_crtc_state *old_crtc_state)
7750 {
7751         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7752
7753         if (!old_crtc_state->has_drrs)
7754                 return;
7755
7756         mutex_lock(&dev_priv->drrs.mutex);
7757         if (!dev_priv->drrs.dp) {
7758                 mutex_unlock(&dev_priv->drrs.mutex);
7759                 return;
7760         }
7761
7762         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7763                 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
7764                         intel_dp->attached_connector->panel.fixed_mode->vrefresh);
7765
7766         dev_priv->drrs.dp = NULL;
7767         mutex_unlock(&dev_priv->drrs.mutex);
7768
7769         cancel_delayed_work_sync(&dev_priv->drrs.work);
7770 }
7771
7772 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7773 {
7774         struct drm_i915_private *dev_priv =
7775                 container_of(work, typeof(*dev_priv), drrs.work.work);
7776         struct intel_dp *intel_dp;
7777
7778         mutex_lock(&dev_priv->drrs.mutex);
7779
7780         intel_dp = dev_priv->drrs.dp;
7781
7782         if (!intel_dp)
7783                 goto unlock;
7784
7785         /*
7786          * The delayed work can race with an invalidate hence we need to
7787          * recheck.
7788          */
7789
7790         if (dev_priv->drrs.busy_frontbuffer_bits)
7791                 goto unlock;
7792
7793         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7794                 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7795
7796                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7797                         intel_dp->attached_connector->panel.downclock_mode->vrefresh);
7798         }
7799
7800 unlock:
7801         mutex_unlock(&dev_priv->drrs.mutex);
7802 }
7803
7804 /**
7805  * intel_edp_drrs_invalidate - Disable Idleness DRRS
7806  * @dev_priv: i915 device
7807  * @frontbuffer_bits: frontbuffer plane tracking bits
7808  *
7809  * This function gets called everytime rendering on the given planes start.
7810  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7811  *
7812  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7813  */
7814 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7815                                unsigned int frontbuffer_bits)
7816 {
7817         struct drm_crtc *crtc;
7818         enum pipe pipe;
7819
7820         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7821                 return;
7822
7823         cancel_delayed_work(&dev_priv->drrs.work);
7824
7825         mutex_lock(&dev_priv->drrs.mutex);
7826         if (!dev_priv->drrs.dp) {
7827                 mutex_unlock(&dev_priv->drrs.mutex);
7828                 return;
7829         }
7830
7831         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7832         pipe = to_intel_crtc(crtc)->pipe;
7833
7834         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7835         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7836
7837         /* invalidate means busy screen hence upclock */
7838         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7839                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7840                         dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7841
7842         mutex_unlock(&dev_priv->drrs.mutex);
7843 }
7844
7845 /**
7846  * intel_edp_drrs_flush - Restart Idleness DRRS
7847  * @dev_priv: i915 device
7848  * @frontbuffer_bits: frontbuffer plane tracking bits
7849  *
7850  * This function gets called every time rendering on the given planes has
7851  * completed or flip on a crtc is completed. So DRRS should be upclocked
7852  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7853  * if no other planes are dirty.
7854  *
7855  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7856  */
7857 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7858                           unsigned int frontbuffer_bits)
7859 {
7860         struct drm_crtc *crtc;
7861         enum pipe pipe;
7862
7863         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7864                 return;
7865
7866         cancel_delayed_work(&dev_priv->drrs.work);
7867
7868         mutex_lock(&dev_priv->drrs.mutex);
7869         if (!dev_priv->drrs.dp) {
7870                 mutex_unlock(&dev_priv->drrs.mutex);
7871                 return;
7872         }
7873
7874         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7875         pipe = to_intel_crtc(crtc)->pipe;
7876
7877         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7878         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7879
7880         /* flush means busy screen hence upclock */
7881         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7882                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7883                                 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7884
7885         /*
7886          * flush also means no more activity hence schedule downclock, if all
7887          * other fbs are quiescent too
7888          */
7889         if (!dev_priv->drrs.busy_frontbuffer_bits)
7890                 schedule_delayed_work(&dev_priv->drrs.work,
7891                                 msecs_to_jiffies(1000));
7892         mutex_unlock(&dev_priv->drrs.mutex);
7893 }
7894
7895 /**
7896  * DOC: Display Refresh Rate Switching (DRRS)
7897  *
7898  * Display Refresh Rate Switching (DRRS) is a power conservation feature
7899  * which enables swtching between low and high refresh rates,
7900  * dynamically, based on the usage scenario. This feature is applicable
7901  * for internal panels.
7902  *
7903  * Indication that the panel supports DRRS is given by the panel EDID, which
7904  * would list multiple refresh rates for one resolution.
7905  *
7906  * DRRS is of 2 types - static and seamless.
7907  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7908  * (may appear as a blink on screen) and is used in dock-undock scenario.
7909  * Seamless DRRS involves changing RR without any visual effect to the user
7910  * and can be used during normal system usage. This is done by programming
7911  * certain registers.
7912  *
7913  * Support for static/seamless DRRS may be indicated in the VBT based on
7914  * inputs from the panel spec.
7915  *
7916  * DRRS saves power by switching to low RR based on usage scenarios.
7917  *
7918  * The implementation is based on frontbuffer tracking implementation.  When
7919  * there is a disturbance on the screen triggered by user activity or a periodic
7920  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
7921  * no movement on screen, after a timeout of 1 second, a switch to low RR is
7922  * made.
7923  *
7924  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7925  * and intel_edp_drrs_flush() are called.
7926  *
7927  * DRRS can be further extended to support other internal panels and also
7928  * the scenario of video playback wherein RR is set based on the rate
7929  * requested by userspace.
7930  */
7931
7932 /**
7933  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7934  * @connector: eDP connector
7935  * @fixed_mode: preferred mode of panel
7936  *
7937  * This function is  called only once at driver load to initialize basic
7938  * DRRS stuff.
7939  *
7940  * Returns:
7941  * Downclock mode if panel supports it, else return NULL.
7942  * DRRS support is determined by the presence of downclock mode (apart
7943  * from VBT setting).
7944  */
7945 static struct drm_display_mode *
7946 intel_dp_drrs_init(struct intel_connector *connector,
7947                    struct drm_display_mode *fixed_mode)
7948 {
7949         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7950         struct drm_display_mode *downclock_mode = NULL;
7951
7952         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7953         mutex_init(&dev_priv->drrs.mutex);
7954
7955         if (INTEL_GEN(dev_priv) <= 6) {
7956                 drm_dbg_kms(&dev_priv->drm,
7957                             "DRRS supported for Gen7 and above\n");
7958                 return NULL;
7959         }
7960
7961         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7962                 drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
7963                 return NULL;
7964         }
7965
7966         downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7967         if (!downclock_mode) {
7968                 drm_dbg_kms(&dev_priv->drm,
7969                             "Downclock mode is not found. DRRS not supported\n");
7970                 return NULL;
7971         }
7972
7973         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7974
7975         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7976         drm_dbg_kms(&dev_priv->drm,
7977                     "seamless DRRS supported for eDP panel.\n");
7978         return downclock_mode;
7979 }
7980
7981 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7982                                      struct intel_connector *intel_connector)
7983 {
7984         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7985         struct drm_device *dev = &dev_priv->drm;
7986         struct drm_connector *connector = &intel_connector->base;
7987         struct drm_display_mode *fixed_mode = NULL;
7988         struct drm_display_mode *downclock_mode = NULL;
7989         bool has_dpcd;
7990         enum pipe pipe = INVALID_PIPE;
7991         intel_wakeref_t wakeref;
7992         struct edid *edid;
7993
7994         if (!intel_dp_is_edp(intel_dp))
7995                 return true;
7996
7997         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7998
7999         /*
8000          * On IBX/CPT we may get here with LVDS already registered. Since the
8001          * driver uses the only internal power sequencer available for both
8002          * eDP and LVDS bail out early in this case to prevent interfering
8003          * with an already powered-on LVDS power sequencer.
8004          */
8005         if (intel_get_lvds_encoder(dev_priv)) {
8006                 drm_WARN_ON(dev,
8007                             !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
8008                 drm_info(&dev_priv->drm,
8009                          "LVDS was detected, not registering eDP\n");
8010
8011                 return false;
8012         }
8013
8014         with_pps_lock(intel_dp, wakeref) {
8015                 intel_dp_init_panel_power_timestamps(intel_dp);
8016                 intel_dp_pps_init(intel_dp);
8017                 intel_edp_panel_vdd_sanitize(intel_dp);
8018         }
8019
8020         /* Cache DPCD and EDID for edp. */
8021         has_dpcd = intel_edp_init_dpcd(intel_dp);
8022
8023         if (!has_dpcd) {
8024                 /* if this fails, presume the device is a ghost */
8025                 drm_info(&dev_priv->drm,
8026                          "failed to retrieve link info, disabling eDP\n");
8027                 goto out_vdd_off;
8028         }
8029
8030         mutex_lock(&dev->mode_config.mutex);
8031         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
8032         if (edid) {
8033                 if (drm_add_edid_modes(connector, edid)) {
8034                         drm_connector_update_edid_property(connector, edid);
8035                         intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
8036                 } else {
8037                         kfree(edid);
8038                         edid = ERR_PTR(-EINVAL);
8039                 }
8040         } else {
8041                 edid = ERR_PTR(-ENOENT);
8042         }
8043         intel_connector->edid = edid;
8044
8045         fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
8046         if (fixed_mode)
8047                 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
8048
8049         /* fallback to VBT if available for eDP */
8050         if (!fixed_mode)
8051                 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
8052         mutex_unlock(&dev->mode_config.mutex);
8053
8054         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8055                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
8056                 register_reboot_notifier(&intel_dp->edp_notifier);
8057
8058                 /*
8059                  * Figure out the current pipe for the initial backlight setup.
8060                  * If the current pipe isn't valid, try the PPS pipe, and if that
8061                  * fails just assume pipe A.
8062                  */
8063                 pipe = vlv_active_pipe(intel_dp);
8064
8065                 if (pipe != PIPE_A && pipe != PIPE_B)
8066                         pipe = intel_dp->pps_pipe;
8067
8068                 if (pipe != PIPE_A && pipe != PIPE_B)
8069                         pipe = PIPE_A;
8070
8071                 drm_dbg_kms(&dev_priv->drm,
8072                             "using pipe %c for initial backlight setup\n",
8073                             pipe_name(pipe));
8074         }
8075
8076         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
8077         intel_connector->panel.backlight.power = intel_edp_backlight_power;
8078         intel_panel_setup_backlight(connector, pipe);
8079
8080         if (fixed_mode) {
8081                 drm_connector_set_panel_orientation_with_quirk(connector,
8082                                 dev_priv->vbt.orientation,
8083                                 fixed_mode->hdisplay, fixed_mode->vdisplay);
8084         }
8085
8086         return true;
8087
8088 out_vdd_off:
8089         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
8090         /*
8091          * vdd might still be enabled do to the delayed vdd off.
8092          * Make sure vdd is actually turned off here.
8093          */
8094         with_pps_lock(intel_dp, wakeref)
8095                 edp_panel_vdd_off_sync(intel_dp);
8096
8097         return false;
8098 }
8099
8100 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
8101 {
8102         struct intel_connector *intel_connector;
8103         struct drm_connector *connector;
8104
8105         intel_connector = container_of(work, typeof(*intel_connector),
8106                                        modeset_retry_work);
8107         connector = &intel_connector->base;
8108         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
8109                       connector->name);
8110
8111         /* Grab the locks before changing connector property*/
8112         mutex_lock(&connector->dev->mode_config.mutex);
8113         /* Set connector link status to BAD and send a Uevent to notify
8114          * userspace to do a modeset.
8115          */
8116         drm_connector_set_link_status_property(connector,
8117                                                DRM_MODE_LINK_STATUS_BAD);
8118         mutex_unlock(&connector->dev->mode_config.mutex);
8119         /* Send Hotplug uevent so userspace can reprobe */
8120         drm_kms_helper_hotplug_event(connector->dev);
8121 }
8122
8123 bool
8124 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
8125                         struct intel_connector *intel_connector)
8126 {
8127         struct drm_connector *connector = &intel_connector->base;
8128         struct intel_dp *intel_dp = &intel_dig_port->dp;
8129         struct intel_encoder *intel_encoder = &intel_dig_port->base;
8130         struct drm_device *dev = intel_encoder->base.dev;
8131         struct drm_i915_private *dev_priv = to_i915(dev);
8132         enum port port = intel_encoder->port;
8133         enum phy phy = intel_port_to_phy(dev_priv, port);
8134         int type;
8135
8136         /* Initialize the work for modeset in case of link train failure */
8137         INIT_WORK(&intel_connector->modeset_retry_work,
8138                   intel_dp_modeset_retry_work_fn);
8139
8140         if (drm_WARN(dev, intel_dig_port->max_lanes < 1,
8141                      "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
8142                      intel_dig_port->max_lanes, intel_encoder->base.base.id,
8143                      intel_encoder->base.name))
8144                 return false;
8145
8146         intel_dp_set_source_rates(intel_dp);
8147
8148         intel_dp->reset_link_params = true;
8149         intel_dp->pps_pipe = INVALID_PIPE;
8150         intel_dp->active_pipe = INVALID_PIPE;
8151
8152         /* Preserve the current hw state. */
8153         intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
8154         intel_dp->attached_connector = intel_connector;
8155
8156         if (intel_dp_is_port_edp(dev_priv, port)) {
8157                 /*
8158                  * Currently we don't support eDP on TypeC ports, although in
8159                  * theory it could work on TypeC legacy ports.
8160                  */
8161                 drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
8162                 type = DRM_MODE_CONNECTOR_eDP;
8163         } else {
8164                 type = DRM_MODE_CONNECTOR_DisplayPort;
8165         }
8166
8167         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
8168                 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
8169
8170         /*
8171          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
8172          * for DP the encoder type can be set by the caller to
8173          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
8174          */
8175         if (type == DRM_MODE_CONNECTOR_eDP)
8176                 intel_encoder->type = INTEL_OUTPUT_EDP;
8177
8178         /* eDP only on port B and/or C on vlv/chv */
8179         if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
8180                               IS_CHERRYVIEW(dev_priv)) &&
8181                         intel_dp_is_edp(intel_dp) &&
8182                         port != PORT_B && port != PORT_C))
8183                 return false;
8184
8185         drm_dbg_kms(&dev_priv->drm,
8186                     "Adding %s connector on [ENCODER:%d:%s]\n",
8187                     type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
8188                     intel_encoder->base.base.id, intel_encoder->base.name);
8189
8190         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
8191         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
8192
8193         if (!HAS_GMCH(dev_priv))
8194                 connector->interlace_allowed = true;
8195         connector->doublescan_allowed = 0;
8196
8197         if (INTEL_GEN(dev_priv) >= 11)
8198                 connector->ycbcr_420_allowed = true;
8199
8200         intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
8201         intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
8202
8203         intel_dp_aux_init(intel_dp);
8204
8205         intel_connector_attach_encoder(intel_connector, intel_encoder);
8206
8207         if (HAS_DDI(dev_priv))
8208                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
8209         else
8210                 intel_connector->get_hw_state = intel_connector_get_hw_state;
8211
8212         /* init MST on ports that can support it */
8213         intel_dp_mst_encoder_init(intel_dig_port,
8214                                   intel_connector->base.base.id);
8215
8216         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
8217                 intel_dp_aux_fini(intel_dp);
8218                 intel_dp_mst_encoder_cleanup(intel_dig_port);
8219                 goto fail;
8220         }
8221
8222         intel_dp_add_properties(intel_dp, connector);
8223
8224         if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
8225                 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
8226                 if (ret)
8227                         drm_dbg_kms(&dev_priv->drm,
8228                                     "HDCP init failed, skipping.\n");
8229         }
8230
8231         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
8232          * 0xd.  Failure to do so will result in spurious interrupts being
8233          * generated on the port when a cable is not attached.
8234          */
8235         if (IS_G45(dev_priv)) {
8236                 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
8237                 intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
8238                                (temp & ~0xf) | 0xd);
8239         }
8240
8241         return true;
8242
8243 fail:
8244         drm_connector_cleanup(connector);
8245
8246         return false;
8247 }
8248
8249 bool intel_dp_init(struct drm_i915_private *dev_priv,
8250                    i915_reg_t output_reg,
8251                    enum port port)
8252 {
8253         struct intel_digital_port *intel_dig_port;
8254         struct intel_encoder *intel_encoder;
8255         struct drm_encoder *encoder;
8256         struct intel_connector *intel_connector;
8257
8258         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
8259         if (!intel_dig_port)
8260                 return false;
8261
8262         intel_connector = intel_connector_alloc();
8263         if (!intel_connector)
8264                 goto err_connector_alloc;
8265
8266         intel_encoder = &intel_dig_port->base;
8267         encoder = &intel_encoder->base;
8268
8269         if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
8270                              &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
8271                              "DP %c", port_name(port)))
8272                 goto err_encoder_init;
8273
8274         intel_encoder->hotplug = intel_dp_hotplug;
8275         intel_encoder->compute_config = intel_dp_compute_config;
8276         intel_encoder->get_hw_state = intel_dp_get_hw_state;
8277         intel_encoder->get_config = intel_dp_get_config;
8278         intel_encoder->update_pipe = intel_panel_update_backlight;
8279         intel_encoder->suspend = intel_dp_encoder_suspend;
8280         if (IS_CHERRYVIEW(dev_priv)) {
8281                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
8282                 intel_encoder->pre_enable = chv_pre_enable_dp;
8283                 intel_encoder->enable = vlv_enable_dp;
8284                 intel_encoder->disable = vlv_disable_dp;
8285                 intel_encoder->post_disable = chv_post_disable_dp;
8286                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
8287         } else if (IS_VALLEYVIEW(dev_priv)) {
8288                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
8289                 intel_encoder->pre_enable = vlv_pre_enable_dp;
8290                 intel_encoder->enable = vlv_enable_dp;
8291                 intel_encoder->disable = vlv_disable_dp;
8292                 intel_encoder->post_disable = vlv_post_disable_dp;
8293         } else {
8294                 intel_encoder->pre_enable = g4x_pre_enable_dp;
8295                 intel_encoder->enable = g4x_enable_dp;
8296                 intel_encoder->disable = g4x_disable_dp;
8297                 intel_encoder->post_disable = g4x_post_disable_dp;
8298         }
8299
8300         intel_dig_port->dp.output_reg = output_reg;
8301         intel_dig_port->max_lanes = 4;
8302
8303         intel_encoder->type = INTEL_OUTPUT_DP;
8304         intel_encoder->power_domain = intel_port_to_power_domain(port);
8305         if (IS_CHERRYVIEW(dev_priv)) {
8306                 if (port == PORT_D)
8307                         intel_encoder->pipe_mask = BIT(PIPE_C);
8308                 else
8309                         intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
8310         } else {
8311                 intel_encoder->pipe_mask = ~0;
8312         }
8313         intel_encoder->cloneable = 0;
8314         intel_encoder->port = port;
8315
8316         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
8317
8318         if (port != PORT_A)
8319                 intel_infoframe_init(intel_dig_port);
8320
8321         intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
8322         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
8323                 goto err_init_connector;
8324
8325         return true;
8326
8327 err_init_connector:
8328         drm_encoder_cleanup(encoder);
8329 err_encoder_init:
8330         kfree(intel_connector);
8331 err_connector_alloc:
8332         kfree(intel_dig_port);
8333         return false;
8334 }
8335
8336 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
8337 {
8338         struct intel_encoder *encoder;
8339
8340         for_each_intel_encoder(&dev_priv->drm, encoder) {
8341                 struct intel_dp *intel_dp;
8342
8343                 if (encoder->type != INTEL_OUTPUT_DDI)
8344                         continue;
8345
8346                 intel_dp = enc_to_intel_dp(encoder);
8347
8348                 if (!intel_dp->can_mst)
8349                         continue;
8350
8351                 if (intel_dp->is_mst)
8352                         drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
8353         }
8354 }
8355
8356 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
8357 {
8358         struct intel_encoder *encoder;
8359
8360         for_each_intel_encoder(&dev_priv->drm, encoder) {
8361                 struct intel_dp *intel_dp;
8362                 int ret;
8363
8364                 if (encoder->type != INTEL_OUTPUT_DDI)
8365                         continue;
8366
8367                 intel_dp = enc_to_intel_dp(encoder);
8368
8369                 if (!intel_dp->can_mst)
8370                         continue;
8371
8372                 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
8373                                                      true);
8374                 if (ret) {
8375                         intel_dp->is_mst = false;
8376                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
8377                                                         false);
8378                 }
8379         }
8380 }