f8eb6f69be05757b54e359c5e8a9e72a0dccb177
[linux-2.6-block.git] / drivers / gpu / drm / i2c / tda998x_drv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Texas Instruments
4  * Author: Rob Clark <robdclark@gmail.com>
5  */
6
7 #include <linux/component.h>
8 #include <linux/gpio/consumer.h>
9 #include <linux/hdmi.h>
10 #include <linux/i2c.h>
11 #include <linux/module.h>
12 #include <linux/platform_data/tda9950.h>
13 #include <linux/irq.h>
14 #include <sound/asoundef.h>
15 #include <sound/hdmi-codec.h>
16
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_bridge.h>
19 #include <drm/drm_edid.h>
20 #include <drm/drm_of.h>
21 #include <drm/drm_print.h>
22 #include <drm/drm_probe_helper.h>
23 #include <drm/drm_simple_kms_helper.h>
24 #include <drm/i2c/tda998x.h>
25
26 #include <media/cec-notifier.h>
27
28 #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__)
29
30 enum {
31         AUDIO_ROUTE_I2S,
32         AUDIO_ROUTE_SPDIF,
33         AUDIO_ROUTE_NUM
34 };
35
36 struct tda998x_audio_route {
37         u8 ena_aclk;
38         u8 mux_ap;
39         u8 aip_clksel;
40 };
41
42 struct tda998x_audio_settings {
43         const struct tda998x_audio_route *route;
44         struct hdmi_audio_infoframe cea;
45         unsigned int sample_rate;
46         u8 status[5];
47         u8 ena_ap;
48         u8 i2s_format;
49         u8 cts_n;
50 };
51
52 struct tda998x_priv {
53         struct i2c_client *cec;
54         struct i2c_client *hdmi;
55         struct mutex mutex;
56         u16 rev;
57         u8 cec_addr;
58         u8 current_page;
59         bool is_on;
60         bool supports_infoframes;
61         bool sink_has_audio;
62         enum hdmi_quantization_range rgb_quant_range;
63         u8 vip_cntrl_0;
64         u8 vip_cntrl_1;
65         u8 vip_cntrl_2;
66         unsigned long tmds_clock;
67         struct tda998x_audio_settings audio;
68
69         struct platform_device *audio_pdev;
70         struct mutex audio_mutex;
71
72         struct mutex edid_mutex;
73         wait_queue_head_t wq_edid;
74         volatile int wq_edid_wait;
75
76         struct work_struct detect_work;
77         struct timer_list edid_delay_timer;
78         wait_queue_head_t edid_delay_waitq;
79         bool edid_delay_active;
80
81         struct drm_encoder encoder;
82         struct drm_bridge bridge;
83         struct drm_connector connector;
84
85         u8 audio_port_enable[AUDIO_ROUTE_NUM];
86         struct tda9950_glue cec_glue;
87         struct gpio_desc *calib;
88         struct cec_notifier *cec_notify;
89 };
90
91 #define conn_to_tda998x_priv(x) \
92         container_of(x, struct tda998x_priv, connector)
93 #define enc_to_tda998x_priv(x) \
94         container_of(x, struct tda998x_priv, encoder)
95 #define bridge_to_tda998x_priv(x) \
96         container_of(x, struct tda998x_priv, bridge)
97
98 /* The TDA9988 series of devices use a paged register scheme.. to simplify
99  * things we encode the page # in upper bits of the register #.  To read/
100  * write a given register, we need to make sure CURPAGE register is set
101  * appropriately.  Which implies reads/writes are not atomic.  Fun!
102  */
103
104 #define REG(page, addr) (((page) << 8) | (addr))
105 #define REG2ADDR(reg)   ((reg) & 0xff)
106 #define REG2PAGE(reg)   (((reg) >> 8) & 0xff)
107
108 #define REG_CURPAGE               0xff                /* write */
109
110
111 /* Page 00h: General Control */
112 #define REG_VERSION_LSB           REG(0x00, 0x00)     /* read */
113 #define REG_MAIN_CNTRL0           REG(0x00, 0x01)     /* read/write */
114 # define MAIN_CNTRL0_SR           (1 << 0)
115 # define MAIN_CNTRL0_DECS         (1 << 1)
116 # define MAIN_CNTRL0_DEHS         (1 << 2)
117 # define MAIN_CNTRL0_CECS         (1 << 3)
118 # define MAIN_CNTRL0_CEHS         (1 << 4)
119 # define MAIN_CNTRL0_SCALER       (1 << 7)
120 #define REG_VERSION_MSB           REG(0x00, 0x02)     /* read */
121 #define REG_SOFTRESET             REG(0x00, 0x0a)     /* write */
122 # define SOFTRESET_AUDIO          (1 << 0)
123 # define SOFTRESET_I2C_MASTER     (1 << 1)
124 #define REG_DDC_DISABLE           REG(0x00, 0x0b)     /* read/write */
125 #define REG_CCLK_ON               REG(0x00, 0x0c)     /* read/write */
126 #define REG_I2C_MASTER            REG(0x00, 0x0d)     /* read/write */
127 # define I2C_MASTER_DIS_MM        (1 << 0)
128 # define I2C_MASTER_DIS_FILT      (1 << 1)
129 # define I2C_MASTER_APP_STRT_LAT  (1 << 2)
130 #define REG_FEAT_POWERDOWN        REG(0x00, 0x0e)     /* read/write */
131 # define FEAT_POWERDOWN_PREFILT   BIT(0)
132 # define FEAT_POWERDOWN_CSC       BIT(1)
133 # define FEAT_POWERDOWN_SPDIF     (1 << 3)
134 #define REG_INT_FLAGS_0           REG(0x00, 0x0f)     /* read/write */
135 #define REG_INT_FLAGS_1           REG(0x00, 0x10)     /* read/write */
136 #define REG_INT_FLAGS_2           REG(0x00, 0x11)     /* read/write */
137 # define INT_FLAGS_2_EDID_BLK_RD  (1 << 1)
138 #define REG_ENA_ACLK              REG(0x00, 0x16)     /* read/write */
139 #define REG_ENA_VP_0              REG(0x00, 0x18)     /* read/write */
140 #define REG_ENA_VP_1              REG(0x00, 0x19)     /* read/write */
141 #define REG_ENA_VP_2              REG(0x00, 0x1a)     /* read/write */
142 #define REG_ENA_AP                REG(0x00, 0x1e)     /* read/write */
143 #define REG_VIP_CNTRL_0           REG(0x00, 0x20)     /* write */
144 # define VIP_CNTRL_0_MIRR_A       (1 << 7)
145 # define VIP_CNTRL_0_SWAP_A(x)    (((x) & 7) << 4)
146 # define VIP_CNTRL_0_MIRR_B       (1 << 3)
147 # define VIP_CNTRL_0_SWAP_B(x)    (((x) & 7) << 0)
148 #define REG_VIP_CNTRL_1           REG(0x00, 0x21)     /* write */
149 # define VIP_CNTRL_1_MIRR_C       (1 << 7)
150 # define VIP_CNTRL_1_SWAP_C(x)    (((x) & 7) << 4)
151 # define VIP_CNTRL_1_MIRR_D       (1 << 3)
152 # define VIP_CNTRL_1_SWAP_D(x)    (((x) & 7) << 0)
153 #define REG_VIP_CNTRL_2           REG(0x00, 0x22)     /* write */
154 # define VIP_CNTRL_2_MIRR_E       (1 << 7)
155 # define VIP_CNTRL_2_SWAP_E(x)    (((x) & 7) << 4)
156 # define VIP_CNTRL_2_MIRR_F       (1 << 3)
157 # define VIP_CNTRL_2_SWAP_F(x)    (((x) & 7) << 0)
158 #define REG_VIP_CNTRL_3           REG(0x00, 0x23)     /* write */
159 # define VIP_CNTRL_3_X_TGL        (1 << 0)
160 # define VIP_CNTRL_3_H_TGL        (1 << 1)
161 # define VIP_CNTRL_3_V_TGL        (1 << 2)
162 # define VIP_CNTRL_3_EMB          (1 << 3)
163 # define VIP_CNTRL_3_SYNC_DE      (1 << 4)
164 # define VIP_CNTRL_3_SYNC_HS      (1 << 5)
165 # define VIP_CNTRL_3_DE_INT       (1 << 6)
166 # define VIP_CNTRL_3_EDGE         (1 << 7)
167 #define REG_VIP_CNTRL_4           REG(0x00, 0x24)     /* write */
168 # define VIP_CNTRL_4_BLC(x)       (((x) & 3) << 0)
169 # define VIP_CNTRL_4_BLANKIT(x)   (((x) & 3) << 2)
170 # define VIP_CNTRL_4_CCIR656      (1 << 4)
171 # define VIP_CNTRL_4_656_ALT      (1 << 5)
172 # define VIP_CNTRL_4_TST_656      (1 << 6)
173 # define VIP_CNTRL_4_TST_PAT      (1 << 7)
174 #define REG_VIP_CNTRL_5           REG(0x00, 0x25)     /* write */
175 # define VIP_CNTRL_5_CKCASE       (1 << 0)
176 # define VIP_CNTRL_5_SP_CNT(x)    (((x) & 3) << 1)
177 #define REG_MUX_AP                REG(0x00, 0x26)     /* read/write */
178 # define MUX_AP_SELECT_I2S        0x64
179 # define MUX_AP_SELECT_SPDIF      0x40
180 #define REG_MUX_VP_VIP_OUT        REG(0x00, 0x27)     /* read/write */
181 #define REG_MAT_CONTRL            REG(0x00, 0x80)     /* write */
182 # define MAT_CONTRL_MAT_SC(x)     (((x) & 3) << 0)
183 # define MAT_CONTRL_MAT_BP        (1 << 2)
184 #define REG_VIDFORMAT             REG(0x00, 0xa0)     /* write */
185 #define REG_REFPIX_MSB            REG(0x00, 0xa1)     /* write */
186 #define REG_REFPIX_LSB            REG(0x00, 0xa2)     /* write */
187 #define REG_REFLINE_MSB           REG(0x00, 0xa3)     /* write */
188 #define REG_REFLINE_LSB           REG(0x00, 0xa4)     /* write */
189 #define REG_NPIX_MSB              REG(0x00, 0xa5)     /* write */
190 #define REG_NPIX_LSB              REG(0x00, 0xa6)     /* write */
191 #define REG_NLINE_MSB             REG(0x00, 0xa7)     /* write */
192 #define REG_NLINE_LSB             REG(0x00, 0xa8)     /* write */
193 #define REG_VS_LINE_STRT_1_MSB    REG(0x00, 0xa9)     /* write */
194 #define REG_VS_LINE_STRT_1_LSB    REG(0x00, 0xaa)     /* write */
195 #define REG_VS_PIX_STRT_1_MSB     REG(0x00, 0xab)     /* write */
196 #define REG_VS_PIX_STRT_1_LSB     REG(0x00, 0xac)     /* write */
197 #define REG_VS_LINE_END_1_MSB     REG(0x00, 0xad)     /* write */
198 #define REG_VS_LINE_END_1_LSB     REG(0x00, 0xae)     /* write */
199 #define REG_VS_PIX_END_1_MSB      REG(0x00, 0xaf)     /* write */
200 #define REG_VS_PIX_END_1_LSB      REG(0x00, 0xb0)     /* write */
201 #define REG_VS_LINE_STRT_2_MSB    REG(0x00, 0xb1)     /* write */
202 #define REG_VS_LINE_STRT_2_LSB    REG(0x00, 0xb2)     /* write */
203 #define REG_VS_PIX_STRT_2_MSB     REG(0x00, 0xb3)     /* write */
204 #define REG_VS_PIX_STRT_2_LSB     REG(0x00, 0xb4)     /* write */
205 #define REG_VS_LINE_END_2_MSB     REG(0x00, 0xb5)     /* write */
206 #define REG_VS_LINE_END_2_LSB     REG(0x00, 0xb6)     /* write */
207 #define REG_VS_PIX_END_2_MSB      REG(0x00, 0xb7)     /* write */
208 #define REG_VS_PIX_END_2_LSB      REG(0x00, 0xb8)     /* write */
209 #define REG_HS_PIX_START_MSB      REG(0x00, 0xb9)     /* write */
210 #define REG_HS_PIX_START_LSB      REG(0x00, 0xba)     /* write */
211 #define REG_HS_PIX_STOP_MSB       REG(0x00, 0xbb)     /* write */
212 #define REG_HS_PIX_STOP_LSB       REG(0x00, 0xbc)     /* write */
213 #define REG_VWIN_START_1_MSB      REG(0x00, 0xbd)     /* write */
214 #define REG_VWIN_START_1_LSB      REG(0x00, 0xbe)     /* write */
215 #define REG_VWIN_END_1_MSB        REG(0x00, 0xbf)     /* write */
216 #define REG_VWIN_END_1_LSB        REG(0x00, 0xc0)     /* write */
217 #define REG_VWIN_START_2_MSB      REG(0x00, 0xc1)     /* write */
218 #define REG_VWIN_START_2_LSB      REG(0x00, 0xc2)     /* write */
219 #define REG_VWIN_END_2_MSB        REG(0x00, 0xc3)     /* write */
220 #define REG_VWIN_END_2_LSB        REG(0x00, 0xc4)     /* write */
221 #define REG_DE_START_MSB          REG(0x00, 0xc5)     /* write */
222 #define REG_DE_START_LSB          REG(0x00, 0xc6)     /* write */
223 #define REG_DE_STOP_MSB           REG(0x00, 0xc7)     /* write */
224 #define REG_DE_STOP_LSB           REG(0x00, 0xc8)     /* write */
225 #define REG_TBG_CNTRL_0           REG(0x00, 0xca)     /* write */
226 # define TBG_CNTRL_0_TOP_TGL      (1 << 0)
227 # define TBG_CNTRL_0_TOP_SEL      (1 << 1)
228 # define TBG_CNTRL_0_DE_EXT       (1 << 2)
229 # define TBG_CNTRL_0_TOP_EXT      (1 << 3)
230 # define TBG_CNTRL_0_FRAME_DIS    (1 << 5)
231 # define TBG_CNTRL_0_SYNC_MTHD    (1 << 6)
232 # define TBG_CNTRL_0_SYNC_ONCE    (1 << 7)
233 #define REG_TBG_CNTRL_1           REG(0x00, 0xcb)     /* write */
234 # define TBG_CNTRL_1_H_TGL        (1 << 0)
235 # define TBG_CNTRL_1_V_TGL        (1 << 1)
236 # define TBG_CNTRL_1_TGL_EN       (1 << 2)
237 # define TBG_CNTRL_1_X_EXT        (1 << 3)
238 # define TBG_CNTRL_1_H_EXT        (1 << 4)
239 # define TBG_CNTRL_1_V_EXT        (1 << 5)
240 # define TBG_CNTRL_1_DWIN_DIS     (1 << 6)
241 #define REG_ENABLE_SPACE          REG(0x00, 0xd6)     /* write */
242 #define REG_HVF_CNTRL_0           REG(0x00, 0xe4)     /* write */
243 # define HVF_CNTRL_0_SM           (1 << 7)
244 # define HVF_CNTRL_0_RWB          (1 << 6)
245 # define HVF_CNTRL_0_PREFIL(x)    (((x) & 3) << 2)
246 # define HVF_CNTRL_0_INTPOL(x)    (((x) & 3) << 0)
247 #define REG_HVF_CNTRL_1           REG(0x00, 0xe5)     /* write */
248 # define HVF_CNTRL_1_FOR          (1 << 0)
249 # define HVF_CNTRL_1_YUVBLK       (1 << 1)
250 # define HVF_CNTRL_1_VQR(x)       (((x) & 3) << 2)
251 # define HVF_CNTRL_1_PAD(x)       (((x) & 3) << 4)
252 # define HVF_CNTRL_1_SEMI_PLANAR  (1 << 6)
253 #define REG_RPT_CNTRL             REG(0x00, 0xf0)     /* write */
254 # define RPT_CNTRL_REPEAT(x)      ((x) & 15)
255 #define REG_I2S_FORMAT            REG(0x00, 0xfc)     /* read/write */
256 # define I2S_FORMAT_PHILIPS       (0 << 0)
257 # define I2S_FORMAT_LEFT_J        (2 << 0)
258 # define I2S_FORMAT_RIGHT_J       (3 << 0)
259 #define REG_AIP_CLKSEL            REG(0x00, 0xfd)     /* write */
260 # define AIP_CLKSEL_AIP_SPDIF     (0 << 3)
261 # define AIP_CLKSEL_AIP_I2S       (1 << 3)
262 # define AIP_CLKSEL_FS_ACLK       (0 << 0)
263 # define AIP_CLKSEL_FS_MCLK       (1 << 0)
264 # define AIP_CLKSEL_FS_FS64SPDIF  (2 << 0)
265
266 /* Page 02h: PLL settings */
267 #define REG_PLL_SERIAL_1          REG(0x02, 0x00)     /* read/write */
268 # define PLL_SERIAL_1_SRL_FDN     (1 << 0)
269 # define PLL_SERIAL_1_SRL_IZ(x)   (((x) & 3) << 1)
270 # define PLL_SERIAL_1_SRL_MAN_IZ  (1 << 6)
271 #define REG_PLL_SERIAL_2          REG(0x02, 0x01)     /* read/write */
272 # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0)
273 # define PLL_SERIAL_2_SRL_PR(x)   (((x) & 0xf) << 4)
274 #define REG_PLL_SERIAL_3          REG(0x02, 0x02)     /* read/write */
275 # define PLL_SERIAL_3_SRL_CCIR    (1 << 0)
276 # define PLL_SERIAL_3_SRL_DE      (1 << 2)
277 # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4)
278 #define REG_SERIALIZER            REG(0x02, 0x03)     /* read/write */
279 #define REG_BUFFER_OUT            REG(0x02, 0x04)     /* read/write */
280 #define REG_PLL_SCG1              REG(0x02, 0x05)     /* read/write */
281 #define REG_PLL_SCG2              REG(0x02, 0x06)     /* read/write */
282 #define REG_PLL_SCGN1             REG(0x02, 0x07)     /* read/write */
283 #define REG_PLL_SCGN2             REG(0x02, 0x08)     /* read/write */
284 #define REG_PLL_SCGR1             REG(0x02, 0x09)     /* read/write */
285 #define REG_PLL_SCGR2             REG(0x02, 0x0a)     /* read/write */
286 #define REG_AUDIO_DIV             REG(0x02, 0x0e)     /* read/write */
287 # define AUDIO_DIV_SERCLK_1       0
288 # define AUDIO_DIV_SERCLK_2       1
289 # define AUDIO_DIV_SERCLK_4       2
290 # define AUDIO_DIV_SERCLK_8       3
291 # define AUDIO_DIV_SERCLK_16      4
292 # define AUDIO_DIV_SERCLK_32      5
293 #define REG_SEL_CLK               REG(0x02, 0x11)     /* read/write */
294 # define SEL_CLK_SEL_CLK1         (1 << 0)
295 # define SEL_CLK_SEL_VRF_CLK(x)   (((x) & 3) << 1)
296 # define SEL_CLK_ENA_SC_CLK       (1 << 3)
297 #define REG_ANA_GENERAL           REG(0x02, 0x12)     /* read/write */
298
299
300 /* Page 09h: EDID Control */
301 #define REG_EDID_DATA_0           REG(0x09, 0x00)     /* read */
302 /* next 127 successive registers are the EDID block */
303 #define REG_EDID_CTRL             REG(0x09, 0xfa)     /* read/write */
304 #define REG_DDC_ADDR              REG(0x09, 0xfb)     /* read/write */
305 #define REG_DDC_OFFS              REG(0x09, 0xfc)     /* read/write */
306 #define REG_DDC_SEGM_ADDR         REG(0x09, 0xfd)     /* read/write */
307 #define REG_DDC_SEGM              REG(0x09, 0xfe)     /* read/write */
308
309
310 /* Page 10h: information frames and packets */
311 #define REG_IF1_HB0               REG(0x10, 0x20)     /* read/write */
312 #define REG_IF2_HB0               REG(0x10, 0x40)     /* read/write */
313 #define REG_IF3_HB0               REG(0x10, 0x60)     /* read/write */
314 #define REG_IF4_HB0               REG(0x10, 0x80)     /* read/write */
315 #define REG_IF5_HB0               REG(0x10, 0xa0)     /* read/write */
316
317
318 /* Page 11h: audio settings and content info packets */
319 #define REG_AIP_CNTRL_0           REG(0x11, 0x00)     /* read/write */
320 # define AIP_CNTRL_0_RST_FIFO     (1 << 0)
321 # define AIP_CNTRL_0_SWAP         (1 << 1)
322 # define AIP_CNTRL_0_LAYOUT       (1 << 2)
323 # define AIP_CNTRL_0_ACR_MAN      (1 << 5)
324 # define AIP_CNTRL_0_RST_CTS      (1 << 6)
325 #define REG_CA_I2S                REG(0x11, 0x01)     /* read/write */
326 # define CA_I2S_CA_I2S(x)         (((x) & 31) << 0)
327 # define CA_I2S_HBR_CHSTAT        (1 << 6)
328 #define REG_LATENCY_RD            REG(0x11, 0x04)     /* read/write */
329 #define REG_ACR_CTS_0             REG(0x11, 0x05)     /* read/write */
330 #define REG_ACR_CTS_1             REG(0x11, 0x06)     /* read/write */
331 #define REG_ACR_CTS_2             REG(0x11, 0x07)     /* read/write */
332 #define REG_ACR_N_0               REG(0x11, 0x08)     /* read/write */
333 #define REG_ACR_N_1               REG(0x11, 0x09)     /* read/write */
334 #define REG_ACR_N_2               REG(0x11, 0x0a)     /* read/write */
335 #define REG_CTS_N                 REG(0x11, 0x0c)     /* read/write */
336 # define CTS_N_K(x)               (((x) & 7) << 0)
337 # define CTS_N_M(x)               (((x) & 3) << 4)
338 #define REG_ENC_CNTRL             REG(0x11, 0x0d)     /* read/write */
339 # define ENC_CNTRL_RST_ENC        (1 << 0)
340 # define ENC_CNTRL_RST_SEL        (1 << 1)
341 # define ENC_CNTRL_CTL_CODE(x)    (((x) & 3) << 2)
342 #define REG_DIP_FLAGS             REG(0x11, 0x0e)     /* read/write */
343 # define DIP_FLAGS_ACR            (1 << 0)
344 # define DIP_FLAGS_GC             (1 << 1)
345 #define REG_DIP_IF_FLAGS          REG(0x11, 0x0f)     /* read/write */
346 # define DIP_IF_FLAGS_IF1         (1 << 1)
347 # define DIP_IF_FLAGS_IF2         (1 << 2)
348 # define DIP_IF_FLAGS_IF3         (1 << 3)
349 # define DIP_IF_FLAGS_IF4         (1 << 4)
350 # define DIP_IF_FLAGS_IF5         (1 << 5)
351 #define REG_CH_STAT_B(x)          REG(0x11, 0x14 + (x)) /* read/write */
352
353
354 /* Page 12h: HDCP and OTP */
355 #define REG_TX3                   REG(0x12, 0x9a)     /* read/write */
356 #define REG_TX4                   REG(0x12, 0x9b)     /* read/write */
357 # define TX4_PD_RAM               (1 << 1)
358 #define REG_TX33                  REG(0x12, 0xb8)     /* read/write */
359 # define TX33_HDMI                (1 << 1)
360
361
362 /* Page 13h: Gamut related metadata packets */
363
364
365
366 /* CEC registers: (not paged)
367  */
368 #define REG_CEC_INTSTATUS         0xee                /* read */
369 # define CEC_INTSTATUS_CEC        (1 << 0)
370 # define CEC_INTSTATUS_HDMI       (1 << 1)
371 #define REG_CEC_CAL_XOSC_CTRL1    0xf2
372 # define CEC_CAL_XOSC_CTRL1_ENA_CAL     BIT(0)
373 #define REG_CEC_DES_FREQ2         0xf5
374 # define CEC_DES_FREQ2_DIS_AUTOCAL BIT(7)
375 #define REG_CEC_CLK               0xf6
376 # define CEC_CLK_FRO              0x11
377 #define REG_CEC_FRO_IM_CLK_CTRL   0xfb                /* read/write */
378 # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7)
379 # define CEC_FRO_IM_CLK_CTRL_ENA_OTP   (1 << 6)
380 # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1)
381 # define CEC_FRO_IM_CLK_CTRL_FRO_DIV   (1 << 0)
382 #define REG_CEC_RXSHPDINTENA      0xfc                /* read/write */
383 #define REG_CEC_RXSHPDINT         0xfd                /* read */
384 # define CEC_RXSHPDINT_RXSENS     BIT(0)
385 # define CEC_RXSHPDINT_HPD        BIT(1)
386 #define REG_CEC_RXSHPDLEV         0xfe                /* read */
387 # define CEC_RXSHPDLEV_RXSENS     (1 << 0)
388 # define CEC_RXSHPDLEV_HPD        (1 << 1)
389
390 #define REG_CEC_ENAMODS           0xff                /* read/write */
391 # define CEC_ENAMODS_EN_CEC_CLK   (1 << 7)
392 # define CEC_ENAMODS_DIS_FRO      (1 << 6)
393 # define CEC_ENAMODS_DIS_CCLK     (1 << 5)
394 # define CEC_ENAMODS_EN_RXSENS    (1 << 2)
395 # define CEC_ENAMODS_EN_HDMI      (1 << 1)
396 # define CEC_ENAMODS_EN_CEC       (1 << 0)
397
398
399 /* Device versions: */
400 #define TDA9989N2                 0x0101
401 #define TDA19989                  0x0201
402 #define TDA19989N2                0x0202
403 #define TDA19988                  0x0301
404
405 static void
406 cec_write(struct tda998x_priv *priv, u16 addr, u8 val)
407 {
408         u8 buf[] = {addr, val};
409         struct i2c_msg msg = {
410                 .addr = priv->cec_addr,
411                 .len = 2,
412                 .buf = buf,
413         };
414         int ret;
415
416         ret = i2c_transfer(priv->hdmi->adapter, &msg, 1);
417         if (ret < 0)
418                 dev_err(&priv->hdmi->dev, "Error %d writing to cec:0x%x\n",
419                         ret, addr);
420 }
421
422 static u8
423 cec_read(struct tda998x_priv *priv, u8 addr)
424 {
425         u8 val;
426         struct i2c_msg msg[2] = {
427                 {
428                         .addr = priv->cec_addr,
429                         .len = 1,
430                         .buf = &addr,
431                 }, {
432                         .addr = priv->cec_addr,
433                         .flags = I2C_M_RD,
434                         .len = 1,
435                         .buf = &val,
436                 },
437         };
438         int ret;
439
440         ret = i2c_transfer(priv->hdmi->adapter, msg, ARRAY_SIZE(msg));
441         if (ret < 0) {
442                 dev_err(&priv->hdmi->dev, "Error %d reading from cec:0x%x\n",
443                         ret, addr);
444                 val = 0;
445         }
446
447         return val;
448 }
449
450 static void cec_enamods(struct tda998x_priv *priv, u8 mods, bool enable)
451 {
452         int val = cec_read(priv, REG_CEC_ENAMODS);
453
454         if (val < 0)
455                 return;
456
457         if (enable)
458                 val |= mods;
459         else
460                 val &= ~mods;
461
462         cec_write(priv, REG_CEC_ENAMODS, val);
463 }
464
465 static void tda998x_cec_set_calibration(struct tda998x_priv *priv, bool enable)
466 {
467         if (enable) {
468                 u8 val;
469
470                 cec_write(priv, 0xf3, 0xc0);
471                 cec_write(priv, 0xf4, 0xd4);
472
473                 /* Enable automatic calibration mode */
474                 val = cec_read(priv, REG_CEC_DES_FREQ2);
475                 val &= ~CEC_DES_FREQ2_DIS_AUTOCAL;
476                 cec_write(priv, REG_CEC_DES_FREQ2, val);
477
478                 /* Enable free running oscillator */
479                 cec_write(priv, REG_CEC_CLK, CEC_CLK_FRO);
480                 cec_enamods(priv, CEC_ENAMODS_DIS_FRO, false);
481
482                 cec_write(priv, REG_CEC_CAL_XOSC_CTRL1,
483                           CEC_CAL_XOSC_CTRL1_ENA_CAL);
484         } else {
485                 cec_write(priv, REG_CEC_CAL_XOSC_CTRL1, 0);
486         }
487 }
488
489 /*
490  * Calibration for the internal oscillator: we need to set calibration mode,
491  * and then pulse the IRQ line low for a 10ms Â± 1% period.
492  */
493 static void tda998x_cec_calibration(struct tda998x_priv *priv)
494 {
495         struct gpio_desc *calib = priv->calib;
496
497         mutex_lock(&priv->edid_mutex);
498         if (priv->hdmi->irq > 0)
499                 disable_irq(priv->hdmi->irq);
500         gpiod_direction_output(calib, 1);
501         tda998x_cec_set_calibration(priv, true);
502
503         local_irq_disable();
504         gpiod_set_value(calib, 0);
505         mdelay(10);
506         gpiod_set_value(calib, 1);
507         local_irq_enable();
508
509         tda998x_cec_set_calibration(priv, false);
510         gpiod_direction_input(calib);
511         if (priv->hdmi->irq > 0)
512                 enable_irq(priv->hdmi->irq);
513         mutex_unlock(&priv->edid_mutex);
514 }
515
516 static int tda998x_cec_hook_init(void *data)
517 {
518         struct tda998x_priv *priv = data;
519         struct gpio_desc *calib;
520
521         calib = gpiod_get(&priv->hdmi->dev, "nxp,calib", GPIOD_ASIS);
522         if (IS_ERR(calib)) {
523                 dev_warn(&priv->hdmi->dev, "failed to get calibration gpio: %ld\n",
524                          PTR_ERR(calib));
525                 return PTR_ERR(calib);
526         }
527
528         priv->calib = calib;
529
530         return 0;
531 }
532
533 static void tda998x_cec_hook_exit(void *data)
534 {
535         struct tda998x_priv *priv = data;
536
537         gpiod_put(priv->calib);
538         priv->calib = NULL;
539 }
540
541 static int tda998x_cec_hook_open(void *data)
542 {
543         struct tda998x_priv *priv = data;
544
545         cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, true);
546         tda998x_cec_calibration(priv);
547
548         return 0;
549 }
550
551 static void tda998x_cec_hook_release(void *data)
552 {
553         struct tda998x_priv *priv = data;
554
555         cec_enamods(priv, CEC_ENAMODS_EN_CEC_CLK | CEC_ENAMODS_EN_CEC, false);
556 }
557
558 static int
559 set_page(struct tda998x_priv *priv, u16 reg)
560 {
561         if (REG2PAGE(reg) != priv->current_page) {
562                 struct i2c_client *client = priv->hdmi;
563                 u8 buf[] = {
564                                 REG_CURPAGE, REG2PAGE(reg)
565                 };
566                 int ret = i2c_master_send(client, buf, sizeof(buf));
567                 if (ret < 0) {
568                         dev_err(&client->dev, "%s %04x err %d\n", __func__,
569                                         reg, ret);
570                         return ret;
571                 }
572
573                 priv->current_page = REG2PAGE(reg);
574         }
575         return 0;
576 }
577
578 static int
579 reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt)
580 {
581         struct i2c_client *client = priv->hdmi;
582         u8 addr = REG2ADDR(reg);
583         int ret;
584
585         mutex_lock(&priv->mutex);
586         ret = set_page(priv, reg);
587         if (ret < 0)
588                 goto out;
589
590         ret = i2c_master_send(client, &addr, sizeof(addr));
591         if (ret < 0)
592                 goto fail;
593
594         ret = i2c_master_recv(client, buf, cnt);
595         if (ret < 0)
596                 goto fail;
597
598         goto out;
599
600 fail:
601         dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg);
602 out:
603         mutex_unlock(&priv->mutex);
604         return ret;
605 }
606
607 #define MAX_WRITE_RANGE_BUF 32
608
609 static void
610 reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt)
611 {
612         struct i2c_client *client = priv->hdmi;
613         /* This is the maximum size of the buffer passed in */
614         u8 buf[MAX_WRITE_RANGE_BUF + 1];
615         int ret;
616
617         if (cnt > MAX_WRITE_RANGE_BUF) {
618                 dev_err(&client->dev, "Fixed write buffer too small (%d)\n",
619                                 MAX_WRITE_RANGE_BUF);
620                 return;
621         }
622
623         buf[0] = REG2ADDR(reg);
624         memcpy(&buf[1], p, cnt);
625
626         mutex_lock(&priv->mutex);
627         ret = set_page(priv, reg);
628         if (ret < 0)
629                 goto out;
630
631         ret = i2c_master_send(client, buf, cnt + 1);
632         if (ret < 0)
633                 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
634 out:
635         mutex_unlock(&priv->mutex);
636 }
637
638 static int
639 reg_read(struct tda998x_priv *priv, u16 reg)
640 {
641         u8 val = 0;
642         int ret;
643
644         ret = reg_read_range(priv, reg, &val, sizeof(val));
645         if (ret < 0)
646                 return ret;
647         return val;
648 }
649
650 static void
651 reg_write(struct tda998x_priv *priv, u16 reg, u8 val)
652 {
653         struct i2c_client *client = priv->hdmi;
654         u8 buf[] = {REG2ADDR(reg), val};
655         int ret;
656
657         mutex_lock(&priv->mutex);
658         ret = set_page(priv, reg);
659         if (ret < 0)
660                 goto out;
661
662         ret = i2c_master_send(client, buf, sizeof(buf));
663         if (ret < 0)
664                 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
665 out:
666         mutex_unlock(&priv->mutex);
667 }
668
669 static void
670 reg_write16(struct tda998x_priv *priv, u16 reg, u16 val)
671 {
672         struct i2c_client *client = priv->hdmi;
673         u8 buf[] = {REG2ADDR(reg), val >> 8, val};
674         int ret;
675
676         mutex_lock(&priv->mutex);
677         ret = set_page(priv, reg);
678         if (ret < 0)
679                 goto out;
680
681         ret = i2c_master_send(client, buf, sizeof(buf));
682         if (ret < 0)
683                 dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg);
684 out:
685         mutex_unlock(&priv->mutex);
686 }
687
688 static void
689 reg_set(struct tda998x_priv *priv, u16 reg, u8 val)
690 {
691         int old_val;
692
693         old_val = reg_read(priv, reg);
694         if (old_val >= 0)
695                 reg_write(priv, reg, old_val | val);
696 }
697
698 static void
699 reg_clear(struct tda998x_priv *priv, u16 reg, u8 val)
700 {
701         int old_val;
702
703         old_val = reg_read(priv, reg);
704         if (old_val >= 0)
705                 reg_write(priv, reg, old_val & ~val);
706 }
707
708 static void
709 tda998x_reset(struct tda998x_priv *priv)
710 {
711         /* reset audio and i2c master: */
712         reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER);
713         msleep(50);
714         reg_write(priv, REG_SOFTRESET, 0);
715         msleep(50);
716
717         /* reset transmitter: */
718         reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
719         reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR);
720
721         /* PLL registers common configuration */
722         reg_write(priv, REG_PLL_SERIAL_1, 0x00);
723         reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1));
724         reg_write(priv, REG_PLL_SERIAL_3, 0x00);
725         reg_write(priv, REG_SERIALIZER,   0x00);
726         reg_write(priv, REG_BUFFER_OUT,   0x00);
727         reg_write(priv, REG_PLL_SCG1,     0x00);
728         reg_write(priv, REG_AUDIO_DIV,    AUDIO_DIV_SERCLK_8);
729         reg_write(priv, REG_SEL_CLK,      SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK);
730         reg_write(priv, REG_PLL_SCGN1,    0xfa);
731         reg_write(priv, REG_PLL_SCGN2,    0x00);
732         reg_write(priv, REG_PLL_SCGR1,    0x5b);
733         reg_write(priv, REG_PLL_SCGR2,    0x00);
734         reg_write(priv, REG_PLL_SCG2,     0x10);
735
736         /* Write the default value MUX register */
737         reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24);
738 }
739
740 /*
741  * The TDA998x has a problem when trying to read the EDID close to a
742  * HPD assertion: it needs a delay of 100ms to avoid timing out while
743  * trying to read EDID data.
744  *
745  * However, tda998x_connector_get_modes() may be called at any moment
746  * after tda998x_connector_detect() indicates that we are connected, so
747  * we need to delay probing modes in tda998x_connector_get_modes() after
748  * we have seen a HPD inactive->active transition.  This code implements
749  * that delay.
750  */
751 static void tda998x_edid_delay_done(struct timer_list *t)
752 {
753         struct tda998x_priv *priv = from_timer(priv, t, edid_delay_timer);
754
755         priv->edid_delay_active = false;
756         wake_up(&priv->edid_delay_waitq);
757         schedule_work(&priv->detect_work);
758 }
759
760 static void tda998x_edid_delay_start(struct tda998x_priv *priv)
761 {
762         priv->edid_delay_active = true;
763         mod_timer(&priv->edid_delay_timer, jiffies + HZ/10);
764 }
765
766 static int tda998x_edid_delay_wait(struct tda998x_priv *priv)
767 {
768         return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active);
769 }
770
771 /*
772  * We need to run the KMS hotplug event helper outside of our threaded
773  * interrupt routine as this can call back into our get_modes method,
774  * which will want to make use of interrupts.
775  */
776 static void tda998x_detect_work(struct work_struct *work)
777 {
778         struct tda998x_priv *priv =
779                 container_of(work, struct tda998x_priv, detect_work);
780         struct drm_device *dev = priv->connector.dev;
781
782         if (dev)
783                 drm_kms_helper_hotplug_event(dev);
784 }
785
786 /*
787  * only 2 interrupts may occur: screen plug/unplug and EDID read
788  */
789 static irqreturn_t tda998x_irq_thread(int irq, void *data)
790 {
791         struct tda998x_priv *priv = data;
792         u8 sta, cec, lvl, flag0, flag1, flag2;
793         bool handled = false;
794
795         sta = cec_read(priv, REG_CEC_INTSTATUS);
796         if (sta & CEC_INTSTATUS_HDMI) {
797                 cec = cec_read(priv, REG_CEC_RXSHPDINT);
798                 lvl = cec_read(priv, REG_CEC_RXSHPDLEV);
799                 flag0 = reg_read(priv, REG_INT_FLAGS_0);
800                 flag1 = reg_read(priv, REG_INT_FLAGS_1);
801                 flag2 = reg_read(priv, REG_INT_FLAGS_2);
802                 DRM_DEBUG_DRIVER(
803                         "tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n",
804                         sta, cec, lvl, flag0, flag1, flag2);
805
806                 if (cec & CEC_RXSHPDINT_HPD) {
807                         if (lvl & CEC_RXSHPDLEV_HPD) {
808                                 tda998x_edid_delay_start(priv);
809                         } else {
810                                 schedule_work(&priv->detect_work);
811                                 cec_notifier_phys_addr_invalidate(
812                                                 priv->cec_notify);
813                         }
814
815                         handled = true;
816                 }
817
818                 if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) {
819                         priv->wq_edid_wait = 0;
820                         wake_up(&priv->wq_edid);
821                         handled = true;
822                 }
823         }
824
825         return IRQ_RETVAL(handled);
826 }
827
828 static void
829 tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr,
830                  union hdmi_infoframe *frame)
831 {
832         u8 buf[MAX_WRITE_RANGE_BUF];
833         ssize_t len;
834
835         len = hdmi_infoframe_pack(frame, buf, sizeof(buf));
836         if (len < 0) {
837                 dev_err(&priv->hdmi->dev,
838                         "hdmi_infoframe_pack() type=0x%02x failed: %zd\n",
839                         frame->any.type, len);
840                 return;
841         }
842
843         reg_clear(priv, REG_DIP_IF_FLAGS, bit);
844         reg_write_range(priv, addr, buf, len);
845         reg_set(priv, REG_DIP_IF_FLAGS, bit);
846 }
847
848 static void tda998x_write_aif(struct tda998x_priv *priv,
849                               const struct hdmi_audio_infoframe *cea)
850 {
851         union hdmi_infoframe frame;
852
853         frame.audio = *cea;
854
855         tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame);
856 }
857
858 static void
859 tda998x_write_avi(struct tda998x_priv *priv, const struct drm_display_mode *mode)
860 {
861         union hdmi_infoframe frame;
862
863         drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
864                                                  &priv->connector, mode);
865         frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL;
866         drm_hdmi_avi_infoframe_quant_range(&frame.avi, &priv->connector, mode,
867                                            priv->rgb_quant_range);
868
869         tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame);
870 }
871
872 static void tda998x_write_vsi(struct tda998x_priv *priv,
873                               const struct drm_display_mode *mode)
874 {
875         union hdmi_infoframe frame;
876
877         if (drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
878                                                         &priv->connector,
879                                                         mode))
880                 reg_clear(priv, REG_DIP_IF_FLAGS, DIP_IF_FLAGS_IF1);
881         else
882                 tda998x_write_if(priv, DIP_IF_FLAGS_IF1, REG_IF1_HB0, &frame);
883 }
884
885 /* Audio support */
886
887 static const struct tda998x_audio_route tda998x_audio_route[AUDIO_ROUTE_NUM] = {
888         [AUDIO_ROUTE_I2S] = {
889                 .ena_aclk = 1,
890                 .mux_ap = MUX_AP_SELECT_I2S,
891                 .aip_clksel = AIP_CLKSEL_AIP_I2S | AIP_CLKSEL_FS_ACLK,
892         },
893         [AUDIO_ROUTE_SPDIF] = {
894                 .ena_aclk = 0,
895                 .mux_ap = MUX_AP_SELECT_SPDIF,
896                 .aip_clksel = AIP_CLKSEL_AIP_SPDIF | AIP_CLKSEL_FS_FS64SPDIF,
897         },
898 };
899
900 /* Configure the TDA998x audio data and clock routing. */
901 static int tda998x_derive_routing(struct tda998x_priv *priv,
902                                   struct tda998x_audio_settings *s,
903                                   unsigned int route)
904 {
905         s->route = &tda998x_audio_route[route];
906         s->ena_ap = priv->audio_port_enable[route];
907         if (s->ena_ap == 0) {
908                 dev_err(&priv->hdmi->dev, "no audio configuration found\n");
909                 return -EINVAL;
910         }
911
912         return 0;
913 }
914
915 /*
916  * The audio clock divisor register controls a divider producing Audio_Clk_Out
917  * from SERclk by dividing it by 2^n where 0 <= n <= 5.  We don't know what
918  * Audio_Clk_Out or SERclk are. We guess SERclk is the same as TMDS clock.
919  *
920  * It seems that Audio_Clk_Out must be the smallest value that is greater
921  * than 128*fs, otherwise audio does not function. There is some suggestion
922  * that 126*fs is a better value.
923  */
924 static u8 tda998x_get_adiv(struct tda998x_priv *priv, unsigned int fs)
925 {
926         unsigned long min_audio_clk = fs * 128;
927         unsigned long ser_clk = priv->tmds_clock * 1000;
928         u8 adiv;
929
930         for (adiv = AUDIO_DIV_SERCLK_32; adiv != AUDIO_DIV_SERCLK_1; adiv--)
931                 if (ser_clk > min_audio_clk << adiv)
932                         break;
933
934         dev_dbg(&priv->hdmi->dev,
935                 "ser_clk=%luHz fs=%uHz min_aclk=%luHz adiv=%d\n",
936                 ser_clk, fs, min_audio_clk, adiv);
937
938         return adiv;
939 }
940
941 /*
942  * In auto-CTS mode, the TDA998x uses a "measured time stamp" counter to
943  * generate the CTS value.  It appears that the "measured time stamp" is
944  * the number of TDMS clock cycles within a number of audio input clock
945  * cycles defined by the k and N parameters defined below, in a similar
946  * way to that which is set out in the CTS generation in the HDMI spec.
947  *
948  *  tmdsclk ----> mts -> /m ---> CTS
949  *                 ^
950  *  sclk -> /k -> /N
951  *
952  * CTS = mts / m, where m is 2^M.
953  * /k is a divider based on the K value below, K+1 for K < 4, or 8 for K >= 4
954  * /N is a divider based on the HDMI specified N value.
955  *
956  * This produces the following equation:
957  *  CTS = tmds_clock * k * N / (sclk * m)
958  *
959  * When combined with the sink-side equation, and realising that sclk is
960  * bclk_ratio * fs, we end up with:
961  *  k = m * bclk_ratio / 128.
962  *
963  * Note: S/PDIF always uses a bclk_ratio of 64.
964  */
965 static int tda998x_derive_cts_n(struct tda998x_priv *priv,
966                                 struct tda998x_audio_settings *settings,
967                                 unsigned int ratio)
968 {
969         switch (ratio) {
970         case 16:
971                 settings->cts_n = CTS_N_M(3) | CTS_N_K(0);
972                 break;
973         case 32:
974                 settings->cts_n = CTS_N_M(3) | CTS_N_K(1);
975                 break;
976         case 48:
977                 settings->cts_n = CTS_N_M(3) | CTS_N_K(2);
978                 break;
979         case 64:
980                 settings->cts_n = CTS_N_M(3) | CTS_N_K(3);
981                 break;
982         case 128:
983                 settings->cts_n = CTS_N_M(0) | CTS_N_K(0);
984                 break;
985         default:
986                 dev_err(&priv->hdmi->dev, "unsupported bclk ratio %ufs\n",
987                         ratio);
988                 return -EINVAL;
989         }
990         return 0;
991 }
992
993 static void tda998x_audio_mute(struct tda998x_priv *priv, bool on)
994 {
995         if (on) {
996                 reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
997                 reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO);
998                 reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
999         } else {
1000                 reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1001         }
1002 }
1003
1004 static void tda998x_configure_audio(struct tda998x_priv *priv)
1005 {
1006         const struct tda998x_audio_settings *settings = &priv->audio;
1007         u8 buf[6], adiv;
1008         u32 n;
1009
1010         /* If audio is not configured, there is nothing to do. */
1011         if (settings->ena_ap == 0)
1012                 return;
1013
1014         adiv = tda998x_get_adiv(priv, settings->sample_rate);
1015
1016         /* Enable audio ports */
1017         reg_write(priv, REG_ENA_AP, settings->ena_ap);
1018         reg_write(priv, REG_ENA_ACLK, settings->route->ena_aclk);
1019         reg_write(priv, REG_MUX_AP, settings->route->mux_ap);
1020         reg_write(priv, REG_I2S_FORMAT, settings->i2s_format);
1021         reg_write(priv, REG_AIP_CLKSEL, settings->route->aip_clksel);
1022         reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT |
1023                                         AIP_CNTRL_0_ACR_MAN);   /* auto CTS */
1024         reg_write(priv, REG_CTS_N, settings->cts_n);
1025         reg_write(priv, REG_AUDIO_DIV, adiv);
1026
1027         /*
1028          * This is the approximate value of N, which happens to be
1029          * the recommended values for non-coherent clocks.
1030          */
1031         n = 128 * settings->sample_rate / 1000;
1032
1033         /* Write the CTS and N values */
1034         buf[0] = 0x44;
1035         buf[1] = 0x42;
1036         buf[2] = 0x01;
1037         buf[3] = n;
1038         buf[4] = n >> 8;
1039         buf[5] = n >> 16;
1040         reg_write_range(priv, REG_ACR_CTS_0, buf, 6);
1041
1042         /* Reset CTS generator */
1043         reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1044         reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS);
1045
1046         /* Write the channel status
1047          * The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because
1048          * there is a separate register for each I2S wire.
1049          */
1050         buf[0] = settings->status[0];
1051         buf[1] = settings->status[1];
1052         buf[2] = settings->status[3];
1053         buf[3] = settings->status[4];
1054         reg_write_range(priv, REG_CH_STAT_B(0), buf, 4);
1055
1056         tda998x_audio_mute(priv, true);
1057         msleep(20);
1058         tda998x_audio_mute(priv, false);
1059
1060         tda998x_write_aif(priv, &settings->cea);
1061 }
1062
1063 static int tda998x_audio_hw_params(struct device *dev, void *data,
1064                                    struct hdmi_codec_daifmt *daifmt,
1065                                    struct hdmi_codec_params *params)
1066 {
1067         struct tda998x_priv *priv = dev_get_drvdata(dev);
1068         unsigned int bclk_ratio;
1069         bool spdif = daifmt->fmt == HDMI_SPDIF;
1070         int ret;
1071         struct tda998x_audio_settings audio = {
1072                 .sample_rate = params->sample_rate,
1073                 .cea = params->cea,
1074         };
1075
1076         memcpy(audio.status, params->iec.status,
1077                min(sizeof(audio.status), sizeof(params->iec.status)));
1078
1079         switch (daifmt->fmt) {
1080         case HDMI_I2S:
1081                 audio.i2s_format = I2S_FORMAT_PHILIPS;
1082                 break;
1083         case HDMI_LEFT_J:
1084                 audio.i2s_format = I2S_FORMAT_LEFT_J;
1085                 break;
1086         case HDMI_RIGHT_J:
1087                 audio.i2s_format = I2S_FORMAT_RIGHT_J;
1088                 break;
1089         case HDMI_SPDIF:
1090                 audio.i2s_format = 0;
1091                 break;
1092         default:
1093                 dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt);
1094                 return -EINVAL;
1095         }
1096
1097         if (!spdif &&
1098             (daifmt->bit_clk_inv || daifmt->frame_clk_inv ||
1099              daifmt->bit_clk_provider || daifmt->frame_clk_provider)) {
1100                 dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__,
1101                         daifmt->bit_clk_inv, daifmt->frame_clk_inv,
1102                         daifmt->bit_clk_provider,
1103                         daifmt->frame_clk_provider);
1104                 return -EINVAL;
1105         }
1106
1107         ret = tda998x_derive_routing(priv, &audio, AUDIO_ROUTE_I2S + spdif);
1108         if (ret < 0)
1109                 return ret;
1110
1111         bclk_ratio = spdif ? 64 : params->sample_width * 2;
1112         ret = tda998x_derive_cts_n(priv, &audio, bclk_ratio);
1113         if (ret < 0)
1114                 return ret;
1115
1116         mutex_lock(&priv->audio_mutex);
1117         priv->audio = audio;
1118         if (priv->supports_infoframes && priv->sink_has_audio)
1119                 tda998x_configure_audio(priv);
1120         mutex_unlock(&priv->audio_mutex);
1121
1122         return 0;
1123 }
1124
1125 static void tda998x_audio_shutdown(struct device *dev, void *data)
1126 {
1127         struct tda998x_priv *priv = dev_get_drvdata(dev);
1128
1129         mutex_lock(&priv->audio_mutex);
1130
1131         reg_write(priv, REG_ENA_AP, 0);
1132         priv->audio.ena_ap = 0;
1133
1134         mutex_unlock(&priv->audio_mutex);
1135 }
1136
1137 static int tda998x_audio_mute_stream(struct device *dev, void *data,
1138                                      bool enable, int direction)
1139 {
1140         struct tda998x_priv *priv = dev_get_drvdata(dev);
1141
1142         mutex_lock(&priv->audio_mutex);
1143
1144         tda998x_audio_mute(priv, enable);
1145
1146         mutex_unlock(&priv->audio_mutex);
1147         return 0;
1148 }
1149
1150 static int tda998x_audio_get_eld(struct device *dev, void *data,
1151                                  uint8_t *buf, size_t len)
1152 {
1153         struct tda998x_priv *priv = dev_get_drvdata(dev);
1154
1155         mutex_lock(&priv->audio_mutex);
1156         memcpy(buf, priv->connector.eld,
1157                min(sizeof(priv->connector.eld), len));
1158         mutex_unlock(&priv->audio_mutex);
1159
1160         return 0;
1161 }
1162
1163 static const struct hdmi_codec_ops audio_codec_ops = {
1164         .hw_params = tda998x_audio_hw_params,
1165         .audio_shutdown = tda998x_audio_shutdown,
1166         .mute_stream = tda998x_audio_mute_stream,
1167         .get_eld = tda998x_audio_get_eld,
1168         .no_capture_mute = 1,
1169 };
1170
1171 static int tda998x_audio_codec_init(struct tda998x_priv *priv,
1172                                     struct device *dev)
1173 {
1174         struct hdmi_codec_pdata codec_data = {
1175                 .ops = &audio_codec_ops,
1176                 .max_i2s_channels = 2,
1177         };
1178
1179         if (priv->audio_port_enable[AUDIO_ROUTE_I2S])
1180                 codec_data.i2s = 1;
1181         if (priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1182                 codec_data.spdif = 1;
1183
1184         priv->audio_pdev = platform_device_register_data(
1185                 dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO,
1186                 &codec_data, sizeof(codec_data));
1187
1188         return PTR_ERR_OR_ZERO(priv->audio_pdev);
1189 }
1190
1191 /* DRM connector functions */
1192
1193 static enum drm_connector_status
1194 tda998x_connector_detect(struct drm_connector *connector, bool force)
1195 {
1196         struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1197         u8 val = cec_read(priv, REG_CEC_RXSHPDLEV);
1198
1199         return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected :
1200                         connector_status_disconnected;
1201 }
1202
1203 static void tda998x_connector_destroy(struct drm_connector *connector)
1204 {
1205         drm_connector_cleanup(connector);
1206 }
1207
1208 static const struct drm_connector_funcs tda998x_connector_funcs = {
1209         .reset = drm_atomic_helper_connector_reset,
1210         .fill_modes = drm_helper_probe_single_connector_modes,
1211         .detect = tda998x_connector_detect,
1212         .destroy = tda998x_connector_destroy,
1213         .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1214         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1215 };
1216
1217 static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length)
1218 {
1219         struct tda998x_priv *priv = data;
1220         u8 offset, segptr;
1221         int ret, i;
1222
1223         offset = (blk & 1) ? 128 : 0;
1224         segptr = blk / 2;
1225
1226         mutex_lock(&priv->edid_mutex);
1227
1228         reg_write(priv, REG_DDC_ADDR, 0xa0);
1229         reg_write(priv, REG_DDC_OFFS, offset);
1230         reg_write(priv, REG_DDC_SEGM_ADDR, 0x60);
1231         reg_write(priv, REG_DDC_SEGM, segptr);
1232
1233         /* enable reading EDID: */
1234         priv->wq_edid_wait = 1;
1235         reg_write(priv, REG_EDID_CTRL, 0x1);
1236
1237         /* flag must be cleared by sw: */
1238         reg_write(priv, REG_EDID_CTRL, 0x0);
1239
1240         /* wait for block read to complete: */
1241         if (priv->hdmi->irq) {
1242                 i = wait_event_timeout(priv->wq_edid,
1243                                         !priv->wq_edid_wait,
1244                                         msecs_to_jiffies(100));
1245                 if (i < 0) {
1246                         dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i);
1247                         ret = i;
1248                         goto failed;
1249                 }
1250         } else {
1251                 for (i = 100; i > 0; i--) {
1252                         msleep(1);
1253                         ret = reg_read(priv, REG_INT_FLAGS_2);
1254                         if (ret < 0)
1255                                 goto failed;
1256                         if (ret & INT_FLAGS_2_EDID_BLK_RD)
1257                                 break;
1258                 }
1259         }
1260
1261         if (i == 0) {
1262                 dev_err(&priv->hdmi->dev, "read edid timeout\n");
1263                 ret = -ETIMEDOUT;
1264                 goto failed;
1265         }
1266
1267         ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length);
1268         if (ret != length) {
1269                 dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n",
1270                         blk, ret);
1271                 goto failed;
1272         }
1273
1274         ret = 0;
1275
1276  failed:
1277         mutex_unlock(&priv->edid_mutex);
1278         return ret;
1279 }
1280
1281 static int tda998x_connector_get_modes(struct drm_connector *connector)
1282 {
1283         struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1284         struct edid *edid;
1285         int n;
1286
1287         /*
1288          * If we get killed while waiting for the HPD timeout, return
1289          * no modes found: we are not in a restartable path, so we
1290          * can't handle signals gracefully.
1291          */
1292         if (tda998x_edid_delay_wait(priv))
1293                 return 0;
1294
1295         if (priv->rev == TDA19988)
1296                 reg_clear(priv, REG_TX4, TX4_PD_RAM);
1297
1298         edid = drm_do_get_edid(connector, read_edid_block, priv);
1299
1300         if (priv->rev == TDA19988)
1301                 reg_set(priv, REG_TX4, TX4_PD_RAM);
1302
1303         if (!edid) {
1304                 dev_warn(&priv->hdmi->dev, "failed to read EDID\n");
1305                 return 0;
1306         }
1307
1308         drm_connector_update_edid_property(connector, edid);
1309         cec_notifier_set_phys_addr_from_edid(priv->cec_notify, edid);
1310
1311         mutex_lock(&priv->audio_mutex);
1312         n = drm_add_edid_modes(connector, edid);
1313         priv->sink_has_audio = drm_detect_monitor_audio(edid);
1314         mutex_unlock(&priv->audio_mutex);
1315
1316         kfree(edid);
1317
1318         return n;
1319 }
1320
1321 static struct drm_encoder *
1322 tda998x_connector_best_encoder(struct drm_connector *connector)
1323 {
1324         struct tda998x_priv *priv = conn_to_tda998x_priv(connector);
1325
1326         return priv->bridge.encoder;
1327 }
1328
1329 static
1330 const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = {
1331         .get_modes = tda998x_connector_get_modes,
1332         .best_encoder = tda998x_connector_best_encoder,
1333 };
1334
1335 static int tda998x_connector_init(struct tda998x_priv *priv,
1336                                   struct drm_device *drm)
1337 {
1338         struct drm_connector *connector = &priv->connector;
1339         int ret;
1340
1341         connector->interlace_allowed = 1;
1342
1343         if (priv->hdmi->irq)
1344                 connector->polled = DRM_CONNECTOR_POLL_HPD;
1345         else
1346                 connector->polled = DRM_CONNECTOR_POLL_CONNECT |
1347                         DRM_CONNECTOR_POLL_DISCONNECT;
1348
1349         drm_connector_helper_add(connector, &tda998x_connector_helper_funcs);
1350         ret = drm_connector_init(drm, connector, &tda998x_connector_funcs,
1351                                  DRM_MODE_CONNECTOR_HDMIA);
1352         if (ret)
1353                 return ret;
1354
1355         drm_connector_attach_encoder(&priv->connector,
1356                                      priv->bridge.encoder);
1357
1358         return 0;
1359 }
1360
1361 /* DRM bridge functions */
1362
1363 static int tda998x_bridge_attach(struct drm_bridge *bridge,
1364                                  enum drm_bridge_attach_flags flags)
1365 {
1366         struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1367
1368         if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
1369                 DRM_ERROR("Fix bridge driver to make connector optional!");
1370                 return -EINVAL;
1371         }
1372
1373         return tda998x_connector_init(priv, bridge->dev);
1374 }
1375
1376 static void tda998x_bridge_detach(struct drm_bridge *bridge)
1377 {
1378         struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1379
1380         drm_connector_cleanup(&priv->connector);
1381 }
1382
1383 static enum drm_mode_status tda998x_bridge_mode_valid(struct drm_bridge *bridge,
1384                                      const struct drm_display_info *info,
1385                                      const struct drm_display_mode *mode)
1386 {
1387         /* TDA19988 dotclock can go up to 165MHz */
1388         struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1389
1390         if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000))
1391                 return MODE_CLOCK_HIGH;
1392         if (mode->htotal >= BIT(13))
1393                 return MODE_BAD_HVALUE;
1394         if (mode->vtotal >= BIT(11))
1395                 return MODE_BAD_VVALUE;
1396         return MODE_OK;
1397 }
1398
1399 static void tda998x_bridge_enable(struct drm_bridge *bridge)
1400 {
1401         struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1402
1403         if (!priv->is_on) {
1404                 /* enable video ports, audio will be enabled later */
1405                 reg_write(priv, REG_ENA_VP_0, 0xff);
1406                 reg_write(priv, REG_ENA_VP_1, 0xff);
1407                 reg_write(priv, REG_ENA_VP_2, 0xff);
1408                 /* set muxing after enabling ports: */
1409                 reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0);
1410                 reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1);
1411                 reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2);
1412
1413                 priv->is_on = true;
1414         }
1415 }
1416
1417 static void tda998x_bridge_disable(struct drm_bridge *bridge)
1418 {
1419         struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1420
1421         if (priv->is_on) {
1422                 /* disable video ports */
1423                 reg_write(priv, REG_ENA_VP_0, 0x00);
1424                 reg_write(priv, REG_ENA_VP_1, 0x00);
1425                 reg_write(priv, REG_ENA_VP_2, 0x00);
1426
1427                 priv->is_on = false;
1428         }
1429 }
1430
1431 static void tda998x_bridge_mode_set(struct drm_bridge *bridge,
1432                                     const struct drm_display_mode *mode,
1433                                     const struct drm_display_mode *adjusted_mode)
1434 {
1435         struct tda998x_priv *priv = bridge_to_tda998x_priv(bridge);
1436         unsigned long tmds_clock;
1437         u16 ref_pix, ref_line, n_pix, n_line;
1438         u16 hs_pix_s, hs_pix_e;
1439         u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e;
1440         u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e;
1441         u16 vwin1_line_s, vwin1_line_e;
1442         u16 vwin2_line_s, vwin2_line_e;
1443         u16 de_pix_s, de_pix_e;
1444         u8 reg, div, rep, sel_clk;
1445
1446         /*
1447          * Since we are "computer" like, our source invariably produces
1448          * full-range RGB.  If the monitor supports full-range, then use
1449          * it, otherwise reduce to limited-range.
1450          */
1451         priv->rgb_quant_range =
1452                 priv->connector.display_info.rgb_quant_range_selectable ?
1453                 HDMI_QUANTIZATION_RANGE_FULL :
1454                 drm_default_rgb_quant_range(adjusted_mode);
1455
1456         /*
1457          * Internally TDA998x is using ITU-R BT.656 style sync but
1458          * we get VESA style sync. TDA998x is using a reference pixel
1459          * relative to ITU to sync to the input frame and for output
1460          * sync generation. Currently, we are using reference detection
1461          * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point
1462          * which is position of rising VS with coincident rising HS.
1463          *
1464          * Now there is some issues to take care of:
1465          * - HDMI data islands require sync-before-active
1466          * - TDA998x register values must be > 0 to be enabled
1467          * - REFLINE needs an additional offset of +1
1468          * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB
1469          *
1470          * So we add +1 to all horizontal and vertical register values,
1471          * plus an additional +3 for REFPIX as we are using RGB input only.
1472          */
1473         n_pix        = mode->htotal;
1474         n_line       = mode->vtotal;
1475
1476         hs_pix_e     = mode->hsync_end - mode->hdisplay;
1477         hs_pix_s     = mode->hsync_start - mode->hdisplay;
1478         de_pix_e     = mode->htotal;
1479         de_pix_s     = mode->htotal - mode->hdisplay;
1480         ref_pix      = 3 + hs_pix_s;
1481
1482         /*
1483          * Attached LCD controllers may generate broken sync. Allow
1484          * those to adjust the position of the rising VS edge by adding
1485          * HSKEW to ref_pix.
1486          */
1487         if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW)
1488                 ref_pix += adjusted_mode->hskew;
1489
1490         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) {
1491                 ref_line     = 1 + mode->vsync_start - mode->vdisplay;
1492                 vwin1_line_s = mode->vtotal - mode->vdisplay - 1;
1493                 vwin1_line_e = vwin1_line_s + mode->vdisplay;
1494                 vs1_pix_s    = vs1_pix_e = hs_pix_s;
1495                 vs1_line_s   = mode->vsync_start - mode->vdisplay;
1496                 vs1_line_e   = vs1_line_s +
1497                                mode->vsync_end - mode->vsync_start;
1498                 vwin2_line_s = vwin2_line_e = 0;
1499                 vs2_pix_s    = vs2_pix_e  = 0;
1500                 vs2_line_s   = vs2_line_e = 0;
1501         } else {
1502                 ref_line     = 1 + (mode->vsync_start - mode->vdisplay)/2;
1503                 vwin1_line_s = (mode->vtotal - mode->vdisplay)/2;
1504                 vwin1_line_e = vwin1_line_s + mode->vdisplay/2;
1505                 vs1_pix_s    = vs1_pix_e = hs_pix_s;
1506                 vs1_line_s   = (mode->vsync_start - mode->vdisplay)/2;
1507                 vs1_line_e   = vs1_line_s +
1508                                (mode->vsync_end - mode->vsync_start)/2;
1509                 vwin2_line_s = vwin1_line_s + mode->vtotal/2;
1510                 vwin2_line_e = vwin2_line_s + mode->vdisplay/2;
1511                 vs2_pix_s    = vs2_pix_e = hs_pix_s + mode->htotal/2;
1512                 vs2_line_s   = vs1_line_s + mode->vtotal/2 ;
1513                 vs2_line_e   = vs2_line_s +
1514                                (mode->vsync_end - mode->vsync_start)/2;
1515         }
1516
1517         /*
1518          * Select pixel repeat depending on the double-clock flag
1519          * (which means we have to repeat each pixel once.)
1520          */
1521         rep = mode->flags & DRM_MODE_FLAG_DBLCLK ? 1 : 0;
1522         sel_clk = SEL_CLK_ENA_SC_CLK | SEL_CLK_SEL_CLK1 |
1523                   SEL_CLK_SEL_VRF_CLK(rep ? 2 : 0);
1524
1525         /* the TMDS clock is scaled up by the pixel repeat */
1526         tmds_clock = mode->clock * (1 + rep);
1527
1528         /*
1529          * The divisor is power-of-2. The TDA9983B datasheet gives
1530          * this as ranges of Msample/s, which is 10x the TMDS clock:
1531          *   0 - 800 to 1500 Msample/s
1532          *   1 - 400 to 800 Msample/s
1533          *   2 - 200 to 400 Msample/s
1534          *   3 - as 2 above
1535          */
1536         for (div = 0; div < 3; div++)
1537                 if (80000 >> div <= tmds_clock)
1538                         break;
1539
1540         mutex_lock(&priv->audio_mutex);
1541
1542         priv->tmds_clock = tmds_clock;
1543
1544         /* mute the audio FIFO: */
1545         reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO);
1546
1547         /* set HDMI HDCP mode off: */
1548         reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS);
1549         reg_clear(priv, REG_TX33, TX33_HDMI);
1550         reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0));
1551
1552         /* no pre-filter or interpolator: */
1553         reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) |
1554                         HVF_CNTRL_0_INTPOL(0));
1555         reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_PREFILT);
1556         reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0));
1557         reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) |
1558                         VIP_CNTRL_4_BLC(0));
1559
1560         reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ);
1561         reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR |
1562                                           PLL_SERIAL_3_SRL_DE);
1563         reg_write(priv, REG_SERIALIZER, 0);
1564         reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0));
1565
1566         reg_write(priv, REG_RPT_CNTRL, RPT_CNTRL_REPEAT(rep));
1567         reg_write(priv, REG_SEL_CLK, sel_clk);
1568         reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) |
1569                         PLL_SERIAL_2_SRL_PR(rep));
1570
1571         /* set color matrix according to output rgb quant range */
1572         if (priv->rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) {
1573                 static u8 tda998x_full_to_limited_range[] = {
1574                         MAT_CONTRL_MAT_SC(2),
1575                         0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1576                         0x03, 0x6f, 0x00, 0x00, 0x00, 0x00,
1577                         0x00, 0x00, 0x03, 0x6f, 0x00, 0x00,
1578                         0x00, 0x00, 0x00, 0x00, 0x03, 0x6f,
1579                         0x00, 0x40, 0x00, 0x40, 0x00, 0x40
1580                 };
1581                 reg_clear(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1582                 reg_write_range(priv, REG_MAT_CONTRL,
1583                                 tda998x_full_to_limited_range,
1584                                 sizeof(tda998x_full_to_limited_range));
1585         } else {
1586                 reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP |
1587                                         MAT_CONTRL_MAT_SC(1));
1588                 reg_set(priv, REG_FEAT_POWERDOWN, FEAT_POWERDOWN_CSC);
1589         }
1590
1591         /* set BIAS tmds value: */
1592         reg_write(priv, REG_ANA_GENERAL, 0x09);
1593
1594         /*
1595          * Sync on rising HSYNC/VSYNC
1596          */
1597         reg = VIP_CNTRL_3_SYNC_HS;
1598
1599         /*
1600          * TDA19988 requires high-active sync at input stage,
1601          * so invert low-active sync provided by master encoder here
1602          */
1603         if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1604                 reg |= VIP_CNTRL_3_H_TGL;
1605         if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1606                 reg |= VIP_CNTRL_3_V_TGL;
1607         reg_write(priv, REG_VIP_CNTRL_3, reg);
1608
1609         reg_write(priv, REG_VIDFORMAT, 0x00);
1610         reg_write16(priv, REG_REFPIX_MSB, ref_pix);
1611         reg_write16(priv, REG_REFLINE_MSB, ref_line);
1612         reg_write16(priv, REG_NPIX_MSB, n_pix);
1613         reg_write16(priv, REG_NLINE_MSB, n_line);
1614         reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s);
1615         reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s);
1616         reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e);
1617         reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e);
1618         reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s);
1619         reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s);
1620         reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e);
1621         reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e);
1622         reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s);
1623         reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e);
1624         reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s);
1625         reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e);
1626         reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s);
1627         reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e);
1628         reg_write16(priv, REG_DE_START_MSB, de_pix_s);
1629         reg_write16(priv, REG_DE_STOP_MSB, de_pix_e);
1630
1631         if (priv->rev == TDA19988) {
1632                 /* let incoming pixels fill the active space (if any) */
1633                 reg_write(priv, REG_ENABLE_SPACE, 0x00);
1634         }
1635
1636         /*
1637          * Always generate sync polarity relative to input sync and
1638          * revert input stage toggled sync at output stage
1639          */
1640         reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN;
1641         if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1642                 reg |= TBG_CNTRL_1_H_TGL;
1643         if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1644                 reg |= TBG_CNTRL_1_V_TGL;
1645         reg_write(priv, REG_TBG_CNTRL_1, reg);
1646
1647         /* must be last register set: */
1648         reg_write(priv, REG_TBG_CNTRL_0, 0);
1649
1650         /* CEA-861B section 6 says that:
1651          * CEA version 1 (CEA-861) has no support for infoframes.
1652          * CEA version 2 (CEA-861A) supports version 1 AVI infoframes,
1653          * and optional basic audio.
1654          * CEA version 3 (CEA-861B) supports version 1 and 2 AVI infoframes,
1655          * and optional digital audio, with audio infoframes.
1656          *
1657          * Since we only support generation of version 2 AVI infoframes,
1658          * ignore CEA version 2 and below (iow, behave as if we're a
1659          * CEA-861 source.)
1660          */
1661         priv->supports_infoframes = priv->connector.display_info.cea_rev >= 3;
1662
1663         if (priv->supports_infoframes) {
1664                 /* We need to turn HDMI HDCP stuff on to get audio through */
1665                 reg &= ~TBG_CNTRL_1_DWIN_DIS;
1666                 reg_write(priv, REG_TBG_CNTRL_1, reg);
1667                 reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1));
1668                 reg_set(priv, REG_TX33, TX33_HDMI);
1669
1670                 tda998x_write_avi(priv, adjusted_mode);
1671                 tda998x_write_vsi(priv, adjusted_mode);
1672
1673                 if (priv->sink_has_audio)
1674                         tda998x_configure_audio(priv);
1675         }
1676
1677         mutex_unlock(&priv->audio_mutex);
1678 }
1679
1680 static const struct drm_bridge_funcs tda998x_bridge_funcs = {
1681         .attach = tda998x_bridge_attach,
1682         .detach = tda998x_bridge_detach,
1683         .mode_valid = tda998x_bridge_mode_valid,
1684         .disable = tda998x_bridge_disable,
1685         .mode_set = tda998x_bridge_mode_set,
1686         .enable = tda998x_bridge_enable,
1687 };
1688
1689 /* I2C driver functions */
1690
1691 static int tda998x_get_audio_ports(struct tda998x_priv *priv,
1692                                    struct device_node *np)
1693 {
1694         const u32 *port_data;
1695         u32 size;
1696         int i;
1697
1698         port_data = of_get_property(np, "audio-ports", &size);
1699         if (!port_data)
1700                 return 0;
1701
1702         size /= sizeof(u32);
1703         if (size > 2 * ARRAY_SIZE(priv->audio_port_enable) || size % 2 != 0) {
1704                 dev_err(&priv->hdmi->dev,
1705                         "Bad number of elements in audio-ports dt-property\n");
1706                 return -EINVAL;
1707         }
1708
1709         size /= 2;
1710
1711         for (i = 0; i < size; i++) {
1712                 unsigned int route;
1713                 u8 afmt = be32_to_cpup(&port_data[2*i]);
1714                 u8 ena_ap = be32_to_cpup(&port_data[2*i+1]);
1715
1716                 switch (afmt) {
1717                 case AFMT_I2S:
1718                         route = AUDIO_ROUTE_I2S;
1719                         break;
1720                 case AFMT_SPDIF:
1721                         route = AUDIO_ROUTE_SPDIF;
1722                         break;
1723                 default:
1724                         dev_err(&priv->hdmi->dev,
1725                                 "Bad audio format %u\n", afmt);
1726                         return -EINVAL;
1727                 }
1728
1729                 if (!ena_ap) {
1730                         dev_err(&priv->hdmi->dev, "invalid zero port config\n");
1731                         continue;
1732                 }
1733
1734                 if (priv->audio_port_enable[route]) {
1735                         dev_err(&priv->hdmi->dev,
1736                                 "%s format already configured\n",
1737                                 route == AUDIO_ROUTE_SPDIF ? "SPDIF" : "I2S");
1738                         return -EINVAL;
1739                 }
1740
1741                 priv->audio_port_enable[route] = ena_ap;
1742         }
1743         return 0;
1744 }
1745
1746 static int tda998x_set_config(struct tda998x_priv *priv,
1747                               const struct tda998x_encoder_params *p)
1748 {
1749         priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) |
1750                             (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) |
1751                             VIP_CNTRL_0_SWAP_B(p->swap_b) |
1752                             (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0);
1753         priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) |
1754                             (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) |
1755                             VIP_CNTRL_1_SWAP_D(p->swap_d) |
1756                             (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0);
1757         priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) |
1758                             (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) |
1759                             VIP_CNTRL_2_SWAP_F(p->swap_f) |
1760                             (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0);
1761
1762         if (p->audio_params.format != AFMT_UNUSED) {
1763                 unsigned int ratio, route;
1764                 bool spdif = p->audio_params.format == AFMT_SPDIF;
1765
1766                 route = AUDIO_ROUTE_I2S + spdif;
1767
1768                 priv->audio.route = &tda998x_audio_route[route];
1769                 priv->audio.cea = p->audio_params.cea;
1770                 priv->audio.sample_rate = p->audio_params.sample_rate;
1771                 memcpy(priv->audio.status, p->audio_params.status,
1772                        min(sizeof(priv->audio.status),
1773                            sizeof(p->audio_params.status)));
1774                 priv->audio.ena_ap = p->audio_params.config;
1775                 priv->audio.i2s_format = I2S_FORMAT_PHILIPS;
1776
1777                 ratio = spdif ? 64 : p->audio_params.sample_width * 2;
1778                 return tda998x_derive_cts_n(priv, &priv->audio, ratio);
1779         }
1780
1781         return 0;
1782 }
1783
1784 static void tda998x_destroy(struct device *dev)
1785 {
1786         struct tda998x_priv *priv = dev_get_drvdata(dev);
1787
1788         drm_bridge_remove(&priv->bridge);
1789
1790         /* disable all IRQs and free the IRQ handler */
1791         cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1792         reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1793
1794         if (priv->audio_pdev)
1795                 platform_device_unregister(priv->audio_pdev);
1796
1797         if (priv->hdmi->irq)
1798                 free_irq(priv->hdmi->irq, priv);
1799
1800         del_timer_sync(&priv->edid_delay_timer);
1801         cancel_work_sync(&priv->detect_work);
1802
1803         i2c_unregister_device(priv->cec);
1804
1805         cec_notifier_conn_unregister(priv->cec_notify);
1806 }
1807
1808 static int tda998x_create(struct device *dev)
1809 {
1810         struct i2c_client *client = to_i2c_client(dev);
1811         struct device_node *np = client->dev.of_node;
1812         struct i2c_board_info cec_info;
1813         struct tda998x_priv *priv;
1814         u32 video;
1815         int rev_lo, rev_hi, ret;
1816
1817         priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1818         if (!priv)
1819                 return -ENOMEM;
1820
1821         dev_set_drvdata(dev, priv);
1822
1823         mutex_init(&priv->mutex);       /* protect the page access */
1824         mutex_init(&priv->audio_mutex); /* protect access from audio thread */
1825         mutex_init(&priv->edid_mutex);
1826         INIT_LIST_HEAD(&priv->bridge.list);
1827         init_waitqueue_head(&priv->edid_delay_waitq);
1828         timer_setup(&priv->edid_delay_timer, tda998x_edid_delay_done, 0);
1829         INIT_WORK(&priv->detect_work, tda998x_detect_work);
1830
1831         priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3);
1832         priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1);
1833         priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5);
1834
1835         /* CEC I2C address bound to TDA998x I2C addr by configuration pins */
1836         priv->cec_addr = 0x34 + (client->addr & 0x03);
1837         priv->current_page = 0xff;
1838         priv->hdmi = client;
1839
1840         /* wake up the device: */
1841         cec_write(priv, REG_CEC_ENAMODS,
1842                         CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI);
1843
1844         tda998x_reset(priv);
1845
1846         /* read version: */
1847         rev_lo = reg_read(priv, REG_VERSION_LSB);
1848         if (rev_lo < 0) {
1849                 dev_err(dev, "failed to read version: %d\n", rev_lo);
1850                 return rev_lo;
1851         }
1852
1853         rev_hi = reg_read(priv, REG_VERSION_MSB);
1854         if (rev_hi < 0) {
1855                 dev_err(dev, "failed to read version: %d\n", rev_hi);
1856                 return rev_hi;
1857         }
1858
1859         priv->rev = rev_lo | rev_hi << 8;
1860
1861         /* mask off feature bits: */
1862         priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */
1863
1864         switch (priv->rev) {
1865         case TDA9989N2:
1866                 dev_info(dev, "found TDA9989 n2");
1867                 break;
1868         case TDA19989:
1869                 dev_info(dev, "found TDA19989");
1870                 break;
1871         case TDA19989N2:
1872                 dev_info(dev, "found TDA19989 n2");
1873                 break;
1874         case TDA19988:
1875                 dev_info(dev, "found TDA19988");
1876                 break;
1877         default:
1878                 dev_err(dev, "found unsupported device: %04x\n", priv->rev);
1879                 return -ENXIO;
1880         }
1881
1882         /* after reset, enable DDC: */
1883         reg_write(priv, REG_DDC_DISABLE, 0x00);
1884
1885         /* set clock on DDC channel: */
1886         reg_write(priv, REG_TX3, 39);
1887
1888         /* if necessary, disable multi-master: */
1889         if (priv->rev == TDA19989)
1890                 reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM);
1891
1892         cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL,
1893                         CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL);
1894
1895         /* ensure interrupts are disabled */
1896         cec_write(priv, REG_CEC_RXSHPDINTENA, 0);
1897
1898         /* clear pending interrupts */
1899         cec_read(priv, REG_CEC_RXSHPDINT);
1900         reg_read(priv, REG_INT_FLAGS_0);
1901         reg_read(priv, REG_INT_FLAGS_1);
1902         reg_read(priv, REG_INT_FLAGS_2);
1903
1904         /* initialize the optional IRQ */
1905         if (client->irq) {
1906                 unsigned long irq_flags;
1907
1908                 /* init read EDID waitqueue and HDP work */
1909                 init_waitqueue_head(&priv->wq_edid);
1910
1911                 irq_flags =
1912                         irqd_get_trigger_type(irq_get_irq_data(client->irq));
1913
1914                 priv->cec_glue.irq_flags = irq_flags;
1915
1916                 irq_flags |= IRQF_SHARED | IRQF_ONESHOT;
1917                 ret = request_threaded_irq(client->irq, NULL,
1918                                            tda998x_irq_thread, irq_flags,
1919                                            "tda998x", priv);
1920                 if (ret) {
1921                         dev_err(dev, "failed to request IRQ#%u: %d\n",
1922                                 client->irq, ret);
1923                         goto err_irq;
1924                 }
1925
1926                 /* enable HPD irq */
1927                 cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD);
1928         }
1929
1930         priv->cec_notify = cec_notifier_conn_register(dev, NULL, NULL);
1931         if (!priv->cec_notify) {
1932                 ret = -ENOMEM;
1933                 goto fail;
1934         }
1935
1936         priv->cec_glue.parent = dev;
1937         priv->cec_glue.data = priv;
1938         priv->cec_glue.init = tda998x_cec_hook_init;
1939         priv->cec_glue.exit = tda998x_cec_hook_exit;
1940         priv->cec_glue.open = tda998x_cec_hook_open;
1941         priv->cec_glue.release = tda998x_cec_hook_release;
1942
1943         /*
1944          * Some TDA998x are actually two I2C devices merged onto one piece
1945          * of silicon: TDA9989 and TDA19989 combine the HDMI transmitter
1946          * with a slightly modified TDA9950 CEC device.  The CEC device
1947          * is at the TDA9950 address, with the address pins strapped across
1948          * to the TDA998x address pins.  Hence, it always has the same
1949          * offset.
1950          */
1951         memset(&cec_info, 0, sizeof(cec_info));
1952         strlcpy(cec_info.type, "tda9950", sizeof(cec_info.type));
1953         cec_info.addr = priv->cec_addr;
1954         cec_info.platform_data = &priv->cec_glue;
1955         cec_info.irq = client->irq;
1956
1957         priv->cec = i2c_new_client_device(client->adapter, &cec_info);
1958         if (IS_ERR(priv->cec)) {
1959                 ret = PTR_ERR(priv->cec);
1960                 goto fail;
1961         }
1962
1963         /* enable EDID read irq: */
1964         reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD);
1965
1966         if (np) {
1967                 /* get the device tree parameters */
1968                 ret = of_property_read_u32(np, "video-ports", &video);
1969                 if (ret == 0) {
1970                         priv->vip_cntrl_0 = video >> 16;
1971                         priv->vip_cntrl_1 = video >> 8;
1972                         priv->vip_cntrl_2 = video;
1973                 }
1974
1975                 ret = tda998x_get_audio_ports(priv, np);
1976                 if (ret)
1977                         goto fail;
1978
1979                 if (priv->audio_port_enable[AUDIO_ROUTE_I2S] ||
1980                     priv->audio_port_enable[AUDIO_ROUTE_SPDIF])
1981                         tda998x_audio_codec_init(priv, &client->dev);
1982         } else if (dev->platform_data) {
1983                 ret = tda998x_set_config(priv, dev->platform_data);
1984                 if (ret)
1985                         goto fail;
1986         }
1987
1988         priv->bridge.funcs = &tda998x_bridge_funcs;
1989 #ifdef CONFIG_OF
1990         priv->bridge.of_node = dev->of_node;
1991 #endif
1992
1993         drm_bridge_add(&priv->bridge);
1994
1995         return 0;
1996
1997 fail:
1998         tda998x_destroy(dev);
1999 err_irq:
2000         return ret;
2001 }
2002
2003 /* DRM encoder functions */
2004
2005 static int tda998x_encoder_init(struct device *dev, struct drm_device *drm)
2006 {
2007         struct tda998x_priv *priv = dev_get_drvdata(dev);
2008         u32 crtcs = 0;
2009         int ret;
2010
2011         if (dev->of_node)
2012                 crtcs = drm_of_find_possible_crtcs(drm, dev->of_node);
2013
2014         /* If no CRTCs were found, fall back to our old behaviour */
2015         if (crtcs == 0) {
2016                 dev_warn(dev, "Falling back to first CRTC\n");
2017                 crtcs = 1 << 0;
2018         }
2019
2020         priv->encoder.possible_crtcs = crtcs;
2021
2022         ret = drm_simple_encoder_init(drm, &priv->encoder,
2023                                       DRM_MODE_ENCODER_TMDS);
2024         if (ret)
2025                 goto err_encoder;
2026
2027         ret = drm_bridge_attach(&priv->encoder, &priv->bridge, NULL, 0);
2028         if (ret)
2029                 goto err_bridge;
2030
2031         return 0;
2032
2033 err_bridge:
2034         drm_encoder_cleanup(&priv->encoder);
2035 err_encoder:
2036         return ret;
2037 }
2038
2039 static int tda998x_bind(struct device *dev, struct device *master, void *data)
2040 {
2041         struct drm_device *drm = data;
2042
2043         return tda998x_encoder_init(dev, drm);
2044 }
2045
2046 static void tda998x_unbind(struct device *dev, struct device *master,
2047                            void *data)
2048 {
2049         struct tda998x_priv *priv = dev_get_drvdata(dev);
2050
2051         drm_encoder_cleanup(&priv->encoder);
2052 }
2053
2054 static const struct component_ops tda998x_ops = {
2055         .bind = tda998x_bind,
2056         .unbind = tda998x_unbind,
2057 };
2058
2059 static int
2060 tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id)
2061 {
2062         int ret;
2063
2064         if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
2065                 dev_warn(&client->dev, "adapter does not support I2C\n");
2066                 return -EIO;
2067         }
2068
2069         ret = tda998x_create(&client->dev);
2070         if (ret)
2071                 return ret;
2072
2073         ret = component_add(&client->dev, &tda998x_ops);
2074         if (ret)
2075                 tda998x_destroy(&client->dev);
2076         return ret;
2077 }
2078
2079 static int tda998x_remove(struct i2c_client *client)
2080 {
2081         component_del(&client->dev, &tda998x_ops);
2082         tda998x_destroy(&client->dev);
2083         return 0;
2084 }
2085
2086 #ifdef CONFIG_OF
2087 static const struct of_device_id tda998x_dt_ids[] = {
2088         { .compatible = "nxp,tda998x", },
2089         { }
2090 };
2091 MODULE_DEVICE_TABLE(of, tda998x_dt_ids);
2092 #endif
2093
2094 static const struct i2c_device_id tda998x_ids[] = {
2095         { "tda998x", 0 },
2096         { }
2097 };
2098 MODULE_DEVICE_TABLE(i2c, tda998x_ids);
2099
2100 static struct i2c_driver tda998x_driver = {
2101         .probe = tda998x_probe,
2102         .remove = tda998x_remove,
2103         .driver = {
2104                 .name = "tda998x",
2105                 .of_match_table = of_match_ptr(tda998x_dt_ids),
2106         },
2107         .id_table = tda998x_ids,
2108 };
2109
2110 module_i2c_driver(tda998x_driver);
2111
2112 MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
2113 MODULE_DESCRIPTION("NXP Semiconductors TDA998X HDMI Encoder");
2114 MODULE_LICENSE("GPL");