Merge tag 'amd-drm-next-6.3-2023-01-20' of https://gitlab.freedesktop.org/agd5f/linux...
[linux-block.git] / drivers / gpu / drm / amd / pm / powerplay / smumgr / ci_smumgr.c
1 /*
2  * Copyright 2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include "linux/delay.h"
26 #include <linux/types.h>
27 #include <linux/pci.h>
28
29 #include "smumgr.h"
30 #include "pp_debug.h"
31 #include "ci_smumgr.h"
32 #include "ppsmc.h"
33 #include "smu7_hwmgr.h"
34 #include "hardwaremanager.h"
35 #include "ppatomctrl.h"
36 #include "cgs_common.h"
37 #include "atombios.h"
38 #include "pppcielanes.h"
39 #include "smu7_smumgr.h"
40
41 #include "smu/smu_7_0_1_d.h"
42 #include "smu/smu_7_0_1_sh_mask.h"
43
44 #include "dce/dce_8_0_d.h"
45 #include "dce/dce_8_0_sh_mask.h"
46
47 #include "bif/bif_4_1_d.h"
48 #include "bif/bif_4_1_sh_mask.h"
49
50 #include "gca/gfx_7_2_d.h"
51 #include "gca/gfx_7_2_sh_mask.h"
52
53 #include "gmc/gmc_7_1_d.h"
54 #include "gmc/gmc_7_1_sh_mask.h"
55
56 #include "processpptables.h"
57
58 #define MC_CG_ARB_FREQ_F0           0x0a
59 #define MC_CG_ARB_FREQ_F1           0x0b
60 #define MC_CG_ARB_FREQ_F2           0x0c
61 #define MC_CG_ARB_FREQ_F3           0x0d
62
63 #define SMC_RAM_END 0x40000
64
65 #define CISLAND_MINIMUM_ENGINE_CLOCK 800
66 #define CISLAND_MAX_DEEPSLEEP_DIVIDER_ID 5
67
68 static const struct ci_pt_defaults defaults_hawaii_xt = {
69         1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0xB0000,
70         { 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
71         { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
72 };
73
74 static const struct ci_pt_defaults defaults_hawaii_pro = {
75         1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0x65062,
76         { 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
77         { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
78 };
79
80 static const struct ci_pt_defaults defaults_bonaire_xt = {
81         1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
82         { 0x79,  0x253, 0x25D, 0xAE,  0x72,  0x80,  0x83,  0x86,  0x6F,  0xC8,  0xC9,  0xC9,  0x2F,  0x4D,  0x61  },
83         { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
84 };
85
86
87 static const struct ci_pt_defaults defaults_saturn_xt = {
88         1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000,
89         { 0x8C,  0x247, 0x249, 0xA6,  0x80,  0x81,  0x8B,  0x89,  0x86,  0xC9,  0xCA,  0xC9,  0x4D,  0x4D,  0x4D  },
90         { 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 }
91 };
92
93
94 static int ci_set_smc_sram_address(struct pp_hwmgr *hwmgr,
95                                         uint32_t smc_addr, uint32_t limit)
96 {
97         if ((0 != (3 & smc_addr))
98                 || ((smc_addr + 3) >= limit)) {
99                 pr_err("smc_addr invalid \n");
100                 return -EINVAL;
101         }
102
103         cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, smc_addr);
104         PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
105         return 0;
106 }
107
108 static int ci_copy_bytes_to_smc(struct pp_hwmgr *hwmgr, uint32_t smc_start_address,
109                                 const uint8_t *src, uint32_t byte_count, uint32_t limit)
110 {
111         int result;
112         uint32_t data = 0;
113         uint32_t original_data;
114         uint32_t addr = 0;
115         uint32_t extra_shift;
116
117         if ((3 & smc_start_address)
118                 || ((smc_start_address + byte_count) >= limit)) {
119                 pr_err("smc_start_address invalid \n");
120                 return -EINVAL;
121         }
122
123         addr = smc_start_address;
124
125         while (byte_count >= 4) {
126         /* Bytes are written into the SMC address space with the MSB first. */
127                 data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
128
129                 result = ci_set_smc_sram_address(hwmgr, addr, limit);
130
131                 if (0 != result)
132                         return result;
133
134                 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
135
136                 src += 4;
137                 byte_count -= 4;
138                 addr += 4;
139         }
140
141         if (0 != byte_count) {
142
143                 data = 0;
144
145                 result = ci_set_smc_sram_address(hwmgr, addr, limit);
146
147                 if (0 != result)
148                         return result;
149
150
151                 original_data = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
152
153                 extra_shift = 8 * (4 - byte_count);
154
155                 while (byte_count > 0) {
156                         /* Bytes are written into the SMC addres space with the MSB first. */
157                         data = (0x100 * data) + *src++;
158                         byte_count--;
159                 }
160
161                 data <<= extra_shift;
162
163                 data |= (original_data & ~((~0UL) << extra_shift));
164
165                 result = ci_set_smc_sram_address(hwmgr, addr, limit);
166
167                 if (0 != result)
168                         return result;
169
170                 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
171         }
172
173         return 0;
174 }
175
176
177 static int ci_program_jump_on_start(struct pp_hwmgr *hwmgr)
178 {
179         static const unsigned char data[4] = { 0xE0, 0x00, 0x80, 0x40 };
180
181         ci_copy_bytes_to_smc(hwmgr, 0x0, data, 4, sizeof(data)+1);
182
183         return 0;
184 }
185
186 static bool ci_is_smc_ram_running(struct pp_hwmgr *hwmgr)
187 {
188         return ((0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
189                         CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable))
190         && (0x20100 <= cgs_read_ind_register(hwmgr->device,
191                         CGS_IND_REG__SMC, ixSMC_PC_C)));
192 }
193
194 static int ci_read_smc_sram_dword(struct pp_hwmgr *hwmgr, uint32_t smc_addr,
195                                 uint32_t *value, uint32_t limit)
196 {
197         int result;
198
199         result = ci_set_smc_sram_address(hwmgr, smc_addr, limit);
200
201         if (result)
202                 return result;
203
204         *value = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
205         return 0;
206 }
207
208 static int ci_send_msg_to_smc(struct pp_hwmgr *hwmgr, uint16_t msg)
209 {
210         struct amdgpu_device *adev = hwmgr->adev;
211         int ret;
212
213         cgs_write_register(hwmgr->device, mmSMC_RESP_0, 0);
214         cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, msg);
215
216         PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0);
217
218         ret = PHM_READ_FIELD(hwmgr->device, SMC_RESP_0, SMC_RESP);
219
220         if (ret != 1)
221                 dev_info(adev->dev,
222                         "failed to send message %x ret is %d\n", msg,ret);
223
224         return 0;
225 }
226
227 static int ci_send_msg_to_smc_with_parameter(struct pp_hwmgr *hwmgr,
228                                         uint16_t msg, uint32_t parameter)
229 {
230         cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, parameter);
231         return ci_send_msg_to_smc(hwmgr, msg);
232 }
233
234 static void ci_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
235 {
236         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
237         struct amdgpu_device *adev = hwmgr->adev;
238         uint32_t dev_id;
239
240         dev_id = adev->pdev->device;
241
242         switch (dev_id) {
243         case 0x67BA:
244         case 0x67B1:
245                 smu_data->power_tune_defaults = &defaults_hawaii_pro;
246                 break;
247         case 0x67B8:
248         case 0x66B0:
249                 smu_data->power_tune_defaults = &defaults_hawaii_xt;
250                 break;
251         case 0x6640:
252         case 0x6641:
253         case 0x6646:
254         case 0x6647:
255                 smu_data->power_tune_defaults = &defaults_saturn_xt;
256                 break;
257         case 0x6649:
258         case 0x6650:
259         case 0x6651:
260         case 0x6658:
261         case 0x665C:
262         case 0x665D:
263         case 0x67A0:
264         case 0x67A1:
265         case 0x67A2:
266         case 0x67A8:
267         case 0x67A9:
268         case 0x67AA:
269         case 0x67B9:
270         case 0x67BE:
271         default:
272                 smu_data->power_tune_defaults = &defaults_bonaire_xt;
273                 break;
274         }
275 }
276
277 static int ci_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
278         struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
279         uint32_t clock, uint32_t *vol)
280 {
281         uint32_t i = 0;
282
283         if (allowed_clock_voltage_table->count == 0)
284                 return -EINVAL;
285
286         for (i = 0; i < allowed_clock_voltage_table->count; i++) {
287                 if (allowed_clock_voltage_table->entries[i].clk >= clock) {
288                         *vol = allowed_clock_voltage_table->entries[i].v;
289                         return 0;
290                 }
291         }
292
293         *vol = allowed_clock_voltage_table->entries[i - 1].v;
294         return 0;
295 }
296
297 static int ci_calculate_sclk_params(struct pp_hwmgr *hwmgr,
298                 uint32_t clock, struct SMU7_Discrete_GraphicsLevel *sclk)
299 {
300         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
301         struct pp_atomctrl_clock_dividers_vi dividers;
302         uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
303         uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
304         uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
305         uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
306         uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
307         uint32_t ref_clock;
308         uint32_t ref_divider;
309         uint32_t fbdiv;
310         int result;
311
312         /* get the engine clock dividers for this clock value */
313         result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);
314
315         PP_ASSERT_WITH_CODE(result == 0,
316                         "Error retrieving Engine Clock dividers from VBIOS.",
317                         return result);
318
319         /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
320         ref_clock = atomctrl_get_reference_clock(hwmgr);
321         ref_divider = 1 + dividers.uc_pll_ref_div;
322
323         /* low 14 bits is fraction and high 12 bits is divider */
324         fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
325
326         /* SPLL_FUNC_CNTL setup */
327         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
328                         SPLL_REF_DIV, dividers.uc_pll_ref_div);
329         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
330                         SPLL_PDIV_A,  dividers.uc_pll_post_div);
331
332         /* SPLL_FUNC_CNTL_3 setup*/
333         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
334                         SPLL_FB_DIV, fbdiv);
335
336         /* set to use fractional accumulation*/
337         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
338                         SPLL_DITHEN, 1);
339
340         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
341                                 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
342                 struct pp_atomctrl_internal_ss_info ss_info;
343                 uint32_t vco_freq = clock * dividers.uc_pll_post_div;
344
345                 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
346                                 vco_freq, &ss_info)) {
347                         uint32_t clk_s = ref_clock * 5 /
348                                         (ref_divider * ss_info.speed_spectrum_rate);
349                         uint32_t clk_v = 4 * ss_info.speed_spectrum_percentage *
350                                         fbdiv / (clk_s * 10000);
351
352                         cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
353                                         CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
354                         cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
355                                         CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
356                         cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
357                                         CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
358                 }
359         }
360
361         sclk->SclkFrequency        = clock;
362         sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
363         sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
364         sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
365         sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
366         sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
367
368         return 0;
369 }
370
371 static void ci_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
372                                 const struct phm_phase_shedding_limits_table *pl,
373                                         uint32_t sclk, uint32_t *p_shed)
374 {
375         unsigned int i;
376
377         /* use the minimum phase shedding */
378         *p_shed = 1;
379
380         for (i = 0; i < pl->count; i++) {
381                 if (sclk < pl->entries[i].Sclk) {
382                         *p_shed = i;
383                         break;
384                 }
385         }
386 }
387
388 static uint8_t ci_get_sleep_divider_id_from_clock(uint32_t clock,
389                         uint32_t clock_insr)
390 {
391         uint8_t i;
392         uint32_t temp;
393         uint32_t min = min_t(uint32_t, clock_insr, CISLAND_MINIMUM_ENGINE_CLOCK);
394
395         if (clock < min) {
396                 pr_info("Engine clock can't satisfy stutter requirement!\n");
397                 return 0;
398         }
399         for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
400                 temp = clock >> i;
401
402                 if (temp >= min || i == 0)
403                         break;
404         }
405         return i;
406 }
407
408 static int ci_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
409                 uint32_t clock, struct SMU7_Discrete_GraphicsLevel *level)
410 {
411         int result;
412         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
413
414
415         result = ci_calculate_sclk_params(hwmgr, clock, level);
416
417         /* populate graphics levels */
418         result = ci_get_dependency_volt_by_clk(hwmgr,
419                         hwmgr->dyn_state.vddc_dependency_on_sclk, clock,
420                         (uint32_t *)(&level->MinVddc));
421         if (result) {
422                 pr_err("vdd_dep_on_sclk table is NULL\n");
423                 return result;
424         }
425
426         level->SclkFrequency = clock;
427         level->MinVddcPhases = 1;
428
429         if (data->vddc_phase_shed_control)
430                 ci_populate_phase_value_based_on_sclk(hwmgr,
431                                 hwmgr->dyn_state.vddc_phase_shed_limits_table,
432                                 clock,
433                                 &level->MinVddcPhases);
434
435         level->ActivityLevel = data->current_profile_setting.sclk_activity;
436         level->CcPwrDynRm = 0;
437         level->CcPwrDynRm1 = 0;
438         level->EnabledForActivity = 0;
439         /* this level can be used for throttling.*/
440         level->EnabledForThrottle = 1;
441         level->UpH = data->current_profile_setting.sclk_up_hyst;
442         level->DownH = data->current_profile_setting.sclk_down_hyst;
443         level->VoltageDownH = 0;
444         level->PowerThrottle = 0;
445
446
447         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
448                         PHM_PlatformCaps_SclkDeepSleep))
449                 level->DeepSleepDivId =
450                                 ci_get_sleep_divider_id_from_clock(clock,
451                                                 CISLAND_MINIMUM_ENGINE_CLOCK);
452
453         /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
454         level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
455
456         if (0 == result) {
457                 level->MinVddc = PP_HOST_TO_SMC_UL(level->MinVddc * VOLTAGE_SCALE);
458                 CONVERT_FROM_HOST_TO_SMC_UL(level->MinVddcPhases);
459                 CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
460                 CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
461                 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
462                 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
463                 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
464                 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
465                 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
466                 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
467         }
468
469         return result;
470 }
471
472 static int ci_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
473 {
474         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
475         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
476         struct smu7_dpm_table *dpm_table = &data->dpm_table;
477         int result = 0;
478         uint32_t array = smu_data->dpm_table_start +
479                         offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
480         uint32_t array_size = sizeof(struct SMU7_Discrete_GraphicsLevel) *
481                         SMU7_MAX_LEVELS_GRAPHICS;
482         struct SMU7_Discrete_GraphicsLevel *levels =
483                         smu_data->smc_state_table.GraphicsLevel;
484         uint32_t i;
485
486         for (i = 0; i < dpm_table->sclk_table.count; i++) {
487                 result = ci_populate_single_graphic_level(hwmgr,
488                                 dpm_table->sclk_table.dpm_levels[i].value,
489                                 &levels[i]);
490                 if (result)
491                         return result;
492                 if (i > 1)
493                         smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
494                 if (i == (dpm_table->sclk_table.count - 1))
495                         smu_data->smc_state_table.GraphicsLevel[i].DisplayWatermark =
496                                 PPSMC_DISPLAY_WATERMARK_HIGH;
497         }
498
499         smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
500
501         smu_data->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count;
502         data->dpm_level_enable_mask.sclk_dpm_enable_mask =
503                 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
504
505         result = ci_copy_bytes_to_smc(hwmgr, array,
506                                    (u8 *)levels, array_size,
507                                    SMC_RAM_END);
508
509         return result;
510
511 }
512
513 static int ci_populate_svi_load_line(struct pp_hwmgr *hwmgr)
514 {
515         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
516         const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
517
518         smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
519         smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
520         smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
521         smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
522
523         return 0;
524 }
525
526 static int ci_populate_tdc_limit(struct pp_hwmgr *hwmgr)
527 {
528         uint16_t tdc_limit;
529         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
530         const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
531
532         tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
533         smu_data->power_tune_table.TDC_VDDC_PkgLimit =
534                         CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
535         smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
536                         defaults->tdc_vddc_throttle_release_limit_perc;
537         smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
538
539         return 0;
540 }
541
542 static int ci_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
543 {
544         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
545         const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
546         uint32_t temp;
547
548         if (ci_read_smc_sram_dword(hwmgr,
549                         fuse_table_offset +
550                         offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl),
551                         (uint32_t *)&temp, SMC_RAM_END))
552                 PP_ASSERT_WITH_CODE(false,
553                                 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
554                                 return -EINVAL);
555         else
556                 smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
557
558         return 0;
559 }
560
561 static int ci_populate_fuzzy_fan(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
562 {
563         uint16_t tmp;
564         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
565
566         if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
567                 || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
568                 tmp = hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity;
569         else
570                 tmp = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
571
572         smu_data->power_tune_table.FuzzyFan_PwmSetDelta = CONVERT_FROM_HOST_TO_SMC_US(tmp);
573
574         return 0;
575 }
576
577 static int ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
578 {
579         int i;
580         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
581         uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
582         uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
583         uint8_t *hi2_vid = smu_data->power_tune_table.BapmVddCVidHiSidd2;
584
585         PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
586                             "The CAC Leakage table does not exist!", return -EINVAL);
587         PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
588                             "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
589         PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
590                             "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
591
592         for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
593                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
594                         lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
595                         hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
596                         hi2_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc3);
597                 } else {
598                         lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc);
599                         hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Leakage);
600                 }
601         }
602
603         return 0;
604 }
605
606 static int ci_populate_vddc_vid(struct pp_hwmgr *hwmgr)
607 {
608         int i;
609         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
610         uint8_t *vid = smu_data->power_tune_table.VddCVid;
611         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
612
613         PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
614                 "There should never be more than 8 entries for VddcVid!!!",
615                 return -EINVAL);
616
617         for (i = 0; i < (int)data->vddc_voltage_table.count; i++)
618                 vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
619
620         return 0;
621 }
622
623 static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr *hwmgr)
624 {
625         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
626         u8 *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
627         u8 *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
628         int i, min, max;
629
630         min = max = hi_vid[0];
631         for (i = 0; i < 8; i++) {
632                 if (0 != hi_vid[i]) {
633                         if (min > hi_vid[i])
634                                 min = hi_vid[i];
635                         if (max < hi_vid[i])
636                                 max = hi_vid[i];
637                 }
638
639                 if (0 != lo_vid[i]) {
640                         if (min > lo_vid[i])
641                                 min = lo_vid[i];
642                         if (max < lo_vid[i])
643                                 max = lo_vid[i];
644                 }
645         }
646
647         if ((min == 0) || (max == 0))
648                 return -EINVAL;
649         smu_data->power_tune_table.GnbLPMLMaxVid = (u8)max;
650         smu_data->power_tune_table.GnbLPMLMinVid = (u8)min;
651
652         return 0;
653 }
654
655 static int ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
656 {
657         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
658         uint16_t HiSidd;
659         uint16_t LoSidd;
660         struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
661
662         HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
663         LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
664
665         smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
666                         CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
667         smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
668                         CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
669
670         return 0;
671 }
672
673 static int ci_populate_pm_fuses(struct pp_hwmgr *hwmgr)
674 {
675         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
676         uint32_t pm_fuse_table_offset;
677         int ret = 0;
678
679         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
680                         PHM_PlatformCaps_PowerContainment)) {
681                 if (ci_read_smc_sram_dword(hwmgr,
682                                 SMU7_FIRMWARE_HEADER_LOCATION +
683                                 offsetof(SMU7_Firmware_Header, PmFuseTable),
684                                 &pm_fuse_table_offset, SMC_RAM_END)) {
685                         pr_err("Attempt to get pm_fuse_table_offset Failed!\n");
686                         return -EINVAL;
687                 }
688
689                 /* DW0 - DW3 */
690                 ret = ci_populate_bapm_vddc_vid_sidd(hwmgr);
691                 /* DW4 - DW5 */
692                 ret |= ci_populate_vddc_vid(hwmgr);
693                 /* DW6 */
694                 ret |= ci_populate_svi_load_line(hwmgr);
695                 /* DW7 */
696                 ret |= ci_populate_tdc_limit(hwmgr);
697                 /* DW8 */
698                 ret |= ci_populate_dw8(hwmgr, pm_fuse_table_offset);
699
700                 ret |= ci_populate_fuzzy_fan(hwmgr, pm_fuse_table_offset);
701
702                 ret |= ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(hwmgr);
703
704                 ret |= ci_populate_bapm_vddc_base_leakage_sidd(hwmgr);
705                 if (ret)
706                         return ret;
707
708                 ret = ci_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
709                                 (uint8_t *)&smu_data->power_tune_table,
710                                 sizeof(struct SMU7_Discrete_PmFuses), SMC_RAM_END);
711         }
712         return ret;
713 }
714
715 static int ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
716 {
717         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
718         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
719         const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
720         SMU7_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
721         struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
722         struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
723         const uint16_t *def1, *def2;
724         int i, j, k;
725
726         dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
727         dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
728
729         dpm_table->DTETjOffset = 0;
730         dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
731         dpm_table->GpuTjHyst = 8;
732
733         dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
734
735         if (ppm) {
736                 dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
737                 dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
738         } else {
739                 dpm_table->PPM_PkgPwrLimit = 0;
740                 dpm_table->PPM_TemperatureLimit = 0;
741         }
742
743         CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
744         CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
745
746         dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
747         def1 = defaults->bapmti_r;
748         def2 = defaults->bapmti_rc;
749
750         for (i = 0; i < SMU7_DTE_ITERATIONS; i++) {
751                 for (j = 0; j < SMU7_DTE_SOURCES; j++) {
752                         for (k = 0; k < SMU7_DTE_SINKS; k++) {
753                                 dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
754                                 dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
755                                 def1++;
756                                 def2++;
757                         }
758                 }
759         }
760
761         return 0;
762 }
763
764 static int ci_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
765                 pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
766                 uint16_t *lo)
767 {
768         uint16_t v_index;
769         bool vol_found = false;
770         *hi = tab->value * VOLTAGE_SCALE;
771         *lo = tab->value * VOLTAGE_SCALE;
772
773         PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
774                         "The SCLK/VDDC Dependency Table does not exist.\n",
775                         return -EINVAL);
776
777         if (NULL == hwmgr->dyn_state.cac_leakage_table) {
778                 pr_warn("CAC Leakage Table does not exist, using vddc.\n");
779                 return 0;
780         }
781
782         for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
783                 if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
784                         vol_found = true;
785                         if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
786                                 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
787                                 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
788                         } else {
789                                 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
790                                 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
791                                 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
792                         }
793                         break;
794                 }
795         }
796
797         if (!vol_found) {
798                 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
799                         if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
800                                 vol_found = true;
801                                 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
802                                         *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
803                                         *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
804                                 } else {
805                                         pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
806                                         *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
807                                         *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
808                                 }
809                                 break;
810                         }
811                 }
812
813                 if (!vol_found)
814                         pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
815         }
816
817         return 0;
818 }
819
820 static int ci_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
821                 pp_atomctrl_voltage_table_entry *tab,
822                 SMU7_Discrete_VoltageLevel *smc_voltage_tab)
823 {
824         int result;
825
826         result = ci_get_std_voltage_value_sidd(hwmgr, tab,
827                         &smc_voltage_tab->StdVoltageHiSidd,
828                         &smc_voltage_tab->StdVoltageLoSidd);
829         if (result) {
830                 smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
831                 smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
832         }
833
834         smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
835         CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
836         CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageLoSidd);
837
838         return 0;
839 }
840
841 static int ci_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
842                         SMU7_Discrete_DpmTable *table)
843 {
844         unsigned int count;
845         int result;
846         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
847
848         table->VddcLevelCount = data->vddc_voltage_table.count;
849         for (count = 0; count < table->VddcLevelCount; count++) {
850                 result = ci_populate_smc_voltage_table(hwmgr,
851                                 &(data->vddc_voltage_table.entries[count]),
852                                 &(table->VddcLevel[count]));
853                 PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
854
855                 /* GPIO voltage control */
856                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
857                         table->VddcLevel[count].Smio = (uint8_t) count;
858                         table->Smio[count] |= data->vddc_voltage_table.entries[count].smio_low;
859                         table->SmioMaskVddcVid |= data->vddc_voltage_table.entries[count].smio_low;
860                 } else {
861                         table->VddcLevel[count].Smio = 0;
862                 }
863         }
864
865         CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
866
867         return 0;
868 }
869
870 static int ci_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
871                         SMU7_Discrete_DpmTable *table)
872 {
873         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
874         uint32_t count;
875         int result;
876
877         table->VddciLevelCount = data->vddci_voltage_table.count;
878
879         for (count = 0; count < table->VddciLevelCount; count++) {
880                 result = ci_populate_smc_voltage_table(hwmgr,
881                                 &(data->vddci_voltage_table.entries[count]),
882                                 &(table->VddciLevel[count]));
883                 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
884                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
885                         table->VddciLevel[count].Smio = (uint8_t) count;
886                         table->Smio[count] |= data->vddci_voltage_table.entries[count].smio_low;
887                         table->SmioMaskVddciVid |= data->vddci_voltage_table.entries[count].smio_low;
888                 } else {
889                         table->VddciLevel[count].Smio = 0;
890                 }
891         }
892
893         CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
894
895         return 0;
896 }
897
898 static int ci_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
899                         SMU7_Discrete_DpmTable *table)
900 {
901         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
902         uint32_t count;
903         int result;
904
905         table->MvddLevelCount = data->mvdd_voltage_table.count;
906
907         for (count = 0; count < table->MvddLevelCount; count++) {
908                 result = ci_populate_smc_voltage_table(hwmgr,
909                                 &(data->mvdd_voltage_table.entries[count]),
910                                 &table->MvddLevel[count]);
911                 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
912                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
913                         table->MvddLevel[count].Smio = (uint8_t) count;
914                         table->Smio[count] |= data->mvdd_voltage_table.entries[count].smio_low;
915                         table->SmioMaskMvddVid |= data->mvdd_voltage_table.entries[count].smio_low;
916                 } else {
917                         table->MvddLevel[count].Smio = 0;
918                 }
919         }
920
921         CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
922
923         return 0;
924 }
925
926
927 static int ci_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
928         SMU7_Discrete_DpmTable *table)
929 {
930         int result;
931
932         result = ci_populate_smc_vddc_table(hwmgr, table);
933         PP_ASSERT_WITH_CODE(0 == result,
934                         "can not populate VDDC voltage table to SMC", return -EINVAL);
935
936         result = ci_populate_smc_vdd_ci_table(hwmgr, table);
937         PP_ASSERT_WITH_CODE(0 == result,
938                         "can not populate VDDCI voltage table to SMC", return -EINVAL);
939
940         result = ci_populate_smc_mvdd_table(hwmgr, table);
941         PP_ASSERT_WITH_CODE(0 == result,
942                         "can not populate MVDD voltage table to SMC", return -EINVAL);
943
944         return 0;
945 }
946
947 static int ci_populate_ulv_level(struct pp_hwmgr *hwmgr,
948                 struct SMU7_Discrete_Ulv *state)
949 {
950         uint32_t voltage_response_time, ulv_voltage;
951         int result;
952         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
953
954         state->CcPwrDynRm = 0;
955         state->CcPwrDynRm1 = 0;
956
957         result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
958         PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
959
960         if (ulv_voltage == 0) {
961                 data->ulv_supported = false;
962                 return 0;
963         }
964
965         if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
966                 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
967                 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
968                         state->VddcOffset = 0;
969                 else
970                         /* used in SMIO Mode. not implemented for now. this is backup only for CI. */
971                         state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
972         } else {
973                 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
974                 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
975                         state->VddcOffsetVid = 0;
976                 else  /* used in SVI2 Mode */
977                         state->VddcOffsetVid = (uint8_t)(
978                                         (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
979                                                 * VOLTAGE_VID_OFFSET_SCALE2
980                                                 / VOLTAGE_VID_OFFSET_SCALE1);
981         }
982         state->VddcPhase = 1;
983
984         CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
985         CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
986         CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
987
988         return 0;
989 }
990
991 static int ci_populate_ulv_state(struct pp_hwmgr *hwmgr,
992                  SMU7_Discrete_Ulv *ulv_level)
993 {
994         return ci_populate_ulv_level(hwmgr, ulv_level);
995 }
996
997 static int ci_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
998 {
999         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1000         struct smu7_dpm_table *dpm_table = &data->dpm_table;
1001         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1002         uint32_t i;
1003
1004 /* Index dpm_table->pcie_speed_table.count is reserved for PCIE boot level.*/
1005         for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1006                 table->LinkLevel[i].PcieGenSpeed  =
1007                         (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1008                 table->LinkLevel[i].PcieLaneCount =
1009                         (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
1010                 table->LinkLevel[i].EnabledForActivity = 1;
1011                 table->LinkLevel[i].DownT = PP_HOST_TO_SMC_UL(5);
1012                 table->LinkLevel[i].UpT = PP_HOST_TO_SMC_UL(30);
1013         }
1014
1015         smu_data->smc_state_table.LinkLevelCount =
1016                 (uint8_t)dpm_table->pcie_speed_table.count;
1017         data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1018                 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1019
1020         return 0;
1021 }
1022
1023 static int ci_calculate_mclk_params(
1024                 struct pp_hwmgr *hwmgr,
1025                 uint32_t memory_clock,
1026                 SMU7_Discrete_MemoryLevel *mclk,
1027                 bool strobe_mode,
1028                 bool dllStateOn
1029                 )
1030 {
1031         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1032         uint32_t  dll_cntl = data->clock_registers.vDLL_CNTL;
1033         uint32_t  mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1034         uint32_t  mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1035         uint32_t  mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1036         uint32_t  mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1037         uint32_t  mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1038         uint32_t  mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1039         uint32_t  mpll_ss1 = data->clock_registers.vMPLL_SS1;
1040         uint32_t  mpll_ss2 = data->clock_registers.vMPLL_SS2;
1041
1042         pp_atomctrl_memory_clock_param mpll_param;
1043         int result;
1044
1045         result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1046                                 memory_clock, &mpll_param, strobe_mode);
1047         PP_ASSERT_WITH_CODE(0 == result,
1048                 "Error retrieving Memory Clock Parameters from VBIOS.", return result);
1049
1050         mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1051
1052         mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1053                                                         MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1054         mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1055                                                         MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1056         mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1057                                                         MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1058
1059         mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1060                                                         MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1061
1062         if (data->is_memory_gddr5) {
1063                 mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1064                                                                 MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1065                 mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1066                                                                 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1067         }
1068
1069         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1070                         PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1071                 pp_atomctrl_internal_ss_info ss_info;
1072                 uint32_t freq_nom;
1073                 uint32_t tmp;
1074                 uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1075
1076                 /* for GDDR5 for all modes and DDR3 */
1077                 if (1 == mpll_param.qdr)
1078                         freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1079                 else
1080                         freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1081
1082                 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
1083                 tmp = (freq_nom / reference_clock);
1084                 tmp = tmp * tmp;
1085
1086                 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1087                         uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1088                         uint32_t clkv =
1089                                 (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1090                                                         ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1091
1092                         mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1093                         mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1094                 }
1095         }
1096
1097         mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1098                 MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1099         mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1100                 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1101         mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1102                 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1103
1104
1105         mclk->MclkFrequency   = memory_clock;
1106         mclk->MpllFuncCntl    = mpll_func_cntl;
1107         mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
1108         mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
1109         mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
1110         mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
1111         mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
1112         mclk->DllCntl         = dll_cntl;
1113         mclk->MpllSs1         = mpll_ss1;
1114         mclk->MpllSs2         = mpll_ss2;
1115
1116         return 0;
1117 }
1118
1119 static uint8_t ci_get_mclk_frequency_ratio(uint32_t memory_clock,
1120                 bool strobe_mode)
1121 {
1122         uint8_t mc_para_index;
1123
1124         if (strobe_mode) {
1125                 if (memory_clock < 12500)
1126                         mc_para_index = 0x00;
1127                 else if (memory_clock > 47500)
1128                         mc_para_index = 0x0f;
1129                 else
1130                         mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1131         } else {
1132                 if (memory_clock < 65000)
1133                         mc_para_index = 0x00;
1134                 else if (memory_clock > 135000)
1135                         mc_para_index = 0x0f;
1136                 else
1137                         mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1138         }
1139
1140         return mc_para_index;
1141 }
1142
1143 static uint8_t ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1144 {
1145         uint8_t mc_para_index;
1146
1147         if (memory_clock < 10000)
1148                 mc_para_index = 0;
1149         else if (memory_clock >= 80000)
1150                 mc_para_index = 0x0f;
1151         else
1152                 mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1153
1154         return mc_para_index;
1155 }
1156
1157 static int ci_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1158                                         uint32_t memory_clock, uint32_t *p_shed)
1159 {
1160         unsigned int i;
1161
1162         *p_shed = 1;
1163
1164         for (i = 0; i < pl->count; i++) {
1165                 if (memory_clock < pl->entries[i].Mclk) {
1166                         *p_shed = i;
1167                         break;
1168                 }
1169         }
1170
1171         return 0;
1172 }
1173
1174 static int ci_populate_single_memory_level(
1175                 struct pp_hwmgr *hwmgr,
1176                 uint32_t memory_clock,
1177                 SMU7_Discrete_MemoryLevel *memory_level
1178                 )
1179 {
1180         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1181         int result = 0;
1182         bool dll_state_on;
1183         uint32_t mclk_edc_wr_enable_threshold = 40000;
1184         uint32_t mclk_edc_enable_threshold = 40000;
1185         uint32_t mclk_strobe_mode_threshold = 40000;
1186
1187         if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
1188                 result = ci_get_dependency_volt_by_clk(hwmgr,
1189                         hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
1190                 PP_ASSERT_WITH_CODE((0 == result),
1191                         "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1192         }
1193
1194         if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
1195                 result = ci_get_dependency_volt_by_clk(hwmgr,
1196                                 hwmgr->dyn_state.vddci_dependency_on_mclk,
1197                                 memory_clock,
1198                                 &memory_level->MinVddci);
1199                 PP_ASSERT_WITH_CODE((0 == result),
1200                         "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
1201         }
1202
1203         if (NULL != hwmgr->dyn_state.mvdd_dependency_on_mclk) {
1204                 result = ci_get_dependency_volt_by_clk(hwmgr,
1205                                 hwmgr->dyn_state.mvdd_dependency_on_mclk,
1206                                 memory_clock,
1207                                 &memory_level->MinMvdd);
1208                 PP_ASSERT_WITH_CODE((0 == result),
1209                         "can not find MinVddci voltage value from memory MVDD voltage dependency table", return result);
1210         }
1211
1212         memory_level->MinVddcPhases = 1;
1213
1214         if (data->vddc_phase_shed_control) {
1215                 ci_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
1216                                 memory_clock, &memory_level->MinVddcPhases);
1217         }
1218
1219         memory_level->EnabledForThrottle = 1;
1220         memory_level->EnabledForActivity = 1;
1221         memory_level->UpH = data->current_profile_setting.mclk_up_hyst;
1222         memory_level->DownH = data->current_profile_setting.mclk_down_hyst;
1223         memory_level->VoltageDownH = 0;
1224
1225         /* Indicates maximum activity level for this performance level.*/
1226         memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1227         memory_level->StutterEnable = 0;
1228         memory_level->StrobeEnable = 0;
1229         memory_level->EdcReadEnable = 0;
1230         memory_level->EdcWriteEnable = 0;
1231         memory_level->RttEnable = 0;
1232
1233         /* default set to low watermark. Highest level will be set to high later.*/
1234         memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1235
1236         data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1237         data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1238
1239         /* stutter mode not support on ci */
1240
1241         /* decide strobe mode*/
1242         memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1243                 (memory_clock <= mclk_strobe_mode_threshold);
1244
1245         /* decide EDC mode and memory clock ratio*/
1246         if (data->is_memory_gddr5) {
1247                 memory_level->StrobeRatio = ci_get_mclk_frequency_ratio(memory_clock,
1248                                         memory_level->StrobeEnable);
1249
1250                 if ((mclk_edc_enable_threshold != 0) &&
1251                                 (memory_clock > mclk_edc_enable_threshold)) {
1252                         memory_level->EdcReadEnable = 1;
1253                 }
1254
1255                 if ((mclk_edc_wr_enable_threshold != 0) &&
1256                                 (memory_clock > mclk_edc_wr_enable_threshold)) {
1257                         memory_level->EdcWriteEnable = 1;
1258                 }
1259
1260                 if (memory_level->StrobeEnable) {
1261                         if (ci_get_mclk_frequency_ratio(memory_clock, 1) >=
1262                                         ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
1263                                 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1264                         else
1265                                 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1266                 } else
1267                         dll_state_on = data->dll_default_on;
1268         } else {
1269                 memory_level->StrobeRatio =
1270                         ci_get_ddr3_mclk_frequency_ratio(memory_clock);
1271                 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1272         }
1273
1274         result = ci_calculate_mclk_params(hwmgr,
1275                 memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1276
1277         if (0 == result) {
1278                 memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
1279                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
1280                 memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
1281                 memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
1282                 /* MCLK frequency in units of 10KHz*/
1283                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1284                 /* Indicates maximum activity level for this performance level.*/
1285                 CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1286                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1287                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1288                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1289                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1290                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1291                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1292                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1293                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1294                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1295         }
1296
1297         return result;
1298 }
1299
1300 static int ci_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1301 {
1302         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1303         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1304         struct smu7_dpm_table *dpm_table = &data->dpm_table;
1305         int result;
1306         struct amdgpu_device *adev = hwmgr->adev;
1307         uint32_t dev_id;
1308
1309         uint32_t level_array_address = smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
1310         uint32_t level_array_size = sizeof(SMU7_Discrete_MemoryLevel) * SMU7_MAX_LEVELS_MEMORY;
1311         SMU7_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
1312         uint32_t i;
1313
1314         memset(levels, 0x00, level_array_size);
1315
1316         for (i = 0; i < dpm_table->mclk_table.count; i++) {
1317                 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1318                         "can not populate memory level as memory clock is zero", return -EINVAL);
1319                 result = ci_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
1320                         &(smu_data->smc_state_table.MemoryLevel[i]));
1321                 if (0 != result)
1322                         return result;
1323         }
1324
1325         smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1326
1327         dev_id = adev->pdev->device;
1328
1329         if ((dpm_table->mclk_table.count >= 2)
1330                 && ((dev_id == 0x67B0) ||  (dev_id == 0x67B1))) {
1331                 smu_data->smc_state_table.MemoryLevel[1].MinVddci =
1332                                 smu_data->smc_state_table.MemoryLevel[0].MinVddci;
1333                 smu_data->smc_state_table.MemoryLevel[1].MinMvdd =
1334                                 smu_data->smc_state_table.MemoryLevel[0].MinMvdd;
1335         }
1336         smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1337         CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1338
1339         smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1340         data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1341         smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1342
1343         result = ci_copy_bytes_to_smc(hwmgr,
1344                 level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
1345                 SMC_RAM_END);
1346
1347         return result;
1348 }
1349
1350 static int ci_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
1351                                         SMU7_Discrete_VoltageLevel *voltage)
1352 {
1353         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1354
1355         uint32_t i = 0;
1356
1357         if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1358                 /* find mvdd value which clock is more than request */
1359                 for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
1360                         if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
1361                                 /* Always round to higher voltage. */
1362                                 voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
1363                                 break;
1364                         }
1365                 }
1366
1367                 PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
1368                         "MVDD Voltage is outside the supported range.", return -EINVAL);
1369
1370         } else {
1371                 return -EINVAL;
1372         }
1373
1374         return 0;
1375 }
1376
1377 static int ci_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1378         SMU7_Discrete_DpmTable *table)
1379 {
1380         int result = 0;
1381         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1382         struct pp_atomctrl_clock_dividers_vi dividers;
1383
1384         SMU7_Discrete_VoltageLevel voltage_level;
1385         uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1386         uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1387         uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
1388         uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;
1389
1390
1391         /* The ACPI state should not do DPM on DC (or ever).*/
1392         table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1393
1394         if (data->acpi_vddc)
1395                 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
1396         else
1397                 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
1398
1399         table->ACPILevel.MinVddcPhases = data->vddc_phase_shed_control ? 0 : 1;
1400         /* assign zero for now*/
1401         table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1402
1403         /* get the engine clock dividers for this clock value*/
1404         result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1405                 table->ACPILevel.SclkFrequency,  &dividers);
1406
1407         PP_ASSERT_WITH_CODE(result == 0,
1408                 "Error retrieving Engine Clock dividers from VBIOS.", return result);
1409
1410         /* divider ID for required SCLK*/
1411         table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1412         table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1413         table->ACPILevel.DeepSleepDivId = 0;
1414
1415         spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1416                                                         CG_SPLL_FUNC_CNTL,   SPLL_PWRON,     0);
1417         spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1418                                                         CG_SPLL_FUNC_CNTL,   SPLL_RESET,     1);
1419         spll_func_cntl_2    = PHM_SET_FIELD(spll_func_cntl_2,
1420                                                         CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL,   4);
1421
1422         table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1423         table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1424         table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1425         table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1426         table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1427         table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1428         table->ACPILevel.CcPwrDynRm = 0;
1429         table->ACPILevel.CcPwrDynRm1 = 0;
1430
1431         /* For various features to be enabled/disabled while this level is active.*/
1432         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1433         /* SCLK frequency in units of 10KHz*/
1434         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1435         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1436         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1437         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1438         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1439         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1440         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1441         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1442         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1443
1444
1445         /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1446         table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
1447         table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
1448
1449         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1450                 table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
1451         else {
1452                 if (data->acpi_vddci != 0)
1453                         table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
1454                 else
1455                         table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
1456         }
1457
1458         if (0 == ci_populate_mvdd_value(hwmgr, 0, &voltage_level))
1459                 table->MemoryACPILevel.MinMvdd =
1460                         PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1461         else
1462                 table->MemoryACPILevel.MinMvdd = 0;
1463
1464         /* Force reset on DLL*/
1465         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1466                 MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1467         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1468                 MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1469
1470         /* Disable DLL in ACPIState*/
1471         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1472                 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1473         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1474                 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1475
1476         /* Enable DLL bypass signal*/
1477         dll_cntl            = PHM_SET_FIELD(dll_cntl,
1478                 DLL_CNTL, MRDCK0_BYPASS, 0);
1479         dll_cntl            = PHM_SET_FIELD(dll_cntl,
1480                 DLL_CNTL, MRDCK1_BYPASS, 0);
1481
1482         table->MemoryACPILevel.DllCntl            =
1483                 PP_HOST_TO_SMC_UL(dll_cntl);
1484         table->MemoryACPILevel.MclkPwrmgtCntl     =
1485                 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1486         table->MemoryACPILevel.MpllAdFuncCntl     =
1487                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1488         table->MemoryACPILevel.MpllDqFuncCntl     =
1489                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1490         table->MemoryACPILevel.MpllFuncCntl       =
1491                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1492         table->MemoryACPILevel.MpllFuncCntl_1     =
1493                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1494         table->MemoryACPILevel.MpllFuncCntl_2     =
1495                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1496         table->MemoryACPILevel.MpllSs1            =
1497                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1498         table->MemoryACPILevel.MpllSs2            =
1499                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1500
1501         table->MemoryACPILevel.EnabledForThrottle = 0;
1502         table->MemoryACPILevel.EnabledForActivity = 0;
1503         table->MemoryACPILevel.UpH = 0;
1504         table->MemoryACPILevel.DownH = 100;
1505         table->MemoryACPILevel.VoltageDownH = 0;
1506         /* Indicates maximum activity level for this performance level.*/
1507         table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1508
1509         table->MemoryACPILevel.StutterEnable = 0;
1510         table->MemoryACPILevel.StrobeEnable = 0;
1511         table->MemoryACPILevel.EdcReadEnable = 0;
1512         table->MemoryACPILevel.EdcWriteEnable = 0;
1513         table->MemoryACPILevel.RttEnable = 0;
1514
1515         return result;
1516 }
1517
1518 static int ci_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1519                                         SMU7_Discrete_DpmTable *table)
1520 {
1521         int result = 0;
1522         uint8_t count;
1523         struct pp_atomctrl_clock_dividers_vi dividers;
1524         struct phm_uvd_clock_voltage_dependency_table *uvd_table =
1525                 hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
1526
1527         table->UvdLevelCount = (uint8_t)(uvd_table->count);
1528
1529         for (count = 0; count < table->UvdLevelCount; count++) {
1530                 table->UvdLevel[count].VclkFrequency =
1531                                         uvd_table->entries[count].vclk;
1532                 table->UvdLevel[count].DclkFrequency =
1533                                         uvd_table->entries[count].dclk;
1534                 table->UvdLevel[count].MinVddc =
1535                                         uvd_table->entries[count].v * VOLTAGE_SCALE;
1536                 table->UvdLevel[count].MinVddcPhases = 1;
1537
1538                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1539                                 table->UvdLevel[count].VclkFrequency, &dividers);
1540                 PP_ASSERT_WITH_CODE((0 == result),
1541                                 "can not find divide id for Vclk clock", return result);
1542
1543                 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1544
1545                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1546                                 table->UvdLevel[count].DclkFrequency, &dividers);
1547                 PP_ASSERT_WITH_CODE((0 == result),
1548                                 "can not find divide id for Dclk clock", return result);
1549
1550                 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1551                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1552                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1553                 CONVERT_FROM_HOST_TO_SMC_US(table->UvdLevel[count].MinVddc);
1554         }
1555
1556         return result;
1557 }
1558
1559 static int ci_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1560                 SMU7_Discrete_DpmTable *table)
1561 {
1562         int result = -EINVAL;
1563         uint8_t count;
1564         struct pp_atomctrl_clock_dividers_vi dividers;
1565         struct phm_vce_clock_voltage_dependency_table *vce_table =
1566                                 hwmgr->dyn_state.vce_clock_voltage_dependency_table;
1567
1568         table->VceLevelCount = (uint8_t)(vce_table->count);
1569         table->VceBootLevel = 0;
1570
1571         for (count = 0; count < table->VceLevelCount; count++) {
1572                 table->VceLevel[count].Frequency = vce_table->entries[count].evclk;
1573                 table->VceLevel[count].MinVoltage =
1574                                 vce_table->entries[count].v * VOLTAGE_SCALE;
1575                 table->VceLevel[count].MinPhases = 1;
1576
1577                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1578                                 table->VceLevel[count].Frequency, &dividers);
1579                 PP_ASSERT_WITH_CODE((0 == result),
1580                                 "can not find divide id for VCE engine clock",
1581                                 return result);
1582
1583                 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1584
1585                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1586                 CONVERT_FROM_HOST_TO_SMC_US(table->VceLevel[count].MinVoltage);
1587         }
1588         return result;
1589 }
1590
1591 static int ci_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1592                                         SMU7_Discrete_DpmTable *table)
1593 {
1594         int result = -EINVAL;
1595         uint8_t count;
1596         struct pp_atomctrl_clock_dividers_vi dividers;
1597         struct phm_acp_clock_voltage_dependency_table *acp_table =
1598                                 hwmgr->dyn_state.acp_clock_voltage_dependency_table;
1599
1600         table->AcpLevelCount = (uint8_t)(acp_table->count);
1601         table->AcpBootLevel = 0;
1602
1603         for (count = 0; count < table->AcpLevelCount; count++) {
1604                 table->AcpLevel[count].Frequency = acp_table->entries[count].acpclk;
1605                 table->AcpLevel[count].MinVoltage = acp_table->entries[count].v;
1606                 table->AcpLevel[count].MinPhases = 1;
1607
1608                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1609                                 table->AcpLevel[count].Frequency, &dividers);
1610                 PP_ASSERT_WITH_CODE((0 == result),
1611                                 "can not find divide id for engine clock", return result);
1612
1613                 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1614
1615                 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1616                 CONVERT_FROM_HOST_TO_SMC_US(table->AcpLevel[count].MinVoltage);
1617         }
1618         return result;
1619 }
1620
1621 static int ci_populate_memory_timing_parameters(
1622                 struct pp_hwmgr *hwmgr,
1623                 uint32_t engine_clock,
1624                 uint32_t memory_clock,
1625                 struct SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs
1626                 )
1627 {
1628         uint32_t dramTiming;
1629         uint32_t dramTiming2;
1630         uint32_t burstTime;
1631         int result;
1632
1633         result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1634                                 engine_clock, memory_clock);
1635
1636         PP_ASSERT_WITH_CODE(result == 0,
1637                 "Error calling VBIOS to set DRAM_TIMING.", return result);
1638
1639         dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1640         dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1641         burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1642
1643         arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
1644         arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1645         arb_regs->McArbBurstTime = (uint8_t)burstTime;
1646
1647         return 0;
1648 }
1649
1650 static int ci_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1651 {
1652         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1653         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1654         int result = 0;
1655         SMU7_Discrete_MCArbDramTimingTable  arb_regs;
1656         uint32_t i, j;
1657
1658         memset(&arb_regs, 0x00, sizeof(SMU7_Discrete_MCArbDramTimingTable));
1659
1660         for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1661                 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1662                         result = ci_populate_memory_timing_parameters
1663                                 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1664                                  data->dpm_table.mclk_table.dpm_levels[j].value,
1665                                  &arb_regs.entries[i][j]);
1666
1667                         if (0 != result)
1668                                 break;
1669                 }
1670         }
1671
1672         if (0 == result) {
1673                 result = ci_copy_bytes_to_smc(
1674                                 hwmgr,
1675                                 smu_data->arb_table_start,
1676                                 (uint8_t *)&arb_regs,
1677                                 sizeof(SMU7_Discrete_MCArbDramTimingTable),
1678                                 SMC_RAM_END
1679                                 );
1680         }
1681
1682         return result;
1683 }
1684
1685 static int ci_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1686                         SMU7_Discrete_DpmTable *table)
1687 {
1688         int result = 0;
1689         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1690         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1691
1692         table->GraphicsBootLevel = 0;
1693         table->MemoryBootLevel = 0;
1694
1695         /* find boot level from dpm table*/
1696         result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1697                         data->vbios_boot_state.sclk_bootup_value,
1698                         (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1699
1700         if (0 != result) {
1701                 smu_data->smc_state_table.GraphicsBootLevel = 0;
1702                 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
1703                 result = 0;
1704         }
1705
1706         result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1707                 data->vbios_boot_state.mclk_bootup_value,
1708                 (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1709
1710         if (0 != result) {
1711                 smu_data->smc_state_table.MemoryBootLevel = 0;
1712                 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
1713                 result = 0;
1714         }
1715
1716         table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
1717         table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
1718         table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1719
1720         return result;
1721 }
1722
1723 static int ci_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
1724                                  SMU7_Discrete_MCRegisters *mc_reg_table)
1725 {
1726         const struct ci_smumgr *smu_data = (struct ci_smumgr *)hwmgr->smu_backend;
1727
1728         uint32_t i, j;
1729
1730         for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
1731                 if (smu_data->mc_reg_table.validflag & 1<<j) {
1732                         PP_ASSERT_WITH_CODE(i < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE,
1733                                 "Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
1734                         mc_reg_table->address[i].s0 =
1735                                 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
1736                         mc_reg_table->address[i].s1 =
1737                                 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
1738                         i++;
1739                 }
1740         }
1741
1742         mc_reg_table->last = (uint8_t)i;
1743
1744         return 0;
1745 }
1746
1747 static void ci_convert_mc_registers(
1748         const struct ci_mc_reg_entry *entry,
1749         SMU7_Discrete_MCRegisterSet *data,
1750         uint32_t num_entries, uint32_t valid_flag)
1751 {
1752         uint32_t i, j;
1753
1754         for (i = 0, j = 0; j < num_entries; j++) {
1755                 if (valid_flag & 1<<j) {
1756                         data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
1757                         i++;
1758                 }
1759         }
1760 }
1761
1762 static int ci_convert_mc_reg_table_entry_to_smc(
1763                 struct pp_hwmgr *hwmgr,
1764                 const uint32_t memory_clock,
1765                 SMU7_Discrete_MCRegisterSet *mc_reg_table_data
1766                 )
1767 {
1768         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1769         uint32_t i = 0;
1770
1771         for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
1772                 if (memory_clock <=
1773                         smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
1774                         break;
1775                 }
1776         }
1777
1778         if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
1779                 --i;
1780
1781         ci_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
1782                                 mc_reg_table_data, smu_data->mc_reg_table.last,
1783                                 smu_data->mc_reg_table.validflag);
1784
1785         return 0;
1786 }
1787
1788 static int ci_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
1789                 SMU7_Discrete_MCRegisters *mc_regs)
1790 {
1791         int result = 0;
1792         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1793         int res;
1794         uint32_t i;
1795
1796         for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1797                 res = ci_convert_mc_reg_table_entry_to_smc(
1798                                 hwmgr,
1799                                 data->dpm_table.mclk_table.dpm_levels[i].value,
1800                                 &mc_regs->data[i]
1801                                 );
1802
1803                 if (0 != res)
1804                         result = res;
1805         }
1806
1807         return result;
1808 }
1809
1810 static int ci_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
1811 {
1812         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1813         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1814         uint32_t address;
1815         int32_t result;
1816
1817         if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
1818                 return 0;
1819
1820
1821         memset(&smu_data->mc_regs, 0, sizeof(SMU7_Discrete_MCRegisters));
1822
1823         result = ci_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
1824
1825         if (result != 0)
1826                 return result;
1827
1828         address = smu_data->mc_reg_table_start + (uint32_t)offsetof(SMU7_Discrete_MCRegisters, data[0]);
1829
1830         return  ci_copy_bytes_to_smc(hwmgr, address,
1831                                  (uint8_t *)&smu_data->mc_regs.data[0],
1832                                 sizeof(SMU7_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
1833                                 SMC_RAM_END);
1834 }
1835
1836 static int ci_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
1837 {
1838         int result;
1839         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1840
1841         memset(&smu_data->mc_regs, 0x00, sizeof(SMU7_Discrete_MCRegisters));
1842         result = ci_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
1843         PP_ASSERT_WITH_CODE(0 == result,
1844                 "Failed to initialize MCRegTable for the MC register addresses!", return result;);
1845
1846         result = ci_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
1847         PP_ASSERT_WITH_CODE(0 == result,
1848                 "Failed to initialize MCRegTable for driver state!", return result;);
1849
1850         return ci_copy_bytes_to_smc(hwmgr, smu_data->mc_reg_table_start,
1851                         (uint8_t *)&smu_data->mc_regs, sizeof(SMU7_Discrete_MCRegisters), SMC_RAM_END);
1852 }
1853
1854 static int ci_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1855 {
1856         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1857         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1858         uint8_t count, level;
1859
1860         count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
1861
1862         for (level = 0; level < count; level++) {
1863                 if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
1864                          >= data->vbios_boot_state.sclk_bootup_value) {
1865                         smu_data->smc_state_table.GraphicsBootLevel = level;
1866                         break;
1867                 }
1868         }
1869
1870         count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
1871
1872         for (level = 0; level < count; level++) {
1873                 if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
1874                         >= data->vbios_boot_state.mclk_bootup_value) {
1875                         smu_data->smc_state_table.MemoryBootLevel = level;
1876                         break;
1877                 }
1878         }
1879
1880         return 0;
1881 }
1882
1883 static int ci_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
1884                                             SMU7_Discrete_DpmTable *table)
1885 {
1886         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1887
1888         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1889                 table->SVI2Enable = 1;
1890         else
1891                 table->SVI2Enable = 0;
1892         return 0;
1893 }
1894
1895 static int ci_start_smc(struct pp_hwmgr *hwmgr)
1896 {
1897         /* set smc instruct start point at 0x0 */
1898         ci_program_jump_on_start(hwmgr);
1899
1900         /* enable smc clock */
1901         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
1902
1903         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0);
1904
1905         PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
1906                                  INTERRUPTS_ENABLED, 1);
1907
1908         return 0;
1909 }
1910
1911 static int ci_populate_vr_config(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
1912 {
1913         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1914         uint16_t config;
1915
1916         config = VR_SVI2_PLANE_1;
1917         table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1918
1919         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1920                 config = VR_SVI2_PLANE_2;
1921                 table->VRConfig |= config;
1922         } else {
1923                 pr_info("VDDCshould be on SVI2 controller!");
1924         }
1925
1926         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1927                 config = VR_SVI2_PLANE_2;
1928                 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1929         } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1930                 config = VR_SMIO_PATTERN_1;
1931                 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1932         }
1933
1934         if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1935                 config = VR_SMIO_PATTERN_2;
1936                 table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
1937         }
1938
1939         return 0;
1940 }
1941
1942 static int ci_init_smc_table(struct pp_hwmgr *hwmgr)
1943 {
1944         int result;
1945         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1946         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1947         SMU7_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1948         struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1949         u32 i;
1950
1951         ci_initialize_power_tune_defaults(hwmgr);
1952         memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
1953
1954         if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1955                 ci_populate_smc_voltage_tables(hwmgr, table);
1956
1957         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1958                         PHM_PlatformCaps_AutomaticDCTransition))
1959                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1960
1961
1962         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1963                         PHM_PlatformCaps_StepVddc))
1964                 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1965
1966         if (data->is_memory_gddr5)
1967                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1968
1969         if (data->ulv_supported) {
1970                 result = ci_populate_ulv_state(hwmgr, &(table->Ulv));
1971                 PP_ASSERT_WITH_CODE(0 == result,
1972                         "Failed to initialize ULV state!", return result);
1973
1974                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1975                         ixCG_ULV_PARAMETER, 0x40035);
1976         }
1977
1978         result = ci_populate_all_graphic_levels(hwmgr);
1979         PP_ASSERT_WITH_CODE(0 == result,
1980                 "Failed to initialize Graphics Level!", return result);
1981
1982         result = ci_populate_all_memory_levels(hwmgr);
1983         PP_ASSERT_WITH_CODE(0 == result,
1984                 "Failed to initialize Memory Level!", return result);
1985
1986         result = ci_populate_smc_link_level(hwmgr, table);
1987         PP_ASSERT_WITH_CODE(0 == result,
1988                 "Failed to initialize Link Level!", return result);
1989
1990         result = ci_populate_smc_acpi_level(hwmgr, table);
1991         PP_ASSERT_WITH_CODE(0 == result,
1992                 "Failed to initialize ACPI Level!", return result);
1993
1994         result = ci_populate_smc_vce_level(hwmgr, table);
1995         PP_ASSERT_WITH_CODE(0 == result,
1996                 "Failed to initialize VCE Level!", return result);
1997
1998         result = ci_populate_smc_acp_level(hwmgr, table);
1999         PP_ASSERT_WITH_CODE(0 == result,
2000                 "Failed to initialize ACP Level!", return result);
2001
2002         /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
2003         /* need to populate the  ARB settings for the initial state. */
2004         result = ci_program_memory_timing_parameters(hwmgr);
2005         PP_ASSERT_WITH_CODE(0 == result,
2006                 "Failed to Write ARB settings for the initial state.", return result);
2007
2008         result = ci_populate_smc_uvd_level(hwmgr, table);
2009         PP_ASSERT_WITH_CODE(0 == result,
2010                 "Failed to initialize UVD Level!", return result);
2011
2012         table->UvdBootLevel  = 0;
2013         table->VceBootLevel  = 0;
2014         table->AcpBootLevel  = 0;
2015         table->SamuBootLevel  = 0;
2016
2017         table->GraphicsBootLevel = 0;
2018         table->MemoryBootLevel = 0;
2019
2020         result = ci_populate_smc_boot_level(hwmgr, table);
2021         PP_ASSERT_WITH_CODE(0 == result,
2022                 "Failed to initialize Boot Level!", return result);
2023
2024         result = ci_populate_smc_initial_state(hwmgr);
2025         PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
2026
2027         result = ci_populate_bapm_parameters_in_dpm_table(hwmgr);
2028         PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
2029
2030         table->UVDInterval = 1;
2031         table->VCEInterval = 1;
2032         table->ACPInterval = 1;
2033         table->SAMUInterval = 1;
2034         table->GraphicsVoltageChangeEnable  = 1;
2035         table->GraphicsThermThrottleEnable  = 1;
2036         table->GraphicsInterval = 1;
2037         table->VoltageInterval  = 1;
2038         table->ThermalInterval  = 1;
2039
2040         table->TemperatureLimitHigh =
2041                 (data->thermal_temp_setting.temperature_high *
2042                  SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2043         table->TemperatureLimitLow =
2044                 (data->thermal_temp_setting.temperature_low *
2045                 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2046
2047         table->MemoryVoltageChangeEnable  = 1;
2048         table->MemoryInterval  = 1;
2049         table->VoltageResponseTime  = 0;
2050         table->VddcVddciDelta = 4000;
2051         table->PhaseResponseTime  = 0;
2052         table->MemoryThermThrottleEnable  = 1;
2053
2054         PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
2055                         "There must be 1 or more PCIE levels defined in PPTable.",
2056                         return -EINVAL);
2057
2058         table->PCIeBootLinkLevel = (uint8_t)data->dpm_table.pcie_speed_table.count;
2059         table->PCIeGenInterval = 1;
2060
2061         result = ci_populate_vr_config(hwmgr, table);
2062         PP_ASSERT_WITH_CODE(0 == result,
2063                         "Failed to populate VRConfig setting!", return result);
2064         data->vr_config = table->VRConfig;
2065
2066         ci_populate_smc_svi2_config(hwmgr, table);
2067
2068         for (i = 0; i < SMU7_MAX_ENTRIES_SMIO; i++)
2069                 CONVERT_FROM_HOST_TO_SMC_UL(table->Smio[i]);
2070
2071         table->ThermGpio  = 17;
2072         table->SclkStepSize = 0x4000;
2073         if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2074                 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2075                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2076                                 PHM_PlatformCaps_RegulatorHot);
2077         } else {
2078                 table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2079                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2080                                 PHM_PlatformCaps_RegulatorHot);
2081         }
2082
2083         table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2084
2085         CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2086         CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2087         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
2088         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
2089         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
2090         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
2091         CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2092         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2093         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2094         table->VddcVddciDelta = PP_HOST_TO_SMC_US(table->VddcVddciDelta);
2095         CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2096         CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2097
2098         table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
2099         table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
2100         table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
2101
2102         /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2103         result = ci_copy_bytes_to_smc(hwmgr, smu_data->dpm_table_start +
2104                                         offsetof(SMU7_Discrete_DpmTable, SystemFlags),
2105                                         (uint8_t *)&(table->SystemFlags),
2106                                         sizeof(SMU7_Discrete_DpmTable)-3 * sizeof(SMU7_PIDController),
2107                                         SMC_RAM_END);
2108
2109         PP_ASSERT_WITH_CODE(0 == result,
2110                 "Failed to upload dpm data to SMC memory!", return result;);
2111
2112         result = ci_populate_initial_mc_reg_table(hwmgr);
2113         PP_ASSERT_WITH_CODE((0 == result),
2114                 "Failed to populate initialize MC Reg table!", return result);
2115
2116         result = ci_populate_pm_fuses(hwmgr);
2117         PP_ASSERT_WITH_CODE(0 == result,
2118                         "Failed to  populate PM fuses to SMC memory!", return result);
2119
2120         ci_start_smc(hwmgr);
2121
2122         return 0;
2123 }
2124
2125 static int ci_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2126 {
2127         struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2128         SMU7_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2129         uint32_t duty100;
2130         uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2131         uint16_t fdo_min, slope1, slope2;
2132         uint32_t reference_clock;
2133         int res;
2134         uint64_t tmp64;
2135
2136         if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
2137                 return 0;
2138
2139         if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2140                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2141                         PHM_PlatformCaps_MicrocodeFanControl);
2142                 return 0;
2143         }
2144
2145         if (0 == ci_data->fan_table_start) {
2146                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2147                 return 0;
2148         }
2149
2150         duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
2151
2152         if (0 == duty100) {
2153                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2154                 return 0;
2155         }
2156
2157         tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2158         do_div(tmp64, 10000);
2159         fdo_min = (uint16_t)tmp64;
2160
2161         t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2162         t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2163
2164         pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2165         pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2166
2167         slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2168         slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2169
2170         fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2171         fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2172         fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2173
2174         fan_table.Slope1 = cpu_to_be16(slope1);
2175         fan_table.Slope2 = cpu_to_be16(slope2);
2176
2177         fan_table.FdoMin = cpu_to_be16(fdo_min);
2178
2179         fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2180
2181         fan_table.HystUp = cpu_to_be16(1);
2182
2183         fan_table.HystSlope = cpu_to_be16(1);
2184
2185         fan_table.TempRespLim = cpu_to_be16(5);
2186
2187         reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2188
2189         fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2190
2191         fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2192
2193         fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2194
2195         res = ci_copy_bytes_to_smc(hwmgr, ci_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
2196
2197         return res;
2198 }
2199
2200 static int ci_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2201 {
2202         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2203
2204         if (data->need_update_smu7_dpm_table &
2205                         (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK))
2206                 return ci_program_memory_timing_parameters(hwmgr);
2207
2208         return 0;
2209 }
2210
2211 static int ci_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2212 {
2213         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2214         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2215
2216         int result = 0;
2217         uint32_t low_sclk_interrupt_threshold = 0;
2218
2219         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2220                         PHM_PlatformCaps_SclkThrottleLowNotification)
2221                 && (data->low_sclk_interrupt_threshold != 0)) {
2222                 low_sclk_interrupt_threshold =
2223                                 data->low_sclk_interrupt_threshold;
2224
2225                 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2226
2227                 result = ci_copy_bytes_to_smc(
2228                                 hwmgr,
2229                                 smu_data->dpm_table_start +
2230                                 offsetof(SMU7_Discrete_DpmTable,
2231                                         LowSclkInterruptT),
2232                                 (uint8_t *)&low_sclk_interrupt_threshold,
2233                                 sizeof(uint32_t),
2234                                 SMC_RAM_END);
2235         }
2236
2237         result = ci_update_and_upload_mc_reg_table(hwmgr);
2238
2239         PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
2240
2241         result = ci_program_mem_timing_parameters(hwmgr);
2242         PP_ASSERT_WITH_CODE((result == 0),
2243                         "Failed to program memory timing parameters!",
2244                         );
2245
2246         return result;
2247 }
2248
2249 static uint32_t ci_get_offsetof(uint32_t type, uint32_t member)
2250 {
2251         switch (type) {
2252         case SMU_SoftRegisters:
2253                 switch (member) {
2254                 case HandshakeDisables:
2255                         return offsetof(SMU7_SoftRegisters, HandshakeDisables);
2256                 case VoltageChangeTimeout:
2257                         return offsetof(SMU7_SoftRegisters, VoltageChangeTimeout);
2258                 case AverageGraphicsActivity:
2259                         return offsetof(SMU7_SoftRegisters, AverageGraphicsA);
2260                 case AverageMemoryActivity:
2261                         return offsetof(SMU7_SoftRegisters, AverageMemoryA);
2262                 case PreVBlankGap:
2263                         return offsetof(SMU7_SoftRegisters, PreVBlankGap);
2264                 case VBlankTimeout:
2265                         return offsetof(SMU7_SoftRegisters, VBlankTimeout);
2266                 case DRAM_LOG_ADDR_H:
2267                         return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_H);
2268                 case DRAM_LOG_ADDR_L:
2269                         return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_L);
2270                 case DRAM_LOG_PHY_ADDR_H:
2271                         return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2272                 case DRAM_LOG_PHY_ADDR_L:
2273                         return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2274                 case DRAM_LOG_BUFF_SIZE:
2275                         return offsetof(SMU7_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2276                 }
2277                 break;
2278         case SMU_Discrete_DpmTable:
2279                 switch (member) {
2280                 case LowSclkInterruptThreshold:
2281                         return offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT);
2282                 }
2283                 break;
2284         }
2285         pr_debug("can't get the offset of type %x member %x\n", type, member);
2286         return 0;
2287 }
2288
2289 static uint32_t ci_get_mac_definition(uint32_t value)
2290 {
2291         switch (value) {
2292         case SMU_MAX_LEVELS_GRAPHICS:
2293                 return SMU7_MAX_LEVELS_GRAPHICS;
2294         case SMU_MAX_LEVELS_MEMORY:
2295                 return SMU7_MAX_LEVELS_MEMORY;
2296         case SMU_MAX_LEVELS_LINK:
2297                 return SMU7_MAX_LEVELS_LINK;
2298         case SMU_MAX_ENTRIES_SMIO:
2299                 return SMU7_MAX_ENTRIES_SMIO;
2300         case SMU_MAX_LEVELS_VDDC:
2301                 return SMU7_MAX_LEVELS_VDDC;
2302         case SMU_MAX_LEVELS_VDDCI:
2303                 return SMU7_MAX_LEVELS_VDDCI;
2304         case SMU_MAX_LEVELS_MVDD:
2305                 return SMU7_MAX_LEVELS_MVDD;
2306         }
2307
2308         pr_debug("can't get the mac of %x\n", value);
2309         return 0;
2310 }
2311
2312 static int ci_load_smc_ucode(struct pp_hwmgr *hwmgr)
2313 {
2314         uint32_t byte_count, start_addr;
2315         uint8_t *src;
2316         uint32_t data;
2317
2318         struct cgs_firmware_info info = {0};
2319
2320         cgs_get_firmware_info(hwmgr->device, CGS_UCODE_ID_SMU, &info);
2321
2322         hwmgr->is_kicker = info.is_kicker;
2323         hwmgr->smu_version = info.version;
2324         byte_count = info.image_size;
2325         src = (uint8_t *)info.kptr;
2326         start_addr = info.ucode_start_address;
2327
2328         if  (byte_count > SMC_RAM_END) {
2329                 pr_err("SMC address is beyond the SMC RAM area.\n");
2330                 return -EINVAL;
2331         }
2332
2333         cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
2334         PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
2335
2336         for (; byte_count >= 4; byte_count -= 4) {
2337                 data = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
2338                 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
2339                 src += 4;
2340         }
2341         PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
2342
2343         if (0 != byte_count) {
2344                 pr_err("SMC size must be divisible by 4\n");
2345                 return -EINVAL;
2346         }
2347
2348         return 0;
2349 }
2350
2351 static int ci_upload_firmware(struct pp_hwmgr *hwmgr)
2352 {
2353         if (ci_is_smc_ram_running(hwmgr)) {
2354                 pr_info("smc is running, no need to load smc firmware\n");
2355                 return 0;
2356         }
2357         PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
2358                         boot_seq_done, 1);
2359         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_MISC_CNTL,
2360                         pre_fetcher_en, 1);
2361
2362         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 1);
2363         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1);
2364         return ci_load_smc_ucode(hwmgr);
2365 }
2366
2367 static int ci_process_firmware_header(struct pp_hwmgr *hwmgr)
2368 {
2369         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2370         struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2371
2372         uint32_t tmp = 0;
2373         int result;
2374         bool error = false;
2375
2376         if (ci_upload_firmware(hwmgr))
2377                 return -EINVAL;
2378
2379         result = ci_read_smc_sram_dword(hwmgr,
2380                                 SMU7_FIRMWARE_HEADER_LOCATION +
2381                                 offsetof(SMU7_Firmware_Header, DpmTable),
2382                                 &tmp, SMC_RAM_END);
2383
2384         if (0 == result)
2385                 ci_data->dpm_table_start = tmp;
2386
2387         error |= (0 != result);
2388
2389         result = ci_read_smc_sram_dword(hwmgr,
2390                                 SMU7_FIRMWARE_HEADER_LOCATION +
2391                                 offsetof(SMU7_Firmware_Header, SoftRegisters),
2392                                 &tmp, SMC_RAM_END);
2393
2394         if (0 == result) {
2395                 data->soft_regs_start = tmp;
2396                 ci_data->soft_regs_start = tmp;
2397         }
2398
2399         error |= (0 != result);
2400
2401         result = ci_read_smc_sram_dword(hwmgr,
2402                                 SMU7_FIRMWARE_HEADER_LOCATION +
2403                                 offsetof(SMU7_Firmware_Header, mcRegisterTable),
2404                                 &tmp, SMC_RAM_END);
2405
2406         if (0 == result)
2407                 ci_data->mc_reg_table_start = tmp;
2408
2409         result = ci_read_smc_sram_dword(hwmgr,
2410                                 SMU7_FIRMWARE_HEADER_LOCATION +
2411                                 offsetof(SMU7_Firmware_Header, FanTable),
2412                                 &tmp, SMC_RAM_END);
2413
2414         if (0 == result)
2415                 ci_data->fan_table_start = tmp;
2416
2417         error |= (0 != result);
2418
2419         result = ci_read_smc_sram_dword(hwmgr,
2420                                 SMU7_FIRMWARE_HEADER_LOCATION +
2421                                 offsetof(SMU7_Firmware_Header, mcArbDramTimingTable),
2422                                 &tmp, SMC_RAM_END);
2423
2424         if (0 == result)
2425                 ci_data->arb_table_start = tmp;
2426
2427         error |= (0 != result);
2428
2429         result = ci_read_smc_sram_dword(hwmgr,
2430                                 SMU7_FIRMWARE_HEADER_LOCATION +
2431                                 offsetof(SMU7_Firmware_Header, Version),
2432                                 &tmp, SMC_RAM_END);
2433
2434         if (0 == result)
2435                 hwmgr->microcode_version_info.SMC = tmp;
2436
2437         error |= (0 != result);
2438
2439         return error ? 1 : 0;
2440 }
2441
2442 static uint8_t ci_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2443 {
2444         return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2445 }
2446
2447 static bool ci_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2448 {
2449         bool result = true;
2450
2451         switch (in_reg) {
2452         case  mmMC_SEQ_RAS_TIMING:
2453                 *out_reg = mmMC_SEQ_RAS_TIMING_LP;
2454                 break;
2455
2456         case  mmMC_SEQ_DLL_STBY:
2457                 *out_reg = mmMC_SEQ_DLL_STBY_LP;
2458                 break;
2459
2460         case  mmMC_SEQ_G5PDX_CMD0:
2461                 *out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2462                 break;
2463
2464         case  mmMC_SEQ_G5PDX_CMD1:
2465                 *out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2466                 break;
2467
2468         case  mmMC_SEQ_G5PDX_CTRL:
2469                 *out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2470                 break;
2471
2472         case mmMC_SEQ_CAS_TIMING:
2473                 *out_reg = mmMC_SEQ_CAS_TIMING_LP;
2474                 break;
2475
2476         case mmMC_SEQ_MISC_TIMING:
2477                 *out_reg = mmMC_SEQ_MISC_TIMING_LP;
2478                 break;
2479
2480         case mmMC_SEQ_MISC_TIMING2:
2481                 *out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2482                 break;
2483
2484         case mmMC_SEQ_PMG_DVS_CMD:
2485                 *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2486                 break;
2487
2488         case mmMC_SEQ_PMG_DVS_CTL:
2489                 *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2490                 break;
2491
2492         case mmMC_SEQ_RD_CTL_D0:
2493                 *out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2494                 break;
2495
2496         case mmMC_SEQ_RD_CTL_D1:
2497                 *out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2498                 break;
2499
2500         case mmMC_SEQ_WR_CTL_D0:
2501                 *out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2502                 break;
2503
2504         case mmMC_SEQ_WR_CTL_D1:
2505                 *out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2506                 break;
2507
2508         case mmMC_PMG_CMD_EMRS:
2509                 *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2510                 break;
2511
2512         case mmMC_PMG_CMD_MRS:
2513                 *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2514                 break;
2515
2516         case mmMC_PMG_CMD_MRS1:
2517                 *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2518                 break;
2519
2520         case mmMC_SEQ_PMG_TIMING:
2521                 *out_reg = mmMC_SEQ_PMG_TIMING_LP;
2522                 break;
2523
2524         case mmMC_PMG_CMD_MRS2:
2525                 *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2526                 break;
2527
2528         case mmMC_SEQ_WR_CTL_2:
2529                 *out_reg = mmMC_SEQ_WR_CTL_2_LP;
2530                 break;
2531
2532         default:
2533                 result = false;
2534                 break;
2535         }
2536
2537         return result;
2538 }
2539
2540 static int ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table)
2541 {
2542         uint32_t i;
2543         uint16_t address;
2544
2545         for (i = 0; i < table->last; i++) {
2546                 table->mc_reg_address[i].s0 =
2547                         ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
2548                         ? address : table->mc_reg_address[i].s1;
2549         }
2550         return 0;
2551 }
2552
2553 static int ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2554                                         struct ci_mc_reg_table *ni_table)
2555 {
2556         uint8_t i, j;
2557
2558         PP_ASSERT_WITH_CODE((table->last <= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2559                 "Invalid VramInfo table.", return -EINVAL);
2560         PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2561                 "Invalid VramInfo table.", return -EINVAL);
2562
2563         for (i = 0; i < table->last; i++)
2564                 ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2565
2566         ni_table->last = table->last;
2567
2568         for (i = 0; i < table->num_entries; i++) {
2569                 ni_table->mc_reg_table_entry[i].mclk_max =
2570                         table->mc_reg_table_entry[i].mclk_max;
2571                 for (j = 0; j < table->last; j++) {
2572                         ni_table->mc_reg_table_entry[i].mc_data[j] =
2573                                 table->mc_reg_table_entry[i].mc_data[j];
2574                 }
2575         }
2576
2577         ni_table->num_entries = table->num_entries;
2578
2579         return 0;
2580 }
2581
2582 static int ci_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2583                                         struct ci_mc_reg_table *table)
2584 {
2585         uint8_t i, j, k;
2586         uint32_t temp_reg;
2587         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2588
2589         for (i = 0, j = table->last; i < table->last; i++) {
2590                 PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2591                         "Invalid VramInfo table.", return -EINVAL);
2592
2593                 switch (table->mc_reg_address[i].s1) {
2594
2595                 case mmMC_SEQ_MISC1:
2596                         temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
2597                         table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2598                         table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2599                         for (k = 0; k < table->num_entries; k++) {
2600                                 table->mc_reg_table_entry[k].mc_data[j] =
2601                                         ((temp_reg & 0xffff0000)) |
2602                                         ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2603                         }
2604                         j++;
2605
2606                         PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2607                                 "Invalid VramInfo table.", return -EINVAL);
2608                         temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
2609                         table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
2610                         table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
2611                         for (k = 0; k < table->num_entries; k++) {
2612                                 table->mc_reg_table_entry[k].mc_data[j] =
2613                                         (temp_reg & 0xffff0000) |
2614                                         (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2615
2616                                 if (!data->is_memory_gddr5)
2617                                         table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
2618                         }
2619                         j++;
2620
2621                         if (!data->is_memory_gddr5) {
2622                                 PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2623                                         "Invalid VramInfo table.", return -EINVAL);
2624                                 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
2625                                 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
2626                                 for (k = 0; k < table->num_entries; k++) {
2627                                         table->mc_reg_table_entry[k].mc_data[j] =
2628                                                 (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
2629                                 }
2630                                 j++;
2631                         }
2632
2633                         break;
2634
2635                 case mmMC_SEQ_RESERVE_M:
2636                         temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
2637                         table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
2638                         table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
2639                         for (k = 0; k < table->num_entries; k++) {
2640                                 table->mc_reg_table_entry[k].mc_data[j] =
2641                                         (temp_reg & 0xffff0000) |
2642                                         (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2643                         }
2644                         j++;
2645                         break;
2646
2647                 default:
2648                         break;
2649                 }
2650
2651         }
2652
2653         table->last = j;
2654
2655         return 0;
2656 }
2657
2658 static int ci_set_valid_flag(struct ci_mc_reg_table *table)
2659 {
2660         uint8_t i, j;
2661
2662         for (i = 0; i < table->last; i++) {
2663                 for (j = 1; j < table->num_entries; j++) {
2664                         if (table->mc_reg_table_entry[j-1].mc_data[i] !=
2665                                 table->mc_reg_table_entry[j].mc_data[i]) {
2666                                 table->validflag |= (1 << i);
2667                                 break;
2668                         }
2669                 }
2670         }
2671
2672         return 0;
2673 }
2674
2675 static int ci_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2676 {
2677         int result;
2678         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2679         pp_atomctrl_mc_reg_table *table;
2680         struct ci_mc_reg_table *ni_table = &smu_data->mc_reg_table;
2681         uint8_t module_index = ci_get_memory_modile_index(hwmgr);
2682
2683         table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
2684
2685         if (NULL == table)
2686                 return -ENOMEM;
2687
2688         /* Program additional LP registers that are no longer programmed by VBIOS */
2689         cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2690         cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2691         cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
2692         cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
2693         cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
2694         cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
2695         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
2696         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
2697         cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
2698         cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2699         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
2700         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
2701         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
2702         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
2703         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2704         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2705         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2706         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2707         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
2708         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
2709
2710         result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
2711
2712         if (0 == result)
2713                 result = ci_copy_vbios_smc_reg_table(table, ni_table);
2714
2715         if (0 == result) {
2716                 ci_set_s0_mc_reg_index(ni_table);
2717                 result = ci_set_mc_special_registers(hwmgr, ni_table);
2718         }
2719
2720         if (0 == result)
2721                 ci_set_valid_flag(ni_table);
2722
2723         kfree(table);
2724
2725         return result;
2726 }
2727
2728 static bool ci_is_dpm_running(struct pp_hwmgr *hwmgr)
2729 {
2730         return ci_is_smc_ram_running(hwmgr);
2731 }
2732
2733 static int ci_smu_init(struct pp_hwmgr *hwmgr)
2734 {
2735         struct ci_smumgr *ci_priv = NULL;
2736
2737         ci_priv = kzalloc(sizeof(struct ci_smumgr), GFP_KERNEL);
2738
2739         if (ci_priv == NULL)
2740                 return -ENOMEM;
2741
2742         hwmgr->smu_backend = ci_priv;
2743
2744         return 0;
2745 }
2746
2747 static int ci_smu_fini(struct pp_hwmgr *hwmgr)
2748 {
2749         kfree(hwmgr->smu_backend);
2750         hwmgr->smu_backend = NULL;
2751         return 0;
2752 }
2753
2754 static int ci_start_smu(struct pp_hwmgr *hwmgr)
2755 {
2756         return 0;
2757 }
2758
2759 static int ci_update_dpm_settings(struct pp_hwmgr *hwmgr,
2760                                 void *profile_setting)
2761 {
2762         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2763         struct ci_smumgr *smu_data = (struct ci_smumgr *)
2764                         (hwmgr->smu_backend);
2765         struct profile_mode_setting *setting;
2766         struct SMU7_Discrete_GraphicsLevel *levels =
2767                         smu_data->smc_state_table.GraphicsLevel;
2768         uint32_t array = smu_data->dpm_table_start +
2769                         offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
2770
2771         uint32_t mclk_array = smu_data->dpm_table_start +
2772                         offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
2773         struct SMU7_Discrete_MemoryLevel *mclk_levels =
2774                         smu_data->smc_state_table.MemoryLevel;
2775         uint32_t i;
2776         uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
2777
2778         if (profile_setting == NULL)
2779                 return -EINVAL;
2780
2781         setting = (struct profile_mode_setting *)profile_setting;
2782
2783         if (setting->bupdate_sclk) {
2784                 if (!data->sclk_dpm_key_disabled)
2785                         smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel, NULL);
2786                 for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
2787                         if (levels[i].ActivityLevel !=
2788                                 cpu_to_be16(setting->sclk_activity)) {
2789                                 levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
2790
2791                                 clk_activity_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2792                                                 + offsetof(SMU7_Discrete_GraphicsLevel, ActivityLevel);
2793                                 offset = clk_activity_offset & ~0x3;
2794                                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2795                                 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
2796                                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2797
2798                         }
2799                         if (levels[i].UpH != setting->sclk_up_hyst ||
2800                                 levels[i].DownH != setting->sclk_down_hyst) {
2801                                 levels[i].UpH = setting->sclk_up_hyst;
2802                                 levels[i].DownH = setting->sclk_down_hyst;
2803                                 up_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2804                                                 + offsetof(SMU7_Discrete_GraphicsLevel, UpH);
2805                                 down_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2806                                                 + offsetof(SMU7_Discrete_GraphicsLevel, DownH);
2807                                 offset = up_hyst_offset & ~0x3;
2808                                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2809                                 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpH, sizeof(uint8_t));
2810                                 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownH, sizeof(uint8_t));
2811                                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2812                         }
2813                 }
2814                 if (!data->sclk_dpm_key_disabled)
2815                         smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel, NULL);
2816         }
2817
2818         if (setting->bupdate_mclk) {
2819                 if (!data->mclk_dpm_key_disabled)
2820                         smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel, NULL);
2821                 for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
2822                         if (mclk_levels[i].ActivityLevel !=
2823                                 cpu_to_be16(setting->mclk_activity)) {
2824                                 mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
2825
2826                                 clk_activity_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2827                                                 + offsetof(SMU7_Discrete_MemoryLevel, ActivityLevel);
2828                                 offset = clk_activity_offset & ~0x3;
2829                                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2830                                 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
2831                                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2832
2833                         }
2834                         if (mclk_levels[i].UpH != setting->mclk_up_hyst ||
2835                                 mclk_levels[i].DownH != setting->mclk_down_hyst) {
2836                                 mclk_levels[i].UpH = setting->mclk_up_hyst;
2837                                 mclk_levels[i].DownH = setting->mclk_down_hyst;
2838                                 up_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2839                                                 + offsetof(SMU7_Discrete_MemoryLevel, UpH);
2840                                 down_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2841                                                 + offsetof(SMU7_Discrete_MemoryLevel, DownH);
2842                                 offset = up_hyst_offset & ~0x3;
2843                                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2844                                 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpH, sizeof(uint8_t));
2845                                 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownH, sizeof(uint8_t));
2846                                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2847                         }
2848                 }
2849                 if (!data->mclk_dpm_key_disabled)
2850                         smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel, NULL);
2851         }
2852         return 0;
2853 }
2854
2855 static int ci_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2856 {
2857         struct amdgpu_device *adev = hwmgr->adev;
2858         struct smu7_hwmgr *data = hwmgr->backend;
2859         struct ci_smumgr *smu_data = hwmgr->smu_backend;
2860         struct phm_uvd_clock_voltage_dependency_table *uvd_table =
2861                         hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
2862         uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2863                                         AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2864                                         AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2865                                         AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2866         uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2867                                                 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2868         int32_t i;
2869
2870         if (PP_CAP(PHM_PlatformCaps_UVDDPM) || uvd_table->count <= 0)
2871                 smu_data->smc_state_table.UvdBootLevel = 0;
2872         else
2873                 smu_data->smc_state_table.UvdBootLevel = uvd_table->count - 1;
2874
2875         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2876                                 UvdBootLevel, smu_data->smc_state_table.UvdBootLevel);
2877
2878         data->dpm_level_enable_mask.uvd_dpm_enable_mask = 0;
2879
2880         for (i = uvd_table->count - 1; i >= 0; i--) {
2881                 if (uvd_table->entries[i].v <= max_vddc)
2882                         data->dpm_level_enable_mask.uvd_dpm_enable_mask |= 1 << i;
2883                 if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_UVDDPM))
2884                         break;
2885         }
2886         smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_UVDDPM_SetEnabledMask,
2887                                 data->dpm_level_enable_mask.uvd_dpm_enable_mask,
2888                                 NULL);
2889
2890         return 0;
2891 }
2892
2893 static int ci_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2894 {
2895         struct amdgpu_device *adev = hwmgr->adev;
2896         struct smu7_hwmgr *data = hwmgr->backend;
2897         struct phm_vce_clock_voltage_dependency_table *vce_table =
2898                         hwmgr->dyn_state.vce_clock_voltage_dependency_table;
2899         uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2900                                         AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2901                                         AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2902                                         AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2903         uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2904                                                 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2905         int32_t i;
2906
2907         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2908                                 VceBootLevel, 0); /* temp hard code to level 0, vce can set min evclk*/
2909
2910         data->dpm_level_enable_mask.vce_dpm_enable_mask = 0;
2911
2912         for (i = vce_table->count - 1; i >= 0; i--) {
2913                 if (vce_table->entries[i].v <= max_vddc)
2914                         data->dpm_level_enable_mask.vce_dpm_enable_mask |= 1 << i;
2915                 if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_VCEDPM))
2916                         break;
2917         }
2918         smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_VCEDPM_SetEnabledMask,
2919                                 data->dpm_level_enable_mask.vce_dpm_enable_mask,
2920                                 NULL);
2921
2922         return 0;
2923 }
2924
2925 static int ci_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2926 {
2927         switch (type) {
2928         case SMU_UVD_TABLE:
2929                 ci_update_uvd_smc_table(hwmgr);
2930                 break;
2931         case SMU_VCE_TABLE:
2932                 ci_update_vce_smc_table(hwmgr);
2933                 break;
2934         default:
2935                 break;
2936         }
2937         return 0;
2938 }
2939
2940 static void ci_reset_smc(struct pp_hwmgr *hwmgr)
2941 {
2942         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2943                                   SMC_SYSCON_RESET_CNTL,
2944                                   rst_reg, 1);
2945 }
2946
2947
2948 static void ci_stop_smc_clock(struct pp_hwmgr *hwmgr)
2949 {
2950         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2951                                   SMC_SYSCON_CLOCK_CNTL_0,
2952                                   ck_disable, 1);
2953 }
2954
2955 static int ci_stop_smc(struct pp_hwmgr *hwmgr)
2956 {
2957         ci_reset_smc(hwmgr);
2958         ci_stop_smc_clock(hwmgr);
2959
2960         return 0;
2961 }
2962
2963 const struct pp_smumgr_func ci_smu_funcs = {
2964         .name = "ci_smu",
2965         .smu_init = ci_smu_init,
2966         .smu_fini = ci_smu_fini,
2967         .start_smu = ci_start_smu,
2968         .check_fw_load_finish = NULL,
2969         .request_smu_load_fw = NULL,
2970         .request_smu_load_specific_fw = NULL,
2971         .send_msg_to_smc = ci_send_msg_to_smc,
2972         .send_msg_to_smc_with_parameter = ci_send_msg_to_smc_with_parameter,
2973         .get_argument = smu7_get_argument,
2974         .download_pptable_settings = NULL,
2975         .upload_pptable_settings = NULL,
2976         .get_offsetof = ci_get_offsetof,
2977         .process_firmware_header = ci_process_firmware_header,
2978         .init_smc_table = ci_init_smc_table,
2979         .update_sclk_threshold = ci_update_sclk_threshold,
2980         .thermal_setup_fan_table = ci_thermal_setup_fan_table,
2981         .populate_all_graphic_levels = ci_populate_all_graphic_levels,
2982         .populate_all_memory_levels = ci_populate_all_memory_levels,
2983         .get_mac_definition = ci_get_mac_definition,
2984         .initialize_mc_reg_table = ci_initialize_mc_reg_table,
2985         .is_dpm_running = ci_is_dpm_running,
2986         .update_dpm_settings = ci_update_dpm_settings,
2987         .update_smc_table = ci_update_smc_table,
2988         .stop_smc = ci_stop_smc,
2989 };