ASoC: da7219: Small fixes for jack detection and removal
[linux-block.git] / drivers / gpu / drm / amd / display / dc / dcn20 / dcn20_resource.c
1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3  * Copyright 2019 Raptor Engineering, LLC
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26
27 #include <linux/slab.h>
28
29 #include "dm_services.h"
30 #include "dc.h"
31
32 #include "dcn20_init.h"
33
34 #include "resource.h"
35 #include "include/irq_service_interface.h"
36 #include "dcn20/dcn20_resource.h"
37
38 #include "dml/dcn20/dcn20_fpu.h"
39
40 #include "dcn10/dcn10_hubp.h"
41 #include "dcn10/dcn10_ipp.h"
42 #include "dcn20_hubbub.h"
43 #include "dcn20_mpc.h"
44 #include "dcn20_hubp.h"
45 #include "irq/dcn20/irq_service_dcn20.h"
46 #include "dcn20_dpp.h"
47 #include "dcn20_optc.h"
48 #include "dcn20_hwseq.h"
49 #include "dce110/dce110_hw_sequencer.h"
50 #include "dcn10/dcn10_resource.h"
51 #include "dcn20_opp.h"
52
53 #include "dcn20_dsc.h"
54
55 #include "dcn20_link_encoder.h"
56 #include "dcn20_stream_encoder.h"
57 #include "dce/dce_clock_source.h"
58 #include "dce/dce_audio.h"
59 #include "dce/dce_hwseq.h"
60 #include "virtual/virtual_stream_encoder.h"
61 #include "dce110/dce110_resource.h"
62 #include "dml/display_mode_vba.h"
63 #include "dcn20_dccg.h"
64 #include "dcn20_vmid.h"
65 #include "dc_link_ddc.h"
66 #include "dce/dce_panel_cntl.h"
67
68 #include "navi10_ip_offset.h"
69
70 #include "dcn/dcn_2_0_0_offset.h"
71 #include "dcn/dcn_2_0_0_sh_mask.h"
72 #include "dpcs/dpcs_2_0_0_offset.h"
73 #include "dpcs/dpcs_2_0_0_sh_mask.h"
74
75 #include "nbio/nbio_2_3_offset.h"
76
77 #include "dcn20/dcn20_dwb.h"
78 #include "dcn20/dcn20_mmhubbub.h"
79
80 #include "mmhub/mmhub_2_0_0_offset.h"
81 #include "mmhub/mmhub_2_0_0_sh_mask.h"
82
83 #include "reg_helper.h"
84 #include "dce/dce_abm.h"
85 #include "dce/dce_dmcu.h"
86 #include "dce/dce_aux.h"
87 #include "dce/dce_i2c.h"
88 #include "vm_helper.h"
89 #include "link_enc_cfg.h"
90
91 #include "amdgpu_socbb.h"
92
93 #define DC_LOGGER_INIT(logger)
94
95 #ifndef mmDP0_DP_DPHY_INTERNAL_CTRL
96         #define mmDP0_DP_DPHY_INTERNAL_CTRL             0x210f
97         #define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX    2
98         #define mmDP1_DP_DPHY_INTERNAL_CTRL             0x220f
99         #define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX    2
100         #define mmDP2_DP_DPHY_INTERNAL_CTRL             0x230f
101         #define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX    2
102         #define mmDP3_DP_DPHY_INTERNAL_CTRL             0x240f
103         #define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX    2
104         #define mmDP4_DP_DPHY_INTERNAL_CTRL             0x250f
105         #define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX    2
106         #define mmDP5_DP_DPHY_INTERNAL_CTRL             0x260f
107         #define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX    2
108         #define mmDP6_DP_DPHY_INTERNAL_CTRL             0x270f
109         #define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX    2
110 #endif
111
112
113 enum dcn20_clk_src_array_id {
114         DCN20_CLK_SRC_PLL0,
115         DCN20_CLK_SRC_PLL1,
116         DCN20_CLK_SRC_PLL2,
117         DCN20_CLK_SRC_PLL3,
118         DCN20_CLK_SRC_PLL4,
119         DCN20_CLK_SRC_PLL5,
120         DCN20_CLK_SRC_TOTAL
121 };
122
123 /* begin *********************
124  * macros to expend register list macro defined in HW object header file */
125
126 /* DCN */
127 /* TODO awful hack. fixup dcn20_dwb.h */
128 #undef BASE_INNER
129 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
130
131 #define BASE(seg) BASE_INNER(seg)
132
133 #define SR(reg_name)\
134                 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) +  \
135                                         mm ## reg_name
136
137 #define SRI(reg_name, block, id)\
138         .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
139                                         mm ## block ## id ## _ ## reg_name
140
141 #define SRIR(var_name, reg_name, block, id)\
142         .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
143                                         mm ## block ## id ## _ ## reg_name
144
145 #define SRII(reg_name, block, id)\
146         .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
147                                         mm ## block ## id ## _ ## reg_name
148
149 #define DCCG_SRII(reg_name, block, id)\
150         .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
151                                         mm ## block ## id ## _ ## reg_name
152
153 #define VUPDATE_SRII(reg_name, block, id)\
154         .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
155                                         mm ## reg_name ## _ ## block ## id
156
157 /* NBIO */
158 #define NBIO_BASE_INNER(seg) \
159         NBIO_BASE__INST0_SEG ## seg
160
161 #define NBIO_BASE(seg) \
162         NBIO_BASE_INNER(seg)
163
164 #define NBIO_SR(reg_name)\
165                 .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
166                                         mm ## reg_name
167
168 /* MMHUB */
169 #define MMHUB_BASE_INNER(seg) \
170         MMHUB_BASE__INST0_SEG ## seg
171
172 #define MMHUB_BASE(seg) \
173         MMHUB_BASE_INNER(seg)
174
175 #define MMHUB_SR(reg_name)\
176                 .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \
177                                         mmMM ## reg_name
178
179 static const struct bios_registers bios_regs = {
180                 NBIO_SR(BIOS_SCRATCH_3),
181                 NBIO_SR(BIOS_SCRATCH_6)
182 };
183
184 #define clk_src_regs(index, pllid)\
185 [index] = {\
186         CS_COMMON_REG_LIST_DCN2_0(index, pllid),\
187 }
188
189 static const struct dce110_clk_src_regs clk_src_regs[] = {
190         clk_src_regs(0, A),
191         clk_src_regs(1, B),
192         clk_src_regs(2, C),
193         clk_src_regs(3, D),
194         clk_src_regs(4, E),
195         clk_src_regs(5, F)
196 };
197
198 static const struct dce110_clk_src_shift cs_shift = {
199                 CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
200 };
201
202 static const struct dce110_clk_src_mask cs_mask = {
203                 CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
204 };
205
206 static const struct dce_dmcu_registers dmcu_regs = {
207                 DMCU_DCN10_REG_LIST()
208 };
209
210 static const struct dce_dmcu_shift dmcu_shift = {
211                 DMCU_MASK_SH_LIST_DCN10(__SHIFT)
212 };
213
214 static const struct dce_dmcu_mask dmcu_mask = {
215                 DMCU_MASK_SH_LIST_DCN10(_MASK)
216 };
217
218 static const struct dce_abm_registers abm_regs = {
219                 ABM_DCN20_REG_LIST()
220 };
221
222 static const struct dce_abm_shift abm_shift = {
223                 ABM_MASK_SH_LIST_DCN20(__SHIFT)
224 };
225
226 static const struct dce_abm_mask abm_mask = {
227                 ABM_MASK_SH_LIST_DCN20(_MASK)
228 };
229
230 #define audio_regs(id)\
231 [id] = {\
232                 AUD_COMMON_REG_LIST(id)\
233 }
234
235 static const struct dce_audio_registers audio_regs[] = {
236         audio_regs(0),
237         audio_regs(1),
238         audio_regs(2),
239         audio_regs(3),
240         audio_regs(4),
241         audio_regs(5),
242         audio_regs(6),
243 };
244
245 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
246                 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
247                 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
248                 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
249
250 static const struct dce_audio_shift audio_shift = {
251                 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
252 };
253
254 static const struct dce_audio_mask audio_mask = {
255                 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
256 };
257
258 #define stream_enc_regs(id)\
259 [id] = {\
260         SE_DCN2_REG_LIST(id)\
261 }
262
263 static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
264         stream_enc_regs(0),
265         stream_enc_regs(1),
266         stream_enc_regs(2),
267         stream_enc_regs(3),
268         stream_enc_regs(4),
269         stream_enc_regs(5),
270 };
271
272 static const struct dcn10_stream_encoder_shift se_shift = {
273                 SE_COMMON_MASK_SH_LIST_DCN20(__SHIFT)
274 };
275
276 static const struct dcn10_stream_encoder_mask se_mask = {
277                 SE_COMMON_MASK_SH_LIST_DCN20(_MASK)
278 };
279
280
281 #define aux_regs(id)\
282 [id] = {\
283         DCN2_AUX_REG_LIST(id)\
284 }
285
286 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
287                 aux_regs(0),
288                 aux_regs(1),
289                 aux_regs(2),
290                 aux_regs(3),
291                 aux_regs(4),
292                 aux_regs(5)
293 };
294
295 #define hpd_regs(id)\
296 [id] = {\
297         HPD_REG_LIST(id)\
298 }
299
300 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
301                 hpd_regs(0),
302                 hpd_regs(1),
303                 hpd_regs(2),
304                 hpd_regs(3),
305                 hpd_regs(4),
306                 hpd_regs(5)
307 };
308
309 #define link_regs(id, phyid)\
310 [id] = {\
311         LE_DCN10_REG_LIST(id), \
312         UNIPHY_DCN2_REG_LIST(phyid), \
313         DPCS_DCN2_REG_LIST(id), \
314         SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
315 }
316
317 static const struct dcn10_link_enc_registers link_enc_regs[] = {
318         link_regs(0, A),
319         link_regs(1, B),
320         link_regs(2, C),
321         link_regs(3, D),
322         link_regs(4, E),
323         link_regs(5, F)
324 };
325
326 static const struct dcn10_link_enc_shift le_shift = {
327         LINK_ENCODER_MASK_SH_LIST_DCN20(__SHIFT),\
328         DPCS_DCN2_MASK_SH_LIST(__SHIFT)
329 };
330
331 static const struct dcn10_link_enc_mask le_mask = {
332         LINK_ENCODER_MASK_SH_LIST_DCN20(_MASK),\
333         DPCS_DCN2_MASK_SH_LIST(_MASK)
334 };
335
336 static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
337         { DCN_PANEL_CNTL_REG_LIST() }
338 };
339
340 static const struct dce_panel_cntl_shift panel_cntl_shift = {
341         DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
342 };
343
344 static const struct dce_panel_cntl_mask panel_cntl_mask = {
345         DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
346 };
347
348 #define ipp_regs(id)\
349 [id] = {\
350         IPP_REG_LIST_DCN20(id),\
351 }
352
353 static const struct dcn10_ipp_registers ipp_regs[] = {
354         ipp_regs(0),
355         ipp_regs(1),
356         ipp_regs(2),
357         ipp_regs(3),
358         ipp_regs(4),
359         ipp_regs(5),
360 };
361
362 static const struct dcn10_ipp_shift ipp_shift = {
363                 IPP_MASK_SH_LIST_DCN20(__SHIFT)
364 };
365
366 static const struct dcn10_ipp_mask ipp_mask = {
367                 IPP_MASK_SH_LIST_DCN20(_MASK),
368 };
369
370 #define opp_regs(id)\
371 [id] = {\
372         OPP_REG_LIST_DCN20(id),\
373 }
374
375 static const struct dcn20_opp_registers opp_regs[] = {
376         opp_regs(0),
377         opp_regs(1),
378         opp_regs(2),
379         opp_regs(3),
380         opp_regs(4),
381         opp_regs(5),
382 };
383
384 static const struct dcn20_opp_shift opp_shift = {
385                 OPP_MASK_SH_LIST_DCN20(__SHIFT)
386 };
387
388 static const struct dcn20_opp_mask opp_mask = {
389                 OPP_MASK_SH_LIST_DCN20(_MASK)
390 };
391
392 #define aux_engine_regs(id)\
393 [id] = {\
394         AUX_COMMON_REG_LIST0(id), \
395         .AUXN_IMPCAL = 0, \
396         .AUXP_IMPCAL = 0, \
397         .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
398 }
399
400 static const struct dce110_aux_registers aux_engine_regs[] = {
401                 aux_engine_regs(0),
402                 aux_engine_regs(1),
403                 aux_engine_regs(2),
404                 aux_engine_regs(3),
405                 aux_engine_regs(4),
406                 aux_engine_regs(5)
407 };
408
409 #define tf_regs(id)\
410 [id] = {\
411         TF_REG_LIST_DCN20(id),\
412         TF_REG_LIST_DCN20_COMMON_APPEND(id),\
413 }
414
415 static const struct dcn2_dpp_registers tf_regs[] = {
416         tf_regs(0),
417         tf_regs(1),
418         tf_regs(2),
419         tf_regs(3),
420         tf_regs(4),
421         tf_regs(5),
422 };
423
424 static const struct dcn2_dpp_shift tf_shift = {
425                 TF_REG_LIST_SH_MASK_DCN20(__SHIFT),
426                 TF_DEBUG_REG_LIST_SH_DCN20
427 };
428
429 static const struct dcn2_dpp_mask tf_mask = {
430                 TF_REG_LIST_SH_MASK_DCN20(_MASK),
431                 TF_DEBUG_REG_LIST_MASK_DCN20
432 };
433
434 #define dwbc_regs_dcn2(id)\
435 [id] = {\
436         DWBC_COMMON_REG_LIST_DCN2_0(id),\
437                 }
438
439 static const struct dcn20_dwbc_registers dwbc20_regs[] = {
440         dwbc_regs_dcn2(0),
441 };
442
443 static const struct dcn20_dwbc_shift dwbc20_shift = {
444         DWBC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
445 };
446
447 static const struct dcn20_dwbc_mask dwbc20_mask = {
448         DWBC_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
449 };
450
451 #define mcif_wb_regs_dcn2(id)\
452 [id] = {\
453         MCIF_WB_COMMON_REG_LIST_DCN2_0(id),\
454                 }
455
456 static const struct dcn20_mmhubbub_registers mcif_wb20_regs[] = {
457         mcif_wb_regs_dcn2(0),
458 };
459
460 static const struct dcn20_mmhubbub_shift mcif_wb20_shift = {
461         MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
462 };
463
464 static const struct dcn20_mmhubbub_mask mcif_wb20_mask = {
465         MCIF_WB_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
466 };
467
468 static const struct dcn20_mpc_registers mpc_regs = {
469                 MPC_REG_LIST_DCN2_0(0),
470                 MPC_REG_LIST_DCN2_0(1),
471                 MPC_REG_LIST_DCN2_0(2),
472                 MPC_REG_LIST_DCN2_0(3),
473                 MPC_REG_LIST_DCN2_0(4),
474                 MPC_REG_LIST_DCN2_0(5),
475                 MPC_OUT_MUX_REG_LIST_DCN2_0(0),
476                 MPC_OUT_MUX_REG_LIST_DCN2_0(1),
477                 MPC_OUT_MUX_REG_LIST_DCN2_0(2),
478                 MPC_OUT_MUX_REG_LIST_DCN2_0(3),
479                 MPC_OUT_MUX_REG_LIST_DCN2_0(4),
480                 MPC_OUT_MUX_REG_LIST_DCN2_0(5),
481                 MPC_DBG_REG_LIST_DCN2_0()
482 };
483
484 static const struct dcn20_mpc_shift mpc_shift = {
485         MPC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT),
486         MPC_DEBUG_REG_LIST_SH_DCN20
487 };
488
489 static const struct dcn20_mpc_mask mpc_mask = {
490         MPC_COMMON_MASK_SH_LIST_DCN2_0(_MASK),
491         MPC_DEBUG_REG_LIST_MASK_DCN20
492 };
493
494 #define tg_regs(id)\
495 [id] = {TG_COMMON_REG_LIST_DCN2_0(id)}
496
497
498 static const struct dcn_optc_registers tg_regs[] = {
499         tg_regs(0),
500         tg_regs(1),
501         tg_regs(2),
502         tg_regs(3),
503         tg_regs(4),
504         tg_regs(5)
505 };
506
507 static const struct dcn_optc_shift tg_shift = {
508         TG_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
509 };
510
511 static const struct dcn_optc_mask tg_mask = {
512         TG_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
513 };
514
515 #define hubp_regs(id)\
516 [id] = {\
517         HUBP_REG_LIST_DCN20(id)\
518 }
519
520 static const struct dcn_hubp2_registers hubp_regs[] = {
521                 hubp_regs(0),
522                 hubp_regs(1),
523                 hubp_regs(2),
524                 hubp_regs(3),
525                 hubp_regs(4),
526                 hubp_regs(5)
527 };
528
529 static const struct dcn_hubp2_shift hubp_shift = {
530                 HUBP_MASK_SH_LIST_DCN20(__SHIFT)
531 };
532
533 static const struct dcn_hubp2_mask hubp_mask = {
534                 HUBP_MASK_SH_LIST_DCN20(_MASK)
535 };
536
537 static const struct dcn_hubbub_registers hubbub_reg = {
538                 HUBBUB_REG_LIST_DCN20(0)
539 };
540
541 static const struct dcn_hubbub_shift hubbub_shift = {
542                 HUBBUB_MASK_SH_LIST_DCN20(__SHIFT)
543 };
544
545 static const struct dcn_hubbub_mask hubbub_mask = {
546                 HUBBUB_MASK_SH_LIST_DCN20(_MASK)
547 };
548
549 #define vmid_regs(id)\
550 [id] = {\
551                 DCN20_VMID_REG_LIST(id)\
552 }
553
554 static const struct dcn_vmid_registers vmid_regs[] = {
555         vmid_regs(0),
556         vmid_regs(1),
557         vmid_regs(2),
558         vmid_regs(3),
559         vmid_regs(4),
560         vmid_regs(5),
561         vmid_regs(6),
562         vmid_regs(7),
563         vmid_regs(8),
564         vmid_regs(9),
565         vmid_regs(10),
566         vmid_regs(11),
567         vmid_regs(12),
568         vmid_regs(13),
569         vmid_regs(14),
570         vmid_regs(15)
571 };
572
573 static const struct dcn20_vmid_shift vmid_shifts = {
574                 DCN20_VMID_MASK_SH_LIST(__SHIFT)
575 };
576
577 static const struct dcn20_vmid_mask vmid_masks = {
578                 DCN20_VMID_MASK_SH_LIST(_MASK)
579 };
580
581 static const struct dce110_aux_registers_shift aux_shift = {
582                 DCN_AUX_MASK_SH_LIST(__SHIFT)
583 };
584
585 static const struct dce110_aux_registers_mask aux_mask = {
586                 DCN_AUX_MASK_SH_LIST(_MASK)
587 };
588
589 static int map_transmitter_id_to_phy_instance(
590         enum transmitter transmitter)
591 {
592         switch (transmitter) {
593         case TRANSMITTER_UNIPHY_A:
594                 return 0;
595         break;
596         case TRANSMITTER_UNIPHY_B:
597                 return 1;
598         break;
599         case TRANSMITTER_UNIPHY_C:
600                 return 2;
601         break;
602         case TRANSMITTER_UNIPHY_D:
603                 return 3;
604         break;
605         case TRANSMITTER_UNIPHY_E:
606                 return 4;
607         break;
608         case TRANSMITTER_UNIPHY_F:
609                 return 5;
610         break;
611         default:
612                 ASSERT(0);
613                 return 0;
614         }
615 }
616
617 #define dsc_regsDCN20(id)\
618 [id] = {\
619         DSC_REG_LIST_DCN20(id)\
620 }
621
622 static const struct dcn20_dsc_registers dsc_regs[] = {
623         dsc_regsDCN20(0),
624         dsc_regsDCN20(1),
625         dsc_regsDCN20(2),
626         dsc_regsDCN20(3),
627         dsc_regsDCN20(4),
628         dsc_regsDCN20(5)
629 };
630
631 static const struct dcn20_dsc_shift dsc_shift = {
632         DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
633 };
634
635 static const struct dcn20_dsc_mask dsc_mask = {
636         DSC_REG_LIST_SH_MASK_DCN20(_MASK)
637 };
638
639 static const struct dccg_registers dccg_regs = {
640                 DCCG_REG_LIST_DCN2()
641 };
642
643 static const struct dccg_shift dccg_shift = {
644                 DCCG_MASK_SH_LIST_DCN2(__SHIFT)
645 };
646
647 static const struct dccg_mask dccg_mask = {
648                 DCCG_MASK_SH_LIST_DCN2(_MASK)
649 };
650
651 static const struct resource_caps res_cap_nv10 = {
652                 .num_timing_generator = 6,
653                 .num_opp = 6,
654                 .num_video_plane = 6,
655                 .num_audio = 7,
656                 .num_stream_encoder = 6,
657                 .num_pll = 6,
658                 .num_dwb = 1,
659                 .num_ddc = 6,
660                 .num_vmid = 16,
661                 .num_dsc = 6,
662 };
663
664 static const struct dc_plane_cap plane_cap = {
665         .type = DC_PLANE_TYPE_DCN_UNIVERSAL,
666         .blends_with_above = true,
667         .blends_with_below = true,
668         .per_pixel_alpha = true,
669
670         .pixel_format_support = {
671                         .argb8888 = true,
672                         .nv12 = true,
673                         .fp16 = true,
674                         .p010 = true
675         },
676
677         .max_upscale_factor = {
678                         .argb8888 = 16000,
679                         .nv12 = 16000,
680                         .fp16 = 1
681         },
682
683         .max_downscale_factor = {
684                         .argb8888 = 250,
685                         .nv12 = 250,
686                         .fp16 = 1
687         },
688         16,
689         16
690 };
691 static const struct resource_caps res_cap_nv14 = {
692                 .num_timing_generator = 5,
693                 .num_opp = 5,
694                 .num_video_plane = 5,
695                 .num_audio = 6,
696                 .num_stream_encoder = 5,
697                 .num_pll = 5,
698                 .num_dwb = 1,
699                 .num_ddc = 5,
700                 .num_vmid = 16,
701                 .num_dsc = 5,
702 };
703
704 static const struct dc_debug_options debug_defaults_drv = {
705                 .disable_dmcu = false,
706                 .force_abm_enable = false,
707                 .timing_trace = false,
708                 .clock_trace = true,
709                 .disable_pplib_clock_request = true,
710                 .pipe_split_policy = MPC_SPLIT_AVOID_MULT_DISP,
711                 .force_single_disp_pipe_split = false,
712                 .disable_dcc = DCC_ENABLE,
713                 .vsr_support = true,
714                 .performance_trace = false,
715                 .max_downscale_src_width = 5120,/*upto 5K*/
716                 .disable_pplib_wm_range = false,
717                 .scl_reset_length10 = true,
718                 .sanity_checks = false,
719                 .underflow_assert_delay_us = 0xFFFFFFFF,
720 };
721
722 static const struct dc_debug_options debug_defaults_diags = {
723                 .disable_dmcu = false,
724                 .force_abm_enable = false,
725                 .timing_trace = true,
726                 .clock_trace = true,
727                 .disable_dpp_power_gate = true,
728                 .disable_hubp_power_gate = true,
729                 .disable_clock_gate = true,
730                 .disable_pplib_clock_request = true,
731                 .disable_pplib_wm_range = true,
732                 .disable_stutter = true,
733                 .scl_reset_length10 = true,
734                 .underflow_assert_delay_us = 0xFFFFFFFF,
735                 .enable_tri_buf = true,
736 };
737
738 void dcn20_dpp_destroy(struct dpp **dpp)
739 {
740         kfree(TO_DCN20_DPP(*dpp));
741         *dpp = NULL;
742 }
743
744 struct dpp *dcn20_dpp_create(
745         struct dc_context *ctx,
746         uint32_t inst)
747 {
748         struct dcn20_dpp *dpp =
749                 kzalloc(sizeof(struct dcn20_dpp), GFP_ATOMIC);
750
751         if (!dpp)
752                 return NULL;
753
754         if (dpp2_construct(dpp, ctx, inst,
755                         &tf_regs[inst], &tf_shift, &tf_mask))
756                 return &dpp->base;
757
758         BREAK_TO_DEBUGGER();
759         kfree(dpp);
760         return NULL;
761 }
762
763 struct input_pixel_processor *dcn20_ipp_create(
764         struct dc_context *ctx, uint32_t inst)
765 {
766         struct dcn10_ipp *ipp =
767                 kzalloc(sizeof(struct dcn10_ipp), GFP_ATOMIC);
768
769         if (!ipp) {
770                 BREAK_TO_DEBUGGER();
771                 return NULL;
772         }
773
774         dcn20_ipp_construct(ipp, ctx, inst,
775                         &ipp_regs[inst], &ipp_shift, &ipp_mask);
776         return &ipp->base;
777 }
778
779
780 struct output_pixel_processor *dcn20_opp_create(
781         struct dc_context *ctx, uint32_t inst)
782 {
783         struct dcn20_opp *opp =
784                 kzalloc(sizeof(struct dcn20_opp), GFP_ATOMIC);
785
786         if (!opp) {
787                 BREAK_TO_DEBUGGER();
788                 return NULL;
789         }
790
791         dcn20_opp_construct(opp, ctx, inst,
792                         &opp_regs[inst], &opp_shift, &opp_mask);
793         return &opp->base;
794 }
795
796 struct dce_aux *dcn20_aux_engine_create(
797         struct dc_context *ctx,
798         uint32_t inst)
799 {
800         struct aux_engine_dce110 *aux_engine =
801                 kzalloc(sizeof(struct aux_engine_dce110), GFP_ATOMIC);
802
803         if (!aux_engine)
804                 return NULL;
805
806         dce110_aux_engine_construct(aux_engine, ctx, inst,
807                                     SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
808                                     &aux_engine_regs[inst],
809                                         &aux_mask,
810                                         &aux_shift,
811                                         ctx->dc->caps.extended_aux_timeout_support);
812
813         return &aux_engine->base;
814 }
815 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) }
816
817 static const struct dce_i2c_registers i2c_hw_regs[] = {
818                 i2c_inst_regs(1),
819                 i2c_inst_regs(2),
820                 i2c_inst_regs(3),
821                 i2c_inst_regs(4),
822                 i2c_inst_regs(5),
823                 i2c_inst_regs(6),
824 };
825
826 static const struct dce_i2c_shift i2c_shifts = {
827                 I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT)
828 };
829
830 static const struct dce_i2c_mask i2c_masks = {
831                 I2C_COMMON_MASK_SH_LIST_DCN2(_MASK)
832 };
833
834 struct dce_i2c_hw *dcn20_i2c_hw_create(
835         struct dc_context *ctx,
836         uint32_t inst)
837 {
838         struct dce_i2c_hw *dce_i2c_hw =
839                 kzalloc(sizeof(struct dce_i2c_hw), GFP_ATOMIC);
840
841         if (!dce_i2c_hw)
842                 return NULL;
843
844         dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
845                                     &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
846
847         return dce_i2c_hw;
848 }
849 struct mpc *dcn20_mpc_create(struct dc_context *ctx)
850 {
851         struct dcn20_mpc *mpc20 = kzalloc(sizeof(struct dcn20_mpc),
852                                           GFP_ATOMIC);
853
854         if (!mpc20)
855                 return NULL;
856
857         dcn20_mpc_construct(mpc20, ctx,
858                         &mpc_regs,
859                         &mpc_shift,
860                         &mpc_mask,
861                         6);
862
863         return &mpc20->base;
864 }
865
866 struct hubbub *dcn20_hubbub_create(struct dc_context *ctx)
867 {
868         int i;
869         struct dcn20_hubbub *hubbub = kzalloc(sizeof(struct dcn20_hubbub),
870                                           GFP_ATOMIC);
871
872         if (!hubbub)
873                 return NULL;
874
875         hubbub2_construct(hubbub, ctx,
876                         &hubbub_reg,
877                         &hubbub_shift,
878                         &hubbub_mask);
879
880         for (i = 0; i < res_cap_nv10.num_vmid; i++) {
881                 struct dcn20_vmid *vmid = &hubbub->vmid[i];
882
883                 vmid->ctx = ctx;
884
885                 vmid->regs = &vmid_regs[i];
886                 vmid->shifts = &vmid_shifts;
887                 vmid->masks = &vmid_masks;
888         }
889
890         return &hubbub->base;
891 }
892
893 struct timing_generator *dcn20_timing_generator_create(
894                 struct dc_context *ctx,
895                 uint32_t instance)
896 {
897         struct optc *tgn10 =
898                 kzalloc(sizeof(struct optc), GFP_ATOMIC);
899
900         if (!tgn10)
901                 return NULL;
902
903         tgn10->base.inst = instance;
904         tgn10->base.ctx = ctx;
905
906         tgn10->tg_regs = &tg_regs[instance];
907         tgn10->tg_shift = &tg_shift;
908         tgn10->tg_mask = &tg_mask;
909
910         dcn20_timing_generator_init(tgn10);
911
912         return &tgn10->base;
913 }
914
915 static const struct encoder_feature_support link_enc_feature = {
916                 .max_hdmi_deep_color = COLOR_DEPTH_121212,
917                 .max_hdmi_pixel_clock = 600000,
918                 .hdmi_ycbcr420_supported = true,
919                 .dp_ycbcr420_supported = true,
920                 .fec_supported = true,
921                 .flags.bits.IS_HBR2_CAPABLE = true,
922                 .flags.bits.IS_HBR3_CAPABLE = true,
923                 .flags.bits.IS_TPS3_CAPABLE = true,
924                 .flags.bits.IS_TPS4_CAPABLE = true
925 };
926
927 struct link_encoder *dcn20_link_encoder_create(
928         const struct encoder_init_data *enc_init_data)
929 {
930         struct dcn20_link_encoder *enc20 =
931                 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
932         int link_regs_id;
933
934         if (!enc20)
935                 return NULL;
936
937         link_regs_id =
938                 map_transmitter_id_to_phy_instance(enc_init_data->transmitter);
939
940         dcn20_link_encoder_construct(enc20,
941                                       enc_init_data,
942                                       &link_enc_feature,
943                                       &link_enc_regs[link_regs_id],
944                                       &link_enc_aux_regs[enc_init_data->channel - 1],
945                                       &link_enc_hpd_regs[enc_init_data->hpd_source],
946                                       &le_shift,
947                                       &le_mask);
948
949         return &enc20->enc10.base;
950 }
951
952 static struct panel_cntl *dcn20_panel_cntl_create(const struct panel_cntl_init_data *init_data)
953 {
954         struct dce_panel_cntl *panel_cntl =
955                 kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
956
957         if (!panel_cntl)
958                 return NULL;
959
960         dce_panel_cntl_construct(panel_cntl,
961                         init_data,
962                         &panel_cntl_regs[init_data->inst],
963                         &panel_cntl_shift,
964                         &panel_cntl_mask);
965
966         return &panel_cntl->base;
967 }
968
969 static struct clock_source *dcn20_clock_source_create(
970         struct dc_context *ctx,
971         struct dc_bios *bios,
972         enum clock_source_id id,
973         const struct dce110_clk_src_regs *regs,
974         bool dp_clk_src)
975 {
976         struct dce110_clk_src *clk_src =
977                 kzalloc(sizeof(struct dce110_clk_src), GFP_ATOMIC);
978
979         if (!clk_src)
980                 return NULL;
981
982         if (dcn20_clk_src_construct(clk_src, ctx, bios, id,
983                         regs, &cs_shift, &cs_mask)) {
984                 clk_src->base.dp_clk_src = dp_clk_src;
985                 return &clk_src->base;
986         }
987
988         kfree(clk_src);
989         BREAK_TO_DEBUGGER();
990         return NULL;
991 }
992
993 static void read_dce_straps(
994         struct dc_context *ctx,
995         struct resource_straps *straps)
996 {
997         generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
998                 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
999 }
1000
1001 static struct audio *dcn20_create_audio(
1002                 struct dc_context *ctx, unsigned int inst)
1003 {
1004         return dce_audio_create(ctx, inst,
1005                         &audio_regs[inst], &audio_shift, &audio_mask);
1006 }
1007
1008 struct stream_encoder *dcn20_stream_encoder_create(
1009         enum engine_id eng_id,
1010         struct dc_context *ctx)
1011 {
1012         struct dcn10_stream_encoder *enc1 =
1013                 kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1014
1015         if (!enc1)
1016                 return NULL;
1017
1018         if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) {
1019                 if (eng_id >= ENGINE_ID_DIGD)
1020                         eng_id++;
1021         }
1022
1023         dcn20_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id,
1024                                         &stream_enc_regs[eng_id],
1025                                         &se_shift, &se_mask);
1026
1027         return &enc1->base;
1028 }
1029
1030 static const struct dce_hwseq_registers hwseq_reg = {
1031                 HWSEQ_DCN2_REG_LIST()
1032 };
1033
1034 static const struct dce_hwseq_shift hwseq_shift = {
1035                 HWSEQ_DCN2_MASK_SH_LIST(__SHIFT)
1036 };
1037
1038 static const struct dce_hwseq_mask hwseq_mask = {
1039                 HWSEQ_DCN2_MASK_SH_LIST(_MASK)
1040 };
1041
1042 struct dce_hwseq *dcn20_hwseq_create(
1043         struct dc_context *ctx)
1044 {
1045         struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1046
1047         if (hws) {
1048                 hws->ctx = ctx;
1049                 hws->regs = &hwseq_reg;
1050                 hws->shifts = &hwseq_shift;
1051                 hws->masks = &hwseq_mask;
1052         }
1053         return hws;
1054 }
1055
1056 static const struct resource_create_funcs res_create_funcs = {
1057         .read_dce_straps = read_dce_straps,
1058         .create_audio = dcn20_create_audio,
1059         .create_stream_encoder = dcn20_stream_encoder_create,
1060         .create_hwseq = dcn20_hwseq_create,
1061 };
1062
1063 static const struct resource_create_funcs res_create_maximus_funcs = {
1064         .read_dce_straps = NULL,
1065         .create_audio = NULL,
1066         .create_stream_encoder = NULL,
1067         .create_hwseq = dcn20_hwseq_create,
1068 };
1069
1070 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu);
1071
1072 void dcn20_clock_source_destroy(struct clock_source **clk_src)
1073 {
1074         kfree(TO_DCE110_CLK_SRC(*clk_src));
1075         *clk_src = NULL;
1076 }
1077
1078
1079 struct display_stream_compressor *dcn20_dsc_create(
1080         struct dc_context *ctx, uint32_t inst)
1081 {
1082         struct dcn20_dsc *dsc =
1083                 kzalloc(sizeof(struct dcn20_dsc), GFP_ATOMIC);
1084
1085         if (!dsc) {
1086                 BREAK_TO_DEBUGGER();
1087                 return NULL;
1088         }
1089
1090         dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1091         return &dsc->base;
1092 }
1093
1094 void dcn20_dsc_destroy(struct display_stream_compressor **dsc)
1095 {
1096         kfree(container_of(*dsc, struct dcn20_dsc, base));
1097         *dsc = NULL;
1098 }
1099
1100
1101 static void dcn20_resource_destruct(struct dcn20_resource_pool *pool)
1102 {
1103         unsigned int i;
1104
1105         for (i = 0; i < pool->base.stream_enc_count; i++) {
1106                 if (pool->base.stream_enc[i] != NULL) {
1107                         kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1108                         pool->base.stream_enc[i] = NULL;
1109                 }
1110         }
1111
1112         for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1113                 if (pool->base.dscs[i] != NULL)
1114                         dcn20_dsc_destroy(&pool->base.dscs[i]);
1115         }
1116
1117         if (pool->base.mpc != NULL) {
1118                 kfree(TO_DCN20_MPC(pool->base.mpc));
1119                 pool->base.mpc = NULL;
1120         }
1121         if (pool->base.hubbub != NULL) {
1122                 kfree(pool->base.hubbub);
1123                 pool->base.hubbub = NULL;
1124         }
1125         for (i = 0; i < pool->base.pipe_count; i++) {
1126                 if (pool->base.dpps[i] != NULL)
1127                         dcn20_dpp_destroy(&pool->base.dpps[i]);
1128
1129                 if (pool->base.ipps[i] != NULL)
1130                         pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1131
1132                 if (pool->base.hubps[i] != NULL) {
1133                         kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1134                         pool->base.hubps[i] = NULL;
1135                 }
1136
1137                 if (pool->base.irqs != NULL) {
1138                         dal_irq_service_destroy(&pool->base.irqs);
1139                 }
1140         }
1141
1142         for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1143                 if (pool->base.engines[i] != NULL)
1144                         dce110_engine_destroy(&pool->base.engines[i]);
1145                 if (pool->base.hw_i2cs[i] != NULL) {
1146                         kfree(pool->base.hw_i2cs[i]);
1147                         pool->base.hw_i2cs[i] = NULL;
1148                 }
1149                 if (pool->base.sw_i2cs[i] != NULL) {
1150                         kfree(pool->base.sw_i2cs[i]);
1151                         pool->base.sw_i2cs[i] = NULL;
1152                 }
1153         }
1154
1155         for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1156                 if (pool->base.opps[i] != NULL)
1157                         pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1158         }
1159
1160         for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1161                 if (pool->base.timing_generators[i] != NULL)    {
1162                         kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1163                         pool->base.timing_generators[i] = NULL;
1164                 }
1165         }
1166
1167         for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1168                 if (pool->base.dwbc[i] != NULL) {
1169                         kfree(TO_DCN20_DWBC(pool->base.dwbc[i]));
1170                         pool->base.dwbc[i] = NULL;
1171                 }
1172                 if (pool->base.mcif_wb[i] != NULL) {
1173                         kfree(TO_DCN20_MMHUBBUB(pool->base.mcif_wb[i]));
1174                         pool->base.mcif_wb[i] = NULL;
1175                 }
1176         }
1177
1178         for (i = 0; i < pool->base.audio_count; i++) {
1179                 if (pool->base.audios[i])
1180                         dce_aud_destroy(&pool->base.audios[i]);
1181         }
1182
1183         for (i = 0; i < pool->base.clk_src_count; i++) {
1184                 if (pool->base.clock_sources[i] != NULL) {
1185                         dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1186                         pool->base.clock_sources[i] = NULL;
1187                 }
1188         }
1189
1190         if (pool->base.dp_clock_source != NULL) {
1191                 dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1192                 pool->base.dp_clock_source = NULL;
1193         }
1194
1195
1196         if (pool->base.abm != NULL)
1197                 dce_abm_destroy(&pool->base.abm);
1198
1199         if (pool->base.dmcu != NULL)
1200                 dce_dmcu_destroy(&pool->base.dmcu);
1201
1202         if (pool->base.dccg != NULL)
1203                 dcn_dccg_destroy(&pool->base.dccg);
1204
1205         if (pool->base.pp_smu != NULL)
1206                 dcn20_pp_smu_destroy(&pool->base.pp_smu);
1207
1208         if (pool->base.oem_device != NULL)
1209                 dal_ddc_service_destroy(&pool->base.oem_device);
1210 }
1211
1212 struct hubp *dcn20_hubp_create(
1213         struct dc_context *ctx,
1214         uint32_t inst)
1215 {
1216         struct dcn20_hubp *hubp2 =
1217                 kzalloc(sizeof(struct dcn20_hubp), GFP_ATOMIC);
1218
1219         if (!hubp2)
1220                 return NULL;
1221
1222         if (hubp2_construct(hubp2, ctx, inst,
1223                         &hubp_regs[inst], &hubp_shift, &hubp_mask))
1224                 return &hubp2->base;
1225
1226         BREAK_TO_DEBUGGER();
1227         kfree(hubp2);
1228         return NULL;
1229 }
1230
1231 static void get_pixel_clock_parameters(
1232         struct pipe_ctx *pipe_ctx,
1233         struct pixel_clk_params *pixel_clk_params)
1234 {
1235         const struct dc_stream_state *stream = pipe_ctx->stream;
1236         struct pipe_ctx *odm_pipe;
1237         int opp_cnt = 1;
1238         struct dc_link *link = stream->link;
1239         struct link_encoder *link_enc = NULL;
1240
1241         for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1242                 opp_cnt++;
1243
1244         pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz;
1245
1246         link_enc = link_enc_cfg_get_link_enc(link);
1247         ASSERT(link_enc);
1248
1249         if (link_enc)
1250                 pixel_clk_params->encoder_object_id = link_enc->id;
1251         pixel_clk_params->signal_type = pipe_ctx->stream->signal;
1252         pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1;
1253         /* TODO: un-hardcode*/
1254         /* TODO - DP2.0 HW: calculate requested_sym_clk for UHBR rates */
1255         pixel_clk_params->requested_sym_clk = LINK_RATE_LOW *
1256                 LINK_RATE_REF_FREQ_IN_KHZ;
1257         pixel_clk_params->flags.ENABLE_SS = 0;
1258         pixel_clk_params->color_depth =
1259                 stream->timing.display_color_depth;
1260         pixel_clk_params->flags.DISPLAY_BLANKED = 1;
1261         pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding;
1262
1263         if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
1264                 pixel_clk_params->color_depth = COLOR_DEPTH_888;
1265
1266         if (opp_cnt == 4)
1267                 pixel_clk_params->requested_pix_clk_100hz /= 4;
1268         else if (optc2_is_two_pixels_per_containter(&stream->timing) || opp_cnt == 2)
1269                 pixel_clk_params->requested_pix_clk_100hz /= 2;
1270
1271         if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
1272                 pixel_clk_params->requested_pix_clk_100hz *= 2;
1273
1274 }
1275
1276 static void build_clamping_params(struct dc_stream_state *stream)
1277 {
1278         stream->clamping.clamping_level = CLAMPING_FULL_RANGE;
1279         stream->clamping.c_depth = stream->timing.display_color_depth;
1280         stream->clamping.pixel_encoding = stream->timing.pixel_encoding;
1281 }
1282
1283 static enum dc_status build_pipe_hw_param(struct pipe_ctx *pipe_ctx)
1284 {
1285
1286         get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params);
1287
1288         pipe_ctx->clock_source->funcs->get_pix_clk_dividers(
1289                 pipe_ctx->clock_source,
1290                 &pipe_ctx->stream_res.pix_clk_params,
1291                 &pipe_ctx->pll_settings);
1292
1293         pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding;
1294
1295         resource_build_bit_depth_reduction_params(pipe_ctx->stream,
1296                                         &pipe_ctx->stream->bit_depth_params);
1297         build_clamping_params(pipe_ctx->stream);
1298
1299         return DC_OK;
1300 }
1301
1302 enum dc_status dcn20_build_mapped_resource(const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream)
1303 {
1304         enum dc_status status = DC_OK;
1305         struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1306
1307         if (!pipe_ctx)
1308                 return DC_ERROR_UNEXPECTED;
1309
1310
1311         status = build_pipe_hw_param(pipe_ctx);
1312
1313         return status;
1314 }
1315
1316
1317 void dcn20_acquire_dsc(const struct dc *dc,
1318                         struct resource_context *res_ctx,
1319                         struct display_stream_compressor **dsc,
1320                         int pipe_idx)
1321 {
1322         int i;
1323         const struct resource_pool *pool = dc->res_pool;
1324         struct display_stream_compressor *dsc_old = dc->current_state->res_ctx.pipe_ctx[pipe_idx].stream_res.dsc;
1325
1326         ASSERT(*dsc == NULL); /* If this ASSERT fails, dsc was not released properly */
1327         *dsc = NULL;
1328
1329         /* Always do 1-to-1 mapping when number of DSCs is same as number of pipes */
1330         if (pool->res_cap->num_dsc == pool->res_cap->num_opp) {
1331                 *dsc = pool->dscs[pipe_idx];
1332                 res_ctx->is_dsc_acquired[pipe_idx] = true;
1333                 return;
1334         }
1335
1336         /* Return old DSC to avoid the need for re-programming */
1337         if (dsc_old && !res_ctx->is_dsc_acquired[dsc_old->inst]) {
1338                 *dsc = dsc_old;
1339                 res_ctx->is_dsc_acquired[dsc_old->inst] = true;
1340                 return ;
1341         }
1342
1343         /* Find first free DSC */
1344         for (i = 0; i < pool->res_cap->num_dsc; i++)
1345                 if (!res_ctx->is_dsc_acquired[i]) {
1346                         *dsc = pool->dscs[i];
1347                         res_ctx->is_dsc_acquired[i] = true;
1348                         break;
1349                 }
1350 }
1351
1352 void dcn20_release_dsc(struct resource_context *res_ctx,
1353                         const struct resource_pool *pool,
1354                         struct display_stream_compressor **dsc)
1355 {
1356         int i;
1357
1358         for (i = 0; i < pool->res_cap->num_dsc; i++)
1359                 if (pool->dscs[i] == *dsc) {
1360                         res_ctx->is_dsc_acquired[i] = false;
1361                         *dsc = NULL;
1362                         break;
1363                 }
1364 }
1365
1366
1367
1368 enum dc_status dcn20_add_dsc_to_stream_resource(struct dc *dc,
1369                 struct dc_state *dc_ctx,
1370                 struct dc_stream_state *dc_stream)
1371 {
1372         enum dc_status result = DC_OK;
1373         int i;
1374
1375         /* Get a DSC if required and available */
1376         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1377                 struct pipe_ctx *pipe_ctx = &dc_ctx->res_ctx.pipe_ctx[i];
1378
1379                 if (pipe_ctx->stream != dc_stream)
1380                         continue;
1381
1382                 if (pipe_ctx->stream_res.dsc)
1383                         continue;
1384
1385                 dcn20_acquire_dsc(dc, &dc_ctx->res_ctx, &pipe_ctx->stream_res.dsc, i);
1386
1387                 /* The number of DSCs can be less than the number of pipes */
1388                 if (!pipe_ctx->stream_res.dsc) {
1389                         result = DC_NO_DSC_RESOURCE;
1390                 }
1391
1392                 break;
1393         }
1394
1395         return result;
1396 }
1397
1398
1399 static enum dc_status remove_dsc_from_stream_resource(struct dc *dc,
1400                 struct dc_state *new_ctx,
1401                 struct dc_stream_state *dc_stream)
1402 {
1403         struct pipe_ctx *pipe_ctx = NULL;
1404         int i;
1405
1406         for (i = 0; i < MAX_PIPES; i++) {
1407                 if (new_ctx->res_ctx.pipe_ctx[i].stream == dc_stream && !new_ctx->res_ctx.pipe_ctx[i].top_pipe) {
1408                         pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i];
1409
1410                         if (pipe_ctx->stream_res.dsc)
1411                                 dcn20_release_dsc(&new_ctx->res_ctx, dc->res_pool, &pipe_ctx->stream_res.dsc);
1412                 }
1413         }
1414
1415         if (!pipe_ctx)
1416                 return DC_ERROR_UNEXPECTED;
1417         else
1418                 return DC_OK;
1419 }
1420
1421
1422 enum dc_status dcn20_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1423 {
1424         enum dc_status result = DC_ERROR_UNEXPECTED;
1425
1426         result = resource_map_pool_resources(dc, new_ctx, dc_stream);
1427
1428         if (result == DC_OK)
1429                 result = resource_map_phy_clock_resources(dc, new_ctx, dc_stream);
1430
1431         /* Get a DSC if required and available */
1432         if (result == DC_OK && dc_stream->timing.flags.DSC)
1433                 result = dcn20_add_dsc_to_stream_resource(dc, new_ctx, dc_stream);
1434
1435         if (result == DC_OK)
1436                 result = dcn20_build_mapped_resource(dc, new_ctx, dc_stream);
1437
1438         return result;
1439 }
1440
1441
1442 enum dc_status dcn20_remove_stream_from_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1443 {
1444         enum dc_status result = DC_OK;
1445
1446         result = remove_dsc_from_stream_resource(dc, new_ctx, dc_stream);
1447
1448         return result;
1449 }
1450
1451 bool dcn20_split_stream_for_odm(
1452                 const struct dc *dc,
1453                 struct resource_context *res_ctx,
1454                 struct pipe_ctx *prev_odm_pipe,
1455                 struct pipe_ctx *next_odm_pipe)
1456 {
1457         int pipe_idx = next_odm_pipe->pipe_idx;
1458         const struct resource_pool *pool = dc->res_pool;
1459
1460         *next_odm_pipe = *prev_odm_pipe;
1461
1462         next_odm_pipe->pipe_idx = pipe_idx;
1463         next_odm_pipe->plane_res.mi = pool->mis[next_odm_pipe->pipe_idx];
1464         next_odm_pipe->plane_res.hubp = pool->hubps[next_odm_pipe->pipe_idx];
1465         next_odm_pipe->plane_res.ipp = pool->ipps[next_odm_pipe->pipe_idx];
1466         next_odm_pipe->plane_res.xfm = pool->transforms[next_odm_pipe->pipe_idx];
1467         next_odm_pipe->plane_res.dpp = pool->dpps[next_odm_pipe->pipe_idx];
1468         next_odm_pipe->plane_res.mpcc_inst = pool->dpps[next_odm_pipe->pipe_idx]->inst;
1469         next_odm_pipe->stream_res.dsc = NULL;
1470         if (prev_odm_pipe->next_odm_pipe && prev_odm_pipe->next_odm_pipe != next_odm_pipe) {
1471                 next_odm_pipe->next_odm_pipe = prev_odm_pipe->next_odm_pipe;
1472                 next_odm_pipe->next_odm_pipe->prev_odm_pipe = next_odm_pipe;
1473         }
1474         if (prev_odm_pipe->top_pipe && prev_odm_pipe->top_pipe->next_odm_pipe) {
1475                 prev_odm_pipe->top_pipe->next_odm_pipe->bottom_pipe = next_odm_pipe;
1476                 next_odm_pipe->top_pipe = prev_odm_pipe->top_pipe->next_odm_pipe;
1477         }
1478         if (prev_odm_pipe->bottom_pipe && prev_odm_pipe->bottom_pipe->next_odm_pipe) {
1479                 prev_odm_pipe->bottom_pipe->next_odm_pipe->top_pipe = next_odm_pipe;
1480                 next_odm_pipe->bottom_pipe = prev_odm_pipe->bottom_pipe->next_odm_pipe;
1481         }
1482         prev_odm_pipe->next_odm_pipe = next_odm_pipe;
1483         next_odm_pipe->prev_odm_pipe = prev_odm_pipe;
1484
1485         if (prev_odm_pipe->plane_state) {
1486                 struct scaler_data *sd = &prev_odm_pipe->plane_res.scl_data;
1487                 int new_width;
1488
1489                 /* HACTIVE halved for odm combine */
1490                 sd->h_active /= 2;
1491                 /* Calculate new vp and recout for left pipe */
1492                 /* Need at least 16 pixels width per side */
1493                 if (sd->recout.x + 16 >= sd->h_active)
1494                         return false;
1495                 new_width = sd->h_active - sd->recout.x;
1496                 sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1497                                 sd->ratios.horz, sd->recout.width - new_width));
1498                 sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1499                                 sd->ratios.horz_c, sd->recout.width - new_width));
1500                 sd->recout.width = new_width;
1501
1502                 /* Calculate new vp and recout for right pipe */
1503                 sd = &next_odm_pipe->plane_res.scl_data;
1504                 /* HACTIVE halved for odm combine */
1505                 sd->h_active /= 2;
1506                 /* Need at least 16 pixels width per side */
1507                 if (new_width <= 16)
1508                         return false;
1509                 new_width = sd->recout.width + sd->recout.x - sd->h_active;
1510                 sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1511                                 sd->ratios.horz, sd->recout.width - new_width));
1512                 sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int(
1513                                 sd->ratios.horz_c, sd->recout.width - new_width));
1514                 sd->recout.width = new_width;
1515                 sd->viewport.x += dc_fixpt_floor(dc_fixpt_mul_int(
1516                                 sd->ratios.horz, sd->h_active - sd->recout.x));
1517                 sd->viewport_c.x += dc_fixpt_floor(dc_fixpt_mul_int(
1518                                 sd->ratios.horz_c, sd->h_active - sd->recout.x));
1519                 sd->recout.x = 0;
1520         }
1521         if (!next_odm_pipe->top_pipe)
1522                 next_odm_pipe->stream_res.opp = pool->opps[next_odm_pipe->pipe_idx];
1523         else
1524                 next_odm_pipe->stream_res.opp = next_odm_pipe->top_pipe->stream_res.opp;
1525         if (next_odm_pipe->stream->timing.flags.DSC == 1 && !next_odm_pipe->top_pipe) {
1526                 dcn20_acquire_dsc(dc, res_ctx, &next_odm_pipe->stream_res.dsc, next_odm_pipe->pipe_idx);
1527                 ASSERT(next_odm_pipe->stream_res.dsc);
1528                 if (next_odm_pipe->stream_res.dsc == NULL)
1529                         return false;
1530         }
1531
1532         return true;
1533 }
1534
1535 void dcn20_split_stream_for_mpc(
1536                 struct resource_context *res_ctx,
1537                 const struct resource_pool *pool,
1538                 struct pipe_ctx *primary_pipe,
1539                 struct pipe_ctx *secondary_pipe)
1540 {
1541         int pipe_idx = secondary_pipe->pipe_idx;
1542         struct pipe_ctx *sec_bot_pipe = secondary_pipe->bottom_pipe;
1543
1544         *secondary_pipe = *primary_pipe;
1545         secondary_pipe->bottom_pipe = sec_bot_pipe;
1546
1547         secondary_pipe->pipe_idx = pipe_idx;
1548         secondary_pipe->plane_res.mi = pool->mis[secondary_pipe->pipe_idx];
1549         secondary_pipe->plane_res.hubp = pool->hubps[secondary_pipe->pipe_idx];
1550         secondary_pipe->plane_res.ipp = pool->ipps[secondary_pipe->pipe_idx];
1551         secondary_pipe->plane_res.xfm = pool->transforms[secondary_pipe->pipe_idx];
1552         secondary_pipe->plane_res.dpp = pool->dpps[secondary_pipe->pipe_idx];
1553         secondary_pipe->plane_res.mpcc_inst = pool->dpps[secondary_pipe->pipe_idx]->inst;
1554         secondary_pipe->stream_res.dsc = NULL;
1555         if (primary_pipe->bottom_pipe && primary_pipe->bottom_pipe != secondary_pipe) {
1556                 ASSERT(!secondary_pipe->bottom_pipe);
1557                 secondary_pipe->bottom_pipe = primary_pipe->bottom_pipe;
1558                 secondary_pipe->bottom_pipe->top_pipe = secondary_pipe;
1559         }
1560         primary_pipe->bottom_pipe = secondary_pipe;
1561         secondary_pipe->top_pipe = primary_pipe;
1562
1563         ASSERT(primary_pipe->plane_state);
1564 }
1565
1566 unsigned int dcn20_calc_max_scaled_time(
1567                 unsigned int time_per_pixel,
1568                 enum mmhubbub_wbif_mode mode,
1569                 unsigned int urgent_watermark)
1570 {
1571         unsigned int time_per_byte = 0;
1572         unsigned int total_y_free_entry = 0x200; /* two memory piece for luma */
1573         unsigned int total_c_free_entry = 0x140; /* two memory piece for chroma */
1574         unsigned int small_free_entry, max_free_entry;
1575         unsigned int buf_lh_capability;
1576         unsigned int max_scaled_time;
1577
1578         if (mode == PACKED_444) /* packed mode */
1579                 time_per_byte = time_per_pixel/4;
1580         else if (mode == PLANAR_420_8BPC)
1581                 time_per_byte  = time_per_pixel;
1582         else if (mode == PLANAR_420_10BPC) /* p010 */
1583                 time_per_byte  = time_per_pixel * 819/1024;
1584
1585         if (time_per_byte == 0)
1586                 time_per_byte = 1;
1587
1588         small_free_entry  = (total_y_free_entry > total_c_free_entry) ? total_c_free_entry : total_y_free_entry;
1589         max_free_entry    = (mode == PACKED_444) ? total_y_free_entry + total_c_free_entry : small_free_entry;
1590         buf_lh_capability = max_free_entry*time_per_byte*32/16; /* there is 4bit fraction */
1591         max_scaled_time   = buf_lh_capability - urgent_watermark;
1592         return max_scaled_time;
1593 }
1594
1595 void dcn20_set_mcif_arb_params(
1596                 struct dc *dc,
1597                 struct dc_state *context,
1598                 display_e2e_pipe_params_st *pipes,
1599                 int pipe_cnt)
1600 {
1601         enum mmhubbub_wbif_mode wbif_mode;
1602         struct mcif_arb_params *wb_arb_params;
1603         int i, j, dwb_pipe;
1604
1605         /* Writeback MCIF_WB arbitration parameters */
1606         dwb_pipe = 0;
1607         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1608
1609                 if (!context->res_ctx.pipe_ctx[i].stream)
1610                         continue;
1611
1612                 for (j = 0; j < MAX_DWB_PIPES; j++) {
1613                         if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].wb_enabled == false)
1614                                 continue;
1615
1616                         //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params;
1617                         wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe];
1618
1619                         if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.out_format == dwb_scaler_mode_yuv420) {
1620                                 if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.output_depth == DWB_OUTPUT_PIXEL_DEPTH_8BPC)
1621                                         wbif_mode = PLANAR_420_8BPC;
1622                                 else
1623                                         wbif_mode = PLANAR_420_10BPC;
1624                         } else
1625                                 wbif_mode = PACKED_444;
1626
1627                         DC_FP_START();
1628                         dcn20_fpu_set_wb_arb_params(wb_arb_params, context, pipes, pipe_cnt, i);
1629                         DC_FP_END();
1630
1631                         wb_arb_params->slice_lines = 32;
1632                         wb_arb_params->arbitration_slice = 2;
1633                         wb_arb_params->max_scaled_time = dcn20_calc_max_scaled_time(wb_arb_params->time_per_pixel,
1634                                 wbif_mode,
1635                                 wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */
1636
1637                         dwb_pipe++;
1638
1639                         if (dwb_pipe >= MAX_DWB_PIPES)
1640                                 return;
1641                 }
1642                 if (dwb_pipe >= MAX_DWB_PIPES)
1643                         return;
1644         }
1645 }
1646
1647 bool dcn20_validate_dsc(struct dc *dc, struct dc_state *new_ctx)
1648 {
1649         int i;
1650
1651         /* Validate DSC config, dsc count validation is already done */
1652         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1653                 struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i];
1654                 struct dc_stream_state *stream = pipe_ctx->stream;
1655                 struct dsc_config dsc_cfg;
1656                 struct pipe_ctx *odm_pipe;
1657                 int opp_cnt = 1;
1658
1659                 for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1660                         opp_cnt++;
1661
1662                 /* Only need to validate top pipe */
1663                 if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe || !stream || !stream->timing.flags.DSC)
1664                         continue;
1665
1666                 dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left
1667                                 + stream->timing.h_border_right) / opp_cnt;
1668                 dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top
1669                                 + stream->timing.v_border_bottom;
1670                 dsc_cfg.pixel_encoding = stream->timing.pixel_encoding;
1671                 dsc_cfg.color_depth = stream->timing.display_color_depth;
1672                 dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false;
1673                 dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg;
1674                 dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt;
1675
1676                 if (!pipe_ctx->stream_res.dsc->funcs->dsc_validate_stream(pipe_ctx->stream_res.dsc, &dsc_cfg))
1677                         return false;
1678         }
1679         return true;
1680 }
1681
1682 struct pipe_ctx *dcn20_find_secondary_pipe(struct dc *dc,
1683                 struct resource_context *res_ctx,
1684                 const struct resource_pool *pool,
1685                 const struct pipe_ctx *primary_pipe)
1686 {
1687         struct pipe_ctx *secondary_pipe = NULL;
1688
1689         if (dc && primary_pipe) {
1690                 int j;
1691                 int preferred_pipe_idx = 0;
1692
1693                 /* first check the prev dc state:
1694                  * if this primary pipe has a bottom pipe in prev. state
1695                  * and if the bottom pipe is still available (which it should be),
1696                  * pick that pipe as secondary
1697                  * Same logic applies for ODM pipes
1698                  */
1699                 if (dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe) {
1700                         preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].next_odm_pipe->pipe_idx;
1701                         if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1702                                 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1703                                 secondary_pipe->pipe_idx = preferred_pipe_idx;
1704                         }
1705                 }
1706                 if (secondary_pipe == NULL &&
1707                                 dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe) {
1708                         preferred_pipe_idx = dc->current_state->res_ctx.pipe_ctx[primary_pipe->pipe_idx].bottom_pipe->pipe_idx;
1709                         if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1710                                 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1711                                 secondary_pipe->pipe_idx = preferred_pipe_idx;
1712                         }
1713                 }
1714
1715                 /*
1716                  * if this primary pipe does not have a bottom pipe in prev. state
1717                  * start backward and find a pipe that did not used to be a bottom pipe in
1718                  * prev. dc state. This way we make sure we keep the same assignment as
1719                  * last state and will not have to reprogram every pipe
1720                  */
1721                 if (secondary_pipe == NULL) {
1722                         for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) {
1723                                 if (dc->current_state->res_ctx.pipe_ctx[j].top_pipe == NULL
1724                                                 && dc->current_state->res_ctx.pipe_ctx[j].prev_odm_pipe == NULL) {
1725                                         preferred_pipe_idx = j;
1726
1727                                         if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1728                                                 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1729                                                 secondary_pipe->pipe_idx = preferred_pipe_idx;
1730                                                 break;
1731                                         }
1732                                 }
1733                         }
1734                 }
1735                 /*
1736                  * We should never hit this assert unless assignments are shuffled around
1737                  * if this happens we will prob. hit a vsync tdr
1738                  */
1739                 ASSERT(secondary_pipe);
1740                 /*
1741                  * search backwards for the second pipe to keep pipe
1742                  * assignment more consistent
1743                  */
1744                 if (secondary_pipe == NULL) {
1745                         for (j = dc->res_pool->pipe_count - 1; j >= 0; j--) {
1746                                 preferred_pipe_idx = j;
1747
1748                                 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1749                                         secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1750                                         secondary_pipe->pipe_idx = preferred_pipe_idx;
1751                                         break;
1752                                 }
1753                         }
1754                 }
1755         }
1756
1757         return secondary_pipe;
1758 }
1759
1760 void dcn20_merge_pipes_for_validate(
1761                 struct dc *dc,
1762                 struct dc_state *context)
1763 {
1764         int i;
1765
1766         /* merge previously split odm pipes since mode support needs to make the decision */
1767         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1768                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1769                 struct pipe_ctx *odm_pipe = pipe->next_odm_pipe;
1770
1771                 if (pipe->prev_odm_pipe)
1772                         continue;
1773
1774                 pipe->next_odm_pipe = NULL;
1775                 while (odm_pipe) {
1776                         struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1777
1778                         odm_pipe->plane_state = NULL;
1779                         odm_pipe->stream = NULL;
1780                         odm_pipe->top_pipe = NULL;
1781                         odm_pipe->bottom_pipe = NULL;
1782                         odm_pipe->prev_odm_pipe = NULL;
1783                         odm_pipe->next_odm_pipe = NULL;
1784                         if (odm_pipe->stream_res.dsc)
1785                                 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &odm_pipe->stream_res.dsc);
1786                         /* Clear plane_res and stream_res */
1787                         memset(&odm_pipe->plane_res, 0, sizeof(odm_pipe->plane_res));
1788                         memset(&odm_pipe->stream_res, 0, sizeof(odm_pipe->stream_res));
1789                         odm_pipe = next_odm_pipe;
1790                 }
1791                 if (pipe->plane_state)
1792                         resource_build_scaling_params(pipe);
1793         }
1794
1795         /* merge previously mpc split pipes since mode support needs to make the decision */
1796         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1797                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1798                 struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe;
1799
1800                 if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state)
1801                         continue;
1802
1803                 pipe->bottom_pipe = hsplit_pipe->bottom_pipe;
1804                 if (hsplit_pipe->bottom_pipe)
1805                         hsplit_pipe->bottom_pipe->top_pipe = pipe;
1806                 hsplit_pipe->plane_state = NULL;
1807                 hsplit_pipe->stream = NULL;
1808                 hsplit_pipe->top_pipe = NULL;
1809                 hsplit_pipe->bottom_pipe = NULL;
1810
1811                 /* Clear plane_res and stream_res */
1812                 memset(&hsplit_pipe->plane_res, 0, sizeof(hsplit_pipe->plane_res));
1813                 memset(&hsplit_pipe->stream_res, 0, sizeof(hsplit_pipe->stream_res));
1814                 if (pipe->plane_state)
1815                         resource_build_scaling_params(pipe);
1816         }
1817 }
1818
1819 int dcn20_validate_apply_pipe_split_flags(
1820                 struct dc *dc,
1821                 struct dc_state *context,
1822                 int vlevel,
1823                 int *split,
1824                 bool *merge)
1825 {
1826         int i, pipe_idx, vlevel_split;
1827         int plane_count = 0;
1828         bool force_split = false;
1829         bool avoid_split = dc->debug.pipe_split_policy == MPC_SPLIT_AVOID;
1830         struct vba_vars_st *v = &context->bw_ctx.dml.vba;
1831         int max_mpc_comb = v->maxMpcComb;
1832
1833         if (context->stream_count > 1) {
1834                 if (dc->debug.pipe_split_policy == MPC_SPLIT_AVOID_MULT_DISP)
1835                         avoid_split = true;
1836         } else if (dc->debug.force_single_disp_pipe_split)
1837                         force_split = true;
1838
1839         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1840                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1841
1842                 /**
1843                  * Workaround for avoiding pipe-split in cases where we'd split
1844                  * planes that are too small, resulting in splits that aren't
1845                  * valid for the scaler.
1846                  */
1847                 if (pipe->plane_state &&
1848                     (pipe->plane_state->dst_rect.width <= 16 ||
1849                      pipe->plane_state->dst_rect.height <= 16 ||
1850                      pipe->plane_state->src_rect.width <= 16 ||
1851                      pipe->plane_state->src_rect.height <= 16))
1852                         avoid_split = true;
1853
1854                 /* TODO: fix dc bugs and remove this split threshold thing */
1855                 if (pipe->stream && !pipe->prev_odm_pipe &&
1856                                 (!pipe->top_pipe || pipe->top_pipe->plane_state != pipe->plane_state))
1857                         ++plane_count;
1858         }
1859         if (plane_count > dc->res_pool->pipe_count / 2)
1860                 avoid_split = true;
1861
1862         /* W/A: Mode timing with borders may not work well with pipe split, avoid for this corner case */
1863         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1864                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1865                 struct dc_crtc_timing timing;
1866
1867                 if (!pipe->stream)
1868                         continue;
1869                 else {
1870                         timing = pipe->stream->timing;
1871                         if (timing.h_border_left + timing.h_border_right
1872                                         + timing.v_border_top + timing.v_border_bottom > 0) {
1873                                 avoid_split = true;
1874                                 break;
1875                         }
1876                 }
1877         }
1878
1879         /* Avoid split loop looks for lowest voltage level that allows most unsplit pipes possible */
1880         if (avoid_split) {
1881                 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1882                         if (!context->res_ctx.pipe_ctx[i].stream)
1883                                 continue;
1884
1885                         for (vlevel_split = vlevel; vlevel <= context->bw_ctx.dml.soc.num_states; vlevel++)
1886                                 if (v->NoOfDPP[vlevel][0][pipe_idx] == 1 &&
1887                                                 v->ModeSupport[vlevel][0])
1888                                         break;
1889                         /* Impossible to not split this pipe */
1890                         if (vlevel > context->bw_ctx.dml.soc.num_states)
1891                                 vlevel = vlevel_split;
1892                         else
1893                                 max_mpc_comb = 0;
1894                         pipe_idx++;
1895                 }
1896                 v->maxMpcComb = max_mpc_comb;
1897         }
1898
1899         /* Split loop sets which pipe should be split based on dml outputs and dc flags */
1900         for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1901                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1902                 int pipe_plane = v->pipe_plane[pipe_idx];
1903                 bool split4mpc = context->stream_count == 1 && plane_count == 1
1904                                 && dc->config.enable_4to1MPC && dc->res_pool->pipe_count >= 4;
1905
1906                 if (!context->res_ctx.pipe_ctx[i].stream)
1907                         continue;
1908
1909                 if (split4mpc || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 4)
1910                         split[i] = 4;
1911                 else if (force_split || v->NoOfDPP[vlevel][max_mpc_comb][pipe_plane] == 2)
1912                                 split[i] = 2;
1913
1914                 if ((pipe->stream->view_format ==
1915                                 VIEW_3D_FORMAT_SIDE_BY_SIDE ||
1916                                 pipe->stream->view_format ==
1917                                 VIEW_3D_FORMAT_TOP_AND_BOTTOM) &&
1918                                 (pipe->stream->timing.timing_3d_format ==
1919                                 TIMING_3D_FORMAT_TOP_AND_BOTTOM ||
1920                                  pipe->stream->timing.timing_3d_format ==
1921                                 TIMING_3D_FORMAT_SIDE_BY_SIDE))
1922                         split[i] = 2;
1923                 if (dc->debug.force_odm_combine & (1 << pipe->stream_res.tg->inst)) {
1924                         split[i] = 2;
1925                         v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_2to1;
1926                 }
1927                 if (dc->debug.force_odm_combine_4to1 & (1 << pipe->stream_res.tg->inst)) {
1928                         split[i] = 4;
1929                         v->ODMCombineEnablePerState[vlevel][pipe_plane] = dm_odm_combine_mode_4to1;
1930                 }
1931                 /*420 format workaround*/
1932                 if (pipe->stream->timing.h_addressable > 7680 &&
1933                                 pipe->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1934                         split[i] = 4;
1935                 }
1936                 v->ODMCombineEnabled[pipe_plane] =
1937                         v->ODMCombineEnablePerState[vlevel][pipe_plane];
1938
1939                 if (v->ODMCombineEnabled[pipe_plane] == dm_odm_combine_mode_disabled) {
1940                         if (get_num_mpc_splits(pipe) == 1) {
1941                                 /*If need split for mpc but 2 way split already*/
1942                                 if (split[i] == 4)
1943                                         split[i] = 2; /* 2 -> 4 MPC */
1944                                 else if (split[i] == 2)
1945                                         split[i] = 0; /* 2 -> 2 MPC */
1946                                 else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state)
1947                                         merge[i] = true; /* 2 -> 1 MPC */
1948                         } else if (get_num_mpc_splits(pipe) == 3) {
1949                                 /*If need split for mpc but 4 way split already*/
1950                                 if (split[i] == 2 && ((pipe->top_pipe && !pipe->top_pipe->top_pipe)
1951                                                 || !pipe->bottom_pipe)) {
1952                                         merge[i] = true; /* 4 -> 2 MPC */
1953                                 } else if (split[i] == 0 && pipe->top_pipe &&
1954                                                 pipe->top_pipe->plane_state == pipe->plane_state)
1955                                         merge[i] = true; /* 4 -> 1 MPC */
1956                                 split[i] = 0;
1957                         } else if (get_num_odm_splits(pipe)) {
1958                                 /* ODM -> MPC transition */
1959                                 if (pipe->prev_odm_pipe) {
1960                                         split[i] = 0;
1961                                         merge[i] = true;
1962                                 }
1963                         }
1964                 } else {
1965                         if (get_num_odm_splits(pipe) == 1) {
1966                                 /*If need split for odm but 2 way split already*/
1967                                 if (split[i] == 4)
1968                                         split[i] = 2; /* 2 -> 4 ODM */
1969                                 else if (split[i] == 2)
1970                                         split[i] = 0; /* 2 -> 2 ODM */
1971                                 else if (pipe->prev_odm_pipe) {
1972                                         ASSERT(0); /* NOT expected yet */
1973                                         merge[i] = true; /* exit ODM */
1974                                 }
1975                         } else if (get_num_odm_splits(pipe) == 3) {
1976                                 /*If need split for odm but 4 way split already*/
1977                                 if (split[i] == 2 && ((pipe->prev_odm_pipe && !pipe->prev_odm_pipe->prev_odm_pipe)
1978                                                 || !pipe->next_odm_pipe)) {
1979                                         ASSERT(0); /* NOT expected yet */
1980                                         merge[i] = true; /* 4 -> 2 ODM */
1981                                 } else if (split[i] == 0 && pipe->prev_odm_pipe) {
1982                                         ASSERT(0); /* NOT expected yet */
1983                                         merge[i] = true; /* exit ODM */
1984                                 }
1985                                 split[i] = 0;
1986                         } else if (get_num_mpc_splits(pipe)) {
1987                                 /* MPC -> ODM transition */
1988                                 ASSERT(0); /* NOT expected yet */
1989                                 if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
1990                                         split[i] = 0;
1991                                         merge[i] = true;
1992                                 }
1993                         }
1994                 }
1995
1996                 /* Adjust dppclk when split is forced, do not bother with dispclk */
1997                 if (split[i] != 0 && v->NoOfDPP[vlevel][max_mpc_comb][pipe_idx] == 1) {
1998                         DC_FP_START();
1999                         dcn20_fpu_adjust_dppclk(v, vlevel, max_mpc_comb, pipe_idx, false);
2000                         DC_FP_END();
2001                 }
2002                 pipe_idx++;
2003         }
2004
2005         return vlevel;
2006 }
2007
2008 bool dcn20_fast_validate_bw(
2009                 struct dc *dc,
2010                 struct dc_state *context,
2011                 display_e2e_pipe_params_st *pipes,
2012                 int *pipe_cnt_out,
2013                 int *pipe_split_from,
2014                 int *vlevel_out,
2015                 bool fast_validate)
2016 {
2017         bool out = false;
2018         int split[MAX_PIPES] = { 0 };
2019         int pipe_cnt, i, pipe_idx, vlevel;
2020
2021         ASSERT(pipes);
2022         if (!pipes)
2023                 return false;
2024
2025         dcn20_merge_pipes_for_validate(dc, context);
2026
2027         DC_FP_START();
2028         pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2029         DC_FP_END();
2030
2031         *pipe_cnt_out = pipe_cnt;
2032
2033         if (!pipe_cnt) {
2034                 out = true;
2035                 goto validate_out;
2036         }
2037
2038         vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2039
2040         if (vlevel > context->bw_ctx.dml.soc.num_states)
2041                 goto validate_fail;
2042
2043         vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, NULL);
2044
2045         /*initialize pipe_just_split_from to invalid idx*/
2046         for (i = 0; i < MAX_PIPES; i++)
2047                 pipe_split_from[i] = -1;
2048
2049         for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
2050                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2051                 struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe;
2052
2053                 if (!pipe->stream || pipe_split_from[i] >= 0)
2054                         continue;
2055
2056                 pipe_idx++;
2057
2058                 if (!pipe->top_pipe && !pipe->plane_state && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) {
2059                         hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe);
2060                         ASSERT(hsplit_pipe);
2061                         if (!dcn20_split_stream_for_odm(
2062                                         dc, &context->res_ctx,
2063                                         pipe, hsplit_pipe))
2064                                 goto validate_fail;
2065                         pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx;
2066                         dcn20_build_mapped_resource(dc, context, pipe->stream);
2067                 }
2068
2069                 if (!pipe->plane_state)
2070                         continue;
2071                 /* Skip 2nd half of already split pipe */
2072                 if (pipe->top_pipe && pipe->plane_state == pipe->top_pipe->plane_state)
2073                         continue;
2074
2075                 /* We do not support mpo + odm at the moment */
2076                 if (hsplit_pipe && hsplit_pipe->plane_state != pipe->plane_state
2077                                 && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx])
2078                         goto validate_fail;
2079
2080                 if (split[i] == 2) {
2081                         if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) {
2082                                 /* pipe not split previously needs split */
2083                                 hsplit_pipe = dcn20_find_secondary_pipe(dc, &context->res_ctx, dc->res_pool, pipe);
2084                                 ASSERT(hsplit_pipe);
2085                                 if (!hsplit_pipe) {
2086                                         DC_FP_START();
2087                                         dcn20_fpu_adjust_dppclk(&context->bw_ctx.dml.vba, vlevel, context->bw_ctx.dml.vba.maxMpcComb, pipe_idx, true);
2088                                         DC_FP_END();
2089                                         continue;
2090                                 }
2091                                 if (context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) {
2092                                         if (!dcn20_split_stream_for_odm(
2093                                                         dc, &context->res_ctx,
2094                                                         pipe, hsplit_pipe))
2095                                                 goto validate_fail;
2096                                         dcn20_build_mapped_resource(dc, context, pipe->stream);
2097                                 } else {
2098                                         dcn20_split_stream_for_mpc(
2099                                                         &context->res_ctx, dc->res_pool,
2100                                                         pipe, hsplit_pipe);
2101                                         resource_build_scaling_params(pipe);
2102                                         resource_build_scaling_params(hsplit_pipe);
2103                                 }
2104                                 pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx;
2105                         }
2106                 } else if (hsplit_pipe && hsplit_pipe->plane_state == pipe->plane_state) {
2107                         /* merge should already have been done */
2108                         ASSERT(0);
2109                 }
2110         }
2111         /* Actual dsc count per stream dsc validation*/
2112         if (!dcn20_validate_dsc(dc, context)) {
2113                 context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states] =
2114                                 DML_FAIL_DSC_VALIDATION_FAILURE;
2115                 goto validate_fail;
2116         }
2117
2118         *vlevel_out = vlevel;
2119
2120         out = true;
2121         goto validate_out;
2122
2123 validate_fail:
2124         out = false;
2125
2126 validate_out:
2127         return out;
2128 }
2129
2130 bool dcn20_validate_bandwidth(struct dc *dc, struct dc_state *context,
2131                 bool fast_validate)
2132 {
2133         bool voltage_supported;
2134         DC_FP_START();
2135         voltage_supported = dcn20_validate_bandwidth_fp(dc, context, fast_validate);
2136         DC_FP_END();
2137         return voltage_supported;
2138 }
2139
2140 struct pipe_ctx *dcn20_acquire_idle_pipe_for_layer(
2141                 struct dc_state *state,
2142                 const struct resource_pool *pool,
2143                 struct dc_stream_state *stream)
2144 {
2145         struct resource_context *res_ctx = &state->res_ctx;
2146         struct pipe_ctx *head_pipe = resource_get_head_pipe_for_stream(res_ctx, stream);
2147         struct pipe_ctx *idle_pipe = find_idle_secondary_pipe(res_ctx, pool, head_pipe);
2148
2149         if (!head_pipe)
2150                 ASSERT(0);
2151
2152         if (!idle_pipe)
2153                 return NULL;
2154
2155         idle_pipe->stream = head_pipe->stream;
2156         idle_pipe->stream_res.tg = head_pipe->stream_res.tg;
2157         idle_pipe->stream_res.opp = head_pipe->stream_res.opp;
2158
2159         idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx];
2160         idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx];
2161         idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx];
2162         idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst;
2163
2164         return idle_pipe;
2165 }
2166
2167 bool dcn20_get_dcc_compression_cap(const struct dc *dc,
2168                 const struct dc_dcc_surface_param *input,
2169                 struct dc_surface_dcc_cap *output)
2170 {
2171         return dc->res_pool->hubbub->funcs->get_dcc_compression_cap(
2172                         dc->res_pool->hubbub,
2173                         input,
2174                         output);
2175 }
2176
2177 static void dcn20_destroy_resource_pool(struct resource_pool **pool)
2178 {
2179         struct dcn20_resource_pool *dcn20_pool = TO_DCN20_RES_POOL(*pool);
2180
2181         dcn20_resource_destruct(dcn20_pool);
2182         kfree(dcn20_pool);
2183         *pool = NULL;
2184 }
2185
2186
2187 static struct dc_cap_funcs cap_funcs = {
2188         .get_dcc_compression_cap = dcn20_get_dcc_compression_cap
2189 };
2190
2191
2192 enum dc_status dcn20_patch_unknown_plane_state(struct dc_plane_state *plane_state)
2193 {
2194         enum surface_pixel_format surf_pix_format = plane_state->format;
2195         unsigned int bpp = resource_pixel_format_to_bpp(surf_pix_format);
2196
2197         enum swizzle_mode_values swizzle = DC_SW_LINEAR;
2198
2199         if (bpp == 64)
2200                 swizzle = DC_SW_64KB_D;
2201         else
2202                 swizzle = DC_SW_64KB_S;
2203
2204         plane_state->tiling_info.gfx9.swizzle = swizzle;
2205         return DC_OK;
2206 }
2207
2208 static const struct resource_funcs dcn20_res_pool_funcs = {
2209         .destroy = dcn20_destroy_resource_pool,
2210         .link_enc_create = dcn20_link_encoder_create,
2211         .panel_cntl_create = dcn20_panel_cntl_create,
2212         .validate_bandwidth = dcn20_validate_bandwidth,
2213         .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer,
2214         .add_stream_to_ctx = dcn20_add_stream_to_ctx,
2215         .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2216         .remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2217         .populate_dml_writeback_from_context = dcn20_populate_dml_writeback_from_context,
2218         .patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2219         .set_mcif_arb_params = dcn20_set_mcif_arb_params,
2220         .populate_dml_pipes = dcn20_populate_dml_pipes_from_context,
2221         .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link
2222 };
2223
2224 bool dcn20_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
2225 {
2226         int i;
2227         uint32_t pipe_count = pool->res_cap->num_dwb;
2228
2229         for (i = 0; i < pipe_count; i++) {
2230                 struct dcn20_dwbc *dwbc20 = kzalloc(sizeof(struct dcn20_dwbc),
2231                                                     GFP_KERNEL);
2232
2233                 if (!dwbc20) {
2234                         dm_error("DC: failed to create dwbc20!\n");
2235                         return false;
2236                 }
2237                 dcn20_dwbc_construct(dwbc20, ctx,
2238                                 &dwbc20_regs[i],
2239                                 &dwbc20_shift,
2240                                 &dwbc20_mask,
2241                                 i);
2242                 pool->dwbc[i] = &dwbc20->base;
2243         }
2244         return true;
2245 }
2246
2247 bool dcn20_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
2248 {
2249         int i;
2250         uint32_t pipe_count = pool->res_cap->num_dwb;
2251
2252         ASSERT(pipe_count > 0);
2253
2254         for (i = 0; i < pipe_count; i++) {
2255                 struct dcn20_mmhubbub *mcif_wb20 = kzalloc(sizeof(struct dcn20_mmhubbub),
2256                                                     GFP_KERNEL);
2257
2258                 if (!mcif_wb20) {
2259                         dm_error("DC: failed to create mcif_wb20!\n");
2260                         return false;
2261                 }
2262
2263                 dcn20_mmhubbub_construct(mcif_wb20, ctx,
2264                                 &mcif_wb20_regs[i],
2265                                 &mcif_wb20_shift,
2266                                 &mcif_wb20_mask,
2267                                 i);
2268
2269                 pool->mcif_wb[i] = &mcif_wb20->base;
2270         }
2271         return true;
2272 }
2273
2274 static struct pp_smu_funcs *dcn20_pp_smu_create(struct dc_context *ctx)
2275 {
2276         struct pp_smu_funcs *pp_smu = kzalloc(sizeof(*pp_smu), GFP_ATOMIC);
2277
2278         if (!pp_smu)
2279                 return pp_smu;
2280
2281         dm_pp_get_funcs(ctx, pp_smu);
2282
2283         if (pp_smu->ctx.ver != PP_SMU_VER_NV)
2284                 pp_smu = memset(pp_smu, 0, sizeof(struct pp_smu_funcs));
2285
2286         return pp_smu;
2287 }
2288
2289 static void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu)
2290 {
2291         if (pp_smu && *pp_smu) {
2292                 kfree(*pp_smu);
2293                 *pp_smu = NULL;
2294         }
2295 }
2296
2297 static struct _vcs_dpi_soc_bounding_box_st *get_asic_rev_soc_bb(
2298         uint32_t hw_internal_rev)
2299 {
2300         if (ASICREV_IS_NAVI14_M(hw_internal_rev))
2301                 return &dcn2_0_nv14_soc;
2302
2303         if (ASICREV_IS_NAVI12_P(hw_internal_rev))
2304                 return &dcn2_0_nv12_soc;
2305
2306         return &dcn2_0_soc;
2307 }
2308
2309 static struct _vcs_dpi_ip_params_st *get_asic_rev_ip_params(
2310         uint32_t hw_internal_rev)
2311 {
2312         /* NV14 */
2313         if (ASICREV_IS_NAVI14_M(hw_internal_rev))
2314                 return &dcn2_0_nv14_ip;
2315
2316         /* NV12 and NV10 */
2317         return &dcn2_0_ip;
2318 }
2319
2320 static enum dml_project get_dml_project_version(uint32_t hw_internal_rev)
2321 {
2322         return DML_PROJECT_NAVI10v2;
2323 }
2324
2325 static bool init_soc_bounding_box(struct dc *dc,
2326                                   struct dcn20_resource_pool *pool)
2327 {
2328         struct _vcs_dpi_soc_bounding_box_st *loaded_bb =
2329                         get_asic_rev_soc_bb(dc->ctx->asic_id.hw_internal_rev);
2330         struct _vcs_dpi_ip_params_st *loaded_ip =
2331                         get_asic_rev_ip_params(dc->ctx->asic_id.hw_internal_rev);
2332
2333         DC_LOGGER_INIT(dc->ctx->logger);
2334
2335         if (pool->base.pp_smu) {
2336                 struct pp_smu_nv_clock_table max_clocks = {0};
2337                 unsigned int uclk_states[8] = {0};
2338                 unsigned int num_states = 0;
2339                 enum pp_smu_status status;
2340                 bool clock_limits_available = false;
2341                 bool uclk_states_available = false;
2342
2343                 if (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) {
2344                         status = (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states)
2345                                 (&pool->base.pp_smu->nv_funcs.pp_smu, uclk_states, &num_states);
2346
2347                         uclk_states_available = (status == PP_SMU_RESULT_OK);
2348                 }
2349
2350                 if (pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) {
2351                         status = (*pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks)
2352                                         (&pool->base.pp_smu->nv_funcs.pp_smu, &max_clocks);
2353                         /* SMU cannot set DCF clock to anything equal to or higher than SOC clock
2354                          */
2355                         if (max_clocks.dcfClockInKhz >= max_clocks.socClockInKhz)
2356                                 max_clocks.dcfClockInKhz = max_clocks.socClockInKhz - 1000;
2357                         clock_limits_available = (status == PP_SMU_RESULT_OK);
2358                 }
2359
2360                 if (clock_limits_available && uclk_states_available && num_states) {
2361                         DC_FP_START();
2362                         dcn20_update_bounding_box(dc, loaded_bb, &max_clocks, uclk_states, num_states);
2363                         DC_FP_END();
2364                 } else if (clock_limits_available) {
2365                         DC_FP_START();
2366                         dcn20_cap_soc_clocks(loaded_bb, max_clocks);
2367                         DC_FP_END();
2368                 }
2369         }
2370
2371         loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator;
2372         loaded_ip->max_num_dpp = pool->base.pipe_count;
2373         DC_FP_START();
2374         dcn20_patch_bounding_box(dc, loaded_bb);
2375         DC_FP_END();
2376         return true;
2377 }
2378
2379 static bool dcn20_resource_construct(
2380         uint8_t num_virtual_links,
2381         struct dc *dc,
2382         struct dcn20_resource_pool *pool)
2383 {
2384         int i;
2385         struct dc_context *ctx = dc->ctx;
2386         struct irq_service_init_data init_data;
2387         struct ddc_service_init_data ddc_init_data = {0};
2388         struct _vcs_dpi_soc_bounding_box_st *loaded_bb =
2389                         get_asic_rev_soc_bb(ctx->asic_id.hw_internal_rev);
2390         struct _vcs_dpi_ip_params_st *loaded_ip =
2391                         get_asic_rev_ip_params(ctx->asic_id.hw_internal_rev);
2392         enum dml_project dml_project_version =
2393                         get_dml_project_version(ctx->asic_id.hw_internal_rev);
2394
2395         ctx->dc_bios->regs = &bios_regs;
2396         pool->base.funcs = &dcn20_res_pool_funcs;
2397
2398         if (ASICREV_IS_NAVI14_M(ctx->asic_id.hw_internal_rev)) {
2399                 pool->base.res_cap = &res_cap_nv14;
2400                 pool->base.pipe_count = 5;
2401                 pool->base.mpcc_count = 5;
2402         } else {
2403                 pool->base.res_cap = &res_cap_nv10;
2404                 pool->base.pipe_count = 6;
2405                 pool->base.mpcc_count = 6;
2406         }
2407         /*************************************************
2408          *  Resource + asic cap harcoding                *
2409          *************************************************/
2410         pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2411
2412         dc->caps.max_downscale_ratio = 200;
2413         dc->caps.i2c_speed_in_khz = 100;
2414         dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/
2415         dc->caps.max_cursor_size = 256;
2416         dc->caps.min_horizontal_blanking_period = 80;
2417         dc->caps.dmdata_alloc_size = 2048;
2418
2419         dc->caps.max_slave_planes = 1;
2420         dc->caps.max_slave_yuv_planes = 1;
2421         dc->caps.max_slave_rgb_planes = 1;
2422         dc->caps.post_blend_color_processing = true;
2423         dc->caps.force_dp_tps4_for_cp2520 = true;
2424         dc->caps.extended_aux_timeout_support = true;
2425
2426         /* Color pipeline capabilities */
2427         dc->caps.color.dpp.dcn_arch = 1;
2428         dc->caps.color.dpp.input_lut_shared = 0;
2429         dc->caps.color.dpp.icsc = 1;
2430         dc->caps.color.dpp.dgam_ram = 1;
2431         dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2432         dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2433         dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 0;
2434         dc->caps.color.dpp.dgam_rom_caps.pq = 0;
2435         dc->caps.color.dpp.dgam_rom_caps.hlg = 0;
2436         dc->caps.color.dpp.post_csc = 0;
2437         dc->caps.color.dpp.gamma_corr = 0;
2438         dc->caps.color.dpp.dgam_rom_for_yuv = 1;
2439
2440         dc->caps.color.dpp.hw_3d_lut = 1;
2441         dc->caps.color.dpp.ogam_ram = 1;
2442         // no OGAM ROM on DCN2, only MPC ROM
2443         dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2444         dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2445         dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2446         dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2447         dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2448         dc->caps.color.dpp.ocsc = 0;
2449
2450         dc->caps.color.mpc.gamut_remap = 0;
2451         dc->caps.color.mpc.num_3dluts = 0;
2452         dc->caps.color.mpc.shared_3d_lut = 0;
2453         dc->caps.color.mpc.ogam_ram = 1;
2454         dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2455         dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2456         dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2457         dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2458         dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2459         dc->caps.color.mpc.ocsc = 1;
2460
2461         dc->caps.hdmi_frl_pcon_support = true;
2462
2463         if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) {
2464                 dc->debug = debug_defaults_drv;
2465         } else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) {
2466                 pool->base.pipe_count = 4;
2467                 pool->base.mpcc_count = pool->base.pipe_count;
2468                 dc->debug = debug_defaults_diags;
2469         } else {
2470                 dc->debug = debug_defaults_diags;
2471         }
2472         //dcn2.0x
2473         dc->work_arounds.dedcn20_305_wa = true;
2474
2475         // Init the vm_helper
2476         if (dc->vm_helper)
2477                 vm_helper_init(dc->vm_helper, 16);
2478
2479         /*************************************************
2480          *  Create resources                             *
2481          *************************************************/
2482
2483         pool->base.clock_sources[DCN20_CLK_SRC_PLL0] =
2484                         dcn20_clock_source_create(ctx, ctx->dc_bios,
2485                                 CLOCK_SOURCE_COMBO_PHY_PLL0,
2486                                 &clk_src_regs[0], false);
2487         pool->base.clock_sources[DCN20_CLK_SRC_PLL1] =
2488                         dcn20_clock_source_create(ctx, ctx->dc_bios,
2489                                 CLOCK_SOURCE_COMBO_PHY_PLL1,
2490                                 &clk_src_regs[1], false);
2491         pool->base.clock_sources[DCN20_CLK_SRC_PLL2] =
2492                         dcn20_clock_source_create(ctx, ctx->dc_bios,
2493                                 CLOCK_SOURCE_COMBO_PHY_PLL2,
2494                                 &clk_src_regs[2], false);
2495         pool->base.clock_sources[DCN20_CLK_SRC_PLL3] =
2496                         dcn20_clock_source_create(ctx, ctx->dc_bios,
2497                                 CLOCK_SOURCE_COMBO_PHY_PLL3,
2498                                 &clk_src_regs[3], false);
2499         pool->base.clock_sources[DCN20_CLK_SRC_PLL4] =
2500                         dcn20_clock_source_create(ctx, ctx->dc_bios,
2501                                 CLOCK_SOURCE_COMBO_PHY_PLL4,
2502                                 &clk_src_regs[4], false);
2503         pool->base.clock_sources[DCN20_CLK_SRC_PLL5] =
2504                         dcn20_clock_source_create(ctx, ctx->dc_bios,
2505                                 CLOCK_SOURCE_COMBO_PHY_PLL5,
2506                                 &clk_src_regs[5], false);
2507         pool->base.clk_src_count = DCN20_CLK_SRC_TOTAL;
2508         /* todo: not reuse phy_pll registers */
2509         pool->base.dp_clock_source =
2510                         dcn20_clock_source_create(ctx, ctx->dc_bios,
2511                                 CLOCK_SOURCE_ID_DP_DTO,
2512                                 &clk_src_regs[0], true);
2513
2514         for (i = 0; i < pool->base.clk_src_count; i++) {
2515                 if (pool->base.clock_sources[i] == NULL) {
2516                         dm_error("DC: failed to create clock sources!\n");
2517                         BREAK_TO_DEBUGGER();
2518                         goto create_fail;
2519                 }
2520         }
2521
2522         pool->base.dccg = dccg2_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2523         if (pool->base.dccg == NULL) {
2524                 dm_error("DC: failed to create dccg!\n");
2525                 BREAK_TO_DEBUGGER();
2526                 goto create_fail;
2527         }
2528
2529         pool->base.dmcu = dcn20_dmcu_create(ctx,
2530                         &dmcu_regs,
2531                         &dmcu_shift,
2532                         &dmcu_mask);
2533         if (pool->base.dmcu == NULL) {
2534                 dm_error("DC: failed to create dmcu!\n");
2535                 BREAK_TO_DEBUGGER();
2536                 goto create_fail;
2537         }
2538
2539         pool->base.abm = dce_abm_create(ctx,
2540                         &abm_regs,
2541                         &abm_shift,
2542                         &abm_mask);
2543         if (pool->base.abm == NULL) {
2544                 dm_error("DC: failed to create abm!\n");
2545                 BREAK_TO_DEBUGGER();
2546                 goto create_fail;
2547         }
2548
2549         pool->base.pp_smu = dcn20_pp_smu_create(ctx);
2550
2551
2552         if (!init_soc_bounding_box(dc, pool)) {
2553                 dm_error("DC: failed to initialize soc bounding box!\n");
2554                 BREAK_TO_DEBUGGER();
2555                 goto create_fail;
2556         }
2557
2558         dml_init_instance(&dc->dml, loaded_bb, loaded_ip, dml_project_version);
2559
2560         if (!dc->debug.disable_pplib_wm_range) {
2561                 struct pp_smu_wm_range_sets ranges = {0};
2562                 int i = 0;
2563
2564                 ranges.num_reader_wm_sets = 0;
2565
2566                 if (loaded_bb->num_states == 1) {
2567                         ranges.reader_wm_sets[0].wm_inst = i;
2568                         ranges.reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2569                         ranges.reader_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2570                         ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2571                         ranges.reader_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2572
2573                         ranges.num_reader_wm_sets = 1;
2574                 } else if (loaded_bb->num_states > 1) {
2575                         for (i = 0; i < 4 && i < loaded_bb->num_states; i++) {
2576                                 ranges.reader_wm_sets[i].wm_inst = i;
2577                                 ranges.reader_wm_sets[i].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2578                                 ranges.reader_wm_sets[i].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2579                                 DC_FP_START();
2580                                 dcn20_fpu_set_wm_ranges(i, &ranges, loaded_bb);
2581                                 DC_FP_END();
2582
2583                                 ranges.num_reader_wm_sets = i + 1;
2584                         }
2585
2586                         ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2587                         ranges.reader_wm_sets[ranges.num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2588                 }
2589
2590                 ranges.num_writer_wm_sets = 1;
2591
2592                 ranges.writer_wm_sets[0].wm_inst = 0;
2593                 ranges.writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2594                 ranges.writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2595                 ranges.writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
2596                 ranges.writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
2597
2598                 /* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
2599                 if (pool->base.pp_smu->nv_funcs.set_wm_ranges)
2600                         pool->base.pp_smu->nv_funcs.set_wm_ranges(&pool->base.pp_smu->nv_funcs.pp_smu, &ranges);
2601         }
2602
2603         init_data.ctx = dc->ctx;
2604         pool->base.irqs = dal_irq_service_dcn20_create(&init_data);
2605         if (!pool->base.irqs)
2606                 goto create_fail;
2607
2608         /* mem input -> ipp -> dpp -> opp -> TG */
2609         for (i = 0; i < pool->base.pipe_count; i++) {
2610                 pool->base.hubps[i] = dcn20_hubp_create(ctx, i);
2611                 if (pool->base.hubps[i] == NULL) {
2612                         BREAK_TO_DEBUGGER();
2613                         dm_error(
2614                                 "DC: failed to create memory input!\n");
2615                         goto create_fail;
2616                 }
2617
2618                 pool->base.ipps[i] = dcn20_ipp_create(ctx, i);
2619                 if (pool->base.ipps[i] == NULL) {
2620                         BREAK_TO_DEBUGGER();
2621                         dm_error(
2622                                 "DC: failed to create input pixel processor!\n");
2623                         goto create_fail;
2624                 }
2625
2626                 pool->base.dpps[i] = dcn20_dpp_create(ctx, i);
2627                 if (pool->base.dpps[i] == NULL) {
2628                         BREAK_TO_DEBUGGER();
2629                         dm_error(
2630                                 "DC: failed to create dpps!\n");
2631                         goto create_fail;
2632                 }
2633         }
2634         for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2635                 pool->base.engines[i] = dcn20_aux_engine_create(ctx, i);
2636                 if (pool->base.engines[i] == NULL) {
2637                         BREAK_TO_DEBUGGER();
2638                         dm_error(
2639                                 "DC:failed to create aux engine!!\n");
2640                         goto create_fail;
2641                 }
2642                 pool->base.hw_i2cs[i] = dcn20_i2c_hw_create(ctx, i);
2643                 if (pool->base.hw_i2cs[i] == NULL) {
2644                         BREAK_TO_DEBUGGER();
2645                         dm_error(
2646                                 "DC:failed to create hw i2c!!\n");
2647                         goto create_fail;
2648                 }
2649                 pool->base.sw_i2cs[i] = NULL;
2650         }
2651
2652         for (i = 0; i < pool->base.res_cap->num_opp; i++) {
2653                 pool->base.opps[i] = dcn20_opp_create(ctx, i);
2654                 if (pool->base.opps[i] == NULL) {
2655                         BREAK_TO_DEBUGGER();
2656                         dm_error(
2657                                 "DC: failed to create output pixel processor!\n");
2658                         goto create_fail;
2659                 }
2660         }
2661
2662         for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2663                 pool->base.timing_generators[i] = dcn20_timing_generator_create(
2664                                 ctx, i);
2665                 if (pool->base.timing_generators[i] == NULL) {
2666                         BREAK_TO_DEBUGGER();
2667                         dm_error("DC: failed to create tg!\n");
2668                         goto create_fail;
2669                 }
2670         }
2671
2672         pool->base.timing_generator_count = i;
2673
2674         pool->base.mpc = dcn20_mpc_create(ctx);
2675         if (pool->base.mpc == NULL) {
2676                 BREAK_TO_DEBUGGER();
2677                 dm_error("DC: failed to create mpc!\n");
2678                 goto create_fail;
2679         }
2680
2681         pool->base.hubbub = dcn20_hubbub_create(ctx);
2682         if (pool->base.hubbub == NULL) {
2683                 BREAK_TO_DEBUGGER();
2684                 dm_error("DC: failed to create hubbub!\n");
2685                 goto create_fail;
2686         }
2687
2688         for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2689                 pool->base.dscs[i] = dcn20_dsc_create(ctx, i);
2690                 if (pool->base.dscs[i] == NULL) {
2691                         BREAK_TO_DEBUGGER();
2692                         dm_error("DC: failed to create display stream compressor %d!\n", i);
2693                         goto create_fail;
2694                 }
2695         }
2696
2697         if (!dcn20_dwbc_create(ctx, &pool->base)) {
2698                 BREAK_TO_DEBUGGER();
2699                 dm_error("DC: failed to create dwbc!\n");
2700                 goto create_fail;
2701         }
2702         if (!dcn20_mmhubbub_create(ctx, &pool->base)) {
2703                 BREAK_TO_DEBUGGER();
2704                 dm_error("DC: failed to create mcif_wb!\n");
2705                 goto create_fail;
2706         }
2707
2708         if (!resource_construct(num_virtual_links, dc, &pool->base,
2709                         (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ?
2710                         &res_create_funcs : &res_create_maximus_funcs)))
2711                         goto create_fail;
2712
2713         dcn20_hw_sequencer_construct(dc);
2714
2715         // IF NV12, set PG function pointer to NULL. It's not that
2716         // PG isn't supported for NV12, it's that we don't want to
2717         // program the registers because that will cause more power
2718         // to be consumed. We could have created dcn20_init_hw to get
2719         // the same effect by checking ASIC rev, but there was a
2720         // request at some point to not check ASIC rev on hw sequencer.
2721         if (ASICREV_IS_NAVI12_P(dc->ctx->asic_id.hw_internal_rev)) {
2722                 dc->hwseq->funcs.enable_power_gating_plane = NULL;
2723                 dc->debug.disable_dpp_power_gate = true;
2724                 dc->debug.disable_hubp_power_gate = true;
2725         }
2726
2727
2728         dc->caps.max_planes =  pool->base.pipe_count;
2729
2730         for (i = 0; i < dc->caps.max_planes; ++i)
2731                 dc->caps.planes[i] = plane_cap;
2732
2733         dc->cap_funcs = cap_funcs;
2734
2735         if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2736                 ddc_init_data.ctx = dc->ctx;
2737                 ddc_init_data.link = NULL;
2738                 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2739                 ddc_init_data.id.enum_id = 0;
2740                 ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2741                 pool->base.oem_device = dal_ddc_service_create(&ddc_init_data);
2742         } else {
2743                 pool->base.oem_device = NULL;
2744         }
2745
2746         return true;
2747
2748 create_fail:
2749
2750         dcn20_resource_destruct(pool);
2751
2752         return false;
2753 }
2754
2755 struct resource_pool *dcn20_create_resource_pool(
2756                 const struct dc_init_data *init_data,
2757                 struct dc *dc)
2758 {
2759         struct dcn20_resource_pool *pool =
2760                 kzalloc(sizeof(struct dcn20_resource_pool), GFP_ATOMIC);
2761
2762         if (!pool)
2763                 return NULL;
2764
2765         if (dcn20_resource_construct(init_data->num_virtual_links, dc, pool))
2766                 return &pool->base;
2767
2768         BREAK_TO_DEBUGGER();
2769         kfree(pool);
2770         return NULL;
2771 }