Merge tag 'block-6.1-2022-10-20' of git://git.kernel.dk/linux
[linux-block.git] / drivers / gpu / drm / amd / display / dc / core / dc_resource.c
1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25
26 #include "dm_services.h"
27
28 #include "resource.h"
29 #include "include/irq_service_interface.h"
30 #include "link_encoder.h"
31 #include "stream_encoder.h"
32 #include "opp.h"
33 #include "timing_generator.h"
34 #include "transform.h"
35 #include "dccg.h"
36 #include "dchubbub.h"
37 #include "dpp.h"
38 #include "core_types.h"
39 #include "set_mode_types.h"
40 #include "virtual/virtual_stream_encoder.h"
41 #include "dpcd_defs.h"
42 #include "link_enc_cfg.h"
43 #include "dc_link_dp.h"
44 #include "virtual/virtual_link_hwss.h"
45 #include "link/link_hwss_dio.h"
46 #include "link/link_hwss_dpia.h"
47 #include "link/link_hwss_hpo_dp.h"
48
49 #if defined(CONFIG_DRM_AMD_DC_SI)
50 #include "dce60/dce60_resource.h"
51 #endif
52 #include "dce80/dce80_resource.h"
53 #include "dce100/dce100_resource.h"
54 #include "dce110/dce110_resource.h"
55 #include "dce112/dce112_resource.h"
56 #include "dce120/dce120_resource.h"
57 #include "dcn10/dcn10_resource.h"
58 #include "dcn20/dcn20_resource.h"
59 #include "dcn21/dcn21_resource.h"
60 #include "dcn201/dcn201_resource.h"
61 #include "dcn30/dcn30_resource.h"
62 #include "dcn301/dcn301_resource.h"
63 #include "dcn302/dcn302_resource.h"
64 #include "dcn303/dcn303_resource.h"
65 #include "dcn31/dcn31_resource.h"
66 #include "dcn314/dcn314_resource.h"
67 #include "dcn315/dcn315_resource.h"
68 #include "dcn316/dcn316_resource.h"
69 #include "../dcn32/dcn32_resource.h"
70 #include "../dcn321/dcn321_resource.h"
71
72 #define DC_LOGGER_INIT(logger)
73
74 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
75 {
76         enum dce_version dc_version = DCE_VERSION_UNKNOWN;
77
78         switch (asic_id.chip_family) {
79
80 #if defined(CONFIG_DRM_AMD_DC_SI)
81         case FAMILY_SI:
82                 if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
83                     ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
84                     ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
85                         dc_version = DCE_VERSION_6_0;
86                 else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
87                         dc_version = DCE_VERSION_6_4;
88                 else
89                         dc_version = DCE_VERSION_6_1;
90                 break;
91 #endif
92         case FAMILY_CI:
93                 dc_version = DCE_VERSION_8_0;
94                 break;
95         case FAMILY_KV:
96                 if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
97                     ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
98                     ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
99                         dc_version = DCE_VERSION_8_3;
100                 else
101                         dc_version = DCE_VERSION_8_1;
102                 break;
103         case FAMILY_CZ:
104                 dc_version = DCE_VERSION_11_0;
105                 break;
106
107         case FAMILY_VI:
108                 if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
109                                 ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
110                         dc_version = DCE_VERSION_10_0;
111                         break;
112                 }
113                 if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
114                                 ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
115                                 ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
116                         dc_version = DCE_VERSION_11_2;
117                 }
118                 if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
119                         dc_version = DCE_VERSION_11_22;
120                 break;
121         case FAMILY_AI:
122                 if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
123                         dc_version = DCE_VERSION_12_1;
124                 else
125                         dc_version = DCE_VERSION_12_0;
126                 break;
127         case FAMILY_RV:
128                 dc_version = DCN_VERSION_1_0;
129                 if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
130                         dc_version = DCN_VERSION_1_01;
131                 if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
132                         dc_version = DCN_VERSION_2_1;
133                 if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
134                         dc_version = DCN_VERSION_2_1;
135                 break;
136
137         case FAMILY_NV:
138                 dc_version = DCN_VERSION_2_0;
139                 if (asic_id.chip_id == DEVICE_ID_NV_13FE || asic_id.chip_id == DEVICE_ID_NV_143F) {
140                         dc_version = DCN_VERSION_2_01;
141                         break;
142                 }
143                 if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
144                         dc_version = DCN_VERSION_3_0;
145                 if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
146                         dc_version = DCN_VERSION_3_02;
147                 if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
148                         dc_version = DCN_VERSION_3_03;
149                 break;
150
151         case FAMILY_VGH:
152                 dc_version = DCN_VERSION_3_01;
153                 break;
154
155         case FAMILY_YELLOW_CARP:
156                 if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
157                         dc_version = DCN_VERSION_3_1;
158                 break;
159         case AMDGPU_FAMILY_GC_10_3_6:
160                 if (ASICREV_IS_GC_10_3_6(asic_id.hw_internal_rev))
161                         dc_version = DCN_VERSION_3_15;
162                 break;
163         case AMDGPU_FAMILY_GC_10_3_7:
164                 if (ASICREV_IS_GC_10_3_7(asic_id.hw_internal_rev))
165                         dc_version = DCN_VERSION_3_16;
166                 break;
167         case AMDGPU_FAMILY_GC_11_0_0:
168                 dc_version = DCN_VERSION_3_2;
169                 if (ASICREV_IS_GC_11_0_2(asic_id.hw_internal_rev))
170                         dc_version = DCN_VERSION_3_21;
171                 break;
172         case AMDGPU_FAMILY_GC_11_0_1:
173                 dc_version = DCN_VERSION_3_14;
174                 break;
175         default:
176                 dc_version = DCE_VERSION_UNKNOWN;
177                 break;
178         }
179         return dc_version;
180 }
181
182 struct resource_pool *dc_create_resource_pool(struct dc  *dc,
183                                               const struct dc_init_data *init_data,
184                                               enum dce_version dc_version)
185 {
186         struct resource_pool *res_pool = NULL;
187
188         switch (dc_version) {
189 #if defined(CONFIG_DRM_AMD_DC_SI)
190         case DCE_VERSION_6_0:
191                 res_pool = dce60_create_resource_pool(
192                         init_data->num_virtual_links, dc);
193                 break;
194         case DCE_VERSION_6_1:
195                 res_pool = dce61_create_resource_pool(
196                         init_data->num_virtual_links, dc);
197                 break;
198         case DCE_VERSION_6_4:
199                 res_pool = dce64_create_resource_pool(
200                         init_data->num_virtual_links, dc);
201                 break;
202 #endif
203         case DCE_VERSION_8_0:
204                 res_pool = dce80_create_resource_pool(
205                                 init_data->num_virtual_links, dc);
206                 break;
207         case DCE_VERSION_8_1:
208                 res_pool = dce81_create_resource_pool(
209                                 init_data->num_virtual_links, dc);
210                 break;
211         case DCE_VERSION_8_3:
212                 res_pool = dce83_create_resource_pool(
213                                 init_data->num_virtual_links, dc);
214                 break;
215         case DCE_VERSION_10_0:
216                 res_pool = dce100_create_resource_pool(
217                                 init_data->num_virtual_links, dc);
218                 break;
219         case DCE_VERSION_11_0:
220                 res_pool = dce110_create_resource_pool(
221                                 init_data->num_virtual_links, dc,
222                                 init_data->asic_id);
223                 break;
224         case DCE_VERSION_11_2:
225         case DCE_VERSION_11_22:
226                 res_pool = dce112_create_resource_pool(
227                                 init_data->num_virtual_links, dc);
228                 break;
229         case DCE_VERSION_12_0:
230         case DCE_VERSION_12_1:
231                 res_pool = dce120_create_resource_pool(
232                                 init_data->num_virtual_links, dc);
233                 break;
234
235 #if defined(CONFIG_DRM_AMD_DC_DCN)
236         case DCN_VERSION_1_0:
237         case DCN_VERSION_1_01:
238                 res_pool = dcn10_create_resource_pool(init_data, dc);
239                 break;
240         case DCN_VERSION_2_0:
241                 res_pool = dcn20_create_resource_pool(init_data, dc);
242                 break;
243         case DCN_VERSION_2_1:
244                 res_pool = dcn21_create_resource_pool(init_data, dc);
245                 break;
246         case DCN_VERSION_2_01:
247                 res_pool = dcn201_create_resource_pool(init_data, dc);
248                 break;
249         case DCN_VERSION_3_0:
250                 res_pool = dcn30_create_resource_pool(init_data, dc);
251                 break;
252         case DCN_VERSION_3_01:
253                 res_pool = dcn301_create_resource_pool(init_data, dc);
254                 break;
255         case DCN_VERSION_3_02:
256                 res_pool = dcn302_create_resource_pool(init_data, dc);
257                 break;
258         case DCN_VERSION_3_03:
259                 res_pool = dcn303_create_resource_pool(init_data, dc);
260                 break;
261         case DCN_VERSION_3_1:
262                 res_pool = dcn31_create_resource_pool(init_data, dc);
263                 break;
264         case DCN_VERSION_3_14:
265                 res_pool = dcn314_create_resource_pool(init_data, dc);
266                 break;
267         case DCN_VERSION_3_15:
268                 res_pool = dcn315_create_resource_pool(init_data, dc);
269                 break;
270         case DCN_VERSION_3_16:
271                 res_pool = dcn316_create_resource_pool(init_data, dc);
272                 break;
273         case DCN_VERSION_3_2:
274                 res_pool = dcn32_create_resource_pool(init_data, dc);
275                 break;
276         case DCN_VERSION_3_21:
277                 res_pool = dcn321_create_resource_pool(init_data, dc);
278                 break;
279 #endif
280         default:
281                 break;
282         }
283
284         if (res_pool != NULL) {
285                 if (dc->ctx->dc_bios->fw_info_valid) {
286                         res_pool->ref_clocks.xtalin_clock_inKhz =
287                                 dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
288                         /* initialize with firmware data first, no all
289                          * ASIC have DCCG SW component. FPGA or
290                          * simulation need initialization of
291                          * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
292                          * with xtalin_clock_inKhz
293                          */
294                         res_pool->ref_clocks.dccg_ref_clock_inKhz =
295                                 res_pool->ref_clocks.xtalin_clock_inKhz;
296                         res_pool->ref_clocks.dchub_ref_clock_inKhz =
297                                 res_pool->ref_clocks.xtalin_clock_inKhz;
298                 } else
299                         ASSERT_CRITICAL(false);
300         }
301
302         return res_pool;
303 }
304
305 void dc_destroy_resource_pool(struct dc  *dc)
306 {
307         if (dc) {
308                 if (dc->res_pool)
309                         dc->res_pool->funcs->destroy(&dc->res_pool);
310
311                 kfree(dc->hwseq);
312         }
313 }
314
315 static void update_num_audio(
316         const struct resource_straps *straps,
317         unsigned int *num_audio,
318         struct audio_support *aud_support)
319 {
320         aud_support->dp_audio = true;
321         aud_support->hdmi_audio_native = false;
322         aud_support->hdmi_audio_on_dongle = false;
323
324         if (straps->hdmi_disable == 0) {
325                 if (straps->dc_pinstraps_audio & 0x2) {
326                         aud_support->hdmi_audio_on_dongle = true;
327                         aud_support->hdmi_audio_native = true;
328                 }
329         }
330
331         switch (straps->audio_stream_number) {
332         case 0: /* multi streams supported */
333                 break;
334         case 1: /* multi streams not supported */
335                 *num_audio = 1;
336                 break;
337         default:
338                 DC_ERR("DC: unexpected audio fuse!\n");
339         }
340 }
341
342 bool resource_construct(
343         unsigned int num_virtual_links,
344         struct dc  *dc,
345         struct resource_pool *pool,
346         const struct resource_create_funcs *create_funcs)
347 {
348         struct dc_context *ctx = dc->ctx;
349         const struct resource_caps *caps = pool->res_cap;
350         int i;
351         unsigned int num_audio = caps->num_audio;
352         struct resource_straps straps = {0};
353
354         if (create_funcs->read_dce_straps)
355                 create_funcs->read_dce_straps(dc->ctx, &straps);
356
357         pool->audio_count = 0;
358         if (create_funcs->create_audio) {
359                 /* find the total number of streams available via the
360                  * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
361                  * registers (one for each pin) starting from pin 1
362                  * up to the max number of audio pins.
363                  * We stop on the first pin where
364                  * PORT_CONNECTIVITY == 1 (as instructed by HW team).
365                  */
366                 update_num_audio(&straps, &num_audio, &pool->audio_support);
367                 for (i = 0; i < caps->num_audio; i++) {
368                         struct audio *aud = create_funcs->create_audio(ctx, i);
369
370                         if (aud == NULL) {
371                                 DC_ERR("DC: failed to create audio!\n");
372                                 return false;
373                         }
374                         if (!aud->funcs->endpoint_valid(aud)) {
375                                 aud->funcs->destroy(&aud);
376                                 break;
377                         }
378                         pool->audios[i] = aud;
379                         pool->audio_count++;
380                 }
381         }
382
383         pool->stream_enc_count = 0;
384         if (create_funcs->create_stream_encoder) {
385                 for (i = 0; i < caps->num_stream_encoder; i++) {
386                         pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
387                         if (pool->stream_enc[i] == NULL)
388                                 DC_ERR("DC: failed to create stream_encoder!\n");
389                         pool->stream_enc_count++;
390                 }
391         }
392
393         pool->hpo_dp_stream_enc_count = 0;
394         if (create_funcs->create_hpo_dp_stream_encoder) {
395                 for (i = 0; i < caps->num_hpo_dp_stream_encoder; i++) {
396                         pool->hpo_dp_stream_enc[i] = create_funcs->create_hpo_dp_stream_encoder(i+ENGINE_ID_HPO_DP_0, ctx);
397                         if (pool->hpo_dp_stream_enc[i] == NULL)
398                                 DC_ERR("DC: failed to create HPO DP stream encoder!\n");
399                         pool->hpo_dp_stream_enc_count++;
400
401                 }
402         }
403
404         pool->hpo_dp_link_enc_count = 0;
405         if (create_funcs->create_hpo_dp_link_encoder) {
406                 for (i = 0; i < caps->num_hpo_dp_link_encoder; i++) {
407                         pool->hpo_dp_link_enc[i] = create_funcs->create_hpo_dp_link_encoder(i, ctx);
408                         if (pool->hpo_dp_link_enc[i] == NULL)
409                                 DC_ERR("DC: failed to create HPO DP link encoder!\n");
410                         pool->hpo_dp_link_enc_count++;
411                 }
412         }
413
414         for (i = 0; i < caps->num_mpc_3dlut; i++) {
415                 pool->mpc_lut[i] = dc_create_3dlut_func();
416                 if (pool->mpc_lut[i] == NULL)
417                         DC_ERR("DC: failed to create MPC 3dlut!\n");
418                 pool->mpc_shaper[i] = dc_create_transfer_func();
419                 if (pool->mpc_shaper[i] == NULL)
420                         DC_ERR("DC: failed to create MPC shaper!\n");
421         }
422
423         dc->caps.dynamic_audio = false;
424         if (pool->audio_count < pool->stream_enc_count) {
425                 dc->caps.dynamic_audio = true;
426         }
427         for (i = 0; i < num_virtual_links; i++) {
428                 pool->stream_enc[pool->stream_enc_count] =
429                         virtual_stream_encoder_create(
430                                         ctx, ctx->dc_bios);
431                 if (pool->stream_enc[pool->stream_enc_count] == NULL) {
432                         DC_ERR("DC: failed to create stream_encoder!\n");
433                         return false;
434                 }
435                 pool->stream_enc_count++;
436         }
437
438         dc->hwseq = create_funcs->create_hwseq(ctx);
439
440         return true;
441 }
442 static int find_matching_clock_source(
443                 const struct resource_pool *pool,
444                 struct clock_source *clock_source)
445 {
446
447         int i;
448
449         for (i = 0; i < pool->clk_src_count; i++) {
450                 if (pool->clock_sources[i] == clock_source)
451                         return i;
452         }
453         return -1;
454 }
455
456 void resource_unreference_clock_source(
457                 struct resource_context *res_ctx,
458                 const struct resource_pool *pool,
459                 struct clock_source *clock_source)
460 {
461         int i = find_matching_clock_source(pool, clock_source);
462
463         if (i > -1)
464                 res_ctx->clock_source_ref_count[i]--;
465
466         if (pool->dp_clock_source == clock_source)
467                 res_ctx->dp_clock_source_ref_count--;
468 }
469
470 void resource_reference_clock_source(
471                 struct resource_context *res_ctx,
472                 const struct resource_pool *pool,
473                 struct clock_source *clock_source)
474 {
475         int i = find_matching_clock_source(pool, clock_source);
476
477         if (i > -1)
478                 res_ctx->clock_source_ref_count[i]++;
479
480         if (pool->dp_clock_source == clock_source)
481                 res_ctx->dp_clock_source_ref_count++;
482 }
483
484 int resource_get_clock_source_reference(
485                 struct resource_context *res_ctx,
486                 const struct resource_pool *pool,
487                 struct clock_source *clock_source)
488 {
489         int i = find_matching_clock_source(pool, clock_source);
490
491         if (i > -1)
492                 return res_ctx->clock_source_ref_count[i];
493
494         if (pool->dp_clock_source == clock_source)
495                 return res_ctx->dp_clock_source_ref_count;
496
497         return -1;
498 }
499
500 bool resource_are_vblanks_synchronizable(
501         struct dc_stream_state *stream1,
502         struct dc_stream_state *stream2)
503 {
504         uint32_t base60_refresh_rates[] = {10, 20, 5};
505         uint8_t i;
506         uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
507         uint64_t frame_time_diff;
508
509         if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
510                 stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
511                 dc_is_dp_signal(stream1->signal) &&
512                 dc_is_dp_signal(stream2->signal) &&
513                 false == stream1->has_non_synchronizable_pclk &&
514                 false == stream2->has_non_synchronizable_pclk &&
515                 stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
516                 stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
517                 /* disable refresh rates higher than 60Hz for now */
518                 if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
519                                 stream1->timing.v_total > 60)
520                         return false;
521                 if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
522                                 stream2->timing.v_total > 60)
523                         return false;
524                 frame_time_diff = (uint64_t)10000 *
525                         stream1->timing.h_total *
526                         stream1->timing.v_total *
527                         stream2->timing.pix_clk_100hz;
528                 frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
529                 frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
530                 frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
531                 for (i = 0; i < rr_count; i++) {
532                         int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
533
534                         if (diff < 0)
535                                 diff = -diff;
536                         if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
537                                 return true;
538                 }
539         }
540         return false;
541 }
542
543 bool resource_are_streams_timing_synchronizable(
544         struct dc_stream_state *stream1,
545         struct dc_stream_state *stream2)
546 {
547         if (stream1->timing.h_total != stream2->timing.h_total)
548                 return false;
549
550         if (stream1->timing.v_total != stream2->timing.v_total)
551                 return false;
552
553         if (stream1->timing.h_addressable
554                                 != stream2->timing.h_addressable)
555                 return false;
556
557         if (stream1->timing.v_addressable
558                                 != stream2->timing.v_addressable)
559                 return false;
560
561         if (stream1->timing.v_front_porch
562                                 != stream2->timing.v_front_porch)
563                 return false;
564
565         if (stream1->timing.pix_clk_100hz
566                                 != stream2->timing.pix_clk_100hz)
567                 return false;
568
569         if (stream1->clamping.c_depth != stream2->clamping.c_depth)
570                 return false;
571
572         if (stream1->phy_pix_clk != stream2->phy_pix_clk
573                         && (!dc_is_dp_signal(stream1->signal)
574                         || !dc_is_dp_signal(stream2->signal)))
575                 return false;
576
577         if (stream1->view_format != stream2->view_format)
578                 return false;
579
580         if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
581                 return false;
582
583         return true;
584 }
585 static bool is_dp_and_hdmi_sharable(
586                 struct dc_stream_state *stream1,
587                 struct dc_stream_state *stream2)
588 {
589         if (stream1->ctx->dc->caps.disable_dp_clk_share)
590                 return false;
591
592         if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
593                 stream2->clamping.c_depth != COLOR_DEPTH_888)
594                 return false;
595
596         return true;
597
598 }
599
600 static bool is_sharable_clk_src(
601         const struct pipe_ctx *pipe_with_clk_src,
602         const struct pipe_ctx *pipe)
603 {
604         if (pipe_with_clk_src->clock_source == NULL)
605                 return false;
606
607         if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
608                 return false;
609
610         if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
611                 (dc_is_dp_signal(pipe->stream->signal) &&
612                 !is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
613                                      pipe->stream)))
614                 return false;
615
616         if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
617                         && dc_is_dual_link_signal(pipe->stream->signal))
618                 return false;
619
620         if (dc_is_hdmi_signal(pipe->stream->signal)
621                         && dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
622                 return false;
623
624         if (!resource_are_streams_timing_synchronizable(
625                         pipe_with_clk_src->stream, pipe->stream))
626                 return false;
627
628         return true;
629 }
630
631 struct clock_source *resource_find_used_clk_src_for_sharing(
632                                         struct resource_context *res_ctx,
633                                         struct pipe_ctx *pipe_ctx)
634 {
635         int i;
636
637         for (i = 0; i < MAX_PIPES; i++) {
638                 if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
639                         return res_ctx->pipe_ctx[i].clock_source;
640         }
641
642         return NULL;
643 }
644
645 static enum pixel_format convert_pixel_format_to_dalsurface(
646                 enum surface_pixel_format surface_pixel_format)
647 {
648         enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
649
650         switch (surface_pixel_format) {
651         case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
652                 dal_pixel_format = PIXEL_FORMAT_INDEX8;
653                 break;
654         case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
655                 dal_pixel_format = PIXEL_FORMAT_RGB565;
656                 break;
657         case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
658                 dal_pixel_format = PIXEL_FORMAT_RGB565;
659                 break;
660         case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
661                 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
662                 break;
663         case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
664                 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
665                 break;
666         case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
667                 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
668                 break;
669         case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
670                 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
671                 break;
672         case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
673                 dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
674                 break;
675         case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
676         case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
677                 dal_pixel_format = PIXEL_FORMAT_FP16;
678                 break;
679         case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
680         case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
681                 dal_pixel_format = PIXEL_FORMAT_420BPP8;
682                 break;
683         case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
684         case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
685                 dal_pixel_format = PIXEL_FORMAT_420BPP10;
686                 break;
687         case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
688         case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
689         default:
690                 dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
691                 break;
692         }
693         return dal_pixel_format;
694 }
695
696 static inline void get_vp_scan_direction(
697         enum dc_rotation_angle rotation,
698         bool horizontal_mirror,
699         bool *orthogonal_rotation,
700         bool *flip_vert_scan_dir,
701         bool *flip_horz_scan_dir)
702 {
703         *orthogonal_rotation = false;
704         *flip_vert_scan_dir = false;
705         *flip_horz_scan_dir = false;
706         if (rotation == ROTATION_ANGLE_180) {
707                 *flip_vert_scan_dir = true;
708                 *flip_horz_scan_dir = true;
709         } else if (rotation == ROTATION_ANGLE_90) {
710                 *orthogonal_rotation = true;
711                 *flip_horz_scan_dir = true;
712         } else if (rotation == ROTATION_ANGLE_270) {
713                 *orthogonal_rotation = true;
714                 *flip_vert_scan_dir = true;
715         }
716
717         if (horizontal_mirror)
718                 *flip_horz_scan_dir = !*flip_horz_scan_dir;
719 }
720
721 int get_num_mpc_splits(struct pipe_ctx *pipe)
722 {
723         int mpc_split_count = 0;
724         struct pipe_ctx *other_pipe = pipe->bottom_pipe;
725
726         while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
727                 mpc_split_count++;
728                 other_pipe = other_pipe->bottom_pipe;
729         }
730         other_pipe = pipe->top_pipe;
731         while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
732                 mpc_split_count++;
733                 other_pipe = other_pipe->top_pipe;
734         }
735
736         return mpc_split_count;
737 }
738
739 int get_num_odm_splits(struct pipe_ctx *pipe)
740 {
741         int odm_split_count = 0;
742         struct pipe_ctx *next_pipe = pipe->next_odm_pipe;
743         while (next_pipe) {
744                 odm_split_count++;
745                 next_pipe = next_pipe->next_odm_pipe;
746         }
747         pipe = pipe->prev_odm_pipe;
748         while (pipe) {
749                 odm_split_count++;
750                 pipe = pipe->prev_odm_pipe;
751         }
752         return odm_split_count;
753 }
754
755 static void calculate_split_count_and_index(struct pipe_ctx *pipe_ctx, int *split_count, int *split_idx)
756 {
757         *split_count = get_num_odm_splits(pipe_ctx);
758         *split_idx = 0;
759         if (*split_count == 0) {
760                 /*Check for mpc split*/
761                 struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
762
763                 *split_count = get_num_mpc_splits(pipe_ctx);
764                 while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
765                         (*split_idx)++;
766                         split_pipe = split_pipe->top_pipe;
767                 }
768
769                 /* MPO window on right side of ODM split */
770                 if (split_pipe && split_pipe->prev_odm_pipe && !pipe_ctx->prev_odm_pipe)
771                         (*split_idx)++;
772         } else {
773                 /*Get odm split index*/
774                 struct pipe_ctx *split_pipe = pipe_ctx->prev_odm_pipe;
775
776                 while (split_pipe) {
777                         (*split_idx)++;
778                         split_pipe = split_pipe->prev_odm_pipe;
779                 }
780         }
781 }
782
783 /*
784  * This is a preliminary vp size calculation to allow us to check taps support.
785  * The result is completely overridden afterwards.
786  */
787 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
788 {
789         struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
790
791         data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
792         data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
793         data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
794         data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
795         if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
796                         pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
797                 swap(data->viewport.width, data->viewport.height);
798                 swap(data->viewport_c.width, data->viewport_c.height);
799         }
800 }
801
802 static void calculate_recout(struct pipe_ctx *pipe_ctx)
803 {
804         const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
805         const struct dc_stream_state *stream = pipe_ctx->stream;
806         struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
807         struct rect surf_clip = plane_state->clip_rect;
808         bool split_tb = stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
809         int split_count, split_idx;
810
811         calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
812         if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
813                 split_idx = 0;
814
815         /*
816          * Only the leftmost ODM pipe should be offset by a nonzero distance
817          */
818         if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->prev_odm_pipe && !pipe_ctx->prev_odm_pipe) {
819                 /* MPO window on right side of ODM split */
820                 data->recout.x = stream->dst.x + (surf_clip.x - stream->src.x - stream->src.width/2) *
821                                 stream->dst.width / stream->src.width;
822         } else if (!pipe_ctx->prev_odm_pipe || split_idx == split_count) {
823                 data->recout.x = stream->dst.x;
824                 if (stream->src.x < surf_clip.x)
825                         data->recout.x += (surf_clip.x - stream->src.x) * stream->dst.width
826                                                 / stream->src.width;
827         } else
828                 data->recout.x = 0;
829
830         if (stream->src.x > surf_clip.x)
831                 surf_clip.width -= stream->src.x - surf_clip.x;
832         data->recout.width = surf_clip.width * stream->dst.width / stream->src.width;
833         if (data->recout.width + data->recout.x > stream->dst.x + stream->dst.width)
834                 data->recout.width = stream->dst.x + stream->dst.width - data->recout.x;
835
836         data->recout.y = stream->dst.y;
837         if (stream->src.y < surf_clip.y)
838                 data->recout.y += (surf_clip.y - stream->src.y) * stream->dst.height
839                                                 / stream->src.height;
840         else if (stream->src.y > surf_clip.y)
841                 surf_clip.height -= stream->src.y - surf_clip.y;
842
843         data->recout.height = surf_clip.height * stream->dst.height / stream->src.height;
844         if (data->recout.height + data->recout.y > stream->dst.y + stream->dst.height)
845                 data->recout.height = stream->dst.y + stream->dst.height - data->recout.y;
846
847         /* Handle h & v split */
848         if (split_tb) {
849                 ASSERT(data->recout.height % 2 == 0);
850                 data->recout.height /= 2;
851         } else if (split_count) {
852                 if (!pipe_ctx->next_odm_pipe && !pipe_ctx->prev_odm_pipe) {
853                         /* extra pixels in the division remainder need to go to pipes after
854                          * the extra pixel index minus one(epimo) defined here as:
855                          */
856                         int epimo = split_count - data->recout.width % (split_count + 1);
857
858                         data->recout.x += (data->recout.width / (split_count + 1)) * split_idx;
859                         if (split_idx > epimo)
860                                 data->recout.x += split_idx - epimo - 1;
861                         ASSERT(stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE || data->recout.width % 2 == 0);
862                         data->recout.width = data->recout.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
863                 } else {
864                         /* odm */
865                         if (split_idx == split_count) {
866                                 /* rightmost pipe is the remainder recout */
867                                 data->recout.width -= data->h_active * split_count - data->recout.x;
868
869                                 /* ODM combine cases with MPO we can get negative widths */
870                                 if (data->recout.width < 0)
871                                         data->recout.width = 0;
872
873                                 data->recout.x = 0;
874                         } else
875                                 data->recout.width = data->h_active - data->recout.x;
876                 }
877         }
878 }
879
880 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
881 {
882         const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
883         const struct dc_stream_state *stream = pipe_ctx->stream;
884         struct rect surf_src = plane_state->src_rect;
885         const int in_w = stream->src.width;
886         const int in_h = stream->src.height;
887         const int out_w = stream->dst.width;
888         const int out_h = stream->dst.height;
889
890         /*Swap surf_src height and width since scaling ratios are in recout rotation*/
891         if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
892                         pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
893                 swap(surf_src.height, surf_src.width);
894
895         pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
896                                         surf_src.width,
897                                         plane_state->dst_rect.width);
898         pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
899                                         surf_src.height,
900                                         plane_state->dst_rect.height);
901
902         if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
903                 pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
904         else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
905                 pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
906
907         pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
908                 pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
909         pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
910                 pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
911
912         pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
913         pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
914
915         if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
916                         || pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
917                 pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
918                 pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
919         }
920         pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
921                         pipe_ctx->plane_res.scl_data.ratios.horz, 19);
922         pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
923                         pipe_ctx->plane_res.scl_data.ratios.vert, 19);
924         pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
925                         pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
926         pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
927                         pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
928 }
929
930
931 /*
932  * We completely calculate vp offset, size and inits here based entirely on scaling
933  * ratios and recout for pixel perfect pipe combine.
934  */
935 static void calculate_init_and_vp(
936                 bool flip_scan_dir,
937                 int recout_offset_within_recout_full,
938                 int recout_size,
939                 int src_size,
940                 int taps,
941                 struct fixed31_32 ratio,
942                 struct fixed31_32 *init,
943                 int *vp_offset,
944                 int *vp_size)
945 {
946         struct fixed31_32 temp;
947         int int_part;
948
949         /*
950          * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
951          * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
952          * All following calculations are based on this logic.
953          *
954          * Init calculated according to formula:
955          *      init = (scaling_ratio + number_of_taps + 1) / 2
956          *      init_bot = init + scaling_ratio
957          *      to get pixel perfect combine add the fraction from calculating vp offset
958          */
959         temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
960         *vp_offset = dc_fixpt_floor(temp);
961         temp.value &= 0xffffffff;
962         *init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
963                         dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
964         /*
965          * If viewport has non 0 offset and there are more taps than covered by init then
966          * we should decrease the offset and increase init so we are never sampling
967          * outside of viewport.
968          */
969         int_part = dc_fixpt_floor(*init);
970         if (int_part < taps) {
971                 int_part = taps - int_part;
972                 if (int_part > *vp_offset)
973                         int_part = *vp_offset;
974                 *vp_offset -= int_part;
975                 *init = dc_fixpt_add_int(*init, int_part);
976         }
977         /*
978          * If taps are sampling outside of viewport at end of recout and there are more pixels
979          * available in the surface we should increase the viewport size, regardless set vp to
980          * only what is used.
981          */
982         temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
983         *vp_size = dc_fixpt_floor(temp);
984         if (*vp_size + *vp_offset > src_size)
985                 *vp_size = src_size - *vp_offset;
986
987         /* We did all the math assuming we are scanning same direction as display does,
988          * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
989          * is flipped we simply need to calculate offset from the other side of plane.
990          * Note that outside of viewport all scaling hardware works in recout space.
991          */
992         if (flip_scan_dir)
993                 *vp_offset = src_size - *vp_offset - *vp_size;
994 }
995
996 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
997 {
998         const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
999         const struct dc_stream_state *stream = pipe_ctx->stream;
1000         struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
1001         struct rect src = plane_state->src_rect;
1002         int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
1003                                 || data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
1004         int split_count, split_idx, ro_lb, ro_tb, recout_full_x, recout_full_y;
1005         bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
1006
1007         calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
1008         /*
1009          * recout full is what the recout would have been if we didnt clip
1010          * the source plane at all. We only care about left(ro_lb) and top(ro_tb)
1011          * offsets of recout within recout full because those are the directions
1012          * we scan from and therefore the only ones that affect inits.
1013          */
1014         recout_full_x = stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
1015                         * stream->dst.width / stream->src.width;
1016         recout_full_y = stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
1017                         * stream->dst.height / stream->src.height;
1018         if (pipe_ctx->prev_odm_pipe && split_idx)
1019                 ro_lb = data->h_active * split_idx - recout_full_x;
1020         else if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->prev_odm_pipe)
1021                 ro_lb = data->h_active * split_idx - recout_full_x + data->recout.x;
1022         else
1023                 ro_lb = data->recout.x - recout_full_x;
1024         ro_tb = data->recout.y - recout_full_y;
1025         ASSERT(ro_lb >= 0 && ro_tb >= 0);
1026
1027         /*
1028          * Work in recout rotation since that requires less transformations
1029          */
1030         get_vp_scan_direction(
1031                         plane_state->rotation,
1032                         plane_state->horizontal_mirror,
1033                         &orthogonal_rotation,
1034                         &flip_vert_scan_dir,
1035                         &flip_horz_scan_dir);
1036
1037         if (orthogonal_rotation) {
1038                 swap(src.width, src.height);
1039                 swap(flip_vert_scan_dir, flip_horz_scan_dir);
1040         }
1041
1042         calculate_init_and_vp(
1043                         flip_horz_scan_dir,
1044                         ro_lb,
1045                         data->recout.width,
1046                         src.width,
1047                         data->taps.h_taps,
1048                         data->ratios.horz,
1049                         &data->inits.h,
1050                         &data->viewport.x,
1051                         &data->viewport.width);
1052         calculate_init_and_vp(
1053                         flip_horz_scan_dir,
1054                         ro_lb,
1055                         data->recout.width,
1056                         src.width / vpc_div,
1057                         data->taps.h_taps_c,
1058                         data->ratios.horz_c,
1059                         &data->inits.h_c,
1060                         &data->viewport_c.x,
1061                         &data->viewport_c.width);
1062         calculate_init_and_vp(
1063                         flip_vert_scan_dir,
1064                         ro_tb,
1065                         data->recout.height,
1066                         src.height,
1067                         data->taps.v_taps,
1068                         data->ratios.vert,
1069                         &data->inits.v,
1070                         &data->viewport.y,
1071                         &data->viewport.height);
1072         calculate_init_and_vp(
1073                         flip_vert_scan_dir,
1074                         ro_tb,
1075                         data->recout.height,
1076                         src.height / vpc_div,
1077                         data->taps.v_taps_c,
1078                         data->ratios.vert_c,
1079                         &data->inits.v_c,
1080                         &data->viewport_c.y,
1081                         &data->viewport_c.height);
1082         if (orthogonal_rotation) {
1083                 swap(data->viewport.x, data->viewport.y);
1084                 swap(data->viewport.width, data->viewport.height);
1085                 swap(data->viewport_c.x, data->viewport_c.y);
1086                 swap(data->viewport_c.width, data->viewport_c.height);
1087         }
1088         data->viewport.x += src.x;
1089         data->viewport.y += src.y;
1090         ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1091         data->viewport_c.x += src.x / vpc_div;
1092         data->viewport_c.y += src.y / vpc_div;
1093 }
1094
1095 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1096 {
1097         const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1098         struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1099         bool res = false;
1100         DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1101
1102         /* Invalid input */
1103         if (!plane_state->dst_rect.width ||
1104                         !plane_state->dst_rect.height ||
1105                         !plane_state->src_rect.width ||
1106                         !plane_state->src_rect.height) {
1107                 ASSERT(0);
1108                 return false;
1109         }
1110
1111         pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1112                         pipe_ctx->plane_state->format);
1113
1114         /* Timing borders are part of vactive that we are also supposed to skip in addition
1115          * to any stream dst offset. Since dm logic assumes dst is in addressable
1116          * space we need to add the left and top borders to dst offsets temporarily.
1117          * TODO: fix in DM, stream dst is supposed to be in vactive
1118          */
1119         pipe_ctx->stream->dst.x += timing->h_border_left;
1120         pipe_ctx->stream->dst.y += timing->v_border_top;
1121
1122         /* Calculate H and V active size */
1123         pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable +
1124                         timing->h_border_left + timing->h_border_right;
1125         pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable +
1126                 timing->v_border_top + timing->v_border_bottom;
1127         if (pipe_ctx->next_odm_pipe || pipe_ctx->prev_odm_pipe) {
1128                 pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx) + 1;
1129
1130                 DC_LOG_SCALER("%s pipe %d: next_odm_pipe:%d   prev_odm_pipe:%d\n",
1131                                 __func__,
1132                                 pipe_ctx->pipe_idx,
1133                                 pipe_ctx->next_odm_pipe ? pipe_ctx->next_odm_pipe->pipe_idx : -1,
1134                                 pipe_ctx->prev_odm_pipe ? pipe_ctx->prev_odm_pipe->pipe_idx : -1);
1135         }       /* ODM + windows MPO, where window is on either right or left ODM half */
1136         else if (pipe_ctx->top_pipe && (pipe_ctx->top_pipe->next_odm_pipe || pipe_ctx->top_pipe->prev_odm_pipe)) {
1137
1138                 pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx->top_pipe) + 1;
1139
1140                 DC_LOG_SCALER("%s ODM + windows MPO: pipe:%d top_pipe:%d   top_pipe->next_odm_pipe:%d   top_pipe->prev_odm_pipe:%d\n",
1141                                 __func__,
1142                                 pipe_ctx->pipe_idx,
1143                                 pipe_ctx->top_pipe->pipe_idx,
1144                                 pipe_ctx->top_pipe->next_odm_pipe ? pipe_ctx->top_pipe->next_odm_pipe->pipe_idx : -1,
1145                                 pipe_ctx->top_pipe->prev_odm_pipe ? pipe_ctx->top_pipe->prev_odm_pipe->pipe_idx : -1);
1146         }
1147         /* depends on h_active */
1148         calculate_recout(pipe_ctx);
1149         /* depends on pixel format */
1150         calculate_scaling_ratios(pipe_ctx);
1151         /* depends on scaling ratios and recout, does not calculate offset yet */
1152         calculate_viewport_size(pipe_ctx);
1153
1154         if (!pipe_ctx->stream->ctx->dc->config.enable_windowed_mpo_odm) {
1155                 /* Stopgap for validation of ODM + MPO on one side of screen case */
1156                 if (pipe_ctx->plane_res.scl_data.viewport.height < 1 ||
1157                                 pipe_ctx->plane_res.scl_data.viewport.width < 1)
1158                         return false;
1159         }
1160
1161         /*
1162          * LB calculations depend on vp size, h/v_active and scaling ratios
1163          * Setting line buffer pixel depth to 24bpp yields banding
1164          * on certain displays, such as the Sharp 4k. 36bpp is needed
1165          * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1166          * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1167          * precision on DCN display engines, but apparently not for DCE, as
1168          * far as testing on DCE-11.2 and DCE-8 showed. Various DCE parts have
1169          * problems: Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1170          * neither do DCE-8 at 4k resolution, or DCE-11.2 (broken identify pixel
1171          * passthrough). Therefore only use 36 bpp on DCN where it is actually needed.
1172          */
1173         if (plane_state->ctx->dce_version > DCE_VERSION_MAX)
1174                 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1175         else
1176                 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1177
1178         pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1179
1180         if (pipe_ctx->plane_res.xfm != NULL)
1181                 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1182                                 pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1183
1184         if (pipe_ctx->plane_res.dpp != NULL)
1185                 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1186                                 pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1187
1188
1189         if (!res) {
1190                 /* Try 24 bpp linebuffer */
1191                 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1192
1193                 if (pipe_ctx->plane_res.xfm != NULL)
1194                         res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1195                                         pipe_ctx->plane_res.xfm,
1196                                         &pipe_ctx->plane_res.scl_data,
1197                                         &plane_state->scaling_quality);
1198
1199                 if (pipe_ctx->plane_res.dpp != NULL)
1200                         res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1201                                         pipe_ctx->plane_res.dpp,
1202                                         &pipe_ctx->plane_res.scl_data,
1203                                         &plane_state->scaling_quality);
1204         }
1205
1206         /*
1207          * Depends on recout, scaling ratios, h_active and taps
1208          * May need to re-check lb size after this in some obscure scenario
1209          */
1210         if (res)
1211                 calculate_inits_and_viewports(pipe_ctx);
1212
1213         /*
1214          * Handle side by side and top bottom 3d recout offsets after vp calculation
1215          * since 3d is special and needs to calculate vp as if there is no recout offset
1216          * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1217          */
1218         if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1219                 ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1220                         (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1221                                 pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1222                 if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1223                         pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1224                 else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1225                         pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1226         }
1227
1228         if (!pipe_ctx->stream->ctx->dc->config.enable_windowed_mpo_odm) {
1229                 if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE ||
1230                                 pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1231                         res = false;
1232         } else {
1233                 /* Clamp minimum viewport size */
1234                 if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE)
1235                         pipe_ctx->plane_res.scl_data.viewport.height = MIN_VIEWPORT_SIZE;
1236                 if (pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1237                         pipe_ctx->plane_res.scl_data.viewport.width = MIN_VIEWPORT_SIZE;
1238         }
1239
1240         DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d  Recout: height:%d width:%d x:%d y:%d  HACTIVE:%d VACTIVE:%d\n"
1241                         "src_rect: height:%d width:%d x:%d y:%d  dst_rect: height:%d width:%d x:%d y:%d  clip_rect: height:%d width:%d x:%d y:%d\n",
1242                         __func__,
1243                         pipe_ctx->pipe_idx,
1244                         pipe_ctx->plane_res.scl_data.viewport.height,
1245                         pipe_ctx->plane_res.scl_data.viewport.width,
1246                         pipe_ctx->plane_res.scl_data.viewport.x,
1247                         pipe_ctx->plane_res.scl_data.viewport.y,
1248                         pipe_ctx->plane_res.scl_data.recout.height,
1249                         pipe_ctx->plane_res.scl_data.recout.width,
1250                         pipe_ctx->plane_res.scl_data.recout.x,
1251                         pipe_ctx->plane_res.scl_data.recout.y,
1252                         pipe_ctx->plane_res.scl_data.h_active,
1253                         pipe_ctx->plane_res.scl_data.v_active,
1254                         plane_state->src_rect.height,
1255                         plane_state->src_rect.width,
1256                         plane_state->src_rect.x,
1257                         plane_state->src_rect.y,
1258                         plane_state->dst_rect.height,
1259                         plane_state->dst_rect.width,
1260                         plane_state->dst_rect.x,
1261                         plane_state->dst_rect.y,
1262                         plane_state->clip_rect.height,
1263                         plane_state->clip_rect.width,
1264                         plane_state->clip_rect.x,
1265                         plane_state->clip_rect.y);
1266
1267         pipe_ctx->stream->dst.x -= timing->h_border_left;
1268         pipe_ctx->stream->dst.y -= timing->v_border_top;
1269
1270         return res;
1271 }
1272
1273
1274 enum dc_status resource_build_scaling_params_for_context(
1275         const struct dc  *dc,
1276         struct dc_state *context)
1277 {
1278         int i;
1279
1280         for (i = 0; i < MAX_PIPES; i++) {
1281                 if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1282                                 context->res_ctx.pipe_ctx[i].stream != NULL)
1283                         if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1284                                 return DC_FAIL_SCALING;
1285         }
1286
1287         return DC_OK;
1288 }
1289
1290 struct pipe_ctx *find_idle_secondary_pipe(
1291                 struct resource_context *res_ctx,
1292                 const struct resource_pool *pool,
1293                 const struct pipe_ctx *primary_pipe)
1294 {
1295         int i;
1296         struct pipe_ctx *secondary_pipe = NULL;
1297
1298         /*
1299          * We add a preferred pipe mapping to avoid the chance that
1300          * MPCCs already in use will need to be reassigned to other trees.
1301          * For example, if we went with the strict, assign backwards logic:
1302          *
1303          * (State 1)
1304          * Display A on, no surface, top pipe = 0
1305          * Display B on, no surface, top pipe = 1
1306          *
1307          * (State 2)
1308          * Display A on, no surface, top pipe = 0
1309          * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1310          *
1311          * (State 3)
1312          * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1313          * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1314          *
1315          * The state 2->3 transition requires remapping MPCC 5 from display B
1316          * to display A.
1317          *
1318          * However, with the preferred pipe logic, state 2 would look like:
1319          *
1320          * (State 2)
1321          * Display A on, no surface, top pipe = 0
1322          * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1323          *
1324          * This would then cause 2->3 to not require remapping any MPCCs.
1325          */
1326         if (primary_pipe) {
1327                 int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1328                 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1329                         secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1330                         secondary_pipe->pipe_idx = preferred_pipe_idx;
1331                 }
1332         }
1333
1334         /*
1335          * search backwards for the second pipe to keep pipe
1336          * assignment more consistent
1337          */
1338         if (!secondary_pipe)
1339                 for (i = pool->pipe_count - 1; i >= 0; i--) {
1340                         if (res_ctx->pipe_ctx[i].stream == NULL) {
1341                                 secondary_pipe = &res_ctx->pipe_ctx[i];
1342                                 secondary_pipe->pipe_idx = i;
1343                                 break;
1344                         }
1345                 }
1346
1347         return secondary_pipe;
1348 }
1349
1350 struct pipe_ctx *resource_get_head_pipe_for_stream(
1351                 struct resource_context *res_ctx,
1352                 struct dc_stream_state *stream)
1353 {
1354         int i;
1355
1356         for (i = 0; i < MAX_PIPES; i++) {
1357                 if (res_ctx->pipe_ctx[i].stream == stream
1358                                 && !res_ctx->pipe_ctx[i].top_pipe
1359                                 && !res_ctx->pipe_ctx[i].prev_odm_pipe)
1360                         return &res_ctx->pipe_ctx[i];
1361         }
1362         return NULL;
1363 }
1364
1365 static struct pipe_ctx *resource_get_tail_pipe(
1366                 struct resource_context *res_ctx,
1367                 struct pipe_ctx *head_pipe)
1368 {
1369         struct pipe_ctx *tail_pipe;
1370
1371         tail_pipe = head_pipe->bottom_pipe;
1372
1373         while (tail_pipe) {
1374                 head_pipe = tail_pipe;
1375                 tail_pipe = tail_pipe->bottom_pipe;
1376         }
1377
1378         return head_pipe;
1379 }
1380
1381 /*
1382  * A free_pipe for a stream is defined here as a pipe
1383  * that has no surface attached yet
1384  */
1385 static struct pipe_ctx *acquire_free_pipe_for_head(
1386                 struct dc_state *context,
1387                 const struct resource_pool *pool,
1388                 struct pipe_ctx *head_pipe)
1389 {
1390         int i;
1391         struct resource_context *res_ctx = &context->res_ctx;
1392
1393         if (!head_pipe->plane_state)
1394                 return head_pipe;
1395
1396         /* Re-use pipe already acquired for this stream if available*/
1397         for (i = pool->pipe_count - 1; i >= 0; i--) {
1398                 if (res_ctx->pipe_ctx[i].stream == head_pipe->stream &&
1399                                 !res_ctx->pipe_ctx[i].plane_state) {
1400                         return &res_ctx->pipe_ctx[i];
1401                 }
1402         }
1403
1404         /*
1405          * At this point we have no re-useable pipe for this stream and we need
1406          * to acquire an idle one to satisfy the request
1407          */
1408
1409         if (!pool->funcs->acquire_idle_pipe_for_layer) {
1410                 if (!pool->funcs->acquire_idle_pipe_for_head_pipe_in_layer)
1411                         return NULL;
1412                 else
1413                         return pool->funcs->acquire_idle_pipe_for_head_pipe_in_layer(context, pool, head_pipe->stream, head_pipe);
1414         }
1415
1416         return pool->funcs->acquire_idle_pipe_for_layer(context, pool, head_pipe->stream);
1417 }
1418
1419 static int acquire_first_split_pipe(
1420                 struct resource_context *res_ctx,
1421                 const struct resource_pool *pool,
1422                 struct dc_stream_state *stream)
1423 {
1424         int i;
1425
1426         for (i = 0; i < pool->pipe_count; i++) {
1427                 struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1428
1429                 if (split_pipe->top_pipe &&
1430                                 split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1431                         split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1432                         if (split_pipe->bottom_pipe)
1433                                 split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1434
1435                         if (split_pipe->top_pipe->plane_state)
1436                                 resource_build_scaling_params(split_pipe->top_pipe);
1437
1438                         memset(split_pipe, 0, sizeof(*split_pipe));
1439                         split_pipe->stream_res.tg = pool->timing_generators[i];
1440                         split_pipe->plane_res.hubp = pool->hubps[i];
1441                         split_pipe->plane_res.ipp = pool->ipps[i];
1442                         split_pipe->plane_res.dpp = pool->dpps[i];
1443                         split_pipe->stream_res.opp = pool->opps[i];
1444                         split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1445                         split_pipe->pipe_idx = i;
1446
1447                         split_pipe->stream = stream;
1448                         return i;
1449                 }
1450         }
1451         return -1;
1452 }
1453
1454 bool dc_add_plane_to_context(
1455                 const struct dc *dc,
1456                 struct dc_stream_state *stream,
1457                 struct dc_plane_state *plane_state,
1458                 struct dc_state *context)
1459 {
1460         int i;
1461         struct resource_pool *pool = dc->res_pool;
1462         struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1463         struct dc_stream_status *stream_status = NULL;
1464         struct pipe_ctx *prev_right_head = NULL;
1465         struct pipe_ctx *free_right_pipe = NULL;
1466         struct pipe_ctx *prev_left_head = NULL;
1467
1468         DC_LOGGER_INIT(stream->ctx->logger);
1469         for (i = 0; i < context->stream_count; i++)
1470                 if (context->streams[i] == stream) {
1471                         stream_status = &context->stream_status[i];
1472                         break;
1473                 }
1474         if (stream_status == NULL) {
1475                 dm_error("Existing stream not found; failed to attach surface!\n");
1476                 return false;
1477         }
1478
1479
1480         if (stream_status->plane_count == MAX_SURFACE_NUM) {
1481                 dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1482                                 plane_state, MAX_SURFACE_NUM);
1483                 return false;
1484         }
1485
1486         head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1487
1488         if (!head_pipe) {
1489                 dm_error("Head pipe not found for stream_state %p !\n", stream);
1490                 return false;
1491         }
1492
1493         /* retain new surface, but only once per stream */
1494         dc_plane_state_retain(plane_state);
1495
1496         while (head_pipe) {
1497                 free_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1498
1499                 if (!free_pipe) {
1500                         int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1501                         if (pipe_idx >= 0)
1502                                 free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1503                 }
1504
1505                 if (!free_pipe) {
1506                         dc_plane_state_release(plane_state);
1507                         return false;
1508                 }
1509
1510                 free_pipe->plane_state = plane_state;
1511
1512                 if (head_pipe != free_pipe) {
1513                         tail_pipe = resource_get_tail_pipe(&context->res_ctx, head_pipe);
1514                         ASSERT(tail_pipe);
1515
1516                         /* ODM + window MPO, where MPO window is on right half only */
1517                         if (free_pipe->plane_state &&
1518                                 (free_pipe->plane_state->clip_rect.x >= free_pipe->stream->src.x + free_pipe->stream->src.width/2) &&
1519                                 tail_pipe->next_odm_pipe) {
1520
1521                                 /* For ODM + window MPO, in 3 plane case, if we already have a MPO window on
1522                                  *  the right side, then we will invalidate a 2nd one on the right side
1523                                  */
1524                                 if (head_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1525                                         dc_plane_state_release(plane_state);
1526                                         return false;
1527                                 }
1528
1529                                 DC_LOG_SCALER("%s - ODM + window MPO(right). free_pipe:%d  tail_pipe->next_odm_pipe:%d\n",
1530                                                 __func__,
1531                                                 free_pipe->pipe_idx,
1532                                                 tail_pipe->next_odm_pipe ? tail_pipe->next_odm_pipe->pipe_idx : -1);
1533
1534                                 /*
1535                                  * We want to avoid the case where the right side already has a pipe assigned to
1536                                  *  it and is different from free_pipe ( which would cause trigger a pipe
1537                                  *  reallocation ).
1538                                  * Check the old context to see if the right side already has a pipe allocated
1539                                  * - If not, continue to use free_pipe
1540                                  * - If the right side already has a pipe, use that pipe instead if its available
1541                                  */
1542
1543                                 /*
1544                                  * We also want to avoid the case where with three plane ( 2 MPO videos ), we have
1545                                  *  both videos on the left side so one of the videos is invalidated.  Then we
1546                                  *  move the invalidated video back to the right side.  If the order of the plane
1547                                  *  states is such that the right MPO plane is processed first, the free pipe
1548                                  *  selected by the head will be the left MPO pipe. But since there was no right
1549                                  *  MPO pipe, it will assign the free pipe to the right MPO pipe instead and
1550                                  *  a pipe reallocation will occur.
1551                                  * Check the old context to see if the left side already has a pipe allocated
1552                                  * - If not, continue to use free_pipe
1553                                  * - If the left side is already using this pipe, then pick another pipe for right
1554                                  */
1555
1556                                 prev_right_head = &dc->current_state->res_ctx.pipe_ctx[tail_pipe->next_odm_pipe->pipe_idx];
1557                                 if ((prev_right_head->bottom_pipe) &&
1558                                         (free_pipe->pipe_idx != prev_right_head->bottom_pipe->pipe_idx)) {
1559                                         free_right_pipe = acquire_free_pipe_for_head(context, pool, tail_pipe->next_odm_pipe);
1560                                 } else {
1561                                         prev_left_head = &dc->current_state->res_ctx.pipe_ctx[head_pipe->pipe_idx];
1562                                         if ((prev_left_head->bottom_pipe) &&
1563                                                 (free_pipe->pipe_idx == prev_left_head->bottom_pipe->pipe_idx)) {
1564                                                 free_right_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1565                                         }
1566                                 }
1567
1568                                 if (free_right_pipe) {
1569                                         free_pipe->stream = NULL;
1570                                         memset(&free_pipe->stream_res, 0, sizeof(struct stream_resource));
1571                                         memset(&free_pipe->plane_res, 0, sizeof(struct plane_resource));
1572                                         free_pipe->plane_state = NULL;
1573                                         free_pipe->pipe_idx = 0;
1574                                         free_right_pipe->plane_state = plane_state;
1575                                         free_pipe = free_right_pipe;
1576                                 }
1577
1578                                 free_pipe->stream_res.tg = tail_pipe->next_odm_pipe->stream_res.tg;
1579                                 free_pipe->stream_res.abm = tail_pipe->next_odm_pipe->stream_res.abm;
1580                                 free_pipe->stream_res.opp = tail_pipe->next_odm_pipe->stream_res.opp;
1581                                 free_pipe->stream_res.stream_enc = tail_pipe->next_odm_pipe->stream_res.stream_enc;
1582                                 free_pipe->stream_res.audio = tail_pipe->next_odm_pipe->stream_res.audio;
1583                                 free_pipe->clock_source = tail_pipe->next_odm_pipe->clock_source;
1584
1585                                 free_pipe->top_pipe = tail_pipe->next_odm_pipe;
1586                                 tail_pipe->next_odm_pipe->bottom_pipe = free_pipe;
1587                         } else if (free_pipe->plane_state &&
1588                                 (free_pipe->plane_state->clip_rect.x >= free_pipe->stream->src.x + free_pipe->stream->src.width/2)
1589                                 && head_pipe->next_odm_pipe) {
1590
1591                                 /* For ODM + window MPO, support 3 plane ( 2 MPO ) case.
1592                                  * Here we have a desktop ODM + left window MPO and a new MPO window appears
1593                                  *  on the right side only.  It fails the first case, because tail_pipe is the
1594                                  *  left window MPO, so it has no next_odm_pipe.  So in this scenario, we check
1595                                  *  for head_pipe->next_odm_pipe instead
1596                                  */
1597                                 DC_LOG_SCALER("%s - ODM + win MPO (left) + win MPO (right). free_pipe:%d  head_pipe->next_odm:%d\n",
1598                                                 __func__,
1599                                                 free_pipe->pipe_idx,
1600                                                 head_pipe->next_odm_pipe ? head_pipe->next_odm_pipe->pipe_idx : -1);
1601
1602                                 /*
1603                                  * We want to avoid the case where the right side already has a pipe assigned to
1604                                  *  it and is different from free_pipe ( which would cause trigger a pipe
1605                                  *  reallocation ).
1606                                  * Check the old context to see if the right side already has a pipe allocated
1607                                  * - If not, continue to use free_pipe
1608                                  * - If the right side already has a pipe, use that pipe instead if its available
1609                                  */
1610                                 prev_right_head = &dc->current_state->res_ctx.pipe_ctx[head_pipe->next_odm_pipe->pipe_idx];
1611                                 if ((prev_right_head->bottom_pipe) &&
1612                                         (free_pipe->pipe_idx != prev_right_head->bottom_pipe->pipe_idx)) {
1613                                         free_right_pipe = acquire_free_pipe_for_head(context, pool, head_pipe->next_odm_pipe);
1614                                         if (free_right_pipe) {
1615                                                 free_pipe->stream = NULL;
1616                                                 memset(&free_pipe->stream_res, 0, sizeof(struct stream_resource));
1617                                                 memset(&free_pipe->plane_res, 0, sizeof(struct plane_resource));
1618                                                 free_pipe->plane_state = NULL;
1619                                                 free_pipe->pipe_idx = 0;
1620                                                 free_right_pipe->plane_state = plane_state;
1621                                                 free_pipe = free_right_pipe;
1622                                         }
1623                                 }
1624
1625                                 free_pipe->stream_res.tg = head_pipe->next_odm_pipe->stream_res.tg;
1626                                 free_pipe->stream_res.abm = head_pipe->next_odm_pipe->stream_res.abm;
1627                                 free_pipe->stream_res.opp = head_pipe->next_odm_pipe->stream_res.opp;
1628                                 free_pipe->stream_res.stream_enc = head_pipe->next_odm_pipe->stream_res.stream_enc;
1629                                 free_pipe->stream_res.audio = head_pipe->next_odm_pipe->stream_res.audio;
1630                                 free_pipe->clock_source = head_pipe->next_odm_pipe->clock_source;
1631
1632                                 free_pipe->top_pipe = head_pipe->next_odm_pipe;
1633                                 head_pipe->next_odm_pipe->bottom_pipe = free_pipe;
1634                         } else {
1635
1636                                 /* For ODM + window MPO, in 3 plane case, if we already have a MPO window on
1637                                  *  the left side, then we will invalidate a 2nd one on the left side
1638                                  */
1639                                 if (head_pipe->next_odm_pipe && tail_pipe->top_pipe) {
1640                                         dc_plane_state_release(plane_state);
1641                                         return false;
1642                                 }
1643
1644                                 free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1645                                 free_pipe->stream_res.abm = tail_pipe->stream_res.abm;
1646                                 free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1647                                 free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1648                                 free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1649                                 free_pipe->clock_source = tail_pipe->clock_source;
1650
1651                                 free_pipe->top_pipe = tail_pipe;
1652                                 tail_pipe->bottom_pipe = free_pipe;
1653
1654                                 /* Connect MPO pipes together if MPO window is in the centre */
1655                                 if (!(free_pipe->plane_state &&
1656                                                 (free_pipe->plane_state->clip_rect.x + free_pipe->plane_state->clip_rect.width <=
1657                                                 free_pipe->stream->src.x + free_pipe->stream->src.width/2))) {
1658                                         if (!free_pipe->next_odm_pipe &&
1659                                                 tail_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1660                                                 free_pipe->next_odm_pipe = tail_pipe->next_odm_pipe->bottom_pipe;
1661                                                 tail_pipe->next_odm_pipe->bottom_pipe->prev_odm_pipe = free_pipe;
1662                                         }
1663                                         if (!free_pipe->prev_odm_pipe &&
1664                                                 tail_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe->bottom_pipe) {
1665                                                 free_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1666                                                 tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = free_pipe;
1667                                         }
1668                                 }
1669                         }
1670                 }
1671
1672                 /* ODM + window MPO, where MPO window is on left half only */
1673                 if (free_pipe->plane_state &&
1674                         (free_pipe->plane_state->clip_rect.x + free_pipe->plane_state->clip_rect.width <=
1675                         free_pipe->stream->src.x + free_pipe->stream->src.width/2)) {
1676                         DC_LOG_SCALER("%s - ODM + window MPO(left). free_pipe:%d\n",
1677                                         __func__,
1678                                         free_pipe->pipe_idx);
1679                         break;
1680                 }
1681                 /* ODM + window MPO, where MPO window is on right half only */
1682                 if (free_pipe->plane_state &&
1683                         (free_pipe->plane_state->clip_rect.x >= free_pipe->stream->src.x + free_pipe->stream->src.width/2)) {
1684                         DC_LOG_SCALER("%s - ODM + window MPO(right). free_pipe:%d\n",
1685                                         __func__,
1686                                         free_pipe->pipe_idx);
1687                         break;
1688                 }
1689
1690                 head_pipe = head_pipe->next_odm_pipe;
1691         }
1692         /* assign new surfaces*/
1693         stream_status->plane_states[stream_status->plane_count] = plane_state;
1694
1695         stream_status->plane_count++;
1696
1697         return true;
1698 }
1699
1700 bool dc_remove_plane_from_context(
1701                 const struct dc *dc,
1702                 struct dc_stream_state *stream,
1703                 struct dc_plane_state *plane_state,
1704                 struct dc_state *context)
1705 {
1706         int i;
1707         struct dc_stream_status *stream_status = NULL;
1708         struct resource_pool *pool = dc->res_pool;
1709
1710         for (i = 0; i < context->stream_count; i++)
1711                 if (context->streams[i] == stream) {
1712                         stream_status = &context->stream_status[i];
1713                         break;
1714                 }
1715
1716         if (stream_status == NULL) {
1717                 dm_error("Existing stream not found; failed to remove plane.\n");
1718                 return false;
1719         }
1720
1721         /* release pipe for plane*/
1722         for (i = pool->pipe_count - 1; i >= 0; i--) {
1723                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1724
1725                 if (pipe_ctx->plane_state == plane_state) {
1726                         if (pipe_ctx->top_pipe)
1727                                 pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1728
1729                         /* Second condition is to avoid setting NULL to top pipe
1730                          * of tail pipe making it look like head pipe in subsequent
1731                          * deletes
1732                          */
1733                         if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1734                                 pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1735
1736                         /*
1737                          * For head pipe detach surfaces from pipe for tail
1738                          * pipe just zero it out
1739                          */
1740                         if (!pipe_ctx->top_pipe)
1741                                 pipe_ctx->plane_state = NULL;
1742                         else
1743                                 memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1744                 }
1745         }
1746
1747
1748         for (i = 0; i < stream_status->plane_count; i++) {
1749                 if (stream_status->plane_states[i] == plane_state) {
1750                         dc_plane_state_release(stream_status->plane_states[i]);
1751                         break;
1752                 }
1753         }
1754
1755         if (i == stream_status->plane_count) {
1756                 dm_error("Existing plane_state not found; failed to detach it!\n");
1757                 return false;
1758         }
1759
1760         stream_status->plane_count--;
1761
1762         /* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1763         for (; i < stream_status->plane_count; i++)
1764                 stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1765
1766         stream_status->plane_states[stream_status->plane_count] = NULL;
1767
1768         return true;
1769 }
1770
1771 bool dc_rem_all_planes_for_stream(
1772                 const struct dc *dc,
1773                 struct dc_stream_state *stream,
1774                 struct dc_state *context)
1775 {
1776         int i, old_plane_count;
1777         struct dc_stream_status *stream_status = NULL;
1778         struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1779
1780         for (i = 0; i < context->stream_count; i++)
1781                         if (context->streams[i] == stream) {
1782                                 stream_status = &context->stream_status[i];
1783                                 break;
1784                         }
1785
1786         if (stream_status == NULL) {
1787                 dm_error("Existing stream %p not found!\n", stream);
1788                 return false;
1789         }
1790
1791         old_plane_count = stream_status->plane_count;
1792
1793         for (i = 0; i < old_plane_count; i++)
1794                 del_planes[i] = stream_status->plane_states[i];
1795
1796         for (i = 0; i < old_plane_count; i++)
1797                 if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1798                         return false;
1799
1800         return true;
1801 }
1802
1803 static bool add_all_planes_for_stream(
1804                 const struct dc *dc,
1805                 struct dc_stream_state *stream,
1806                 const struct dc_validation_set set[],
1807                 int set_count,
1808                 struct dc_state *context)
1809 {
1810         int i, j;
1811
1812         for (i = 0; i < set_count; i++)
1813                 if (set[i].stream == stream)
1814                         break;
1815
1816         if (i == set_count) {
1817                 dm_error("Stream %p not found in set!\n", stream);
1818                 return false;
1819         }
1820
1821         for (j = 0; j < set[i].plane_count; j++)
1822                 if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1823                         return false;
1824
1825         return true;
1826 }
1827
1828 bool dc_add_all_planes_for_stream(
1829                 const struct dc *dc,
1830                 struct dc_stream_state *stream,
1831                 struct dc_plane_state * const *plane_states,
1832                 int plane_count,
1833                 struct dc_state *context)
1834 {
1835         struct dc_validation_set set;
1836         int i;
1837
1838         set.stream = stream;
1839         set.plane_count = plane_count;
1840
1841         for (i = 0; i < plane_count; i++)
1842                 set.plane_states[i] = plane_states[i];
1843
1844         return add_all_planes_for_stream(dc, stream, &set, 1, context);
1845 }
1846
1847 bool is_timing_changed(struct dc_stream_state *cur_stream,
1848                        struct dc_stream_state *new_stream)
1849 {
1850         if (cur_stream == NULL)
1851                 return true;
1852
1853         /* If output color space is changed, need to reprogram info frames */
1854         if (cur_stream->output_color_space != new_stream->output_color_space)
1855                 return true;
1856
1857         return memcmp(
1858                 &cur_stream->timing,
1859                 &new_stream->timing,
1860                 sizeof(struct dc_crtc_timing)) != 0;
1861 }
1862
1863 static bool are_stream_backends_same(
1864         struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1865 {
1866         if (stream_a == stream_b)
1867                 return true;
1868
1869         if (stream_a == NULL || stream_b == NULL)
1870                 return false;
1871
1872         if (is_timing_changed(stream_a, stream_b))
1873                 return false;
1874
1875         if (stream_a->signal != stream_b->signal)
1876                 return false;
1877
1878         if (stream_a->dpms_off != stream_b->dpms_off)
1879                 return false;
1880
1881         return true;
1882 }
1883
1884 /*
1885  * dc_is_stream_unchanged() - Compare two stream states for equivalence.
1886  *
1887  * Checks if there a difference between the two states
1888  * that would require a mode change.
1889  *
1890  * Does not compare cursor position or attributes.
1891  */
1892 bool dc_is_stream_unchanged(
1893         struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1894 {
1895
1896         if (!are_stream_backends_same(old_stream, stream))
1897                 return false;
1898
1899         if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
1900                 return false;
1901
1902         /*compare audio info*/
1903         if (memcmp(&old_stream->audio_info, &stream->audio_info, sizeof(stream->audio_info)) != 0)
1904                 return false;
1905
1906         return true;
1907 }
1908
1909 /*
1910  * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
1911  */
1912 bool dc_is_stream_scaling_unchanged(struct dc_stream_state *old_stream,
1913                                     struct dc_stream_state *stream)
1914 {
1915         if (old_stream == stream)
1916                 return true;
1917
1918         if (old_stream == NULL || stream == NULL)
1919                 return false;
1920
1921         if (memcmp(&old_stream->src,
1922                         &stream->src,
1923                         sizeof(struct rect)) != 0)
1924                 return false;
1925
1926         if (memcmp(&old_stream->dst,
1927                         &stream->dst,
1928                         sizeof(struct rect)) != 0)
1929                 return false;
1930
1931         return true;
1932 }
1933
1934 static void update_stream_engine_usage(
1935                 struct resource_context *res_ctx,
1936                 const struct resource_pool *pool,
1937                 struct stream_encoder *stream_enc,
1938                 bool acquired)
1939 {
1940         int i;
1941
1942         for (i = 0; i < pool->stream_enc_count; i++) {
1943                 if (pool->stream_enc[i] == stream_enc)
1944                         res_ctx->is_stream_enc_acquired[i] = acquired;
1945         }
1946 }
1947
1948 static void update_hpo_dp_stream_engine_usage(
1949                 struct resource_context *res_ctx,
1950                 const struct resource_pool *pool,
1951                 struct hpo_dp_stream_encoder *hpo_dp_stream_enc,
1952                 bool acquired)
1953 {
1954         int i;
1955
1956         for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
1957                 if (pool->hpo_dp_stream_enc[i] == hpo_dp_stream_enc)
1958                         res_ctx->is_hpo_dp_stream_enc_acquired[i] = acquired;
1959         }
1960 }
1961
1962 static inline int find_acquired_hpo_dp_link_enc_for_link(
1963                 const struct resource_context *res_ctx,
1964                 const struct dc_link *link)
1965 {
1966         int i;
1967
1968         for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_to_link_idx); i++)
1969                 if (res_ctx->hpo_dp_link_enc_ref_cnts[i] > 0 &&
1970                                 res_ctx->hpo_dp_link_enc_to_link_idx[i] == link->link_index)
1971                         return i;
1972
1973         return -1;
1974 }
1975
1976 static inline int find_free_hpo_dp_link_enc(const struct resource_context *res_ctx,
1977                 const struct resource_pool *pool)
1978 {
1979         int i;
1980
1981         for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts); i++)
1982                 if (res_ctx->hpo_dp_link_enc_ref_cnts[i] == 0)
1983                         break;
1984
1985         return (i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts) &&
1986                         i < pool->hpo_dp_link_enc_count) ? i : -1;
1987 }
1988
1989 static inline void acquire_hpo_dp_link_enc(
1990                 struct resource_context *res_ctx,
1991                 unsigned int link_index,
1992                 int enc_index)
1993 {
1994         res_ctx->hpo_dp_link_enc_to_link_idx[enc_index] = link_index;
1995         res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] = 1;
1996 }
1997
1998 static inline void retain_hpo_dp_link_enc(
1999                 struct resource_context *res_ctx,
2000                 int enc_index)
2001 {
2002         res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]++;
2003 }
2004
2005 static inline void release_hpo_dp_link_enc(
2006                 struct resource_context *res_ctx,
2007                 int enc_index)
2008 {
2009         ASSERT(res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] > 0);
2010         res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]--;
2011 }
2012
2013 static bool add_hpo_dp_link_enc_to_ctx(struct resource_context *res_ctx,
2014                 const struct resource_pool *pool,
2015                 struct pipe_ctx *pipe_ctx,
2016                 struct dc_stream_state *stream)
2017 {
2018         int enc_index;
2019
2020         enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2021
2022         if (enc_index >= 0) {
2023                 retain_hpo_dp_link_enc(res_ctx, enc_index);
2024         } else {
2025                 enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
2026                 if (enc_index >= 0)
2027                         acquire_hpo_dp_link_enc(res_ctx, stream->link->link_index, enc_index);
2028         }
2029
2030         if (enc_index >= 0)
2031                 pipe_ctx->link_res.hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
2032
2033         return pipe_ctx->link_res.hpo_dp_link_enc != NULL;
2034 }
2035
2036 static void remove_hpo_dp_link_enc_from_ctx(struct resource_context *res_ctx,
2037                 struct pipe_ctx *pipe_ctx,
2038                 struct dc_stream_state *stream)
2039 {
2040         int enc_index;
2041
2042         enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2043
2044         if (enc_index >= 0) {
2045                 release_hpo_dp_link_enc(res_ctx, enc_index);
2046                 pipe_ctx->link_res.hpo_dp_link_enc = NULL;
2047         }
2048 }
2049
2050 /* TODO: release audio object */
2051 void update_audio_usage(
2052                 struct resource_context *res_ctx,
2053                 const struct resource_pool *pool,
2054                 struct audio *audio,
2055                 bool acquired)
2056 {
2057         int i;
2058         for (i = 0; i < pool->audio_count; i++) {
2059                 if (pool->audios[i] == audio)
2060                         res_ctx->is_audio_acquired[i] = acquired;
2061         }
2062 }
2063
2064 static int acquire_first_free_pipe(
2065                 struct resource_context *res_ctx,
2066                 const struct resource_pool *pool,
2067                 struct dc_stream_state *stream)
2068 {
2069         int i;
2070
2071         for (i = 0; i < pool->pipe_count; i++) {
2072                 if (!res_ctx->pipe_ctx[i].stream) {
2073                         struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
2074
2075                         pipe_ctx->stream_res.tg = pool->timing_generators[i];
2076                         pipe_ctx->plane_res.mi = pool->mis[i];
2077                         pipe_ctx->plane_res.hubp = pool->hubps[i];
2078                         pipe_ctx->plane_res.ipp = pool->ipps[i];
2079                         pipe_ctx->plane_res.xfm = pool->transforms[i];
2080                         pipe_ctx->plane_res.dpp = pool->dpps[i];
2081                         pipe_ctx->stream_res.opp = pool->opps[i];
2082                         if (pool->dpps[i])
2083                                 pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
2084                         pipe_ctx->pipe_idx = i;
2085
2086                         if (i >= pool->timing_generator_count) {
2087                                 int tg_inst = pool->timing_generator_count - 1;
2088
2089                                 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2090                                 pipe_ctx->stream_res.opp = pool->opps[tg_inst];
2091                         }
2092
2093                         pipe_ctx->stream = stream;
2094                         return i;
2095                 }
2096         }
2097         return -1;
2098 }
2099
2100 static struct hpo_dp_stream_encoder *find_first_free_match_hpo_dp_stream_enc_for_link(
2101                 struct resource_context *res_ctx,
2102                 const struct resource_pool *pool,
2103                 struct dc_stream_state *stream)
2104 {
2105         int i;
2106
2107         for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
2108                 if (!res_ctx->is_hpo_dp_stream_enc_acquired[i] &&
2109                                 pool->hpo_dp_stream_enc[i]) {
2110
2111                         return pool->hpo_dp_stream_enc[i];
2112                 }
2113         }
2114
2115         return NULL;
2116 }
2117
2118 static struct audio *find_first_free_audio(
2119                 struct resource_context *res_ctx,
2120                 const struct resource_pool *pool,
2121                 enum engine_id id,
2122                 enum dce_version dc_version)
2123 {
2124         int i, available_audio_count;
2125
2126         available_audio_count = pool->audio_count;
2127
2128         for (i = 0; i < available_audio_count; i++) {
2129                 if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
2130                         /*we have enough audio endpoint, find the matching inst*/
2131                         if (id != i)
2132                                 continue;
2133                         return pool->audios[i];
2134                 }
2135         }
2136
2137         /* use engine id to find free audio */
2138         if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
2139                 return pool->audios[id];
2140         }
2141         /*not found the matching one, first come first serve*/
2142         for (i = 0; i < available_audio_count; i++) {
2143                 if (res_ctx->is_audio_acquired[i] == false) {
2144                         return pool->audios[i];
2145                 }
2146         }
2147         return NULL;
2148 }
2149
2150 /*
2151  * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
2152  */
2153 enum dc_status dc_add_stream_to_ctx(
2154                 struct dc *dc,
2155                 struct dc_state *new_ctx,
2156                 struct dc_stream_state *stream)
2157 {
2158         enum dc_status res;
2159         DC_LOGGER_INIT(dc->ctx->logger);
2160
2161         if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
2162                 DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
2163                 return DC_ERROR_UNEXPECTED;
2164         }
2165
2166         new_ctx->streams[new_ctx->stream_count] = stream;
2167         dc_stream_retain(stream);
2168         new_ctx->stream_count++;
2169
2170         res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
2171         if (res != DC_OK)
2172                 DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
2173
2174         return res;
2175 }
2176
2177 /*
2178  * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
2179  */
2180 enum dc_status dc_remove_stream_from_ctx(
2181                         struct dc *dc,
2182                         struct dc_state *new_ctx,
2183                         struct dc_stream_state *stream)
2184 {
2185         int i;
2186         struct dc_context *dc_ctx = dc->ctx;
2187         struct pipe_ctx *del_pipe = resource_get_head_pipe_for_stream(&new_ctx->res_ctx, stream);
2188         struct pipe_ctx *odm_pipe;
2189
2190         if (!del_pipe) {
2191                 DC_ERROR("Pipe not found for stream %p !\n", stream);
2192                 return DC_ERROR_UNEXPECTED;
2193         }
2194
2195         odm_pipe = del_pipe->next_odm_pipe;
2196
2197         /* Release primary pipe */
2198         ASSERT(del_pipe->stream_res.stream_enc);
2199         update_stream_engine_usage(
2200                         &new_ctx->res_ctx,
2201                                 dc->res_pool,
2202                         del_pipe->stream_res.stream_enc,
2203                         false);
2204
2205         if (is_dp_128b_132b_signal(del_pipe)) {
2206                 update_hpo_dp_stream_engine_usage(
2207                         &new_ctx->res_ctx, dc->res_pool,
2208                         del_pipe->stream_res.hpo_dp_stream_enc,
2209                         false);
2210                 remove_hpo_dp_link_enc_from_ctx(&new_ctx->res_ctx, del_pipe, del_pipe->stream);
2211         }
2212
2213         if (del_pipe->stream_res.audio)
2214                 update_audio_usage(
2215                         &new_ctx->res_ctx,
2216                         dc->res_pool,
2217                         del_pipe->stream_res.audio,
2218                         false);
2219
2220         resource_unreference_clock_source(&new_ctx->res_ctx,
2221                                           dc->res_pool,
2222                                           del_pipe->clock_source);
2223
2224         if (dc->res_pool->funcs->remove_stream_from_ctx)
2225                 dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
2226
2227         while (odm_pipe) {
2228                 struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
2229
2230                 memset(odm_pipe, 0, sizeof(*odm_pipe));
2231                 odm_pipe = next_odm_pipe;
2232         }
2233         memset(del_pipe, 0, sizeof(*del_pipe));
2234
2235         for (i = 0; i < new_ctx->stream_count; i++)
2236                 if (new_ctx->streams[i] == stream)
2237                         break;
2238
2239         if (new_ctx->streams[i] != stream) {
2240                 DC_ERROR("Context doesn't have stream %p !\n", stream);
2241                 return DC_ERROR_UNEXPECTED;
2242         }
2243
2244         dc_stream_release(new_ctx->streams[i]);
2245         new_ctx->stream_count--;
2246
2247         /* Trim back arrays */
2248         for (; i < new_ctx->stream_count; i++) {
2249                 new_ctx->streams[i] = new_ctx->streams[i + 1];
2250                 new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
2251         }
2252
2253         new_ctx->streams[new_ctx->stream_count] = NULL;
2254         memset(
2255                         &new_ctx->stream_status[new_ctx->stream_count],
2256                         0,
2257                         sizeof(new_ctx->stream_status[0]));
2258
2259         return DC_OK;
2260 }
2261
2262 static struct dc_stream_state *find_pll_sharable_stream(
2263                 struct dc_stream_state *stream_needs_pll,
2264                 struct dc_state *context)
2265 {
2266         int i;
2267
2268         for (i = 0; i < context->stream_count; i++) {
2269                 struct dc_stream_state *stream_has_pll = context->streams[i];
2270
2271                 /* We are looking for non dp, non virtual stream */
2272                 if (resource_are_streams_timing_synchronizable(
2273                         stream_needs_pll, stream_has_pll)
2274                         && !dc_is_dp_signal(stream_has_pll->signal)
2275                         && stream_has_pll->link->connector_signal
2276                         != SIGNAL_TYPE_VIRTUAL)
2277                         return stream_has_pll;
2278
2279         }
2280
2281         return NULL;
2282 }
2283
2284 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
2285 {
2286         uint32_t pix_clk = timing->pix_clk_100hz;
2287         uint32_t normalized_pix_clk = pix_clk;
2288
2289         if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
2290                 pix_clk /= 2;
2291         if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
2292                 switch (timing->display_color_depth) {
2293                 case COLOR_DEPTH_666:
2294                 case COLOR_DEPTH_888:
2295                         normalized_pix_clk = pix_clk;
2296                         break;
2297                 case COLOR_DEPTH_101010:
2298                         normalized_pix_clk = (pix_clk * 30) / 24;
2299                         break;
2300                 case COLOR_DEPTH_121212:
2301                         normalized_pix_clk = (pix_clk * 36) / 24;
2302                 break;
2303                 case COLOR_DEPTH_161616:
2304                         normalized_pix_clk = (pix_clk * 48) / 24;
2305                 break;
2306                 default:
2307                         ASSERT(0);
2308                 break;
2309                 }
2310         }
2311         return normalized_pix_clk;
2312 }
2313
2314 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
2315 {
2316         /* update actual pixel clock on all streams */
2317         if (dc_is_hdmi_signal(stream->signal))
2318                 stream->phy_pix_clk = get_norm_pix_clk(
2319                         &stream->timing) / 10;
2320         else
2321                 stream->phy_pix_clk =
2322                         stream->timing.pix_clk_100hz / 10;
2323
2324         if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
2325                 stream->phy_pix_clk *= 2;
2326 }
2327
2328 static int acquire_resource_from_hw_enabled_state(
2329                 struct resource_context *res_ctx,
2330                 const struct resource_pool *pool,
2331                 struct dc_stream_state *stream)
2332 {
2333         struct dc_link *link = stream->link;
2334         unsigned int i, inst, tg_inst = 0;
2335         uint32_t numPipes = 1;
2336         uint32_t id_src[4] = {0};
2337
2338         /* Check for enabled DIG to identify enabled display */
2339         if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
2340                 return -1;
2341
2342         inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
2343
2344         if (inst == ENGINE_ID_UNKNOWN)
2345                 return -1;
2346
2347         for (i = 0; i < pool->stream_enc_count; i++) {
2348                 if (pool->stream_enc[i]->id == inst) {
2349                         tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
2350                                 pool->stream_enc[i]);
2351                         break;
2352                 }
2353         }
2354
2355         // tg_inst not found
2356         if (i == pool->stream_enc_count)
2357                 return -1;
2358
2359         if (tg_inst >= pool->timing_generator_count)
2360                 return -1;
2361
2362         if (!res_ctx->pipe_ctx[tg_inst].stream) {
2363                 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
2364
2365                 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2366                 id_src[0] = tg_inst;
2367
2368                 if (pipe_ctx->stream_res.tg->funcs->get_optc_source)
2369                         pipe_ctx->stream_res.tg->funcs->get_optc_source(pipe_ctx->stream_res.tg,
2370                                                 &numPipes, &id_src[0], &id_src[1]);
2371
2372                 if (id_src[0] == 0xf && id_src[1] == 0xf) {
2373                         id_src[0] = tg_inst;
2374                         numPipes = 1;
2375                 }
2376
2377                 for (i = 0; i < numPipes; i++) {
2378                         //Check if src id invalid
2379                         if (id_src[i] == 0xf)
2380                                 return -1;
2381
2382                         pipe_ctx = &res_ctx->pipe_ctx[id_src[i]];
2383
2384                         pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2385                         pipe_ctx->plane_res.mi = pool->mis[id_src[i]];
2386                         pipe_ctx->plane_res.hubp = pool->hubps[id_src[i]];
2387                         pipe_ctx->plane_res.ipp = pool->ipps[id_src[i]];
2388                         pipe_ctx->plane_res.xfm = pool->transforms[id_src[i]];
2389                         pipe_ctx->plane_res.dpp = pool->dpps[id_src[i]];
2390                         pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
2391
2392                         if (pool->dpps[id_src[i]]) {
2393                                 pipe_ctx->plane_res.mpcc_inst = pool->dpps[id_src[i]]->inst;
2394
2395                                 if (pool->mpc->funcs->read_mpcc_state) {
2396                                         struct mpcc_state s = {0};
2397
2398                                         pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
2399
2400                                         if (s.dpp_id < MAX_MPCC)
2401                                                 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id =
2402                                                                 s.dpp_id;
2403
2404                                         if (s.bot_mpcc_id < MAX_MPCC)
2405                                                 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
2406                                                                 &pool->mpc->mpcc_array[s.bot_mpcc_id];
2407
2408                                         if (s.opp_id < MAX_OPP)
2409                                                 pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
2410                                 }
2411                         }
2412                         pipe_ctx->pipe_idx = id_src[i];
2413
2414                         if (id_src[i] >= pool->timing_generator_count) {
2415                                 id_src[i] = pool->timing_generator_count - 1;
2416
2417                                 pipe_ctx->stream_res.tg = pool->timing_generators[id_src[i]];
2418                                 pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
2419                         }
2420
2421                         pipe_ctx->stream = stream;
2422                 }
2423
2424                 if (numPipes == 2) {
2425                         stream->apply_boot_odm_mode = dm_odm_combine_policy_2to1;
2426                         res_ctx->pipe_ctx[id_src[0]].next_odm_pipe = &res_ctx->pipe_ctx[id_src[1]];
2427                         res_ctx->pipe_ctx[id_src[0]].prev_odm_pipe = NULL;
2428                         res_ctx->pipe_ctx[id_src[1]].next_odm_pipe = NULL;
2429                         res_ctx->pipe_ctx[id_src[1]].prev_odm_pipe = &res_ctx->pipe_ctx[id_src[0]];
2430                 } else
2431                         stream->apply_boot_odm_mode = dm_odm_combine_mode_disabled;
2432
2433                 return id_src[0];
2434         }
2435
2436         return -1;
2437 }
2438
2439 static void mark_seamless_boot_stream(
2440                 const struct dc  *dc,
2441                 struct dc_stream_state *stream)
2442 {
2443         struct dc_bios *dcb = dc->ctx->dc_bios;
2444
2445         if (dc->config.allow_seamless_boot_optimization &&
2446                         !dcb->funcs->is_accelerated_mode(dcb)) {
2447                 if (dc_validate_boot_timing(dc, stream->sink, &stream->timing))
2448                         stream->apply_seamless_boot_optimization = true;
2449         }
2450 }
2451
2452 enum dc_status resource_map_pool_resources(
2453                 const struct dc  *dc,
2454                 struct dc_state *context,
2455                 struct dc_stream_state *stream)
2456 {
2457         const struct resource_pool *pool = dc->res_pool;
2458         int i;
2459         struct dc_context *dc_ctx = dc->ctx;
2460         struct pipe_ctx *pipe_ctx = NULL;
2461         int pipe_idx = -1;
2462
2463         calculate_phy_pix_clks(stream);
2464
2465         mark_seamless_boot_stream(dc, stream);
2466
2467         if (stream->apply_seamless_boot_optimization) {
2468                 pipe_idx = acquire_resource_from_hw_enabled_state(
2469                                 &context->res_ctx,
2470                                 pool,
2471                                 stream);
2472                 if (pipe_idx < 0)
2473                         /* hw resource was assigned to other stream */
2474                         stream->apply_seamless_boot_optimization = false;
2475         }
2476
2477         if (pipe_idx < 0)
2478                 /* acquire new resources */
2479                 pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2480
2481         if (pipe_idx < 0)
2482                 pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2483
2484         if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2485                 return DC_NO_CONTROLLER_RESOURCE;
2486
2487         pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2488
2489         pipe_ctx->stream_res.stream_enc =
2490                 dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2491                         &context->res_ctx, pool, stream);
2492
2493         if (!pipe_ctx->stream_res.stream_enc)
2494                 return DC_NO_STREAM_ENC_RESOURCE;
2495
2496         update_stream_engine_usage(
2497                 &context->res_ctx, pool,
2498                 pipe_ctx->stream_res.stream_enc,
2499                 true);
2500
2501         /* Allocate DP HPO Stream Encoder based on signal, hw capabilities
2502          * and link settings
2503          */
2504         if (dc_is_dp_signal(stream->signal)) {
2505                 if (!decide_link_settings(stream, &pipe_ctx->link_config.dp_link_settings))
2506                         return DC_FAIL_DP_LINK_BANDWIDTH;
2507                 if (dp_get_link_encoding_format(&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
2508                         pipe_ctx->stream_res.hpo_dp_stream_enc =
2509                                         find_first_free_match_hpo_dp_stream_enc_for_link(
2510                                                         &context->res_ctx, pool, stream);
2511
2512                         if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
2513                                 return DC_NO_STREAM_ENC_RESOURCE;
2514
2515                         update_hpo_dp_stream_engine_usage(
2516                                         &context->res_ctx, pool,
2517                                         pipe_ctx->stream_res.hpo_dp_stream_enc,
2518                                         true);
2519                         if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, pool, pipe_ctx, stream))
2520                                 return DC_NO_LINK_ENC_RESOURCE;
2521                 }
2522         }
2523
2524         /* TODO: Add check if ASIC support and EDID audio */
2525         if (!stream->converter_disable_audio &&
2526             dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2527             stream->audio_info.mode_count && stream->audio_info.flags.all) {
2528                 pipe_ctx->stream_res.audio = find_first_free_audio(
2529                 &context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2530
2531                 /*
2532                  * Audio assigned in order first come first get.
2533                  * There are asics which has number of audio
2534                  * resources less then number of pipes
2535                  */
2536                 if (pipe_ctx->stream_res.audio)
2537                         update_audio_usage(&context->res_ctx, pool,
2538                                            pipe_ctx->stream_res.audio, true);
2539         }
2540
2541         /* Add ABM to the resource if on EDP */
2542         if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2543                 if (pool->abm)
2544                         pipe_ctx->stream_res.abm = pool->abm;
2545                 else
2546                         pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2547         }
2548
2549         for (i = 0; i < context->stream_count; i++)
2550                 if (context->streams[i] == stream) {
2551                         context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2552                         context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2553                         context->stream_status[i].audio_inst =
2554                                 pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2555
2556                         return DC_OK;
2557                 }
2558
2559         DC_ERROR("Stream %p not found in new ctx!\n", stream);
2560         return DC_ERROR_UNEXPECTED;
2561 }
2562
2563 /**
2564  * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2565  * Is a shallow copy.  Increments refcounts on existing streams and planes.
2566  * @dc: copy out of dc->current_state
2567  * @dst_ctx: copy into this
2568  */
2569 void dc_resource_state_copy_construct_current(
2570                 const struct dc *dc,
2571                 struct dc_state *dst_ctx)
2572 {
2573         dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2574 }
2575
2576
2577 void dc_resource_state_construct(
2578                 const struct dc *dc,
2579                 struct dc_state *dst_ctx)
2580 {
2581         dst_ctx->clk_mgr = dc->clk_mgr;
2582
2583         /* Initialise DIG link encoder resource tracking variables. */
2584         link_enc_cfg_init(dc, dst_ctx);
2585 }
2586
2587
2588 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2589 {
2590         if (dc->res_pool == NULL)
2591                 return false;
2592
2593         return dc->res_pool->res_cap->num_dsc > 0;
2594 }
2595
2596
2597 /**
2598  * dc_validate_global_state() - Determine if HW can support a given state
2599  * Checks HW resource availability and bandwidth requirement.
2600  * @dc: dc struct for this driver
2601  * @new_ctx: state to be validated
2602  * @fast_validate: set to true if only yes/no to support matters
2603  *
2604  * Return: DC_OK if the result can be programmed.  Otherwise, an error code.
2605  */
2606 enum dc_status dc_validate_global_state(
2607                 struct dc *dc,
2608                 struct dc_state *new_ctx,
2609                 bool fast_validate)
2610 {
2611         enum dc_status result = DC_ERROR_UNEXPECTED;
2612         int i, j;
2613
2614         if (!new_ctx)
2615                 return DC_ERROR_UNEXPECTED;
2616
2617         if (dc->res_pool->funcs->validate_global) {
2618                 result = dc->res_pool->funcs->validate_global(dc, new_ctx);
2619                 if (result != DC_OK)
2620                         return result;
2621         }
2622
2623         for (i = 0; i < new_ctx->stream_count; i++) {
2624                 struct dc_stream_state *stream = new_ctx->streams[i];
2625
2626                 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2627                         struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
2628
2629                         if (pipe_ctx->stream != stream)
2630                                 continue;
2631
2632                         if (dc->res_pool->funcs->patch_unknown_plane_state &&
2633                                         pipe_ctx->plane_state &&
2634                                         pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
2635                                 result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
2636                                 if (result != DC_OK)
2637                                         return result;
2638                         }
2639
2640                         /* Switch to dp clock source only if there is
2641                          * no non dp stream that shares the same timing
2642                          * with the dp stream.
2643                          */
2644                         if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
2645                                 !find_pll_sharable_stream(stream, new_ctx)) {
2646
2647                                 resource_unreference_clock_source(
2648                                                 &new_ctx->res_ctx,
2649                                                 dc->res_pool,
2650                                                 pipe_ctx->clock_source);
2651
2652                                 pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
2653                                 resource_reference_clock_source(
2654                                                 &new_ctx->res_ctx,
2655                                                 dc->res_pool,
2656                                                  pipe_ctx->clock_source);
2657                         }
2658                 }
2659         }
2660
2661         result = resource_build_scaling_params_for_context(dc, new_ctx);
2662
2663         if (result == DC_OK)
2664                 if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
2665                         result = DC_FAIL_BANDWIDTH_VALIDATE;
2666
2667         /*
2668          * Only update link encoder to stream assignment after bandwidth validation passed.
2669          * TODO: Split out assignment and validation.
2670          */
2671         if (result == DC_OK && dc->res_pool->funcs->link_encs_assign && fast_validate == false)
2672                 dc->res_pool->funcs->link_encs_assign(
2673                         dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
2674
2675         return result;
2676 }
2677
2678 static void patch_gamut_packet_checksum(
2679                 struct dc_info_packet *gamut_packet)
2680 {
2681         /* For gamut we recalc checksum */
2682         if (gamut_packet->valid) {
2683                 uint8_t chk_sum = 0;
2684                 uint8_t *ptr;
2685                 uint8_t i;
2686
2687                 /*start of the Gamut data. */
2688                 ptr = &gamut_packet->sb[3];
2689
2690                 for (i = 0; i <= gamut_packet->sb[1]; i++)
2691                         chk_sum += ptr[i];
2692
2693                 gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
2694         }
2695 }
2696
2697 static void set_avi_info_frame(
2698                 struct dc_info_packet *info_packet,
2699                 struct pipe_ctx *pipe_ctx)
2700 {
2701         struct dc_stream_state *stream = pipe_ctx->stream;
2702         enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
2703         uint32_t pixel_encoding = 0;
2704         enum scanning_type scan_type = SCANNING_TYPE_NODATA;
2705         enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
2706         bool itc = false;
2707         uint8_t itc_value = 0;
2708         uint8_t cn0_cn1 = 0;
2709         unsigned int cn0_cn1_value = 0;
2710         uint8_t *check_sum = NULL;
2711         uint8_t byte_index = 0;
2712         union hdmi_info_packet hdmi_info;
2713         union display_content_support support = {0};
2714         unsigned int vic = pipe_ctx->stream->timing.vic;
2715         unsigned int rid = pipe_ctx->stream->timing.rid;
2716         unsigned int fr_ind = pipe_ctx->stream->timing.fr_index;
2717         enum dc_timing_3d_format format;
2718
2719         memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
2720
2721         color_space = pipe_ctx->stream->output_color_space;
2722         if (color_space == COLOR_SPACE_UNKNOWN)
2723                 color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
2724                         COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
2725
2726         /* Initialize header */
2727         hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
2728         /* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
2729         * not be used in HDMI 2.0 (Section 10.1) */
2730         hdmi_info.bits.header.version = 2;
2731         hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
2732
2733         /*
2734          * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
2735          * according to HDMI 2.0 spec (Section 10.1)
2736          */
2737
2738         switch (stream->timing.pixel_encoding) {
2739         case PIXEL_ENCODING_YCBCR422:
2740                 pixel_encoding = 1;
2741                 break;
2742
2743         case PIXEL_ENCODING_YCBCR444:
2744                 pixel_encoding = 2;
2745                 break;
2746         case PIXEL_ENCODING_YCBCR420:
2747                 pixel_encoding = 3;
2748                 break;
2749
2750         case PIXEL_ENCODING_RGB:
2751         default:
2752                 pixel_encoding = 0;
2753         }
2754
2755         /* Y0_Y1_Y2 : The pixel encoding */
2756         /* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
2757         hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
2758
2759         /* A0 = 1 Active Format Information valid */
2760         hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
2761
2762         /* B0, B1 = 3; Bar info data is valid */
2763         hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
2764
2765         hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
2766
2767         /* S0, S1 : Underscan / Overscan */
2768         /* TODO: un-hardcode scan type */
2769         scan_type = SCANNING_TYPE_UNDERSCAN;
2770         hdmi_info.bits.S0_S1 = scan_type;
2771
2772         /* C0, C1 : Colorimetry */
2773         if (color_space == COLOR_SPACE_YCBCR709 ||
2774                         color_space == COLOR_SPACE_YCBCR709_LIMITED)
2775                 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
2776         else if (color_space == COLOR_SPACE_YCBCR601 ||
2777                         color_space == COLOR_SPACE_YCBCR601_LIMITED)
2778                 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
2779         else {
2780                 hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
2781         }
2782         if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
2783                         color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
2784                         color_space == COLOR_SPACE_2020_YCBCR) {
2785                 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
2786                 hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2787         } else if (color_space == COLOR_SPACE_ADOBERGB) {
2788                 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
2789                 hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2790         }
2791
2792         /* TODO: un-hardcode aspect ratio */
2793         aspect = stream->timing.aspect_ratio;
2794
2795         switch (aspect) {
2796         case ASPECT_RATIO_4_3:
2797         case ASPECT_RATIO_16_9:
2798                 hdmi_info.bits.M0_M1 = aspect;
2799                 break;
2800
2801         case ASPECT_RATIO_NO_DATA:
2802         case ASPECT_RATIO_64_27:
2803         case ASPECT_RATIO_256_135:
2804         default:
2805                 hdmi_info.bits.M0_M1 = 0;
2806         }
2807
2808         /* Active Format Aspect ratio - same as Picture Aspect Ratio. */
2809         hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
2810
2811         /* TODO: un-hardcode cn0_cn1 and itc */
2812
2813         cn0_cn1 = 0;
2814         cn0_cn1_value = 0;
2815
2816         itc = true;
2817         itc_value = 1;
2818
2819         support = stream->content_support;
2820
2821         if (itc) {
2822                 if (!support.bits.valid_content_type) {
2823                         cn0_cn1_value = 0;
2824                 } else {
2825                         if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
2826                                 if (support.bits.graphics_content == 1) {
2827                                         cn0_cn1_value = 0;
2828                                 }
2829                         } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
2830                                 if (support.bits.photo_content == 1) {
2831                                         cn0_cn1_value = 1;
2832                                 } else {
2833                                         cn0_cn1_value = 0;
2834                                         itc_value = 0;
2835                                 }
2836                         } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
2837                                 if (support.bits.cinema_content == 1) {
2838                                         cn0_cn1_value = 2;
2839                                 } else {
2840                                         cn0_cn1_value = 0;
2841                                         itc_value = 0;
2842                                 }
2843                         } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
2844                                 if (support.bits.game_content == 1) {
2845                                         cn0_cn1_value = 3;
2846                                 } else {
2847                                         cn0_cn1_value = 0;
2848                                         itc_value = 0;
2849                                 }
2850                         }
2851                 }
2852                 hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
2853                 hdmi_info.bits.ITC = itc_value;
2854         }
2855
2856         if (stream->qs_bit == 1) {
2857                 if (color_space == COLOR_SPACE_SRGB ||
2858                         color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2859                         hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_FULL_RANGE;
2860                 else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2861                                         color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2862                         hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_LIMITED_RANGE;
2863                 else
2864                         hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2865         } else
2866                 hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2867
2868         /* TODO : We should handle YCC quantization */
2869         /* but we do not have matrix calculation */
2870         hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2871
2872         ///VIC
2873         if (pipe_ctx->stream->timing.hdmi_vic != 0)
2874                 vic = 0;
2875         format = stream->timing.timing_3d_format;
2876         /*todo, add 3DStereo support*/
2877         if (format != TIMING_3D_FORMAT_NONE) {
2878                 // Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
2879                 switch (pipe_ctx->stream->timing.hdmi_vic) {
2880                 case 1:
2881                         vic = 95;
2882                         break;
2883                 case 2:
2884                         vic = 94;
2885                         break;
2886                 case 3:
2887                         vic = 93;
2888                         break;
2889                 case 4:
2890                         vic = 98;
2891                         break;
2892                 default:
2893                         break;
2894                 }
2895         }
2896         /* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
2897         hdmi_info.bits.VIC0_VIC7 = vic;
2898         if (vic >= 128)
2899                 hdmi_info.bits.header.version = 3;
2900         /* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
2901          * the Source shall use 20 AVI InfoFrame Version 4
2902          */
2903         if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
2904                         hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
2905                 hdmi_info.bits.header.version = 4;
2906                 hdmi_info.bits.header.length = 14;
2907         }
2908
2909         if (rid != 0 && fr_ind != 0) {
2910                 hdmi_info.bits.header.version = 5;
2911                 hdmi_info.bits.header.length = 15;
2912
2913                 hdmi_info.bits.FR0_FR3 = fr_ind & 0xF;
2914                 hdmi_info.bits.FR4 = (fr_ind >> 4) & 0x1;
2915                 hdmi_info.bits.RID0_RID5 = rid;
2916         }
2917
2918         /* pixel repetition
2919          * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
2920          * repetition start from 1 */
2921         hdmi_info.bits.PR0_PR3 = 0;
2922
2923         /* Bar Info
2924          * barTop:    Line Number of End of Top Bar.
2925          * barBottom: Line Number of Start of Bottom Bar.
2926          * barLeft:   Pixel Number of End of Left Bar.
2927          * barRight:  Pixel Number of Start of Right Bar. */
2928         hdmi_info.bits.bar_top = stream->timing.v_border_top;
2929         hdmi_info.bits.bar_bottom = (stream->timing.v_total
2930                         - stream->timing.v_border_bottom + 1);
2931         hdmi_info.bits.bar_left  = stream->timing.h_border_left;
2932         hdmi_info.bits.bar_right = (stream->timing.h_total
2933                         - stream->timing.h_border_right + 1);
2934
2935     /* Additional Colorimetry Extension
2936      * Used in conduction with C0-C1 and EC0-EC2
2937      * 0 = DCI-P3 RGB (D65)
2938      * 1 = DCI-P3 RGB (theater)
2939      */
2940         hdmi_info.bits.ACE0_ACE3 = 0;
2941
2942         /* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
2943         check_sum = &hdmi_info.packet_raw_data.sb[0];
2944
2945         *check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
2946
2947         for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
2948                 *check_sum += hdmi_info.packet_raw_data.sb[byte_index];
2949
2950         /* one byte complement */
2951         *check_sum = (uint8_t) (0x100 - *check_sum);
2952
2953         /* Store in hw_path_mode */
2954         info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
2955         info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
2956         info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
2957
2958         for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
2959                 info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
2960
2961         info_packet->valid = true;
2962 }
2963
2964 static void set_vendor_info_packet(
2965                 struct dc_info_packet *info_packet,
2966                 struct dc_stream_state *stream)
2967 {
2968         /* SPD info packet for FreeSync */
2969
2970         /* Check if Freesync is supported. Return if false. If true,
2971          * set the corresponding bit in the info packet
2972          */
2973         if (!stream->vsp_infopacket.valid)
2974                 return;
2975
2976         *info_packet = stream->vsp_infopacket;
2977 }
2978
2979 static void set_spd_info_packet(
2980                 struct dc_info_packet *info_packet,
2981                 struct dc_stream_state *stream)
2982 {
2983         /* SPD info packet for FreeSync */
2984
2985         /* Check if Freesync is supported. Return if false. If true,
2986          * set the corresponding bit in the info packet
2987          */
2988         if (!stream->vrr_infopacket.valid)
2989                 return;
2990
2991         *info_packet = stream->vrr_infopacket;
2992 }
2993
2994 static void set_hdr_static_info_packet(
2995                 struct dc_info_packet *info_packet,
2996                 struct dc_stream_state *stream)
2997 {
2998         /* HDR Static Metadata info packet for HDR10 */
2999
3000         if (!stream->hdr_static_metadata.valid ||
3001                         stream->use_dynamic_meta)
3002                 return;
3003
3004         *info_packet = stream->hdr_static_metadata;
3005 }
3006
3007 static void set_vsc_info_packet(
3008                 struct dc_info_packet *info_packet,
3009                 struct dc_stream_state *stream)
3010 {
3011         if (!stream->vsc_infopacket.valid)
3012                 return;
3013
3014         *info_packet = stream->vsc_infopacket;
3015 }
3016 static void set_hfvs_info_packet(
3017                 struct dc_info_packet *info_packet,
3018                 struct dc_stream_state *stream)
3019 {
3020         if (!stream->hfvsif_infopacket.valid)
3021                 return;
3022
3023         *info_packet = stream->hfvsif_infopacket;
3024 }
3025
3026
3027 static void set_vtem_info_packet(
3028                 struct dc_info_packet *info_packet,
3029                 struct dc_stream_state *stream)
3030 {
3031         if (!stream->vtem_infopacket.valid)
3032                 return;
3033
3034         *info_packet = stream->vtem_infopacket;
3035 }
3036
3037 void dc_resource_state_destruct(struct dc_state *context)
3038 {
3039         int i, j;
3040
3041         for (i = 0; i < context->stream_count; i++) {
3042                 for (j = 0; j < context->stream_status[i].plane_count; j++)
3043                         dc_plane_state_release(
3044                                 context->stream_status[i].plane_states[j]);
3045
3046                 context->stream_status[i].plane_count = 0;
3047                 dc_stream_release(context->streams[i]);
3048                 context->streams[i] = NULL;
3049         }
3050         context->stream_count = 0;
3051 }
3052
3053 void dc_resource_state_copy_construct(
3054                 const struct dc_state *src_ctx,
3055                 struct dc_state *dst_ctx)
3056 {
3057         int i, j;
3058         struct kref refcount = dst_ctx->refcount;
3059
3060         *dst_ctx = *src_ctx;
3061
3062         for (i = 0; i < MAX_PIPES; i++) {
3063                 struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
3064
3065                 if (cur_pipe->top_pipe)
3066                         cur_pipe->top_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
3067
3068                 if (cur_pipe->bottom_pipe)
3069                         cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
3070
3071                 if (cur_pipe->next_odm_pipe)
3072                         cur_pipe->next_odm_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
3073
3074                 if (cur_pipe->prev_odm_pipe)
3075                         cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
3076         }
3077
3078         for (i = 0; i < dst_ctx->stream_count; i++) {
3079                 dc_stream_retain(dst_ctx->streams[i]);
3080                 for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
3081                         dc_plane_state_retain(
3082                                 dst_ctx->stream_status[i].plane_states[j]);
3083         }
3084
3085         /* context refcount should not be overridden */
3086         dst_ctx->refcount = refcount;
3087
3088 }
3089
3090 struct clock_source *dc_resource_find_first_free_pll(
3091                 struct resource_context *res_ctx,
3092                 const struct resource_pool *pool)
3093 {
3094         int i;
3095
3096         for (i = 0; i < pool->clk_src_count; ++i) {
3097                 if (res_ctx->clock_source_ref_count[i] == 0)
3098                         return pool->clock_sources[i];
3099         }
3100
3101         return NULL;
3102 }
3103
3104 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
3105 {
3106         enum signal_type signal = SIGNAL_TYPE_NONE;
3107         struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
3108
3109         /* default all packets to invalid */
3110         info->avi.valid = false;
3111         info->gamut.valid = false;
3112         info->vendor.valid = false;
3113         info->spd.valid = false;
3114         info->hdrsmd.valid = false;
3115         info->vsc.valid = false;
3116         info->hfvsif.valid = false;
3117         info->vtem.valid = false;
3118         signal = pipe_ctx->stream->signal;
3119
3120         /* HDMi and DP have different info packets*/
3121         if (dc_is_hdmi_signal(signal)) {
3122                 set_avi_info_frame(&info->avi, pipe_ctx);
3123
3124                 set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
3125                 set_hfvs_info_packet(&info->hfvsif, pipe_ctx->stream);
3126                 set_vtem_info_packet(&info->vtem, pipe_ctx->stream);
3127
3128                 set_spd_info_packet(&info->spd, pipe_ctx->stream);
3129
3130                 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
3131
3132         } else if (dc_is_dp_signal(signal)) {
3133                 set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
3134
3135                 set_spd_info_packet(&info->spd, pipe_ctx->stream);
3136
3137                 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
3138         }
3139
3140         patch_gamut_packet_checksum(&info->gamut);
3141 }
3142
3143 enum dc_status resource_map_clock_resources(
3144                 const struct dc  *dc,
3145                 struct dc_state *context,
3146                 struct dc_stream_state *stream)
3147 {
3148         /* acquire new resources */
3149         const struct resource_pool *pool = dc->res_pool;
3150         struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
3151                                 &context->res_ctx, stream);
3152
3153         if (!pipe_ctx)
3154                 return DC_ERROR_UNEXPECTED;
3155
3156         if (dc_is_dp_signal(pipe_ctx->stream->signal)
3157                 || pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
3158                 pipe_ctx->clock_source = pool->dp_clock_source;
3159         else {
3160                 pipe_ctx->clock_source = NULL;
3161
3162                 if (!dc->config.disable_disp_pll_sharing)
3163                         pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
3164                                 &context->res_ctx,
3165                                 pipe_ctx);
3166
3167                 if (pipe_ctx->clock_source == NULL)
3168                         pipe_ctx->clock_source =
3169                                 dc_resource_find_first_free_pll(
3170                                         &context->res_ctx,
3171                                         pool);
3172         }
3173
3174         if (pipe_ctx->clock_source == NULL)
3175                 return DC_NO_CLOCK_SOURCE_RESOURCE;
3176
3177         resource_reference_clock_source(
3178                 &context->res_ctx, pool,
3179                 pipe_ctx->clock_source);
3180
3181         return DC_OK;
3182 }
3183
3184 /*
3185  * Note: We need to disable output if clock sources change,
3186  * since bios does optimization and doesn't apply if changing
3187  * PHY when not already disabled.
3188  */
3189 bool pipe_need_reprogram(
3190                 struct pipe_ctx *pipe_ctx_old,
3191                 struct pipe_ctx *pipe_ctx)
3192 {
3193         if (!pipe_ctx_old->stream)
3194                 return false;
3195
3196         if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
3197                 return true;
3198
3199         if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
3200                 return true;
3201
3202         if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
3203                 return true;
3204
3205         if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
3206                         && pipe_ctx_old->stream != pipe_ctx->stream)
3207                 return true;
3208
3209         if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
3210                 return true;
3211
3212         if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
3213                 return true;
3214
3215         if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
3216                 return true;
3217
3218         if (false == pipe_ctx_old->stream->link->link_state_valid &&
3219                 false == pipe_ctx_old->stream->dpms_off)
3220                 return true;
3221
3222         if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
3223                 return true;
3224
3225         if (pipe_ctx_old->stream_res.hpo_dp_stream_enc != pipe_ctx->stream_res.hpo_dp_stream_enc)
3226                 return true;
3227         if (pipe_ctx_old->link_res.hpo_dp_link_enc != pipe_ctx->link_res.hpo_dp_link_enc)
3228                 return true;
3229
3230         /* DIG link encoder resource assignment for stream changed. */
3231         if (pipe_ctx_old->stream->ctx->dc->res_pool->funcs->link_encs_assign) {
3232                 bool need_reprogram = false;
3233                 struct dc *dc = pipe_ctx_old->stream->ctx->dc;
3234                 struct link_encoder *link_enc_prev =
3235                         link_enc_cfg_get_link_enc_used_by_stream_current(dc, pipe_ctx_old->stream);
3236
3237                 if (link_enc_prev != pipe_ctx->stream->link_enc)
3238                         need_reprogram = true;
3239
3240                 return need_reprogram;
3241         }
3242
3243         return false;
3244 }
3245
3246 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
3247                 struct bit_depth_reduction_params *fmt_bit_depth)
3248 {
3249         enum dc_dither_option option = stream->dither_option;
3250         enum dc_pixel_encoding pixel_encoding =
3251                         stream->timing.pixel_encoding;
3252
3253         memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
3254
3255         if (option == DITHER_OPTION_DEFAULT) {
3256                 switch (stream->timing.display_color_depth) {
3257                 case COLOR_DEPTH_666:
3258                         option = DITHER_OPTION_SPATIAL6;
3259                         break;
3260                 case COLOR_DEPTH_888:
3261                         option = DITHER_OPTION_SPATIAL8;
3262                         break;
3263                 case COLOR_DEPTH_101010:
3264                         option = DITHER_OPTION_SPATIAL10;
3265                         break;
3266                 default:
3267                         option = DITHER_OPTION_DISABLE;
3268                 }
3269         }
3270
3271         if (option == DITHER_OPTION_DISABLE)
3272                 return;
3273
3274         if (option == DITHER_OPTION_TRUN6) {
3275                 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3276                 fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
3277         } else if (option == DITHER_OPTION_TRUN8 ||
3278                         option == DITHER_OPTION_TRUN8_SPATIAL6 ||
3279                         option == DITHER_OPTION_TRUN8_FM6) {
3280                 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3281                 fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
3282         } else if (option == DITHER_OPTION_TRUN10        ||
3283                         option == DITHER_OPTION_TRUN10_SPATIAL6   ||
3284                         option == DITHER_OPTION_TRUN10_SPATIAL8   ||
3285                         option == DITHER_OPTION_TRUN10_FM8     ||
3286                         option == DITHER_OPTION_TRUN10_FM6     ||
3287                         option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3288                 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3289                 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
3290         }
3291
3292         /* special case - Formatter can only reduce by 4 bits at most.
3293          * When reducing from 12 to 6 bits,
3294          * HW recommends we use trunc with round mode
3295          * (if we did nothing, trunc to 10 bits would be used)
3296          * note that any 12->10 bit reduction is ignored prior to DCE8,
3297          * as the input was 10 bits.
3298          */
3299         if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
3300                         option == DITHER_OPTION_SPATIAL6 ||
3301                         option == DITHER_OPTION_FM6) {
3302                 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3303                 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
3304                 fmt_bit_depth->flags.TRUNCATE_MODE = 1;
3305         }
3306
3307         /* spatial dither
3308          * note that spatial modes 1-3 are never used
3309          */
3310         if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM            ||
3311                         option == DITHER_OPTION_SPATIAL6 ||
3312                         option == DITHER_OPTION_TRUN10_SPATIAL6      ||
3313                         option == DITHER_OPTION_TRUN8_SPATIAL6) {
3314                 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3315                 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
3316                 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3317                 fmt_bit_depth->flags.RGB_RANDOM =
3318                                 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3319         } else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM            ||
3320                         option == DITHER_OPTION_SPATIAL8 ||
3321                         option == DITHER_OPTION_SPATIAL8_FM6        ||
3322                         option == DITHER_OPTION_TRUN10_SPATIAL8      ||
3323                         option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3324                 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3325                 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
3326                 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3327                 fmt_bit_depth->flags.RGB_RANDOM =
3328                                 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3329         } else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
3330                         option == DITHER_OPTION_SPATIAL10 ||
3331                         option == DITHER_OPTION_SPATIAL10_FM8 ||
3332                         option == DITHER_OPTION_SPATIAL10_FM6) {
3333                 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3334                 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
3335                 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3336                 fmt_bit_depth->flags.RGB_RANDOM =
3337                                 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3338         }
3339
3340         if (option == DITHER_OPTION_SPATIAL6 ||
3341                         option == DITHER_OPTION_SPATIAL8 ||
3342                         option == DITHER_OPTION_SPATIAL10) {
3343                 fmt_bit_depth->flags.FRAME_RANDOM = 0;
3344         } else {
3345                 fmt_bit_depth->flags.FRAME_RANDOM = 1;
3346         }
3347
3348         //////////////////////
3349         //// temporal dither
3350         //////////////////////
3351         if (option == DITHER_OPTION_FM6           ||
3352                         option == DITHER_OPTION_SPATIAL8_FM6     ||
3353                         option == DITHER_OPTION_SPATIAL10_FM6     ||
3354                         option == DITHER_OPTION_TRUN10_FM6     ||
3355                         option == DITHER_OPTION_TRUN8_FM6      ||
3356                         option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3357                 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3358                 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
3359         } else if (option == DITHER_OPTION_FM8        ||
3360                         option == DITHER_OPTION_SPATIAL10_FM8  ||
3361                         option == DITHER_OPTION_TRUN10_FM8) {
3362                 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3363                 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
3364         } else if (option == DITHER_OPTION_FM10) {
3365                 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3366                 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
3367         }
3368
3369         fmt_bit_depth->pixel_encoding = pixel_encoding;
3370 }
3371
3372 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
3373 {
3374         struct dc_link *link = stream->link;
3375         struct timing_generator *tg = dc->res_pool->timing_generators[0];
3376         enum dc_status res = DC_OK;
3377
3378         calculate_phy_pix_clks(stream);
3379
3380         if (!tg->funcs->validate_timing(tg, &stream->timing))
3381                 res = DC_FAIL_CONTROLLER_VALIDATE;
3382
3383         if (res == DC_OK) {
3384                 if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
3385                                 !link->link_enc->funcs->validate_output_with_stream(
3386                                                 link->link_enc, stream))
3387                         res = DC_FAIL_ENC_VALIDATE;
3388         }
3389
3390         /* TODO: validate audio ASIC caps, encoder */
3391
3392         if (res == DC_OK)
3393                 res = dc_link_validate_mode_timing(stream,
3394                       link,
3395                       &stream->timing);
3396
3397         return res;
3398 }
3399
3400 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
3401 {
3402         enum dc_status res = DC_OK;
3403
3404         /* check if surface has invalid dimensions */
3405         if (plane_state->src_rect.width == 0 || plane_state->src_rect.height == 0 ||
3406                 plane_state->dst_rect.width == 0 || plane_state->dst_rect.height == 0)
3407                 return DC_FAIL_SURFACE_VALIDATE;
3408
3409         /* TODO For now validates pixel format only */
3410         if (dc->res_pool->funcs->validate_plane)
3411                 return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
3412
3413         return res;
3414 }
3415
3416 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
3417 {
3418         switch (format) {
3419         case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
3420                 return 8;
3421         case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
3422         case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
3423                 return 12;
3424         case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
3425         case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
3426         case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
3427         case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
3428                 return 16;
3429         case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
3430         case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
3431         case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
3432         case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
3433         case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
3434         case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
3435         case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
3436                 return 32;
3437         case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
3438         case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
3439         case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
3440         case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
3441                 return 64;
3442         default:
3443                 ASSERT_CRITICAL(false);
3444                 return -1;
3445         }
3446 }
3447 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
3448 {
3449         if (modes) {
3450                 if (modes->sample_rates.rate.RATE_192)
3451                         return 192000;
3452                 if (modes->sample_rates.rate.RATE_176_4)
3453                         return 176400;
3454                 if (modes->sample_rates.rate.RATE_96)
3455                         return 96000;
3456                 if (modes->sample_rates.rate.RATE_88_2)
3457                         return 88200;
3458                 if (modes->sample_rates.rate.RATE_48)
3459                         return 48000;
3460                 if (modes->sample_rates.rate.RATE_44_1)
3461                         return 44100;
3462                 if (modes->sample_rates.rate.RATE_32)
3463                         return 32000;
3464         }
3465         /*original logic when no audio info*/
3466         return 441000;
3467 }
3468
3469 void get_audio_check(struct audio_info *aud_modes,
3470         struct audio_check *audio_chk)
3471 {
3472         unsigned int i;
3473         unsigned int max_sample_rate = 0;
3474
3475         if (aud_modes) {
3476                 audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
3477
3478                 audio_chk->max_audiosample_rate = 0;
3479                 for (i = 0; i < aud_modes->mode_count; i++) {
3480                         max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
3481                         if (audio_chk->max_audiosample_rate < max_sample_rate)
3482                                 audio_chk->max_audiosample_rate = max_sample_rate;
3483                         /*dts takes the same as type 2: AP = 0.25*/
3484                 }
3485                 /*check which one take more bandwidth*/
3486                 if (audio_chk->max_audiosample_rate > 192000)
3487                         audio_chk->audio_packet_type = 0x9;/*AP =1*/
3488                 audio_chk->acat = 0;/*not support*/
3489         }
3490 }
3491
3492 static struct hpo_dp_link_encoder *get_temp_hpo_dp_link_enc(
3493                 const struct resource_context *res_ctx,
3494                 const struct resource_pool *const pool,
3495                 const struct dc_link *link)
3496 {
3497         struct hpo_dp_link_encoder *hpo_dp_link_enc = NULL;
3498         int enc_index;
3499
3500         enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, link);
3501
3502         if (enc_index < 0)
3503                 enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
3504
3505         if (enc_index >= 0)
3506                 hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
3507
3508         return hpo_dp_link_enc;
3509 }
3510
3511 bool get_temp_dp_link_res(struct dc_link *link,
3512                 struct link_resource *link_res,
3513                 struct dc_link_settings *link_settings)
3514 {
3515         const struct dc *dc  = link->dc;
3516         const struct resource_context *res_ctx = &dc->current_state->res_ctx;
3517
3518         memset(link_res, 0, sizeof(*link_res));
3519
3520         if (dp_get_link_encoding_format(link_settings) == DP_128b_132b_ENCODING) {
3521                 link_res->hpo_dp_link_enc = get_temp_hpo_dp_link_enc(res_ctx,
3522                                 dc->res_pool, link);
3523                 if (!link_res->hpo_dp_link_enc)
3524                         return false;
3525         }
3526         return true;
3527 }
3528
3529 void reset_syncd_pipes_from_disabled_pipes(struct dc *dc,
3530                 struct dc_state *context)
3531 {
3532         int i, j;
3533         struct pipe_ctx *pipe_ctx_old, *pipe_ctx, *pipe_ctx_syncd;
3534
3535         /* If pipe backend is reset, need to reset pipe syncd status */
3536         for (i = 0; i < dc->res_pool->pipe_count; i++) {
3537                 pipe_ctx_old =  &dc->current_state->res_ctx.pipe_ctx[i];
3538                 pipe_ctx = &context->res_ctx.pipe_ctx[i];
3539
3540                 if (!pipe_ctx_old->stream)
3541                         continue;
3542
3543                 if (pipe_ctx_old->top_pipe || pipe_ctx_old->prev_odm_pipe)
3544                         continue;
3545
3546                 if (!pipe_ctx->stream ||
3547                                 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
3548
3549                         /* Reset all the syncd pipes from the disabled pipe */
3550                         for (j = 0; j < dc->res_pool->pipe_count; j++) {
3551                                 pipe_ctx_syncd = &context->res_ctx.pipe_ctx[j];
3552                                 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_syncd) == pipe_ctx_old->pipe_idx) ||
3553                                         !IS_PIPE_SYNCD_VALID(pipe_ctx_syncd))
3554                                         SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_syncd, j);
3555                         }
3556                 }
3557         }
3558 }
3559
3560 void check_syncd_pipes_for_disabled_master_pipe(struct dc *dc,
3561         struct dc_state *context,
3562         uint8_t disabled_master_pipe_idx)
3563 {
3564         int i;
3565         struct pipe_ctx *pipe_ctx, *pipe_ctx_check;
3566
3567         pipe_ctx = &context->res_ctx.pipe_ctx[disabled_master_pipe_idx];
3568         if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx) != disabled_master_pipe_idx) ||
3569                 !IS_PIPE_SYNCD_VALID(pipe_ctx))
3570                 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx, disabled_master_pipe_idx);
3571
3572         /* for the pipe disabled, check if any slave pipe exists and assert */
3573         for (i = 0; i < dc->res_pool->pipe_count; i++) {
3574                 pipe_ctx_check = &context->res_ctx.pipe_ctx[i];
3575
3576                 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_check) == disabled_master_pipe_idx) &&
3577                         IS_PIPE_SYNCD_VALID(pipe_ctx_check) && (i != disabled_master_pipe_idx))
3578                         DC_ERR("DC: Failure: pipe_idx[%d] syncd with disabled master pipe_idx[%d]\n",
3579                                 i, disabled_master_pipe_idx);
3580         }
3581 }
3582
3583 void reset_sync_context_for_pipe(const struct dc *dc,
3584         struct dc_state *context,
3585         uint8_t pipe_idx)
3586 {
3587         int i;
3588         struct pipe_ctx *pipe_ctx_reset;
3589
3590         /* reset the otg sync context for the pipe and its slave pipes if any */
3591         for (i = 0; i < dc->res_pool->pipe_count; i++) {
3592                 pipe_ctx_reset = &context->res_ctx.pipe_ctx[i];
3593
3594                 if (((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_reset) == pipe_idx) &&
3595                         IS_PIPE_SYNCD_VALID(pipe_ctx_reset)) || (i == pipe_idx))
3596                         SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_reset, i);
3597         }
3598 }
3599
3600 uint8_t resource_transmitter_to_phy_idx(const struct dc *dc, enum transmitter transmitter)
3601 {
3602         /* TODO - get transmitter to phy idx mapping from DMUB */
3603         uint8_t phy_idx = transmitter - TRANSMITTER_UNIPHY_A;
3604
3605         if (dc->ctx->dce_version == DCN_VERSION_3_1 &&
3606                         dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0) {
3607                 switch (transmitter) {
3608                 case TRANSMITTER_UNIPHY_A:
3609                         phy_idx = 0;
3610                         break;
3611                 case TRANSMITTER_UNIPHY_B:
3612                         phy_idx = 1;
3613                         break;
3614                 case TRANSMITTER_UNIPHY_C:
3615                         phy_idx = 5;
3616                         break;
3617                 case TRANSMITTER_UNIPHY_D:
3618                         phy_idx = 6;
3619                         break;
3620                 case TRANSMITTER_UNIPHY_E:
3621                         phy_idx = 4;
3622                         break;
3623                 default:
3624                         phy_idx = 0;
3625                         break;
3626                 }
3627         }
3628
3629         return phy_idx;
3630 }
3631
3632 const struct link_hwss *get_link_hwss(const struct dc_link *link,
3633                 const struct link_resource *link_res)
3634 {
3635         /* Link_hwss is only accessible by getter function instead of accessing
3636          * by pointers in dc with the intent to protect against breaking polymorphism.
3637          */
3638         if (can_use_hpo_dp_link_hwss(link, link_res))
3639                 /* TODO: some assumes that if decided link settings is 128b/132b
3640                  * channel coding format hpo_dp_link_enc should be used.
3641                  * Others believe that if hpo_dp_link_enc is available in link
3642                  * resource then hpo_dp_link_enc must be used. This bound between
3643                  * hpo_dp_link_enc != NULL and decided link settings is loosely coupled
3644                  * with a premise that both hpo_dp_link_enc pointer and decided link
3645                  * settings are determined based on single policy function like
3646                  * "decide_link_settings" from upper layer. This "convention"
3647                  * cannot be maintained and enforced at current level.
3648                  * Therefore a refactor is due so we can enforce a strong bound
3649                  * between those two parameters at this level.
3650                  *
3651                  * To put it simple, we want to make enforcement at low level so that
3652                  * we will not return link hwss if caller plans to do 8b/10b
3653                  * with an hpo encoder. Or we can return a very dummy one that doesn't
3654                  * do work for all functions
3655                  */
3656                 return get_hpo_dp_link_hwss();
3657         else if (can_use_dpia_link_hwss(link, link_res))
3658                 return get_dpia_link_hwss();
3659         else if (can_use_dio_link_hwss(link, link_res))
3660                 return get_dio_link_hwss();
3661         else
3662                 return get_virtual_link_hwss();
3663 }
3664
3665 bool is_h_timing_divisible_by_2(struct dc_stream_state *stream)
3666 {
3667         bool divisible = false;
3668         uint16_t h_blank_start = 0;
3669         uint16_t h_blank_end = 0;
3670
3671         if (stream) {
3672                 h_blank_start = stream->timing.h_total - stream->timing.h_front_porch;
3673                 h_blank_end = h_blank_start - stream->timing.h_addressable;
3674
3675                 /* HTOTAL, Hblank start/end, and Hsync start/end all must be
3676                  * divisible by 2 in order for the horizontal timing params
3677                  * to be considered divisible by 2. Hsync start is always 0.
3678                  */
3679                 divisible = (stream->timing.h_total % 2 == 0) &&
3680                                 (h_blank_start % 2 == 0) &&
3681                                 (h_blank_end % 2 == 0) &&
3682                                 (stream->timing.h_sync_width % 2 == 0);
3683         }
3684         return divisible;
3685 }
3686
3687 bool dc_resource_acquire_secondary_pipe_for_mpc_odm(
3688                 const struct dc *dc,
3689                 struct dc_state *state,
3690                 struct pipe_ctx *pri_pipe,
3691                 struct pipe_ctx *sec_pipe,
3692                 bool odm)
3693 {
3694         int pipe_idx = sec_pipe->pipe_idx;
3695         struct pipe_ctx *sec_top, *sec_bottom, *sec_next, *sec_prev;
3696         const struct resource_pool *pool = dc->res_pool;
3697
3698         sec_top = sec_pipe->top_pipe;
3699         sec_bottom = sec_pipe->bottom_pipe;
3700         sec_next = sec_pipe->next_odm_pipe;
3701         sec_prev = sec_pipe->prev_odm_pipe;
3702
3703         *sec_pipe = *pri_pipe;
3704
3705         sec_pipe->top_pipe = sec_top;
3706         sec_pipe->bottom_pipe = sec_bottom;
3707         sec_pipe->next_odm_pipe = sec_next;
3708         sec_pipe->prev_odm_pipe = sec_prev;
3709
3710         sec_pipe->pipe_idx = pipe_idx;
3711         sec_pipe->plane_res.mi = pool->mis[pipe_idx];
3712         sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
3713         sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
3714         sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
3715         sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
3716         sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
3717         sec_pipe->stream_res.dsc = NULL;
3718         if (odm) {
3719                 if (!sec_pipe->top_pipe)
3720                         sec_pipe->stream_res.opp = pool->opps[pipe_idx];
3721                 else
3722                         sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
3723                 if (sec_pipe->stream->timing.flags.DSC == 1) {
3724 #if defined(CONFIG_DRM_AMD_DC_DCN)
3725                         dcn20_acquire_dsc(dc, &state->res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
3726 #endif
3727                         ASSERT(sec_pipe->stream_res.dsc);
3728                         if (sec_pipe->stream_res.dsc == NULL)
3729                                 return false;
3730                 }
3731 #if defined(CONFIG_DRM_AMD_DC_DCN)
3732                 dcn20_build_mapped_resource(dc, state, sec_pipe->stream);
3733 #endif
3734         }
3735
3736         return true;
3737 }